• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29 
30 #include <linux/log2.h>
31 #include <drm/drmP.h>
32 #include "i915_drv.h"
33 #include <drm/i915_drm.h>
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 
37 /* Rough estimate of the typical request size, performing a flush,
38  * set-context and then emitting the batch.
39  */
40 #define LEGACY_REQUEST_SIZE 200
41 
__intel_ring_space(unsigned int head,unsigned int tail,unsigned int size)42 static unsigned int __intel_ring_space(unsigned int head,
43 				       unsigned int tail,
44 				       unsigned int size)
45 {
46 	/*
47 	 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the
48 	 * same cacheline, the Head Pointer must not be greater than the Tail
49 	 * Pointer."
50 	 */
51 	GEM_BUG_ON(!is_power_of_2(size));
52 	return (head - tail - CACHELINE_BYTES) & (size - 1);
53 }
54 
intel_ring_update_space(struct intel_ring * ring)55 unsigned int intel_ring_update_space(struct intel_ring *ring)
56 {
57 	unsigned int space;
58 
59 	space = __intel_ring_space(ring->head, ring->emit, ring->size);
60 
61 	ring->space = space;
62 	return space;
63 }
64 
65 static int
gen2_render_ring_flush(struct drm_i915_gem_request * req,u32 mode)66 gen2_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
67 {
68 	u32 cmd, *cs;
69 
70 	cmd = MI_FLUSH;
71 
72 	if (mode & EMIT_INVALIDATE)
73 		cmd |= MI_READ_FLUSH;
74 
75 	cs = intel_ring_begin(req, 2);
76 	if (IS_ERR(cs))
77 		return PTR_ERR(cs);
78 
79 	*cs++ = cmd;
80 	*cs++ = MI_NOOP;
81 	intel_ring_advance(req, cs);
82 
83 	return 0;
84 }
85 
86 static int
gen4_render_ring_flush(struct drm_i915_gem_request * req,u32 mode)87 gen4_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
88 {
89 	u32 cmd, *cs;
90 
91 	/*
92 	 * read/write caches:
93 	 *
94 	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
95 	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
96 	 * also flushed at 2d versus 3d pipeline switches.
97 	 *
98 	 * read-only caches:
99 	 *
100 	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
101 	 * MI_READ_FLUSH is set, and is always flushed on 965.
102 	 *
103 	 * I915_GEM_DOMAIN_COMMAND may not exist?
104 	 *
105 	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
106 	 * invalidated when MI_EXE_FLUSH is set.
107 	 *
108 	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
109 	 * invalidated with every MI_FLUSH.
110 	 *
111 	 * TLBs:
112 	 *
113 	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
114 	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
115 	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
116 	 * are flushed at any MI_FLUSH.
117 	 */
118 
119 	cmd = MI_FLUSH;
120 	if (mode & EMIT_INVALIDATE) {
121 		cmd |= MI_EXE_FLUSH;
122 		if (IS_G4X(req->i915) || IS_GEN5(req->i915))
123 			cmd |= MI_INVALIDATE_ISP;
124 	}
125 
126 	cs = intel_ring_begin(req, 2);
127 	if (IS_ERR(cs))
128 		return PTR_ERR(cs);
129 
130 	*cs++ = cmd;
131 	*cs++ = MI_NOOP;
132 	intel_ring_advance(req, cs);
133 
134 	return 0;
135 }
136 
137 /**
138  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
139  * implementing two workarounds on gen6.  From section 1.4.7.1
140  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
141  *
142  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
143  * produced by non-pipelined state commands), software needs to first
144  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
145  * 0.
146  *
147  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
148  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
149  *
150  * And the workaround for these two requires this workaround first:
151  *
152  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
153  * BEFORE the pipe-control with a post-sync op and no write-cache
154  * flushes.
155  *
156  * And this last workaround is tricky because of the requirements on
157  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
158  * volume 2 part 1:
159  *
160  *     "1 of the following must also be set:
161  *      - Render Target Cache Flush Enable ([12] of DW1)
162  *      - Depth Cache Flush Enable ([0] of DW1)
163  *      - Stall at Pixel Scoreboard ([1] of DW1)
164  *      - Depth Stall ([13] of DW1)
165  *      - Post-Sync Operation ([13] of DW1)
166  *      - Notify Enable ([8] of DW1)"
167  *
168  * The cache flushes require the workaround flush that triggered this
169  * one, so we can't use it.  Depth stall would trigger the same.
170  * Post-sync nonzero is what triggered this second workaround, so we
171  * can't use that one either.  Notify enable is IRQs, which aren't
172  * really our business.  That leaves only stall at scoreboard.
173  */
174 static int
intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request * req)175 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
176 {
177 	u32 scratch_addr =
178 		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
179 	u32 *cs;
180 
181 	cs = intel_ring_begin(req, 6);
182 	if (IS_ERR(cs))
183 		return PTR_ERR(cs);
184 
185 	*cs++ = GFX_OP_PIPE_CONTROL(5);
186 	*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
187 	*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
188 	*cs++ = 0; /* low dword */
189 	*cs++ = 0; /* high dword */
190 	*cs++ = MI_NOOP;
191 	intel_ring_advance(req, cs);
192 
193 	cs = intel_ring_begin(req, 6);
194 	if (IS_ERR(cs))
195 		return PTR_ERR(cs);
196 
197 	*cs++ = GFX_OP_PIPE_CONTROL(5);
198 	*cs++ = PIPE_CONTROL_QW_WRITE;
199 	*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
200 	*cs++ = 0;
201 	*cs++ = 0;
202 	*cs++ = MI_NOOP;
203 	intel_ring_advance(req, cs);
204 
205 	return 0;
206 }
207 
208 static int
gen6_render_ring_flush(struct drm_i915_gem_request * req,u32 mode)209 gen6_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
210 {
211 	u32 scratch_addr =
212 		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
213 	u32 *cs, flags = 0;
214 	int ret;
215 
216 	/* Force SNB workarounds for PIPE_CONTROL flushes */
217 	ret = intel_emit_post_sync_nonzero_flush(req);
218 	if (ret)
219 		return ret;
220 
221 	/* Just flush everything.  Experiments have shown that reducing the
222 	 * number of bits based on the write domains has little performance
223 	 * impact.
224 	 */
225 	if (mode & EMIT_FLUSH) {
226 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
227 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
228 		/*
229 		 * Ensure that any following seqno writes only happen
230 		 * when the render cache is indeed flushed.
231 		 */
232 		flags |= PIPE_CONTROL_CS_STALL;
233 	}
234 	if (mode & EMIT_INVALIDATE) {
235 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
236 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
237 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
238 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
239 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
240 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
241 		/*
242 		 * TLB invalidate requires a post-sync write.
243 		 */
244 		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
245 	}
246 
247 	cs = intel_ring_begin(req, 4);
248 	if (IS_ERR(cs))
249 		return PTR_ERR(cs);
250 
251 	*cs++ = GFX_OP_PIPE_CONTROL(4);
252 	*cs++ = flags;
253 	*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
254 	*cs++ = 0;
255 	intel_ring_advance(req, cs);
256 
257 	return 0;
258 }
259 
260 static int
gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request * req)261 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
262 {
263 	u32 *cs;
264 
265 	cs = intel_ring_begin(req, 4);
266 	if (IS_ERR(cs))
267 		return PTR_ERR(cs);
268 
269 	*cs++ = GFX_OP_PIPE_CONTROL(4);
270 	*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
271 	*cs++ = 0;
272 	*cs++ = 0;
273 	intel_ring_advance(req, cs);
274 
275 	return 0;
276 }
277 
278 static int
gen7_render_ring_flush(struct drm_i915_gem_request * req,u32 mode)279 gen7_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
280 {
281 	u32 scratch_addr =
282 		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
283 	u32 *cs, flags = 0;
284 
285 	/*
286 	 * Ensure that any following seqno writes only happen when the render
287 	 * cache is indeed flushed.
288 	 *
289 	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
290 	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
291 	 * don't try to be clever and just set it unconditionally.
292 	 */
293 	flags |= PIPE_CONTROL_CS_STALL;
294 
295 	/* Just flush everything.  Experiments have shown that reducing the
296 	 * number of bits based on the write domains has little performance
297 	 * impact.
298 	 */
299 	if (mode & EMIT_FLUSH) {
300 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
301 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
302 		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
303 		flags |= PIPE_CONTROL_FLUSH_ENABLE;
304 	}
305 	if (mode & EMIT_INVALIDATE) {
306 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
307 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
308 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
309 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
310 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
311 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
312 		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
313 		/*
314 		 * TLB invalidate requires a post-sync write.
315 		 */
316 		flags |= PIPE_CONTROL_QW_WRITE;
317 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
318 
319 		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
320 
321 		/* Workaround: we must issue a pipe_control with CS-stall bit
322 		 * set before a pipe_control command that has the state cache
323 		 * invalidate bit set. */
324 		gen7_render_ring_cs_stall_wa(req);
325 	}
326 
327 	cs = intel_ring_begin(req, 4);
328 	if (IS_ERR(cs))
329 		return PTR_ERR(cs);
330 
331 	*cs++ = GFX_OP_PIPE_CONTROL(4);
332 	*cs++ = flags;
333 	*cs++ = scratch_addr;
334 	*cs++ = 0;
335 	intel_ring_advance(req, cs);
336 
337 	return 0;
338 }
339 
340 static int
gen8_render_ring_flush(struct drm_i915_gem_request * req,u32 mode)341 gen8_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
342 {
343 	u32 flags;
344 	u32 *cs;
345 
346 	cs = intel_ring_begin(req, mode & EMIT_INVALIDATE ? 12 : 6);
347 	if (IS_ERR(cs))
348 		return PTR_ERR(cs);
349 
350 	flags = PIPE_CONTROL_CS_STALL;
351 
352 	if (mode & EMIT_FLUSH) {
353 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
354 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
355 		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
356 		flags |= PIPE_CONTROL_FLUSH_ENABLE;
357 	}
358 	if (mode & EMIT_INVALIDATE) {
359 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
360 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
361 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
362 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
363 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
364 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
365 		flags |= PIPE_CONTROL_QW_WRITE;
366 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
367 
368 		/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
369 		cs = gen8_emit_pipe_control(cs,
370 					    PIPE_CONTROL_CS_STALL |
371 					    PIPE_CONTROL_STALL_AT_SCOREBOARD,
372 					    0);
373 	}
374 
375 	cs = gen8_emit_pipe_control(cs, flags,
376 				    i915_ggtt_offset(req->engine->scratch) +
377 				    2 * CACHELINE_BYTES);
378 
379 	intel_ring_advance(req, cs);
380 
381 	return 0;
382 }
383 
ring_setup_phys_status_page(struct intel_engine_cs * engine)384 static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
385 {
386 	struct drm_i915_private *dev_priv = engine->i915;
387 	u32 addr;
388 
389 	addr = dev_priv->status_page_dmah->busaddr;
390 	if (INTEL_GEN(dev_priv) >= 4)
391 		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
392 	I915_WRITE(HWS_PGA, addr);
393 }
394 
intel_ring_setup_status_page(struct intel_engine_cs * engine)395 static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
396 {
397 	struct drm_i915_private *dev_priv = engine->i915;
398 	i915_reg_t mmio;
399 
400 	/* The ring status page addresses are no longer next to the rest of
401 	 * the ring registers as of gen7.
402 	 */
403 	if (IS_GEN7(dev_priv)) {
404 		switch (engine->id) {
405 		case RCS:
406 			mmio = RENDER_HWS_PGA_GEN7;
407 			break;
408 		case BCS:
409 			mmio = BLT_HWS_PGA_GEN7;
410 			break;
411 		/*
412 		 * VCS2 actually doesn't exist on Gen7. Only shut up
413 		 * gcc switch check warning
414 		 */
415 		case VCS2:
416 		case VCS:
417 			mmio = BSD_HWS_PGA_GEN7;
418 			break;
419 		case VECS:
420 			mmio = VEBOX_HWS_PGA_GEN7;
421 			break;
422 		}
423 	} else if (IS_GEN6(dev_priv)) {
424 		mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
425 	} else {
426 		/* XXX: gen8 returns to sanity */
427 		mmio = RING_HWS_PGA(engine->mmio_base);
428 	}
429 
430 	I915_WRITE(mmio, engine->status_page.ggtt_offset);
431 	POSTING_READ(mmio);
432 
433 	/*
434 	 * Flush the TLB for this page
435 	 *
436 	 * FIXME: These two bits have disappeared on gen8, so a question
437 	 * arises: do we still need this and if so how should we go about
438 	 * invalidating the TLB?
439 	 */
440 	if (IS_GEN(dev_priv, 6, 7)) {
441 		i915_reg_t reg = RING_INSTPM(engine->mmio_base);
442 
443 		/* ring should be idle before issuing a sync flush*/
444 		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
445 
446 		I915_WRITE(reg,
447 			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
448 					      INSTPM_SYNC_FLUSH));
449 		if (intel_wait_for_register(dev_priv,
450 					    reg, INSTPM_SYNC_FLUSH, 0,
451 					    1000))
452 			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
453 				  engine->name);
454 	}
455 }
456 
stop_ring(struct intel_engine_cs * engine)457 static bool stop_ring(struct intel_engine_cs *engine)
458 {
459 	struct drm_i915_private *dev_priv = engine->i915;
460 
461 	if (INTEL_GEN(dev_priv) > 2) {
462 		I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
463 		if (intel_wait_for_register(dev_priv,
464 					    RING_MI_MODE(engine->mmio_base),
465 					    MODE_IDLE,
466 					    MODE_IDLE,
467 					    1000)) {
468 			DRM_ERROR("%s : timed out trying to stop ring\n",
469 				  engine->name);
470 			/* Sometimes we observe that the idle flag is not
471 			 * set even though the ring is empty. So double
472 			 * check before giving up.
473 			 */
474 			if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
475 				return false;
476 		}
477 	}
478 
479 	I915_WRITE_CTL(engine, 0);
480 	I915_WRITE_HEAD(engine, 0);
481 	I915_WRITE_TAIL(engine, 0);
482 
483 	if (INTEL_GEN(dev_priv) > 2) {
484 		(void)I915_READ_CTL(engine);
485 		I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
486 	}
487 
488 	return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
489 }
490 
init_ring_common(struct intel_engine_cs * engine)491 static int init_ring_common(struct intel_engine_cs *engine)
492 {
493 	struct drm_i915_private *dev_priv = engine->i915;
494 	struct intel_ring *ring = engine->buffer;
495 	int ret = 0;
496 
497 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
498 
499 	if (!stop_ring(engine)) {
500 		/* G45 ring initialization often fails to reset head to zero */
501 		DRM_DEBUG_KMS("%s head not reset to zero "
502 			      "ctl %08x head %08x tail %08x start %08x\n",
503 			      engine->name,
504 			      I915_READ_CTL(engine),
505 			      I915_READ_HEAD(engine),
506 			      I915_READ_TAIL(engine),
507 			      I915_READ_START(engine));
508 
509 		if (!stop_ring(engine)) {
510 			DRM_ERROR("failed to set %s head to zero "
511 				  "ctl %08x head %08x tail %08x start %08x\n",
512 				  engine->name,
513 				  I915_READ_CTL(engine),
514 				  I915_READ_HEAD(engine),
515 				  I915_READ_TAIL(engine),
516 				  I915_READ_START(engine));
517 			ret = -EIO;
518 			goto out;
519 		}
520 	}
521 
522 	if (HWS_NEEDS_PHYSICAL(dev_priv))
523 		ring_setup_phys_status_page(engine);
524 	else
525 		intel_ring_setup_status_page(engine);
526 
527 	intel_engine_reset_breadcrumbs(engine);
528 
529 	/* Enforce ordering by reading HEAD register back */
530 	I915_READ_HEAD(engine);
531 
532 	/* Initialize the ring. This must happen _after_ we've cleared the ring
533 	 * registers with the above sequence (the readback of the HEAD registers
534 	 * also enforces ordering), otherwise the hw might lose the new ring
535 	 * register values. */
536 	I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
537 
538 	/* WaClearRingBufHeadRegAtInit:ctg,elk */
539 	if (I915_READ_HEAD(engine))
540 		DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
541 			  engine->name, I915_READ_HEAD(engine));
542 
543 	intel_ring_update_space(ring);
544 	I915_WRITE_HEAD(engine, ring->head);
545 	I915_WRITE_TAIL(engine, ring->tail);
546 	(void)I915_READ_TAIL(engine);
547 
548 	I915_WRITE_CTL(engine, RING_CTL_SIZE(ring->size) | RING_VALID);
549 
550 	/* If the head is still not zero, the ring is dead */
551 	if (intel_wait_for_register(dev_priv, RING_CTL(engine->mmio_base),
552 				    RING_VALID, RING_VALID,
553 				    50)) {
554 		DRM_ERROR("%s initialization failed "
555 			  "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
556 			  engine->name,
557 			  I915_READ_CTL(engine),
558 			  I915_READ_CTL(engine) & RING_VALID,
559 			  I915_READ_HEAD(engine), ring->head,
560 			  I915_READ_TAIL(engine), ring->tail,
561 			  I915_READ_START(engine),
562 			  i915_ggtt_offset(ring->vma));
563 		ret = -EIO;
564 		goto out;
565 	}
566 
567 	intel_engine_init_hangcheck(engine);
568 
569 out:
570 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
571 
572 	return ret;
573 }
574 
reset_ring_common(struct intel_engine_cs * engine,struct drm_i915_gem_request * request)575 static void reset_ring_common(struct intel_engine_cs *engine,
576 			      struct drm_i915_gem_request *request)
577 {
578 	/* Try to restore the logical GPU state to match the continuation
579 	 * of the request queue. If we skip the context/PD restore, then
580 	 * the next request may try to execute assuming that its context
581 	 * is valid and loaded on the GPU and so may try to access invalid
582 	 * memory, prompting repeated GPU hangs.
583 	 *
584 	 * If the request was guilty, we still restore the logical state
585 	 * in case the next request requires it (e.g. the aliasing ppgtt),
586 	 * but skip over the hung batch.
587 	 *
588 	 * If the request was innocent, we try to replay the request with
589 	 * the restored context.
590 	 */
591 	if (request) {
592 		struct drm_i915_private *dev_priv = request->i915;
593 		struct intel_context *ce = &request->ctx->engine[engine->id];
594 		struct i915_hw_ppgtt *ppgtt;
595 
596 		/* FIXME consider gen8 reset */
597 
598 		if (ce->state) {
599 			I915_WRITE(CCID,
600 				   i915_ggtt_offset(ce->state) |
601 				   BIT(8) /* must be set! */ |
602 				   CCID_EXTENDED_STATE_SAVE |
603 				   CCID_EXTENDED_STATE_RESTORE |
604 				   CCID_EN);
605 		}
606 
607 		ppgtt = request->ctx->ppgtt ?: engine->i915->mm.aliasing_ppgtt;
608 		if (ppgtt) {
609 			u32 pd_offset = ppgtt->pd.base.ggtt_offset << 10;
610 
611 			I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
612 			I915_WRITE(RING_PP_DIR_BASE(engine), pd_offset);
613 
614 			/* Wait for the PD reload to complete */
615 			if (intel_wait_for_register(dev_priv,
616 						    RING_PP_DIR_BASE(engine),
617 						    BIT(0), 0,
618 						    10))
619 				DRM_ERROR("Wait for reload of ppgtt page-directory timed out\n");
620 
621 			ppgtt->pd_dirty_rings &= ~intel_engine_flag(engine);
622 		}
623 
624 		/* If the rq hung, jump to its breadcrumb and skip the batch */
625 		if (request->fence.error == -EIO)
626 			request->ring->head = request->postfix;
627 	} else {
628 		engine->legacy_active_context = NULL;
629 	}
630 }
631 
intel_rcs_ctx_init(struct drm_i915_gem_request * req)632 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
633 {
634 	int ret;
635 
636 	ret = intel_ring_workarounds_emit(req);
637 	if (ret != 0)
638 		return ret;
639 
640 	ret = i915_gem_render_state_emit(req);
641 	if (ret)
642 		return ret;
643 
644 	return 0;
645 }
646 
init_render_ring(struct intel_engine_cs * engine)647 static int init_render_ring(struct intel_engine_cs *engine)
648 {
649 	struct drm_i915_private *dev_priv = engine->i915;
650 	int ret = init_ring_common(engine);
651 	if (ret)
652 		return ret;
653 
654 	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
655 	if (IS_GEN(dev_priv, 4, 6))
656 		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
657 
658 	/* We need to disable the AsyncFlip performance optimisations in order
659 	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
660 	 * programmed to '1' on all products.
661 	 *
662 	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
663 	 */
664 	if (IS_GEN(dev_priv, 6, 7))
665 		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
666 
667 	/* Required for the hardware to program scanline values for waiting */
668 	/* WaEnableFlushTlbInvalidationMode:snb */
669 	if (IS_GEN6(dev_priv))
670 		I915_WRITE(GFX_MODE,
671 			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
672 
673 	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
674 	if (IS_GEN7(dev_priv))
675 		I915_WRITE(GFX_MODE_GEN7,
676 			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
677 			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
678 
679 	if (IS_GEN6(dev_priv)) {
680 		/* From the Sandybridge PRM, volume 1 part 3, page 24:
681 		 * "If this bit is set, STCunit will have LRA as replacement
682 		 *  policy. [...] This bit must be reset.  LRA replacement
683 		 *  policy is not supported."
684 		 */
685 		I915_WRITE(CACHE_MODE_0,
686 			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
687 	}
688 
689 	if (IS_GEN(dev_priv, 6, 7))
690 		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
691 
692 	if (INTEL_INFO(dev_priv)->gen >= 6)
693 		I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
694 
695 	return init_workarounds_ring(engine);
696 }
697 
render_ring_cleanup(struct intel_engine_cs * engine)698 static void render_ring_cleanup(struct intel_engine_cs *engine)
699 {
700 	struct drm_i915_private *dev_priv = engine->i915;
701 
702 	i915_vma_unpin_and_release(&dev_priv->semaphore);
703 }
704 
gen8_rcs_signal(struct drm_i915_gem_request * req,u32 * cs)705 static u32 *gen8_rcs_signal(struct drm_i915_gem_request *req, u32 *cs)
706 {
707 	struct drm_i915_private *dev_priv = req->i915;
708 	struct intel_engine_cs *waiter;
709 	enum intel_engine_id id;
710 
711 	for_each_engine(waiter, dev_priv, id) {
712 		u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
713 		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
714 			continue;
715 
716 		*cs++ = GFX_OP_PIPE_CONTROL(6);
717 		*cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_QW_WRITE |
718 			PIPE_CONTROL_CS_STALL;
719 		*cs++ = lower_32_bits(gtt_offset);
720 		*cs++ = upper_32_bits(gtt_offset);
721 		*cs++ = req->global_seqno;
722 		*cs++ = 0;
723 		*cs++ = MI_SEMAPHORE_SIGNAL |
724 			MI_SEMAPHORE_TARGET(waiter->hw_id);
725 		*cs++ = 0;
726 	}
727 
728 	return cs;
729 }
730 
gen8_xcs_signal(struct drm_i915_gem_request * req,u32 * cs)731 static u32 *gen8_xcs_signal(struct drm_i915_gem_request *req, u32 *cs)
732 {
733 	struct drm_i915_private *dev_priv = req->i915;
734 	struct intel_engine_cs *waiter;
735 	enum intel_engine_id id;
736 
737 	for_each_engine(waiter, dev_priv, id) {
738 		u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
739 		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
740 			continue;
741 
742 		*cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
743 		*cs++ = lower_32_bits(gtt_offset) | MI_FLUSH_DW_USE_GTT;
744 		*cs++ = upper_32_bits(gtt_offset);
745 		*cs++ = req->global_seqno;
746 		*cs++ = MI_SEMAPHORE_SIGNAL |
747 			MI_SEMAPHORE_TARGET(waiter->hw_id);
748 		*cs++ = 0;
749 	}
750 
751 	return cs;
752 }
753 
gen6_signal(struct drm_i915_gem_request * req,u32 * cs)754 static u32 *gen6_signal(struct drm_i915_gem_request *req, u32 *cs)
755 {
756 	struct drm_i915_private *dev_priv = req->i915;
757 	struct intel_engine_cs *engine;
758 	enum intel_engine_id id;
759 	int num_rings = 0;
760 
761 	for_each_engine(engine, dev_priv, id) {
762 		i915_reg_t mbox_reg;
763 
764 		if (!(BIT(engine->hw_id) & GEN6_SEMAPHORES_MASK))
765 			continue;
766 
767 		mbox_reg = req->engine->semaphore.mbox.signal[engine->hw_id];
768 		if (i915_mmio_reg_valid(mbox_reg)) {
769 			*cs++ = MI_LOAD_REGISTER_IMM(1);
770 			*cs++ = i915_mmio_reg_offset(mbox_reg);
771 			*cs++ = req->global_seqno;
772 			num_rings++;
773 		}
774 	}
775 	if (num_rings & 1)
776 		*cs++ = MI_NOOP;
777 
778 	return cs;
779 }
780 
i9xx_submit_request(struct drm_i915_gem_request * request)781 static void i9xx_submit_request(struct drm_i915_gem_request *request)
782 {
783 	struct drm_i915_private *dev_priv = request->i915;
784 
785 	i915_gem_request_submit(request);
786 
787 	I915_WRITE_TAIL(request->engine,
788 			intel_ring_set_tail(request->ring, request->tail));
789 }
790 
i9xx_emit_breadcrumb(struct drm_i915_gem_request * req,u32 * cs)791 static void i9xx_emit_breadcrumb(struct drm_i915_gem_request *req, u32 *cs)
792 {
793 	*cs++ = MI_STORE_DWORD_INDEX;
794 	*cs++ = I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT;
795 	*cs++ = req->global_seqno;
796 	*cs++ = MI_USER_INTERRUPT;
797 
798 	req->tail = intel_ring_offset(req, cs);
799 	assert_ring_tail_valid(req->ring, req->tail);
800 }
801 
802 static const int i9xx_emit_breadcrumb_sz = 4;
803 
804 /**
805  * gen6_sema_emit_breadcrumb - Update the semaphore mailbox registers
806  *
807  * @request - request to write to the ring
808  *
809  * Update the mailbox registers in the *other* rings with the current seqno.
810  * This acts like a signal in the canonical semaphore.
811  */
gen6_sema_emit_breadcrumb(struct drm_i915_gem_request * req,u32 * cs)812 static void gen6_sema_emit_breadcrumb(struct drm_i915_gem_request *req, u32 *cs)
813 {
814 	return i9xx_emit_breadcrumb(req,
815 				    req->engine->semaphore.signal(req, cs));
816 }
817 
gen8_render_emit_breadcrumb(struct drm_i915_gem_request * req,u32 * cs)818 static void gen8_render_emit_breadcrumb(struct drm_i915_gem_request *req,
819 					u32 *cs)
820 {
821 	struct intel_engine_cs *engine = req->engine;
822 
823 	if (engine->semaphore.signal)
824 		cs = engine->semaphore.signal(req, cs);
825 
826 	*cs++ = GFX_OP_PIPE_CONTROL(6);
827 	*cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
828 		PIPE_CONTROL_QW_WRITE;
829 	*cs++ = intel_hws_seqno_address(engine);
830 	*cs++ = 0;
831 	*cs++ = req->global_seqno;
832 	/* We're thrashing one dword of HWS. */
833 	*cs++ = 0;
834 	*cs++ = MI_USER_INTERRUPT;
835 	*cs++ = MI_NOOP;
836 
837 	req->tail = intel_ring_offset(req, cs);
838 	assert_ring_tail_valid(req->ring, req->tail);
839 }
840 
841 static const int gen8_render_emit_breadcrumb_sz = 8;
842 
843 /**
844  * intel_ring_sync - sync the waiter to the signaller on seqno
845  *
846  * @waiter - ring that is waiting
847  * @signaller - ring which has, or will signal
848  * @seqno - seqno which the waiter will block on
849  */
850 
851 static int
gen8_ring_sync_to(struct drm_i915_gem_request * req,struct drm_i915_gem_request * signal)852 gen8_ring_sync_to(struct drm_i915_gem_request *req,
853 		  struct drm_i915_gem_request *signal)
854 {
855 	struct drm_i915_private *dev_priv = req->i915;
856 	u64 offset = GEN8_WAIT_OFFSET(req->engine, signal->engine->id);
857 	struct i915_hw_ppgtt *ppgtt;
858 	u32 *cs;
859 
860 	cs = intel_ring_begin(req, 4);
861 	if (IS_ERR(cs))
862 		return PTR_ERR(cs);
863 
864 	*cs++ = MI_SEMAPHORE_WAIT | MI_SEMAPHORE_GLOBAL_GTT |
865 		MI_SEMAPHORE_SAD_GTE_SDD;
866 	*cs++ = signal->global_seqno;
867 	*cs++ = lower_32_bits(offset);
868 	*cs++ = upper_32_bits(offset);
869 	intel_ring_advance(req, cs);
870 
871 	/* When the !RCS engines idle waiting upon a semaphore, they lose their
872 	 * pagetables and we must reload them before executing the batch.
873 	 * We do this on the i915_switch_context() following the wait and
874 	 * before the dispatch.
875 	 */
876 	ppgtt = req->ctx->ppgtt;
877 	if (ppgtt && req->engine->id != RCS)
878 		ppgtt->pd_dirty_rings |= intel_engine_flag(req->engine);
879 	return 0;
880 }
881 
882 static int
gen6_ring_sync_to(struct drm_i915_gem_request * req,struct drm_i915_gem_request * signal)883 gen6_ring_sync_to(struct drm_i915_gem_request *req,
884 		  struct drm_i915_gem_request *signal)
885 {
886 	u32 dw1 = MI_SEMAPHORE_MBOX |
887 		  MI_SEMAPHORE_COMPARE |
888 		  MI_SEMAPHORE_REGISTER;
889 	u32 wait_mbox = signal->engine->semaphore.mbox.wait[req->engine->hw_id];
890 	u32 *cs;
891 
892 	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
893 
894 	cs = intel_ring_begin(req, 4);
895 	if (IS_ERR(cs))
896 		return PTR_ERR(cs);
897 
898 	*cs++ = dw1 | wait_mbox;
899 	/* Throughout all of the GEM code, seqno passed implies our current
900 	 * seqno is >= the last seqno executed. However for hardware the
901 	 * comparison is strictly greater than.
902 	 */
903 	*cs++ = signal->global_seqno - 1;
904 	*cs++ = 0;
905 	*cs++ = MI_NOOP;
906 	intel_ring_advance(req, cs);
907 
908 	return 0;
909 }
910 
911 static void
gen5_seqno_barrier(struct intel_engine_cs * engine)912 gen5_seqno_barrier(struct intel_engine_cs *engine)
913 {
914 	/* MI_STORE are internally buffered by the GPU and not flushed
915 	 * either by MI_FLUSH or SyncFlush or any other combination of
916 	 * MI commands.
917 	 *
918 	 * "Only the submission of the store operation is guaranteed.
919 	 * The write result will be complete (coherent) some time later
920 	 * (this is practically a finite period but there is no guaranteed
921 	 * latency)."
922 	 *
923 	 * Empirically, we observe that we need a delay of at least 75us to
924 	 * be sure that the seqno write is visible by the CPU.
925 	 */
926 	usleep_range(125, 250);
927 }
928 
929 static void
gen6_seqno_barrier(struct intel_engine_cs * engine)930 gen6_seqno_barrier(struct intel_engine_cs *engine)
931 {
932 	struct drm_i915_private *dev_priv = engine->i915;
933 
934 	/* Workaround to force correct ordering between irq and seqno writes on
935 	 * ivb (and maybe also on snb) by reading from a CS register (like
936 	 * ACTHD) before reading the status page.
937 	 *
938 	 * Note that this effectively stalls the read by the time it takes to
939 	 * do a memory transaction, which more or less ensures that the write
940 	 * from the GPU has sufficient time to invalidate the CPU cacheline.
941 	 * Alternatively we could delay the interrupt from the CS ring to give
942 	 * the write time to land, but that would incur a delay after every
943 	 * batch i.e. much more frequent than a delay when waiting for the
944 	 * interrupt (with the same net latency).
945 	 *
946 	 * Also note that to prevent whole machine hangs on gen7, we have to
947 	 * take the spinlock to guard against concurrent cacheline access.
948 	 */
949 	spin_lock_irq(&dev_priv->uncore.lock);
950 	POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
951 	spin_unlock_irq(&dev_priv->uncore.lock);
952 }
953 
954 static void
gen5_irq_enable(struct intel_engine_cs * engine)955 gen5_irq_enable(struct intel_engine_cs *engine)
956 {
957 	gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
958 }
959 
960 static void
gen5_irq_disable(struct intel_engine_cs * engine)961 gen5_irq_disable(struct intel_engine_cs *engine)
962 {
963 	gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
964 }
965 
966 static void
i9xx_irq_enable(struct intel_engine_cs * engine)967 i9xx_irq_enable(struct intel_engine_cs *engine)
968 {
969 	struct drm_i915_private *dev_priv = engine->i915;
970 
971 	dev_priv->irq_mask &= ~engine->irq_enable_mask;
972 	I915_WRITE(IMR, dev_priv->irq_mask);
973 	POSTING_READ_FW(RING_IMR(engine->mmio_base));
974 }
975 
976 static void
i9xx_irq_disable(struct intel_engine_cs * engine)977 i9xx_irq_disable(struct intel_engine_cs *engine)
978 {
979 	struct drm_i915_private *dev_priv = engine->i915;
980 
981 	dev_priv->irq_mask |= engine->irq_enable_mask;
982 	I915_WRITE(IMR, dev_priv->irq_mask);
983 }
984 
985 static void
i8xx_irq_enable(struct intel_engine_cs * engine)986 i8xx_irq_enable(struct intel_engine_cs *engine)
987 {
988 	struct drm_i915_private *dev_priv = engine->i915;
989 
990 	dev_priv->irq_mask &= ~engine->irq_enable_mask;
991 	I915_WRITE16(IMR, dev_priv->irq_mask);
992 	POSTING_READ16(RING_IMR(engine->mmio_base));
993 }
994 
995 static void
i8xx_irq_disable(struct intel_engine_cs * engine)996 i8xx_irq_disable(struct intel_engine_cs *engine)
997 {
998 	struct drm_i915_private *dev_priv = engine->i915;
999 
1000 	dev_priv->irq_mask |= engine->irq_enable_mask;
1001 	I915_WRITE16(IMR, dev_priv->irq_mask);
1002 }
1003 
1004 static int
bsd_ring_flush(struct drm_i915_gem_request * req,u32 mode)1005 bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
1006 {
1007 	u32 *cs;
1008 
1009 	cs = intel_ring_begin(req, 2);
1010 	if (IS_ERR(cs))
1011 		return PTR_ERR(cs);
1012 
1013 	*cs++ = MI_FLUSH;
1014 	*cs++ = MI_NOOP;
1015 	intel_ring_advance(req, cs);
1016 	return 0;
1017 }
1018 
1019 static void
gen6_irq_enable(struct intel_engine_cs * engine)1020 gen6_irq_enable(struct intel_engine_cs *engine)
1021 {
1022 	struct drm_i915_private *dev_priv = engine->i915;
1023 
1024 	I915_WRITE_IMR(engine,
1025 		       ~(engine->irq_enable_mask |
1026 			 engine->irq_keep_mask));
1027 	gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1028 }
1029 
1030 static void
gen6_irq_disable(struct intel_engine_cs * engine)1031 gen6_irq_disable(struct intel_engine_cs *engine)
1032 {
1033 	struct drm_i915_private *dev_priv = engine->i915;
1034 
1035 	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1036 	gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1037 }
1038 
1039 static void
hsw_vebox_irq_enable(struct intel_engine_cs * engine)1040 hsw_vebox_irq_enable(struct intel_engine_cs *engine)
1041 {
1042 	struct drm_i915_private *dev_priv = engine->i915;
1043 
1044 	I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1045 	gen6_unmask_pm_irq(dev_priv, engine->irq_enable_mask);
1046 }
1047 
1048 static void
hsw_vebox_irq_disable(struct intel_engine_cs * engine)1049 hsw_vebox_irq_disable(struct intel_engine_cs *engine)
1050 {
1051 	struct drm_i915_private *dev_priv = engine->i915;
1052 
1053 	I915_WRITE_IMR(engine, ~0);
1054 	gen6_mask_pm_irq(dev_priv, engine->irq_enable_mask);
1055 }
1056 
1057 static void
gen8_irq_enable(struct intel_engine_cs * engine)1058 gen8_irq_enable(struct intel_engine_cs *engine)
1059 {
1060 	struct drm_i915_private *dev_priv = engine->i915;
1061 
1062 	I915_WRITE_IMR(engine,
1063 		       ~(engine->irq_enable_mask |
1064 			 engine->irq_keep_mask));
1065 	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1066 }
1067 
1068 static void
gen8_irq_disable(struct intel_engine_cs * engine)1069 gen8_irq_disable(struct intel_engine_cs *engine)
1070 {
1071 	struct drm_i915_private *dev_priv = engine->i915;
1072 
1073 	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1074 }
1075 
1076 static int
i965_emit_bb_start(struct drm_i915_gem_request * req,u64 offset,u32 length,unsigned int dispatch_flags)1077 i965_emit_bb_start(struct drm_i915_gem_request *req,
1078 		   u64 offset, u32 length,
1079 		   unsigned int dispatch_flags)
1080 {
1081 	u32 *cs;
1082 
1083 	cs = intel_ring_begin(req, 2);
1084 	if (IS_ERR(cs))
1085 		return PTR_ERR(cs);
1086 
1087 	*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT | (dispatch_flags &
1088 		I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965);
1089 	*cs++ = offset;
1090 	intel_ring_advance(req, cs);
1091 
1092 	return 0;
1093 }
1094 
1095 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1096 #define I830_BATCH_LIMIT (256*1024)
1097 #define I830_TLB_ENTRIES (2)
1098 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1099 static int
i830_emit_bb_start(struct drm_i915_gem_request * req,u64 offset,u32 len,unsigned int dispatch_flags)1100 i830_emit_bb_start(struct drm_i915_gem_request *req,
1101 		   u64 offset, u32 len,
1102 		   unsigned int dispatch_flags)
1103 {
1104 	u32 *cs, cs_offset = i915_ggtt_offset(req->engine->scratch);
1105 
1106 	cs = intel_ring_begin(req, 6);
1107 	if (IS_ERR(cs))
1108 		return PTR_ERR(cs);
1109 
1110 	/* Evict the invalid PTE TLBs */
1111 	*cs++ = COLOR_BLT_CMD | BLT_WRITE_RGBA;
1112 	*cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096;
1113 	*cs++ = I830_TLB_ENTRIES << 16 | 4; /* load each page */
1114 	*cs++ = cs_offset;
1115 	*cs++ = 0xdeadbeef;
1116 	*cs++ = MI_NOOP;
1117 	intel_ring_advance(req, cs);
1118 
1119 	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1120 		if (len > I830_BATCH_LIMIT)
1121 			return -ENOSPC;
1122 
1123 		cs = intel_ring_begin(req, 6 + 2);
1124 		if (IS_ERR(cs))
1125 			return PTR_ERR(cs);
1126 
1127 		/* Blit the batch (which has now all relocs applied) to the
1128 		 * stable batch scratch bo area (so that the CS never
1129 		 * stumbles over its tlb invalidation bug) ...
1130 		 */
1131 		*cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA;
1132 		*cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096;
1133 		*cs++ = DIV_ROUND_UP(len, 4096) << 16 | 4096;
1134 		*cs++ = cs_offset;
1135 		*cs++ = 4096;
1136 		*cs++ = offset;
1137 
1138 		*cs++ = MI_FLUSH;
1139 		*cs++ = MI_NOOP;
1140 		intel_ring_advance(req, cs);
1141 
1142 		/* ... and execute it. */
1143 		offset = cs_offset;
1144 	}
1145 
1146 	cs = intel_ring_begin(req, 2);
1147 	if (IS_ERR(cs))
1148 		return PTR_ERR(cs);
1149 
1150 	*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1151 	*cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1152 		MI_BATCH_NON_SECURE);
1153 	intel_ring_advance(req, cs);
1154 
1155 	return 0;
1156 }
1157 
1158 static int
i915_emit_bb_start(struct drm_i915_gem_request * req,u64 offset,u32 len,unsigned int dispatch_flags)1159 i915_emit_bb_start(struct drm_i915_gem_request *req,
1160 		   u64 offset, u32 len,
1161 		   unsigned int dispatch_flags)
1162 {
1163 	u32 *cs;
1164 
1165 	cs = intel_ring_begin(req, 2);
1166 	if (IS_ERR(cs))
1167 		return PTR_ERR(cs);
1168 
1169 	*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1170 	*cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1171 		MI_BATCH_NON_SECURE);
1172 	intel_ring_advance(req, cs);
1173 
1174 	return 0;
1175 }
1176 
cleanup_phys_status_page(struct intel_engine_cs * engine)1177 static void cleanup_phys_status_page(struct intel_engine_cs *engine)
1178 {
1179 	struct drm_i915_private *dev_priv = engine->i915;
1180 
1181 	if (!dev_priv->status_page_dmah)
1182 		return;
1183 
1184 	drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
1185 	engine->status_page.page_addr = NULL;
1186 }
1187 
cleanup_status_page(struct intel_engine_cs * engine)1188 static void cleanup_status_page(struct intel_engine_cs *engine)
1189 {
1190 	struct i915_vma *vma;
1191 	struct drm_i915_gem_object *obj;
1192 
1193 	vma = fetch_and_zero(&engine->status_page.vma);
1194 	if (!vma)
1195 		return;
1196 
1197 	obj = vma->obj;
1198 
1199 	i915_vma_unpin(vma);
1200 	i915_vma_close(vma);
1201 
1202 	i915_gem_object_unpin_map(obj);
1203 	__i915_gem_object_release_unless_active(obj);
1204 }
1205 
init_status_page(struct intel_engine_cs * engine)1206 static int init_status_page(struct intel_engine_cs *engine)
1207 {
1208 	struct drm_i915_gem_object *obj;
1209 	struct i915_vma *vma;
1210 	unsigned int flags;
1211 	void *vaddr;
1212 	int ret;
1213 
1214 	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
1215 	if (IS_ERR(obj)) {
1216 		DRM_ERROR("Failed to allocate status page\n");
1217 		return PTR_ERR(obj);
1218 	}
1219 
1220 	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1221 	if (ret)
1222 		goto err;
1223 
1224 	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1225 	if (IS_ERR(vma)) {
1226 		ret = PTR_ERR(vma);
1227 		goto err;
1228 	}
1229 
1230 	flags = PIN_GLOBAL;
1231 	if (!HAS_LLC(engine->i915))
1232 		/* On g33, we cannot place HWS above 256MiB, so
1233 		 * restrict its pinning to the low mappable arena.
1234 		 * Though this restriction is not documented for
1235 		 * gen4, gen5, or byt, they also behave similarly
1236 		 * and hang if the HWS is placed at the top of the
1237 		 * GTT. To generalise, it appears that all !llc
1238 		 * platforms have issues with us placing the HWS
1239 		 * above the mappable region (even though we never
1240 		 * actualy map it).
1241 		 */
1242 		flags |= PIN_MAPPABLE;
1243 	ret = i915_vma_pin(vma, 0, 4096, flags);
1244 	if (ret)
1245 		goto err;
1246 
1247 	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1248 	if (IS_ERR(vaddr)) {
1249 		ret = PTR_ERR(vaddr);
1250 		goto err_unpin;
1251 	}
1252 
1253 	engine->status_page.vma = vma;
1254 	engine->status_page.ggtt_offset = i915_ggtt_offset(vma);
1255 	engine->status_page.page_addr = memset(vaddr, 0, PAGE_SIZE);
1256 
1257 	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1258 			 engine->name, i915_ggtt_offset(vma));
1259 	return 0;
1260 
1261 err_unpin:
1262 	i915_vma_unpin(vma);
1263 err:
1264 	i915_gem_object_put(obj);
1265 	return ret;
1266 }
1267 
init_phys_status_page(struct intel_engine_cs * engine)1268 static int init_phys_status_page(struct intel_engine_cs *engine)
1269 {
1270 	struct drm_i915_private *dev_priv = engine->i915;
1271 
1272 	GEM_BUG_ON(engine->id != RCS);
1273 
1274 	dev_priv->status_page_dmah =
1275 		drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
1276 	if (!dev_priv->status_page_dmah)
1277 		return -ENOMEM;
1278 
1279 	engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1280 	memset(engine->status_page.page_addr, 0, PAGE_SIZE);
1281 
1282 	return 0;
1283 }
1284 
intel_ring_pin(struct intel_ring * ring,struct drm_i915_private * i915,unsigned int offset_bias)1285 int intel_ring_pin(struct intel_ring *ring,
1286 		   struct drm_i915_private *i915,
1287 		   unsigned int offset_bias)
1288 {
1289 	enum i915_map_type map = HAS_LLC(i915) ? I915_MAP_WB : I915_MAP_WC;
1290 	struct i915_vma *vma = ring->vma;
1291 	unsigned int flags;
1292 	void *addr;
1293 	int ret;
1294 
1295 	GEM_BUG_ON(ring->vaddr);
1296 
1297 
1298 	flags = PIN_GLOBAL;
1299 	if (offset_bias)
1300 		flags |= PIN_OFFSET_BIAS | offset_bias;
1301 	if (vma->obj->stolen)
1302 		flags |= PIN_MAPPABLE;
1303 
1304 	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1305 		if (flags & PIN_MAPPABLE || map == I915_MAP_WC)
1306 			ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1307 		else
1308 			ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
1309 		if (unlikely(ret))
1310 			return ret;
1311 	}
1312 
1313 	ret = i915_vma_pin(vma, 0, PAGE_SIZE, flags);
1314 	if (unlikely(ret))
1315 		return ret;
1316 
1317 	if (i915_vma_is_map_and_fenceable(vma))
1318 		addr = (void __force *)i915_vma_pin_iomap(vma);
1319 	else
1320 		addr = i915_gem_object_pin_map(vma->obj, map);
1321 	if (IS_ERR(addr))
1322 		goto err;
1323 
1324 	ring->vaddr = addr;
1325 	return 0;
1326 
1327 err:
1328 	i915_vma_unpin(vma);
1329 	return PTR_ERR(addr);
1330 }
1331 
intel_ring_reset(struct intel_ring * ring,u32 tail)1332 void intel_ring_reset(struct intel_ring *ring, u32 tail)
1333 {
1334 	GEM_BUG_ON(!list_empty(&ring->request_list));
1335 	ring->tail = tail;
1336 	ring->head = tail;
1337 	ring->emit = tail;
1338 	intel_ring_update_space(ring);
1339 }
1340 
intel_ring_unpin(struct intel_ring * ring)1341 void intel_ring_unpin(struct intel_ring *ring)
1342 {
1343 	GEM_BUG_ON(!ring->vma);
1344 	GEM_BUG_ON(!ring->vaddr);
1345 
1346 	/* Discard any unused bytes beyond that submitted to hw. */
1347 	intel_ring_reset(ring, ring->tail);
1348 
1349 	if (i915_vma_is_map_and_fenceable(ring->vma))
1350 		i915_vma_unpin_iomap(ring->vma);
1351 	else
1352 		i915_gem_object_unpin_map(ring->vma->obj);
1353 	ring->vaddr = NULL;
1354 
1355 	i915_vma_unpin(ring->vma);
1356 }
1357 
1358 static struct i915_vma *
intel_ring_create_vma(struct drm_i915_private * dev_priv,int size)1359 intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
1360 {
1361 	struct i915_address_space *vm = &dev_priv->ggtt.base;
1362 	struct drm_i915_gem_object *obj;
1363 	struct i915_vma *vma;
1364 
1365 	obj = i915_gem_object_create_stolen(dev_priv, size);
1366 	if (!obj)
1367 		obj = i915_gem_object_create_internal(dev_priv, size);
1368 	if (IS_ERR(obj))
1369 		return ERR_CAST(obj);
1370 
1371 	/*
1372 	 * Mark ring buffers as read-only from GPU side (so no stray overwrites)
1373 	 * if supported by the platform's GGTT.
1374 	 */
1375 	if (vm->has_read_only)
1376 		i915_gem_object_set_readonly(obj);
1377 
1378 	vma = i915_vma_instance(obj, vm, NULL);
1379 	if (IS_ERR(vma))
1380 		goto err;
1381 
1382 	return vma;
1383 
1384 err:
1385 	i915_gem_object_put(obj);
1386 	return vma;
1387 }
1388 
1389 struct intel_ring *
intel_engine_create_ring(struct intel_engine_cs * engine,int size)1390 intel_engine_create_ring(struct intel_engine_cs *engine, int size)
1391 {
1392 	struct intel_ring *ring;
1393 	struct i915_vma *vma;
1394 
1395 	GEM_BUG_ON(!is_power_of_2(size));
1396 	GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
1397 
1398 	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1399 	if (!ring)
1400 		return ERR_PTR(-ENOMEM);
1401 
1402 	INIT_LIST_HEAD(&ring->request_list);
1403 
1404 	ring->size = size;
1405 	/* Workaround an erratum on the i830 which causes a hang if
1406 	 * the TAIL pointer points to within the last 2 cachelines
1407 	 * of the buffer.
1408 	 */
1409 	ring->effective_size = size;
1410 	if (IS_I830(engine->i915) || IS_I845G(engine->i915))
1411 		ring->effective_size -= 2 * CACHELINE_BYTES;
1412 
1413 	intel_ring_update_space(ring);
1414 
1415 	vma = intel_ring_create_vma(engine->i915, size);
1416 	if (IS_ERR(vma)) {
1417 		kfree(ring);
1418 		return ERR_CAST(vma);
1419 	}
1420 	ring->vma = vma;
1421 
1422 	return ring;
1423 }
1424 
1425 void
intel_ring_free(struct intel_ring * ring)1426 intel_ring_free(struct intel_ring *ring)
1427 {
1428 	struct drm_i915_gem_object *obj = ring->vma->obj;
1429 
1430 	i915_vma_close(ring->vma);
1431 	__i915_gem_object_release_unless_active(obj);
1432 
1433 	kfree(ring);
1434 }
1435 
context_pin(struct i915_gem_context * ctx)1436 static int context_pin(struct i915_gem_context *ctx)
1437 {
1438 	struct i915_vma *vma = ctx->engine[RCS].state;
1439 	int ret;
1440 
1441 	/* Clear this page out of any CPU caches for coherent swap-in/out.
1442 	 * We only want to do this on the first bind so that we do not stall
1443 	 * on an active context (which by nature is already on the GPU).
1444 	 */
1445 	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1446 		ret = i915_gem_object_set_to_gtt_domain(vma->obj, false);
1447 		if (ret)
1448 			return ret;
1449 	}
1450 
1451 	return i915_vma_pin(vma, 0, I915_GTT_MIN_ALIGNMENT,
1452 			    PIN_GLOBAL | PIN_HIGH);
1453 }
1454 
1455 static struct i915_vma *
alloc_context_vma(struct intel_engine_cs * engine)1456 alloc_context_vma(struct intel_engine_cs *engine)
1457 {
1458 	struct drm_i915_private *i915 = engine->i915;
1459 	struct drm_i915_gem_object *obj;
1460 	struct i915_vma *vma;
1461 
1462 	obj = i915_gem_object_create(i915, engine->context_size);
1463 	if (IS_ERR(obj))
1464 		return ERR_CAST(obj);
1465 
1466 	/*
1467 	 * Try to make the context utilize L3 as well as LLC.
1468 	 *
1469 	 * On VLV we don't have L3 controls in the PTEs so we
1470 	 * shouldn't touch the cache level, especially as that
1471 	 * would make the object snooped which might have a
1472 	 * negative performance impact.
1473 	 *
1474 	 * Snooping is required on non-llc platforms in execlist
1475 	 * mode, but since all GGTT accesses use PAT entry 0 we
1476 	 * get snooping anyway regardless of cache_level.
1477 	 *
1478 	 * This is only applicable for Ivy Bridge devices since
1479 	 * later platforms don't have L3 control bits in the PTE.
1480 	 */
1481 	if (IS_IVYBRIDGE(i915)) {
1482 		/* Ignore any error, regard it as a simple optimisation */
1483 		i915_gem_object_set_cache_level(obj, I915_CACHE_L3_LLC);
1484 	}
1485 
1486 	vma = i915_vma_instance(obj, &i915->ggtt.base, NULL);
1487 	if (IS_ERR(vma))
1488 		i915_gem_object_put(obj);
1489 
1490 	return vma;
1491 }
1492 
1493 static struct intel_ring *
intel_ring_context_pin(struct intel_engine_cs * engine,struct i915_gem_context * ctx)1494 intel_ring_context_pin(struct intel_engine_cs *engine,
1495 		       struct i915_gem_context *ctx)
1496 {
1497 	struct intel_context *ce = &ctx->engine[engine->id];
1498 	int ret;
1499 
1500 	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1501 
1502 	if (likely(ce->pin_count++))
1503 		goto out;
1504 	GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1505 
1506 	if (!ce->state && engine->context_size) {
1507 		struct i915_vma *vma;
1508 
1509 		vma = alloc_context_vma(engine);
1510 		if (IS_ERR(vma)) {
1511 			ret = PTR_ERR(vma);
1512 			goto err;
1513 		}
1514 
1515 		ce->state = vma;
1516 	}
1517 
1518 	if (ce->state) {
1519 		ret = context_pin(ctx);
1520 		if (ret)
1521 			goto err;
1522 
1523 		ce->state->obj->mm.dirty = true;
1524 	}
1525 
1526 	/* The kernel context is only used as a placeholder for flushing the
1527 	 * active context. It is never used for submitting user rendering and
1528 	 * as such never requires the golden render context, and so we can skip
1529 	 * emitting it when we switch to the kernel context. This is required
1530 	 * as during eviction we cannot allocate and pin the renderstate in
1531 	 * order to initialise the context.
1532 	 */
1533 	if (i915_gem_context_is_kernel(ctx))
1534 		ce->initialised = true;
1535 
1536 	i915_gem_context_get(ctx);
1537 
1538 out:
1539 	/* One ringbuffer to rule them all */
1540 	return engine->buffer;
1541 
1542 err:
1543 	ce->pin_count = 0;
1544 	return ERR_PTR(ret);
1545 }
1546 
intel_ring_context_unpin(struct intel_engine_cs * engine,struct i915_gem_context * ctx)1547 static void intel_ring_context_unpin(struct intel_engine_cs *engine,
1548 				     struct i915_gem_context *ctx)
1549 {
1550 	struct intel_context *ce = &ctx->engine[engine->id];
1551 
1552 	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1553 	GEM_BUG_ON(ce->pin_count == 0);
1554 
1555 	if (--ce->pin_count)
1556 		return;
1557 
1558 	if (ce->state)
1559 		i915_vma_unpin(ce->state);
1560 
1561 	i915_gem_context_put(ctx);
1562 }
1563 
intel_init_ring_buffer(struct intel_engine_cs * engine)1564 static int intel_init_ring_buffer(struct intel_engine_cs *engine)
1565 {
1566 	struct intel_ring *ring;
1567 	int err;
1568 
1569 	intel_engine_setup_common(engine);
1570 
1571 	err = intel_engine_init_common(engine);
1572 	if (err)
1573 		goto err;
1574 
1575 	if (HWS_NEEDS_PHYSICAL(engine->i915))
1576 		err = init_phys_status_page(engine);
1577 	else
1578 		err = init_status_page(engine);
1579 	if (err)
1580 		goto err;
1581 
1582 	ring = intel_engine_create_ring(engine, 32 * PAGE_SIZE);
1583 	if (IS_ERR(ring)) {
1584 		err = PTR_ERR(ring);
1585 		goto err_hws;
1586 	}
1587 
1588 	/* Ring wraparound at offset 0 sometimes hangs. No idea why. */
1589 	err = intel_ring_pin(ring, engine->i915, I915_GTT_PAGE_SIZE);
1590 	if (err)
1591 		goto err_ring;
1592 
1593 	GEM_BUG_ON(engine->buffer);
1594 	engine->buffer = ring;
1595 
1596 	return 0;
1597 
1598 err_ring:
1599 	intel_ring_free(ring);
1600 err_hws:
1601 	if (HWS_NEEDS_PHYSICAL(engine->i915))
1602 		cleanup_phys_status_page(engine);
1603 	else
1604 		cleanup_status_page(engine);
1605 err:
1606 	intel_engine_cleanup_common(engine);
1607 	return err;
1608 }
1609 
intel_engine_cleanup(struct intel_engine_cs * engine)1610 void intel_engine_cleanup(struct intel_engine_cs *engine)
1611 {
1612 	struct drm_i915_private *dev_priv = engine->i915;
1613 
1614 	WARN_ON(INTEL_GEN(dev_priv) > 2 &&
1615 		(I915_READ_MODE(engine) & MODE_IDLE) == 0);
1616 
1617 	intel_ring_unpin(engine->buffer);
1618 	intel_ring_free(engine->buffer);
1619 
1620 	if (engine->cleanup)
1621 		engine->cleanup(engine);
1622 
1623 	if (HWS_NEEDS_PHYSICAL(dev_priv))
1624 		cleanup_phys_status_page(engine);
1625 	else
1626 		cleanup_status_page(engine);
1627 
1628 	intel_engine_cleanup_common(engine);
1629 
1630 	dev_priv->engine[engine->id] = NULL;
1631 	kfree(engine);
1632 }
1633 
intel_legacy_submission_resume(struct drm_i915_private * dev_priv)1634 void intel_legacy_submission_resume(struct drm_i915_private *dev_priv)
1635 {
1636 	struct intel_engine_cs *engine;
1637 	enum intel_engine_id id;
1638 
1639 	/* Restart from the beginning of the rings for convenience */
1640 	for_each_engine(engine, dev_priv, id)
1641 		intel_ring_reset(engine->buffer, 0);
1642 }
1643 
ring_request_alloc(struct drm_i915_gem_request * request)1644 static int ring_request_alloc(struct drm_i915_gem_request *request)
1645 {
1646 	u32 *cs;
1647 
1648 	GEM_BUG_ON(!request->ctx->engine[request->engine->id].pin_count);
1649 
1650 	/* Flush enough space to reduce the likelihood of waiting after
1651 	 * we start building the request - in which case we will just
1652 	 * have to repeat work.
1653 	 */
1654 	request->reserved_space += LEGACY_REQUEST_SIZE;
1655 
1656 	cs = intel_ring_begin(request, 0);
1657 	if (IS_ERR(cs))
1658 		return PTR_ERR(cs);
1659 
1660 	request->reserved_space -= LEGACY_REQUEST_SIZE;
1661 	return 0;
1662 }
1663 
wait_for_space(struct drm_i915_gem_request * req,unsigned int bytes)1664 static noinline int wait_for_space(struct drm_i915_gem_request *req,
1665 				   unsigned int bytes)
1666 {
1667 	struct intel_ring *ring = req->ring;
1668 	struct drm_i915_gem_request *target;
1669 	long timeout;
1670 
1671 	lockdep_assert_held(&req->i915->drm.struct_mutex);
1672 
1673 	if (intel_ring_update_space(ring) >= bytes)
1674 		return 0;
1675 
1676 	/*
1677 	 * Space is reserved in the ringbuffer for finalising the request,
1678 	 * as that cannot be allowed to fail. During request finalisation,
1679 	 * reserved_space is set to 0 to stop the overallocation and the
1680 	 * assumption is that then we never need to wait (which has the
1681 	 * risk of failing with EINTR).
1682 	 *
1683 	 * See also i915_gem_request_alloc() and i915_add_request().
1684 	 */
1685 	GEM_BUG_ON(!req->reserved_space);
1686 
1687 	list_for_each_entry(target, &ring->request_list, ring_link) {
1688 		/* Would completion of this request free enough space? */
1689 		if (bytes <= __intel_ring_space(target->postfix,
1690 						ring->emit, ring->size))
1691 			break;
1692 	}
1693 
1694 	if (WARN_ON(&target->ring_link == &ring->request_list))
1695 		return -ENOSPC;
1696 
1697 	timeout = i915_wait_request(target,
1698 				    I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
1699 				    MAX_SCHEDULE_TIMEOUT);
1700 	if (timeout < 0)
1701 		return timeout;
1702 
1703 	i915_gem_request_retire_upto(target);
1704 
1705 	intel_ring_update_space(ring);
1706 	GEM_BUG_ON(ring->space < bytes);
1707 	return 0;
1708 }
1709 
intel_ring_begin(struct drm_i915_gem_request * req,unsigned int num_dwords)1710 u32 *intel_ring_begin(struct drm_i915_gem_request *req,
1711 		      unsigned int num_dwords)
1712 {
1713 	struct intel_ring *ring = req->ring;
1714 	const unsigned int remain_usable = ring->effective_size - ring->emit;
1715 	const unsigned int bytes = num_dwords * sizeof(u32);
1716 	unsigned int need_wrap = 0;
1717 	unsigned int total_bytes;
1718 	u32 *cs;
1719 
1720 	/* Packets must be qword aligned. */
1721 	GEM_BUG_ON(num_dwords & 1);
1722 
1723 	total_bytes = bytes + req->reserved_space;
1724 	GEM_BUG_ON(total_bytes > ring->effective_size);
1725 
1726 	if (unlikely(total_bytes > remain_usable)) {
1727 		const int remain_actual = ring->size - ring->emit;
1728 
1729 		if (bytes > remain_usable) {
1730 			/*
1731 			 * Not enough space for the basic request. So need to
1732 			 * flush out the remainder and then wait for
1733 			 * base + reserved.
1734 			 */
1735 			total_bytes += remain_actual;
1736 			need_wrap = remain_actual | 1;
1737 		} else  {
1738 			/*
1739 			 * The base request will fit but the reserved space
1740 			 * falls off the end. So we don't need an immediate
1741 			 * wrap and only need to effectively wait for the
1742 			 * reserved size from the start of ringbuffer.
1743 			 */
1744 			total_bytes = req->reserved_space + remain_actual;
1745 		}
1746 	}
1747 
1748 	if (unlikely(total_bytes > ring->space)) {
1749 		int ret = wait_for_space(req, total_bytes);
1750 		if (unlikely(ret))
1751 			return ERR_PTR(ret);
1752 	}
1753 
1754 	if (unlikely(need_wrap)) {
1755 		need_wrap &= ~1;
1756 		GEM_BUG_ON(need_wrap > ring->space);
1757 		GEM_BUG_ON(ring->emit + need_wrap > ring->size);
1758 
1759 		/* Fill the tail with MI_NOOP */
1760 		memset(ring->vaddr + ring->emit, 0, need_wrap);
1761 		ring->emit = 0;
1762 		ring->space -= need_wrap;
1763 	}
1764 
1765 	GEM_BUG_ON(ring->emit > ring->size - bytes);
1766 	GEM_BUG_ON(ring->space < bytes);
1767 	cs = ring->vaddr + ring->emit;
1768 	GEM_DEBUG_EXEC(memset(cs, POISON_INUSE, bytes));
1769 	ring->emit += bytes;
1770 	ring->space -= bytes;
1771 
1772 	return cs;
1773 }
1774 
1775 /* Align the ring tail to a cacheline boundary */
intel_ring_cacheline_align(struct drm_i915_gem_request * req)1776 int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
1777 {
1778 	int num_dwords =
1779 		(req->ring->emit & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
1780 	u32 *cs;
1781 
1782 	if (num_dwords == 0)
1783 		return 0;
1784 
1785 	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
1786 	cs = intel_ring_begin(req, num_dwords);
1787 	if (IS_ERR(cs))
1788 		return PTR_ERR(cs);
1789 
1790 	while (num_dwords--)
1791 		*cs++ = MI_NOOP;
1792 
1793 	intel_ring_advance(req, cs);
1794 
1795 	return 0;
1796 }
1797 
gen6_bsd_submit_request(struct drm_i915_gem_request * request)1798 static void gen6_bsd_submit_request(struct drm_i915_gem_request *request)
1799 {
1800 	struct drm_i915_private *dev_priv = request->i915;
1801 
1802 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1803 
1804        /* Every tail move must follow the sequence below */
1805 
1806 	/* Disable notification that the ring is IDLE. The GT
1807 	 * will then assume that it is busy and bring it out of rc6.
1808 	 */
1809 	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
1810 		      _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1811 
1812 	/* Clear the context id. Here be magic! */
1813 	I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
1814 
1815 	/* Wait for the ring not to be idle, i.e. for it to wake up. */
1816 	if (__intel_wait_for_register_fw(dev_priv,
1817 					 GEN6_BSD_SLEEP_PSMI_CONTROL,
1818 					 GEN6_BSD_SLEEP_INDICATOR,
1819 					 0,
1820 					 1000, 0, NULL))
1821 		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1822 
1823 	/* Now that the ring is fully powered up, update the tail */
1824 	i9xx_submit_request(request);
1825 
1826 	/* Let the ring send IDLE messages to the GT again,
1827 	 * and so let it sleep to conserve power when idle.
1828 	 */
1829 	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
1830 		      _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1831 
1832 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1833 }
1834 
gen6_bsd_ring_flush(struct drm_i915_gem_request * req,u32 mode)1835 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
1836 {
1837 	u32 cmd, *cs;
1838 
1839 	cs = intel_ring_begin(req, 4);
1840 	if (IS_ERR(cs))
1841 		return PTR_ERR(cs);
1842 
1843 	cmd = MI_FLUSH_DW;
1844 	if (INTEL_GEN(req->i915) >= 8)
1845 		cmd += 1;
1846 
1847 	/* We always require a command barrier so that subsequent
1848 	 * commands, such as breadcrumb interrupts, are strictly ordered
1849 	 * wrt the contents of the write cache being flushed to memory
1850 	 * (and thus being coherent from the CPU).
1851 	 */
1852 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1853 
1854 	/*
1855 	 * Bspec vol 1c.5 - video engine command streamer:
1856 	 * "If ENABLED, all TLBs will be invalidated once the flush
1857 	 * operation is complete. This bit is only valid when the
1858 	 * Post-Sync Operation field is a value of 1h or 3h."
1859 	 */
1860 	if (mode & EMIT_INVALIDATE)
1861 		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
1862 
1863 	*cs++ = cmd;
1864 	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1865 	if (INTEL_GEN(req->i915) >= 8) {
1866 		*cs++ = 0; /* upper addr */
1867 		*cs++ = 0; /* value */
1868 	} else  {
1869 		*cs++ = 0;
1870 		*cs++ = MI_NOOP;
1871 	}
1872 	intel_ring_advance(req, cs);
1873 	return 0;
1874 }
1875 
1876 static int
gen8_emit_bb_start(struct drm_i915_gem_request * req,u64 offset,u32 len,unsigned int dispatch_flags)1877 gen8_emit_bb_start(struct drm_i915_gem_request *req,
1878 		   u64 offset, u32 len,
1879 		   unsigned int dispatch_flags)
1880 {
1881 	bool ppgtt = USES_PPGTT(req->i915) &&
1882 			!(dispatch_flags & I915_DISPATCH_SECURE);
1883 	u32 *cs;
1884 
1885 	cs = intel_ring_begin(req, 4);
1886 	if (IS_ERR(cs))
1887 		return PTR_ERR(cs);
1888 
1889 	/* FIXME(BDW): Address space and security selectors. */
1890 	*cs++ = MI_BATCH_BUFFER_START_GEN8 | (ppgtt << 8) | (dispatch_flags &
1891 		I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1892 	*cs++ = lower_32_bits(offset);
1893 	*cs++ = upper_32_bits(offset);
1894 	*cs++ = MI_NOOP;
1895 	intel_ring_advance(req, cs);
1896 
1897 	return 0;
1898 }
1899 
1900 static int
hsw_emit_bb_start(struct drm_i915_gem_request * req,u64 offset,u32 len,unsigned int dispatch_flags)1901 hsw_emit_bb_start(struct drm_i915_gem_request *req,
1902 		  u64 offset, u32 len,
1903 		  unsigned int dispatch_flags)
1904 {
1905 	u32 *cs;
1906 
1907 	cs = intel_ring_begin(req, 2);
1908 	if (IS_ERR(cs))
1909 		return PTR_ERR(cs);
1910 
1911 	*cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
1912 		0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
1913 		(dispatch_flags & I915_DISPATCH_RS ?
1914 		MI_BATCH_RESOURCE_STREAMER : 0);
1915 	/* bit0-7 is the length on GEN6+ */
1916 	*cs++ = offset;
1917 	intel_ring_advance(req, cs);
1918 
1919 	return 0;
1920 }
1921 
1922 static int
gen6_emit_bb_start(struct drm_i915_gem_request * req,u64 offset,u32 len,unsigned int dispatch_flags)1923 gen6_emit_bb_start(struct drm_i915_gem_request *req,
1924 		   u64 offset, u32 len,
1925 		   unsigned int dispatch_flags)
1926 {
1927 	u32 *cs;
1928 
1929 	cs = intel_ring_begin(req, 2);
1930 	if (IS_ERR(cs))
1931 		return PTR_ERR(cs);
1932 
1933 	*cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
1934 		0 : MI_BATCH_NON_SECURE_I965);
1935 	/* bit0-7 is the length on GEN6+ */
1936 	*cs++ = offset;
1937 	intel_ring_advance(req, cs);
1938 
1939 	return 0;
1940 }
1941 
1942 /* Blitter support (SandyBridge+) */
1943 
gen6_ring_flush(struct drm_i915_gem_request * req,u32 mode)1944 static int gen6_ring_flush(struct drm_i915_gem_request *req, u32 mode)
1945 {
1946 	u32 cmd, *cs;
1947 
1948 	cs = intel_ring_begin(req, 4);
1949 	if (IS_ERR(cs))
1950 		return PTR_ERR(cs);
1951 
1952 	cmd = MI_FLUSH_DW;
1953 	if (INTEL_GEN(req->i915) >= 8)
1954 		cmd += 1;
1955 
1956 	/* We always require a command barrier so that subsequent
1957 	 * commands, such as breadcrumb interrupts, are strictly ordered
1958 	 * wrt the contents of the write cache being flushed to memory
1959 	 * (and thus being coherent from the CPU).
1960 	 */
1961 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1962 
1963 	/*
1964 	 * Bspec vol 1c.3 - blitter engine command streamer:
1965 	 * "If ENABLED, all TLBs will be invalidated once the flush
1966 	 * operation is complete. This bit is only valid when the
1967 	 * Post-Sync Operation field is a value of 1h or 3h."
1968 	 */
1969 	if (mode & EMIT_INVALIDATE)
1970 		cmd |= MI_INVALIDATE_TLB;
1971 	*cs++ = cmd;
1972 	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1973 	if (INTEL_GEN(req->i915) >= 8) {
1974 		*cs++ = 0; /* upper addr */
1975 		*cs++ = 0; /* value */
1976 	} else  {
1977 		*cs++ = 0;
1978 		*cs++ = MI_NOOP;
1979 	}
1980 	intel_ring_advance(req, cs);
1981 
1982 	return 0;
1983 }
1984 
intel_ring_init_semaphores(struct drm_i915_private * dev_priv,struct intel_engine_cs * engine)1985 static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
1986 				       struct intel_engine_cs *engine)
1987 {
1988 	struct drm_i915_gem_object *obj;
1989 	int ret, i;
1990 
1991 	if (!i915.semaphores)
1992 		return;
1993 
1994 	if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore) {
1995 		struct i915_vma *vma;
1996 
1997 		obj = i915_gem_object_create(dev_priv, PAGE_SIZE);
1998 		if (IS_ERR(obj))
1999 			goto err;
2000 
2001 		vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL);
2002 		if (IS_ERR(vma))
2003 			goto err_obj;
2004 
2005 		ret = i915_gem_object_set_to_gtt_domain(obj, false);
2006 		if (ret)
2007 			goto err_obj;
2008 
2009 		ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
2010 		if (ret)
2011 			goto err_obj;
2012 
2013 		dev_priv->semaphore = vma;
2014 	}
2015 
2016 	if (INTEL_GEN(dev_priv) >= 8) {
2017 		u32 offset = i915_ggtt_offset(dev_priv->semaphore);
2018 
2019 		engine->semaphore.sync_to = gen8_ring_sync_to;
2020 		engine->semaphore.signal = gen8_xcs_signal;
2021 
2022 		for (i = 0; i < I915_NUM_ENGINES; i++) {
2023 			u32 ring_offset;
2024 
2025 			if (i != engine->id)
2026 				ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
2027 			else
2028 				ring_offset = MI_SEMAPHORE_SYNC_INVALID;
2029 
2030 			engine->semaphore.signal_ggtt[i] = ring_offset;
2031 		}
2032 	} else if (INTEL_GEN(dev_priv) >= 6) {
2033 		engine->semaphore.sync_to = gen6_ring_sync_to;
2034 		engine->semaphore.signal = gen6_signal;
2035 
2036 		/*
2037 		 * The current semaphore is only applied on pre-gen8
2038 		 * platform.  And there is no VCS2 ring on the pre-gen8
2039 		 * platform. So the semaphore between RCS and VCS2 is
2040 		 * initialized as INVALID.  Gen8 will initialize the
2041 		 * sema between VCS2 and RCS later.
2042 		 */
2043 		for (i = 0; i < GEN6_NUM_SEMAPHORES; i++) {
2044 			static const struct {
2045 				u32 wait_mbox;
2046 				i915_reg_t mbox_reg;
2047 			} sem_data[GEN6_NUM_SEMAPHORES][GEN6_NUM_SEMAPHORES] = {
2048 				[RCS_HW] = {
2049 					[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RV,  .mbox_reg = GEN6_VRSYNC },
2050 					[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RB,  .mbox_reg = GEN6_BRSYNC },
2051 					[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
2052 				},
2053 				[VCS_HW] = {
2054 					[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VR,  .mbox_reg = GEN6_RVSYNC },
2055 					[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VB,  .mbox_reg = GEN6_BVSYNC },
2056 					[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
2057 				},
2058 				[BCS_HW] = {
2059 					[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BR,  .mbox_reg = GEN6_RBSYNC },
2060 					[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BV,  .mbox_reg = GEN6_VBSYNC },
2061 					[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
2062 				},
2063 				[VECS_HW] = {
2064 					[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
2065 					[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
2066 					[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
2067 				},
2068 			};
2069 			u32 wait_mbox;
2070 			i915_reg_t mbox_reg;
2071 
2072 			if (i == engine->hw_id) {
2073 				wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
2074 				mbox_reg = GEN6_NOSYNC;
2075 			} else {
2076 				wait_mbox = sem_data[engine->hw_id][i].wait_mbox;
2077 				mbox_reg = sem_data[engine->hw_id][i].mbox_reg;
2078 			}
2079 
2080 			engine->semaphore.mbox.wait[i] = wait_mbox;
2081 			engine->semaphore.mbox.signal[i] = mbox_reg;
2082 		}
2083 	}
2084 
2085 	return;
2086 
2087 err_obj:
2088 	i915_gem_object_put(obj);
2089 err:
2090 	DRM_DEBUG_DRIVER("Failed to allocate space for semaphores, disabling\n");
2091 	i915.semaphores = 0;
2092 }
2093 
intel_ring_init_irq(struct drm_i915_private * dev_priv,struct intel_engine_cs * engine)2094 static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
2095 				struct intel_engine_cs *engine)
2096 {
2097 	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;
2098 
2099 	if (INTEL_GEN(dev_priv) >= 8) {
2100 		engine->irq_enable = gen8_irq_enable;
2101 		engine->irq_disable = gen8_irq_disable;
2102 		engine->irq_seqno_barrier = gen6_seqno_barrier;
2103 	} else if (INTEL_GEN(dev_priv) >= 6) {
2104 		engine->irq_enable = gen6_irq_enable;
2105 		engine->irq_disable = gen6_irq_disable;
2106 		engine->irq_seqno_barrier = gen6_seqno_barrier;
2107 	} else if (INTEL_GEN(dev_priv) >= 5) {
2108 		engine->irq_enable = gen5_irq_enable;
2109 		engine->irq_disable = gen5_irq_disable;
2110 		engine->irq_seqno_barrier = gen5_seqno_barrier;
2111 	} else if (INTEL_GEN(dev_priv) >= 3) {
2112 		engine->irq_enable = i9xx_irq_enable;
2113 		engine->irq_disable = i9xx_irq_disable;
2114 	} else {
2115 		engine->irq_enable = i8xx_irq_enable;
2116 		engine->irq_disable = i8xx_irq_disable;
2117 	}
2118 }
2119 
i9xx_set_default_submission(struct intel_engine_cs * engine)2120 static void i9xx_set_default_submission(struct intel_engine_cs *engine)
2121 {
2122 	engine->submit_request = i9xx_submit_request;
2123 }
2124 
gen6_bsd_set_default_submission(struct intel_engine_cs * engine)2125 static void gen6_bsd_set_default_submission(struct intel_engine_cs *engine)
2126 {
2127 	engine->submit_request = gen6_bsd_submit_request;
2128 }
2129 
intel_ring_default_vfuncs(struct drm_i915_private * dev_priv,struct intel_engine_cs * engine)2130 static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
2131 				      struct intel_engine_cs *engine)
2132 {
2133 	intel_ring_init_irq(dev_priv, engine);
2134 	intel_ring_init_semaphores(dev_priv, engine);
2135 
2136 	engine->init_hw = init_ring_common;
2137 	engine->reset_hw = reset_ring_common;
2138 
2139 	engine->context_pin = intel_ring_context_pin;
2140 	engine->context_unpin = intel_ring_context_unpin;
2141 
2142 	engine->request_alloc = ring_request_alloc;
2143 
2144 	engine->emit_breadcrumb = i9xx_emit_breadcrumb;
2145 	engine->emit_breadcrumb_sz = i9xx_emit_breadcrumb_sz;
2146 	if (i915.semaphores) {
2147 		int num_rings;
2148 
2149 		engine->emit_breadcrumb = gen6_sema_emit_breadcrumb;
2150 
2151 		num_rings = INTEL_INFO(dev_priv)->num_rings - 1;
2152 		if (INTEL_GEN(dev_priv) >= 8) {
2153 			engine->emit_breadcrumb_sz += num_rings * 6;
2154 		} else {
2155 			engine->emit_breadcrumb_sz += num_rings * 3;
2156 			if (num_rings & 1)
2157 				engine->emit_breadcrumb_sz++;
2158 		}
2159 	}
2160 
2161 	engine->set_default_submission = i9xx_set_default_submission;
2162 
2163 	if (INTEL_GEN(dev_priv) >= 8)
2164 		engine->emit_bb_start = gen8_emit_bb_start;
2165 	else if (INTEL_GEN(dev_priv) >= 6)
2166 		engine->emit_bb_start = gen6_emit_bb_start;
2167 	else if (INTEL_GEN(dev_priv) >= 4)
2168 		engine->emit_bb_start = i965_emit_bb_start;
2169 	else if (IS_I830(dev_priv) || IS_I845G(dev_priv))
2170 		engine->emit_bb_start = i830_emit_bb_start;
2171 	else
2172 		engine->emit_bb_start = i915_emit_bb_start;
2173 }
2174 
intel_init_render_ring_buffer(struct intel_engine_cs * engine)2175 int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2176 {
2177 	struct drm_i915_private *dev_priv = engine->i915;
2178 	int ret;
2179 
2180 	intel_ring_default_vfuncs(dev_priv, engine);
2181 
2182 	if (HAS_L3_DPF(dev_priv))
2183 		engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2184 
2185 	if (INTEL_GEN(dev_priv) >= 8) {
2186 		engine->init_context = intel_rcs_ctx_init;
2187 		engine->emit_breadcrumb = gen8_render_emit_breadcrumb;
2188 		engine->emit_breadcrumb_sz = gen8_render_emit_breadcrumb_sz;
2189 		engine->emit_flush = gen8_render_ring_flush;
2190 		if (i915.semaphores) {
2191 			int num_rings;
2192 
2193 			engine->semaphore.signal = gen8_rcs_signal;
2194 
2195 			num_rings = INTEL_INFO(dev_priv)->num_rings - 1;
2196 			engine->emit_breadcrumb_sz += num_rings * 8;
2197 		}
2198 	} else if (INTEL_GEN(dev_priv) >= 6) {
2199 		engine->init_context = intel_rcs_ctx_init;
2200 		engine->emit_flush = gen7_render_ring_flush;
2201 		if (IS_GEN6(dev_priv))
2202 			engine->emit_flush = gen6_render_ring_flush;
2203 	} else if (IS_GEN5(dev_priv)) {
2204 		engine->emit_flush = gen4_render_ring_flush;
2205 	} else {
2206 		if (INTEL_GEN(dev_priv) < 4)
2207 			engine->emit_flush = gen2_render_ring_flush;
2208 		else
2209 			engine->emit_flush = gen4_render_ring_flush;
2210 		engine->irq_enable_mask = I915_USER_INTERRUPT;
2211 	}
2212 
2213 	if (IS_HASWELL(dev_priv))
2214 		engine->emit_bb_start = hsw_emit_bb_start;
2215 
2216 	engine->init_hw = init_render_ring;
2217 	engine->cleanup = render_ring_cleanup;
2218 
2219 	ret = intel_init_ring_buffer(engine);
2220 	if (ret)
2221 		return ret;
2222 
2223 	if (INTEL_GEN(dev_priv) >= 6) {
2224 		ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2225 		if (ret)
2226 			return ret;
2227 	} else if (HAS_BROKEN_CS_TLB(dev_priv)) {
2228 		ret = intel_engine_create_scratch(engine, I830_WA_SIZE);
2229 		if (ret)
2230 			return ret;
2231 	}
2232 
2233 	return 0;
2234 }
2235 
intel_init_bsd_ring_buffer(struct intel_engine_cs * engine)2236 int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2237 {
2238 	struct drm_i915_private *dev_priv = engine->i915;
2239 
2240 	intel_ring_default_vfuncs(dev_priv, engine);
2241 
2242 	if (INTEL_GEN(dev_priv) >= 6) {
2243 		/* gen6 bsd needs a special wa for tail updates */
2244 		if (IS_GEN6(dev_priv))
2245 			engine->set_default_submission = gen6_bsd_set_default_submission;
2246 		engine->emit_flush = gen6_bsd_ring_flush;
2247 		if (INTEL_GEN(dev_priv) < 8)
2248 			engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2249 	} else {
2250 		engine->mmio_base = BSD_RING_BASE;
2251 		engine->emit_flush = bsd_ring_flush;
2252 		if (IS_GEN5(dev_priv))
2253 			engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2254 		else
2255 			engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2256 	}
2257 
2258 	return intel_init_ring_buffer(engine);
2259 }
2260 
intel_init_blt_ring_buffer(struct intel_engine_cs * engine)2261 int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2262 {
2263 	struct drm_i915_private *dev_priv = engine->i915;
2264 
2265 	intel_ring_default_vfuncs(dev_priv, engine);
2266 
2267 	engine->emit_flush = gen6_ring_flush;
2268 	if (INTEL_GEN(dev_priv) < 8)
2269 		engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2270 
2271 	return intel_init_ring_buffer(engine);
2272 }
2273 
intel_init_vebox_ring_buffer(struct intel_engine_cs * engine)2274 int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
2275 {
2276 	struct drm_i915_private *dev_priv = engine->i915;
2277 
2278 	intel_ring_default_vfuncs(dev_priv, engine);
2279 
2280 	engine->emit_flush = gen6_ring_flush;
2281 
2282 	if (INTEL_GEN(dev_priv) < 8) {
2283 		engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2284 		engine->irq_enable = hsw_vebox_irq_enable;
2285 		engine->irq_disable = hsw_vebox_irq_disable;
2286 	}
2287 
2288 	return intel_init_ring_buffer(engine);
2289 }
2290