1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41 * DOC: interrupt handling
42 *
43 * These functions provide the basic support for enabling and disabling the
44 * interrupt handling support. There's a lot more functionality in i915_irq.c
45 * and related files, but that will be described in separate chapters.
46 */
47
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49 [HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53 [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57 [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61 [HPD_CRT] = SDE_CRT_HOTPLUG,
62 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77 [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81 [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
86 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113 [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114 [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115 [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121 POSTING_READ(GEN8_##type##_IMR(which)); \
122 I915_WRITE(GEN8_##type##_IER(which), 0); \
123 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124 POSTING_READ(GEN8_##type##_IIR(which)); \
125 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126 POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128
129 #define GEN5_IRQ_RESET(type) do { \
130 I915_WRITE(type##IMR, 0xffffffff); \
131 POSTING_READ(type##IMR); \
132 I915_WRITE(type##IER, 0); \
133 I915_WRITE(type##IIR, 0xffffffff); \
134 POSTING_READ(type##IIR); \
135 I915_WRITE(type##IIR, 0xffffffff); \
136 POSTING_READ(type##IIR); \
137 } while (0)
138
139 /*
140 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
141 */
gen5_assert_iir_is_zero(struct drm_i915_private * dev_priv,i915_reg_t reg)142 static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
143 i915_reg_t reg)
144 {
145 u32 val = I915_READ(reg);
146
147 if (val == 0)
148 return;
149
150 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
151 i915_mmio_reg_offset(reg), val);
152 I915_WRITE(reg, 0xffffffff);
153 POSTING_READ(reg);
154 I915_WRITE(reg, 0xffffffff);
155 POSTING_READ(reg);
156 }
157
158 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
159 gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
160 I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
161 I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
162 POSTING_READ(GEN8_##type##_IMR(which)); \
163 } while (0)
164
165 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
166 gen5_assert_iir_is_zero(dev_priv, type##IIR); \
167 I915_WRITE(type##IER, (ier_val)); \
168 I915_WRITE(type##IMR, (imr_val)); \
169 POSTING_READ(type##IMR); \
170 } while (0)
171
172 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
173 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
174
175 /* For display hotplug interrupt */
176 static inline void
i915_hotplug_interrupt_update_locked(struct drm_i915_private * dev_priv,uint32_t mask,uint32_t bits)177 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
178 uint32_t mask,
179 uint32_t bits)
180 {
181 uint32_t val;
182
183 lockdep_assert_held(&dev_priv->irq_lock);
184 WARN_ON(bits & ~mask);
185
186 val = I915_READ(PORT_HOTPLUG_EN);
187 val &= ~mask;
188 val |= bits;
189 I915_WRITE(PORT_HOTPLUG_EN, val);
190 }
191
192 /**
193 * i915_hotplug_interrupt_update - update hotplug interrupt enable
194 * @dev_priv: driver private
195 * @mask: bits to update
196 * @bits: bits to enable
197 * NOTE: the HPD enable bits are modified both inside and outside
198 * of an interrupt context. To avoid that read-modify-write cycles
199 * interfer, these bits are protected by a spinlock. Since this
200 * function is usually not called from a context where the lock is
201 * held already, this function acquires the lock itself. A non-locking
202 * version is also available.
203 */
i915_hotplug_interrupt_update(struct drm_i915_private * dev_priv,uint32_t mask,uint32_t bits)204 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
205 uint32_t mask,
206 uint32_t bits)
207 {
208 spin_lock_irq(&dev_priv->irq_lock);
209 i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
210 spin_unlock_irq(&dev_priv->irq_lock);
211 }
212
213 /**
214 * ilk_update_display_irq - update DEIMR
215 * @dev_priv: driver private
216 * @interrupt_mask: mask of interrupt bits to update
217 * @enabled_irq_mask: mask of interrupt bits to enable
218 */
ilk_update_display_irq(struct drm_i915_private * dev_priv,uint32_t interrupt_mask,uint32_t enabled_irq_mask)219 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
220 uint32_t interrupt_mask,
221 uint32_t enabled_irq_mask)
222 {
223 uint32_t new_val;
224
225 lockdep_assert_held(&dev_priv->irq_lock);
226
227 WARN_ON(enabled_irq_mask & ~interrupt_mask);
228
229 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
230 return;
231
232 new_val = dev_priv->irq_mask;
233 new_val &= ~interrupt_mask;
234 new_val |= (~enabled_irq_mask & interrupt_mask);
235
236 if (new_val != dev_priv->irq_mask) {
237 dev_priv->irq_mask = new_val;
238 I915_WRITE(DEIMR, dev_priv->irq_mask);
239 POSTING_READ(DEIMR);
240 }
241 }
242
243 /**
244 * ilk_update_gt_irq - update GTIMR
245 * @dev_priv: driver private
246 * @interrupt_mask: mask of interrupt bits to update
247 * @enabled_irq_mask: mask of interrupt bits to enable
248 */
ilk_update_gt_irq(struct drm_i915_private * dev_priv,uint32_t interrupt_mask,uint32_t enabled_irq_mask)249 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
250 uint32_t interrupt_mask,
251 uint32_t enabled_irq_mask)
252 {
253 lockdep_assert_held(&dev_priv->irq_lock);
254
255 WARN_ON(enabled_irq_mask & ~interrupt_mask);
256
257 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
258 return;
259
260 dev_priv->gt_irq_mask &= ~interrupt_mask;
261 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
262 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
263 }
264
gen5_enable_gt_irq(struct drm_i915_private * dev_priv,uint32_t mask)265 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
266 {
267 ilk_update_gt_irq(dev_priv, mask, mask);
268 POSTING_READ_FW(GTIMR);
269 }
270
gen5_disable_gt_irq(struct drm_i915_private * dev_priv,uint32_t mask)271 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
272 {
273 ilk_update_gt_irq(dev_priv, mask, 0);
274 }
275
gen6_pm_iir(struct drm_i915_private * dev_priv)276 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
277 {
278 return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
279 }
280
gen6_pm_imr(struct drm_i915_private * dev_priv)281 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
282 {
283 return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
284 }
285
gen6_pm_ier(struct drm_i915_private * dev_priv)286 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
287 {
288 return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
289 }
290
291 /**
292 * snb_update_pm_irq - update GEN6_PMIMR
293 * @dev_priv: driver private
294 * @interrupt_mask: mask of interrupt bits to update
295 * @enabled_irq_mask: mask of interrupt bits to enable
296 */
snb_update_pm_irq(struct drm_i915_private * dev_priv,uint32_t interrupt_mask,uint32_t enabled_irq_mask)297 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
298 uint32_t interrupt_mask,
299 uint32_t enabled_irq_mask)
300 {
301 uint32_t new_val;
302
303 WARN_ON(enabled_irq_mask & ~interrupt_mask);
304
305 lockdep_assert_held(&dev_priv->irq_lock);
306
307 new_val = dev_priv->pm_imr;
308 new_val &= ~interrupt_mask;
309 new_val |= (~enabled_irq_mask & interrupt_mask);
310
311 if (new_val != dev_priv->pm_imr) {
312 dev_priv->pm_imr = new_val;
313 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_imr);
314 POSTING_READ(gen6_pm_imr(dev_priv));
315 }
316 }
317
gen6_unmask_pm_irq(struct drm_i915_private * dev_priv,u32 mask)318 void gen6_unmask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
319 {
320 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
321 return;
322
323 snb_update_pm_irq(dev_priv, mask, mask);
324 }
325
__gen6_mask_pm_irq(struct drm_i915_private * dev_priv,u32 mask)326 static void __gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
327 {
328 snb_update_pm_irq(dev_priv, mask, 0);
329 }
330
gen6_mask_pm_irq(struct drm_i915_private * dev_priv,u32 mask)331 void gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
332 {
333 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
334 return;
335
336 __gen6_mask_pm_irq(dev_priv, mask);
337 }
338
gen6_reset_pm_iir(struct drm_i915_private * dev_priv,u32 reset_mask)339 void gen6_reset_pm_iir(struct drm_i915_private *dev_priv, u32 reset_mask)
340 {
341 i915_reg_t reg = gen6_pm_iir(dev_priv);
342
343 lockdep_assert_held(&dev_priv->irq_lock);
344
345 I915_WRITE(reg, reset_mask);
346 I915_WRITE(reg, reset_mask);
347 POSTING_READ(reg);
348 }
349
gen6_enable_pm_irq(struct drm_i915_private * dev_priv,u32 enable_mask)350 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, u32 enable_mask)
351 {
352 lockdep_assert_held(&dev_priv->irq_lock);
353
354 dev_priv->pm_ier |= enable_mask;
355 I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
356 gen6_unmask_pm_irq(dev_priv, enable_mask);
357 /* unmask_pm_irq provides an implicit barrier (POSTING_READ) */
358 }
359
gen6_disable_pm_irq(struct drm_i915_private * dev_priv,u32 disable_mask)360 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, u32 disable_mask)
361 {
362 lockdep_assert_held(&dev_priv->irq_lock);
363
364 dev_priv->pm_ier &= ~disable_mask;
365 __gen6_mask_pm_irq(dev_priv, disable_mask);
366 I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
367 /* though a barrier is missing here, but don't really need a one */
368 }
369
gen6_reset_rps_interrupts(struct drm_i915_private * dev_priv)370 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
371 {
372 spin_lock_irq(&dev_priv->irq_lock);
373 gen6_reset_pm_iir(dev_priv, dev_priv->pm_rps_events);
374 dev_priv->rps.pm_iir = 0;
375 spin_unlock_irq(&dev_priv->irq_lock);
376 }
377
gen6_enable_rps_interrupts(struct drm_i915_private * dev_priv)378 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
379 {
380 if (READ_ONCE(dev_priv->rps.interrupts_enabled))
381 return;
382
383 spin_lock_irq(&dev_priv->irq_lock);
384 WARN_ON_ONCE(dev_priv->rps.pm_iir);
385 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
386 dev_priv->rps.interrupts_enabled = true;
387 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
388
389 spin_unlock_irq(&dev_priv->irq_lock);
390 }
391
gen6_disable_rps_interrupts(struct drm_i915_private * dev_priv)392 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
393 {
394 if (!READ_ONCE(dev_priv->rps.interrupts_enabled))
395 return;
396
397 spin_lock_irq(&dev_priv->irq_lock);
398 dev_priv->rps.interrupts_enabled = false;
399
400 I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
401
402 gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
403
404 spin_unlock_irq(&dev_priv->irq_lock);
405 synchronize_irq(dev_priv->drm.irq);
406
407 /* Now that we will not be generating any more work, flush any
408 * outsanding tasks. As we are called on the RPS idle path,
409 * we will reset the GPU to minimum frequencies, so the current
410 * state of the worker can be discarded.
411 */
412 cancel_work_sync(&dev_priv->rps.work);
413 gen6_reset_rps_interrupts(dev_priv);
414 }
415
gen9_reset_guc_interrupts(struct drm_i915_private * dev_priv)416 void gen9_reset_guc_interrupts(struct drm_i915_private *dev_priv)
417 {
418 spin_lock_irq(&dev_priv->irq_lock);
419 gen6_reset_pm_iir(dev_priv, dev_priv->pm_guc_events);
420 spin_unlock_irq(&dev_priv->irq_lock);
421 }
422
gen9_enable_guc_interrupts(struct drm_i915_private * dev_priv)423 void gen9_enable_guc_interrupts(struct drm_i915_private *dev_priv)
424 {
425 spin_lock_irq(&dev_priv->irq_lock);
426 if (!dev_priv->guc.interrupts_enabled) {
427 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) &
428 dev_priv->pm_guc_events);
429 dev_priv->guc.interrupts_enabled = true;
430 gen6_enable_pm_irq(dev_priv, dev_priv->pm_guc_events);
431 }
432 spin_unlock_irq(&dev_priv->irq_lock);
433 }
434
gen9_disable_guc_interrupts(struct drm_i915_private * dev_priv)435 void gen9_disable_guc_interrupts(struct drm_i915_private *dev_priv)
436 {
437 spin_lock_irq(&dev_priv->irq_lock);
438 dev_priv->guc.interrupts_enabled = false;
439
440 gen6_disable_pm_irq(dev_priv, dev_priv->pm_guc_events);
441
442 spin_unlock_irq(&dev_priv->irq_lock);
443 synchronize_irq(dev_priv->drm.irq);
444
445 gen9_reset_guc_interrupts(dev_priv);
446 }
447
448 /**
449 * bdw_update_port_irq - update DE port interrupt
450 * @dev_priv: driver private
451 * @interrupt_mask: mask of interrupt bits to update
452 * @enabled_irq_mask: mask of interrupt bits to enable
453 */
bdw_update_port_irq(struct drm_i915_private * dev_priv,uint32_t interrupt_mask,uint32_t enabled_irq_mask)454 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
455 uint32_t interrupt_mask,
456 uint32_t enabled_irq_mask)
457 {
458 uint32_t new_val;
459 uint32_t old_val;
460
461 lockdep_assert_held(&dev_priv->irq_lock);
462
463 WARN_ON(enabled_irq_mask & ~interrupt_mask);
464
465 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
466 return;
467
468 old_val = I915_READ(GEN8_DE_PORT_IMR);
469
470 new_val = old_val;
471 new_val &= ~interrupt_mask;
472 new_val |= (~enabled_irq_mask & interrupt_mask);
473
474 if (new_val != old_val) {
475 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
476 POSTING_READ(GEN8_DE_PORT_IMR);
477 }
478 }
479
480 /**
481 * bdw_update_pipe_irq - update DE pipe interrupt
482 * @dev_priv: driver private
483 * @pipe: pipe whose interrupt to update
484 * @interrupt_mask: mask of interrupt bits to update
485 * @enabled_irq_mask: mask of interrupt bits to enable
486 */
bdw_update_pipe_irq(struct drm_i915_private * dev_priv,enum pipe pipe,uint32_t interrupt_mask,uint32_t enabled_irq_mask)487 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
488 enum pipe pipe,
489 uint32_t interrupt_mask,
490 uint32_t enabled_irq_mask)
491 {
492 uint32_t new_val;
493
494 lockdep_assert_held(&dev_priv->irq_lock);
495
496 WARN_ON(enabled_irq_mask & ~interrupt_mask);
497
498 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
499 return;
500
501 new_val = dev_priv->de_irq_mask[pipe];
502 new_val &= ~interrupt_mask;
503 new_val |= (~enabled_irq_mask & interrupt_mask);
504
505 if (new_val != dev_priv->de_irq_mask[pipe]) {
506 dev_priv->de_irq_mask[pipe] = new_val;
507 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
508 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
509 }
510 }
511
512 /**
513 * ibx_display_interrupt_update - update SDEIMR
514 * @dev_priv: driver private
515 * @interrupt_mask: mask of interrupt bits to update
516 * @enabled_irq_mask: mask of interrupt bits to enable
517 */
ibx_display_interrupt_update(struct drm_i915_private * dev_priv,uint32_t interrupt_mask,uint32_t enabled_irq_mask)518 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
519 uint32_t interrupt_mask,
520 uint32_t enabled_irq_mask)
521 {
522 uint32_t sdeimr = I915_READ(SDEIMR);
523 sdeimr &= ~interrupt_mask;
524 sdeimr |= (~enabled_irq_mask & interrupt_mask);
525
526 WARN_ON(enabled_irq_mask & ~interrupt_mask);
527
528 lockdep_assert_held(&dev_priv->irq_lock);
529
530 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
531 return;
532
533 I915_WRITE(SDEIMR, sdeimr);
534 POSTING_READ(SDEIMR);
535 }
536
537 static void
__i915_enable_pipestat(struct drm_i915_private * dev_priv,enum pipe pipe,u32 enable_mask,u32 status_mask)538 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
539 u32 enable_mask, u32 status_mask)
540 {
541 i915_reg_t reg = PIPESTAT(pipe);
542 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
543
544 lockdep_assert_held(&dev_priv->irq_lock);
545 WARN_ON(!intel_irqs_enabled(dev_priv));
546
547 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
548 status_mask & ~PIPESTAT_INT_STATUS_MASK,
549 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
550 pipe_name(pipe), enable_mask, status_mask))
551 return;
552
553 if ((pipestat & enable_mask) == enable_mask)
554 return;
555
556 dev_priv->pipestat_irq_mask[pipe] |= status_mask;
557
558 /* Enable the interrupt, clear any pending status */
559 pipestat |= enable_mask | status_mask;
560 I915_WRITE(reg, pipestat);
561 POSTING_READ(reg);
562 }
563
564 static void
__i915_disable_pipestat(struct drm_i915_private * dev_priv,enum pipe pipe,u32 enable_mask,u32 status_mask)565 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
566 u32 enable_mask, u32 status_mask)
567 {
568 i915_reg_t reg = PIPESTAT(pipe);
569 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
570
571 lockdep_assert_held(&dev_priv->irq_lock);
572 WARN_ON(!intel_irqs_enabled(dev_priv));
573
574 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
575 status_mask & ~PIPESTAT_INT_STATUS_MASK,
576 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
577 pipe_name(pipe), enable_mask, status_mask))
578 return;
579
580 if ((pipestat & enable_mask) == 0)
581 return;
582
583 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
584
585 pipestat &= ~enable_mask;
586 I915_WRITE(reg, pipestat);
587 POSTING_READ(reg);
588 }
589
vlv_get_pipestat_enable_mask(struct drm_device * dev,u32 status_mask)590 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
591 {
592 u32 enable_mask = status_mask << 16;
593
594 /*
595 * On pipe A we don't support the PSR interrupt yet,
596 * on pipe B and C the same bit MBZ.
597 */
598 if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
599 return 0;
600 /*
601 * On pipe B and C we don't support the PSR interrupt yet, on pipe
602 * A the same bit is for perf counters which we don't use either.
603 */
604 if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
605 return 0;
606
607 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
608 SPRITE0_FLIP_DONE_INT_EN_VLV |
609 SPRITE1_FLIP_DONE_INT_EN_VLV);
610 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
611 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
612 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
613 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
614
615 return enable_mask;
616 }
617
618 void
i915_enable_pipestat(struct drm_i915_private * dev_priv,enum pipe pipe,u32 status_mask)619 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
620 u32 status_mask)
621 {
622 u32 enable_mask;
623
624 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
625 enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
626 status_mask);
627 else
628 enable_mask = status_mask << 16;
629 __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
630 }
631
632 void
i915_disable_pipestat(struct drm_i915_private * dev_priv,enum pipe pipe,u32 status_mask)633 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
634 u32 status_mask)
635 {
636 u32 enable_mask;
637
638 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
639 enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
640 status_mask);
641 else
642 enable_mask = status_mask << 16;
643 __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
644 }
645
646 /**
647 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
648 * @dev_priv: i915 device private
649 */
i915_enable_asle_pipestat(struct drm_i915_private * dev_priv)650 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
651 {
652 if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
653 return;
654
655 spin_lock_irq(&dev_priv->irq_lock);
656
657 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
658 if (INTEL_GEN(dev_priv) >= 4)
659 i915_enable_pipestat(dev_priv, PIPE_A,
660 PIPE_LEGACY_BLC_EVENT_STATUS);
661
662 spin_unlock_irq(&dev_priv->irq_lock);
663 }
664
665 /*
666 * This timing diagram depicts the video signal in and
667 * around the vertical blanking period.
668 *
669 * Assumptions about the fictitious mode used in this example:
670 * vblank_start >= 3
671 * vsync_start = vblank_start + 1
672 * vsync_end = vblank_start + 2
673 * vtotal = vblank_start + 3
674 *
675 * start of vblank:
676 * latch double buffered registers
677 * increment frame counter (ctg+)
678 * generate start of vblank interrupt (gen4+)
679 * |
680 * | frame start:
681 * | generate frame start interrupt (aka. vblank interrupt) (gmch)
682 * | may be shifted forward 1-3 extra lines via PIPECONF
683 * | |
684 * | | start of vsync:
685 * | | generate vsync interrupt
686 * | | |
687 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
688 * . \hs/ . \hs/ \hs/ \hs/ . \hs/
689 * ----va---> <-----------------vb--------------------> <--------va-------------
690 * | | <----vs-----> |
691 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
692 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
693 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
694 * | | |
695 * last visible pixel first visible pixel
696 * | increment frame counter (gen3/4)
697 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
698 *
699 * x = horizontal active
700 * _ = horizontal blanking
701 * hs = horizontal sync
702 * va = vertical active
703 * vb = vertical blanking
704 * vs = vertical sync
705 * vbs = vblank_start (number)
706 *
707 * Summary:
708 * - most events happen at the start of horizontal sync
709 * - frame start happens at the start of horizontal blank, 1-4 lines
710 * (depending on PIPECONF settings) after the start of vblank
711 * - gen3/4 pixel and frame counter are synchronized with the start
712 * of horizontal active on the first line of vertical active
713 */
714
715 /* Called from drm generic code, passed a 'crtc', which
716 * we use as a pipe index
717 */
i915_get_vblank_counter(struct drm_device * dev,unsigned int pipe)718 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
719 {
720 struct drm_i915_private *dev_priv = to_i915(dev);
721 i915_reg_t high_frame, low_frame;
722 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
723 const struct drm_display_mode *mode = &dev->vblank[pipe].hwmode;
724 unsigned long irqflags;
725
726 htotal = mode->crtc_htotal;
727 hsync_start = mode->crtc_hsync_start;
728 vbl_start = mode->crtc_vblank_start;
729 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
730 vbl_start = DIV_ROUND_UP(vbl_start, 2);
731
732 /* Convert to pixel count */
733 vbl_start *= htotal;
734
735 /* Start of vblank event occurs at start of hsync */
736 vbl_start -= htotal - hsync_start;
737
738 high_frame = PIPEFRAME(pipe);
739 low_frame = PIPEFRAMEPIXEL(pipe);
740
741 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
742
743 /*
744 * High & low register fields aren't synchronized, so make sure
745 * we get a low value that's stable across two reads of the high
746 * register.
747 */
748 do {
749 high1 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
750 low = I915_READ_FW(low_frame);
751 high2 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
752 } while (high1 != high2);
753
754 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
755
756 high1 >>= PIPE_FRAME_HIGH_SHIFT;
757 pixel = low & PIPE_PIXEL_MASK;
758 low >>= PIPE_FRAME_LOW_SHIFT;
759
760 /*
761 * The frame counter increments at beginning of active.
762 * Cook up a vblank counter by also checking the pixel
763 * counter against vblank start.
764 */
765 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
766 }
767
g4x_get_vblank_counter(struct drm_device * dev,unsigned int pipe)768 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
769 {
770 struct drm_i915_private *dev_priv = to_i915(dev);
771
772 return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
773 }
774
775 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
__intel_get_crtc_scanline(struct intel_crtc * crtc)776 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
777 {
778 struct drm_device *dev = crtc->base.dev;
779 struct drm_i915_private *dev_priv = to_i915(dev);
780 const struct drm_display_mode *mode;
781 struct drm_vblank_crtc *vblank;
782 enum pipe pipe = crtc->pipe;
783 int position, vtotal;
784
785 if (!crtc->active)
786 return -1;
787
788 vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
789 mode = &vblank->hwmode;
790
791 vtotal = mode->crtc_vtotal;
792 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
793 vtotal /= 2;
794
795 if (IS_GEN2(dev_priv))
796 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
797 else
798 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
799
800 /*
801 * On HSW, the DSL reg (0x70000) appears to return 0 if we
802 * read it just before the start of vblank. So try it again
803 * so we don't accidentally end up spanning a vblank frame
804 * increment, causing the pipe_update_end() code to squak at us.
805 *
806 * The nature of this problem means we can't simply check the ISR
807 * bit and return the vblank start value; nor can we use the scanline
808 * debug register in the transcoder as it appears to have the same
809 * problem. We may need to extend this to include other platforms,
810 * but so far testing only shows the problem on HSW.
811 */
812 if (HAS_DDI(dev_priv) && !position) {
813 int i, temp;
814
815 for (i = 0; i < 100; i++) {
816 udelay(1);
817 temp = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
818 if (temp != position) {
819 position = temp;
820 break;
821 }
822 }
823 }
824
825 /*
826 * See update_scanline_offset() for the details on the
827 * scanline_offset adjustment.
828 */
829 return (position + crtc->scanline_offset) % vtotal;
830 }
831
i915_get_crtc_scanoutpos(struct drm_device * dev,unsigned int pipe,bool in_vblank_irq,int * vpos,int * hpos,ktime_t * stime,ktime_t * etime,const struct drm_display_mode * mode)832 static bool i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
833 bool in_vblank_irq, int *vpos, int *hpos,
834 ktime_t *stime, ktime_t *etime,
835 const struct drm_display_mode *mode)
836 {
837 struct drm_i915_private *dev_priv = to_i915(dev);
838 struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
839 pipe);
840 int position;
841 int vbl_start, vbl_end, hsync_start, htotal, vtotal;
842 unsigned long irqflags;
843
844 if (WARN_ON(!mode->crtc_clock)) {
845 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
846 "pipe %c\n", pipe_name(pipe));
847 return false;
848 }
849
850 htotal = mode->crtc_htotal;
851 hsync_start = mode->crtc_hsync_start;
852 vtotal = mode->crtc_vtotal;
853 vbl_start = mode->crtc_vblank_start;
854 vbl_end = mode->crtc_vblank_end;
855
856 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
857 vbl_start = DIV_ROUND_UP(vbl_start, 2);
858 vbl_end /= 2;
859 vtotal /= 2;
860 }
861
862 /*
863 * Lock uncore.lock, as we will do multiple timing critical raw
864 * register reads, potentially with preemption disabled, so the
865 * following code must not block on uncore.lock.
866 */
867 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
868
869 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
870
871 /* Get optional system timestamp before query. */
872 if (stime)
873 *stime = ktime_get();
874
875 if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
876 /* No obvious pixelcount register. Only query vertical
877 * scanout position from Display scan line register.
878 */
879 position = __intel_get_crtc_scanline(intel_crtc);
880 } else {
881 /* Have access to pixelcount since start of frame.
882 * We can split this into vertical and horizontal
883 * scanout position.
884 */
885 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
886
887 /* convert to pixel counts */
888 vbl_start *= htotal;
889 vbl_end *= htotal;
890 vtotal *= htotal;
891
892 /*
893 * In interlaced modes, the pixel counter counts all pixels,
894 * so one field will have htotal more pixels. In order to avoid
895 * the reported position from jumping backwards when the pixel
896 * counter is beyond the length of the shorter field, just
897 * clamp the position the length of the shorter field. This
898 * matches how the scanline counter based position works since
899 * the scanline counter doesn't count the two half lines.
900 */
901 if (position >= vtotal)
902 position = vtotal - 1;
903
904 /*
905 * Start of vblank interrupt is triggered at start of hsync,
906 * just prior to the first active line of vblank. However we
907 * consider lines to start at the leading edge of horizontal
908 * active. So, should we get here before we've crossed into
909 * the horizontal active of the first line in vblank, we would
910 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
911 * always add htotal-hsync_start to the current pixel position.
912 */
913 position = (position + htotal - hsync_start) % vtotal;
914 }
915
916 /* Get optional system timestamp after query. */
917 if (etime)
918 *etime = ktime_get();
919
920 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
921
922 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
923
924 /*
925 * While in vblank, position will be negative
926 * counting up towards 0 at vbl_end. And outside
927 * vblank, position will be positive counting
928 * up since vbl_end.
929 */
930 if (position >= vbl_start)
931 position -= vbl_end;
932 else
933 position += vtotal - vbl_end;
934
935 if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
936 *vpos = position;
937 *hpos = 0;
938 } else {
939 *vpos = position / htotal;
940 *hpos = position - (*vpos * htotal);
941 }
942
943 return true;
944 }
945
intel_get_crtc_scanline(struct intel_crtc * crtc)946 int intel_get_crtc_scanline(struct intel_crtc *crtc)
947 {
948 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
949 unsigned long irqflags;
950 int position;
951
952 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
953 position = __intel_get_crtc_scanline(crtc);
954 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
955
956 return position;
957 }
958
ironlake_rps_change_irq_handler(struct drm_i915_private * dev_priv)959 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
960 {
961 u32 busy_up, busy_down, max_avg, min_avg;
962 u8 new_delay;
963
964 spin_lock(&mchdev_lock);
965
966 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
967
968 new_delay = dev_priv->ips.cur_delay;
969
970 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
971 busy_up = I915_READ(RCPREVBSYTUPAVG);
972 busy_down = I915_READ(RCPREVBSYTDNAVG);
973 max_avg = I915_READ(RCBMAXAVG);
974 min_avg = I915_READ(RCBMINAVG);
975
976 /* Handle RCS change request from hw */
977 if (busy_up > max_avg) {
978 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
979 new_delay = dev_priv->ips.cur_delay - 1;
980 if (new_delay < dev_priv->ips.max_delay)
981 new_delay = dev_priv->ips.max_delay;
982 } else if (busy_down < min_avg) {
983 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
984 new_delay = dev_priv->ips.cur_delay + 1;
985 if (new_delay > dev_priv->ips.min_delay)
986 new_delay = dev_priv->ips.min_delay;
987 }
988
989 if (ironlake_set_drps(dev_priv, new_delay))
990 dev_priv->ips.cur_delay = new_delay;
991
992 spin_unlock(&mchdev_lock);
993
994 return;
995 }
996
notify_ring(struct intel_engine_cs * engine)997 static void notify_ring(struct intel_engine_cs *engine)
998 {
999 struct drm_i915_gem_request *rq = NULL;
1000 struct intel_wait *wait;
1001
1002 atomic_inc(&engine->irq_count);
1003 set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
1004
1005 spin_lock(&engine->breadcrumbs.irq_lock);
1006 wait = engine->breadcrumbs.irq_wait;
1007 if (wait) {
1008 /* We use a callback from the dma-fence to submit
1009 * requests after waiting on our own requests. To
1010 * ensure minimum delay in queuing the next request to
1011 * hardware, signal the fence now rather than wait for
1012 * the signaler to be woken up. We still wake up the
1013 * waiter in order to handle the irq-seqno coherency
1014 * issues (we may receive the interrupt before the
1015 * seqno is written, see __i915_request_irq_complete())
1016 * and to handle coalescing of multiple seqno updates
1017 * and many waiters.
1018 */
1019 if (i915_seqno_passed(intel_engine_get_seqno(engine),
1020 wait->seqno) &&
1021 !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
1022 &wait->request->fence.flags))
1023 rq = i915_gem_request_get(wait->request);
1024
1025 wake_up_process(wait->tsk);
1026 } else {
1027 __intel_engine_disarm_breadcrumbs(engine);
1028 }
1029 spin_unlock(&engine->breadcrumbs.irq_lock);
1030
1031 if (rq) {
1032 dma_fence_signal(&rq->fence);
1033 i915_gem_request_put(rq);
1034 }
1035
1036 trace_intel_engine_notify(engine, wait);
1037 }
1038
vlv_c0_read(struct drm_i915_private * dev_priv,struct intel_rps_ei * ei)1039 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1040 struct intel_rps_ei *ei)
1041 {
1042 ei->ktime = ktime_get_raw();
1043 ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1044 ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1045 }
1046
gen6_rps_reset_ei(struct drm_i915_private * dev_priv)1047 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1048 {
1049 memset(&dev_priv->rps.ei, 0, sizeof(dev_priv->rps.ei));
1050 }
1051
vlv_wa_c0_ei(struct drm_i915_private * dev_priv,u32 pm_iir)1052 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1053 {
1054 const struct intel_rps_ei *prev = &dev_priv->rps.ei;
1055 struct intel_rps_ei now;
1056 u32 events = 0;
1057
1058 if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1059 return 0;
1060
1061 vlv_c0_read(dev_priv, &now);
1062
1063 if (prev->ktime) {
1064 u64 time, c0;
1065 u32 render, media;
1066
1067 time = ktime_us_delta(now.ktime, prev->ktime);
1068
1069 time *= dev_priv->czclk_freq;
1070
1071 /* Workload can be split between render + media,
1072 * e.g. SwapBuffers being blitted in X after being rendered in
1073 * mesa. To account for this we need to combine both engines
1074 * into our activity counter.
1075 */
1076 render = now.render_c0 - prev->render_c0;
1077 media = now.media_c0 - prev->media_c0;
1078 c0 = max(render, media);
1079 c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1080
1081 if (c0 > time * dev_priv->rps.up_threshold)
1082 events = GEN6_PM_RP_UP_THRESHOLD;
1083 else if (c0 < time * dev_priv->rps.down_threshold)
1084 events = GEN6_PM_RP_DOWN_THRESHOLD;
1085 }
1086
1087 dev_priv->rps.ei = now;
1088 return events;
1089 }
1090
gen6_pm_rps_work(struct work_struct * work)1091 static void gen6_pm_rps_work(struct work_struct *work)
1092 {
1093 struct drm_i915_private *dev_priv =
1094 container_of(work, struct drm_i915_private, rps.work);
1095 bool client_boost = false;
1096 int new_delay, adj, min, max;
1097 u32 pm_iir = 0;
1098
1099 spin_lock_irq(&dev_priv->irq_lock);
1100 if (dev_priv->rps.interrupts_enabled) {
1101 pm_iir = fetch_and_zero(&dev_priv->rps.pm_iir);
1102 client_boost = atomic_read(&dev_priv->rps.num_waiters);
1103 }
1104 spin_unlock_irq(&dev_priv->irq_lock);
1105
1106 /* Make sure we didn't queue anything we're not going to process. */
1107 WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1108 if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1109 goto out;
1110
1111 mutex_lock(&dev_priv->rps.hw_lock);
1112
1113 pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1114
1115 adj = dev_priv->rps.last_adj;
1116 new_delay = dev_priv->rps.cur_freq;
1117 min = dev_priv->rps.min_freq_softlimit;
1118 max = dev_priv->rps.max_freq_softlimit;
1119 if (client_boost)
1120 max = dev_priv->rps.max_freq;
1121 if (client_boost && new_delay < dev_priv->rps.boost_freq) {
1122 new_delay = dev_priv->rps.boost_freq;
1123 adj = 0;
1124 } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1125 if (adj > 0)
1126 adj *= 2;
1127 else /* CHV needs even encode values */
1128 adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1129
1130 if (new_delay >= dev_priv->rps.max_freq_softlimit)
1131 adj = 0;
1132 } else if (client_boost) {
1133 adj = 0;
1134 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1135 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1136 new_delay = dev_priv->rps.efficient_freq;
1137 else if (dev_priv->rps.cur_freq > dev_priv->rps.min_freq_softlimit)
1138 new_delay = dev_priv->rps.min_freq_softlimit;
1139 adj = 0;
1140 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1141 if (adj < 0)
1142 adj *= 2;
1143 else /* CHV needs even encode values */
1144 adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1145
1146 if (new_delay <= dev_priv->rps.min_freq_softlimit)
1147 adj = 0;
1148 } else { /* unknown event */
1149 adj = 0;
1150 }
1151
1152 dev_priv->rps.last_adj = adj;
1153
1154 /* sysfs frequency interfaces may have snuck in while servicing the
1155 * interrupt
1156 */
1157 new_delay += adj;
1158 new_delay = clamp_t(int, new_delay, min, max);
1159
1160 if (intel_set_rps(dev_priv, new_delay)) {
1161 DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n");
1162 dev_priv->rps.last_adj = 0;
1163 }
1164
1165 mutex_unlock(&dev_priv->rps.hw_lock);
1166
1167 out:
1168 /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1169 spin_lock_irq(&dev_priv->irq_lock);
1170 if (dev_priv->rps.interrupts_enabled)
1171 gen6_unmask_pm_irq(dev_priv, dev_priv->pm_rps_events);
1172 spin_unlock_irq(&dev_priv->irq_lock);
1173 }
1174
1175
1176 /**
1177 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1178 * occurred.
1179 * @work: workqueue struct
1180 *
1181 * Doesn't actually do anything except notify userspace. As a consequence of
1182 * this event, userspace should try to remap the bad rows since statistically
1183 * it is likely the same row is more likely to go bad again.
1184 */
ivybridge_parity_work(struct work_struct * work)1185 static void ivybridge_parity_work(struct work_struct *work)
1186 {
1187 struct drm_i915_private *dev_priv =
1188 container_of(work, typeof(*dev_priv), l3_parity.error_work);
1189 u32 error_status, row, bank, subbank;
1190 char *parity_event[6];
1191 uint32_t misccpctl;
1192 uint8_t slice = 0;
1193
1194 /* We must turn off DOP level clock gating to access the L3 registers.
1195 * In order to prevent a get/put style interface, acquire struct mutex
1196 * any time we access those registers.
1197 */
1198 mutex_lock(&dev_priv->drm.struct_mutex);
1199
1200 /* If we've screwed up tracking, just let the interrupt fire again */
1201 if (WARN_ON(!dev_priv->l3_parity.which_slice))
1202 goto out;
1203
1204 misccpctl = I915_READ(GEN7_MISCCPCTL);
1205 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1206 POSTING_READ(GEN7_MISCCPCTL);
1207
1208 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1209 i915_reg_t reg;
1210
1211 slice--;
1212 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1213 break;
1214
1215 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1216
1217 reg = GEN7_L3CDERRST1(slice);
1218
1219 error_status = I915_READ(reg);
1220 row = GEN7_PARITY_ERROR_ROW(error_status);
1221 bank = GEN7_PARITY_ERROR_BANK(error_status);
1222 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1223
1224 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1225 POSTING_READ(reg);
1226
1227 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1228 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1229 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1230 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1231 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1232 parity_event[5] = NULL;
1233
1234 kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1235 KOBJ_CHANGE, parity_event);
1236
1237 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1238 slice, row, bank, subbank);
1239
1240 kfree(parity_event[4]);
1241 kfree(parity_event[3]);
1242 kfree(parity_event[2]);
1243 kfree(parity_event[1]);
1244 }
1245
1246 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1247
1248 out:
1249 WARN_ON(dev_priv->l3_parity.which_slice);
1250 spin_lock_irq(&dev_priv->irq_lock);
1251 gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1252 spin_unlock_irq(&dev_priv->irq_lock);
1253
1254 mutex_unlock(&dev_priv->drm.struct_mutex);
1255 }
1256
ivybridge_parity_error_irq_handler(struct drm_i915_private * dev_priv,u32 iir)1257 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1258 u32 iir)
1259 {
1260 if (!HAS_L3_DPF(dev_priv))
1261 return;
1262
1263 spin_lock(&dev_priv->irq_lock);
1264 gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1265 spin_unlock(&dev_priv->irq_lock);
1266
1267 iir &= GT_PARITY_ERROR(dev_priv);
1268 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1269 dev_priv->l3_parity.which_slice |= 1 << 1;
1270
1271 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1272 dev_priv->l3_parity.which_slice |= 1 << 0;
1273
1274 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1275 }
1276
ilk_gt_irq_handler(struct drm_i915_private * dev_priv,u32 gt_iir)1277 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1278 u32 gt_iir)
1279 {
1280 if (gt_iir & GT_RENDER_USER_INTERRUPT)
1281 notify_ring(dev_priv->engine[RCS]);
1282 if (gt_iir & ILK_BSD_USER_INTERRUPT)
1283 notify_ring(dev_priv->engine[VCS]);
1284 }
1285
snb_gt_irq_handler(struct drm_i915_private * dev_priv,u32 gt_iir)1286 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1287 u32 gt_iir)
1288 {
1289 if (gt_iir & GT_RENDER_USER_INTERRUPT)
1290 notify_ring(dev_priv->engine[RCS]);
1291 if (gt_iir & GT_BSD_USER_INTERRUPT)
1292 notify_ring(dev_priv->engine[VCS]);
1293 if (gt_iir & GT_BLT_USER_INTERRUPT)
1294 notify_ring(dev_priv->engine[BCS]);
1295
1296 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1297 GT_BSD_CS_ERROR_INTERRUPT |
1298 GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1299 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1300
1301 if (gt_iir & GT_PARITY_ERROR(dev_priv))
1302 ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1303 }
1304
1305 static void
gen8_cs_irq_handler(struct intel_engine_cs * engine,u32 iir,int test_shift)1306 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift)
1307 {
1308 bool tasklet = false;
1309
1310 if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift)) {
1311 if (port_count(&engine->execlist_port[0])) {
1312 __set_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1313 tasklet = true;
1314 }
1315 }
1316
1317 if (iir & (GT_RENDER_USER_INTERRUPT << test_shift)) {
1318 notify_ring(engine);
1319 tasklet |= i915.enable_guc_submission;
1320 }
1321
1322 if (tasklet)
1323 tasklet_hi_schedule(&engine->irq_tasklet);
1324 }
1325
gen8_gt_irq_ack(struct drm_i915_private * dev_priv,u32 master_ctl,u32 gt_iir[4])1326 static irqreturn_t gen8_gt_irq_ack(struct drm_i915_private *dev_priv,
1327 u32 master_ctl,
1328 u32 gt_iir[4])
1329 {
1330 irqreturn_t ret = IRQ_NONE;
1331
1332 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1333 gt_iir[0] = I915_READ_FW(GEN8_GT_IIR(0));
1334 if (gt_iir[0]) {
1335 I915_WRITE_FW(GEN8_GT_IIR(0), gt_iir[0]);
1336 ret = IRQ_HANDLED;
1337 } else
1338 DRM_ERROR("The master control interrupt lied (GT0)!\n");
1339 }
1340
1341 if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1342 gt_iir[1] = I915_READ_FW(GEN8_GT_IIR(1));
1343 if (gt_iir[1]) {
1344 I915_WRITE_FW(GEN8_GT_IIR(1), gt_iir[1]);
1345 ret = IRQ_HANDLED;
1346 } else
1347 DRM_ERROR("The master control interrupt lied (GT1)!\n");
1348 }
1349
1350 if (master_ctl & GEN8_GT_VECS_IRQ) {
1351 gt_iir[3] = I915_READ_FW(GEN8_GT_IIR(3));
1352 if (gt_iir[3]) {
1353 I915_WRITE_FW(GEN8_GT_IIR(3), gt_iir[3]);
1354 ret = IRQ_HANDLED;
1355 } else
1356 DRM_ERROR("The master control interrupt lied (GT3)!\n");
1357 }
1358
1359 if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1360 gt_iir[2] = I915_READ_FW(GEN8_GT_IIR(2));
1361 if (gt_iir[2] & (dev_priv->pm_rps_events |
1362 dev_priv->pm_guc_events)) {
1363 I915_WRITE_FW(GEN8_GT_IIR(2),
1364 gt_iir[2] & (dev_priv->pm_rps_events |
1365 dev_priv->pm_guc_events));
1366 ret = IRQ_HANDLED;
1367 } else
1368 DRM_ERROR("The master control interrupt lied (PM)!\n");
1369 }
1370
1371 return ret;
1372 }
1373
gen8_gt_irq_handler(struct drm_i915_private * dev_priv,u32 gt_iir[4])1374 static void gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1375 u32 gt_iir[4])
1376 {
1377 if (gt_iir[0]) {
1378 gen8_cs_irq_handler(dev_priv->engine[RCS],
1379 gt_iir[0], GEN8_RCS_IRQ_SHIFT);
1380 gen8_cs_irq_handler(dev_priv->engine[BCS],
1381 gt_iir[0], GEN8_BCS_IRQ_SHIFT);
1382 }
1383
1384 if (gt_iir[1]) {
1385 gen8_cs_irq_handler(dev_priv->engine[VCS],
1386 gt_iir[1], GEN8_VCS1_IRQ_SHIFT);
1387 gen8_cs_irq_handler(dev_priv->engine[VCS2],
1388 gt_iir[1], GEN8_VCS2_IRQ_SHIFT);
1389 }
1390
1391 if (gt_iir[3])
1392 gen8_cs_irq_handler(dev_priv->engine[VECS],
1393 gt_iir[3], GEN8_VECS_IRQ_SHIFT);
1394
1395 if (gt_iir[2] & dev_priv->pm_rps_events)
1396 gen6_rps_irq_handler(dev_priv, gt_iir[2]);
1397
1398 if (gt_iir[2] & dev_priv->pm_guc_events)
1399 gen9_guc_irq_handler(dev_priv, gt_iir[2]);
1400 }
1401
bxt_port_hotplug_long_detect(enum port port,u32 val)1402 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1403 {
1404 switch (port) {
1405 case PORT_A:
1406 return val & PORTA_HOTPLUG_LONG_DETECT;
1407 case PORT_B:
1408 return val & PORTB_HOTPLUG_LONG_DETECT;
1409 case PORT_C:
1410 return val & PORTC_HOTPLUG_LONG_DETECT;
1411 default:
1412 return false;
1413 }
1414 }
1415
spt_port_hotplug2_long_detect(enum port port,u32 val)1416 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1417 {
1418 switch (port) {
1419 case PORT_E:
1420 return val & PORTE_HOTPLUG_LONG_DETECT;
1421 default:
1422 return false;
1423 }
1424 }
1425
spt_port_hotplug_long_detect(enum port port,u32 val)1426 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1427 {
1428 switch (port) {
1429 case PORT_A:
1430 return val & PORTA_HOTPLUG_LONG_DETECT;
1431 case PORT_B:
1432 return val & PORTB_HOTPLUG_LONG_DETECT;
1433 case PORT_C:
1434 return val & PORTC_HOTPLUG_LONG_DETECT;
1435 case PORT_D:
1436 return val & PORTD_HOTPLUG_LONG_DETECT;
1437 default:
1438 return false;
1439 }
1440 }
1441
ilk_port_hotplug_long_detect(enum port port,u32 val)1442 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1443 {
1444 switch (port) {
1445 case PORT_A:
1446 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1447 default:
1448 return false;
1449 }
1450 }
1451
pch_port_hotplug_long_detect(enum port port,u32 val)1452 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1453 {
1454 switch (port) {
1455 case PORT_B:
1456 return val & PORTB_HOTPLUG_LONG_DETECT;
1457 case PORT_C:
1458 return val & PORTC_HOTPLUG_LONG_DETECT;
1459 case PORT_D:
1460 return val & PORTD_HOTPLUG_LONG_DETECT;
1461 default:
1462 return false;
1463 }
1464 }
1465
i9xx_port_hotplug_long_detect(enum port port,u32 val)1466 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1467 {
1468 switch (port) {
1469 case PORT_B:
1470 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1471 case PORT_C:
1472 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1473 case PORT_D:
1474 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1475 default:
1476 return false;
1477 }
1478 }
1479
1480 /*
1481 * Get a bit mask of pins that have triggered, and which ones may be long.
1482 * This can be called multiple times with the same masks to accumulate
1483 * hotplug detection results from several registers.
1484 *
1485 * Note that the caller is expected to zero out the masks initially.
1486 */
intel_get_hpd_pins(u32 * pin_mask,u32 * long_mask,u32 hotplug_trigger,u32 dig_hotplug_reg,const u32 hpd[HPD_NUM_PINS],bool long_pulse_detect (enum port port,u32 val))1487 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1488 u32 hotplug_trigger, u32 dig_hotplug_reg,
1489 const u32 hpd[HPD_NUM_PINS],
1490 bool long_pulse_detect(enum port port, u32 val))
1491 {
1492 enum port port;
1493 int i;
1494
1495 for_each_hpd_pin(i) {
1496 if ((hpd[i] & hotplug_trigger) == 0)
1497 continue;
1498
1499 *pin_mask |= BIT(i);
1500
1501 port = intel_hpd_pin_to_port(i);
1502 if (port == PORT_NONE)
1503 continue;
1504
1505 if (long_pulse_detect(port, dig_hotplug_reg))
1506 *long_mask |= BIT(i);
1507 }
1508
1509 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1510 hotplug_trigger, dig_hotplug_reg, *pin_mask);
1511
1512 }
1513
gmbus_irq_handler(struct drm_i915_private * dev_priv)1514 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1515 {
1516 wake_up_all(&dev_priv->gmbus_wait_queue);
1517 }
1518
dp_aux_irq_handler(struct drm_i915_private * dev_priv)1519 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1520 {
1521 wake_up_all(&dev_priv->gmbus_wait_queue);
1522 }
1523
1524 #if defined(CONFIG_DEBUG_FS)
display_pipe_crc_irq_handler(struct drm_i915_private * dev_priv,enum pipe pipe,uint32_t crc0,uint32_t crc1,uint32_t crc2,uint32_t crc3,uint32_t crc4)1525 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1526 enum pipe pipe,
1527 uint32_t crc0, uint32_t crc1,
1528 uint32_t crc2, uint32_t crc3,
1529 uint32_t crc4)
1530 {
1531 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1532 struct intel_pipe_crc_entry *entry;
1533 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1534 struct drm_driver *driver = dev_priv->drm.driver;
1535 uint32_t crcs[5];
1536 int head, tail;
1537
1538 spin_lock(&pipe_crc->lock);
1539 if (pipe_crc->source) {
1540 if (!pipe_crc->entries) {
1541 spin_unlock(&pipe_crc->lock);
1542 DRM_DEBUG_KMS("spurious interrupt\n");
1543 return;
1544 }
1545
1546 head = pipe_crc->head;
1547 tail = pipe_crc->tail;
1548
1549 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1550 spin_unlock(&pipe_crc->lock);
1551 DRM_ERROR("CRC buffer overflowing\n");
1552 return;
1553 }
1554
1555 entry = &pipe_crc->entries[head];
1556
1557 entry->frame = driver->get_vblank_counter(&dev_priv->drm, pipe);
1558 entry->crc[0] = crc0;
1559 entry->crc[1] = crc1;
1560 entry->crc[2] = crc2;
1561 entry->crc[3] = crc3;
1562 entry->crc[4] = crc4;
1563
1564 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1565 pipe_crc->head = head;
1566
1567 spin_unlock(&pipe_crc->lock);
1568
1569 wake_up_interruptible(&pipe_crc->wq);
1570 } else {
1571 /*
1572 * For some not yet identified reason, the first CRC is
1573 * bonkers. So let's just wait for the next vblank and read
1574 * out the buggy result.
1575 *
1576 * On CHV sometimes the second CRC is bonkers as well, so
1577 * don't trust that one either.
1578 */
1579 if (pipe_crc->skipped == 0 ||
1580 (IS_CHERRYVIEW(dev_priv) && pipe_crc->skipped == 1)) {
1581 pipe_crc->skipped++;
1582 spin_unlock(&pipe_crc->lock);
1583 return;
1584 }
1585 spin_unlock(&pipe_crc->lock);
1586 crcs[0] = crc0;
1587 crcs[1] = crc1;
1588 crcs[2] = crc2;
1589 crcs[3] = crc3;
1590 crcs[4] = crc4;
1591 drm_crtc_add_crc_entry(&crtc->base, true,
1592 drm_crtc_accurate_vblank_count(&crtc->base),
1593 crcs);
1594 }
1595 }
1596 #else
1597 static inline void
display_pipe_crc_irq_handler(struct drm_i915_private * dev_priv,enum pipe pipe,uint32_t crc0,uint32_t crc1,uint32_t crc2,uint32_t crc3,uint32_t crc4)1598 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1599 enum pipe pipe,
1600 uint32_t crc0, uint32_t crc1,
1601 uint32_t crc2, uint32_t crc3,
1602 uint32_t crc4) {}
1603 #endif
1604
1605
hsw_pipe_crc_irq_handler(struct drm_i915_private * dev_priv,enum pipe pipe)1606 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1607 enum pipe pipe)
1608 {
1609 display_pipe_crc_irq_handler(dev_priv, pipe,
1610 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1611 0, 0, 0, 0);
1612 }
1613
ivb_pipe_crc_irq_handler(struct drm_i915_private * dev_priv,enum pipe pipe)1614 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1615 enum pipe pipe)
1616 {
1617 display_pipe_crc_irq_handler(dev_priv, pipe,
1618 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1619 I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1620 I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1621 I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1622 I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1623 }
1624
i9xx_pipe_crc_irq_handler(struct drm_i915_private * dev_priv,enum pipe pipe)1625 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1626 enum pipe pipe)
1627 {
1628 uint32_t res1, res2;
1629
1630 if (INTEL_GEN(dev_priv) >= 3)
1631 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1632 else
1633 res1 = 0;
1634
1635 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1636 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1637 else
1638 res2 = 0;
1639
1640 display_pipe_crc_irq_handler(dev_priv, pipe,
1641 I915_READ(PIPE_CRC_RES_RED(pipe)),
1642 I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1643 I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1644 res1, res2);
1645 }
1646
1647 /* The RPS events need forcewake, so we add them to a work queue and mask their
1648 * IMR bits until the work is done. Other interrupts can be processed without
1649 * the work queue. */
gen6_rps_irq_handler(struct drm_i915_private * dev_priv,u32 pm_iir)1650 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1651 {
1652 if (pm_iir & dev_priv->pm_rps_events) {
1653 spin_lock(&dev_priv->irq_lock);
1654 gen6_mask_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1655 if (dev_priv->rps.interrupts_enabled) {
1656 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1657 schedule_work(&dev_priv->rps.work);
1658 }
1659 spin_unlock(&dev_priv->irq_lock);
1660 }
1661
1662 if (INTEL_GEN(dev_priv) >= 8)
1663 return;
1664
1665 if (HAS_VEBOX(dev_priv)) {
1666 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1667 notify_ring(dev_priv->engine[VECS]);
1668
1669 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1670 DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1671 }
1672 }
1673
gen9_guc_irq_handler(struct drm_i915_private * dev_priv,u32 gt_iir)1674 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir)
1675 {
1676 if (gt_iir & GEN9_GUC_TO_HOST_INT_EVENT) {
1677 /* Sample the log buffer flush related bits & clear them out now
1678 * itself from the message identity register to minimize the
1679 * probability of losing a flush interrupt, when there are back
1680 * to back flush interrupts.
1681 * There can be a new flush interrupt, for different log buffer
1682 * type (like for ISR), whilst Host is handling one (for DPC).
1683 * Since same bit is used in message register for ISR & DPC, it
1684 * could happen that GuC sets the bit for 2nd interrupt but Host
1685 * clears out the bit on handling the 1st interrupt.
1686 */
1687 u32 msg, flush;
1688
1689 msg = I915_READ(SOFT_SCRATCH(15));
1690 flush = msg & (INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED |
1691 INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER);
1692 if (flush) {
1693 /* Clear the message bits that are handled */
1694 I915_WRITE(SOFT_SCRATCH(15), msg & ~flush);
1695
1696 /* Handle flush interrupt in bottom half */
1697 queue_work(dev_priv->guc.log.runtime.flush_wq,
1698 &dev_priv->guc.log.runtime.flush_work);
1699
1700 dev_priv->guc.log.flush_interrupt_count++;
1701 } else {
1702 /* Not clearing of unhandled event bits won't result in
1703 * re-triggering of the interrupt.
1704 */
1705 }
1706 }
1707 }
1708
valleyview_pipestat_irq_ack(struct drm_i915_private * dev_priv,u32 iir,u32 pipe_stats[I915_MAX_PIPES])1709 static void valleyview_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1710 u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1711 {
1712 int pipe;
1713
1714 spin_lock(&dev_priv->irq_lock);
1715
1716 if (!dev_priv->display_irqs_enabled) {
1717 spin_unlock(&dev_priv->irq_lock);
1718 return;
1719 }
1720
1721 for_each_pipe(dev_priv, pipe) {
1722 i915_reg_t reg;
1723 u32 mask, iir_bit = 0;
1724
1725 /*
1726 * PIPESTAT bits get signalled even when the interrupt is
1727 * disabled with the mask bits, and some of the status bits do
1728 * not generate interrupts at all (like the underrun bit). Hence
1729 * we need to be careful that we only handle what we want to
1730 * handle.
1731 */
1732
1733 /* fifo underruns are filterered in the underrun handler. */
1734 mask = PIPE_FIFO_UNDERRUN_STATUS;
1735
1736 switch (pipe) {
1737 case PIPE_A:
1738 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1739 break;
1740 case PIPE_B:
1741 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1742 break;
1743 case PIPE_C:
1744 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1745 break;
1746 }
1747 if (iir & iir_bit)
1748 mask |= dev_priv->pipestat_irq_mask[pipe];
1749
1750 if (!mask)
1751 continue;
1752
1753 reg = PIPESTAT(pipe);
1754 mask |= PIPESTAT_INT_ENABLE_MASK;
1755 pipe_stats[pipe] = I915_READ(reg) & mask;
1756
1757 /*
1758 * Clear the PIPE*STAT regs before the IIR
1759 */
1760 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1761 PIPESTAT_INT_STATUS_MASK))
1762 I915_WRITE(reg, pipe_stats[pipe]);
1763 }
1764 spin_unlock(&dev_priv->irq_lock);
1765 }
1766
valleyview_pipestat_irq_handler(struct drm_i915_private * dev_priv,u32 pipe_stats[I915_MAX_PIPES])1767 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1768 u32 pipe_stats[I915_MAX_PIPES])
1769 {
1770 enum pipe pipe;
1771
1772 for_each_pipe(dev_priv, pipe) {
1773 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1774 drm_handle_vblank(&dev_priv->drm, pipe);
1775
1776 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1777 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1778
1779 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1780 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1781 }
1782
1783 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1784 gmbus_irq_handler(dev_priv);
1785 }
1786
i9xx_hpd_irq_ack(struct drm_i915_private * dev_priv)1787 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1788 {
1789 u32 hotplug_status = 0, hotplug_status_mask;
1790 int i;
1791
1792 if (IS_G4X(dev_priv) ||
1793 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1794 hotplug_status_mask = HOTPLUG_INT_STATUS_G4X |
1795 DP_AUX_CHANNEL_MASK_INT_STATUS_G4X;
1796 else
1797 hotplug_status_mask = HOTPLUG_INT_STATUS_I915;
1798
1799 /*
1800 * We absolutely have to clear all the pending interrupt
1801 * bits in PORT_HOTPLUG_STAT. Otherwise the ISR port
1802 * interrupt bit won't have an edge, and the i965/g4x
1803 * edge triggered IIR will not notice that an interrupt
1804 * is still pending. We can't use PORT_HOTPLUG_EN to
1805 * guarantee the edge as the act of toggling the enable
1806 * bits can itself generate a new hotplug interrupt :(
1807 */
1808 for (i = 0; i < 10; i++) {
1809 u32 tmp = I915_READ(PORT_HOTPLUG_STAT) & hotplug_status_mask;
1810
1811 if (tmp == 0)
1812 return hotplug_status;
1813
1814 hotplug_status |= tmp;
1815 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1816 }
1817
1818 WARN_ONCE(1,
1819 "PORT_HOTPLUG_STAT did not clear (0x%08x)\n",
1820 I915_READ(PORT_HOTPLUG_STAT));
1821
1822 return hotplug_status;
1823 }
1824
i9xx_hpd_irq_handler(struct drm_i915_private * dev_priv,u32 hotplug_status)1825 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1826 u32 hotplug_status)
1827 {
1828 u32 pin_mask = 0, long_mask = 0;
1829
1830 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
1831 IS_CHERRYVIEW(dev_priv)) {
1832 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1833
1834 if (hotplug_trigger) {
1835 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1836 hotplug_trigger, hpd_status_g4x,
1837 i9xx_port_hotplug_long_detect);
1838
1839 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1840 }
1841
1842 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1843 dp_aux_irq_handler(dev_priv);
1844 } else {
1845 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1846
1847 if (hotplug_trigger) {
1848 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1849 hotplug_trigger, hpd_status_i915,
1850 i9xx_port_hotplug_long_detect);
1851 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1852 }
1853 }
1854 }
1855
valleyview_irq_handler(int irq,void * arg)1856 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1857 {
1858 struct drm_device *dev = arg;
1859 struct drm_i915_private *dev_priv = to_i915(dev);
1860 irqreturn_t ret = IRQ_NONE;
1861
1862 if (!intel_irqs_enabled(dev_priv))
1863 return IRQ_NONE;
1864
1865 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1866 disable_rpm_wakeref_asserts(dev_priv);
1867
1868 do {
1869 u32 iir, gt_iir, pm_iir;
1870 u32 pipe_stats[I915_MAX_PIPES] = {};
1871 u32 hotplug_status = 0;
1872 u32 ier = 0;
1873
1874 gt_iir = I915_READ(GTIIR);
1875 pm_iir = I915_READ(GEN6_PMIIR);
1876 iir = I915_READ(VLV_IIR);
1877
1878 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1879 break;
1880
1881 ret = IRQ_HANDLED;
1882
1883 /*
1884 * Theory on interrupt generation, based on empirical evidence:
1885 *
1886 * x = ((VLV_IIR & VLV_IER) ||
1887 * (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1888 * (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1889 *
1890 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1891 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1892 * guarantee the CPU interrupt will be raised again even if we
1893 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1894 * bits this time around.
1895 */
1896 I915_WRITE(VLV_MASTER_IER, 0);
1897 ier = I915_READ(VLV_IER);
1898 I915_WRITE(VLV_IER, 0);
1899
1900 if (gt_iir)
1901 I915_WRITE(GTIIR, gt_iir);
1902 if (pm_iir)
1903 I915_WRITE(GEN6_PMIIR, pm_iir);
1904
1905 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1906 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1907
1908 /* Call regardless, as some status bits might not be
1909 * signalled in iir */
1910 valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1911
1912 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1913 I915_LPE_PIPE_B_INTERRUPT))
1914 intel_lpe_audio_irq_handler(dev_priv);
1915
1916 /*
1917 * VLV_IIR is single buffered, and reflects the level
1918 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1919 */
1920 if (iir)
1921 I915_WRITE(VLV_IIR, iir);
1922
1923 I915_WRITE(VLV_IER, ier);
1924 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1925 POSTING_READ(VLV_MASTER_IER);
1926
1927 if (gt_iir)
1928 snb_gt_irq_handler(dev_priv, gt_iir);
1929 if (pm_iir)
1930 gen6_rps_irq_handler(dev_priv, pm_iir);
1931
1932 if (hotplug_status)
1933 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1934
1935 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1936 } while (0);
1937
1938 enable_rpm_wakeref_asserts(dev_priv);
1939
1940 return ret;
1941 }
1942
cherryview_irq_handler(int irq,void * arg)1943 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1944 {
1945 struct drm_device *dev = arg;
1946 struct drm_i915_private *dev_priv = to_i915(dev);
1947 irqreturn_t ret = IRQ_NONE;
1948
1949 if (!intel_irqs_enabled(dev_priv))
1950 return IRQ_NONE;
1951
1952 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1953 disable_rpm_wakeref_asserts(dev_priv);
1954
1955 do {
1956 u32 master_ctl, iir;
1957 u32 gt_iir[4] = {};
1958 u32 pipe_stats[I915_MAX_PIPES] = {};
1959 u32 hotplug_status = 0;
1960 u32 ier = 0;
1961
1962 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1963 iir = I915_READ(VLV_IIR);
1964
1965 if (master_ctl == 0 && iir == 0)
1966 break;
1967
1968 ret = IRQ_HANDLED;
1969
1970 /*
1971 * Theory on interrupt generation, based on empirical evidence:
1972 *
1973 * x = ((VLV_IIR & VLV_IER) ||
1974 * ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
1975 * (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
1976 *
1977 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1978 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
1979 * guarantee the CPU interrupt will be raised again even if we
1980 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
1981 * bits this time around.
1982 */
1983 I915_WRITE(GEN8_MASTER_IRQ, 0);
1984 ier = I915_READ(VLV_IER);
1985 I915_WRITE(VLV_IER, 0);
1986
1987 gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
1988
1989 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1990 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1991
1992 /* Call regardless, as some status bits might not be
1993 * signalled in iir */
1994 valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1995
1996 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1997 I915_LPE_PIPE_B_INTERRUPT |
1998 I915_LPE_PIPE_C_INTERRUPT))
1999 intel_lpe_audio_irq_handler(dev_priv);
2000
2001 /*
2002 * VLV_IIR is single buffered, and reflects the level
2003 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2004 */
2005 if (iir)
2006 I915_WRITE(VLV_IIR, iir);
2007
2008 I915_WRITE(VLV_IER, ier);
2009 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2010 POSTING_READ(GEN8_MASTER_IRQ);
2011
2012 gen8_gt_irq_handler(dev_priv, gt_iir);
2013
2014 if (hotplug_status)
2015 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2016
2017 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2018 } while (0);
2019
2020 enable_rpm_wakeref_asserts(dev_priv);
2021
2022 return ret;
2023 }
2024
ibx_hpd_irq_handler(struct drm_i915_private * dev_priv,u32 hotplug_trigger,const u32 hpd[HPD_NUM_PINS])2025 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2026 u32 hotplug_trigger,
2027 const u32 hpd[HPD_NUM_PINS])
2028 {
2029 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2030
2031 /*
2032 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
2033 * unless we touch the hotplug register, even if hotplug_trigger is
2034 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
2035 * errors.
2036 */
2037 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2038 if (!hotplug_trigger) {
2039 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
2040 PORTD_HOTPLUG_STATUS_MASK |
2041 PORTC_HOTPLUG_STATUS_MASK |
2042 PORTB_HOTPLUG_STATUS_MASK;
2043 dig_hotplug_reg &= ~mask;
2044 }
2045
2046 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2047 if (!hotplug_trigger)
2048 return;
2049
2050 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2051 dig_hotplug_reg, hpd,
2052 pch_port_hotplug_long_detect);
2053
2054 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2055 }
2056
ibx_irq_handler(struct drm_i915_private * dev_priv,u32 pch_iir)2057 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2058 {
2059 int pipe;
2060 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2061
2062 ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
2063
2064 if (pch_iir & SDE_AUDIO_POWER_MASK) {
2065 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2066 SDE_AUDIO_POWER_SHIFT);
2067 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2068 port_name(port));
2069 }
2070
2071 if (pch_iir & SDE_AUX_MASK)
2072 dp_aux_irq_handler(dev_priv);
2073
2074 if (pch_iir & SDE_GMBUS)
2075 gmbus_irq_handler(dev_priv);
2076
2077 if (pch_iir & SDE_AUDIO_HDCP_MASK)
2078 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2079
2080 if (pch_iir & SDE_AUDIO_TRANS_MASK)
2081 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2082
2083 if (pch_iir & SDE_POISON)
2084 DRM_ERROR("PCH poison interrupt\n");
2085
2086 if (pch_iir & SDE_FDI_MASK)
2087 for_each_pipe(dev_priv, pipe)
2088 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2089 pipe_name(pipe),
2090 I915_READ(FDI_RX_IIR(pipe)));
2091
2092 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2093 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2094
2095 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2096 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2097
2098 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2099 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
2100
2101 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2102 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
2103 }
2104
ivb_err_int_handler(struct drm_i915_private * dev_priv)2105 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
2106 {
2107 u32 err_int = I915_READ(GEN7_ERR_INT);
2108 enum pipe pipe;
2109
2110 if (err_int & ERR_INT_POISON)
2111 DRM_ERROR("Poison interrupt\n");
2112
2113 for_each_pipe(dev_priv, pipe) {
2114 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2115 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2116
2117 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2118 if (IS_IVYBRIDGE(dev_priv))
2119 ivb_pipe_crc_irq_handler(dev_priv, pipe);
2120 else
2121 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2122 }
2123 }
2124
2125 I915_WRITE(GEN7_ERR_INT, err_int);
2126 }
2127
cpt_serr_int_handler(struct drm_i915_private * dev_priv)2128 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2129 {
2130 u32 serr_int = I915_READ(SERR_INT);
2131
2132 if (serr_int & SERR_INT_POISON)
2133 DRM_ERROR("PCH poison interrupt\n");
2134
2135 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2136 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
2137
2138 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2139 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
2140
2141 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2142 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_C);
2143
2144 I915_WRITE(SERR_INT, serr_int);
2145 }
2146
cpt_irq_handler(struct drm_i915_private * dev_priv,u32 pch_iir)2147 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2148 {
2149 int pipe;
2150 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2151
2152 ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2153
2154 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2155 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2156 SDE_AUDIO_POWER_SHIFT_CPT);
2157 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2158 port_name(port));
2159 }
2160
2161 if (pch_iir & SDE_AUX_MASK_CPT)
2162 dp_aux_irq_handler(dev_priv);
2163
2164 if (pch_iir & SDE_GMBUS_CPT)
2165 gmbus_irq_handler(dev_priv);
2166
2167 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2168 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2169
2170 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2171 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2172
2173 if (pch_iir & SDE_FDI_MASK_CPT)
2174 for_each_pipe(dev_priv, pipe)
2175 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2176 pipe_name(pipe),
2177 I915_READ(FDI_RX_IIR(pipe)));
2178
2179 if (pch_iir & SDE_ERROR_CPT)
2180 cpt_serr_int_handler(dev_priv);
2181 }
2182
spt_irq_handler(struct drm_i915_private * dev_priv,u32 pch_iir)2183 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2184 {
2185 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2186 ~SDE_PORTE_HOTPLUG_SPT;
2187 u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2188 u32 pin_mask = 0, long_mask = 0;
2189
2190 if (hotplug_trigger) {
2191 u32 dig_hotplug_reg;
2192
2193 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2194 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2195
2196 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2197 dig_hotplug_reg, hpd_spt,
2198 spt_port_hotplug_long_detect);
2199 }
2200
2201 if (hotplug2_trigger) {
2202 u32 dig_hotplug_reg;
2203
2204 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2205 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2206
2207 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2208 dig_hotplug_reg, hpd_spt,
2209 spt_port_hotplug2_long_detect);
2210 }
2211
2212 if (pin_mask)
2213 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2214
2215 if (pch_iir & SDE_GMBUS_CPT)
2216 gmbus_irq_handler(dev_priv);
2217 }
2218
ilk_hpd_irq_handler(struct drm_i915_private * dev_priv,u32 hotplug_trigger,const u32 hpd[HPD_NUM_PINS])2219 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2220 u32 hotplug_trigger,
2221 const u32 hpd[HPD_NUM_PINS])
2222 {
2223 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2224
2225 dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2226 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2227
2228 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2229 dig_hotplug_reg, hpd,
2230 ilk_port_hotplug_long_detect);
2231
2232 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2233 }
2234
ilk_display_irq_handler(struct drm_i915_private * dev_priv,u32 de_iir)2235 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2236 u32 de_iir)
2237 {
2238 enum pipe pipe;
2239 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2240
2241 if (hotplug_trigger)
2242 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2243
2244 if (de_iir & DE_AUX_CHANNEL_A)
2245 dp_aux_irq_handler(dev_priv);
2246
2247 if (de_iir & DE_GSE)
2248 intel_opregion_asle_intr(dev_priv);
2249
2250 if (de_iir & DE_POISON)
2251 DRM_ERROR("Poison interrupt\n");
2252
2253 for_each_pipe(dev_priv, pipe) {
2254 if (de_iir & DE_PIPE_VBLANK(pipe))
2255 drm_handle_vblank(&dev_priv->drm, pipe);
2256
2257 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2258 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2259
2260 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2261 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2262 }
2263
2264 /* check event from PCH */
2265 if (de_iir & DE_PCH_EVENT) {
2266 u32 pch_iir = I915_READ(SDEIIR);
2267
2268 if (HAS_PCH_CPT(dev_priv))
2269 cpt_irq_handler(dev_priv, pch_iir);
2270 else
2271 ibx_irq_handler(dev_priv, pch_iir);
2272
2273 /* should clear PCH hotplug event before clear CPU irq */
2274 I915_WRITE(SDEIIR, pch_iir);
2275 }
2276
2277 if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
2278 ironlake_rps_change_irq_handler(dev_priv);
2279 }
2280
ivb_display_irq_handler(struct drm_i915_private * dev_priv,u32 de_iir)2281 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2282 u32 de_iir)
2283 {
2284 enum pipe pipe;
2285 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2286
2287 if (hotplug_trigger)
2288 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2289
2290 if (de_iir & DE_ERR_INT_IVB)
2291 ivb_err_int_handler(dev_priv);
2292
2293 if (de_iir & DE_AUX_CHANNEL_A_IVB)
2294 dp_aux_irq_handler(dev_priv);
2295
2296 if (de_iir & DE_GSE_IVB)
2297 intel_opregion_asle_intr(dev_priv);
2298
2299 for_each_pipe(dev_priv, pipe) {
2300 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2301 drm_handle_vblank(&dev_priv->drm, pipe);
2302 }
2303
2304 /* check event from PCH */
2305 if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2306 u32 pch_iir = I915_READ(SDEIIR);
2307
2308 cpt_irq_handler(dev_priv, pch_iir);
2309
2310 /* clear PCH hotplug event before clear CPU irq */
2311 I915_WRITE(SDEIIR, pch_iir);
2312 }
2313 }
2314
2315 /*
2316 * To handle irqs with the minimum potential races with fresh interrupts, we:
2317 * 1 - Disable Master Interrupt Control.
2318 * 2 - Find the source(s) of the interrupt.
2319 * 3 - Clear the Interrupt Identity bits (IIR).
2320 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2321 * 5 - Re-enable Master Interrupt Control.
2322 */
ironlake_irq_handler(int irq,void * arg)2323 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2324 {
2325 struct drm_device *dev = arg;
2326 struct drm_i915_private *dev_priv = to_i915(dev);
2327 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2328 irqreturn_t ret = IRQ_NONE;
2329
2330 if (!intel_irqs_enabled(dev_priv))
2331 return IRQ_NONE;
2332
2333 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2334 disable_rpm_wakeref_asserts(dev_priv);
2335
2336 /* disable master interrupt before clearing iir */
2337 de_ier = I915_READ(DEIER);
2338 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2339 POSTING_READ(DEIER);
2340
2341 /* Disable south interrupts. We'll only write to SDEIIR once, so further
2342 * interrupts will will be stored on its back queue, and then we'll be
2343 * able to process them after we restore SDEIER (as soon as we restore
2344 * it, we'll get an interrupt if SDEIIR still has something to process
2345 * due to its back queue). */
2346 if (!HAS_PCH_NOP(dev_priv)) {
2347 sde_ier = I915_READ(SDEIER);
2348 I915_WRITE(SDEIER, 0);
2349 POSTING_READ(SDEIER);
2350 }
2351
2352 /* Find, clear, then process each source of interrupt */
2353
2354 gt_iir = I915_READ(GTIIR);
2355 if (gt_iir) {
2356 I915_WRITE(GTIIR, gt_iir);
2357 ret = IRQ_HANDLED;
2358 if (INTEL_GEN(dev_priv) >= 6)
2359 snb_gt_irq_handler(dev_priv, gt_iir);
2360 else
2361 ilk_gt_irq_handler(dev_priv, gt_iir);
2362 }
2363
2364 de_iir = I915_READ(DEIIR);
2365 if (de_iir) {
2366 I915_WRITE(DEIIR, de_iir);
2367 ret = IRQ_HANDLED;
2368 if (INTEL_GEN(dev_priv) >= 7)
2369 ivb_display_irq_handler(dev_priv, de_iir);
2370 else
2371 ilk_display_irq_handler(dev_priv, de_iir);
2372 }
2373
2374 if (INTEL_GEN(dev_priv) >= 6) {
2375 u32 pm_iir = I915_READ(GEN6_PMIIR);
2376 if (pm_iir) {
2377 I915_WRITE(GEN6_PMIIR, pm_iir);
2378 ret = IRQ_HANDLED;
2379 gen6_rps_irq_handler(dev_priv, pm_iir);
2380 }
2381 }
2382
2383 I915_WRITE(DEIER, de_ier);
2384 POSTING_READ(DEIER);
2385 if (!HAS_PCH_NOP(dev_priv)) {
2386 I915_WRITE(SDEIER, sde_ier);
2387 POSTING_READ(SDEIER);
2388 }
2389
2390 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2391 enable_rpm_wakeref_asserts(dev_priv);
2392
2393 return ret;
2394 }
2395
bxt_hpd_irq_handler(struct drm_i915_private * dev_priv,u32 hotplug_trigger,const u32 hpd[HPD_NUM_PINS])2396 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2397 u32 hotplug_trigger,
2398 const u32 hpd[HPD_NUM_PINS])
2399 {
2400 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2401
2402 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2403 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2404
2405 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2406 dig_hotplug_reg, hpd,
2407 bxt_port_hotplug_long_detect);
2408
2409 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2410 }
2411
2412 static irqreturn_t
gen8_de_irq_handler(struct drm_i915_private * dev_priv,u32 master_ctl)2413 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2414 {
2415 irqreturn_t ret = IRQ_NONE;
2416 u32 iir;
2417 enum pipe pipe;
2418
2419 if (master_ctl & GEN8_DE_MISC_IRQ) {
2420 iir = I915_READ(GEN8_DE_MISC_IIR);
2421 if (iir) {
2422 I915_WRITE(GEN8_DE_MISC_IIR, iir);
2423 ret = IRQ_HANDLED;
2424 if (iir & GEN8_DE_MISC_GSE)
2425 intel_opregion_asle_intr(dev_priv);
2426 else
2427 DRM_ERROR("Unexpected DE Misc interrupt\n");
2428 }
2429 else
2430 DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2431 }
2432
2433 if (master_ctl & GEN8_DE_PORT_IRQ) {
2434 iir = I915_READ(GEN8_DE_PORT_IIR);
2435 if (iir) {
2436 u32 tmp_mask;
2437 bool found = false;
2438
2439 I915_WRITE(GEN8_DE_PORT_IIR, iir);
2440 ret = IRQ_HANDLED;
2441
2442 tmp_mask = GEN8_AUX_CHANNEL_A;
2443 if (INTEL_GEN(dev_priv) >= 9)
2444 tmp_mask |= GEN9_AUX_CHANNEL_B |
2445 GEN9_AUX_CHANNEL_C |
2446 GEN9_AUX_CHANNEL_D;
2447
2448 if (iir & tmp_mask) {
2449 dp_aux_irq_handler(dev_priv);
2450 found = true;
2451 }
2452
2453 if (IS_GEN9_LP(dev_priv)) {
2454 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2455 if (tmp_mask) {
2456 bxt_hpd_irq_handler(dev_priv, tmp_mask,
2457 hpd_bxt);
2458 found = true;
2459 }
2460 } else if (IS_BROADWELL(dev_priv)) {
2461 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2462 if (tmp_mask) {
2463 ilk_hpd_irq_handler(dev_priv,
2464 tmp_mask, hpd_bdw);
2465 found = true;
2466 }
2467 }
2468
2469 if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2470 gmbus_irq_handler(dev_priv);
2471 found = true;
2472 }
2473
2474 if (!found)
2475 DRM_ERROR("Unexpected DE Port interrupt\n");
2476 }
2477 else
2478 DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2479 }
2480
2481 for_each_pipe(dev_priv, pipe) {
2482 u32 fault_errors;
2483
2484 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2485 continue;
2486
2487 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2488 if (!iir) {
2489 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2490 continue;
2491 }
2492
2493 ret = IRQ_HANDLED;
2494 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2495
2496 if (iir & GEN8_PIPE_VBLANK)
2497 drm_handle_vblank(&dev_priv->drm, pipe);
2498
2499 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2500 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2501
2502 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2503 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2504
2505 fault_errors = iir;
2506 if (INTEL_GEN(dev_priv) >= 9)
2507 fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2508 else
2509 fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2510
2511 if (fault_errors)
2512 DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
2513 pipe_name(pipe),
2514 fault_errors);
2515 }
2516
2517 if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2518 master_ctl & GEN8_DE_PCH_IRQ) {
2519 /*
2520 * FIXME(BDW): Assume for now that the new interrupt handling
2521 * scheme also closed the SDE interrupt handling race we've seen
2522 * on older pch-split platforms. But this needs testing.
2523 */
2524 iir = I915_READ(SDEIIR);
2525 if (iir) {
2526 I915_WRITE(SDEIIR, iir);
2527 ret = IRQ_HANDLED;
2528
2529 if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv) ||
2530 HAS_PCH_CNP(dev_priv))
2531 spt_irq_handler(dev_priv, iir);
2532 else
2533 cpt_irq_handler(dev_priv, iir);
2534 } else {
2535 /*
2536 * Like on previous PCH there seems to be something
2537 * fishy going on with forwarding PCH interrupts.
2538 */
2539 DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2540 }
2541 }
2542
2543 return ret;
2544 }
2545
gen8_irq_handler(int irq,void * arg)2546 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2547 {
2548 struct drm_device *dev = arg;
2549 struct drm_i915_private *dev_priv = to_i915(dev);
2550 u32 master_ctl;
2551 u32 gt_iir[4] = {};
2552 irqreturn_t ret;
2553
2554 if (!intel_irqs_enabled(dev_priv))
2555 return IRQ_NONE;
2556
2557 master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2558 master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2559 if (!master_ctl)
2560 return IRQ_NONE;
2561
2562 I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2563
2564 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2565 disable_rpm_wakeref_asserts(dev_priv);
2566
2567 /* Find, clear, then process each source of interrupt */
2568 ret = gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2569 gen8_gt_irq_handler(dev_priv, gt_iir);
2570 ret |= gen8_de_irq_handler(dev_priv, master_ctl);
2571
2572 I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2573 POSTING_READ_FW(GEN8_MASTER_IRQ);
2574
2575 enable_rpm_wakeref_asserts(dev_priv);
2576
2577 return ret;
2578 }
2579
2580 struct wedge_me {
2581 struct delayed_work work;
2582 struct drm_i915_private *i915;
2583 const char *name;
2584 };
2585
wedge_me(struct work_struct * work)2586 static void wedge_me(struct work_struct *work)
2587 {
2588 struct wedge_me *w = container_of(work, typeof(*w), work.work);
2589
2590 dev_err(w->i915->drm.dev,
2591 "%s timed out, cancelling all in-flight rendering.\n",
2592 w->name);
2593 i915_gem_set_wedged(w->i915);
2594 }
2595
__init_wedge(struct wedge_me * w,struct drm_i915_private * i915,long timeout,const char * name)2596 static void __init_wedge(struct wedge_me *w,
2597 struct drm_i915_private *i915,
2598 long timeout,
2599 const char *name)
2600 {
2601 w->i915 = i915;
2602 w->name = name;
2603
2604 INIT_DELAYED_WORK_ONSTACK(&w->work, wedge_me);
2605 schedule_delayed_work(&w->work, timeout);
2606 }
2607
__fini_wedge(struct wedge_me * w)2608 static void __fini_wedge(struct wedge_me *w)
2609 {
2610 cancel_delayed_work_sync(&w->work);
2611 destroy_delayed_work_on_stack(&w->work);
2612 w->i915 = NULL;
2613 }
2614
2615 #define i915_wedge_on_timeout(W, DEV, TIMEOUT) \
2616 for (__init_wedge((W), (DEV), (TIMEOUT), __func__); \
2617 (W)->i915; \
2618 __fini_wedge((W)))
2619
2620 /**
2621 * i915_reset_device - do process context error handling work
2622 * @dev_priv: i915 device private
2623 *
2624 * Fire an error uevent so userspace can see that a hang or error
2625 * was detected.
2626 */
i915_reset_device(struct drm_i915_private * dev_priv)2627 static void i915_reset_device(struct drm_i915_private *dev_priv)
2628 {
2629 struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj;
2630 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2631 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2632 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2633 struct wedge_me w;
2634
2635 kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
2636
2637 DRM_DEBUG_DRIVER("resetting chip\n");
2638 kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
2639
2640 /* Use a watchdog to ensure that our reset completes */
2641 i915_wedge_on_timeout(&w, dev_priv, 5*HZ) {
2642 intel_prepare_reset(dev_priv);
2643
2644 /* Signal that locked waiters should reset the GPU */
2645 set_bit(I915_RESET_HANDOFF, &dev_priv->gpu_error.flags);
2646 wake_up_all(&dev_priv->gpu_error.wait_queue);
2647
2648 /* Wait for anyone holding the lock to wakeup, without
2649 * blocking indefinitely on struct_mutex.
2650 */
2651 do {
2652 if (mutex_trylock(&dev_priv->drm.struct_mutex)) {
2653 i915_reset(dev_priv, 0);
2654 mutex_unlock(&dev_priv->drm.struct_mutex);
2655 }
2656 } while (wait_on_bit_timeout(&dev_priv->gpu_error.flags,
2657 I915_RESET_HANDOFF,
2658 TASK_UNINTERRUPTIBLE,
2659 1));
2660
2661 intel_finish_reset(dev_priv);
2662 }
2663
2664 if (!test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
2665 kobject_uevent_env(kobj,
2666 KOBJ_CHANGE, reset_done_event);
2667 }
2668
i915_clear_error_registers(struct drm_i915_private * dev_priv)2669 static void i915_clear_error_registers(struct drm_i915_private *dev_priv)
2670 {
2671 u32 eir;
2672
2673 if (!IS_GEN2(dev_priv))
2674 I915_WRITE(PGTBL_ER, I915_READ(PGTBL_ER));
2675
2676 if (INTEL_GEN(dev_priv) < 4)
2677 I915_WRITE(IPEIR, I915_READ(IPEIR));
2678 else
2679 I915_WRITE(IPEIR_I965, I915_READ(IPEIR_I965));
2680
2681 I915_WRITE(EIR, I915_READ(EIR));
2682 eir = I915_READ(EIR);
2683 if (eir) {
2684 /*
2685 * some errors might have become stuck,
2686 * mask them.
2687 */
2688 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
2689 I915_WRITE(EMR, I915_READ(EMR) | eir);
2690 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2691 }
2692 }
2693
2694 /**
2695 * i915_handle_error - handle a gpu error
2696 * @dev_priv: i915 device private
2697 * @engine_mask: mask representing engines that are hung
2698 * @fmt: Error message format string
2699 *
2700 * Do some basic checking of register state at error time and
2701 * dump it to the syslog. Also call i915_capture_error_state() to make
2702 * sure we get a record and make it available in debugfs. Fire a uevent
2703 * so userspace knows something bad happened (should trigger collection
2704 * of a ring dump etc.).
2705 */
i915_handle_error(struct drm_i915_private * dev_priv,u32 engine_mask,const char * fmt,...)2706 void i915_handle_error(struct drm_i915_private *dev_priv,
2707 u32 engine_mask,
2708 const char *fmt, ...)
2709 {
2710 struct intel_engine_cs *engine;
2711 unsigned int tmp;
2712 va_list args;
2713 char error_msg[80];
2714
2715 va_start(args, fmt);
2716 vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2717 va_end(args);
2718
2719 /*
2720 * In most cases it's guaranteed that we get here with an RPM
2721 * reference held, for example because there is a pending GPU
2722 * request that won't finish until the reset is done. This
2723 * isn't the case at least when we get here by doing a
2724 * simulated reset via debugfs, so get an RPM reference.
2725 */
2726 intel_runtime_pm_get(dev_priv);
2727
2728 i915_capture_error_state(dev_priv, engine_mask, error_msg);
2729 i915_clear_error_registers(dev_priv);
2730
2731 /*
2732 * Try engine reset when available. We fall back to full reset if
2733 * single reset fails.
2734 */
2735 if (intel_has_reset_engine(dev_priv)) {
2736 for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
2737 BUILD_BUG_ON(I915_RESET_MODESET >= I915_RESET_ENGINE);
2738 if (test_and_set_bit(I915_RESET_ENGINE + engine->id,
2739 &dev_priv->gpu_error.flags))
2740 continue;
2741
2742 if (i915_reset_engine(engine, 0) == 0)
2743 engine_mask &= ~intel_engine_flag(engine);
2744
2745 clear_bit(I915_RESET_ENGINE + engine->id,
2746 &dev_priv->gpu_error.flags);
2747 wake_up_bit(&dev_priv->gpu_error.flags,
2748 I915_RESET_ENGINE + engine->id);
2749 }
2750 }
2751
2752 if (!engine_mask)
2753 goto out;
2754
2755 /* Full reset needs the mutex, stop any other user trying to do so. */
2756 if (test_and_set_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags)) {
2757 wait_event(dev_priv->gpu_error.reset_queue,
2758 !test_bit(I915_RESET_BACKOFF,
2759 &dev_priv->gpu_error.flags));
2760 goto out;
2761 }
2762
2763 /* Prevent any other reset-engine attempt. */
2764 for_each_engine(engine, dev_priv, tmp) {
2765 while (test_and_set_bit(I915_RESET_ENGINE + engine->id,
2766 &dev_priv->gpu_error.flags))
2767 wait_on_bit(&dev_priv->gpu_error.flags,
2768 I915_RESET_ENGINE + engine->id,
2769 TASK_UNINTERRUPTIBLE);
2770 }
2771
2772 i915_reset_device(dev_priv);
2773
2774 for_each_engine(engine, dev_priv, tmp) {
2775 clear_bit(I915_RESET_ENGINE + engine->id,
2776 &dev_priv->gpu_error.flags);
2777 }
2778
2779 clear_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags);
2780 wake_up_all(&dev_priv->gpu_error.reset_queue);
2781
2782 out:
2783 intel_runtime_pm_put(dev_priv);
2784 }
2785
2786 /* Called from drm generic code, passed 'crtc' which
2787 * we use as a pipe index
2788 */
i8xx_enable_vblank(struct drm_device * dev,unsigned int pipe)2789 static int i8xx_enable_vblank(struct drm_device *dev, unsigned int pipe)
2790 {
2791 struct drm_i915_private *dev_priv = to_i915(dev);
2792 unsigned long irqflags;
2793
2794 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2795 i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2796 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2797
2798 return 0;
2799 }
2800
i965_enable_vblank(struct drm_device * dev,unsigned int pipe)2801 static int i965_enable_vblank(struct drm_device *dev, unsigned int pipe)
2802 {
2803 struct drm_i915_private *dev_priv = to_i915(dev);
2804 unsigned long irqflags;
2805
2806 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2807 i915_enable_pipestat(dev_priv, pipe,
2808 PIPE_START_VBLANK_INTERRUPT_STATUS);
2809 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2810
2811 return 0;
2812 }
2813
ironlake_enable_vblank(struct drm_device * dev,unsigned int pipe)2814 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2815 {
2816 struct drm_i915_private *dev_priv = to_i915(dev);
2817 unsigned long irqflags;
2818 uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
2819 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2820
2821 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2822 ilk_enable_display_irq(dev_priv, bit);
2823 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2824
2825 return 0;
2826 }
2827
gen8_enable_vblank(struct drm_device * dev,unsigned int pipe)2828 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2829 {
2830 struct drm_i915_private *dev_priv = to_i915(dev);
2831 unsigned long irqflags;
2832
2833 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2834 bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2835 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2836
2837 return 0;
2838 }
2839
2840 /* Called from drm generic code, passed 'crtc' which
2841 * we use as a pipe index
2842 */
i8xx_disable_vblank(struct drm_device * dev,unsigned int pipe)2843 static void i8xx_disable_vblank(struct drm_device *dev, unsigned int pipe)
2844 {
2845 struct drm_i915_private *dev_priv = to_i915(dev);
2846 unsigned long irqflags;
2847
2848 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2849 i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2850 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2851 }
2852
i965_disable_vblank(struct drm_device * dev,unsigned int pipe)2853 static void i965_disable_vblank(struct drm_device *dev, unsigned int pipe)
2854 {
2855 struct drm_i915_private *dev_priv = to_i915(dev);
2856 unsigned long irqflags;
2857
2858 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2859 i915_disable_pipestat(dev_priv, pipe,
2860 PIPE_START_VBLANK_INTERRUPT_STATUS);
2861 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2862 }
2863
ironlake_disable_vblank(struct drm_device * dev,unsigned int pipe)2864 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2865 {
2866 struct drm_i915_private *dev_priv = to_i915(dev);
2867 unsigned long irqflags;
2868 uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
2869 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2870
2871 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2872 ilk_disable_display_irq(dev_priv, bit);
2873 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2874 }
2875
gen8_disable_vblank(struct drm_device * dev,unsigned int pipe)2876 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
2877 {
2878 struct drm_i915_private *dev_priv = to_i915(dev);
2879 unsigned long irqflags;
2880
2881 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2882 bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2883 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2884 }
2885
ibx_irq_reset(struct drm_i915_private * dev_priv)2886 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
2887 {
2888 if (HAS_PCH_NOP(dev_priv))
2889 return;
2890
2891 GEN5_IRQ_RESET(SDE);
2892
2893 if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
2894 I915_WRITE(SERR_INT, 0xffffffff);
2895 }
2896
2897 /*
2898 * SDEIER is also touched by the interrupt handler to work around missed PCH
2899 * interrupts. Hence we can't update it after the interrupt handler is enabled -
2900 * instead we unconditionally enable all PCH interrupt sources here, but then
2901 * only unmask them as needed with SDEIMR.
2902 *
2903 * This function needs to be called before interrupts are enabled.
2904 */
ibx_irq_pre_postinstall(struct drm_device * dev)2905 static void ibx_irq_pre_postinstall(struct drm_device *dev)
2906 {
2907 struct drm_i915_private *dev_priv = to_i915(dev);
2908
2909 if (HAS_PCH_NOP(dev_priv))
2910 return;
2911
2912 WARN_ON(I915_READ(SDEIER) != 0);
2913 I915_WRITE(SDEIER, 0xffffffff);
2914 POSTING_READ(SDEIER);
2915 }
2916
gen5_gt_irq_reset(struct drm_i915_private * dev_priv)2917 static void gen5_gt_irq_reset(struct drm_i915_private *dev_priv)
2918 {
2919 GEN5_IRQ_RESET(GT);
2920 if (INTEL_GEN(dev_priv) >= 6)
2921 GEN5_IRQ_RESET(GEN6_PM);
2922 }
2923
vlv_display_irq_reset(struct drm_i915_private * dev_priv)2924 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
2925 {
2926 enum pipe pipe;
2927
2928 if (IS_CHERRYVIEW(dev_priv))
2929 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
2930 else
2931 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
2932
2933 i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
2934 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2935
2936 for_each_pipe(dev_priv, pipe) {
2937 I915_WRITE(PIPESTAT(pipe),
2938 PIPE_FIFO_UNDERRUN_STATUS |
2939 PIPESTAT_INT_STATUS_MASK);
2940 dev_priv->pipestat_irq_mask[pipe] = 0;
2941 }
2942
2943 GEN5_IRQ_RESET(VLV_);
2944 dev_priv->irq_mask = ~0;
2945 }
2946
vlv_display_irq_postinstall(struct drm_i915_private * dev_priv)2947 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
2948 {
2949 u32 pipestat_mask;
2950 u32 enable_mask;
2951 enum pipe pipe;
2952
2953 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
2954 PIPE_CRC_DONE_INTERRUPT_STATUS;
2955
2956 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
2957 for_each_pipe(dev_priv, pipe)
2958 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
2959
2960 enable_mask = I915_DISPLAY_PORT_INTERRUPT |
2961 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2962 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2963 I915_LPE_PIPE_A_INTERRUPT |
2964 I915_LPE_PIPE_B_INTERRUPT;
2965
2966 if (IS_CHERRYVIEW(dev_priv))
2967 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
2968 I915_LPE_PIPE_C_INTERRUPT;
2969
2970 WARN_ON(dev_priv->irq_mask != ~0);
2971
2972 dev_priv->irq_mask = ~enable_mask;
2973
2974 GEN5_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
2975 }
2976
2977 /* drm_dma.h hooks
2978 */
ironlake_irq_reset(struct drm_device * dev)2979 static void ironlake_irq_reset(struct drm_device *dev)
2980 {
2981 struct drm_i915_private *dev_priv = to_i915(dev);
2982
2983 I915_WRITE(HWSTAM, 0xffffffff);
2984
2985 GEN5_IRQ_RESET(DE);
2986 if (IS_GEN7(dev_priv))
2987 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
2988
2989 gen5_gt_irq_reset(dev_priv);
2990
2991 ibx_irq_reset(dev_priv);
2992 }
2993
valleyview_irq_preinstall(struct drm_device * dev)2994 static void valleyview_irq_preinstall(struct drm_device *dev)
2995 {
2996 struct drm_i915_private *dev_priv = to_i915(dev);
2997
2998 I915_WRITE(VLV_MASTER_IER, 0);
2999 POSTING_READ(VLV_MASTER_IER);
3000
3001 gen5_gt_irq_reset(dev_priv);
3002
3003 spin_lock_irq(&dev_priv->irq_lock);
3004 if (dev_priv->display_irqs_enabled)
3005 vlv_display_irq_reset(dev_priv);
3006 spin_unlock_irq(&dev_priv->irq_lock);
3007 }
3008
gen8_gt_irq_reset(struct drm_i915_private * dev_priv)3009 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3010 {
3011 GEN8_IRQ_RESET_NDX(GT, 0);
3012 GEN8_IRQ_RESET_NDX(GT, 1);
3013 GEN8_IRQ_RESET_NDX(GT, 2);
3014 GEN8_IRQ_RESET_NDX(GT, 3);
3015 }
3016
gen8_irq_reset(struct drm_device * dev)3017 static void gen8_irq_reset(struct drm_device *dev)
3018 {
3019 struct drm_i915_private *dev_priv = to_i915(dev);
3020 int pipe;
3021
3022 I915_WRITE(GEN8_MASTER_IRQ, 0);
3023 POSTING_READ(GEN8_MASTER_IRQ);
3024
3025 gen8_gt_irq_reset(dev_priv);
3026
3027 for_each_pipe(dev_priv, pipe)
3028 if (intel_display_power_is_enabled(dev_priv,
3029 POWER_DOMAIN_PIPE(pipe)))
3030 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3031
3032 GEN5_IRQ_RESET(GEN8_DE_PORT_);
3033 GEN5_IRQ_RESET(GEN8_DE_MISC_);
3034 GEN5_IRQ_RESET(GEN8_PCU_);
3035
3036 if (HAS_PCH_SPLIT(dev_priv))
3037 ibx_irq_reset(dev_priv);
3038 }
3039
gen8_irq_power_well_post_enable(struct drm_i915_private * dev_priv,u8 pipe_mask)3040 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3041 u8 pipe_mask)
3042 {
3043 uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3044 enum pipe pipe;
3045
3046 spin_lock_irq(&dev_priv->irq_lock);
3047 for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3048 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3049 dev_priv->de_irq_mask[pipe],
3050 ~dev_priv->de_irq_mask[pipe] | extra_ier);
3051 spin_unlock_irq(&dev_priv->irq_lock);
3052 }
3053
gen8_irq_power_well_pre_disable(struct drm_i915_private * dev_priv,u8 pipe_mask)3054 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3055 u8 pipe_mask)
3056 {
3057 enum pipe pipe;
3058
3059 spin_lock_irq(&dev_priv->irq_lock);
3060 for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3061 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3062 spin_unlock_irq(&dev_priv->irq_lock);
3063
3064 /* make sure we're done processing display irqs */
3065 synchronize_irq(dev_priv->drm.irq);
3066 }
3067
cherryview_irq_preinstall(struct drm_device * dev)3068 static void cherryview_irq_preinstall(struct drm_device *dev)
3069 {
3070 struct drm_i915_private *dev_priv = to_i915(dev);
3071
3072 I915_WRITE(GEN8_MASTER_IRQ, 0);
3073 POSTING_READ(GEN8_MASTER_IRQ);
3074
3075 gen8_gt_irq_reset(dev_priv);
3076
3077 GEN5_IRQ_RESET(GEN8_PCU_);
3078
3079 spin_lock_irq(&dev_priv->irq_lock);
3080 if (dev_priv->display_irqs_enabled)
3081 vlv_display_irq_reset(dev_priv);
3082 spin_unlock_irq(&dev_priv->irq_lock);
3083 }
3084
intel_hpd_enabled_irqs(struct drm_i915_private * dev_priv,const u32 hpd[HPD_NUM_PINS])3085 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3086 const u32 hpd[HPD_NUM_PINS])
3087 {
3088 struct intel_encoder *encoder;
3089 u32 enabled_irqs = 0;
3090
3091 for_each_intel_encoder(&dev_priv->drm, encoder)
3092 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3093 enabled_irqs |= hpd[encoder->hpd_pin];
3094
3095 return enabled_irqs;
3096 }
3097
ibx_hpd_detection_setup(struct drm_i915_private * dev_priv)3098 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3099 {
3100 u32 hotplug;
3101
3102 /*
3103 * Enable digital hotplug on the PCH, and configure the DP short pulse
3104 * duration to 2ms (which is the minimum in the Display Port spec).
3105 * The pulse duration bits are reserved on LPT+.
3106 */
3107 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3108 hotplug &= ~(PORTB_PULSE_DURATION_MASK |
3109 PORTC_PULSE_DURATION_MASK |
3110 PORTD_PULSE_DURATION_MASK);
3111 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3112 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3113 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3114 /*
3115 * When CPU and PCH are on the same package, port A
3116 * HPD must be enabled in both north and south.
3117 */
3118 if (HAS_PCH_LPT_LP(dev_priv))
3119 hotplug |= PORTA_HOTPLUG_ENABLE;
3120 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3121 }
3122
ibx_hpd_irq_setup(struct drm_i915_private * dev_priv)3123 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3124 {
3125 u32 hotplug_irqs, enabled_irqs;
3126
3127 if (HAS_PCH_IBX(dev_priv)) {
3128 hotplug_irqs = SDE_HOTPLUG_MASK;
3129 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3130 } else {
3131 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3132 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3133 }
3134
3135 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3136
3137 ibx_hpd_detection_setup(dev_priv);
3138 }
3139
spt_hpd_detection_setup(struct drm_i915_private * dev_priv)3140 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3141 {
3142 u32 hotplug;
3143
3144 /* Enable digital hotplug on the PCH */
3145 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3146 hotplug |= PORTA_HOTPLUG_ENABLE |
3147 PORTB_HOTPLUG_ENABLE |
3148 PORTC_HOTPLUG_ENABLE |
3149 PORTD_HOTPLUG_ENABLE;
3150 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3151
3152 hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3153 hotplug |= PORTE_HOTPLUG_ENABLE;
3154 I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3155 }
3156
spt_hpd_irq_setup(struct drm_i915_private * dev_priv)3157 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3158 {
3159 u32 hotplug_irqs, enabled_irqs;
3160
3161 hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3162 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3163
3164 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3165
3166 spt_hpd_detection_setup(dev_priv);
3167 }
3168
ilk_hpd_detection_setup(struct drm_i915_private * dev_priv)3169 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3170 {
3171 u32 hotplug;
3172
3173 /*
3174 * Enable digital hotplug on the CPU, and configure the DP short pulse
3175 * duration to 2ms (which is the minimum in the Display Port spec)
3176 * The pulse duration bits are reserved on HSW+.
3177 */
3178 hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3179 hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3180 hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
3181 DIGITAL_PORTA_PULSE_DURATION_2ms;
3182 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3183 }
3184
ilk_hpd_irq_setup(struct drm_i915_private * dev_priv)3185 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3186 {
3187 u32 hotplug_irqs, enabled_irqs;
3188
3189 if (INTEL_GEN(dev_priv) >= 8) {
3190 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3191 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3192
3193 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3194 } else if (INTEL_GEN(dev_priv) >= 7) {
3195 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3196 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3197
3198 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3199 } else {
3200 hotplug_irqs = DE_DP_A_HOTPLUG;
3201 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3202
3203 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3204 }
3205
3206 ilk_hpd_detection_setup(dev_priv);
3207
3208 ibx_hpd_irq_setup(dev_priv);
3209 }
3210
__bxt_hpd_detection_setup(struct drm_i915_private * dev_priv,u32 enabled_irqs)3211 static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3212 u32 enabled_irqs)
3213 {
3214 u32 hotplug;
3215
3216 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3217 hotplug |= PORTA_HOTPLUG_ENABLE |
3218 PORTB_HOTPLUG_ENABLE |
3219 PORTC_HOTPLUG_ENABLE;
3220
3221 DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3222 hotplug, enabled_irqs);
3223 hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3224
3225 /*
3226 * For BXT invert bit has to be set based on AOB design
3227 * for HPD detection logic, update it based on VBT fields.
3228 */
3229 if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3230 intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3231 hotplug |= BXT_DDIA_HPD_INVERT;
3232 if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3233 intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3234 hotplug |= BXT_DDIB_HPD_INVERT;
3235 if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3236 intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3237 hotplug |= BXT_DDIC_HPD_INVERT;
3238
3239 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3240 }
3241
bxt_hpd_detection_setup(struct drm_i915_private * dev_priv)3242 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3243 {
3244 __bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3245 }
3246
bxt_hpd_irq_setup(struct drm_i915_private * dev_priv)3247 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3248 {
3249 u32 hotplug_irqs, enabled_irqs;
3250
3251 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3252 hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3253
3254 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3255
3256 __bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3257 }
3258
ibx_irq_postinstall(struct drm_device * dev)3259 static void ibx_irq_postinstall(struct drm_device *dev)
3260 {
3261 struct drm_i915_private *dev_priv = to_i915(dev);
3262 u32 mask;
3263
3264 if (HAS_PCH_NOP(dev_priv))
3265 return;
3266
3267 if (HAS_PCH_IBX(dev_priv))
3268 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3269 else
3270 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3271
3272 gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3273 I915_WRITE(SDEIMR, ~mask);
3274
3275 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3276 HAS_PCH_LPT(dev_priv))
3277 ibx_hpd_detection_setup(dev_priv);
3278 else
3279 spt_hpd_detection_setup(dev_priv);
3280 }
3281
gen5_gt_irq_postinstall(struct drm_device * dev)3282 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3283 {
3284 struct drm_i915_private *dev_priv = to_i915(dev);
3285 u32 pm_irqs, gt_irqs;
3286
3287 pm_irqs = gt_irqs = 0;
3288
3289 dev_priv->gt_irq_mask = ~0;
3290 if (HAS_L3_DPF(dev_priv)) {
3291 /* L3 parity interrupt is always unmasked. */
3292 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv);
3293 gt_irqs |= GT_PARITY_ERROR(dev_priv);
3294 }
3295
3296 gt_irqs |= GT_RENDER_USER_INTERRUPT;
3297 if (IS_GEN5(dev_priv)) {
3298 gt_irqs |= ILK_BSD_USER_INTERRUPT;
3299 } else {
3300 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3301 }
3302
3303 GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3304
3305 if (INTEL_GEN(dev_priv) >= 6) {
3306 /*
3307 * RPS interrupts will get enabled/disabled on demand when RPS
3308 * itself is enabled/disabled.
3309 */
3310 if (HAS_VEBOX(dev_priv)) {
3311 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3312 dev_priv->pm_ier |= PM_VEBOX_USER_INTERRUPT;
3313 }
3314
3315 dev_priv->pm_imr = 0xffffffff;
3316 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_imr, pm_irqs);
3317 }
3318 }
3319
ironlake_irq_postinstall(struct drm_device * dev)3320 static int ironlake_irq_postinstall(struct drm_device *dev)
3321 {
3322 struct drm_i915_private *dev_priv = to_i915(dev);
3323 u32 display_mask, extra_mask;
3324
3325 if (INTEL_GEN(dev_priv) >= 7) {
3326 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3327 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3328 DE_PLANEB_FLIP_DONE_IVB |
3329 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3330 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3331 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3332 DE_DP_A_HOTPLUG_IVB);
3333 } else {
3334 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3335 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3336 DE_AUX_CHANNEL_A |
3337 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3338 DE_POISON);
3339 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3340 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3341 DE_DP_A_HOTPLUG);
3342 }
3343
3344 dev_priv->irq_mask = ~display_mask;
3345
3346 I915_WRITE(HWSTAM, 0xeffe);
3347
3348 ibx_irq_pre_postinstall(dev);
3349
3350 GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3351
3352 gen5_gt_irq_postinstall(dev);
3353
3354 ilk_hpd_detection_setup(dev_priv);
3355
3356 ibx_irq_postinstall(dev);
3357
3358 if (IS_IRONLAKE_M(dev_priv)) {
3359 /* Enable PCU event interrupts
3360 *
3361 * spinlocking not required here for correctness since interrupt
3362 * setup is guaranteed to run in single-threaded context. But we
3363 * need it to make the assert_spin_locked happy. */
3364 spin_lock_irq(&dev_priv->irq_lock);
3365 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3366 spin_unlock_irq(&dev_priv->irq_lock);
3367 }
3368
3369 return 0;
3370 }
3371
valleyview_enable_display_irqs(struct drm_i915_private * dev_priv)3372 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3373 {
3374 lockdep_assert_held(&dev_priv->irq_lock);
3375
3376 if (dev_priv->display_irqs_enabled)
3377 return;
3378
3379 dev_priv->display_irqs_enabled = true;
3380
3381 if (intel_irqs_enabled(dev_priv)) {
3382 vlv_display_irq_reset(dev_priv);
3383 vlv_display_irq_postinstall(dev_priv);
3384 }
3385 }
3386
valleyview_disable_display_irqs(struct drm_i915_private * dev_priv)3387 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3388 {
3389 lockdep_assert_held(&dev_priv->irq_lock);
3390
3391 if (!dev_priv->display_irqs_enabled)
3392 return;
3393
3394 dev_priv->display_irqs_enabled = false;
3395
3396 if (intel_irqs_enabled(dev_priv))
3397 vlv_display_irq_reset(dev_priv);
3398 }
3399
3400
valleyview_irq_postinstall(struct drm_device * dev)3401 static int valleyview_irq_postinstall(struct drm_device *dev)
3402 {
3403 struct drm_i915_private *dev_priv = to_i915(dev);
3404
3405 gen5_gt_irq_postinstall(dev);
3406
3407 spin_lock_irq(&dev_priv->irq_lock);
3408 if (dev_priv->display_irqs_enabled)
3409 vlv_display_irq_postinstall(dev_priv);
3410 spin_unlock_irq(&dev_priv->irq_lock);
3411
3412 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3413 POSTING_READ(VLV_MASTER_IER);
3414
3415 return 0;
3416 }
3417
gen8_gt_irq_postinstall(struct drm_i915_private * dev_priv)3418 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3419 {
3420 /* These are interrupts we'll toggle with the ring mask register */
3421 uint32_t gt_interrupts[] = {
3422 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3423 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3424 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3425 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3426 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3427 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3428 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3429 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3430 0,
3431 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3432 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3433 };
3434
3435 if (HAS_L3_DPF(dev_priv))
3436 gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
3437
3438 dev_priv->pm_ier = 0x0;
3439 dev_priv->pm_imr = ~dev_priv->pm_ier;
3440 GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3441 GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3442 /*
3443 * RPS interrupts will get enabled/disabled on demand when RPS itself
3444 * is enabled/disabled. Same wil be the case for GuC interrupts.
3445 */
3446 GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_imr, dev_priv->pm_ier);
3447 GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3448 }
3449
gen8_de_irq_postinstall(struct drm_i915_private * dev_priv)3450 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3451 {
3452 uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3453 uint32_t de_pipe_enables;
3454 u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3455 u32 de_port_enables;
3456 u32 de_misc_masked = GEN8_DE_MISC_GSE;
3457 enum pipe pipe;
3458
3459 if (INTEL_GEN(dev_priv) >= 9) {
3460 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3461 GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3462 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3463 GEN9_AUX_CHANNEL_D;
3464 if (IS_GEN9_LP(dev_priv))
3465 de_port_masked |= BXT_DE_PORT_GMBUS;
3466 } else {
3467 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3468 GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3469 }
3470
3471 de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3472 GEN8_PIPE_FIFO_UNDERRUN;
3473
3474 de_port_enables = de_port_masked;
3475 if (IS_GEN9_LP(dev_priv))
3476 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3477 else if (IS_BROADWELL(dev_priv))
3478 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3479
3480 dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3481 dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3482 dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3483
3484 for_each_pipe(dev_priv, pipe)
3485 if (intel_display_power_is_enabled(dev_priv,
3486 POWER_DOMAIN_PIPE(pipe)))
3487 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3488 dev_priv->de_irq_mask[pipe],
3489 de_pipe_enables);
3490
3491 GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3492 GEN5_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3493
3494 if (IS_GEN9_LP(dev_priv))
3495 bxt_hpd_detection_setup(dev_priv);
3496 else if (IS_BROADWELL(dev_priv))
3497 ilk_hpd_detection_setup(dev_priv);
3498 }
3499
gen8_irq_postinstall(struct drm_device * dev)3500 static int gen8_irq_postinstall(struct drm_device *dev)
3501 {
3502 struct drm_i915_private *dev_priv = to_i915(dev);
3503
3504 if (HAS_PCH_SPLIT(dev_priv))
3505 ibx_irq_pre_postinstall(dev);
3506
3507 gen8_gt_irq_postinstall(dev_priv);
3508 gen8_de_irq_postinstall(dev_priv);
3509
3510 if (HAS_PCH_SPLIT(dev_priv))
3511 ibx_irq_postinstall(dev);
3512
3513 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3514 POSTING_READ(GEN8_MASTER_IRQ);
3515
3516 return 0;
3517 }
3518
cherryview_irq_postinstall(struct drm_device * dev)3519 static int cherryview_irq_postinstall(struct drm_device *dev)
3520 {
3521 struct drm_i915_private *dev_priv = to_i915(dev);
3522
3523 gen8_gt_irq_postinstall(dev_priv);
3524
3525 spin_lock_irq(&dev_priv->irq_lock);
3526 if (dev_priv->display_irqs_enabled)
3527 vlv_display_irq_postinstall(dev_priv);
3528 spin_unlock_irq(&dev_priv->irq_lock);
3529
3530 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3531 POSTING_READ(GEN8_MASTER_IRQ);
3532
3533 return 0;
3534 }
3535
gen8_irq_uninstall(struct drm_device * dev)3536 static void gen8_irq_uninstall(struct drm_device *dev)
3537 {
3538 struct drm_i915_private *dev_priv = to_i915(dev);
3539
3540 if (!dev_priv)
3541 return;
3542
3543 gen8_irq_reset(dev);
3544 }
3545
valleyview_irq_uninstall(struct drm_device * dev)3546 static void valleyview_irq_uninstall(struct drm_device *dev)
3547 {
3548 struct drm_i915_private *dev_priv = to_i915(dev);
3549
3550 if (!dev_priv)
3551 return;
3552
3553 I915_WRITE(VLV_MASTER_IER, 0);
3554 POSTING_READ(VLV_MASTER_IER);
3555
3556 gen5_gt_irq_reset(dev_priv);
3557
3558 I915_WRITE(HWSTAM, 0xffffffff);
3559
3560 spin_lock_irq(&dev_priv->irq_lock);
3561 if (dev_priv->display_irqs_enabled)
3562 vlv_display_irq_reset(dev_priv);
3563 spin_unlock_irq(&dev_priv->irq_lock);
3564 }
3565
cherryview_irq_uninstall(struct drm_device * dev)3566 static void cherryview_irq_uninstall(struct drm_device *dev)
3567 {
3568 struct drm_i915_private *dev_priv = to_i915(dev);
3569
3570 if (!dev_priv)
3571 return;
3572
3573 I915_WRITE(GEN8_MASTER_IRQ, 0);
3574 POSTING_READ(GEN8_MASTER_IRQ);
3575
3576 gen8_gt_irq_reset(dev_priv);
3577
3578 GEN5_IRQ_RESET(GEN8_PCU_);
3579
3580 spin_lock_irq(&dev_priv->irq_lock);
3581 if (dev_priv->display_irqs_enabled)
3582 vlv_display_irq_reset(dev_priv);
3583 spin_unlock_irq(&dev_priv->irq_lock);
3584 }
3585
ironlake_irq_uninstall(struct drm_device * dev)3586 static void ironlake_irq_uninstall(struct drm_device *dev)
3587 {
3588 struct drm_i915_private *dev_priv = to_i915(dev);
3589
3590 if (!dev_priv)
3591 return;
3592
3593 ironlake_irq_reset(dev);
3594 }
3595
i8xx_irq_preinstall(struct drm_device * dev)3596 static void i8xx_irq_preinstall(struct drm_device * dev)
3597 {
3598 struct drm_i915_private *dev_priv = to_i915(dev);
3599 int pipe;
3600
3601 for_each_pipe(dev_priv, pipe)
3602 I915_WRITE(PIPESTAT(pipe), 0);
3603 I915_WRITE16(IMR, 0xffff);
3604 I915_WRITE16(IER, 0x0);
3605 POSTING_READ16(IER);
3606 }
3607
i8xx_irq_postinstall(struct drm_device * dev)3608 static int i8xx_irq_postinstall(struct drm_device *dev)
3609 {
3610 struct drm_i915_private *dev_priv = to_i915(dev);
3611
3612 I915_WRITE16(EMR,
3613 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3614
3615 /* Unmask the interrupts that we always want on. */
3616 dev_priv->irq_mask =
3617 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3618 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3619 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3620 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3621 I915_WRITE16(IMR, dev_priv->irq_mask);
3622
3623 I915_WRITE16(IER,
3624 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3625 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3626 I915_USER_INTERRUPT);
3627 POSTING_READ16(IER);
3628
3629 /* Interrupt setup is already guaranteed to be single-threaded, this is
3630 * just to make the assert_spin_locked check happy. */
3631 spin_lock_irq(&dev_priv->irq_lock);
3632 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3633 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3634 spin_unlock_irq(&dev_priv->irq_lock);
3635
3636 return 0;
3637 }
3638
3639 /*
3640 * Returns true when a page flip has completed.
3641 */
i8xx_irq_handler(int irq,void * arg)3642 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3643 {
3644 struct drm_device *dev = arg;
3645 struct drm_i915_private *dev_priv = to_i915(dev);
3646 u16 iir, new_iir;
3647 u32 pipe_stats[2];
3648 int pipe;
3649 irqreturn_t ret;
3650
3651 if (!intel_irqs_enabled(dev_priv))
3652 return IRQ_NONE;
3653
3654 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3655 disable_rpm_wakeref_asserts(dev_priv);
3656
3657 ret = IRQ_NONE;
3658 iir = I915_READ16(IIR);
3659 if (iir == 0)
3660 goto out;
3661
3662 while (iir) {
3663 /* Can't rely on pipestat interrupt bit in iir as it might
3664 * have been cleared after the pipestat interrupt was received.
3665 * It doesn't set the bit in iir again, but it still produces
3666 * interrupts (for non-MSI).
3667 */
3668 spin_lock(&dev_priv->irq_lock);
3669 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3670 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3671
3672 for_each_pipe(dev_priv, pipe) {
3673 i915_reg_t reg = PIPESTAT(pipe);
3674 pipe_stats[pipe] = I915_READ(reg);
3675
3676 /*
3677 * Clear the PIPE*STAT regs before the IIR
3678 */
3679 if (pipe_stats[pipe] & 0x8000ffff)
3680 I915_WRITE(reg, pipe_stats[pipe]);
3681 }
3682 spin_unlock(&dev_priv->irq_lock);
3683
3684 I915_WRITE16(IIR, iir);
3685 new_iir = I915_READ16(IIR); /* Flush posted writes */
3686
3687 if (iir & I915_USER_INTERRUPT)
3688 notify_ring(dev_priv->engine[RCS]);
3689
3690 for_each_pipe(dev_priv, pipe) {
3691 int plane = pipe;
3692 if (HAS_FBC(dev_priv))
3693 plane = !plane;
3694
3695 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
3696 drm_handle_vblank(&dev_priv->drm, pipe);
3697
3698 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3699 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
3700
3701 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3702 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3703 pipe);
3704 }
3705
3706 iir = new_iir;
3707 }
3708 ret = IRQ_HANDLED;
3709
3710 out:
3711 enable_rpm_wakeref_asserts(dev_priv);
3712
3713 return ret;
3714 }
3715
i8xx_irq_uninstall(struct drm_device * dev)3716 static void i8xx_irq_uninstall(struct drm_device * dev)
3717 {
3718 struct drm_i915_private *dev_priv = to_i915(dev);
3719 int pipe;
3720
3721 for_each_pipe(dev_priv, pipe) {
3722 /* Clear enable bits; then clear status bits */
3723 I915_WRITE(PIPESTAT(pipe), 0);
3724 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3725 }
3726 I915_WRITE16(IMR, 0xffff);
3727 I915_WRITE16(IER, 0x0);
3728 I915_WRITE16(IIR, I915_READ16(IIR));
3729 }
3730
i915_irq_preinstall(struct drm_device * dev)3731 static void i915_irq_preinstall(struct drm_device * dev)
3732 {
3733 struct drm_i915_private *dev_priv = to_i915(dev);
3734 int pipe;
3735
3736 if (I915_HAS_HOTPLUG(dev_priv)) {
3737 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3738 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3739 }
3740
3741 I915_WRITE16(HWSTAM, 0xeffe);
3742 for_each_pipe(dev_priv, pipe)
3743 I915_WRITE(PIPESTAT(pipe), 0);
3744 I915_WRITE(IMR, 0xffffffff);
3745 I915_WRITE(IER, 0x0);
3746 POSTING_READ(IER);
3747 }
3748
i915_irq_postinstall(struct drm_device * dev)3749 static int i915_irq_postinstall(struct drm_device *dev)
3750 {
3751 struct drm_i915_private *dev_priv = to_i915(dev);
3752 u32 enable_mask;
3753
3754 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3755
3756 /* Unmask the interrupts that we always want on. */
3757 dev_priv->irq_mask =
3758 ~(I915_ASLE_INTERRUPT |
3759 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3760 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3761 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3762 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3763
3764 enable_mask =
3765 I915_ASLE_INTERRUPT |
3766 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3767 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3768 I915_USER_INTERRUPT;
3769
3770 if (I915_HAS_HOTPLUG(dev_priv)) {
3771 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3772 POSTING_READ(PORT_HOTPLUG_EN);
3773
3774 /* Enable in IER... */
3775 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3776 /* and unmask in IMR */
3777 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3778 }
3779
3780 I915_WRITE(IMR, dev_priv->irq_mask);
3781 I915_WRITE(IER, enable_mask);
3782 POSTING_READ(IER);
3783
3784 i915_enable_asle_pipestat(dev_priv);
3785
3786 /* Interrupt setup is already guaranteed to be single-threaded, this is
3787 * just to make the assert_spin_locked check happy. */
3788 spin_lock_irq(&dev_priv->irq_lock);
3789 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3790 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3791 spin_unlock_irq(&dev_priv->irq_lock);
3792
3793 return 0;
3794 }
3795
i915_irq_handler(int irq,void * arg)3796 static irqreturn_t i915_irq_handler(int irq, void *arg)
3797 {
3798 struct drm_device *dev = arg;
3799 struct drm_i915_private *dev_priv = to_i915(dev);
3800 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3801 int pipe, ret = IRQ_NONE;
3802
3803 if (!intel_irqs_enabled(dev_priv))
3804 return IRQ_NONE;
3805
3806 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3807 disable_rpm_wakeref_asserts(dev_priv);
3808
3809 iir = I915_READ(IIR);
3810 do {
3811 bool irq_received = (iir) != 0;
3812 bool blc_event = false;
3813
3814 /* Can't rely on pipestat interrupt bit in iir as it might
3815 * have been cleared after the pipestat interrupt was received.
3816 * It doesn't set the bit in iir again, but it still produces
3817 * interrupts (for non-MSI).
3818 */
3819 spin_lock(&dev_priv->irq_lock);
3820 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3821 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3822
3823 for_each_pipe(dev_priv, pipe) {
3824 i915_reg_t reg = PIPESTAT(pipe);
3825 pipe_stats[pipe] = I915_READ(reg);
3826
3827 /* Clear the PIPE*STAT regs before the IIR */
3828 if (pipe_stats[pipe] & 0x8000ffff) {
3829 I915_WRITE(reg, pipe_stats[pipe]);
3830 irq_received = true;
3831 }
3832 }
3833 spin_unlock(&dev_priv->irq_lock);
3834
3835 if (!irq_received)
3836 break;
3837
3838 /* Consume port. Then clear IIR or we'll miss events */
3839 if (I915_HAS_HOTPLUG(dev_priv) &&
3840 iir & I915_DISPLAY_PORT_INTERRUPT) {
3841 u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
3842 if (hotplug_status)
3843 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
3844 }
3845
3846 I915_WRITE(IIR, iir);
3847 new_iir = I915_READ(IIR); /* Flush posted writes */
3848
3849 if (iir & I915_USER_INTERRUPT)
3850 notify_ring(dev_priv->engine[RCS]);
3851
3852 for_each_pipe(dev_priv, pipe) {
3853 int plane = pipe;
3854 if (HAS_FBC(dev_priv))
3855 plane = !plane;
3856
3857 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
3858 drm_handle_vblank(&dev_priv->drm, pipe);
3859
3860 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3861 blc_event = true;
3862
3863 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3864 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
3865
3866 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3867 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3868 pipe);
3869 }
3870
3871 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3872 intel_opregion_asle_intr(dev_priv);
3873
3874 /* With MSI, interrupts are only generated when iir
3875 * transitions from zero to nonzero. If another bit got
3876 * set while we were handling the existing iir bits, then
3877 * we would never get another interrupt.
3878 *
3879 * This is fine on non-MSI as well, as if we hit this path
3880 * we avoid exiting the interrupt handler only to generate
3881 * another one.
3882 *
3883 * Note that for MSI this could cause a stray interrupt report
3884 * if an interrupt landed in the time between writing IIR and
3885 * the posting read. This should be rare enough to never
3886 * trigger the 99% of 100,000 interrupts test for disabling
3887 * stray interrupts.
3888 */
3889 ret = IRQ_HANDLED;
3890 iir = new_iir;
3891 } while (iir);
3892
3893 enable_rpm_wakeref_asserts(dev_priv);
3894
3895 return ret;
3896 }
3897
i915_irq_uninstall(struct drm_device * dev)3898 static void i915_irq_uninstall(struct drm_device * dev)
3899 {
3900 struct drm_i915_private *dev_priv = to_i915(dev);
3901 int pipe;
3902
3903 if (I915_HAS_HOTPLUG(dev_priv)) {
3904 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3905 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3906 }
3907
3908 I915_WRITE16(HWSTAM, 0xffff);
3909 for_each_pipe(dev_priv, pipe) {
3910 /* Clear enable bits; then clear status bits */
3911 I915_WRITE(PIPESTAT(pipe), 0);
3912 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3913 }
3914 I915_WRITE(IMR, 0xffffffff);
3915 I915_WRITE(IER, 0x0);
3916
3917 I915_WRITE(IIR, I915_READ(IIR));
3918 }
3919
i965_irq_preinstall(struct drm_device * dev)3920 static void i965_irq_preinstall(struct drm_device * dev)
3921 {
3922 struct drm_i915_private *dev_priv = to_i915(dev);
3923 int pipe;
3924
3925 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3926 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3927
3928 I915_WRITE(HWSTAM, 0xeffe);
3929 for_each_pipe(dev_priv, pipe)
3930 I915_WRITE(PIPESTAT(pipe), 0);
3931 I915_WRITE(IMR, 0xffffffff);
3932 I915_WRITE(IER, 0x0);
3933 POSTING_READ(IER);
3934 }
3935
i965_irq_postinstall(struct drm_device * dev)3936 static int i965_irq_postinstall(struct drm_device *dev)
3937 {
3938 struct drm_i915_private *dev_priv = to_i915(dev);
3939 u32 enable_mask;
3940 u32 error_mask;
3941
3942 /* Unmask the interrupts that we always want on. */
3943 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
3944 I915_DISPLAY_PORT_INTERRUPT |
3945 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3946 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3947 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3948 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3949 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3950
3951 enable_mask = ~dev_priv->irq_mask;
3952 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3953 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3954 enable_mask |= I915_USER_INTERRUPT;
3955
3956 if (IS_G4X(dev_priv))
3957 enable_mask |= I915_BSD_USER_INTERRUPT;
3958
3959 /* Interrupt setup is already guaranteed to be single-threaded, this is
3960 * just to make the assert_spin_locked check happy. */
3961 spin_lock_irq(&dev_priv->irq_lock);
3962 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3963 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3964 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3965 spin_unlock_irq(&dev_priv->irq_lock);
3966
3967 /*
3968 * Enable some error detection, note the instruction error mask
3969 * bit is reserved, so we leave it masked.
3970 */
3971 if (IS_G4X(dev_priv)) {
3972 error_mask = ~(GM45_ERROR_PAGE_TABLE |
3973 GM45_ERROR_MEM_PRIV |
3974 GM45_ERROR_CP_PRIV |
3975 I915_ERROR_MEMORY_REFRESH);
3976 } else {
3977 error_mask = ~(I915_ERROR_PAGE_TABLE |
3978 I915_ERROR_MEMORY_REFRESH);
3979 }
3980 I915_WRITE(EMR, error_mask);
3981
3982 I915_WRITE(IMR, dev_priv->irq_mask);
3983 I915_WRITE(IER, enable_mask);
3984 POSTING_READ(IER);
3985
3986 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3987 POSTING_READ(PORT_HOTPLUG_EN);
3988
3989 i915_enable_asle_pipestat(dev_priv);
3990
3991 return 0;
3992 }
3993
i915_hpd_irq_setup(struct drm_i915_private * dev_priv)3994 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
3995 {
3996 u32 hotplug_en;
3997
3998 lockdep_assert_held(&dev_priv->irq_lock);
3999
4000 /* Note HDMI and DP share hotplug bits */
4001 /* enable bits are the same for all generations */
4002 hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4003 /* Programming the CRT detection parameters tends
4004 to generate a spurious hotplug event about three
4005 seconds later. So just do it once.
4006 */
4007 if (IS_G4X(dev_priv))
4008 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4009 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4010
4011 /* Ignore TV since it's buggy */
4012 i915_hotplug_interrupt_update_locked(dev_priv,
4013 HOTPLUG_INT_EN_MASK |
4014 CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4015 CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4016 hotplug_en);
4017 }
4018
i965_irq_handler(int irq,void * arg)4019 static irqreturn_t i965_irq_handler(int irq, void *arg)
4020 {
4021 struct drm_device *dev = arg;
4022 struct drm_i915_private *dev_priv = to_i915(dev);
4023 u32 iir, new_iir;
4024 u32 pipe_stats[I915_MAX_PIPES];
4025 int ret = IRQ_NONE, pipe;
4026
4027 if (!intel_irqs_enabled(dev_priv))
4028 return IRQ_NONE;
4029
4030 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4031 disable_rpm_wakeref_asserts(dev_priv);
4032
4033 iir = I915_READ(IIR);
4034
4035 for (;;) {
4036 bool irq_received = (iir) != 0;
4037 bool blc_event = false;
4038
4039 /* Can't rely on pipestat interrupt bit in iir as it might
4040 * have been cleared after the pipestat interrupt was received.
4041 * It doesn't set the bit in iir again, but it still produces
4042 * interrupts (for non-MSI).
4043 */
4044 spin_lock(&dev_priv->irq_lock);
4045 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4046 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4047
4048 for_each_pipe(dev_priv, pipe) {
4049 i915_reg_t reg = PIPESTAT(pipe);
4050 pipe_stats[pipe] = I915_READ(reg);
4051
4052 /*
4053 * Clear the PIPE*STAT regs before the IIR
4054 */
4055 if (pipe_stats[pipe] & 0x8000ffff) {
4056 I915_WRITE(reg, pipe_stats[pipe]);
4057 irq_received = true;
4058 }
4059 }
4060 spin_unlock(&dev_priv->irq_lock);
4061
4062 if (!irq_received)
4063 break;
4064
4065 ret = IRQ_HANDLED;
4066
4067 /* Consume port. Then clear IIR or we'll miss events */
4068 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
4069 u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4070 if (hotplug_status)
4071 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4072 }
4073
4074 I915_WRITE(IIR, iir);
4075 new_iir = I915_READ(IIR); /* Flush posted writes */
4076
4077 if (iir & I915_USER_INTERRUPT)
4078 notify_ring(dev_priv->engine[RCS]);
4079 if (iir & I915_BSD_USER_INTERRUPT)
4080 notify_ring(dev_priv->engine[VCS]);
4081
4082 for_each_pipe(dev_priv, pipe) {
4083 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
4084 drm_handle_vblank(&dev_priv->drm, pipe);
4085
4086 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4087 blc_event = true;
4088
4089 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4090 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
4091
4092 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4093 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4094 }
4095
4096 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4097 intel_opregion_asle_intr(dev_priv);
4098
4099 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4100 gmbus_irq_handler(dev_priv);
4101
4102 /* With MSI, interrupts are only generated when iir
4103 * transitions from zero to nonzero. If another bit got
4104 * set while we were handling the existing iir bits, then
4105 * we would never get another interrupt.
4106 *
4107 * This is fine on non-MSI as well, as if we hit this path
4108 * we avoid exiting the interrupt handler only to generate
4109 * another one.
4110 *
4111 * Note that for MSI this could cause a stray interrupt report
4112 * if an interrupt landed in the time between writing IIR and
4113 * the posting read. This should be rare enough to never
4114 * trigger the 99% of 100,000 interrupts test for disabling
4115 * stray interrupts.
4116 */
4117 iir = new_iir;
4118 }
4119
4120 enable_rpm_wakeref_asserts(dev_priv);
4121
4122 return ret;
4123 }
4124
i965_irq_uninstall(struct drm_device * dev)4125 static void i965_irq_uninstall(struct drm_device * dev)
4126 {
4127 struct drm_i915_private *dev_priv = to_i915(dev);
4128 int pipe;
4129
4130 if (!dev_priv)
4131 return;
4132
4133 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4134 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4135
4136 I915_WRITE(HWSTAM, 0xffffffff);
4137 for_each_pipe(dev_priv, pipe)
4138 I915_WRITE(PIPESTAT(pipe), 0);
4139 I915_WRITE(IMR, 0xffffffff);
4140 I915_WRITE(IER, 0x0);
4141
4142 for_each_pipe(dev_priv, pipe)
4143 I915_WRITE(PIPESTAT(pipe),
4144 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4145 I915_WRITE(IIR, I915_READ(IIR));
4146 }
4147
4148 /**
4149 * intel_irq_init - initializes irq support
4150 * @dev_priv: i915 device instance
4151 *
4152 * This function initializes all the irq support including work items, timers
4153 * and all the vtables. It does not setup the interrupt itself though.
4154 */
intel_irq_init(struct drm_i915_private * dev_priv)4155 void intel_irq_init(struct drm_i915_private *dev_priv)
4156 {
4157 struct drm_device *dev = &dev_priv->drm;
4158 int i;
4159
4160 intel_hpd_init_work(dev_priv);
4161
4162 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4163
4164 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4165 for (i = 0; i < MAX_L3_SLICES; ++i)
4166 dev_priv->l3_parity.remap_info[i] = NULL;
4167
4168 if (HAS_GUC_SCHED(dev_priv))
4169 dev_priv->pm_guc_events = GEN9_GUC_TO_HOST_INT_EVENT;
4170
4171 /* Let's track the enabled rps events */
4172 if (IS_VALLEYVIEW(dev_priv))
4173 /* WaGsvRC0ResidencyMethod:vlv */
4174 dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4175 else
4176 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4177
4178 dev_priv->rps.pm_intrmsk_mbz = 0;
4179
4180 /*
4181 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
4182 * if GEN6_PM_UP_EI_EXPIRED is masked.
4183 *
4184 * TODO: verify if this can be reproduced on VLV,CHV.
4185 */
4186 if (INTEL_GEN(dev_priv) <= 7)
4187 dev_priv->rps.pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
4188
4189 if (INTEL_GEN(dev_priv) >= 8)
4190 dev_priv->rps.pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
4191
4192 if (IS_GEN2(dev_priv)) {
4193 /* Gen2 doesn't have a hardware frame counter */
4194 dev->max_vblank_count = 0;
4195 } else if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
4196 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4197 dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4198 } else {
4199 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4200 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4201 }
4202
4203 /*
4204 * Opt out of the vblank disable timer on everything except gen2.
4205 * Gen2 doesn't have a hardware frame counter and so depends on
4206 * vblank interrupts to produce sane vblank seuquence numbers.
4207 */
4208 if (!IS_GEN2(dev_priv))
4209 dev->vblank_disable_immediate = true;
4210
4211 /* Most platforms treat the display irq block as an always-on
4212 * power domain. vlv/chv can disable it at runtime and need
4213 * special care to avoid writing any of the display block registers
4214 * outside of the power domain. We defer setting up the display irqs
4215 * in this case to the runtime pm.
4216 */
4217 dev_priv->display_irqs_enabled = true;
4218 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4219 dev_priv->display_irqs_enabled = false;
4220
4221 dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4222
4223 dev->driver->get_vblank_timestamp = drm_calc_vbltimestamp_from_scanoutpos;
4224 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4225
4226 if (IS_CHERRYVIEW(dev_priv)) {
4227 dev->driver->irq_handler = cherryview_irq_handler;
4228 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4229 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4230 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4231 dev->driver->enable_vblank = i965_enable_vblank;
4232 dev->driver->disable_vblank = i965_disable_vblank;
4233 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4234 } else if (IS_VALLEYVIEW(dev_priv)) {
4235 dev->driver->irq_handler = valleyview_irq_handler;
4236 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4237 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4238 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4239 dev->driver->enable_vblank = i965_enable_vblank;
4240 dev->driver->disable_vblank = i965_disable_vblank;
4241 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4242 } else if (INTEL_GEN(dev_priv) >= 8) {
4243 dev->driver->irq_handler = gen8_irq_handler;
4244 dev->driver->irq_preinstall = gen8_irq_reset;
4245 dev->driver->irq_postinstall = gen8_irq_postinstall;
4246 dev->driver->irq_uninstall = gen8_irq_uninstall;
4247 dev->driver->enable_vblank = gen8_enable_vblank;
4248 dev->driver->disable_vblank = gen8_disable_vblank;
4249 if (IS_GEN9_LP(dev_priv))
4250 dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4251 else if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv) ||
4252 HAS_PCH_CNP(dev_priv))
4253 dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4254 else
4255 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4256 } else if (HAS_PCH_SPLIT(dev_priv)) {
4257 dev->driver->irq_handler = ironlake_irq_handler;
4258 dev->driver->irq_preinstall = ironlake_irq_reset;
4259 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4260 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4261 dev->driver->enable_vblank = ironlake_enable_vblank;
4262 dev->driver->disable_vblank = ironlake_disable_vblank;
4263 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4264 } else {
4265 if (IS_GEN2(dev_priv)) {
4266 dev->driver->irq_preinstall = i8xx_irq_preinstall;
4267 dev->driver->irq_postinstall = i8xx_irq_postinstall;
4268 dev->driver->irq_handler = i8xx_irq_handler;
4269 dev->driver->irq_uninstall = i8xx_irq_uninstall;
4270 dev->driver->enable_vblank = i8xx_enable_vblank;
4271 dev->driver->disable_vblank = i8xx_disable_vblank;
4272 } else if (IS_GEN3(dev_priv)) {
4273 dev->driver->irq_preinstall = i915_irq_preinstall;
4274 dev->driver->irq_postinstall = i915_irq_postinstall;
4275 dev->driver->irq_uninstall = i915_irq_uninstall;
4276 dev->driver->irq_handler = i915_irq_handler;
4277 dev->driver->enable_vblank = i8xx_enable_vblank;
4278 dev->driver->disable_vblank = i8xx_disable_vblank;
4279 } else {
4280 dev->driver->irq_preinstall = i965_irq_preinstall;
4281 dev->driver->irq_postinstall = i965_irq_postinstall;
4282 dev->driver->irq_uninstall = i965_irq_uninstall;
4283 dev->driver->irq_handler = i965_irq_handler;
4284 dev->driver->enable_vblank = i965_enable_vblank;
4285 dev->driver->disable_vblank = i965_disable_vblank;
4286 }
4287 if (I915_HAS_HOTPLUG(dev_priv))
4288 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4289 }
4290 }
4291
4292 /**
4293 * intel_irq_fini - deinitializes IRQ support
4294 * @i915: i915 device instance
4295 *
4296 * This function deinitializes all the IRQ support.
4297 */
intel_irq_fini(struct drm_i915_private * i915)4298 void intel_irq_fini(struct drm_i915_private *i915)
4299 {
4300 int i;
4301
4302 for (i = 0; i < MAX_L3_SLICES; ++i)
4303 kfree(i915->l3_parity.remap_info[i]);
4304 }
4305
4306 /**
4307 * intel_irq_install - enables the hardware interrupt
4308 * @dev_priv: i915 device instance
4309 *
4310 * This function enables the hardware interrupt handling, but leaves the hotplug
4311 * handling still disabled. It is called after intel_irq_init().
4312 *
4313 * In the driver load and resume code we need working interrupts in a few places
4314 * but don't want to deal with the hassle of concurrent probe and hotplug
4315 * workers. Hence the split into this two-stage approach.
4316 */
intel_irq_install(struct drm_i915_private * dev_priv)4317 int intel_irq_install(struct drm_i915_private *dev_priv)
4318 {
4319 /*
4320 * We enable some interrupt sources in our postinstall hooks, so mark
4321 * interrupts as enabled _before_ actually enabling them to avoid
4322 * special cases in our ordering checks.
4323 */
4324 dev_priv->pm.irqs_enabled = true;
4325
4326 return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq);
4327 }
4328
4329 /**
4330 * intel_irq_uninstall - finilizes all irq handling
4331 * @dev_priv: i915 device instance
4332 *
4333 * This stops interrupt and hotplug handling and unregisters and frees all
4334 * resources acquired in the init functions.
4335 */
intel_irq_uninstall(struct drm_i915_private * dev_priv)4336 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4337 {
4338 drm_irq_uninstall(&dev_priv->drm);
4339 intel_hpd_cancel_work(dev_priv);
4340 dev_priv->pm.irqs_enabled = false;
4341 }
4342
4343 /**
4344 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4345 * @dev_priv: i915 device instance
4346 *
4347 * This function is used to disable interrupts at runtime, both in the runtime
4348 * pm and the system suspend/resume code.
4349 */
intel_runtime_pm_disable_interrupts(struct drm_i915_private * dev_priv)4350 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4351 {
4352 dev_priv->drm.driver->irq_uninstall(&dev_priv->drm);
4353 dev_priv->pm.irqs_enabled = false;
4354 synchronize_irq(dev_priv->drm.irq);
4355 }
4356
4357 /**
4358 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4359 * @dev_priv: i915 device instance
4360 *
4361 * This function is used to enable interrupts at runtime, both in the runtime
4362 * pm and the system suspend/resume code.
4363 */
intel_runtime_pm_enable_interrupts(struct drm_i915_private * dev_priv)4364 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4365 {
4366 dev_priv->pm.irqs_enabled = true;
4367 dev_priv->drm.driver->irq_preinstall(&dev_priv->drm);
4368 dev_priv->drm.driver->irq_postinstall(&dev_priv->drm);
4369 }
4370