• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *	Eric Anholt <eric@anholt.net>
25  */
26 
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include "intel_frontbuffer.h"
38 #include <drm/i915_drm.h>
39 #include "i915_drv.h"
40 #include "i915_gem_clflush.h"
41 #include "intel_dsi.h"
42 #include "i915_trace.h"
43 #include <drm/drm_atomic.h>
44 #include <drm/drm_atomic_helper.h>
45 #include <drm/drm_dp_helper.h>
46 #include <drm/drm_crtc_helper.h>
47 #include <drm/drm_plane_helper.h>
48 #include <drm/drm_rect.h>
49 #include <linux/dma_remapping.h>
50 #include <linux/reservation.h>
51 
52 /* Primary plane formats for gen <= 3 */
53 static const uint32_t i8xx_primary_formats[] = {
54 	DRM_FORMAT_C8,
55 	DRM_FORMAT_RGB565,
56 	DRM_FORMAT_XRGB1555,
57 	DRM_FORMAT_XRGB8888,
58 };
59 
60 /* Primary plane formats for gen >= 4 */
61 static const uint32_t i965_primary_formats[] = {
62 	DRM_FORMAT_C8,
63 	DRM_FORMAT_RGB565,
64 	DRM_FORMAT_XRGB8888,
65 	DRM_FORMAT_XBGR8888,
66 	DRM_FORMAT_XRGB2101010,
67 	DRM_FORMAT_XBGR2101010,
68 };
69 
70 static const uint64_t i9xx_format_modifiers[] = {
71 	I915_FORMAT_MOD_X_TILED,
72 	DRM_FORMAT_MOD_LINEAR,
73 	DRM_FORMAT_MOD_INVALID
74 };
75 
76 static const uint32_t skl_primary_formats[] = {
77 	DRM_FORMAT_C8,
78 	DRM_FORMAT_RGB565,
79 	DRM_FORMAT_XRGB8888,
80 	DRM_FORMAT_XBGR8888,
81 	DRM_FORMAT_ARGB8888,
82 	DRM_FORMAT_ABGR8888,
83 	DRM_FORMAT_XRGB2101010,
84 	DRM_FORMAT_XBGR2101010,
85 	DRM_FORMAT_YUYV,
86 	DRM_FORMAT_YVYU,
87 	DRM_FORMAT_UYVY,
88 	DRM_FORMAT_VYUY,
89 };
90 
91 static const uint64_t skl_format_modifiers_noccs[] = {
92 	I915_FORMAT_MOD_Yf_TILED,
93 	I915_FORMAT_MOD_Y_TILED,
94 	I915_FORMAT_MOD_X_TILED,
95 	DRM_FORMAT_MOD_LINEAR,
96 	DRM_FORMAT_MOD_INVALID
97 };
98 
99 static const uint64_t skl_format_modifiers_ccs[] = {
100 	I915_FORMAT_MOD_Yf_TILED_CCS,
101 	I915_FORMAT_MOD_Y_TILED_CCS,
102 	I915_FORMAT_MOD_Yf_TILED,
103 	I915_FORMAT_MOD_Y_TILED,
104 	I915_FORMAT_MOD_X_TILED,
105 	DRM_FORMAT_MOD_LINEAR,
106 	DRM_FORMAT_MOD_INVALID
107 };
108 
109 /* Cursor formats */
110 static const uint32_t intel_cursor_formats[] = {
111 	DRM_FORMAT_ARGB8888,
112 };
113 
114 static const uint64_t cursor_format_modifiers[] = {
115 	DRM_FORMAT_MOD_LINEAR,
116 	DRM_FORMAT_MOD_INVALID
117 };
118 
119 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
120 				struct intel_crtc_state *pipe_config);
121 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
122 				   struct intel_crtc_state *pipe_config);
123 
124 static int intel_framebuffer_init(struct intel_framebuffer *ifb,
125 				  struct drm_i915_gem_object *obj,
126 				  struct drm_mode_fb_cmd2 *mode_cmd);
127 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
128 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
129 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc);
130 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
131 					 struct intel_link_m_n *m_n,
132 					 struct intel_link_m_n *m2_n2);
133 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
134 static void haswell_set_pipeconf(struct drm_crtc *crtc);
135 static void haswell_set_pipemisc(struct drm_crtc *crtc);
136 static void vlv_prepare_pll(struct intel_crtc *crtc,
137 			    const struct intel_crtc_state *pipe_config);
138 static void chv_prepare_pll(struct intel_crtc *crtc,
139 			    const struct intel_crtc_state *pipe_config);
140 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
141 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
142 static void intel_crtc_init_scalers(struct intel_crtc *crtc,
143 				    struct intel_crtc_state *crtc_state);
144 static void skylake_pfit_enable(struct intel_crtc *crtc);
145 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
146 static void ironlake_pfit_enable(struct intel_crtc *crtc);
147 static void intel_modeset_setup_hw_state(struct drm_device *dev,
148 					 struct drm_modeset_acquire_ctx *ctx);
149 static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
150 
151 struct intel_limit {
152 	struct {
153 		int min, max;
154 	} dot, vco, n, m, m1, m2, p, p1;
155 
156 	struct {
157 		int dot_limit;
158 		int p2_slow, p2_fast;
159 	} p2;
160 };
161 
162 /* returns HPLL frequency in kHz */
vlv_get_hpll_vco(struct drm_i915_private * dev_priv)163 int vlv_get_hpll_vco(struct drm_i915_private *dev_priv)
164 {
165 	int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
166 
167 	/* Obtain SKU information */
168 	mutex_lock(&dev_priv->sb_lock);
169 	hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
170 		CCK_FUSE_HPLL_FREQ_MASK;
171 	mutex_unlock(&dev_priv->sb_lock);
172 
173 	return vco_freq[hpll_freq] * 1000;
174 }
175 
vlv_get_cck_clock(struct drm_i915_private * dev_priv,const char * name,u32 reg,int ref_freq)176 int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
177 		      const char *name, u32 reg, int ref_freq)
178 {
179 	u32 val;
180 	int divider;
181 
182 	mutex_lock(&dev_priv->sb_lock);
183 	val = vlv_cck_read(dev_priv, reg);
184 	mutex_unlock(&dev_priv->sb_lock);
185 
186 	divider = val & CCK_FREQUENCY_VALUES;
187 
188 	WARN((val & CCK_FREQUENCY_STATUS) !=
189 	     (divider << CCK_FREQUENCY_STATUS_SHIFT),
190 	     "%s change in progress\n", name);
191 
192 	return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
193 }
194 
vlv_get_cck_clock_hpll(struct drm_i915_private * dev_priv,const char * name,u32 reg)195 int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
196 			   const char *name, u32 reg)
197 {
198 	if (dev_priv->hpll_freq == 0)
199 		dev_priv->hpll_freq = vlv_get_hpll_vco(dev_priv);
200 
201 	return vlv_get_cck_clock(dev_priv, name, reg,
202 				 dev_priv->hpll_freq);
203 }
204 
intel_update_czclk(struct drm_i915_private * dev_priv)205 static void intel_update_czclk(struct drm_i915_private *dev_priv)
206 {
207 	if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
208 		return;
209 
210 	dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
211 						      CCK_CZ_CLOCK_CONTROL);
212 
213 	DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
214 }
215 
216 static inline u32 /* units of 100MHz */
intel_fdi_link_freq(struct drm_i915_private * dev_priv,const struct intel_crtc_state * pipe_config)217 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
218 		    const struct intel_crtc_state *pipe_config)
219 {
220 	if (HAS_DDI(dev_priv))
221 		return pipe_config->port_clock; /* SPLL */
222 	else if (IS_GEN5(dev_priv))
223 		return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000;
224 	else
225 		return 270000;
226 }
227 
228 static const struct intel_limit intel_limits_i8xx_dac = {
229 	.dot = { .min = 25000, .max = 350000 },
230 	.vco = { .min = 908000, .max = 1512000 },
231 	.n = { .min = 2, .max = 16 },
232 	.m = { .min = 96, .max = 140 },
233 	.m1 = { .min = 18, .max = 26 },
234 	.m2 = { .min = 6, .max = 16 },
235 	.p = { .min = 4, .max = 128 },
236 	.p1 = { .min = 2, .max = 33 },
237 	.p2 = { .dot_limit = 165000,
238 		.p2_slow = 4, .p2_fast = 2 },
239 };
240 
241 static const struct intel_limit intel_limits_i8xx_dvo = {
242 	.dot = { .min = 25000, .max = 350000 },
243 	.vco = { .min = 908000, .max = 1512000 },
244 	.n = { .min = 2, .max = 16 },
245 	.m = { .min = 96, .max = 140 },
246 	.m1 = { .min = 18, .max = 26 },
247 	.m2 = { .min = 6, .max = 16 },
248 	.p = { .min = 4, .max = 128 },
249 	.p1 = { .min = 2, .max = 33 },
250 	.p2 = { .dot_limit = 165000,
251 		.p2_slow = 4, .p2_fast = 4 },
252 };
253 
254 static const struct intel_limit intel_limits_i8xx_lvds = {
255 	.dot = { .min = 25000, .max = 350000 },
256 	.vco = { .min = 908000, .max = 1512000 },
257 	.n = { .min = 2, .max = 16 },
258 	.m = { .min = 96, .max = 140 },
259 	.m1 = { .min = 18, .max = 26 },
260 	.m2 = { .min = 6, .max = 16 },
261 	.p = { .min = 4, .max = 128 },
262 	.p1 = { .min = 1, .max = 6 },
263 	.p2 = { .dot_limit = 165000,
264 		.p2_slow = 14, .p2_fast = 7 },
265 };
266 
267 static const struct intel_limit intel_limits_i9xx_sdvo = {
268 	.dot = { .min = 20000, .max = 400000 },
269 	.vco = { .min = 1400000, .max = 2800000 },
270 	.n = { .min = 1, .max = 6 },
271 	.m = { .min = 70, .max = 120 },
272 	.m1 = { .min = 8, .max = 18 },
273 	.m2 = { .min = 3, .max = 7 },
274 	.p = { .min = 5, .max = 80 },
275 	.p1 = { .min = 1, .max = 8 },
276 	.p2 = { .dot_limit = 200000,
277 		.p2_slow = 10, .p2_fast = 5 },
278 };
279 
280 static const struct intel_limit intel_limits_i9xx_lvds = {
281 	.dot = { .min = 20000, .max = 400000 },
282 	.vco = { .min = 1400000, .max = 2800000 },
283 	.n = { .min = 1, .max = 6 },
284 	.m = { .min = 70, .max = 120 },
285 	.m1 = { .min = 8, .max = 18 },
286 	.m2 = { .min = 3, .max = 7 },
287 	.p = { .min = 7, .max = 98 },
288 	.p1 = { .min = 1, .max = 8 },
289 	.p2 = { .dot_limit = 112000,
290 		.p2_slow = 14, .p2_fast = 7 },
291 };
292 
293 
294 static const struct intel_limit intel_limits_g4x_sdvo = {
295 	.dot = { .min = 25000, .max = 270000 },
296 	.vco = { .min = 1750000, .max = 3500000},
297 	.n = { .min = 1, .max = 4 },
298 	.m = { .min = 104, .max = 138 },
299 	.m1 = { .min = 17, .max = 23 },
300 	.m2 = { .min = 5, .max = 11 },
301 	.p = { .min = 10, .max = 30 },
302 	.p1 = { .min = 1, .max = 3},
303 	.p2 = { .dot_limit = 270000,
304 		.p2_slow = 10,
305 		.p2_fast = 10
306 	},
307 };
308 
309 static const struct intel_limit intel_limits_g4x_hdmi = {
310 	.dot = { .min = 22000, .max = 400000 },
311 	.vco = { .min = 1750000, .max = 3500000},
312 	.n = { .min = 1, .max = 4 },
313 	.m = { .min = 104, .max = 138 },
314 	.m1 = { .min = 16, .max = 23 },
315 	.m2 = { .min = 5, .max = 11 },
316 	.p = { .min = 5, .max = 80 },
317 	.p1 = { .min = 1, .max = 8},
318 	.p2 = { .dot_limit = 165000,
319 		.p2_slow = 10, .p2_fast = 5 },
320 };
321 
322 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
323 	.dot = { .min = 20000, .max = 115000 },
324 	.vco = { .min = 1750000, .max = 3500000 },
325 	.n = { .min = 1, .max = 3 },
326 	.m = { .min = 104, .max = 138 },
327 	.m1 = { .min = 17, .max = 23 },
328 	.m2 = { .min = 5, .max = 11 },
329 	.p = { .min = 28, .max = 112 },
330 	.p1 = { .min = 2, .max = 8 },
331 	.p2 = { .dot_limit = 0,
332 		.p2_slow = 14, .p2_fast = 14
333 	},
334 };
335 
336 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
337 	.dot = { .min = 80000, .max = 224000 },
338 	.vco = { .min = 1750000, .max = 3500000 },
339 	.n = { .min = 1, .max = 3 },
340 	.m = { .min = 104, .max = 138 },
341 	.m1 = { .min = 17, .max = 23 },
342 	.m2 = { .min = 5, .max = 11 },
343 	.p = { .min = 14, .max = 42 },
344 	.p1 = { .min = 2, .max = 6 },
345 	.p2 = { .dot_limit = 0,
346 		.p2_slow = 7, .p2_fast = 7
347 	},
348 };
349 
350 static const struct intel_limit intel_limits_pineview_sdvo = {
351 	.dot = { .min = 20000, .max = 400000},
352 	.vco = { .min = 1700000, .max = 3500000 },
353 	/* Pineview's Ncounter is a ring counter */
354 	.n = { .min = 3, .max = 6 },
355 	.m = { .min = 2, .max = 256 },
356 	/* Pineview only has one combined m divider, which we treat as m2. */
357 	.m1 = { .min = 0, .max = 0 },
358 	.m2 = { .min = 0, .max = 254 },
359 	.p = { .min = 5, .max = 80 },
360 	.p1 = { .min = 1, .max = 8 },
361 	.p2 = { .dot_limit = 200000,
362 		.p2_slow = 10, .p2_fast = 5 },
363 };
364 
365 static const struct intel_limit intel_limits_pineview_lvds = {
366 	.dot = { .min = 20000, .max = 400000 },
367 	.vco = { .min = 1700000, .max = 3500000 },
368 	.n = { .min = 3, .max = 6 },
369 	.m = { .min = 2, .max = 256 },
370 	.m1 = { .min = 0, .max = 0 },
371 	.m2 = { .min = 0, .max = 254 },
372 	.p = { .min = 7, .max = 112 },
373 	.p1 = { .min = 1, .max = 8 },
374 	.p2 = { .dot_limit = 112000,
375 		.p2_slow = 14, .p2_fast = 14 },
376 };
377 
378 /* Ironlake / Sandybridge
379  *
380  * We calculate clock using (register_value + 2) for N/M1/M2, so here
381  * the range value for them is (actual_value - 2).
382  */
383 static const struct intel_limit intel_limits_ironlake_dac = {
384 	.dot = { .min = 25000, .max = 350000 },
385 	.vco = { .min = 1760000, .max = 3510000 },
386 	.n = { .min = 1, .max = 5 },
387 	.m = { .min = 79, .max = 127 },
388 	.m1 = { .min = 12, .max = 22 },
389 	.m2 = { .min = 5, .max = 9 },
390 	.p = { .min = 5, .max = 80 },
391 	.p1 = { .min = 1, .max = 8 },
392 	.p2 = { .dot_limit = 225000,
393 		.p2_slow = 10, .p2_fast = 5 },
394 };
395 
396 static const struct intel_limit intel_limits_ironlake_single_lvds = {
397 	.dot = { .min = 25000, .max = 350000 },
398 	.vco = { .min = 1760000, .max = 3510000 },
399 	.n = { .min = 1, .max = 3 },
400 	.m = { .min = 79, .max = 118 },
401 	.m1 = { .min = 12, .max = 22 },
402 	.m2 = { .min = 5, .max = 9 },
403 	.p = { .min = 28, .max = 112 },
404 	.p1 = { .min = 2, .max = 8 },
405 	.p2 = { .dot_limit = 225000,
406 		.p2_slow = 14, .p2_fast = 14 },
407 };
408 
409 static const struct intel_limit intel_limits_ironlake_dual_lvds = {
410 	.dot = { .min = 25000, .max = 350000 },
411 	.vco = { .min = 1760000, .max = 3510000 },
412 	.n = { .min = 1, .max = 3 },
413 	.m = { .min = 79, .max = 127 },
414 	.m1 = { .min = 12, .max = 22 },
415 	.m2 = { .min = 5, .max = 9 },
416 	.p = { .min = 14, .max = 56 },
417 	.p1 = { .min = 2, .max = 8 },
418 	.p2 = { .dot_limit = 225000,
419 		.p2_slow = 7, .p2_fast = 7 },
420 };
421 
422 /* LVDS 100mhz refclk limits. */
423 static const struct intel_limit intel_limits_ironlake_single_lvds_100m = {
424 	.dot = { .min = 25000, .max = 350000 },
425 	.vco = { .min = 1760000, .max = 3510000 },
426 	.n = { .min = 1, .max = 2 },
427 	.m = { .min = 79, .max = 126 },
428 	.m1 = { .min = 12, .max = 22 },
429 	.m2 = { .min = 5, .max = 9 },
430 	.p = { .min = 28, .max = 112 },
431 	.p1 = { .min = 2, .max = 8 },
432 	.p2 = { .dot_limit = 225000,
433 		.p2_slow = 14, .p2_fast = 14 },
434 };
435 
436 static const struct intel_limit intel_limits_ironlake_dual_lvds_100m = {
437 	.dot = { .min = 25000, .max = 350000 },
438 	.vco = { .min = 1760000, .max = 3510000 },
439 	.n = { .min = 1, .max = 3 },
440 	.m = { .min = 79, .max = 126 },
441 	.m1 = { .min = 12, .max = 22 },
442 	.m2 = { .min = 5, .max = 9 },
443 	.p = { .min = 14, .max = 42 },
444 	.p1 = { .min = 2, .max = 6 },
445 	.p2 = { .dot_limit = 225000,
446 		.p2_slow = 7, .p2_fast = 7 },
447 };
448 
449 static const struct intel_limit intel_limits_vlv = {
450 	 /*
451 	  * These are the data rate limits (measured in fast clocks)
452 	  * since those are the strictest limits we have. The fast
453 	  * clock and actual rate limits are more relaxed, so checking
454 	  * them would make no difference.
455 	  */
456 	.dot = { .min = 25000 * 5, .max = 270000 * 5 },
457 	.vco = { .min = 4000000, .max = 6000000 },
458 	.n = { .min = 1, .max = 7 },
459 	.m1 = { .min = 2, .max = 3 },
460 	.m2 = { .min = 11, .max = 156 },
461 	.p1 = { .min = 2, .max = 3 },
462 	.p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
463 };
464 
465 static const struct intel_limit intel_limits_chv = {
466 	/*
467 	 * These are the data rate limits (measured in fast clocks)
468 	 * since those are the strictest limits we have.  The fast
469 	 * clock and actual rate limits are more relaxed, so checking
470 	 * them would make no difference.
471 	 */
472 	.dot = { .min = 25000 * 5, .max = 540000 * 5},
473 	.vco = { .min = 4800000, .max = 6480000 },
474 	.n = { .min = 1, .max = 1 },
475 	.m1 = { .min = 2, .max = 2 },
476 	.m2 = { .min = 24 << 22, .max = 175 << 22 },
477 	.p1 = { .min = 2, .max = 4 },
478 	.p2 = {	.p2_slow = 1, .p2_fast = 14 },
479 };
480 
481 static const struct intel_limit intel_limits_bxt = {
482 	/* FIXME: find real dot limits */
483 	.dot = { .min = 0, .max = INT_MAX },
484 	.vco = { .min = 4800000, .max = 6700000 },
485 	.n = { .min = 1, .max = 1 },
486 	.m1 = { .min = 2, .max = 2 },
487 	/* FIXME: find real m2 limits */
488 	.m2 = { .min = 2 << 22, .max = 255 << 22 },
489 	.p1 = { .min = 2, .max = 4 },
490 	.p2 = { .p2_slow = 1, .p2_fast = 20 },
491 };
492 
493 static bool
needs_modeset(struct drm_crtc_state * state)494 needs_modeset(struct drm_crtc_state *state)
495 {
496 	return drm_atomic_crtc_needs_modeset(state);
497 }
498 
499 /*
500  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
501  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
502  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
503  * The helpers' return value is the rate of the clock that is fed to the
504  * display engine's pipe which can be the above fast dot clock rate or a
505  * divided-down version of it.
506  */
507 /* m1 is reserved as 0 in Pineview, n is a ring counter */
pnv_calc_dpll_params(int refclk,struct dpll * clock)508 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
509 {
510 	clock->m = clock->m2 + 2;
511 	clock->p = clock->p1 * clock->p2;
512 	if (WARN_ON(clock->n == 0 || clock->p == 0))
513 		return 0;
514 	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
515 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
516 
517 	return clock->dot;
518 }
519 
i9xx_dpll_compute_m(struct dpll * dpll)520 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
521 {
522 	return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
523 }
524 
i9xx_calc_dpll_params(int refclk,struct dpll * clock)525 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
526 {
527 	clock->m = i9xx_dpll_compute_m(clock);
528 	clock->p = clock->p1 * clock->p2;
529 	if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
530 		return 0;
531 	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
532 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
533 
534 	return clock->dot;
535 }
536 
vlv_calc_dpll_params(int refclk,struct dpll * clock)537 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
538 {
539 	clock->m = clock->m1 * clock->m2;
540 	clock->p = clock->p1 * clock->p2;
541 	if (WARN_ON(clock->n == 0 || clock->p == 0))
542 		return 0;
543 	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
544 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
545 
546 	return clock->dot / 5;
547 }
548 
chv_calc_dpll_params(int refclk,struct dpll * clock)549 int chv_calc_dpll_params(int refclk, struct dpll *clock)
550 {
551 	clock->m = clock->m1 * clock->m2;
552 	clock->p = clock->p1 * clock->p2;
553 	if (WARN_ON(clock->n == 0 || clock->p == 0))
554 		return 0;
555 	clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
556 			clock->n << 22);
557 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
558 
559 	return clock->dot / 5;
560 }
561 
562 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
563 /**
564  * Returns whether the given set of divisors are valid for a given refclk with
565  * the given connectors.
566  */
567 
intel_PLL_is_valid(struct drm_i915_private * dev_priv,const struct intel_limit * limit,const struct dpll * clock)568 static bool intel_PLL_is_valid(struct drm_i915_private *dev_priv,
569 			       const struct intel_limit *limit,
570 			       const struct dpll *clock)
571 {
572 	if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
573 		INTELPllInvalid("n out of range\n");
574 	if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
575 		INTELPllInvalid("p1 out of range\n");
576 	if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
577 		INTELPllInvalid("m2 out of range\n");
578 	if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
579 		INTELPllInvalid("m1 out of range\n");
580 
581 	if (!IS_PINEVIEW(dev_priv) && !IS_VALLEYVIEW(dev_priv) &&
582 	    !IS_CHERRYVIEW(dev_priv) && !IS_GEN9_LP(dev_priv))
583 		if (clock->m1 <= clock->m2)
584 			INTELPllInvalid("m1 <= m2\n");
585 
586 	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
587 	    !IS_GEN9_LP(dev_priv)) {
588 		if (clock->p < limit->p.min || limit->p.max < clock->p)
589 			INTELPllInvalid("p out of range\n");
590 		if (clock->m < limit->m.min || limit->m.max < clock->m)
591 			INTELPllInvalid("m out of range\n");
592 	}
593 
594 	if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
595 		INTELPllInvalid("vco out of range\n");
596 	/* XXX: We may need to be checking "Dot clock" depending on the multiplier,
597 	 * connector, etc., rather than just a single range.
598 	 */
599 	if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
600 		INTELPllInvalid("dot out of range\n");
601 
602 	return true;
603 }
604 
605 static int
i9xx_select_p2_div(const struct intel_limit * limit,const struct intel_crtc_state * crtc_state,int target)606 i9xx_select_p2_div(const struct intel_limit *limit,
607 		   const struct intel_crtc_state *crtc_state,
608 		   int target)
609 {
610 	struct drm_device *dev = crtc_state->base.crtc->dev;
611 
612 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
613 		/*
614 		 * For LVDS just rely on its current settings for dual-channel.
615 		 * We haven't figured out how to reliably set up different
616 		 * single/dual channel state, if we even can.
617 		 */
618 		if (intel_is_dual_link_lvds(dev))
619 			return limit->p2.p2_fast;
620 		else
621 			return limit->p2.p2_slow;
622 	} else {
623 		if (target < limit->p2.dot_limit)
624 			return limit->p2.p2_slow;
625 		else
626 			return limit->p2.p2_fast;
627 	}
628 }
629 
630 /*
631  * Returns a set of divisors for the desired target clock with the given
632  * refclk, or FALSE.  The returned values represent the clock equation:
633  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
634  *
635  * Target and reference clocks are specified in kHz.
636  *
637  * If match_clock is provided, then best_clock P divider must match the P
638  * divider from @match_clock used for LVDS downclocking.
639  */
640 static bool
i9xx_find_best_dpll(const struct intel_limit * limit,struct intel_crtc_state * crtc_state,int target,int refclk,struct dpll * match_clock,struct dpll * best_clock)641 i9xx_find_best_dpll(const struct intel_limit *limit,
642 		    struct intel_crtc_state *crtc_state,
643 		    int target, int refclk, struct dpll *match_clock,
644 		    struct dpll *best_clock)
645 {
646 	struct drm_device *dev = crtc_state->base.crtc->dev;
647 	struct dpll clock;
648 	int err = target;
649 
650 	memset(best_clock, 0, sizeof(*best_clock));
651 
652 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
653 
654 	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
655 	     clock.m1++) {
656 		for (clock.m2 = limit->m2.min;
657 		     clock.m2 <= limit->m2.max; clock.m2++) {
658 			if (clock.m2 >= clock.m1)
659 				break;
660 			for (clock.n = limit->n.min;
661 			     clock.n <= limit->n.max; clock.n++) {
662 				for (clock.p1 = limit->p1.min;
663 					clock.p1 <= limit->p1.max; clock.p1++) {
664 					int this_err;
665 
666 					i9xx_calc_dpll_params(refclk, &clock);
667 					if (!intel_PLL_is_valid(to_i915(dev),
668 								limit,
669 								&clock))
670 						continue;
671 					if (match_clock &&
672 					    clock.p != match_clock->p)
673 						continue;
674 
675 					this_err = abs(clock.dot - target);
676 					if (this_err < err) {
677 						*best_clock = clock;
678 						err = this_err;
679 					}
680 				}
681 			}
682 		}
683 	}
684 
685 	return (err != target);
686 }
687 
688 /*
689  * Returns a set of divisors for the desired target clock with the given
690  * refclk, or FALSE.  The returned values represent the clock equation:
691  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
692  *
693  * Target and reference clocks are specified in kHz.
694  *
695  * If match_clock is provided, then best_clock P divider must match the P
696  * divider from @match_clock used for LVDS downclocking.
697  */
698 static bool
pnv_find_best_dpll(const struct intel_limit * limit,struct intel_crtc_state * crtc_state,int target,int refclk,struct dpll * match_clock,struct dpll * best_clock)699 pnv_find_best_dpll(const struct intel_limit *limit,
700 		   struct intel_crtc_state *crtc_state,
701 		   int target, int refclk, struct dpll *match_clock,
702 		   struct dpll *best_clock)
703 {
704 	struct drm_device *dev = crtc_state->base.crtc->dev;
705 	struct dpll clock;
706 	int err = target;
707 
708 	memset(best_clock, 0, sizeof(*best_clock));
709 
710 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
711 
712 	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
713 	     clock.m1++) {
714 		for (clock.m2 = limit->m2.min;
715 		     clock.m2 <= limit->m2.max; clock.m2++) {
716 			for (clock.n = limit->n.min;
717 			     clock.n <= limit->n.max; clock.n++) {
718 				for (clock.p1 = limit->p1.min;
719 					clock.p1 <= limit->p1.max; clock.p1++) {
720 					int this_err;
721 
722 					pnv_calc_dpll_params(refclk, &clock);
723 					if (!intel_PLL_is_valid(to_i915(dev),
724 								limit,
725 								&clock))
726 						continue;
727 					if (match_clock &&
728 					    clock.p != match_clock->p)
729 						continue;
730 
731 					this_err = abs(clock.dot - target);
732 					if (this_err < err) {
733 						*best_clock = clock;
734 						err = this_err;
735 					}
736 				}
737 			}
738 		}
739 	}
740 
741 	return (err != target);
742 }
743 
744 /*
745  * Returns a set of divisors for the desired target clock with the given
746  * refclk, or FALSE.  The returned values represent the clock equation:
747  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
748  *
749  * Target and reference clocks are specified in kHz.
750  *
751  * If match_clock is provided, then best_clock P divider must match the P
752  * divider from @match_clock used for LVDS downclocking.
753  */
754 static bool
g4x_find_best_dpll(const struct intel_limit * limit,struct intel_crtc_state * crtc_state,int target,int refclk,struct dpll * match_clock,struct dpll * best_clock)755 g4x_find_best_dpll(const struct intel_limit *limit,
756 		   struct intel_crtc_state *crtc_state,
757 		   int target, int refclk, struct dpll *match_clock,
758 		   struct dpll *best_clock)
759 {
760 	struct drm_device *dev = crtc_state->base.crtc->dev;
761 	struct dpll clock;
762 	int max_n;
763 	bool found = false;
764 	/* approximately equals target * 0.00585 */
765 	int err_most = (target >> 8) + (target >> 9);
766 
767 	memset(best_clock, 0, sizeof(*best_clock));
768 
769 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
770 
771 	max_n = limit->n.max;
772 	/* based on hardware requirement, prefer smaller n to precision */
773 	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
774 		/* based on hardware requirement, prefere larger m1,m2 */
775 		for (clock.m1 = limit->m1.max;
776 		     clock.m1 >= limit->m1.min; clock.m1--) {
777 			for (clock.m2 = limit->m2.max;
778 			     clock.m2 >= limit->m2.min; clock.m2--) {
779 				for (clock.p1 = limit->p1.max;
780 				     clock.p1 >= limit->p1.min; clock.p1--) {
781 					int this_err;
782 
783 					i9xx_calc_dpll_params(refclk, &clock);
784 					if (!intel_PLL_is_valid(to_i915(dev),
785 								limit,
786 								&clock))
787 						continue;
788 
789 					this_err = abs(clock.dot - target);
790 					if (this_err < err_most) {
791 						*best_clock = clock;
792 						err_most = this_err;
793 						max_n = clock.n;
794 						found = true;
795 					}
796 				}
797 			}
798 		}
799 	}
800 	return found;
801 }
802 
803 /*
804  * Check if the calculated PLL configuration is more optimal compared to the
805  * best configuration and error found so far. Return the calculated error.
806  */
vlv_PLL_is_optimal(struct drm_device * dev,int target_freq,const struct dpll * calculated_clock,const struct dpll * best_clock,unsigned int best_error_ppm,unsigned int * error_ppm)807 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
808 			       const struct dpll *calculated_clock,
809 			       const struct dpll *best_clock,
810 			       unsigned int best_error_ppm,
811 			       unsigned int *error_ppm)
812 {
813 	/*
814 	 * For CHV ignore the error and consider only the P value.
815 	 * Prefer a bigger P value based on HW requirements.
816 	 */
817 	if (IS_CHERRYVIEW(to_i915(dev))) {
818 		*error_ppm = 0;
819 
820 		return calculated_clock->p > best_clock->p;
821 	}
822 
823 	if (WARN_ON_ONCE(!target_freq))
824 		return false;
825 
826 	*error_ppm = div_u64(1000000ULL *
827 				abs(target_freq - calculated_clock->dot),
828 			     target_freq);
829 	/*
830 	 * Prefer a better P value over a better (smaller) error if the error
831 	 * is small. Ensure this preference for future configurations too by
832 	 * setting the error to 0.
833 	 */
834 	if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
835 		*error_ppm = 0;
836 
837 		return true;
838 	}
839 
840 	return *error_ppm + 10 < best_error_ppm;
841 }
842 
843 /*
844  * Returns a set of divisors for the desired target clock with the given
845  * refclk, or FALSE.  The returned values represent the clock equation:
846  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
847  */
848 static bool
vlv_find_best_dpll(const struct intel_limit * limit,struct intel_crtc_state * crtc_state,int target,int refclk,struct dpll * match_clock,struct dpll * best_clock)849 vlv_find_best_dpll(const struct intel_limit *limit,
850 		   struct intel_crtc_state *crtc_state,
851 		   int target, int refclk, struct dpll *match_clock,
852 		   struct dpll *best_clock)
853 {
854 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
855 	struct drm_device *dev = crtc->base.dev;
856 	struct dpll clock;
857 	unsigned int bestppm = 1000000;
858 	/* min update 19.2 MHz */
859 	int max_n = min(limit->n.max, refclk / 19200);
860 	bool found = false;
861 
862 	target *= 5; /* fast clock */
863 
864 	memset(best_clock, 0, sizeof(*best_clock));
865 
866 	/* based on hardware requirement, prefer smaller n to precision */
867 	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
868 		for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
869 			for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
870 			     clock.p2 -= clock.p2 > 10 ? 2 : 1) {
871 				clock.p = clock.p1 * clock.p2;
872 				/* based on hardware requirement, prefer bigger m1,m2 values */
873 				for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
874 					unsigned int ppm;
875 
876 					clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
877 								     refclk * clock.m1);
878 
879 					vlv_calc_dpll_params(refclk, &clock);
880 
881 					if (!intel_PLL_is_valid(to_i915(dev),
882 								limit,
883 								&clock))
884 						continue;
885 
886 					if (!vlv_PLL_is_optimal(dev, target,
887 								&clock,
888 								best_clock,
889 								bestppm, &ppm))
890 						continue;
891 
892 					*best_clock = clock;
893 					bestppm = ppm;
894 					found = true;
895 				}
896 			}
897 		}
898 	}
899 
900 	return found;
901 }
902 
903 /*
904  * Returns a set of divisors for the desired target clock with the given
905  * refclk, or FALSE.  The returned values represent the clock equation:
906  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
907  */
908 static bool
chv_find_best_dpll(const struct intel_limit * limit,struct intel_crtc_state * crtc_state,int target,int refclk,struct dpll * match_clock,struct dpll * best_clock)909 chv_find_best_dpll(const struct intel_limit *limit,
910 		   struct intel_crtc_state *crtc_state,
911 		   int target, int refclk, struct dpll *match_clock,
912 		   struct dpll *best_clock)
913 {
914 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
915 	struct drm_device *dev = crtc->base.dev;
916 	unsigned int best_error_ppm;
917 	struct dpll clock;
918 	uint64_t m2;
919 	int found = false;
920 
921 	memset(best_clock, 0, sizeof(*best_clock));
922 	best_error_ppm = 1000000;
923 
924 	/*
925 	 * Based on hardware doc, the n always set to 1, and m1 always
926 	 * set to 2.  If requires to support 200Mhz refclk, we need to
927 	 * revisit this because n may not 1 anymore.
928 	 */
929 	clock.n = 1, clock.m1 = 2;
930 	target *= 5;	/* fast clock */
931 
932 	for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
933 		for (clock.p2 = limit->p2.p2_fast;
934 				clock.p2 >= limit->p2.p2_slow;
935 				clock.p2 -= clock.p2 > 10 ? 2 : 1) {
936 			unsigned int error_ppm;
937 
938 			clock.p = clock.p1 * clock.p2;
939 
940 			m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
941 					clock.n) << 22, refclk * clock.m1);
942 
943 			if (m2 > INT_MAX/clock.m1)
944 				continue;
945 
946 			clock.m2 = m2;
947 
948 			chv_calc_dpll_params(refclk, &clock);
949 
950 			if (!intel_PLL_is_valid(to_i915(dev), limit, &clock))
951 				continue;
952 
953 			if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
954 						best_error_ppm, &error_ppm))
955 				continue;
956 
957 			*best_clock = clock;
958 			best_error_ppm = error_ppm;
959 			found = true;
960 		}
961 	}
962 
963 	return found;
964 }
965 
bxt_find_best_dpll(struct intel_crtc_state * crtc_state,int target_clock,struct dpll * best_clock)966 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
967 			struct dpll *best_clock)
968 {
969 	int refclk = 100000;
970 	const struct intel_limit *limit = &intel_limits_bxt;
971 
972 	return chv_find_best_dpll(limit, crtc_state,
973 				  target_clock, refclk, NULL, best_clock);
974 }
975 
intel_crtc_active(struct intel_crtc * crtc)976 bool intel_crtc_active(struct intel_crtc *crtc)
977 {
978 	/* Be paranoid as we can arrive here with only partial
979 	 * state retrieved from the hardware during setup.
980 	 *
981 	 * We can ditch the adjusted_mode.crtc_clock check as soon
982 	 * as Haswell has gained clock readout/fastboot support.
983 	 *
984 	 * We can ditch the crtc->primary->fb check as soon as we can
985 	 * properly reconstruct framebuffers.
986 	 *
987 	 * FIXME: The intel_crtc->active here should be switched to
988 	 * crtc->state->active once we have proper CRTC states wired up
989 	 * for atomic.
990 	 */
991 	return crtc->active && crtc->base.primary->state->fb &&
992 		crtc->config->base.adjusted_mode.crtc_clock;
993 }
994 
intel_pipe_to_cpu_transcoder(struct drm_i915_private * dev_priv,enum pipe pipe)995 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
996 					     enum pipe pipe)
997 {
998 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
999 
1000 	return crtc->config->cpu_transcoder;
1001 }
1002 
pipe_scanline_is_moving(struct drm_i915_private * dev_priv,enum pipe pipe)1003 static bool pipe_scanline_is_moving(struct drm_i915_private *dev_priv,
1004 				    enum pipe pipe)
1005 {
1006 	i915_reg_t reg = PIPEDSL(pipe);
1007 	u32 line1, line2;
1008 	u32 line_mask;
1009 
1010 	if (IS_GEN2(dev_priv))
1011 		line_mask = DSL_LINEMASK_GEN2;
1012 	else
1013 		line_mask = DSL_LINEMASK_GEN3;
1014 
1015 	line1 = I915_READ(reg) & line_mask;
1016 	msleep(5);
1017 	line2 = I915_READ(reg) & line_mask;
1018 
1019 	return line1 != line2;
1020 }
1021 
wait_for_pipe_scanline_moving(struct intel_crtc * crtc,bool state)1022 static void wait_for_pipe_scanline_moving(struct intel_crtc *crtc, bool state)
1023 {
1024 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1025 	enum pipe pipe = crtc->pipe;
1026 
1027 	/* Wait for the display line to settle/start moving */
1028 	if (wait_for(pipe_scanline_is_moving(dev_priv, pipe) == state, 100))
1029 		DRM_ERROR("pipe %c scanline %s wait timed out\n",
1030 			  pipe_name(pipe), onoff(state));
1031 }
1032 
intel_wait_for_pipe_scanline_stopped(struct intel_crtc * crtc)1033 static void intel_wait_for_pipe_scanline_stopped(struct intel_crtc *crtc)
1034 {
1035 	wait_for_pipe_scanline_moving(crtc, false);
1036 }
1037 
intel_wait_for_pipe_scanline_moving(struct intel_crtc * crtc)1038 static void intel_wait_for_pipe_scanline_moving(struct intel_crtc *crtc)
1039 {
1040 	wait_for_pipe_scanline_moving(crtc, true);
1041 }
1042 
1043 /*
1044  * intel_wait_for_pipe_off - wait for pipe to turn off
1045  * @crtc: crtc whose pipe to wait for
1046  *
1047  * After disabling a pipe, we can't wait for vblank in the usual way,
1048  * spinning on the vblank interrupt status bit, since we won't actually
1049  * see an interrupt when the pipe is disabled.
1050  *
1051  * On Gen4 and above:
1052  *   wait for the pipe register state bit to turn off
1053  *
1054  * Otherwise:
1055  *   wait for the display line value to settle (it usually
1056  *   ends up stopping at the start of the next frame).
1057  *
1058  */
intel_wait_for_pipe_off(struct intel_crtc * crtc)1059 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1060 {
1061 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1062 	enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1063 
1064 	if (INTEL_GEN(dev_priv) >= 4) {
1065 		i915_reg_t reg = PIPECONF(cpu_transcoder);
1066 
1067 		/* Wait for the Pipe State to go off */
1068 		if (intel_wait_for_register(dev_priv,
1069 					    reg, I965_PIPECONF_ACTIVE, 0,
1070 					    100))
1071 			WARN(1, "pipe_off wait timed out\n");
1072 	} else {
1073 		intel_wait_for_pipe_scanline_stopped(crtc);
1074 	}
1075 }
1076 
1077 /* Only for pre-ILK configs */
assert_pll(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)1078 void assert_pll(struct drm_i915_private *dev_priv,
1079 		enum pipe pipe, bool state)
1080 {
1081 	u32 val;
1082 	bool cur_state;
1083 
1084 	val = I915_READ(DPLL(pipe));
1085 	cur_state = !!(val & DPLL_VCO_ENABLE);
1086 	I915_STATE_WARN(cur_state != state,
1087 	     "PLL state assertion failure (expected %s, current %s)\n",
1088 			onoff(state), onoff(cur_state));
1089 }
1090 
1091 /* XXX: the dsi pll is shared between MIPI DSI ports */
assert_dsi_pll(struct drm_i915_private * dev_priv,bool state)1092 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1093 {
1094 	u32 val;
1095 	bool cur_state;
1096 
1097 	mutex_lock(&dev_priv->sb_lock);
1098 	val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1099 	mutex_unlock(&dev_priv->sb_lock);
1100 
1101 	cur_state = val & DSI_PLL_VCO_EN;
1102 	I915_STATE_WARN(cur_state != state,
1103 	     "DSI PLL state assertion failure (expected %s, current %s)\n",
1104 			onoff(state), onoff(cur_state));
1105 }
1106 
assert_fdi_tx(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)1107 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1108 			  enum pipe pipe, bool state)
1109 {
1110 	bool cur_state;
1111 	enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1112 								      pipe);
1113 
1114 	if (HAS_DDI(dev_priv)) {
1115 		/* DDI does not have a specific FDI_TX register */
1116 		u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1117 		cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1118 	} else {
1119 		u32 val = I915_READ(FDI_TX_CTL(pipe));
1120 		cur_state = !!(val & FDI_TX_ENABLE);
1121 	}
1122 	I915_STATE_WARN(cur_state != state,
1123 	     "FDI TX state assertion failure (expected %s, current %s)\n",
1124 			onoff(state), onoff(cur_state));
1125 }
1126 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1127 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1128 
assert_fdi_rx(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)1129 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1130 			  enum pipe pipe, bool state)
1131 {
1132 	u32 val;
1133 	bool cur_state;
1134 
1135 	val = I915_READ(FDI_RX_CTL(pipe));
1136 	cur_state = !!(val & FDI_RX_ENABLE);
1137 	I915_STATE_WARN(cur_state != state,
1138 	     "FDI RX state assertion failure (expected %s, current %s)\n",
1139 			onoff(state), onoff(cur_state));
1140 }
1141 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1142 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1143 
assert_fdi_tx_pll_enabled(struct drm_i915_private * dev_priv,enum pipe pipe)1144 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1145 				      enum pipe pipe)
1146 {
1147 	u32 val;
1148 
1149 	/* ILK FDI PLL is always enabled */
1150 	if (IS_GEN5(dev_priv))
1151 		return;
1152 
1153 	/* On Haswell, DDI ports are responsible for the FDI PLL setup */
1154 	if (HAS_DDI(dev_priv))
1155 		return;
1156 
1157 	val = I915_READ(FDI_TX_CTL(pipe));
1158 	I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1159 }
1160 
assert_fdi_rx_pll(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)1161 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1162 		       enum pipe pipe, bool state)
1163 {
1164 	u32 val;
1165 	bool cur_state;
1166 
1167 	val = I915_READ(FDI_RX_CTL(pipe));
1168 	cur_state = !!(val & FDI_RX_PLL_ENABLE);
1169 	I915_STATE_WARN(cur_state != state,
1170 	     "FDI RX PLL assertion failure (expected %s, current %s)\n",
1171 			onoff(state), onoff(cur_state));
1172 }
1173 
assert_panel_unlocked(struct drm_i915_private * dev_priv,enum pipe pipe)1174 void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe)
1175 {
1176 	i915_reg_t pp_reg;
1177 	u32 val;
1178 	enum pipe panel_pipe = PIPE_A;
1179 	bool locked = true;
1180 
1181 	if (WARN_ON(HAS_DDI(dev_priv)))
1182 		return;
1183 
1184 	if (HAS_PCH_SPLIT(dev_priv)) {
1185 		u32 port_sel;
1186 
1187 		pp_reg = PP_CONTROL(0);
1188 		port_sel = I915_READ(PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
1189 
1190 		if (port_sel == PANEL_PORT_SELECT_LVDS &&
1191 		    I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1192 			panel_pipe = PIPE_B;
1193 		/* XXX: else fix for eDP */
1194 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1195 		/* presumably write lock depends on pipe, not port select */
1196 		pp_reg = PP_CONTROL(pipe);
1197 		panel_pipe = pipe;
1198 	} else {
1199 		pp_reg = PP_CONTROL(0);
1200 		if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1201 			panel_pipe = PIPE_B;
1202 	}
1203 
1204 	val = I915_READ(pp_reg);
1205 	if (!(val & PANEL_POWER_ON) ||
1206 	    ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1207 		locked = false;
1208 
1209 	I915_STATE_WARN(panel_pipe == pipe && locked,
1210 	     "panel assertion failure, pipe %c regs locked\n",
1211 	     pipe_name(pipe));
1212 }
1213 
assert_pipe(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)1214 void assert_pipe(struct drm_i915_private *dev_priv,
1215 		 enum pipe pipe, bool state)
1216 {
1217 	bool cur_state;
1218 	enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1219 								      pipe);
1220 	enum intel_display_power_domain power_domain;
1221 
1222 	/* we keep both pipes enabled on 830 */
1223 	if (IS_I830(dev_priv))
1224 		state = true;
1225 
1226 	power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1227 	if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
1228 		u32 val = I915_READ(PIPECONF(cpu_transcoder));
1229 		cur_state = !!(val & PIPECONF_ENABLE);
1230 
1231 		intel_display_power_put(dev_priv, power_domain);
1232 	} else {
1233 		cur_state = false;
1234 	}
1235 
1236 	I915_STATE_WARN(cur_state != state,
1237 	     "pipe %c assertion failure (expected %s, current %s)\n",
1238 			pipe_name(pipe), onoff(state), onoff(cur_state));
1239 }
1240 
assert_plane(struct intel_plane * plane,bool state)1241 static void assert_plane(struct intel_plane *plane, bool state)
1242 {
1243 	bool cur_state = plane->get_hw_state(plane);
1244 
1245 	I915_STATE_WARN(cur_state != state,
1246 			"%s assertion failure (expected %s, current %s)\n",
1247 			plane->base.name, onoff(state), onoff(cur_state));
1248 }
1249 
1250 #define assert_plane_enabled(p) assert_plane(p, true)
1251 #define assert_plane_disabled(p) assert_plane(p, false)
1252 
assert_planes_disabled(struct intel_crtc * crtc)1253 static void assert_planes_disabled(struct intel_crtc *crtc)
1254 {
1255 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1256 	struct intel_plane *plane;
1257 
1258 	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane)
1259 		assert_plane_disabled(plane);
1260 }
1261 
assert_vblank_disabled(struct drm_crtc * crtc)1262 static void assert_vblank_disabled(struct drm_crtc *crtc)
1263 {
1264 	if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1265 		drm_crtc_vblank_put(crtc);
1266 }
1267 
assert_pch_transcoder_disabled(struct drm_i915_private * dev_priv,enum pipe pipe)1268 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1269 				    enum pipe pipe)
1270 {
1271 	u32 val;
1272 	bool enabled;
1273 
1274 	val = I915_READ(PCH_TRANSCONF(pipe));
1275 	enabled = !!(val & TRANS_ENABLE);
1276 	I915_STATE_WARN(enabled,
1277 	     "transcoder assertion failed, should be off on pipe %c but is still active\n",
1278 	     pipe_name(pipe));
1279 }
1280 
dp_pipe_enabled(struct drm_i915_private * dev_priv,enum pipe pipe,u32 port_sel,u32 val)1281 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1282 			    enum pipe pipe, u32 port_sel, u32 val)
1283 {
1284 	if ((val & DP_PORT_EN) == 0)
1285 		return false;
1286 
1287 	if (HAS_PCH_CPT(dev_priv)) {
1288 		u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
1289 		if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1290 			return false;
1291 	} else if (IS_CHERRYVIEW(dev_priv)) {
1292 		if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1293 			return false;
1294 	} else {
1295 		if ((val & DP_PIPE_MASK) != (pipe << 30))
1296 			return false;
1297 	}
1298 	return true;
1299 }
1300 
hdmi_pipe_enabled(struct drm_i915_private * dev_priv,enum pipe pipe,u32 val)1301 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1302 			      enum pipe pipe, u32 val)
1303 {
1304 	if ((val & SDVO_ENABLE) == 0)
1305 		return false;
1306 
1307 	if (HAS_PCH_CPT(dev_priv)) {
1308 		if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1309 			return false;
1310 	} else if (IS_CHERRYVIEW(dev_priv)) {
1311 		if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1312 			return false;
1313 	} else {
1314 		if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1315 			return false;
1316 	}
1317 	return true;
1318 }
1319 
lvds_pipe_enabled(struct drm_i915_private * dev_priv,enum pipe pipe,u32 val)1320 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1321 			      enum pipe pipe, u32 val)
1322 {
1323 	if ((val & LVDS_PORT_EN) == 0)
1324 		return false;
1325 
1326 	if (HAS_PCH_CPT(dev_priv)) {
1327 		if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1328 			return false;
1329 	} else {
1330 		if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1331 			return false;
1332 	}
1333 	return true;
1334 }
1335 
adpa_pipe_enabled(struct drm_i915_private * dev_priv,enum pipe pipe,u32 val)1336 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1337 			      enum pipe pipe, u32 val)
1338 {
1339 	if ((val & ADPA_DAC_ENABLE) == 0)
1340 		return false;
1341 	if (HAS_PCH_CPT(dev_priv)) {
1342 		if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1343 			return false;
1344 	} else {
1345 		if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1346 			return false;
1347 	}
1348 	return true;
1349 }
1350 
assert_pch_dp_disabled(struct drm_i915_private * dev_priv,enum pipe pipe,i915_reg_t reg,u32 port_sel)1351 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1352 				   enum pipe pipe, i915_reg_t reg,
1353 				   u32 port_sel)
1354 {
1355 	u32 val = I915_READ(reg);
1356 	I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1357 	     "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1358 	     i915_mmio_reg_offset(reg), pipe_name(pipe));
1359 
1360 	I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & DP_PORT_EN) == 0
1361 	     && (val & DP_PIPEB_SELECT),
1362 	     "IBX PCH dp port still using transcoder B\n");
1363 }
1364 
assert_pch_hdmi_disabled(struct drm_i915_private * dev_priv,enum pipe pipe,i915_reg_t reg)1365 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1366 				     enum pipe pipe, i915_reg_t reg)
1367 {
1368 	u32 val = I915_READ(reg);
1369 	I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1370 	     "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1371 	     i915_mmio_reg_offset(reg), pipe_name(pipe));
1372 
1373 	I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & SDVO_ENABLE) == 0
1374 	     && (val & SDVO_PIPE_B_SELECT),
1375 	     "IBX PCH hdmi port still using transcoder B\n");
1376 }
1377 
assert_pch_ports_disabled(struct drm_i915_private * dev_priv,enum pipe pipe)1378 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1379 				      enum pipe pipe)
1380 {
1381 	u32 val;
1382 
1383 	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1384 	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1385 	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1386 
1387 	val = I915_READ(PCH_ADPA);
1388 	I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1389 	     "PCH VGA enabled on transcoder %c, should be disabled\n",
1390 	     pipe_name(pipe));
1391 
1392 	val = I915_READ(PCH_LVDS);
1393 	I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1394 	     "PCH LVDS enabled on transcoder %c, should be disabled\n",
1395 	     pipe_name(pipe));
1396 
1397 	assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1398 	assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1399 	assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1400 }
1401 
_vlv_enable_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)1402 static void _vlv_enable_pll(struct intel_crtc *crtc,
1403 			    const struct intel_crtc_state *pipe_config)
1404 {
1405 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1406 	enum pipe pipe = crtc->pipe;
1407 
1408 	I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1409 	POSTING_READ(DPLL(pipe));
1410 	udelay(150);
1411 
1412 	if (intel_wait_for_register(dev_priv,
1413 				    DPLL(pipe),
1414 				    DPLL_LOCK_VLV,
1415 				    DPLL_LOCK_VLV,
1416 				    1))
1417 		DRM_ERROR("DPLL %d failed to lock\n", pipe);
1418 }
1419 
vlv_enable_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)1420 static void vlv_enable_pll(struct intel_crtc *crtc,
1421 			   const struct intel_crtc_state *pipe_config)
1422 {
1423 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1424 	enum pipe pipe = crtc->pipe;
1425 
1426 	assert_pipe_disabled(dev_priv, pipe);
1427 
1428 	/* PLL is protected by panel, make sure we can write it */
1429 	assert_panel_unlocked(dev_priv, pipe);
1430 
1431 	if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1432 		_vlv_enable_pll(crtc, pipe_config);
1433 
1434 	I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1435 	POSTING_READ(DPLL_MD(pipe));
1436 }
1437 
1438 
_chv_enable_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)1439 static void _chv_enable_pll(struct intel_crtc *crtc,
1440 			    const struct intel_crtc_state *pipe_config)
1441 {
1442 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1443 	enum pipe pipe = crtc->pipe;
1444 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
1445 	u32 tmp;
1446 
1447 	mutex_lock(&dev_priv->sb_lock);
1448 
1449 	/* Enable back the 10bit clock to display controller */
1450 	tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1451 	tmp |= DPIO_DCLKP_EN;
1452 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1453 
1454 	mutex_unlock(&dev_priv->sb_lock);
1455 
1456 	/*
1457 	 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1458 	 */
1459 	udelay(1);
1460 
1461 	/* Enable PLL */
1462 	I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1463 
1464 	/* Check PLL is locked */
1465 	if (intel_wait_for_register(dev_priv,
1466 				    DPLL(pipe), DPLL_LOCK_VLV, DPLL_LOCK_VLV,
1467 				    1))
1468 		DRM_ERROR("PLL %d failed to lock\n", pipe);
1469 }
1470 
chv_enable_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)1471 static void chv_enable_pll(struct intel_crtc *crtc,
1472 			   const struct intel_crtc_state *pipe_config)
1473 {
1474 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1475 	enum pipe pipe = crtc->pipe;
1476 
1477 	assert_pipe_disabled(dev_priv, pipe);
1478 
1479 	/* PLL is protected by panel, make sure we can write it */
1480 	assert_panel_unlocked(dev_priv, pipe);
1481 
1482 	if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1483 		_chv_enable_pll(crtc, pipe_config);
1484 
1485 	if (pipe != PIPE_A) {
1486 		/*
1487 		 * WaPixelRepeatModeFixForC0:chv
1488 		 *
1489 		 * DPLLCMD is AWOL. Use chicken bits to propagate
1490 		 * the value from DPLLBMD to either pipe B or C.
1491 		 */
1492 		I915_WRITE(CBR4_VLV, pipe == PIPE_B ? CBR_DPLLBMD_PIPE_B : CBR_DPLLBMD_PIPE_C);
1493 		I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
1494 		I915_WRITE(CBR4_VLV, 0);
1495 		dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1496 
1497 		/*
1498 		 * DPLLB VGA mode also seems to cause problems.
1499 		 * We should always have it disabled.
1500 		 */
1501 		WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
1502 	} else {
1503 		I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1504 		POSTING_READ(DPLL_MD(pipe));
1505 	}
1506 }
1507 
intel_num_dvo_pipes(struct drm_i915_private * dev_priv)1508 static int intel_num_dvo_pipes(struct drm_i915_private *dev_priv)
1509 {
1510 	struct intel_crtc *crtc;
1511 	int count = 0;
1512 
1513 	for_each_intel_crtc(&dev_priv->drm, crtc) {
1514 		count += crtc->base.state->active &&
1515 			intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO);
1516 	}
1517 
1518 	return count;
1519 }
1520 
i9xx_enable_pll(struct intel_crtc * crtc)1521 static void i9xx_enable_pll(struct intel_crtc *crtc)
1522 {
1523 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1524 	i915_reg_t reg = DPLL(crtc->pipe);
1525 	u32 dpll = crtc->config->dpll_hw_state.dpll;
1526 	int i;
1527 
1528 	assert_pipe_disabled(dev_priv, crtc->pipe);
1529 
1530 	/* PLL is protected by panel, make sure we can write it */
1531 	if (IS_MOBILE(dev_priv) && !IS_I830(dev_priv))
1532 		assert_panel_unlocked(dev_priv, crtc->pipe);
1533 
1534 	/* Enable DVO 2x clock on both PLLs if necessary */
1535 	if (IS_I830(dev_priv) && intel_num_dvo_pipes(dev_priv) > 0) {
1536 		/*
1537 		 * It appears to be important that we don't enable this
1538 		 * for the current pipe before otherwise configuring the
1539 		 * PLL. No idea how this should be handled if multiple
1540 		 * DVO outputs are enabled simultaneosly.
1541 		 */
1542 		dpll |= DPLL_DVO_2X_MODE;
1543 		I915_WRITE(DPLL(!crtc->pipe),
1544 			   I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1545 	}
1546 
1547 	/*
1548 	 * Apparently we need to have VGA mode enabled prior to changing
1549 	 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1550 	 * dividers, even though the register value does change.
1551 	 */
1552 	I915_WRITE(reg, 0);
1553 
1554 	I915_WRITE(reg, dpll);
1555 
1556 	/* Wait for the clocks to stabilize. */
1557 	POSTING_READ(reg);
1558 	udelay(150);
1559 
1560 	if (INTEL_GEN(dev_priv) >= 4) {
1561 		I915_WRITE(DPLL_MD(crtc->pipe),
1562 			   crtc->config->dpll_hw_state.dpll_md);
1563 	} else {
1564 		/* The pixel multiplier can only be updated once the
1565 		 * DPLL is enabled and the clocks are stable.
1566 		 *
1567 		 * So write it again.
1568 		 */
1569 		I915_WRITE(reg, dpll);
1570 	}
1571 
1572 	/* We do this three times for luck */
1573 	for (i = 0; i < 3; i++) {
1574 		I915_WRITE(reg, dpll);
1575 		POSTING_READ(reg);
1576 		udelay(150); /* wait for warmup */
1577 	}
1578 }
1579 
1580 /**
1581  * i9xx_disable_pll - disable a PLL
1582  * @dev_priv: i915 private structure
1583  * @pipe: pipe PLL to disable
1584  *
1585  * Disable the PLL for @pipe, making sure the pipe is off first.
1586  *
1587  * Note!  This is for pre-ILK only.
1588  */
i9xx_disable_pll(struct intel_crtc * crtc)1589 static void i9xx_disable_pll(struct intel_crtc *crtc)
1590 {
1591 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1592 	enum pipe pipe = crtc->pipe;
1593 
1594 	/* Disable DVO 2x clock on both PLLs if necessary */
1595 	if (IS_I830(dev_priv) &&
1596 	    intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO) &&
1597 	    !intel_num_dvo_pipes(dev_priv)) {
1598 		I915_WRITE(DPLL(PIPE_B),
1599 			   I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1600 		I915_WRITE(DPLL(PIPE_A),
1601 			   I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1602 	}
1603 
1604 	/* Don't disable pipe or pipe PLLs if needed */
1605 	if (IS_I830(dev_priv))
1606 		return;
1607 
1608 	/* Make sure the pipe isn't still relying on us */
1609 	assert_pipe_disabled(dev_priv, pipe);
1610 
1611 	I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1612 	POSTING_READ(DPLL(pipe));
1613 }
1614 
vlv_disable_pll(struct drm_i915_private * dev_priv,enum pipe pipe)1615 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1616 {
1617 	u32 val;
1618 
1619 	/* Make sure the pipe isn't still relying on us */
1620 	assert_pipe_disabled(dev_priv, pipe);
1621 
1622 	val = DPLL_INTEGRATED_REF_CLK_VLV |
1623 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1624 	if (pipe != PIPE_A)
1625 		val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1626 
1627 	I915_WRITE(DPLL(pipe), val);
1628 	POSTING_READ(DPLL(pipe));
1629 }
1630 
chv_disable_pll(struct drm_i915_private * dev_priv,enum pipe pipe)1631 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1632 {
1633 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
1634 	u32 val;
1635 
1636 	/* Make sure the pipe isn't still relying on us */
1637 	assert_pipe_disabled(dev_priv, pipe);
1638 
1639 	val = DPLL_SSC_REF_CLK_CHV |
1640 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1641 	if (pipe != PIPE_A)
1642 		val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1643 
1644 	I915_WRITE(DPLL(pipe), val);
1645 	POSTING_READ(DPLL(pipe));
1646 
1647 	mutex_lock(&dev_priv->sb_lock);
1648 
1649 	/* Disable 10bit clock to display controller */
1650 	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1651 	val &= ~DPIO_DCLKP_EN;
1652 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1653 
1654 	mutex_unlock(&dev_priv->sb_lock);
1655 }
1656 
vlv_wait_port_ready(struct drm_i915_private * dev_priv,struct intel_digital_port * dport,unsigned int expected_mask)1657 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1658 			 struct intel_digital_port *dport,
1659 			 unsigned int expected_mask)
1660 {
1661 	u32 port_mask;
1662 	i915_reg_t dpll_reg;
1663 
1664 	switch (dport->port) {
1665 	case PORT_B:
1666 		port_mask = DPLL_PORTB_READY_MASK;
1667 		dpll_reg = DPLL(0);
1668 		break;
1669 	case PORT_C:
1670 		port_mask = DPLL_PORTC_READY_MASK;
1671 		dpll_reg = DPLL(0);
1672 		expected_mask <<= 4;
1673 		break;
1674 	case PORT_D:
1675 		port_mask = DPLL_PORTD_READY_MASK;
1676 		dpll_reg = DPIO_PHY_STATUS;
1677 		break;
1678 	default:
1679 		BUG();
1680 	}
1681 
1682 	if (intel_wait_for_register(dev_priv,
1683 				    dpll_reg, port_mask, expected_mask,
1684 				    1000))
1685 		WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1686 		     port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1687 }
1688 
ironlake_enable_pch_transcoder(struct drm_i915_private * dev_priv,enum pipe pipe)1689 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1690 					   enum pipe pipe)
1691 {
1692 	struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
1693 								pipe);
1694 	i915_reg_t reg;
1695 	uint32_t val, pipeconf_val;
1696 
1697 	/* Make sure PCH DPLL is enabled */
1698 	assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll);
1699 
1700 	/* FDI must be feeding us bits for PCH ports */
1701 	assert_fdi_tx_enabled(dev_priv, pipe);
1702 	assert_fdi_rx_enabled(dev_priv, pipe);
1703 
1704 	if (HAS_PCH_CPT(dev_priv)) {
1705 		/* Workaround: Set the timing override bit before enabling the
1706 		 * pch transcoder. */
1707 		reg = TRANS_CHICKEN2(pipe);
1708 		val = I915_READ(reg);
1709 		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1710 		I915_WRITE(reg, val);
1711 	}
1712 
1713 	reg = PCH_TRANSCONF(pipe);
1714 	val = I915_READ(reg);
1715 	pipeconf_val = I915_READ(PIPECONF(pipe));
1716 
1717 	if (HAS_PCH_IBX(dev_priv)) {
1718 		/*
1719 		 * Make the BPC in transcoder be consistent with
1720 		 * that in pipeconf reg. For HDMI we must use 8bpc
1721 		 * here for both 8bpc and 12bpc.
1722 		 */
1723 		val &= ~PIPECONF_BPC_MASK;
1724 		if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_HDMI))
1725 			val |= PIPECONF_8BPC;
1726 		else
1727 			val |= pipeconf_val & PIPECONF_BPC_MASK;
1728 	}
1729 
1730 	val &= ~TRANS_INTERLACE_MASK;
1731 	if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1732 		if (HAS_PCH_IBX(dev_priv) &&
1733 		    intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
1734 			val |= TRANS_LEGACY_INTERLACED_ILK;
1735 		else
1736 			val |= TRANS_INTERLACED;
1737 	else
1738 		val |= TRANS_PROGRESSIVE;
1739 
1740 	I915_WRITE(reg, val | TRANS_ENABLE);
1741 	if (intel_wait_for_register(dev_priv,
1742 				    reg, TRANS_STATE_ENABLE, TRANS_STATE_ENABLE,
1743 				    100))
1744 		DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1745 }
1746 
lpt_enable_pch_transcoder(struct drm_i915_private * dev_priv,enum transcoder cpu_transcoder)1747 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1748 				      enum transcoder cpu_transcoder)
1749 {
1750 	u32 val, pipeconf_val;
1751 
1752 	/* FDI must be feeding us bits for PCH ports */
1753 	assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1754 	assert_fdi_rx_enabled(dev_priv, PIPE_A);
1755 
1756 	/* Workaround: set timing override bit. */
1757 	val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1758 	val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1759 	I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1760 
1761 	val = TRANS_ENABLE;
1762 	pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1763 
1764 	if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1765 	    PIPECONF_INTERLACED_ILK)
1766 		val |= TRANS_INTERLACED;
1767 	else
1768 		val |= TRANS_PROGRESSIVE;
1769 
1770 	I915_WRITE(LPT_TRANSCONF, val);
1771 	if (intel_wait_for_register(dev_priv,
1772 				    LPT_TRANSCONF,
1773 				    TRANS_STATE_ENABLE,
1774 				    TRANS_STATE_ENABLE,
1775 				    100))
1776 		DRM_ERROR("Failed to enable PCH transcoder\n");
1777 }
1778 
ironlake_disable_pch_transcoder(struct drm_i915_private * dev_priv,enum pipe pipe)1779 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1780 					    enum pipe pipe)
1781 {
1782 	i915_reg_t reg;
1783 	uint32_t val;
1784 
1785 	/* FDI relies on the transcoder */
1786 	assert_fdi_tx_disabled(dev_priv, pipe);
1787 	assert_fdi_rx_disabled(dev_priv, pipe);
1788 
1789 	/* Ports must be off as well */
1790 	assert_pch_ports_disabled(dev_priv, pipe);
1791 
1792 	reg = PCH_TRANSCONF(pipe);
1793 	val = I915_READ(reg);
1794 	val &= ~TRANS_ENABLE;
1795 	I915_WRITE(reg, val);
1796 	/* wait for PCH transcoder off, transcoder state */
1797 	if (intel_wait_for_register(dev_priv,
1798 				    reg, TRANS_STATE_ENABLE, 0,
1799 				    50))
1800 		DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1801 
1802 	if (HAS_PCH_CPT(dev_priv)) {
1803 		/* Workaround: Clear the timing override chicken bit again. */
1804 		reg = TRANS_CHICKEN2(pipe);
1805 		val = I915_READ(reg);
1806 		val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1807 		I915_WRITE(reg, val);
1808 	}
1809 }
1810 
lpt_disable_pch_transcoder(struct drm_i915_private * dev_priv)1811 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1812 {
1813 	u32 val;
1814 
1815 	val = I915_READ(LPT_TRANSCONF);
1816 	val &= ~TRANS_ENABLE;
1817 	I915_WRITE(LPT_TRANSCONF, val);
1818 	/* wait for PCH transcoder off, transcoder state */
1819 	if (intel_wait_for_register(dev_priv,
1820 				    LPT_TRANSCONF, TRANS_STATE_ENABLE, 0,
1821 				    50))
1822 		DRM_ERROR("Failed to disable PCH transcoder\n");
1823 
1824 	/* Workaround: clear timing override bit. */
1825 	val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1826 	val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1827 	I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1828 }
1829 
intel_crtc_pch_transcoder(struct intel_crtc * crtc)1830 enum pipe intel_crtc_pch_transcoder(struct intel_crtc *crtc)
1831 {
1832 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1833 
1834 	WARN_ON(!crtc->config->has_pch_encoder);
1835 
1836 	if (HAS_PCH_LPT(dev_priv))
1837 		return PIPE_A;
1838 	else
1839 		return crtc->pipe;
1840 }
1841 
1842 /**
1843  * intel_enable_pipe - enable a pipe, asserting requirements
1844  * @crtc: crtc responsible for the pipe
1845  *
1846  * Enable @crtc's pipe, making sure that various hardware specific requirements
1847  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1848  */
intel_enable_pipe(struct intel_crtc * crtc)1849 static void intel_enable_pipe(struct intel_crtc *crtc)
1850 {
1851 	struct drm_device *dev = crtc->base.dev;
1852 	struct drm_i915_private *dev_priv = to_i915(dev);
1853 	enum pipe pipe = crtc->pipe;
1854 	enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1855 	i915_reg_t reg;
1856 	u32 val;
1857 
1858 	DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1859 
1860 	assert_planes_disabled(crtc);
1861 
1862 	/*
1863 	 * A pipe without a PLL won't actually be able to drive bits from
1864 	 * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1865 	 * need the check.
1866 	 */
1867 	if (HAS_GMCH_DISPLAY(dev_priv)) {
1868 		if (intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DSI))
1869 			assert_dsi_pll_enabled(dev_priv);
1870 		else
1871 			assert_pll_enabled(dev_priv, pipe);
1872 	} else {
1873 		if (crtc->config->has_pch_encoder) {
1874 			/* if driving the PCH, we need FDI enabled */
1875 			assert_fdi_rx_pll_enabled(dev_priv,
1876 						  intel_crtc_pch_transcoder(crtc));
1877 			assert_fdi_tx_pll_enabled(dev_priv,
1878 						  (enum pipe) cpu_transcoder);
1879 		}
1880 		/* FIXME: assert CPU port conditions for SNB+ */
1881 	}
1882 
1883 	reg = PIPECONF(cpu_transcoder);
1884 	val = I915_READ(reg);
1885 	if (val & PIPECONF_ENABLE) {
1886 		/* we keep both pipes enabled on 830 */
1887 		WARN_ON(!IS_I830(dev_priv));
1888 		return;
1889 	}
1890 
1891 	I915_WRITE(reg, val | PIPECONF_ENABLE);
1892 	POSTING_READ(reg);
1893 
1894 	/*
1895 	 * Until the pipe starts PIPEDSL reads will return a stale value,
1896 	 * which causes an apparent vblank timestamp jump when PIPEDSL
1897 	 * resets to its proper value. That also messes up the frame count
1898 	 * when it's derived from the timestamps. So let's wait for the
1899 	 * pipe to start properly before we call drm_crtc_vblank_on()
1900 	 */
1901 	if (dev->max_vblank_count == 0)
1902 		intel_wait_for_pipe_scanline_moving(crtc);
1903 }
1904 
1905 /**
1906  * intel_disable_pipe - disable a pipe, asserting requirements
1907  * @crtc: crtc whose pipes is to be disabled
1908  *
1909  * Disable the pipe of @crtc, making sure that various hardware
1910  * specific requirements are met, if applicable, e.g. plane
1911  * disabled, panel fitter off, etc.
1912  *
1913  * Will wait until the pipe has shut down before returning.
1914  */
intel_disable_pipe(struct intel_crtc * crtc)1915 static void intel_disable_pipe(struct intel_crtc *crtc)
1916 {
1917 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1918 	enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1919 	enum pipe pipe = crtc->pipe;
1920 	i915_reg_t reg;
1921 	u32 val;
1922 
1923 	DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
1924 
1925 	/*
1926 	 * Make sure planes won't keep trying to pump pixels to us,
1927 	 * or we might hang the display.
1928 	 */
1929 	assert_planes_disabled(crtc);
1930 
1931 	reg = PIPECONF(cpu_transcoder);
1932 	val = I915_READ(reg);
1933 	if ((val & PIPECONF_ENABLE) == 0)
1934 		return;
1935 
1936 	/*
1937 	 * Double wide has implications for planes
1938 	 * so best keep it disabled when not needed.
1939 	 */
1940 	if (crtc->config->double_wide)
1941 		val &= ~PIPECONF_DOUBLE_WIDE;
1942 
1943 	/* Don't disable pipe or pipe PLLs if needed */
1944 	if (!IS_I830(dev_priv))
1945 		val &= ~PIPECONF_ENABLE;
1946 
1947 	I915_WRITE(reg, val);
1948 	if ((val & PIPECONF_ENABLE) == 0)
1949 		intel_wait_for_pipe_off(crtc);
1950 }
1951 
intel_tile_size(const struct drm_i915_private * dev_priv)1952 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
1953 {
1954 	return IS_GEN2(dev_priv) ? 2048 : 4096;
1955 }
1956 
1957 static unsigned int
intel_tile_width_bytes(const struct drm_framebuffer * fb,int plane)1958 intel_tile_width_bytes(const struct drm_framebuffer *fb, int plane)
1959 {
1960 	struct drm_i915_private *dev_priv = to_i915(fb->dev);
1961 	unsigned int cpp = fb->format->cpp[plane];
1962 
1963 	switch (fb->modifier) {
1964 	case DRM_FORMAT_MOD_LINEAR:
1965 		return cpp;
1966 	case I915_FORMAT_MOD_X_TILED:
1967 		if (IS_GEN2(dev_priv))
1968 			return 128;
1969 		else
1970 			return 512;
1971 	case I915_FORMAT_MOD_Y_TILED_CCS:
1972 		if (plane == 1)
1973 			return 128;
1974 		/* fall through */
1975 	case I915_FORMAT_MOD_Y_TILED:
1976 		if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
1977 			return 128;
1978 		else
1979 			return 512;
1980 	case I915_FORMAT_MOD_Yf_TILED_CCS:
1981 		if (plane == 1)
1982 			return 128;
1983 		/* fall through */
1984 	case I915_FORMAT_MOD_Yf_TILED:
1985 		switch (cpp) {
1986 		case 1:
1987 			return 64;
1988 		case 2:
1989 		case 4:
1990 			return 128;
1991 		case 8:
1992 		case 16:
1993 			return 256;
1994 		default:
1995 			MISSING_CASE(cpp);
1996 			return cpp;
1997 		}
1998 		break;
1999 	default:
2000 		MISSING_CASE(fb->modifier);
2001 		return cpp;
2002 	}
2003 }
2004 
2005 static unsigned int
intel_tile_height(const struct drm_framebuffer * fb,int plane)2006 intel_tile_height(const struct drm_framebuffer *fb, int plane)
2007 {
2008 	if (fb->modifier == DRM_FORMAT_MOD_LINEAR)
2009 		return 1;
2010 	else
2011 		return intel_tile_size(to_i915(fb->dev)) /
2012 			intel_tile_width_bytes(fb, plane);
2013 }
2014 
2015 /* Return the tile dimensions in pixel units */
intel_tile_dims(const struct drm_framebuffer * fb,int plane,unsigned int * tile_width,unsigned int * tile_height)2016 static void intel_tile_dims(const struct drm_framebuffer *fb, int plane,
2017 			    unsigned int *tile_width,
2018 			    unsigned int *tile_height)
2019 {
2020 	unsigned int tile_width_bytes = intel_tile_width_bytes(fb, plane);
2021 	unsigned int cpp = fb->format->cpp[plane];
2022 
2023 	*tile_width = tile_width_bytes / cpp;
2024 	*tile_height = intel_tile_size(to_i915(fb->dev)) / tile_width_bytes;
2025 }
2026 
2027 unsigned int
intel_fb_align_height(const struct drm_framebuffer * fb,int plane,unsigned int height)2028 intel_fb_align_height(const struct drm_framebuffer *fb,
2029 		      int plane, unsigned int height)
2030 {
2031 	unsigned int tile_height = intel_tile_height(fb, plane);
2032 
2033 	return ALIGN(height, tile_height);
2034 }
2035 
intel_rotation_info_size(const struct intel_rotation_info * rot_info)2036 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2037 {
2038 	unsigned int size = 0;
2039 	int i;
2040 
2041 	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2042 		size += rot_info->plane[i].width * rot_info->plane[i].height;
2043 
2044 	return size;
2045 }
2046 
2047 static void
intel_fill_fb_ggtt_view(struct i915_ggtt_view * view,const struct drm_framebuffer * fb,unsigned int rotation)2048 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2049 			const struct drm_framebuffer *fb,
2050 			unsigned int rotation)
2051 {
2052 	view->type = I915_GGTT_VIEW_NORMAL;
2053 	if (drm_rotation_90_or_270(rotation)) {
2054 		view->type = I915_GGTT_VIEW_ROTATED;
2055 		view->rotated = to_intel_framebuffer(fb)->rot_info;
2056 	}
2057 }
2058 
intel_cursor_alignment(const struct drm_i915_private * dev_priv)2059 static unsigned int intel_cursor_alignment(const struct drm_i915_private *dev_priv)
2060 {
2061 	if (IS_I830(dev_priv))
2062 		return 16 * 1024;
2063 	else if (IS_I85X(dev_priv))
2064 		return 256;
2065 	else if (IS_I845G(dev_priv) || IS_I865G(dev_priv))
2066 		return 32;
2067 	else
2068 		return 4 * 1024;
2069 }
2070 
intel_linear_alignment(const struct drm_i915_private * dev_priv)2071 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2072 {
2073 	if (INTEL_INFO(dev_priv)->gen >= 9)
2074 		return 256 * 1024;
2075 	else if (IS_I965G(dev_priv) || IS_I965GM(dev_priv) ||
2076 		 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2077 		return 128 * 1024;
2078 	else if (INTEL_INFO(dev_priv)->gen >= 4)
2079 		return 4 * 1024;
2080 	else
2081 		return 0;
2082 }
2083 
intel_surf_alignment(const struct drm_framebuffer * fb,int plane)2084 static unsigned int intel_surf_alignment(const struct drm_framebuffer *fb,
2085 					 int plane)
2086 {
2087 	struct drm_i915_private *dev_priv = to_i915(fb->dev);
2088 
2089 	/* AUX_DIST needs only 4K alignment */
2090 	if (plane == 1)
2091 		return 4096;
2092 
2093 	switch (fb->modifier) {
2094 	case DRM_FORMAT_MOD_LINEAR:
2095 		return intel_linear_alignment(dev_priv);
2096 	case I915_FORMAT_MOD_X_TILED:
2097 		if (INTEL_GEN(dev_priv) >= 9)
2098 			return 256 * 1024;
2099 		return 0;
2100 	case I915_FORMAT_MOD_Y_TILED_CCS:
2101 	case I915_FORMAT_MOD_Yf_TILED_CCS:
2102 	case I915_FORMAT_MOD_Y_TILED:
2103 	case I915_FORMAT_MOD_Yf_TILED:
2104 		return 1 * 1024 * 1024;
2105 	default:
2106 		MISSING_CASE(fb->modifier);
2107 		return 0;
2108 	}
2109 }
2110 
2111 struct i915_vma *
intel_pin_and_fence_fb_obj(struct drm_framebuffer * fb,unsigned int rotation)2112 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
2113 {
2114 	struct drm_device *dev = fb->dev;
2115 	struct drm_i915_private *dev_priv = to_i915(dev);
2116 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2117 	struct i915_ggtt_view view;
2118 	struct i915_vma *vma;
2119 	u32 alignment;
2120 
2121 	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2122 
2123 	alignment = intel_surf_alignment(fb, 0);
2124 
2125 	intel_fill_fb_ggtt_view(&view, fb, rotation);
2126 
2127 	/* Note that the w/a also requires 64 PTE of padding following the
2128 	 * bo. We currently fill all unused PTE with the shadow page and so
2129 	 * we should always have valid PTE following the scanout preventing
2130 	 * the VT-d warning.
2131 	 */
2132 	if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024)
2133 		alignment = 256 * 1024;
2134 
2135 	/*
2136 	 * Global gtt pte registers are special registers which actually forward
2137 	 * writes to a chunk of system memory. Which means that there is no risk
2138 	 * that the register values disappear as soon as we call
2139 	 * intel_runtime_pm_put(), so it is correct to wrap only the
2140 	 * pin/unpin/fence and not more.
2141 	 */
2142 	intel_runtime_pm_get(dev_priv);
2143 
2144 	atomic_inc(&dev_priv->gpu_error.pending_fb_pin);
2145 
2146 	vma = i915_gem_object_pin_to_display_plane(obj, alignment, &view);
2147 	if (IS_ERR(vma))
2148 		goto err;
2149 
2150 	if (i915_vma_is_map_and_fenceable(vma)) {
2151 		/* Install a fence for tiled scan-out. Pre-i965 always needs a
2152 		 * fence, whereas 965+ only requires a fence if using
2153 		 * framebuffer compression.  For simplicity, we always, when
2154 		 * possible, install a fence as the cost is not that onerous.
2155 		 *
2156 		 * If we fail to fence the tiled scanout, then either the
2157 		 * modeset will reject the change (which is highly unlikely as
2158 		 * the affected systems, all but one, do not have unmappable
2159 		 * space) or we will not be able to enable full powersaving
2160 		 * techniques (also likely not to apply due to various limits
2161 		 * FBC and the like impose on the size of the buffer, which
2162 		 * presumably we violated anyway with this unmappable buffer).
2163 		 * Anyway, it is presumably better to stumble onwards with
2164 		 * something and try to run the system in a "less than optimal"
2165 		 * mode that matches the user configuration.
2166 		 */
2167 		if (i915_vma_get_fence(vma) == 0)
2168 			i915_vma_pin_fence(vma);
2169 	}
2170 
2171 	i915_vma_get(vma);
2172 err:
2173 	atomic_dec(&dev_priv->gpu_error.pending_fb_pin);
2174 
2175 	intel_runtime_pm_put(dev_priv);
2176 	return vma;
2177 }
2178 
intel_unpin_fb_vma(struct i915_vma * vma)2179 void intel_unpin_fb_vma(struct i915_vma *vma)
2180 {
2181 	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
2182 
2183 	i915_vma_unpin_fence(vma);
2184 	i915_gem_object_unpin_from_display_plane(vma);
2185 	i915_vma_put(vma);
2186 }
2187 
intel_fb_pitch(const struct drm_framebuffer * fb,int plane,unsigned int rotation)2188 static int intel_fb_pitch(const struct drm_framebuffer *fb, int plane,
2189 			  unsigned int rotation)
2190 {
2191 	if (drm_rotation_90_or_270(rotation))
2192 		return to_intel_framebuffer(fb)->rotated[plane].pitch;
2193 	else
2194 		return fb->pitches[plane];
2195 }
2196 
2197 /*
2198  * Convert the x/y offsets into a linear offset.
2199  * Only valid with 0/180 degree rotation, which is fine since linear
2200  * offset is only used with linear buffers on pre-hsw and tiled buffers
2201  * with gen2/3, and 90/270 degree rotations isn't supported on any of them.
2202  */
intel_fb_xy_to_linear(int x,int y,const struct intel_plane_state * state,int plane)2203 u32 intel_fb_xy_to_linear(int x, int y,
2204 			  const struct intel_plane_state *state,
2205 			  int plane)
2206 {
2207 	const struct drm_framebuffer *fb = state->base.fb;
2208 	unsigned int cpp = fb->format->cpp[plane];
2209 	unsigned int pitch = fb->pitches[plane];
2210 
2211 	return y * pitch + x * cpp;
2212 }
2213 
2214 /*
2215  * Add the x/y offsets derived from fb->offsets[] to the user
2216  * specified plane src x/y offsets. The resulting x/y offsets
2217  * specify the start of scanout from the beginning of the gtt mapping.
2218  */
intel_add_fb_offsets(int * x,int * y,const struct intel_plane_state * state,int plane)2219 void intel_add_fb_offsets(int *x, int *y,
2220 			  const struct intel_plane_state *state,
2221 			  int plane)
2222 
2223 {
2224 	const struct intel_framebuffer *intel_fb = to_intel_framebuffer(state->base.fb);
2225 	unsigned int rotation = state->base.rotation;
2226 
2227 	if (drm_rotation_90_or_270(rotation)) {
2228 		*x += intel_fb->rotated[plane].x;
2229 		*y += intel_fb->rotated[plane].y;
2230 	} else {
2231 		*x += intel_fb->normal[plane].x;
2232 		*y += intel_fb->normal[plane].y;
2233 	}
2234 }
2235 
__intel_adjust_tile_offset(int * x,int * y,unsigned int tile_width,unsigned int tile_height,unsigned int tile_size,unsigned int pitch_tiles,u32 old_offset,u32 new_offset)2236 static u32 __intel_adjust_tile_offset(int *x, int *y,
2237 				      unsigned int tile_width,
2238 				      unsigned int tile_height,
2239 				      unsigned int tile_size,
2240 				      unsigned int pitch_tiles,
2241 				      u32 old_offset,
2242 				      u32 new_offset)
2243 {
2244 	unsigned int pitch_pixels = pitch_tiles * tile_width;
2245 	unsigned int tiles;
2246 
2247 	WARN_ON(old_offset & (tile_size - 1));
2248 	WARN_ON(new_offset & (tile_size - 1));
2249 	WARN_ON(new_offset > old_offset);
2250 
2251 	tiles = (old_offset - new_offset) / tile_size;
2252 
2253 	*y += tiles / pitch_tiles * tile_height;
2254 	*x += tiles % pitch_tiles * tile_width;
2255 
2256 	/* minimize x in case it got needlessly big */
2257 	*y += *x / pitch_pixels * tile_height;
2258 	*x %= pitch_pixels;
2259 
2260 	return new_offset;
2261 }
2262 
_intel_adjust_tile_offset(int * x,int * y,const struct drm_framebuffer * fb,int plane,unsigned int rotation,u32 old_offset,u32 new_offset)2263 static u32 _intel_adjust_tile_offset(int *x, int *y,
2264 				     const struct drm_framebuffer *fb, int plane,
2265 				     unsigned int rotation,
2266 				     u32 old_offset, u32 new_offset)
2267 {
2268 	const struct drm_i915_private *dev_priv = to_i915(fb->dev);
2269 	unsigned int cpp = fb->format->cpp[plane];
2270 	unsigned int pitch = intel_fb_pitch(fb, plane, rotation);
2271 
2272 	WARN_ON(new_offset > old_offset);
2273 
2274 	if (fb->modifier != DRM_FORMAT_MOD_LINEAR) {
2275 		unsigned int tile_size, tile_width, tile_height;
2276 		unsigned int pitch_tiles;
2277 
2278 		tile_size = intel_tile_size(dev_priv);
2279 		intel_tile_dims(fb, plane, &tile_width, &tile_height);
2280 
2281 		if (drm_rotation_90_or_270(rotation)) {
2282 			pitch_tiles = pitch / tile_height;
2283 			swap(tile_width, tile_height);
2284 		} else {
2285 			pitch_tiles = pitch / (tile_width * cpp);
2286 		}
2287 
2288 		__intel_adjust_tile_offset(x, y, tile_width, tile_height,
2289 					   tile_size, pitch_tiles,
2290 					   old_offset, new_offset);
2291 	} else {
2292 		old_offset += *y * pitch + *x * cpp;
2293 
2294 		*y = (old_offset - new_offset) / pitch;
2295 		*x = ((old_offset - new_offset) - *y * pitch) / cpp;
2296 	}
2297 
2298 	return new_offset;
2299 }
2300 
2301 /*
2302  * Adjust the tile offset by moving the difference into
2303  * the x/y offsets.
2304  */
intel_adjust_tile_offset(int * x,int * y,const struct intel_plane_state * state,int plane,u32 old_offset,u32 new_offset)2305 static u32 intel_adjust_tile_offset(int *x, int *y,
2306 				    const struct intel_plane_state *state, int plane,
2307 				    u32 old_offset, u32 new_offset)
2308 {
2309 	return _intel_adjust_tile_offset(x, y, state->base.fb, plane,
2310 					 state->base.rotation,
2311 					 old_offset, new_offset);
2312 }
2313 
2314 /*
2315  * Computes the linear offset to the base tile and adjusts
2316  * x, y. bytes per pixel is assumed to be a power-of-two.
2317  *
2318  * In the 90/270 rotated case, x and y are assumed
2319  * to be already rotated to match the rotated GTT view, and
2320  * pitch is the tile_height aligned framebuffer height.
2321  *
2322  * This function is used when computing the derived information
2323  * under intel_framebuffer, so using any of that information
2324  * here is not allowed. Anything under drm_framebuffer can be
2325  * used. This is why the user has to pass in the pitch since it
2326  * is specified in the rotated orientation.
2327  */
_intel_compute_tile_offset(const struct drm_i915_private * dev_priv,int * x,int * y,const struct drm_framebuffer * fb,int plane,unsigned int pitch,unsigned int rotation,u32 alignment)2328 static u32 _intel_compute_tile_offset(const struct drm_i915_private *dev_priv,
2329 				      int *x, int *y,
2330 				      const struct drm_framebuffer *fb, int plane,
2331 				      unsigned int pitch,
2332 				      unsigned int rotation,
2333 				      u32 alignment)
2334 {
2335 	uint64_t fb_modifier = fb->modifier;
2336 	unsigned int cpp = fb->format->cpp[plane];
2337 	u32 offset, offset_aligned;
2338 
2339 	if (alignment)
2340 		alignment--;
2341 
2342 	if (fb_modifier != DRM_FORMAT_MOD_LINEAR) {
2343 		unsigned int tile_size, tile_width, tile_height;
2344 		unsigned int tile_rows, tiles, pitch_tiles;
2345 
2346 		tile_size = intel_tile_size(dev_priv);
2347 		intel_tile_dims(fb, plane, &tile_width, &tile_height);
2348 
2349 		if (drm_rotation_90_or_270(rotation)) {
2350 			pitch_tiles = pitch / tile_height;
2351 			swap(tile_width, tile_height);
2352 		} else {
2353 			pitch_tiles = pitch / (tile_width * cpp);
2354 		}
2355 
2356 		tile_rows = *y / tile_height;
2357 		*y %= tile_height;
2358 
2359 		tiles = *x / tile_width;
2360 		*x %= tile_width;
2361 
2362 		offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2363 		offset_aligned = offset & ~alignment;
2364 
2365 		__intel_adjust_tile_offset(x, y, tile_width, tile_height,
2366 					   tile_size, pitch_tiles,
2367 					   offset, offset_aligned);
2368 	} else {
2369 		offset = *y * pitch + *x * cpp;
2370 		offset_aligned = offset & ~alignment;
2371 
2372 		*y = (offset & alignment) / pitch;
2373 		*x = ((offset & alignment) - *y * pitch) / cpp;
2374 	}
2375 
2376 	return offset_aligned;
2377 }
2378 
intel_compute_tile_offset(int * x,int * y,const struct intel_plane_state * state,int plane)2379 u32 intel_compute_tile_offset(int *x, int *y,
2380 			      const struct intel_plane_state *state,
2381 			      int plane)
2382 {
2383 	struct intel_plane *intel_plane = to_intel_plane(state->base.plane);
2384 	struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev);
2385 	const struct drm_framebuffer *fb = state->base.fb;
2386 	unsigned int rotation = state->base.rotation;
2387 	int pitch = intel_fb_pitch(fb, plane, rotation);
2388 	u32 alignment;
2389 
2390 	if (intel_plane->id == PLANE_CURSOR)
2391 		alignment = intel_cursor_alignment(dev_priv);
2392 	else
2393 		alignment = intel_surf_alignment(fb, plane);
2394 
2395 	return _intel_compute_tile_offset(dev_priv, x, y, fb, plane, pitch,
2396 					  rotation, alignment);
2397 }
2398 
2399 /* Convert the fb->offset[] into x/y offsets */
intel_fb_offset_to_xy(int * x,int * y,const struct drm_framebuffer * fb,int plane)2400 static int intel_fb_offset_to_xy(int *x, int *y,
2401 				 const struct drm_framebuffer *fb, int plane)
2402 {
2403 	struct drm_i915_private *dev_priv = to_i915(fb->dev);
2404 
2405 	if (fb->modifier != DRM_FORMAT_MOD_LINEAR &&
2406 	    fb->offsets[plane] % intel_tile_size(dev_priv))
2407 		return -EINVAL;
2408 
2409 	*x = 0;
2410 	*y = 0;
2411 
2412 	_intel_adjust_tile_offset(x, y,
2413 				  fb, plane, DRM_MODE_ROTATE_0,
2414 				  fb->offsets[plane], 0);
2415 
2416 	return 0;
2417 }
2418 
intel_fb_modifier_to_tiling(uint64_t fb_modifier)2419 static unsigned int intel_fb_modifier_to_tiling(uint64_t fb_modifier)
2420 {
2421 	switch (fb_modifier) {
2422 	case I915_FORMAT_MOD_X_TILED:
2423 		return I915_TILING_X;
2424 	case I915_FORMAT_MOD_Y_TILED:
2425 	case I915_FORMAT_MOD_Y_TILED_CCS:
2426 		return I915_TILING_Y;
2427 	default:
2428 		return I915_TILING_NONE;
2429 	}
2430 }
2431 
2432 static const struct drm_format_info ccs_formats[] = {
2433 	{ .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2, .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, },
2434 	{ .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2, .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, },
2435 	{ .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2, .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, },
2436 	{ .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2, .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, },
2437 };
2438 
2439 static const struct drm_format_info *
lookup_format_info(const struct drm_format_info formats[],int num_formats,u32 format)2440 lookup_format_info(const struct drm_format_info formats[],
2441 		   int num_formats, u32 format)
2442 {
2443 	int i;
2444 
2445 	for (i = 0; i < num_formats; i++) {
2446 		if (formats[i].format == format)
2447 			return &formats[i];
2448 	}
2449 
2450 	return NULL;
2451 }
2452 
2453 static const struct drm_format_info *
intel_get_format_info(const struct drm_mode_fb_cmd2 * cmd)2454 intel_get_format_info(const struct drm_mode_fb_cmd2 *cmd)
2455 {
2456 	switch (cmd->modifier[0]) {
2457 	case I915_FORMAT_MOD_Y_TILED_CCS:
2458 	case I915_FORMAT_MOD_Yf_TILED_CCS:
2459 		return lookup_format_info(ccs_formats,
2460 					  ARRAY_SIZE(ccs_formats),
2461 					  cmd->pixel_format);
2462 	default:
2463 		return NULL;
2464 	}
2465 }
2466 
2467 static int
intel_fill_fb_info(struct drm_i915_private * dev_priv,struct drm_framebuffer * fb)2468 intel_fill_fb_info(struct drm_i915_private *dev_priv,
2469 		   struct drm_framebuffer *fb)
2470 {
2471 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2472 	struct intel_rotation_info *rot_info = &intel_fb->rot_info;
2473 	u32 gtt_offset_rotated = 0;
2474 	unsigned int max_size = 0;
2475 	int i, num_planes = fb->format->num_planes;
2476 	unsigned int tile_size = intel_tile_size(dev_priv);
2477 
2478 	for (i = 0; i < num_planes; i++) {
2479 		unsigned int width, height;
2480 		unsigned int cpp, size;
2481 		u32 offset;
2482 		int x, y;
2483 		int ret;
2484 
2485 		cpp = fb->format->cpp[i];
2486 		width = drm_framebuffer_plane_width(fb->width, fb, i);
2487 		height = drm_framebuffer_plane_height(fb->height, fb, i);
2488 
2489 		ret = intel_fb_offset_to_xy(&x, &y, fb, i);
2490 		if (ret) {
2491 			DRM_DEBUG_KMS("bad fb plane %d offset: 0x%x\n",
2492 				      i, fb->offsets[i]);
2493 			return ret;
2494 		}
2495 
2496 		if ((fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
2497 		     fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS) && i == 1) {
2498 			int hsub = fb->format->hsub;
2499 			int vsub = fb->format->vsub;
2500 			int tile_width, tile_height;
2501 			int main_x, main_y;
2502 			int ccs_x, ccs_y;
2503 
2504 			intel_tile_dims(fb, i, &tile_width, &tile_height);
2505 			tile_width *= hsub;
2506 			tile_height *= vsub;
2507 
2508 			ccs_x = (x * hsub) % tile_width;
2509 			ccs_y = (y * vsub) % tile_height;
2510 			main_x = intel_fb->normal[0].x % tile_width;
2511 			main_y = intel_fb->normal[0].y % tile_height;
2512 
2513 			/*
2514 			 * CCS doesn't have its own x/y offset register, so the intra CCS tile
2515 			 * x/y offsets must match between CCS and the main surface.
2516 			 */
2517 			if (main_x != ccs_x || main_y != ccs_y) {
2518 				DRM_DEBUG_KMS("Bad CCS x/y (main %d,%d ccs %d,%d) full (main %d,%d ccs %d,%d)\n",
2519 					      main_x, main_y,
2520 					      ccs_x, ccs_y,
2521 					      intel_fb->normal[0].x,
2522 					      intel_fb->normal[0].y,
2523 					      x, y);
2524 				return -EINVAL;
2525 			}
2526 		}
2527 
2528 		/*
2529 		 * The fence (if used) is aligned to the start of the object
2530 		 * so having the framebuffer wrap around across the edge of the
2531 		 * fenced region doesn't really work. We have no API to configure
2532 		 * the fence start offset within the object (nor could we probably
2533 		 * on gen2/3). So it's just easier if we just require that the
2534 		 * fb layout agrees with the fence layout. We already check that the
2535 		 * fb stride matches the fence stride elsewhere.
2536 		 */
2537 		if (i == 0 && i915_gem_object_is_tiled(intel_fb->obj) &&
2538 		    (x + width) * cpp > fb->pitches[i]) {
2539 			DRM_DEBUG_KMS("bad fb plane %d offset: 0x%x\n",
2540 				      i, fb->offsets[i]);
2541 			return -EINVAL;
2542 		}
2543 
2544 		/*
2545 		 * First pixel of the framebuffer from
2546 		 * the start of the normal gtt mapping.
2547 		 */
2548 		intel_fb->normal[i].x = x;
2549 		intel_fb->normal[i].y = y;
2550 
2551 		offset = _intel_compute_tile_offset(dev_priv, &x, &y,
2552 						    fb, i, fb->pitches[i],
2553 						    DRM_MODE_ROTATE_0, tile_size);
2554 		offset /= tile_size;
2555 
2556 		if (fb->modifier != DRM_FORMAT_MOD_LINEAR) {
2557 			unsigned int tile_width, tile_height;
2558 			unsigned int pitch_tiles;
2559 			struct drm_rect r;
2560 
2561 			intel_tile_dims(fb, i, &tile_width, &tile_height);
2562 
2563 			rot_info->plane[i].offset = offset;
2564 			rot_info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i], tile_width * cpp);
2565 			rot_info->plane[i].width = DIV_ROUND_UP(x + width, tile_width);
2566 			rot_info->plane[i].height = DIV_ROUND_UP(y + height, tile_height);
2567 
2568 			intel_fb->rotated[i].pitch =
2569 				rot_info->plane[i].height * tile_height;
2570 
2571 			/* how many tiles does this plane need */
2572 			size = rot_info->plane[i].stride * rot_info->plane[i].height;
2573 			/*
2574 			 * If the plane isn't horizontally tile aligned,
2575 			 * we need one more tile.
2576 			 */
2577 			if (x != 0)
2578 				size++;
2579 
2580 			/* rotate the x/y offsets to match the GTT view */
2581 			r.x1 = x;
2582 			r.y1 = y;
2583 			r.x2 = x + width;
2584 			r.y2 = y + height;
2585 			drm_rect_rotate(&r,
2586 					rot_info->plane[i].width * tile_width,
2587 					rot_info->plane[i].height * tile_height,
2588 					DRM_MODE_ROTATE_270);
2589 			x = r.x1;
2590 			y = r.y1;
2591 
2592 			/* rotate the tile dimensions to match the GTT view */
2593 			pitch_tiles = intel_fb->rotated[i].pitch / tile_height;
2594 			swap(tile_width, tile_height);
2595 
2596 			/*
2597 			 * We only keep the x/y offsets, so push all of the
2598 			 * gtt offset into the x/y offsets.
2599 			 */
2600 			__intel_adjust_tile_offset(&x, &y,
2601 						   tile_width, tile_height,
2602 						   tile_size, pitch_tiles,
2603 						   gtt_offset_rotated * tile_size, 0);
2604 
2605 			gtt_offset_rotated += rot_info->plane[i].width * rot_info->plane[i].height;
2606 
2607 			/*
2608 			 * First pixel of the framebuffer from
2609 			 * the start of the rotated gtt mapping.
2610 			 */
2611 			intel_fb->rotated[i].x = x;
2612 			intel_fb->rotated[i].y = y;
2613 		} else {
2614 			size = DIV_ROUND_UP((y + height) * fb->pitches[i] +
2615 					    x * cpp, tile_size);
2616 		}
2617 
2618 		/* how many tiles in total needed in the bo */
2619 		max_size = max(max_size, offset + size);
2620 	}
2621 
2622 	if (max_size * tile_size > intel_fb->obj->base.size) {
2623 		DRM_DEBUG_KMS("fb too big for bo (need %u bytes, have %zu bytes)\n",
2624 			      max_size * tile_size, intel_fb->obj->base.size);
2625 		return -EINVAL;
2626 	}
2627 
2628 	return 0;
2629 }
2630 
i9xx_format_to_fourcc(int format)2631 static int i9xx_format_to_fourcc(int format)
2632 {
2633 	switch (format) {
2634 	case DISPPLANE_8BPP:
2635 		return DRM_FORMAT_C8;
2636 	case DISPPLANE_BGRX555:
2637 		return DRM_FORMAT_XRGB1555;
2638 	case DISPPLANE_BGRX565:
2639 		return DRM_FORMAT_RGB565;
2640 	default:
2641 	case DISPPLANE_BGRX888:
2642 		return DRM_FORMAT_XRGB8888;
2643 	case DISPPLANE_RGBX888:
2644 		return DRM_FORMAT_XBGR8888;
2645 	case DISPPLANE_BGRX101010:
2646 		return DRM_FORMAT_XRGB2101010;
2647 	case DISPPLANE_RGBX101010:
2648 		return DRM_FORMAT_XBGR2101010;
2649 	}
2650 }
2651 
skl_format_to_fourcc(int format,bool rgb_order,bool alpha)2652 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2653 {
2654 	switch (format) {
2655 	case PLANE_CTL_FORMAT_RGB_565:
2656 		return DRM_FORMAT_RGB565;
2657 	default:
2658 	case PLANE_CTL_FORMAT_XRGB_8888:
2659 		if (rgb_order) {
2660 			if (alpha)
2661 				return DRM_FORMAT_ABGR8888;
2662 			else
2663 				return DRM_FORMAT_XBGR8888;
2664 		} else {
2665 			if (alpha)
2666 				return DRM_FORMAT_ARGB8888;
2667 			else
2668 				return DRM_FORMAT_XRGB8888;
2669 		}
2670 	case PLANE_CTL_FORMAT_XRGB_2101010:
2671 		if (rgb_order)
2672 			return DRM_FORMAT_XBGR2101010;
2673 		else
2674 			return DRM_FORMAT_XRGB2101010;
2675 	}
2676 }
2677 
2678 static bool
intel_alloc_initial_plane_obj(struct intel_crtc * crtc,struct intel_initial_plane_config * plane_config)2679 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2680 			      struct intel_initial_plane_config *plane_config)
2681 {
2682 	struct drm_device *dev = crtc->base.dev;
2683 	struct drm_i915_private *dev_priv = to_i915(dev);
2684 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2685 	struct drm_i915_gem_object *obj = NULL;
2686 	struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2687 	struct drm_framebuffer *fb = &plane_config->fb->base;
2688 	u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2689 	u32 size_aligned = round_up(plane_config->base + plane_config->size,
2690 				    PAGE_SIZE);
2691 
2692 	size_aligned -= base_aligned;
2693 
2694 	if (plane_config->size == 0)
2695 		return false;
2696 
2697 	/* If the FB is too big, just don't use it since fbdev is not very
2698 	 * important and we should probably use that space with FBC or other
2699 	 * features. */
2700 	if (size_aligned * 2 > ggtt->stolen_usable_size)
2701 		return false;
2702 
2703 	mutex_lock(&dev->struct_mutex);
2704 	obj = i915_gem_object_create_stolen_for_preallocated(dev_priv,
2705 							     base_aligned,
2706 							     base_aligned,
2707 							     size_aligned);
2708 	mutex_unlock(&dev->struct_mutex);
2709 	if (!obj)
2710 		return false;
2711 
2712 	if (plane_config->tiling == I915_TILING_X)
2713 		obj->tiling_and_stride = fb->pitches[0] | I915_TILING_X;
2714 
2715 	mode_cmd.pixel_format = fb->format->format;
2716 	mode_cmd.width = fb->width;
2717 	mode_cmd.height = fb->height;
2718 	mode_cmd.pitches[0] = fb->pitches[0];
2719 	mode_cmd.modifier[0] = fb->modifier;
2720 	mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2721 
2722 	if (intel_framebuffer_init(to_intel_framebuffer(fb), obj, &mode_cmd)) {
2723 		DRM_DEBUG_KMS("intel fb init failed\n");
2724 		goto out_unref_obj;
2725 	}
2726 
2727 
2728 	DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2729 	return true;
2730 
2731 out_unref_obj:
2732 	i915_gem_object_put(obj);
2733 	return false;
2734 }
2735 
2736 static void
intel_set_plane_visible(struct intel_crtc_state * crtc_state,struct intel_plane_state * plane_state,bool visible)2737 intel_set_plane_visible(struct intel_crtc_state *crtc_state,
2738 			struct intel_plane_state *plane_state,
2739 			bool visible)
2740 {
2741 	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
2742 
2743 	plane_state->base.visible = visible;
2744 
2745 	/* FIXME pre-g4x don't work like this */
2746 	if (visible) {
2747 		crtc_state->base.plane_mask |= BIT(drm_plane_index(&plane->base));
2748 		crtc_state->active_planes |= BIT(plane->id);
2749 	} else {
2750 		crtc_state->base.plane_mask &= ~BIT(drm_plane_index(&plane->base));
2751 		crtc_state->active_planes &= ~BIT(plane->id);
2752 	}
2753 
2754 	DRM_DEBUG_KMS("%s active planes 0x%x\n",
2755 		      crtc_state->base.crtc->name,
2756 		      crtc_state->active_planes);
2757 }
2758 
intel_plane_disable_noatomic(struct intel_crtc * crtc,struct intel_plane * plane)2759 static void intel_plane_disable_noatomic(struct intel_crtc *crtc,
2760 					 struct intel_plane *plane)
2761 {
2762 	struct intel_crtc_state *crtc_state =
2763 		to_intel_crtc_state(crtc->base.state);
2764 	struct intel_plane_state *plane_state =
2765 		to_intel_plane_state(plane->base.state);
2766 
2767 	intel_set_plane_visible(crtc_state, plane_state, false);
2768 
2769 	if (plane->id == PLANE_PRIMARY)
2770 		intel_pre_disable_primary_noatomic(&crtc->base);
2771 
2772 	trace_intel_disable_plane(&plane->base, crtc);
2773 	plane->disable_plane(plane, crtc);
2774 }
2775 
2776 static void
intel_find_initial_plane_obj(struct intel_crtc * intel_crtc,struct intel_initial_plane_config * plane_config)2777 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2778 			     struct intel_initial_plane_config *plane_config)
2779 {
2780 	struct drm_device *dev = intel_crtc->base.dev;
2781 	struct drm_i915_private *dev_priv = to_i915(dev);
2782 	struct drm_crtc *c;
2783 	struct drm_i915_gem_object *obj;
2784 	struct drm_plane *primary = intel_crtc->base.primary;
2785 	struct drm_plane_state *plane_state = primary->state;
2786 	struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2787 	struct intel_plane *intel_plane = to_intel_plane(primary);
2788 	struct intel_plane_state *intel_state =
2789 		to_intel_plane_state(plane_state);
2790 	struct drm_framebuffer *fb;
2791 
2792 	if (!plane_config->fb)
2793 		return;
2794 
2795 	if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2796 		fb = &plane_config->fb->base;
2797 		goto valid_fb;
2798 	}
2799 
2800 	kfree(plane_config->fb);
2801 
2802 	/*
2803 	 * Failed to alloc the obj, check to see if we should share
2804 	 * an fb with another CRTC instead
2805 	 */
2806 	for_each_crtc(dev, c) {
2807 		struct intel_plane_state *state;
2808 
2809 		if (c == &intel_crtc->base)
2810 			continue;
2811 
2812 		if (!to_intel_crtc(c)->active)
2813 			continue;
2814 
2815 		state = to_intel_plane_state(c->primary->state);
2816 		if (!state->vma)
2817 			continue;
2818 
2819 		if (intel_plane_ggtt_offset(state) == plane_config->base) {
2820 			fb = c->primary->fb;
2821 			drm_framebuffer_reference(fb);
2822 			goto valid_fb;
2823 		}
2824 	}
2825 
2826 	/*
2827 	 * We've failed to reconstruct the BIOS FB.  Current display state
2828 	 * indicates that the primary plane is visible, but has a NULL FB,
2829 	 * which will lead to problems later if we don't fix it up.  The
2830 	 * simplest solution is to just disable the primary plane now and
2831 	 * pretend the BIOS never had it enabled.
2832 	 */
2833 	intel_plane_disable_noatomic(intel_crtc, intel_plane);
2834 
2835 	return;
2836 
2837 valid_fb:
2838 	mutex_lock(&dev->struct_mutex);
2839 	intel_state->vma =
2840 		intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
2841 	mutex_unlock(&dev->struct_mutex);
2842 	if (IS_ERR(intel_state->vma)) {
2843 		DRM_ERROR("failed to pin boot fb on pipe %d: %li\n",
2844 			  intel_crtc->pipe, PTR_ERR(intel_state->vma));
2845 
2846 		intel_state->vma = NULL;
2847 		drm_framebuffer_unreference(fb);
2848 		return;
2849 	}
2850 
2851 	plane_state->src_x = 0;
2852 	plane_state->src_y = 0;
2853 	plane_state->src_w = fb->width << 16;
2854 	plane_state->src_h = fb->height << 16;
2855 
2856 	plane_state->crtc_x = 0;
2857 	plane_state->crtc_y = 0;
2858 	plane_state->crtc_w = fb->width;
2859 	plane_state->crtc_h = fb->height;
2860 
2861 	intel_state->base.src = drm_plane_state_src(plane_state);
2862 	intel_state->base.dst = drm_plane_state_dest(plane_state);
2863 
2864 	obj = intel_fb_obj(fb);
2865 	if (i915_gem_object_is_tiled(obj))
2866 		dev_priv->preserve_bios_swizzle = true;
2867 
2868 	drm_framebuffer_reference(fb);
2869 	primary->fb = primary->state->fb = fb;
2870 	primary->crtc = primary->state->crtc = &intel_crtc->base;
2871 
2872 	intel_set_plane_visible(to_intel_crtc_state(crtc_state),
2873 				to_intel_plane_state(plane_state),
2874 				true);
2875 
2876 	atomic_or(to_intel_plane(primary)->frontbuffer_bit,
2877 		  &obj->frontbuffer_bits);
2878 }
2879 
skl_max_plane_width(const struct drm_framebuffer * fb,int plane,unsigned int rotation)2880 static int skl_max_plane_width(const struct drm_framebuffer *fb, int plane,
2881 			       unsigned int rotation)
2882 {
2883 	int cpp = fb->format->cpp[plane];
2884 
2885 	switch (fb->modifier) {
2886 	case DRM_FORMAT_MOD_LINEAR:
2887 	case I915_FORMAT_MOD_X_TILED:
2888 		switch (cpp) {
2889 		case 8:
2890 			return 4096;
2891 		case 4:
2892 		case 2:
2893 		case 1:
2894 			return 8192;
2895 		default:
2896 			MISSING_CASE(cpp);
2897 			break;
2898 		}
2899 		break;
2900 	case I915_FORMAT_MOD_Y_TILED_CCS:
2901 	case I915_FORMAT_MOD_Yf_TILED_CCS:
2902 		/* FIXME AUX plane? */
2903 	case I915_FORMAT_MOD_Y_TILED:
2904 	case I915_FORMAT_MOD_Yf_TILED:
2905 		switch (cpp) {
2906 		case 8:
2907 			return 2048;
2908 		case 4:
2909 			return 4096;
2910 		case 2:
2911 		case 1:
2912 			return 8192;
2913 		default:
2914 			MISSING_CASE(cpp);
2915 			break;
2916 		}
2917 		break;
2918 	default:
2919 		MISSING_CASE(fb->modifier);
2920 	}
2921 
2922 	return 2048;
2923 }
2924 
skl_check_main_ccs_coordinates(struct intel_plane_state * plane_state,int main_x,int main_y,u32 main_offset)2925 static bool skl_check_main_ccs_coordinates(struct intel_plane_state *plane_state,
2926 					   int main_x, int main_y, u32 main_offset)
2927 {
2928 	const struct drm_framebuffer *fb = plane_state->base.fb;
2929 	int hsub = fb->format->hsub;
2930 	int vsub = fb->format->vsub;
2931 	int aux_x = plane_state->aux.x;
2932 	int aux_y = plane_state->aux.y;
2933 	u32 aux_offset = plane_state->aux.offset;
2934 	u32 alignment = intel_surf_alignment(fb, 1);
2935 
2936 	while (aux_offset >= main_offset && aux_y <= main_y) {
2937 		int x, y;
2938 
2939 		if (aux_x == main_x && aux_y == main_y)
2940 			break;
2941 
2942 		if (aux_offset == 0)
2943 			break;
2944 
2945 		x = aux_x / hsub;
2946 		y = aux_y / vsub;
2947 		aux_offset = intel_adjust_tile_offset(&x, &y, plane_state, 1,
2948 						      aux_offset, aux_offset - alignment);
2949 		aux_x = x * hsub + aux_x % hsub;
2950 		aux_y = y * vsub + aux_y % vsub;
2951 	}
2952 
2953 	if (aux_x != main_x || aux_y != main_y)
2954 		return false;
2955 
2956 	plane_state->aux.offset = aux_offset;
2957 	plane_state->aux.x = aux_x;
2958 	plane_state->aux.y = aux_y;
2959 
2960 	return true;
2961 }
2962 
skl_check_main_surface(struct intel_plane_state * plane_state)2963 static int skl_check_main_surface(struct intel_plane_state *plane_state)
2964 {
2965 	const struct drm_framebuffer *fb = plane_state->base.fb;
2966 	unsigned int rotation = plane_state->base.rotation;
2967 	int x = plane_state->base.src.x1 >> 16;
2968 	int y = plane_state->base.src.y1 >> 16;
2969 	int w = drm_rect_width(&plane_state->base.src) >> 16;
2970 	int h = drm_rect_height(&plane_state->base.src) >> 16;
2971 	int max_width = skl_max_plane_width(fb, 0, rotation);
2972 	int max_height = 4096;
2973 	u32 alignment, offset, aux_offset = plane_state->aux.offset;
2974 
2975 	if (w > max_width || h > max_height) {
2976 		DRM_DEBUG_KMS("requested Y/RGB source size %dx%d too big (limit %dx%d)\n",
2977 			      w, h, max_width, max_height);
2978 		return -EINVAL;
2979 	}
2980 
2981 	intel_add_fb_offsets(&x, &y, plane_state, 0);
2982 	offset = intel_compute_tile_offset(&x, &y, plane_state, 0);
2983 	alignment = intel_surf_alignment(fb, 0);
2984 
2985 	/*
2986 	 * AUX surface offset is specified as the distance from the
2987 	 * main surface offset, and it must be non-negative. Make
2988 	 * sure that is what we will get.
2989 	 */
2990 	if (offset > aux_offset)
2991 		offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
2992 						  offset, aux_offset & ~(alignment - 1));
2993 
2994 	/*
2995 	 * When using an X-tiled surface, the plane blows up
2996 	 * if the x offset + width exceed the stride.
2997 	 *
2998 	 * TODO: linear and Y-tiled seem fine, Yf untested,
2999 	 */
3000 	if (fb->modifier == I915_FORMAT_MOD_X_TILED) {
3001 		int cpp = fb->format->cpp[0];
3002 
3003 		while ((x + w) * cpp > fb->pitches[0]) {
3004 			if (offset == 0) {
3005 				DRM_DEBUG_KMS("Unable to find suitable display surface offset due to X-tiling\n");
3006 				return -EINVAL;
3007 			}
3008 
3009 			offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
3010 							  offset, offset - alignment);
3011 		}
3012 	}
3013 
3014 	/*
3015 	 * CCS AUX surface doesn't have its own x/y offsets, we must make sure
3016 	 * they match with the main surface x/y offsets.
3017 	 */
3018 	if (fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
3019 	    fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS) {
3020 		while (!skl_check_main_ccs_coordinates(plane_state, x, y, offset)) {
3021 			if (offset == 0)
3022 				break;
3023 
3024 			offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
3025 							  offset, offset - alignment);
3026 		}
3027 
3028 		if (x != plane_state->aux.x || y != plane_state->aux.y) {
3029 			DRM_DEBUG_KMS("Unable to find suitable display surface offset due to CCS\n");
3030 			return -EINVAL;
3031 		}
3032 	}
3033 
3034 	plane_state->main.offset = offset;
3035 	plane_state->main.x = x;
3036 	plane_state->main.y = y;
3037 
3038 	return 0;
3039 }
3040 
skl_check_nv12_aux_surface(struct intel_plane_state * plane_state)3041 static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state)
3042 {
3043 	const struct drm_framebuffer *fb = plane_state->base.fb;
3044 	unsigned int rotation = plane_state->base.rotation;
3045 	int max_width = skl_max_plane_width(fb, 1, rotation);
3046 	int max_height = 4096;
3047 	int x = plane_state->base.src.x1 >> 17;
3048 	int y = plane_state->base.src.y1 >> 17;
3049 	int w = drm_rect_width(&plane_state->base.src) >> 17;
3050 	int h = drm_rect_height(&plane_state->base.src) >> 17;
3051 	u32 offset;
3052 
3053 	intel_add_fb_offsets(&x, &y, plane_state, 1);
3054 	offset = intel_compute_tile_offset(&x, &y, plane_state, 1);
3055 
3056 	/* FIXME not quite sure how/if these apply to the chroma plane */
3057 	if (w > max_width || h > max_height) {
3058 		DRM_DEBUG_KMS("CbCr source size %dx%d too big (limit %dx%d)\n",
3059 			      w, h, max_width, max_height);
3060 		return -EINVAL;
3061 	}
3062 
3063 	plane_state->aux.offset = offset;
3064 	plane_state->aux.x = x;
3065 	plane_state->aux.y = y;
3066 
3067 	return 0;
3068 }
3069 
skl_check_ccs_aux_surface(struct intel_plane_state * plane_state)3070 static int skl_check_ccs_aux_surface(struct intel_plane_state *plane_state)
3071 {
3072 	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
3073 	struct intel_crtc *crtc = to_intel_crtc(plane_state->base.crtc);
3074 	const struct drm_framebuffer *fb = plane_state->base.fb;
3075 	int src_x = plane_state->base.src.x1 >> 16;
3076 	int src_y = plane_state->base.src.y1 >> 16;
3077 	int hsub = fb->format->hsub;
3078 	int vsub = fb->format->vsub;
3079 	int x = src_x / hsub;
3080 	int y = src_y / vsub;
3081 	u32 offset;
3082 
3083 	switch (plane->id) {
3084 	case PLANE_PRIMARY:
3085 	case PLANE_SPRITE0:
3086 		break;
3087 	default:
3088 		DRM_DEBUG_KMS("RC support only on plane 1 and 2\n");
3089 		return -EINVAL;
3090 	}
3091 
3092 	if (crtc->pipe == PIPE_C) {
3093 		DRM_DEBUG_KMS("No RC support on pipe C\n");
3094 		return -EINVAL;
3095 	}
3096 
3097 	if (plane_state->base.rotation & ~(DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180)) {
3098 		DRM_DEBUG_KMS("RC support only with 0/180 degree rotation %x\n",
3099 			      plane_state->base.rotation);
3100 		return -EINVAL;
3101 	}
3102 
3103 	intel_add_fb_offsets(&x, &y, plane_state, 1);
3104 	offset = intel_compute_tile_offset(&x, &y, plane_state, 1);
3105 
3106 	plane_state->aux.offset = offset;
3107 	plane_state->aux.x = x * hsub + src_x % hsub;
3108 	plane_state->aux.y = y * vsub + src_y % vsub;
3109 
3110 	return 0;
3111 }
3112 
skl_check_plane_surface(struct intel_plane_state * plane_state)3113 int skl_check_plane_surface(struct intel_plane_state *plane_state)
3114 {
3115 	const struct drm_framebuffer *fb = plane_state->base.fb;
3116 	unsigned int rotation = plane_state->base.rotation;
3117 	int ret;
3118 
3119 	if (!plane_state->base.visible)
3120 		return 0;
3121 
3122 	/* Rotate src coordinates to match rotated GTT view */
3123 	if (drm_rotation_90_or_270(rotation))
3124 		drm_rect_rotate(&plane_state->base.src,
3125 				fb->width << 16, fb->height << 16,
3126 				DRM_MODE_ROTATE_270);
3127 
3128 	/*
3129 	 * Handle the AUX surface first since
3130 	 * the main surface setup depends on it.
3131 	 */
3132 	if (fb->format->format == DRM_FORMAT_NV12) {
3133 		ret = skl_check_nv12_aux_surface(plane_state);
3134 		if (ret)
3135 			return ret;
3136 	} else if (fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
3137 		   fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS) {
3138 		ret = skl_check_ccs_aux_surface(plane_state);
3139 		if (ret)
3140 			return ret;
3141 	} else {
3142 		plane_state->aux.offset = ~0xfff;
3143 		plane_state->aux.x = 0;
3144 		plane_state->aux.y = 0;
3145 	}
3146 
3147 	ret = skl_check_main_surface(plane_state);
3148 	if (ret)
3149 		return ret;
3150 
3151 	return 0;
3152 }
3153 
i9xx_plane_ctl(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)3154 static u32 i9xx_plane_ctl(const struct intel_crtc_state *crtc_state,
3155 			  const struct intel_plane_state *plane_state)
3156 {
3157 	struct drm_i915_private *dev_priv =
3158 		to_i915(plane_state->base.plane->dev);
3159 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
3160 	const struct drm_framebuffer *fb = plane_state->base.fb;
3161 	unsigned int rotation = plane_state->base.rotation;
3162 	u32 dspcntr;
3163 
3164 	dspcntr = DISPLAY_PLANE_ENABLE | DISPPLANE_GAMMA_ENABLE;
3165 
3166 	if (IS_G4X(dev_priv) || IS_GEN5(dev_priv) ||
3167 	    IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
3168 		dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
3169 
3170 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3171 		dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
3172 
3173 	if (INTEL_GEN(dev_priv) < 4)
3174 		dspcntr |= DISPPLANE_SEL_PIPE(crtc->pipe);
3175 
3176 	switch (fb->format->format) {
3177 	case DRM_FORMAT_C8:
3178 		dspcntr |= DISPPLANE_8BPP;
3179 		break;
3180 	case DRM_FORMAT_XRGB1555:
3181 		dspcntr |= DISPPLANE_BGRX555;
3182 		break;
3183 	case DRM_FORMAT_RGB565:
3184 		dspcntr |= DISPPLANE_BGRX565;
3185 		break;
3186 	case DRM_FORMAT_XRGB8888:
3187 		dspcntr |= DISPPLANE_BGRX888;
3188 		break;
3189 	case DRM_FORMAT_XBGR8888:
3190 		dspcntr |= DISPPLANE_RGBX888;
3191 		break;
3192 	case DRM_FORMAT_XRGB2101010:
3193 		dspcntr |= DISPPLANE_BGRX101010;
3194 		break;
3195 	case DRM_FORMAT_XBGR2101010:
3196 		dspcntr |= DISPPLANE_RGBX101010;
3197 		break;
3198 	default:
3199 		MISSING_CASE(fb->format->format);
3200 		return 0;
3201 	}
3202 
3203 	if (INTEL_GEN(dev_priv) >= 4 &&
3204 	    fb->modifier == I915_FORMAT_MOD_X_TILED)
3205 		dspcntr |= DISPPLANE_TILED;
3206 
3207 	if (rotation & DRM_MODE_ROTATE_180)
3208 		dspcntr |= DISPPLANE_ROTATE_180;
3209 
3210 	if (rotation & DRM_MODE_REFLECT_X)
3211 		dspcntr |= DISPPLANE_MIRROR;
3212 
3213 	return dspcntr;
3214 }
3215 
i9xx_check_plane_surface(struct intel_plane_state * plane_state)3216 int i9xx_check_plane_surface(struct intel_plane_state *plane_state)
3217 {
3218 	struct drm_i915_private *dev_priv =
3219 		to_i915(plane_state->base.plane->dev);
3220 	int src_x = plane_state->base.src.x1 >> 16;
3221 	int src_y = plane_state->base.src.y1 >> 16;
3222 	u32 offset;
3223 
3224 	intel_add_fb_offsets(&src_x, &src_y, plane_state, 0);
3225 
3226 	if (INTEL_GEN(dev_priv) >= 4)
3227 		offset = intel_compute_tile_offset(&src_x, &src_y,
3228 						   plane_state, 0);
3229 	else
3230 		offset = 0;
3231 
3232 	/* HSW/BDW do this automagically in hardware */
3233 	if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv)) {
3234 		unsigned int rotation = plane_state->base.rotation;
3235 		int src_w = drm_rect_width(&plane_state->base.src) >> 16;
3236 		int src_h = drm_rect_height(&plane_state->base.src) >> 16;
3237 
3238 		if (rotation & DRM_MODE_ROTATE_180) {
3239 			src_x += src_w - 1;
3240 			src_y += src_h - 1;
3241 		} else if (rotation & DRM_MODE_REFLECT_X) {
3242 			src_x += src_w - 1;
3243 		}
3244 	}
3245 
3246 	plane_state->main.offset = offset;
3247 	plane_state->main.x = src_x;
3248 	plane_state->main.y = src_y;
3249 
3250 	return 0;
3251 }
3252 
i9xx_update_primary_plane(struct intel_plane * primary,const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)3253 static void i9xx_update_primary_plane(struct intel_plane *primary,
3254 				      const struct intel_crtc_state *crtc_state,
3255 				      const struct intel_plane_state *plane_state)
3256 {
3257 	struct drm_i915_private *dev_priv = to_i915(primary->base.dev);
3258 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
3259 	const struct drm_framebuffer *fb = plane_state->base.fb;
3260 	enum plane plane = primary->plane;
3261 	u32 linear_offset;
3262 	u32 dspcntr = plane_state->ctl;
3263 	i915_reg_t reg = DSPCNTR(plane);
3264 	int x = plane_state->main.x;
3265 	int y = plane_state->main.y;
3266 	unsigned long irqflags;
3267 
3268 	linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
3269 
3270 	if (INTEL_GEN(dev_priv) >= 4)
3271 		crtc->dspaddr_offset = plane_state->main.offset;
3272 	else
3273 		crtc->dspaddr_offset = linear_offset;
3274 
3275 	crtc->adjusted_x = x;
3276 	crtc->adjusted_y = y;
3277 
3278 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
3279 
3280 	if (INTEL_GEN(dev_priv) < 4) {
3281 		/* pipesrc and dspsize control the size that is scaled from,
3282 		 * which should always be the user's requested size.
3283 		 */
3284 		I915_WRITE_FW(DSPSIZE(plane),
3285 			      ((crtc_state->pipe_src_h - 1) << 16) |
3286 			      (crtc_state->pipe_src_w - 1));
3287 		I915_WRITE_FW(DSPPOS(plane), 0);
3288 	} else if (IS_CHERRYVIEW(dev_priv) && plane == PLANE_B) {
3289 		I915_WRITE_FW(PRIMSIZE(plane),
3290 			      ((crtc_state->pipe_src_h - 1) << 16) |
3291 			      (crtc_state->pipe_src_w - 1));
3292 		I915_WRITE_FW(PRIMPOS(plane), 0);
3293 		I915_WRITE_FW(PRIMCNSTALPHA(plane), 0);
3294 	}
3295 
3296 	I915_WRITE_FW(reg, dspcntr);
3297 
3298 	I915_WRITE_FW(DSPSTRIDE(plane), fb->pitches[0]);
3299 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3300 		I915_WRITE_FW(DSPSURF(plane),
3301 			      intel_plane_ggtt_offset(plane_state) +
3302 			      crtc->dspaddr_offset);
3303 		I915_WRITE_FW(DSPOFFSET(plane), (y << 16) | x);
3304 	} else if (INTEL_GEN(dev_priv) >= 4) {
3305 		I915_WRITE_FW(DSPSURF(plane),
3306 			      intel_plane_ggtt_offset(plane_state) +
3307 			      crtc->dspaddr_offset);
3308 		I915_WRITE_FW(DSPTILEOFF(plane), (y << 16) | x);
3309 		I915_WRITE_FW(DSPLINOFF(plane), linear_offset);
3310 	} else {
3311 		I915_WRITE_FW(DSPADDR(plane),
3312 			      intel_plane_ggtt_offset(plane_state) +
3313 			      crtc->dspaddr_offset);
3314 	}
3315 	POSTING_READ_FW(reg);
3316 
3317 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
3318 }
3319 
i9xx_disable_primary_plane(struct intel_plane * primary,struct intel_crtc * crtc)3320 static void i9xx_disable_primary_plane(struct intel_plane *primary,
3321 				       struct intel_crtc *crtc)
3322 {
3323 	struct drm_i915_private *dev_priv = to_i915(primary->base.dev);
3324 	enum plane plane = primary->plane;
3325 	unsigned long irqflags;
3326 
3327 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
3328 
3329 	I915_WRITE_FW(DSPCNTR(plane), 0);
3330 	if (INTEL_INFO(dev_priv)->gen >= 4)
3331 		I915_WRITE_FW(DSPSURF(plane), 0);
3332 	else
3333 		I915_WRITE_FW(DSPADDR(plane), 0);
3334 	POSTING_READ_FW(DSPCNTR(plane));
3335 
3336 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
3337 }
3338 
i9xx_plane_get_hw_state(struct intel_plane * primary)3339 static bool i9xx_plane_get_hw_state(struct intel_plane *primary)
3340 {
3341 
3342 	struct drm_i915_private *dev_priv = to_i915(primary->base.dev);
3343 	enum intel_display_power_domain power_domain;
3344 	enum plane plane = primary->plane;
3345 	enum pipe pipe = primary->pipe;
3346 	bool ret;
3347 
3348 	/*
3349 	 * Not 100% correct for planes that can move between pipes,
3350 	 * but that's only the case for gen2-4 which don't have any
3351 	 * display power wells.
3352 	 */
3353 	power_domain = POWER_DOMAIN_PIPE(pipe);
3354 	if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3355 		return false;
3356 
3357 	ret = I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE;
3358 
3359 	intel_display_power_put(dev_priv, power_domain);
3360 
3361 	return ret;
3362 }
3363 
3364 static u32
intel_fb_stride_alignment(const struct drm_framebuffer * fb,int plane)3365 intel_fb_stride_alignment(const struct drm_framebuffer *fb, int plane)
3366 {
3367 	if (fb->modifier == DRM_FORMAT_MOD_LINEAR)
3368 		return 64;
3369 	else
3370 		return intel_tile_width_bytes(fb, plane);
3371 }
3372 
skl_detach_scaler(struct intel_crtc * intel_crtc,int id)3373 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
3374 {
3375 	struct drm_device *dev = intel_crtc->base.dev;
3376 	struct drm_i915_private *dev_priv = to_i915(dev);
3377 
3378 	I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
3379 	I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
3380 	I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
3381 }
3382 
3383 /*
3384  * This function detaches (aka. unbinds) unused scalers in hardware
3385  */
skl_detach_scalers(struct intel_crtc * intel_crtc)3386 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
3387 {
3388 	struct intel_crtc_scaler_state *scaler_state;
3389 	int i;
3390 
3391 	scaler_state = &intel_crtc->config->scaler_state;
3392 
3393 	/* loop through and disable scalers that aren't in use */
3394 	for (i = 0; i < intel_crtc->num_scalers; i++) {
3395 		if (!scaler_state->scalers[i].in_use)
3396 			skl_detach_scaler(intel_crtc, i);
3397 	}
3398 }
3399 
skl_plane_stride(const struct drm_framebuffer * fb,int plane,unsigned int rotation)3400 u32 skl_plane_stride(const struct drm_framebuffer *fb, int plane,
3401 		     unsigned int rotation)
3402 {
3403 	u32 stride;
3404 
3405 	if (plane >= fb->format->num_planes)
3406 		return 0;
3407 
3408 	stride = intel_fb_pitch(fb, plane, rotation);
3409 
3410 	/*
3411 	 * The stride is either expressed as a multiple of 64 bytes chunks for
3412 	 * linear buffers or in number of tiles for tiled buffers.
3413 	 */
3414 	if (drm_rotation_90_or_270(rotation))
3415 		stride /= intel_tile_height(fb, plane);
3416 	else
3417 		stride /= intel_fb_stride_alignment(fb, plane);
3418 
3419 	return stride;
3420 }
3421 
skl_plane_ctl_format(uint32_t pixel_format)3422 static u32 skl_plane_ctl_format(uint32_t pixel_format)
3423 {
3424 	switch (pixel_format) {
3425 	case DRM_FORMAT_C8:
3426 		return PLANE_CTL_FORMAT_INDEXED;
3427 	case DRM_FORMAT_RGB565:
3428 		return PLANE_CTL_FORMAT_RGB_565;
3429 	case DRM_FORMAT_XBGR8888:
3430 		return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
3431 	case DRM_FORMAT_XRGB8888:
3432 		return PLANE_CTL_FORMAT_XRGB_8888;
3433 	/*
3434 	 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
3435 	 * to be already pre-multiplied. We need to add a knob (or a different
3436 	 * DRM_FORMAT) for user-space to configure that.
3437 	 */
3438 	case DRM_FORMAT_ABGR8888:
3439 		return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
3440 			PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3441 	case DRM_FORMAT_ARGB8888:
3442 		return PLANE_CTL_FORMAT_XRGB_8888 |
3443 			PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3444 	case DRM_FORMAT_XRGB2101010:
3445 		return PLANE_CTL_FORMAT_XRGB_2101010;
3446 	case DRM_FORMAT_XBGR2101010:
3447 		return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
3448 	case DRM_FORMAT_YUYV:
3449 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
3450 	case DRM_FORMAT_YVYU:
3451 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
3452 	case DRM_FORMAT_UYVY:
3453 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
3454 	case DRM_FORMAT_VYUY:
3455 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
3456 	default:
3457 		MISSING_CASE(pixel_format);
3458 	}
3459 
3460 	return 0;
3461 }
3462 
skl_plane_ctl_tiling(uint64_t fb_modifier)3463 static u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3464 {
3465 	switch (fb_modifier) {
3466 	case DRM_FORMAT_MOD_LINEAR:
3467 		break;
3468 	case I915_FORMAT_MOD_X_TILED:
3469 		return PLANE_CTL_TILED_X;
3470 	case I915_FORMAT_MOD_Y_TILED:
3471 		return PLANE_CTL_TILED_Y;
3472 	case I915_FORMAT_MOD_Y_TILED_CCS:
3473 		return PLANE_CTL_TILED_Y | PLANE_CTL_DECOMPRESSION_ENABLE;
3474 	case I915_FORMAT_MOD_Yf_TILED:
3475 		return PLANE_CTL_TILED_YF;
3476 	case I915_FORMAT_MOD_Yf_TILED_CCS:
3477 		return PLANE_CTL_TILED_YF | PLANE_CTL_DECOMPRESSION_ENABLE;
3478 	default:
3479 		MISSING_CASE(fb_modifier);
3480 	}
3481 
3482 	return 0;
3483 }
3484 
skl_plane_ctl_rotation(unsigned int rotation)3485 static u32 skl_plane_ctl_rotation(unsigned int rotation)
3486 {
3487 	switch (rotation) {
3488 	case DRM_MODE_ROTATE_0:
3489 		break;
3490 	/*
3491 	 * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr
3492 	 * while i915 HW rotation is clockwise, thats why this swapping.
3493 	 */
3494 	case DRM_MODE_ROTATE_90:
3495 		return PLANE_CTL_ROTATE_270;
3496 	case DRM_MODE_ROTATE_180:
3497 		return PLANE_CTL_ROTATE_180;
3498 	case DRM_MODE_ROTATE_270:
3499 		return PLANE_CTL_ROTATE_90;
3500 	default:
3501 		MISSING_CASE(rotation);
3502 	}
3503 
3504 	return 0;
3505 }
3506 
skl_plane_ctl(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)3507 u32 skl_plane_ctl(const struct intel_crtc_state *crtc_state,
3508 		  const struct intel_plane_state *plane_state)
3509 {
3510 	struct drm_i915_private *dev_priv =
3511 		to_i915(plane_state->base.plane->dev);
3512 	const struct drm_framebuffer *fb = plane_state->base.fb;
3513 	unsigned int rotation = plane_state->base.rotation;
3514 	const struct drm_intel_sprite_colorkey *key = &plane_state->ckey;
3515 	u32 plane_ctl;
3516 
3517 	plane_ctl = PLANE_CTL_ENABLE;
3518 
3519 	if (!IS_GEMINILAKE(dev_priv) && !IS_CANNONLAKE(dev_priv)) {
3520 		plane_ctl |=
3521 			PLANE_CTL_PIPE_GAMMA_ENABLE |
3522 			PLANE_CTL_PIPE_CSC_ENABLE |
3523 			PLANE_CTL_PLANE_GAMMA_DISABLE;
3524 	}
3525 
3526 	plane_ctl |= skl_plane_ctl_format(fb->format->format);
3527 	plane_ctl |= skl_plane_ctl_tiling(fb->modifier);
3528 	plane_ctl |= skl_plane_ctl_rotation(rotation);
3529 
3530 	if (key->flags & I915_SET_COLORKEY_DESTINATION)
3531 		plane_ctl |= PLANE_CTL_KEY_ENABLE_DESTINATION;
3532 	else if (key->flags & I915_SET_COLORKEY_SOURCE)
3533 		plane_ctl |= PLANE_CTL_KEY_ENABLE_SOURCE;
3534 
3535 	return plane_ctl;
3536 }
3537 
skylake_update_primary_plane(struct intel_plane * plane,const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)3538 static void skylake_update_primary_plane(struct intel_plane *plane,
3539 					 const struct intel_crtc_state *crtc_state,
3540 					 const struct intel_plane_state *plane_state)
3541 {
3542 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
3543 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
3544 	const struct drm_framebuffer *fb = plane_state->base.fb;
3545 	enum plane_id plane_id = plane->id;
3546 	enum pipe pipe = plane->pipe;
3547 	u32 plane_ctl = plane_state->ctl;
3548 	unsigned int rotation = plane_state->base.rotation;
3549 	u32 stride = skl_plane_stride(fb, 0, rotation);
3550 	u32 aux_stride = skl_plane_stride(fb, 1, rotation);
3551 	u32 surf_addr = plane_state->main.offset;
3552 	int scaler_id = plane_state->scaler_id;
3553 	int src_x = plane_state->main.x;
3554 	int src_y = plane_state->main.y;
3555 	int src_w = drm_rect_width(&plane_state->base.src) >> 16;
3556 	int src_h = drm_rect_height(&plane_state->base.src) >> 16;
3557 	int dst_x = plane_state->base.dst.x1;
3558 	int dst_y = plane_state->base.dst.y1;
3559 	int dst_w = drm_rect_width(&plane_state->base.dst);
3560 	int dst_h = drm_rect_height(&plane_state->base.dst);
3561 	unsigned long irqflags;
3562 
3563 	/* Sizes are 0 based */
3564 	src_w--;
3565 	src_h--;
3566 	dst_w--;
3567 	dst_h--;
3568 
3569 	crtc->dspaddr_offset = surf_addr;
3570 
3571 	crtc->adjusted_x = src_x;
3572 	crtc->adjusted_y = src_y;
3573 
3574 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
3575 
3576 	if (IS_GEMINILAKE(dev_priv) || IS_CANNONLAKE(dev_priv)) {
3577 		I915_WRITE_FW(PLANE_COLOR_CTL(pipe, plane_id),
3578 			      PLANE_COLOR_PIPE_GAMMA_ENABLE |
3579 			      PLANE_COLOR_PIPE_CSC_ENABLE |
3580 			      PLANE_COLOR_PLANE_GAMMA_DISABLE);
3581 	}
3582 
3583 	I915_WRITE_FW(PLANE_CTL(pipe, plane_id), plane_ctl);
3584 	I915_WRITE_FW(PLANE_OFFSET(pipe, plane_id), (src_y << 16) | src_x);
3585 	I915_WRITE_FW(PLANE_STRIDE(pipe, plane_id), stride);
3586 	I915_WRITE_FW(PLANE_SIZE(pipe, plane_id), (src_h << 16) | src_w);
3587 	I915_WRITE_FW(PLANE_AUX_DIST(pipe, plane_id),
3588 		      (plane_state->aux.offset - surf_addr) | aux_stride);
3589 	I915_WRITE_FW(PLANE_AUX_OFFSET(pipe, plane_id),
3590 		      (plane_state->aux.y << 16) | plane_state->aux.x);
3591 
3592 	if (scaler_id >= 0) {
3593 		uint32_t ps_ctrl = 0;
3594 
3595 		WARN_ON(!dst_w || !dst_h);
3596 		ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(plane_id) |
3597 			crtc_state->scaler_state.scalers[scaler_id].mode;
3598 		I915_WRITE_FW(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3599 		I915_WRITE_FW(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3600 		I915_WRITE_FW(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3601 		I915_WRITE_FW(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3602 		I915_WRITE_FW(PLANE_POS(pipe, plane_id), 0);
3603 	} else {
3604 		I915_WRITE_FW(PLANE_POS(pipe, plane_id), (dst_y << 16) | dst_x);
3605 	}
3606 
3607 	I915_WRITE_FW(PLANE_SURF(pipe, plane_id),
3608 		      intel_plane_ggtt_offset(plane_state) + surf_addr);
3609 
3610 	POSTING_READ_FW(PLANE_SURF(pipe, plane_id));
3611 
3612 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
3613 }
3614 
skylake_disable_primary_plane(struct intel_plane * primary,struct intel_crtc * crtc)3615 static void skylake_disable_primary_plane(struct intel_plane *primary,
3616 					  struct intel_crtc *crtc)
3617 {
3618 	struct drm_i915_private *dev_priv = to_i915(primary->base.dev);
3619 	enum plane_id plane_id = primary->id;
3620 	enum pipe pipe = primary->pipe;
3621 	unsigned long irqflags;
3622 
3623 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
3624 
3625 	I915_WRITE_FW(PLANE_CTL(pipe, plane_id), 0);
3626 	I915_WRITE_FW(PLANE_SURF(pipe, plane_id), 0);
3627 	POSTING_READ_FW(PLANE_SURF(pipe, plane_id));
3628 
3629 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
3630 }
3631 
3632 static int
__intel_display_resume(struct drm_device * dev,struct drm_atomic_state * state,struct drm_modeset_acquire_ctx * ctx)3633 __intel_display_resume(struct drm_device *dev,
3634 		       struct drm_atomic_state *state,
3635 		       struct drm_modeset_acquire_ctx *ctx)
3636 {
3637 	struct drm_crtc_state *crtc_state;
3638 	struct drm_crtc *crtc;
3639 	int i, ret;
3640 
3641 	intel_modeset_setup_hw_state(dev, ctx);
3642 	i915_redisable_vga(to_i915(dev));
3643 
3644 	if (!state)
3645 		return 0;
3646 
3647 	/*
3648 	 * We've duplicated the state, pointers to the old state are invalid.
3649 	 *
3650 	 * Don't attempt to use the old state until we commit the duplicated state.
3651 	 */
3652 	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
3653 		/*
3654 		 * Force recalculation even if we restore
3655 		 * current state. With fast modeset this may not result
3656 		 * in a modeset when the state is compatible.
3657 		 */
3658 		crtc_state->mode_changed = true;
3659 	}
3660 
3661 	/* ignore any reset values/BIOS leftovers in the WM registers */
3662 	if (!HAS_GMCH_DISPLAY(to_i915(dev)))
3663 		to_intel_atomic_state(state)->skip_intermediate_wm = true;
3664 
3665 	ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
3666 
3667 	WARN_ON(ret == -EDEADLK);
3668 	return ret;
3669 }
3670 
gpu_reset_clobbers_display(struct drm_i915_private * dev_priv)3671 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv)
3672 {
3673 	return intel_has_gpu_reset(dev_priv) &&
3674 		INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv);
3675 }
3676 
intel_prepare_reset(struct drm_i915_private * dev_priv)3677 void intel_prepare_reset(struct drm_i915_private *dev_priv)
3678 {
3679 	struct drm_device *dev = &dev_priv->drm;
3680 	struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3681 	struct drm_atomic_state *state;
3682 	int ret;
3683 
3684 
3685 	/* reset doesn't touch the display */
3686 	if (!i915.force_reset_modeset_test &&
3687 	    !gpu_reset_clobbers_display(dev_priv))
3688 		return;
3689 
3690 	/* We have a modeset vs reset deadlock, defensively unbreak it. */
3691 	set_bit(I915_RESET_MODESET, &dev_priv->gpu_error.flags);
3692 	wake_up_all(&dev_priv->gpu_error.wait_queue);
3693 
3694 	if (atomic_read(&dev_priv->gpu_error.pending_fb_pin)) {
3695 		DRM_DEBUG_KMS("Modeset potentially stuck, unbreaking through wedging\n");
3696 		i915_gem_set_wedged(dev_priv);
3697 	}
3698 
3699 	/*
3700 	 * Need mode_config.mutex so that we don't
3701 	 * trample ongoing ->detect() and whatnot.
3702 	 */
3703 	mutex_lock(&dev->mode_config.mutex);
3704 	drm_modeset_acquire_init(ctx, 0);
3705 	while (1) {
3706 		ret = drm_modeset_lock_all_ctx(dev, ctx);
3707 		if (ret != -EDEADLK)
3708 			break;
3709 
3710 		drm_modeset_backoff(ctx);
3711 	}
3712 	/*
3713 	 * Disabling the crtcs gracefully seems nicer. Also the
3714 	 * g33 docs say we should at least disable all the planes.
3715 	 */
3716 	state = drm_atomic_helper_duplicate_state(dev, ctx);
3717 	if (IS_ERR(state)) {
3718 		ret = PTR_ERR(state);
3719 		DRM_ERROR("Duplicating state failed with %i\n", ret);
3720 		return;
3721 	}
3722 
3723 	ret = drm_atomic_helper_disable_all(dev, ctx);
3724 	if (ret) {
3725 		DRM_ERROR("Suspending crtc's failed with %i\n", ret);
3726 		drm_atomic_state_put(state);
3727 		return;
3728 	}
3729 
3730 	dev_priv->modeset_restore_state = state;
3731 	state->acquire_ctx = ctx;
3732 }
3733 
intel_finish_reset(struct drm_i915_private * dev_priv)3734 void intel_finish_reset(struct drm_i915_private *dev_priv)
3735 {
3736 	struct drm_device *dev = &dev_priv->drm;
3737 	struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3738 	struct drm_atomic_state *state = dev_priv->modeset_restore_state;
3739 	int ret;
3740 
3741 	/* reset doesn't touch the display */
3742 	if (!i915.force_reset_modeset_test &&
3743 	    !gpu_reset_clobbers_display(dev_priv))
3744 		return;
3745 
3746 	if (!state)
3747 		goto unlock;
3748 
3749 	dev_priv->modeset_restore_state = NULL;
3750 
3751 	/* reset doesn't touch the display */
3752 	if (!gpu_reset_clobbers_display(dev_priv)) {
3753 		/* for testing only restore the display */
3754 		ret = __intel_display_resume(dev, state, ctx);
3755 			if (ret)
3756 				DRM_ERROR("Restoring old state failed with %i\n", ret);
3757 	} else {
3758 		/*
3759 		 * The display has been reset as well,
3760 		 * so need a full re-initialization.
3761 		 */
3762 		intel_runtime_pm_disable_interrupts(dev_priv);
3763 		intel_runtime_pm_enable_interrupts(dev_priv);
3764 
3765 		intel_pps_unlock_regs_wa(dev_priv);
3766 		intel_modeset_init_hw(dev);
3767 		intel_init_clock_gating(dev_priv);
3768 
3769 		spin_lock_irq(&dev_priv->irq_lock);
3770 		if (dev_priv->display.hpd_irq_setup)
3771 			dev_priv->display.hpd_irq_setup(dev_priv);
3772 		spin_unlock_irq(&dev_priv->irq_lock);
3773 
3774 		ret = __intel_display_resume(dev, state, ctx);
3775 		if (ret)
3776 			DRM_ERROR("Restoring old state failed with %i\n", ret);
3777 
3778 		intel_hpd_init(dev_priv);
3779 	}
3780 
3781 	drm_atomic_state_put(state);
3782 unlock:
3783 	drm_modeset_drop_locks(ctx);
3784 	drm_modeset_acquire_fini(ctx);
3785 	mutex_unlock(&dev->mode_config.mutex);
3786 
3787 	clear_bit(I915_RESET_MODESET, &dev_priv->gpu_error.flags);
3788 }
3789 
intel_update_pipe_config(struct intel_crtc * crtc,struct intel_crtc_state * old_crtc_state)3790 static void intel_update_pipe_config(struct intel_crtc *crtc,
3791 				     struct intel_crtc_state *old_crtc_state)
3792 {
3793 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3794 	struct intel_crtc_state *pipe_config =
3795 		to_intel_crtc_state(crtc->base.state);
3796 
3797 	/* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3798 	crtc->base.mode = crtc->base.state->mode;
3799 
3800 	/*
3801 	 * Update pipe size and adjust fitter if needed: the reason for this is
3802 	 * that in compute_mode_changes we check the native mode (not the pfit
3803 	 * mode) to see if we can flip rather than do a full mode set. In the
3804 	 * fastboot case, we'll flip, but if we don't update the pipesrc and
3805 	 * pfit state, we'll end up with a big fb scanned out into the wrong
3806 	 * sized surface.
3807 	 */
3808 
3809 	I915_WRITE(PIPESRC(crtc->pipe),
3810 		   ((pipe_config->pipe_src_w - 1) << 16) |
3811 		   (pipe_config->pipe_src_h - 1));
3812 
3813 	/* on skylake this is done by detaching scalers */
3814 	if (INTEL_GEN(dev_priv) >= 9) {
3815 		skl_detach_scalers(crtc);
3816 
3817 		if (pipe_config->pch_pfit.enabled)
3818 			skylake_pfit_enable(crtc);
3819 	} else if (HAS_PCH_SPLIT(dev_priv)) {
3820 		if (pipe_config->pch_pfit.enabled)
3821 			ironlake_pfit_enable(crtc);
3822 		else if (old_crtc_state->pch_pfit.enabled)
3823 			ironlake_pfit_disable(crtc, true);
3824 	}
3825 }
3826 
intel_fdi_normal_train(struct intel_crtc * crtc)3827 static void intel_fdi_normal_train(struct intel_crtc *crtc)
3828 {
3829 	struct drm_device *dev = crtc->base.dev;
3830 	struct drm_i915_private *dev_priv = to_i915(dev);
3831 	int pipe = crtc->pipe;
3832 	i915_reg_t reg;
3833 	u32 temp;
3834 
3835 	/* enable normal train */
3836 	reg = FDI_TX_CTL(pipe);
3837 	temp = I915_READ(reg);
3838 	if (IS_IVYBRIDGE(dev_priv)) {
3839 		temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3840 		temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3841 	} else {
3842 		temp &= ~FDI_LINK_TRAIN_NONE;
3843 		temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3844 	}
3845 	I915_WRITE(reg, temp);
3846 
3847 	reg = FDI_RX_CTL(pipe);
3848 	temp = I915_READ(reg);
3849 	if (HAS_PCH_CPT(dev_priv)) {
3850 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3851 		temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3852 	} else {
3853 		temp &= ~FDI_LINK_TRAIN_NONE;
3854 		temp |= FDI_LINK_TRAIN_NONE;
3855 	}
3856 	I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3857 
3858 	/* wait one idle pattern time */
3859 	POSTING_READ(reg);
3860 	udelay(1000);
3861 
3862 	/* IVB wants error correction enabled */
3863 	if (IS_IVYBRIDGE(dev_priv))
3864 		I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3865 			   FDI_FE_ERRC_ENABLE);
3866 }
3867 
3868 /* The FDI link training functions for ILK/Ibexpeak. */
ironlake_fdi_link_train(struct intel_crtc * crtc,const struct intel_crtc_state * crtc_state)3869 static void ironlake_fdi_link_train(struct intel_crtc *crtc,
3870 				    const struct intel_crtc_state *crtc_state)
3871 {
3872 	struct drm_device *dev = crtc->base.dev;
3873 	struct drm_i915_private *dev_priv = to_i915(dev);
3874 	int pipe = crtc->pipe;
3875 	i915_reg_t reg;
3876 	u32 temp, tries;
3877 
3878 	/* FDI needs bits from pipe first */
3879 	assert_pipe_enabled(dev_priv, pipe);
3880 
3881 	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3882 	   for train result */
3883 	reg = FDI_RX_IMR(pipe);
3884 	temp = I915_READ(reg);
3885 	temp &= ~FDI_RX_SYMBOL_LOCK;
3886 	temp &= ~FDI_RX_BIT_LOCK;
3887 	I915_WRITE(reg, temp);
3888 	I915_READ(reg);
3889 	udelay(150);
3890 
3891 	/* enable CPU FDI TX and PCH FDI RX */
3892 	reg = FDI_TX_CTL(pipe);
3893 	temp = I915_READ(reg);
3894 	temp &= ~FDI_DP_PORT_WIDTH_MASK;
3895 	temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
3896 	temp &= ~FDI_LINK_TRAIN_NONE;
3897 	temp |= FDI_LINK_TRAIN_PATTERN_1;
3898 	I915_WRITE(reg, temp | FDI_TX_ENABLE);
3899 
3900 	reg = FDI_RX_CTL(pipe);
3901 	temp = I915_READ(reg);
3902 	temp &= ~FDI_LINK_TRAIN_NONE;
3903 	temp |= FDI_LINK_TRAIN_PATTERN_1;
3904 	I915_WRITE(reg, temp | FDI_RX_ENABLE);
3905 
3906 	POSTING_READ(reg);
3907 	udelay(150);
3908 
3909 	/* Ironlake workaround, enable clock pointer after FDI enable*/
3910 	I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3911 	I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3912 		   FDI_RX_PHASE_SYNC_POINTER_EN);
3913 
3914 	reg = FDI_RX_IIR(pipe);
3915 	for (tries = 0; tries < 5; tries++) {
3916 		temp = I915_READ(reg);
3917 		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3918 
3919 		if ((temp & FDI_RX_BIT_LOCK)) {
3920 			DRM_DEBUG_KMS("FDI train 1 done.\n");
3921 			I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3922 			break;
3923 		}
3924 	}
3925 	if (tries == 5)
3926 		DRM_ERROR("FDI train 1 fail!\n");
3927 
3928 	/* Train 2 */
3929 	reg = FDI_TX_CTL(pipe);
3930 	temp = I915_READ(reg);
3931 	temp &= ~FDI_LINK_TRAIN_NONE;
3932 	temp |= FDI_LINK_TRAIN_PATTERN_2;
3933 	I915_WRITE(reg, temp);
3934 
3935 	reg = FDI_RX_CTL(pipe);
3936 	temp = I915_READ(reg);
3937 	temp &= ~FDI_LINK_TRAIN_NONE;
3938 	temp |= FDI_LINK_TRAIN_PATTERN_2;
3939 	I915_WRITE(reg, temp);
3940 
3941 	POSTING_READ(reg);
3942 	udelay(150);
3943 
3944 	reg = FDI_RX_IIR(pipe);
3945 	for (tries = 0; tries < 5; tries++) {
3946 		temp = I915_READ(reg);
3947 		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3948 
3949 		if (temp & FDI_RX_SYMBOL_LOCK) {
3950 			I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3951 			DRM_DEBUG_KMS("FDI train 2 done.\n");
3952 			break;
3953 		}
3954 	}
3955 	if (tries == 5)
3956 		DRM_ERROR("FDI train 2 fail!\n");
3957 
3958 	DRM_DEBUG_KMS("FDI train done\n");
3959 
3960 }
3961 
3962 static const int snb_b_fdi_train_param[] = {
3963 	FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3964 	FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3965 	FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3966 	FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3967 };
3968 
3969 /* The FDI link training functions for SNB/Cougarpoint. */
gen6_fdi_link_train(struct intel_crtc * crtc,const struct intel_crtc_state * crtc_state)3970 static void gen6_fdi_link_train(struct intel_crtc *crtc,
3971 				const struct intel_crtc_state *crtc_state)
3972 {
3973 	struct drm_device *dev = crtc->base.dev;
3974 	struct drm_i915_private *dev_priv = to_i915(dev);
3975 	int pipe = crtc->pipe;
3976 	i915_reg_t reg;
3977 	u32 temp, i, retry;
3978 
3979 	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3980 	   for train result */
3981 	reg = FDI_RX_IMR(pipe);
3982 	temp = I915_READ(reg);
3983 	temp &= ~FDI_RX_SYMBOL_LOCK;
3984 	temp &= ~FDI_RX_BIT_LOCK;
3985 	I915_WRITE(reg, temp);
3986 
3987 	POSTING_READ(reg);
3988 	udelay(150);
3989 
3990 	/* enable CPU FDI TX and PCH FDI RX */
3991 	reg = FDI_TX_CTL(pipe);
3992 	temp = I915_READ(reg);
3993 	temp &= ~FDI_DP_PORT_WIDTH_MASK;
3994 	temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
3995 	temp &= ~FDI_LINK_TRAIN_NONE;
3996 	temp |= FDI_LINK_TRAIN_PATTERN_1;
3997 	temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3998 	/* SNB-B */
3999 	temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
4000 	I915_WRITE(reg, temp | FDI_TX_ENABLE);
4001 
4002 	I915_WRITE(FDI_RX_MISC(pipe),
4003 		   FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
4004 
4005 	reg = FDI_RX_CTL(pipe);
4006 	temp = I915_READ(reg);
4007 	if (HAS_PCH_CPT(dev_priv)) {
4008 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4009 		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4010 	} else {
4011 		temp &= ~FDI_LINK_TRAIN_NONE;
4012 		temp |= FDI_LINK_TRAIN_PATTERN_1;
4013 	}
4014 	I915_WRITE(reg, temp | FDI_RX_ENABLE);
4015 
4016 	POSTING_READ(reg);
4017 	udelay(150);
4018 
4019 	for (i = 0; i < 4; i++) {
4020 		reg = FDI_TX_CTL(pipe);
4021 		temp = I915_READ(reg);
4022 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
4023 		temp |= snb_b_fdi_train_param[i];
4024 		I915_WRITE(reg, temp);
4025 
4026 		POSTING_READ(reg);
4027 		udelay(500);
4028 
4029 		for (retry = 0; retry < 5; retry++) {
4030 			reg = FDI_RX_IIR(pipe);
4031 			temp = I915_READ(reg);
4032 			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4033 			if (temp & FDI_RX_BIT_LOCK) {
4034 				I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
4035 				DRM_DEBUG_KMS("FDI train 1 done.\n");
4036 				break;
4037 			}
4038 			udelay(50);
4039 		}
4040 		if (retry < 5)
4041 			break;
4042 	}
4043 	if (i == 4)
4044 		DRM_ERROR("FDI train 1 fail!\n");
4045 
4046 	/* Train 2 */
4047 	reg = FDI_TX_CTL(pipe);
4048 	temp = I915_READ(reg);
4049 	temp &= ~FDI_LINK_TRAIN_NONE;
4050 	temp |= FDI_LINK_TRAIN_PATTERN_2;
4051 	if (IS_GEN6(dev_priv)) {
4052 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
4053 		/* SNB-B */
4054 		temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
4055 	}
4056 	I915_WRITE(reg, temp);
4057 
4058 	reg = FDI_RX_CTL(pipe);
4059 	temp = I915_READ(reg);
4060 	if (HAS_PCH_CPT(dev_priv)) {
4061 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4062 		temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
4063 	} else {
4064 		temp &= ~FDI_LINK_TRAIN_NONE;
4065 		temp |= FDI_LINK_TRAIN_PATTERN_2;
4066 	}
4067 	I915_WRITE(reg, temp);
4068 
4069 	POSTING_READ(reg);
4070 	udelay(150);
4071 
4072 	for (i = 0; i < 4; i++) {
4073 		reg = FDI_TX_CTL(pipe);
4074 		temp = I915_READ(reg);
4075 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
4076 		temp |= snb_b_fdi_train_param[i];
4077 		I915_WRITE(reg, temp);
4078 
4079 		POSTING_READ(reg);
4080 		udelay(500);
4081 
4082 		for (retry = 0; retry < 5; retry++) {
4083 			reg = FDI_RX_IIR(pipe);
4084 			temp = I915_READ(reg);
4085 			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4086 			if (temp & FDI_RX_SYMBOL_LOCK) {
4087 				I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
4088 				DRM_DEBUG_KMS("FDI train 2 done.\n");
4089 				break;
4090 			}
4091 			udelay(50);
4092 		}
4093 		if (retry < 5)
4094 			break;
4095 	}
4096 	if (i == 4)
4097 		DRM_ERROR("FDI train 2 fail!\n");
4098 
4099 	DRM_DEBUG_KMS("FDI train done.\n");
4100 }
4101 
4102 /* Manual link training for Ivy Bridge A0 parts */
ivb_manual_fdi_link_train(struct intel_crtc * crtc,const struct intel_crtc_state * crtc_state)4103 static void ivb_manual_fdi_link_train(struct intel_crtc *crtc,
4104 				      const struct intel_crtc_state *crtc_state)
4105 {
4106 	struct drm_device *dev = crtc->base.dev;
4107 	struct drm_i915_private *dev_priv = to_i915(dev);
4108 	int pipe = crtc->pipe;
4109 	i915_reg_t reg;
4110 	u32 temp, i, j;
4111 
4112 	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
4113 	   for train result */
4114 	reg = FDI_RX_IMR(pipe);
4115 	temp = I915_READ(reg);
4116 	temp &= ~FDI_RX_SYMBOL_LOCK;
4117 	temp &= ~FDI_RX_BIT_LOCK;
4118 	I915_WRITE(reg, temp);
4119 
4120 	POSTING_READ(reg);
4121 	udelay(150);
4122 
4123 	DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
4124 		      I915_READ(FDI_RX_IIR(pipe)));
4125 
4126 	/* Try each vswing and preemphasis setting twice before moving on */
4127 	for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
4128 		/* disable first in case we need to retry */
4129 		reg = FDI_TX_CTL(pipe);
4130 		temp = I915_READ(reg);
4131 		temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
4132 		temp &= ~FDI_TX_ENABLE;
4133 		I915_WRITE(reg, temp);
4134 
4135 		reg = FDI_RX_CTL(pipe);
4136 		temp = I915_READ(reg);
4137 		temp &= ~FDI_LINK_TRAIN_AUTO;
4138 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4139 		temp &= ~FDI_RX_ENABLE;
4140 		I915_WRITE(reg, temp);
4141 
4142 		/* enable CPU FDI TX and PCH FDI RX */
4143 		reg = FDI_TX_CTL(pipe);
4144 		temp = I915_READ(reg);
4145 		temp &= ~FDI_DP_PORT_WIDTH_MASK;
4146 		temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
4147 		temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
4148 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
4149 		temp |= snb_b_fdi_train_param[j/2];
4150 		temp |= FDI_COMPOSITE_SYNC;
4151 		I915_WRITE(reg, temp | FDI_TX_ENABLE);
4152 
4153 		I915_WRITE(FDI_RX_MISC(pipe),
4154 			   FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
4155 
4156 		reg = FDI_RX_CTL(pipe);
4157 		temp = I915_READ(reg);
4158 		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4159 		temp |= FDI_COMPOSITE_SYNC;
4160 		I915_WRITE(reg, temp | FDI_RX_ENABLE);
4161 
4162 		POSTING_READ(reg);
4163 		udelay(1); /* should be 0.5us */
4164 
4165 		for (i = 0; i < 4; i++) {
4166 			reg = FDI_RX_IIR(pipe);
4167 			temp = I915_READ(reg);
4168 			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4169 
4170 			if (temp & FDI_RX_BIT_LOCK ||
4171 			    (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
4172 				I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
4173 				DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
4174 					      i);
4175 				break;
4176 			}
4177 			udelay(1); /* should be 0.5us */
4178 		}
4179 		if (i == 4) {
4180 			DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
4181 			continue;
4182 		}
4183 
4184 		/* Train 2 */
4185 		reg = FDI_TX_CTL(pipe);
4186 		temp = I915_READ(reg);
4187 		temp &= ~FDI_LINK_TRAIN_NONE_IVB;
4188 		temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
4189 		I915_WRITE(reg, temp);
4190 
4191 		reg = FDI_RX_CTL(pipe);
4192 		temp = I915_READ(reg);
4193 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4194 		temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
4195 		I915_WRITE(reg, temp);
4196 
4197 		POSTING_READ(reg);
4198 		udelay(2); /* should be 1.5us */
4199 
4200 		for (i = 0; i < 4; i++) {
4201 			reg = FDI_RX_IIR(pipe);
4202 			temp = I915_READ(reg);
4203 			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4204 
4205 			if (temp & FDI_RX_SYMBOL_LOCK ||
4206 			    (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
4207 				I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
4208 				DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
4209 					      i);
4210 				goto train_done;
4211 			}
4212 			udelay(2); /* should be 1.5us */
4213 		}
4214 		if (i == 4)
4215 			DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
4216 	}
4217 
4218 train_done:
4219 	DRM_DEBUG_KMS("FDI train done.\n");
4220 }
4221 
ironlake_fdi_pll_enable(struct intel_crtc * intel_crtc)4222 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
4223 {
4224 	struct drm_device *dev = intel_crtc->base.dev;
4225 	struct drm_i915_private *dev_priv = to_i915(dev);
4226 	int pipe = intel_crtc->pipe;
4227 	i915_reg_t reg;
4228 	u32 temp;
4229 
4230 	/* enable PCH FDI RX PLL, wait warmup plus DMI latency */
4231 	reg = FDI_RX_CTL(pipe);
4232 	temp = I915_READ(reg);
4233 	temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
4234 	temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
4235 	temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4236 	I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
4237 
4238 	POSTING_READ(reg);
4239 	udelay(200);
4240 
4241 	/* Switch from Rawclk to PCDclk */
4242 	temp = I915_READ(reg);
4243 	I915_WRITE(reg, temp | FDI_PCDCLK);
4244 
4245 	POSTING_READ(reg);
4246 	udelay(200);
4247 
4248 	/* Enable CPU FDI TX PLL, always on for Ironlake */
4249 	reg = FDI_TX_CTL(pipe);
4250 	temp = I915_READ(reg);
4251 	if ((temp & FDI_TX_PLL_ENABLE) == 0) {
4252 		I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
4253 
4254 		POSTING_READ(reg);
4255 		udelay(100);
4256 	}
4257 }
4258 
ironlake_fdi_pll_disable(struct intel_crtc * intel_crtc)4259 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
4260 {
4261 	struct drm_device *dev = intel_crtc->base.dev;
4262 	struct drm_i915_private *dev_priv = to_i915(dev);
4263 	int pipe = intel_crtc->pipe;
4264 	i915_reg_t reg;
4265 	u32 temp;
4266 
4267 	/* Switch from PCDclk to Rawclk */
4268 	reg = FDI_RX_CTL(pipe);
4269 	temp = I915_READ(reg);
4270 	I915_WRITE(reg, temp & ~FDI_PCDCLK);
4271 
4272 	/* Disable CPU FDI TX PLL */
4273 	reg = FDI_TX_CTL(pipe);
4274 	temp = I915_READ(reg);
4275 	I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
4276 
4277 	POSTING_READ(reg);
4278 	udelay(100);
4279 
4280 	reg = FDI_RX_CTL(pipe);
4281 	temp = I915_READ(reg);
4282 	I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
4283 
4284 	/* Wait for the clocks to turn off. */
4285 	POSTING_READ(reg);
4286 	udelay(100);
4287 }
4288 
ironlake_fdi_disable(struct drm_crtc * crtc)4289 static void ironlake_fdi_disable(struct drm_crtc *crtc)
4290 {
4291 	struct drm_device *dev = crtc->dev;
4292 	struct drm_i915_private *dev_priv = to_i915(dev);
4293 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4294 	int pipe = intel_crtc->pipe;
4295 	i915_reg_t reg;
4296 	u32 temp;
4297 
4298 	/* disable CPU FDI tx and PCH FDI rx */
4299 	reg = FDI_TX_CTL(pipe);
4300 	temp = I915_READ(reg);
4301 	I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
4302 	POSTING_READ(reg);
4303 
4304 	reg = FDI_RX_CTL(pipe);
4305 	temp = I915_READ(reg);
4306 	temp &= ~(0x7 << 16);
4307 	temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4308 	I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
4309 
4310 	POSTING_READ(reg);
4311 	udelay(100);
4312 
4313 	/* Ironlake workaround, disable clock pointer after downing FDI */
4314 	if (HAS_PCH_IBX(dev_priv))
4315 		I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
4316 
4317 	/* still set train pattern 1 */
4318 	reg = FDI_TX_CTL(pipe);
4319 	temp = I915_READ(reg);
4320 	temp &= ~FDI_LINK_TRAIN_NONE;
4321 	temp |= FDI_LINK_TRAIN_PATTERN_1;
4322 	I915_WRITE(reg, temp);
4323 
4324 	reg = FDI_RX_CTL(pipe);
4325 	temp = I915_READ(reg);
4326 	if (HAS_PCH_CPT(dev_priv)) {
4327 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4328 		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4329 	} else {
4330 		temp &= ~FDI_LINK_TRAIN_NONE;
4331 		temp |= FDI_LINK_TRAIN_PATTERN_1;
4332 	}
4333 	/* BPC in FDI rx is consistent with that in PIPECONF */
4334 	temp &= ~(0x07 << 16);
4335 	temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4336 	I915_WRITE(reg, temp);
4337 
4338 	POSTING_READ(reg);
4339 	udelay(100);
4340 }
4341 
intel_has_pending_fb_unpin(struct drm_i915_private * dev_priv)4342 bool intel_has_pending_fb_unpin(struct drm_i915_private *dev_priv)
4343 {
4344 	struct drm_crtc *crtc;
4345 	bool cleanup_done;
4346 
4347 	drm_for_each_crtc(crtc, &dev_priv->drm) {
4348 		struct drm_crtc_commit *commit;
4349 		spin_lock(&crtc->commit_lock);
4350 		commit = list_first_entry_or_null(&crtc->commit_list,
4351 						  struct drm_crtc_commit, commit_entry);
4352 		cleanup_done = commit ?
4353 			try_wait_for_completion(&commit->cleanup_done) : true;
4354 		spin_unlock(&crtc->commit_lock);
4355 
4356 		if (cleanup_done)
4357 			continue;
4358 
4359 		drm_crtc_wait_one_vblank(crtc);
4360 
4361 		return true;
4362 	}
4363 
4364 	return false;
4365 }
4366 
lpt_disable_iclkip(struct drm_i915_private * dev_priv)4367 void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
4368 {
4369 	u32 temp;
4370 
4371 	I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
4372 
4373 	mutex_lock(&dev_priv->sb_lock);
4374 
4375 	temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4376 	temp |= SBI_SSCCTL_DISABLE;
4377 	intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4378 
4379 	mutex_unlock(&dev_priv->sb_lock);
4380 }
4381 
4382 /* Program iCLKIP clock to the desired frequency */
lpt_program_iclkip(struct intel_crtc * crtc)4383 static void lpt_program_iclkip(struct intel_crtc *crtc)
4384 {
4385 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4386 	int clock = crtc->config->base.adjusted_mode.crtc_clock;
4387 	u32 divsel, phaseinc, auxdiv, phasedir = 0;
4388 	u32 temp;
4389 
4390 	lpt_disable_iclkip(dev_priv);
4391 
4392 	/* The iCLK virtual clock root frequency is in MHz,
4393 	 * but the adjusted_mode->crtc_clock in in KHz. To get the
4394 	 * divisors, it is necessary to divide one by another, so we
4395 	 * convert the virtual clock precision to KHz here for higher
4396 	 * precision.
4397 	 */
4398 	for (auxdiv = 0; auxdiv < 2; auxdiv++) {
4399 		u32 iclk_virtual_root_freq = 172800 * 1000;
4400 		u32 iclk_pi_range = 64;
4401 		u32 desired_divisor;
4402 
4403 		desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4404 						    clock << auxdiv);
4405 		divsel = (desired_divisor / iclk_pi_range) - 2;
4406 		phaseinc = desired_divisor % iclk_pi_range;
4407 
4408 		/*
4409 		 * Near 20MHz is a corner case which is
4410 		 * out of range for the 7-bit divisor
4411 		 */
4412 		if (divsel <= 0x7f)
4413 			break;
4414 	}
4415 
4416 	/* This should not happen with any sane values */
4417 	WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
4418 		~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
4419 	WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
4420 		~SBI_SSCDIVINTPHASE_INCVAL_MASK);
4421 
4422 	DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
4423 			clock,
4424 			auxdiv,
4425 			divsel,
4426 			phasedir,
4427 			phaseinc);
4428 
4429 	mutex_lock(&dev_priv->sb_lock);
4430 
4431 	/* Program SSCDIVINTPHASE6 */
4432 	temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4433 	temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4434 	temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4435 	temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4436 	temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4437 	temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4438 	temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4439 	intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4440 
4441 	/* Program SSCAUXDIV */
4442 	temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4443 	temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4444 	temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4445 	intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4446 
4447 	/* Enable modulator and associated divider */
4448 	temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4449 	temp &= ~SBI_SSCCTL_DISABLE;
4450 	intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4451 
4452 	mutex_unlock(&dev_priv->sb_lock);
4453 
4454 	/* Wait for initialization time */
4455 	udelay(24);
4456 
4457 	I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4458 }
4459 
lpt_get_iclkip(struct drm_i915_private * dev_priv)4460 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
4461 {
4462 	u32 divsel, phaseinc, auxdiv;
4463 	u32 iclk_virtual_root_freq = 172800 * 1000;
4464 	u32 iclk_pi_range = 64;
4465 	u32 desired_divisor;
4466 	u32 temp;
4467 
4468 	if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
4469 		return 0;
4470 
4471 	mutex_lock(&dev_priv->sb_lock);
4472 
4473 	temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4474 	if (temp & SBI_SSCCTL_DISABLE) {
4475 		mutex_unlock(&dev_priv->sb_lock);
4476 		return 0;
4477 	}
4478 
4479 	temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4480 	divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
4481 		SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
4482 	phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
4483 		SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
4484 
4485 	temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4486 	auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
4487 		SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
4488 
4489 	mutex_unlock(&dev_priv->sb_lock);
4490 
4491 	desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
4492 
4493 	return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4494 				 desired_divisor << auxdiv);
4495 }
4496 
ironlake_pch_transcoder_set_timings(struct intel_crtc * crtc,enum pipe pch_transcoder)4497 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4498 						enum pipe pch_transcoder)
4499 {
4500 	struct drm_device *dev = crtc->base.dev;
4501 	struct drm_i915_private *dev_priv = to_i915(dev);
4502 	enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4503 
4504 	I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4505 		   I915_READ(HTOTAL(cpu_transcoder)));
4506 	I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4507 		   I915_READ(HBLANK(cpu_transcoder)));
4508 	I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4509 		   I915_READ(HSYNC(cpu_transcoder)));
4510 
4511 	I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4512 		   I915_READ(VTOTAL(cpu_transcoder)));
4513 	I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4514 		   I915_READ(VBLANK(cpu_transcoder)));
4515 	I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4516 		   I915_READ(VSYNC(cpu_transcoder)));
4517 	I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4518 		   I915_READ(VSYNCSHIFT(cpu_transcoder)));
4519 }
4520 
cpt_set_fdi_bc_bifurcation(struct drm_device * dev,bool enable)4521 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4522 {
4523 	struct drm_i915_private *dev_priv = to_i915(dev);
4524 	uint32_t temp;
4525 
4526 	temp = I915_READ(SOUTH_CHICKEN1);
4527 	if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4528 		return;
4529 
4530 	WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4531 	WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4532 
4533 	temp &= ~FDI_BC_BIFURCATION_SELECT;
4534 	if (enable)
4535 		temp |= FDI_BC_BIFURCATION_SELECT;
4536 
4537 	DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4538 	I915_WRITE(SOUTH_CHICKEN1, temp);
4539 	POSTING_READ(SOUTH_CHICKEN1);
4540 }
4541 
ivybridge_update_fdi_bc_bifurcation(struct intel_crtc * intel_crtc)4542 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4543 {
4544 	struct drm_device *dev = intel_crtc->base.dev;
4545 
4546 	switch (intel_crtc->pipe) {
4547 	case PIPE_A:
4548 		break;
4549 	case PIPE_B:
4550 		if (intel_crtc->config->fdi_lanes > 2)
4551 			cpt_set_fdi_bc_bifurcation(dev, false);
4552 		else
4553 			cpt_set_fdi_bc_bifurcation(dev, true);
4554 
4555 		break;
4556 	case PIPE_C:
4557 		cpt_set_fdi_bc_bifurcation(dev, true);
4558 
4559 		break;
4560 	default:
4561 		BUG();
4562 	}
4563 }
4564 
4565 /* Return which DP Port should be selected for Transcoder DP control */
4566 static enum port
intel_trans_dp_port_sel(struct intel_crtc * crtc)4567 intel_trans_dp_port_sel(struct intel_crtc *crtc)
4568 {
4569 	struct drm_device *dev = crtc->base.dev;
4570 	struct intel_encoder *encoder;
4571 
4572 	for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
4573 		if (encoder->type == INTEL_OUTPUT_DP ||
4574 		    encoder->type == INTEL_OUTPUT_EDP)
4575 			return enc_to_dig_port(&encoder->base)->port;
4576 	}
4577 
4578 	return -1;
4579 }
4580 
4581 /*
4582  * Enable PCH resources required for PCH ports:
4583  *   - PCH PLLs
4584  *   - FDI training & RX/TX
4585  *   - update transcoder timings
4586  *   - DP transcoding bits
4587  *   - transcoder
4588  */
ironlake_pch_enable(const struct intel_crtc_state * crtc_state)4589 static void ironlake_pch_enable(const struct intel_crtc_state *crtc_state)
4590 {
4591 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
4592 	struct drm_device *dev = crtc->base.dev;
4593 	struct drm_i915_private *dev_priv = to_i915(dev);
4594 	int pipe = crtc->pipe;
4595 	u32 temp;
4596 
4597 	assert_pch_transcoder_disabled(dev_priv, pipe);
4598 
4599 	if (IS_IVYBRIDGE(dev_priv))
4600 		ivybridge_update_fdi_bc_bifurcation(crtc);
4601 
4602 	/* Write the TU size bits before fdi link training, so that error
4603 	 * detection works. */
4604 	I915_WRITE(FDI_RX_TUSIZE1(pipe),
4605 		   I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4606 
4607 	/* For PCH output, training FDI link */
4608 	dev_priv->display.fdi_link_train(crtc, crtc_state);
4609 
4610 	/* We need to program the right clock selection before writing the pixel
4611 	 * mutliplier into the DPLL. */
4612 	if (HAS_PCH_CPT(dev_priv)) {
4613 		u32 sel;
4614 
4615 		temp = I915_READ(PCH_DPLL_SEL);
4616 		temp |= TRANS_DPLL_ENABLE(pipe);
4617 		sel = TRANS_DPLLB_SEL(pipe);
4618 		if (crtc_state->shared_dpll ==
4619 		    intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
4620 			temp |= sel;
4621 		else
4622 			temp &= ~sel;
4623 		I915_WRITE(PCH_DPLL_SEL, temp);
4624 	}
4625 
4626 	/* XXX: pch pll's can be enabled any time before we enable the PCH
4627 	 * transcoder, and we actually should do this to not upset any PCH
4628 	 * transcoder that already use the clock when we share it.
4629 	 *
4630 	 * Note that enable_shared_dpll tries to do the right thing, but
4631 	 * get_shared_dpll unconditionally resets the pll - we need that to have
4632 	 * the right LVDS enable sequence. */
4633 	intel_enable_shared_dpll(crtc);
4634 
4635 	/* set transcoder timing, panel must allow it */
4636 	assert_panel_unlocked(dev_priv, pipe);
4637 	ironlake_pch_transcoder_set_timings(crtc, pipe);
4638 
4639 	intel_fdi_normal_train(crtc);
4640 
4641 	/* For PCH DP, enable TRANS_DP_CTL */
4642 	if (HAS_PCH_CPT(dev_priv) &&
4643 	    intel_crtc_has_dp_encoder(crtc_state)) {
4644 		const struct drm_display_mode *adjusted_mode =
4645 			&crtc_state->base.adjusted_mode;
4646 		u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4647 		i915_reg_t reg = TRANS_DP_CTL(pipe);
4648 		temp = I915_READ(reg);
4649 		temp &= ~(TRANS_DP_PORT_SEL_MASK |
4650 			  TRANS_DP_SYNC_MASK |
4651 			  TRANS_DP_BPC_MASK);
4652 		temp |= TRANS_DP_OUTPUT_ENABLE;
4653 		temp |= bpc << 9; /* same format but at 11:9 */
4654 
4655 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
4656 			temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4657 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
4658 			temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4659 
4660 		switch (intel_trans_dp_port_sel(crtc)) {
4661 		case PORT_B:
4662 			temp |= TRANS_DP_PORT_SEL_B;
4663 			break;
4664 		case PORT_C:
4665 			temp |= TRANS_DP_PORT_SEL_C;
4666 			break;
4667 		case PORT_D:
4668 			temp |= TRANS_DP_PORT_SEL_D;
4669 			break;
4670 		default:
4671 			BUG();
4672 		}
4673 
4674 		I915_WRITE(reg, temp);
4675 	}
4676 
4677 	ironlake_enable_pch_transcoder(dev_priv, pipe);
4678 }
4679 
lpt_pch_enable(const struct intel_crtc_state * crtc_state)4680 static void lpt_pch_enable(const struct intel_crtc_state *crtc_state)
4681 {
4682 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
4683 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4684 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
4685 
4686 	assert_pch_transcoder_disabled(dev_priv, PIPE_A);
4687 
4688 	lpt_program_iclkip(crtc);
4689 
4690 	/* Set transcoder timing. */
4691 	ironlake_pch_transcoder_set_timings(crtc, PIPE_A);
4692 
4693 	lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4694 }
4695 
cpt_verify_modeset(struct drm_device * dev,int pipe)4696 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4697 {
4698 	struct drm_i915_private *dev_priv = to_i915(dev);
4699 	i915_reg_t dslreg = PIPEDSL(pipe);
4700 	u32 temp;
4701 
4702 	temp = I915_READ(dslreg);
4703 	udelay(500);
4704 	if (wait_for(I915_READ(dslreg) != temp, 5)) {
4705 		if (wait_for(I915_READ(dslreg) != temp, 5))
4706 			DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4707 	}
4708 }
4709 
4710 static int
skl_update_scaler(struct intel_crtc_state * crtc_state,bool force_detach,unsigned int scaler_user,int * scaler_id,int src_w,int src_h,int dst_w,int dst_h)4711 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4712 		  unsigned int scaler_user, int *scaler_id,
4713 		  int src_w, int src_h, int dst_w, int dst_h)
4714 {
4715 	struct intel_crtc_scaler_state *scaler_state =
4716 		&crtc_state->scaler_state;
4717 	struct intel_crtc *intel_crtc =
4718 		to_intel_crtc(crtc_state->base.crtc);
4719 	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4720 	const struct drm_display_mode *adjusted_mode =
4721 		&crtc_state->base.adjusted_mode;
4722 	int need_scaling;
4723 
4724 	/*
4725 	 * Src coordinates are already rotated by 270 degrees for
4726 	 * the 90/270 degree plane rotation cases (to match the
4727 	 * GTT mapping), hence no need to account for rotation here.
4728 	 */
4729 	need_scaling = src_w != dst_w || src_h != dst_h;
4730 
4731 	if (crtc_state->ycbcr420 && scaler_user == SKL_CRTC_INDEX)
4732 		need_scaling = true;
4733 
4734 	/*
4735 	 * Scaling/fitting not supported in IF-ID mode in GEN9+
4736 	 * TODO: Interlace fetch mode doesn't support YUV420 planar formats.
4737 	 * Once NV12 is enabled, handle it here while allocating scaler
4738 	 * for NV12.
4739 	 */
4740 	if (INTEL_GEN(dev_priv) >= 9 && crtc_state->base.enable &&
4741 	    need_scaling && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4742 		DRM_DEBUG_KMS("Pipe/Plane scaling not supported with IF-ID mode\n");
4743 		return -EINVAL;
4744 	}
4745 
4746 	/*
4747 	 * if plane is being disabled or scaler is no more required or force detach
4748 	 *  - free scaler binded to this plane/crtc
4749 	 *  - in order to do this, update crtc->scaler_usage
4750 	 *
4751 	 * Here scaler state in crtc_state is set free so that
4752 	 * scaler can be assigned to other user. Actual register
4753 	 * update to free the scaler is done in plane/panel-fit programming.
4754 	 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4755 	 */
4756 	if (force_detach || !need_scaling) {
4757 		if (*scaler_id >= 0) {
4758 			scaler_state->scaler_users &= ~(1 << scaler_user);
4759 			scaler_state->scalers[*scaler_id].in_use = 0;
4760 
4761 			DRM_DEBUG_KMS("scaler_user index %u.%u: "
4762 				"Staged freeing scaler id %d scaler_users = 0x%x\n",
4763 				intel_crtc->pipe, scaler_user, *scaler_id,
4764 				scaler_state->scaler_users);
4765 			*scaler_id = -1;
4766 		}
4767 		return 0;
4768 	}
4769 
4770 	/* range checks */
4771 	if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4772 		dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4773 
4774 		src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4775 		dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4776 		DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4777 			"size is out of scaler range\n",
4778 			intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4779 		return -EINVAL;
4780 	}
4781 
4782 	/* mark this plane as a scaler user in crtc_state */
4783 	scaler_state->scaler_users |= (1 << scaler_user);
4784 	DRM_DEBUG_KMS("scaler_user index %u.%u: "
4785 		"staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4786 		intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4787 		scaler_state->scaler_users);
4788 
4789 	return 0;
4790 }
4791 
4792 /**
4793  * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4794  *
4795  * @state: crtc's scaler state
4796  *
4797  * Return
4798  *     0 - scaler_usage updated successfully
4799  *    error - requested scaling cannot be supported or other error condition
4800  */
skl_update_scaler_crtc(struct intel_crtc_state * state)4801 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4802 {
4803 	const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4804 
4805 	return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4806 		&state->scaler_state.scaler_id,
4807 		state->pipe_src_w, state->pipe_src_h,
4808 		adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4809 }
4810 
4811 /**
4812  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4813  *
4814  * @state: crtc's scaler state
4815  * @plane_state: atomic plane state to update
4816  *
4817  * Return
4818  *     0 - scaler_usage updated successfully
4819  *    error - requested scaling cannot be supported or other error condition
4820  */
skl_update_scaler_plane(struct intel_crtc_state * crtc_state,struct intel_plane_state * plane_state)4821 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4822 				   struct intel_plane_state *plane_state)
4823 {
4824 
4825 	struct intel_plane *intel_plane =
4826 		to_intel_plane(plane_state->base.plane);
4827 	struct drm_framebuffer *fb = plane_state->base.fb;
4828 	int ret;
4829 
4830 	bool force_detach = !fb || !plane_state->base.visible;
4831 
4832 	ret = skl_update_scaler(crtc_state, force_detach,
4833 				drm_plane_index(&intel_plane->base),
4834 				&plane_state->scaler_id,
4835 				drm_rect_width(&plane_state->base.src) >> 16,
4836 				drm_rect_height(&plane_state->base.src) >> 16,
4837 				drm_rect_width(&plane_state->base.dst),
4838 				drm_rect_height(&plane_state->base.dst));
4839 
4840 	if (ret || plane_state->scaler_id < 0)
4841 		return ret;
4842 
4843 	/* check colorkey */
4844 	if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4845 		DRM_DEBUG_KMS("[PLANE:%d:%s] scaling with color key not allowed",
4846 			      intel_plane->base.base.id,
4847 			      intel_plane->base.name);
4848 		return -EINVAL;
4849 	}
4850 
4851 	/* Check src format */
4852 	switch (fb->format->format) {
4853 	case DRM_FORMAT_RGB565:
4854 	case DRM_FORMAT_XBGR8888:
4855 	case DRM_FORMAT_XRGB8888:
4856 	case DRM_FORMAT_ABGR8888:
4857 	case DRM_FORMAT_ARGB8888:
4858 	case DRM_FORMAT_XRGB2101010:
4859 	case DRM_FORMAT_XBGR2101010:
4860 	case DRM_FORMAT_YUYV:
4861 	case DRM_FORMAT_YVYU:
4862 	case DRM_FORMAT_UYVY:
4863 	case DRM_FORMAT_VYUY:
4864 		break;
4865 	default:
4866 		DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
4867 			      intel_plane->base.base.id, intel_plane->base.name,
4868 			      fb->base.id, fb->format->format);
4869 		return -EINVAL;
4870 	}
4871 
4872 	return 0;
4873 }
4874 
skylake_scaler_disable(struct intel_crtc * crtc)4875 static void skylake_scaler_disable(struct intel_crtc *crtc)
4876 {
4877 	int i;
4878 
4879 	for (i = 0; i < crtc->num_scalers; i++)
4880 		skl_detach_scaler(crtc, i);
4881 }
4882 
skylake_pfit_enable(struct intel_crtc * crtc)4883 static void skylake_pfit_enable(struct intel_crtc *crtc)
4884 {
4885 	struct drm_device *dev = crtc->base.dev;
4886 	struct drm_i915_private *dev_priv = to_i915(dev);
4887 	int pipe = crtc->pipe;
4888 	struct intel_crtc_scaler_state *scaler_state =
4889 		&crtc->config->scaler_state;
4890 
4891 	if (crtc->config->pch_pfit.enabled) {
4892 		int id;
4893 
4894 		if (WARN_ON(crtc->config->scaler_state.scaler_id < 0))
4895 			return;
4896 
4897 		id = scaler_state->scaler_id;
4898 		I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4899 			PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4900 		I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4901 		I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4902 	}
4903 }
4904 
ironlake_pfit_enable(struct intel_crtc * crtc)4905 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4906 {
4907 	struct drm_device *dev = crtc->base.dev;
4908 	struct drm_i915_private *dev_priv = to_i915(dev);
4909 	int pipe = crtc->pipe;
4910 
4911 	if (crtc->config->pch_pfit.enabled) {
4912 		/* Force use of hard-coded filter coefficients
4913 		 * as some pre-programmed values are broken,
4914 		 * e.g. x201.
4915 		 */
4916 		if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv))
4917 			I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4918 						 PF_PIPE_SEL_IVB(pipe));
4919 		else
4920 			I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4921 		I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4922 		I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4923 	}
4924 }
4925 
hsw_enable_ips(struct intel_crtc * crtc)4926 void hsw_enable_ips(struct intel_crtc *crtc)
4927 {
4928 	struct drm_device *dev = crtc->base.dev;
4929 	struct drm_i915_private *dev_priv = to_i915(dev);
4930 
4931 	if (!crtc->config->ips_enabled)
4932 		return;
4933 
4934 	/*
4935 	 * We can only enable IPS after we enable a plane and wait for a vblank
4936 	 * This function is called from post_plane_update, which is run after
4937 	 * a vblank wait.
4938 	 */
4939 
4940 	assert_plane_enabled(to_intel_plane(crtc->base.primary));
4941 
4942 	if (IS_BROADWELL(dev_priv)) {
4943 		mutex_lock(&dev_priv->rps.hw_lock);
4944 		WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4945 		mutex_unlock(&dev_priv->rps.hw_lock);
4946 		/* Quoting Art Runyan: "its not safe to expect any particular
4947 		 * value in IPS_CTL bit 31 after enabling IPS through the
4948 		 * mailbox." Moreover, the mailbox may return a bogus state,
4949 		 * so we need to just enable it and continue on.
4950 		 */
4951 	} else {
4952 		I915_WRITE(IPS_CTL, IPS_ENABLE);
4953 		/* The bit only becomes 1 in the next vblank, so this wait here
4954 		 * is essentially intel_wait_for_vblank. If we don't have this
4955 		 * and don't wait for vblanks until the end of crtc_enable, then
4956 		 * the HW state readout code will complain that the expected
4957 		 * IPS_CTL value is not the one we read. */
4958 		if (intel_wait_for_register(dev_priv,
4959 					    IPS_CTL, IPS_ENABLE, IPS_ENABLE,
4960 					    50))
4961 			DRM_ERROR("Timed out waiting for IPS enable\n");
4962 	}
4963 }
4964 
hsw_disable_ips(struct intel_crtc * crtc)4965 void hsw_disable_ips(struct intel_crtc *crtc)
4966 {
4967 	struct drm_device *dev = crtc->base.dev;
4968 	struct drm_i915_private *dev_priv = to_i915(dev);
4969 
4970 	if (!crtc->config->ips_enabled)
4971 		return;
4972 
4973 	assert_plane_enabled(to_intel_plane(crtc->base.primary));
4974 
4975 	if (IS_BROADWELL(dev_priv)) {
4976 		mutex_lock(&dev_priv->rps.hw_lock);
4977 		WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4978 		mutex_unlock(&dev_priv->rps.hw_lock);
4979 		/* wait for pcode to finish disabling IPS, which may take up to 42ms */
4980 		if (intel_wait_for_register(dev_priv,
4981 					    IPS_CTL, IPS_ENABLE, 0,
4982 					    42))
4983 			DRM_ERROR("Timed out waiting for IPS disable\n");
4984 	} else {
4985 		I915_WRITE(IPS_CTL, 0);
4986 		POSTING_READ(IPS_CTL);
4987 	}
4988 
4989 	/* We need to wait for a vblank before we can disable the plane. */
4990 	intel_wait_for_vblank(dev_priv, crtc->pipe);
4991 }
4992 
intel_crtc_dpms_overlay_disable(struct intel_crtc * intel_crtc)4993 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4994 {
4995 	if (intel_crtc->overlay) {
4996 		struct drm_device *dev = intel_crtc->base.dev;
4997 
4998 		mutex_lock(&dev->struct_mutex);
4999 		(void) intel_overlay_switch_off(intel_crtc->overlay);
5000 		mutex_unlock(&dev->struct_mutex);
5001 	}
5002 
5003 	/* Let userspace switch the overlay on again. In most cases userspace
5004 	 * has to recompute where to put it anyway.
5005 	 */
5006 }
5007 
5008 /**
5009  * intel_post_enable_primary - Perform operations after enabling primary plane
5010  * @crtc: the CRTC whose primary plane was just enabled
5011  *
5012  * Performs potentially sleeping operations that must be done after the primary
5013  * plane is enabled, such as updating FBC and IPS.  Note that this may be
5014  * called due to an explicit primary plane update, or due to an implicit
5015  * re-enable that is caused when a sprite plane is updated to no longer
5016  * completely hide the primary plane.
5017  */
5018 static void
intel_post_enable_primary(struct drm_crtc * crtc)5019 intel_post_enable_primary(struct drm_crtc *crtc)
5020 {
5021 	struct drm_device *dev = crtc->dev;
5022 	struct drm_i915_private *dev_priv = to_i915(dev);
5023 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5024 	int pipe = intel_crtc->pipe;
5025 
5026 	/*
5027 	 * FIXME IPS should be fine as long as one plane is
5028 	 * enabled, but in practice it seems to have problems
5029 	 * when going from primary only to sprite only and vice
5030 	 * versa.
5031 	 */
5032 	hsw_enable_ips(intel_crtc);
5033 
5034 	/*
5035 	 * Gen2 reports pipe underruns whenever all planes are disabled.
5036 	 * So don't enable underrun reporting before at least some planes
5037 	 * are enabled.
5038 	 * FIXME: Need to fix the logic to work when we turn off all planes
5039 	 * but leave the pipe running.
5040 	 */
5041 	if (IS_GEN2(dev_priv))
5042 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5043 
5044 	/* Underruns don't always raise interrupts, so check manually. */
5045 	intel_check_cpu_fifo_underruns(dev_priv);
5046 	intel_check_pch_fifo_underruns(dev_priv);
5047 }
5048 
5049 /* FIXME move all this to pre_plane_update() with proper state tracking */
5050 static void
intel_pre_disable_primary(struct drm_crtc * crtc)5051 intel_pre_disable_primary(struct drm_crtc *crtc)
5052 {
5053 	struct drm_device *dev = crtc->dev;
5054 	struct drm_i915_private *dev_priv = to_i915(dev);
5055 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5056 	int pipe = intel_crtc->pipe;
5057 
5058 	/*
5059 	 * Gen2 reports pipe underruns whenever all planes are disabled.
5060 	 * So diasble underrun reporting before all the planes get disabled.
5061 	 * FIXME: Need to fix the logic to work when we turn off all planes
5062 	 * but leave the pipe running.
5063 	 */
5064 	if (IS_GEN2(dev_priv))
5065 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5066 
5067 	/*
5068 	 * FIXME IPS should be fine as long as one plane is
5069 	 * enabled, but in practice it seems to have problems
5070 	 * when going from primary only to sprite only and vice
5071 	 * versa.
5072 	 */
5073 	hsw_disable_ips(intel_crtc);
5074 }
5075 
5076 /* FIXME get rid of this and use pre_plane_update */
5077 static void
intel_pre_disable_primary_noatomic(struct drm_crtc * crtc)5078 intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
5079 {
5080 	struct drm_device *dev = crtc->dev;
5081 	struct drm_i915_private *dev_priv = to_i915(dev);
5082 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5083 	int pipe = intel_crtc->pipe;
5084 
5085 	intel_pre_disable_primary(crtc);
5086 
5087 	/*
5088 	 * Vblank time updates from the shadow to live plane control register
5089 	 * are blocked if the memory self-refresh mode is active at that
5090 	 * moment. So to make sure the plane gets truly disabled, disable
5091 	 * first the self-refresh mode. The self-refresh enable bit in turn
5092 	 * will be checked/applied by the HW only at the next frame start
5093 	 * event which is after the vblank start event, so we need to have a
5094 	 * wait-for-vblank between disabling the plane and the pipe.
5095 	 */
5096 	if (HAS_GMCH_DISPLAY(dev_priv) &&
5097 	    intel_set_memory_cxsr(dev_priv, false))
5098 		intel_wait_for_vblank(dev_priv, pipe);
5099 }
5100 
intel_post_plane_update(struct intel_crtc_state * old_crtc_state)5101 static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
5102 {
5103 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
5104 	struct drm_atomic_state *old_state = old_crtc_state->base.state;
5105 	struct intel_crtc_state *pipe_config =
5106 		to_intel_crtc_state(crtc->base.state);
5107 	struct drm_plane *primary = crtc->base.primary;
5108 	struct drm_plane_state *old_pri_state =
5109 		drm_atomic_get_existing_plane_state(old_state, primary);
5110 
5111 	intel_frontbuffer_flip(to_i915(crtc->base.dev), pipe_config->fb_bits);
5112 
5113 	if (pipe_config->update_wm_post && pipe_config->base.active)
5114 		intel_update_watermarks(crtc);
5115 
5116 	if (old_pri_state) {
5117 		struct intel_plane_state *primary_state =
5118 			to_intel_plane_state(primary->state);
5119 		struct intel_plane_state *old_primary_state =
5120 			to_intel_plane_state(old_pri_state);
5121 
5122 		intel_fbc_post_update(crtc);
5123 
5124 		if (primary_state->base.visible &&
5125 		    (needs_modeset(&pipe_config->base) ||
5126 		     !old_primary_state->base.visible))
5127 			intel_post_enable_primary(&crtc->base);
5128 	}
5129 }
5130 
intel_pre_plane_update(struct intel_crtc_state * old_crtc_state,struct intel_crtc_state * pipe_config)5131 static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state,
5132 				   struct intel_crtc_state *pipe_config)
5133 {
5134 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
5135 	struct drm_device *dev = crtc->base.dev;
5136 	struct drm_i915_private *dev_priv = to_i915(dev);
5137 	struct drm_atomic_state *old_state = old_crtc_state->base.state;
5138 	struct drm_plane *primary = crtc->base.primary;
5139 	struct drm_plane_state *old_pri_state =
5140 		drm_atomic_get_existing_plane_state(old_state, primary);
5141 	bool modeset = needs_modeset(&pipe_config->base);
5142 	struct intel_atomic_state *old_intel_state =
5143 		to_intel_atomic_state(old_state);
5144 
5145 	if (old_pri_state) {
5146 		struct intel_plane_state *primary_state =
5147 			to_intel_plane_state(primary->state);
5148 		struct intel_plane_state *old_primary_state =
5149 			to_intel_plane_state(old_pri_state);
5150 
5151 		intel_fbc_pre_update(crtc, pipe_config, primary_state);
5152 
5153 		if (old_primary_state->base.visible &&
5154 		    (modeset || !primary_state->base.visible))
5155 			intel_pre_disable_primary(&crtc->base);
5156 	}
5157 
5158 	/*
5159 	 * Vblank time updates from the shadow to live plane control register
5160 	 * are blocked if the memory self-refresh mode is active at that
5161 	 * moment. So to make sure the plane gets truly disabled, disable
5162 	 * first the self-refresh mode. The self-refresh enable bit in turn
5163 	 * will be checked/applied by the HW only at the next frame start
5164 	 * event which is after the vblank start event, so we need to have a
5165 	 * wait-for-vblank between disabling the plane and the pipe.
5166 	 */
5167 	if (HAS_GMCH_DISPLAY(dev_priv) && old_crtc_state->base.active &&
5168 	    pipe_config->disable_cxsr && intel_set_memory_cxsr(dev_priv, false))
5169 		intel_wait_for_vblank(dev_priv, crtc->pipe);
5170 
5171 	/*
5172 	 * IVB workaround: must disable low power watermarks for at least
5173 	 * one frame before enabling scaling.  LP watermarks can be re-enabled
5174 	 * when scaling is disabled.
5175 	 *
5176 	 * WaCxSRDisabledForSpriteScaling:ivb
5177 	 */
5178 	if (pipe_config->disable_lp_wm && ilk_disable_lp_wm(dev))
5179 		intel_wait_for_vblank(dev_priv, crtc->pipe);
5180 
5181 	/*
5182 	 * If we're doing a modeset, we're done.  No need to do any pre-vblank
5183 	 * watermark programming here.
5184 	 */
5185 	if (needs_modeset(&pipe_config->base))
5186 		return;
5187 
5188 	/*
5189 	 * For platforms that support atomic watermarks, program the
5190 	 * 'intermediate' watermarks immediately.  On pre-gen9 platforms, these
5191 	 * will be the intermediate values that are safe for both pre- and
5192 	 * post- vblank; when vblank happens, the 'active' values will be set
5193 	 * to the final 'target' values and we'll do this again to get the
5194 	 * optimal watermarks.  For gen9+ platforms, the values we program here
5195 	 * will be the final target values which will get automatically latched
5196 	 * at vblank time; no further programming will be necessary.
5197 	 *
5198 	 * If a platform hasn't been transitioned to atomic watermarks yet,
5199 	 * we'll continue to update watermarks the old way, if flags tell
5200 	 * us to.
5201 	 */
5202 	if (dev_priv->display.initial_watermarks != NULL)
5203 		dev_priv->display.initial_watermarks(old_intel_state,
5204 						     pipe_config);
5205 	else if (pipe_config->update_wm_pre)
5206 		intel_update_watermarks(crtc);
5207 }
5208 
intel_crtc_disable_planes(struct drm_crtc * crtc,unsigned plane_mask)5209 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
5210 {
5211 	struct drm_device *dev = crtc->dev;
5212 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5213 	struct drm_plane *p;
5214 	int pipe = intel_crtc->pipe;
5215 
5216 	intel_crtc_dpms_overlay_disable(intel_crtc);
5217 
5218 	drm_for_each_plane_mask(p, dev, plane_mask)
5219 		to_intel_plane(p)->disable_plane(to_intel_plane(p), intel_crtc);
5220 
5221 	/*
5222 	 * FIXME: Once we grow proper nuclear flip support out of this we need
5223 	 * to compute the mask of flip planes precisely. For the time being
5224 	 * consider this a flip to a NULL plane.
5225 	 */
5226 	intel_frontbuffer_flip(to_i915(dev), INTEL_FRONTBUFFER_ALL_MASK(pipe));
5227 }
5228 
intel_encoders_pre_pll_enable(struct drm_crtc * crtc,struct intel_crtc_state * crtc_state,struct drm_atomic_state * old_state)5229 static void intel_encoders_pre_pll_enable(struct drm_crtc *crtc,
5230 					  struct intel_crtc_state *crtc_state,
5231 					  struct drm_atomic_state *old_state)
5232 {
5233 	struct drm_connector_state *conn_state;
5234 	struct drm_connector *conn;
5235 	int i;
5236 
5237 	for_each_new_connector_in_state(old_state, conn, conn_state, i) {
5238 		struct intel_encoder *encoder =
5239 			to_intel_encoder(conn_state->best_encoder);
5240 
5241 		if (conn_state->crtc != crtc)
5242 			continue;
5243 
5244 		if (encoder->pre_pll_enable)
5245 			encoder->pre_pll_enable(encoder, crtc_state, conn_state);
5246 	}
5247 }
5248 
intel_encoders_pre_enable(struct drm_crtc * crtc,struct intel_crtc_state * crtc_state,struct drm_atomic_state * old_state)5249 static void intel_encoders_pre_enable(struct drm_crtc *crtc,
5250 				      struct intel_crtc_state *crtc_state,
5251 				      struct drm_atomic_state *old_state)
5252 {
5253 	struct drm_connector_state *conn_state;
5254 	struct drm_connector *conn;
5255 	int i;
5256 
5257 	for_each_new_connector_in_state(old_state, conn, conn_state, i) {
5258 		struct intel_encoder *encoder =
5259 			to_intel_encoder(conn_state->best_encoder);
5260 
5261 		if (conn_state->crtc != crtc)
5262 			continue;
5263 
5264 		if (encoder->pre_enable)
5265 			encoder->pre_enable(encoder, crtc_state, conn_state);
5266 	}
5267 }
5268 
intel_encoders_enable(struct drm_crtc * crtc,struct intel_crtc_state * crtc_state,struct drm_atomic_state * old_state)5269 static void intel_encoders_enable(struct drm_crtc *crtc,
5270 				  struct intel_crtc_state *crtc_state,
5271 				  struct drm_atomic_state *old_state)
5272 {
5273 	struct drm_connector_state *conn_state;
5274 	struct drm_connector *conn;
5275 	int i;
5276 
5277 	for_each_new_connector_in_state(old_state, conn, conn_state, i) {
5278 		struct intel_encoder *encoder =
5279 			to_intel_encoder(conn_state->best_encoder);
5280 
5281 		if (conn_state->crtc != crtc)
5282 			continue;
5283 
5284 		encoder->enable(encoder, crtc_state, conn_state);
5285 		intel_opregion_notify_encoder(encoder, true);
5286 	}
5287 }
5288 
intel_encoders_disable(struct drm_crtc * crtc,struct intel_crtc_state * old_crtc_state,struct drm_atomic_state * old_state)5289 static void intel_encoders_disable(struct drm_crtc *crtc,
5290 				   struct intel_crtc_state *old_crtc_state,
5291 				   struct drm_atomic_state *old_state)
5292 {
5293 	struct drm_connector_state *old_conn_state;
5294 	struct drm_connector *conn;
5295 	int i;
5296 
5297 	for_each_old_connector_in_state(old_state, conn, old_conn_state, i) {
5298 		struct intel_encoder *encoder =
5299 			to_intel_encoder(old_conn_state->best_encoder);
5300 
5301 		if (old_conn_state->crtc != crtc)
5302 			continue;
5303 
5304 		intel_opregion_notify_encoder(encoder, false);
5305 		encoder->disable(encoder, old_crtc_state, old_conn_state);
5306 	}
5307 }
5308 
intel_encoders_post_disable(struct drm_crtc * crtc,struct intel_crtc_state * old_crtc_state,struct drm_atomic_state * old_state)5309 static void intel_encoders_post_disable(struct drm_crtc *crtc,
5310 					struct intel_crtc_state *old_crtc_state,
5311 					struct drm_atomic_state *old_state)
5312 {
5313 	struct drm_connector_state *old_conn_state;
5314 	struct drm_connector *conn;
5315 	int i;
5316 
5317 	for_each_old_connector_in_state(old_state, conn, old_conn_state, i) {
5318 		struct intel_encoder *encoder =
5319 			to_intel_encoder(old_conn_state->best_encoder);
5320 
5321 		if (old_conn_state->crtc != crtc)
5322 			continue;
5323 
5324 		if (encoder->post_disable)
5325 			encoder->post_disable(encoder, old_crtc_state, old_conn_state);
5326 	}
5327 }
5328 
intel_encoders_post_pll_disable(struct drm_crtc * crtc,struct intel_crtc_state * old_crtc_state,struct drm_atomic_state * old_state)5329 static void intel_encoders_post_pll_disable(struct drm_crtc *crtc,
5330 					    struct intel_crtc_state *old_crtc_state,
5331 					    struct drm_atomic_state *old_state)
5332 {
5333 	struct drm_connector_state *old_conn_state;
5334 	struct drm_connector *conn;
5335 	int i;
5336 
5337 	for_each_old_connector_in_state(old_state, conn, old_conn_state, i) {
5338 		struct intel_encoder *encoder =
5339 			to_intel_encoder(old_conn_state->best_encoder);
5340 
5341 		if (old_conn_state->crtc != crtc)
5342 			continue;
5343 
5344 		if (encoder->post_pll_disable)
5345 			encoder->post_pll_disable(encoder, old_crtc_state, old_conn_state);
5346 	}
5347 }
5348 
ironlake_crtc_enable(struct intel_crtc_state * pipe_config,struct drm_atomic_state * old_state)5349 static void ironlake_crtc_enable(struct intel_crtc_state *pipe_config,
5350 				 struct drm_atomic_state *old_state)
5351 {
5352 	struct drm_crtc *crtc = pipe_config->base.crtc;
5353 	struct drm_device *dev = crtc->dev;
5354 	struct drm_i915_private *dev_priv = to_i915(dev);
5355 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5356 	int pipe = intel_crtc->pipe;
5357 	struct intel_atomic_state *old_intel_state =
5358 		to_intel_atomic_state(old_state);
5359 
5360 	if (WARN_ON(intel_crtc->active))
5361 		return;
5362 
5363 	/*
5364 	 * Sometimes spurious CPU pipe underruns happen during FDI
5365 	 * training, at least with VGA+HDMI cloning. Suppress them.
5366 	 *
5367 	 * On ILK we get an occasional spurious CPU pipe underruns
5368 	 * between eDP port A enable and vdd enable. Also PCH port
5369 	 * enable seems to result in the occasional CPU pipe underrun.
5370 	 *
5371 	 * Spurious PCH underruns also occur during PCH enabling.
5372 	 */
5373 	if (intel_crtc->config->has_pch_encoder || IS_GEN5(dev_priv))
5374 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5375 	if (intel_crtc->config->has_pch_encoder)
5376 		intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5377 
5378 	if (intel_crtc->config->has_pch_encoder)
5379 		intel_prepare_shared_dpll(intel_crtc);
5380 
5381 	if (intel_crtc_has_dp_encoder(intel_crtc->config))
5382 		intel_dp_set_m_n(intel_crtc, M1_N1);
5383 
5384 	intel_set_pipe_timings(intel_crtc);
5385 	intel_set_pipe_src_size(intel_crtc);
5386 
5387 	if (intel_crtc->config->has_pch_encoder) {
5388 		intel_cpu_transcoder_set_m_n(intel_crtc,
5389 				     &intel_crtc->config->fdi_m_n, NULL);
5390 	}
5391 
5392 	ironlake_set_pipeconf(crtc);
5393 
5394 	intel_crtc->active = true;
5395 
5396 	intel_encoders_pre_enable(crtc, pipe_config, old_state);
5397 
5398 	if (intel_crtc->config->has_pch_encoder) {
5399 		/* Note: FDI PLL enabling _must_ be done before we enable the
5400 		 * cpu pipes, hence this is separate from all the other fdi/pch
5401 		 * enabling. */
5402 		ironlake_fdi_pll_enable(intel_crtc);
5403 	} else {
5404 		assert_fdi_tx_disabled(dev_priv, pipe);
5405 		assert_fdi_rx_disabled(dev_priv, pipe);
5406 	}
5407 
5408 	ironlake_pfit_enable(intel_crtc);
5409 
5410 	/*
5411 	 * On ILK+ LUT must be loaded before the pipe is running but with
5412 	 * clocks enabled
5413 	 */
5414 	intel_color_load_luts(&pipe_config->base);
5415 
5416 	if (dev_priv->display.initial_watermarks != NULL)
5417 		dev_priv->display.initial_watermarks(old_intel_state, intel_crtc->config);
5418 	intel_enable_pipe(intel_crtc);
5419 
5420 	if (intel_crtc->config->has_pch_encoder)
5421 		ironlake_pch_enable(pipe_config);
5422 
5423 	assert_vblank_disabled(crtc);
5424 	drm_crtc_vblank_on(crtc);
5425 
5426 	intel_encoders_enable(crtc, pipe_config, old_state);
5427 
5428 	if (HAS_PCH_CPT(dev_priv))
5429 		cpt_verify_modeset(dev, intel_crtc->pipe);
5430 
5431 	/* Must wait for vblank to avoid spurious PCH FIFO underruns */
5432 	if (intel_crtc->config->has_pch_encoder)
5433 		intel_wait_for_vblank(dev_priv, pipe);
5434 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5435 	intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5436 }
5437 
5438 /* IPS only exists on ULT machines and is tied to pipe A. */
hsw_crtc_supports_ips(struct intel_crtc * crtc)5439 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
5440 {
5441 	return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A;
5442 }
5443 
haswell_crtc_enable(struct intel_crtc_state * pipe_config,struct drm_atomic_state * old_state)5444 static void haswell_crtc_enable(struct intel_crtc_state *pipe_config,
5445 				struct drm_atomic_state *old_state)
5446 {
5447 	struct drm_crtc *crtc = pipe_config->base.crtc;
5448 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5449 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5450 	int pipe = intel_crtc->pipe, hsw_workaround_pipe;
5451 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5452 	struct intel_atomic_state *old_intel_state =
5453 		to_intel_atomic_state(old_state);
5454 
5455 	if (WARN_ON(intel_crtc->active))
5456 		return;
5457 
5458 	if (intel_crtc->config->has_pch_encoder)
5459 		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
5460 
5461 	intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
5462 
5463 	if (intel_crtc->config->shared_dpll)
5464 		intel_enable_shared_dpll(intel_crtc);
5465 
5466 	if (intel_crtc_has_dp_encoder(intel_crtc->config))
5467 		intel_dp_set_m_n(intel_crtc, M1_N1);
5468 
5469 	if (!transcoder_is_dsi(cpu_transcoder))
5470 		intel_set_pipe_timings(intel_crtc);
5471 
5472 	intel_set_pipe_src_size(intel_crtc);
5473 
5474 	if (cpu_transcoder != TRANSCODER_EDP &&
5475 	    !transcoder_is_dsi(cpu_transcoder)) {
5476 		I915_WRITE(PIPE_MULT(cpu_transcoder),
5477 			   intel_crtc->config->pixel_multiplier - 1);
5478 	}
5479 
5480 	if (intel_crtc->config->has_pch_encoder) {
5481 		intel_cpu_transcoder_set_m_n(intel_crtc,
5482 				     &intel_crtc->config->fdi_m_n, NULL);
5483 	}
5484 
5485 	if (!transcoder_is_dsi(cpu_transcoder))
5486 		haswell_set_pipeconf(crtc);
5487 
5488 	haswell_set_pipemisc(crtc);
5489 
5490 	intel_color_set_csc(&pipe_config->base);
5491 
5492 	intel_crtc->active = true;
5493 
5494 	if (intel_crtc->config->has_pch_encoder)
5495 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5496 	else
5497 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5498 
5499 	intel_encoders_pre_enable(crtc, pipe_config, old_state);
5500 
5501 	if (intel_crtc->config->has_pch_encoder)
5502 		dev_priv->display.fdi_link_train(intel_crtc, pipe_config);
5503 
5504 	if (!transcoder_is_dsi(cpu_transcoder))
5505 		intel_ddi_enable_pipe_clock(pipe_config);
5506 
5507 	if (INTEL_GEN(dev_priv) >= 9)
5508 		skylake_pfit_enable(intel_crtc);
5509 	else
5510 		ironlake_pfit_enable(intel_crtc);
5511 
5512 	/*
5513 	 * On ILK+ LUT must be loaded before the pipe is running but with
5514 	 * clocks enabled
5515 	 */
5516 	intel_color_load_luts(&pipe_config->base);
5517 
5518 	intel_ddi_set_pipe_settings(pipe_config);
5519 	if (!transcoder_is_dsi(cpu_transcoder))
5520 		intel_ddi_enable_transcoder_func(pipe_config);
5521 
5522 	if (dev_priv->display.initial_watermarks != NULL)
5523 		dev_priv->display.initial_watermarks(old_intel_state, pipe_config);
5524 
5525 	/* XXX: Do the pipe assertions at the right place for BXT DSI. */
5526 	if (!transcoder_is_dsi(cpu_transcoder))
5527 		intel_enable_pipe(intel_crtc);
5528 
5529 	if (intel_crtc->config->has_pch_encoder)
5530 		lpt_pch_enable(pipe_config);
5531 
5532 	if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DP_MST))
5533 		intel_ddi_set_vc_payload_alloc(pipe_config, true);
5534 
5535 	assert_vblank_disabled(crtc);
5536 	drm_crtc_vblank_on(crtc);
5537 
5538 	intel_encoders_enable(crtc, pipe_config, old_state);
5539 
5540 	if (intel_crtc->config->has_pch_encoder) {
5541 		intel_wait_for_vblank(dev_priv, pipe);
5542 		intel_wait_for_vblank(dev_priv, pipe);
5543 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5544 		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
5545 	}
5546 
5547 	/* If we change the relative order between pipe/planes enabling, we need
5548 	 * to change the workaround. */
5549 	hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
5550 	if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) {
5551 		intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
5552 		intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
5553 	}
5554 }
5555 
ironlake_pfit_disable(struct intel_crtc * crtc,bool force)5556 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
5557 {
5558 	struct drm_device *dev = crtc->base.dev;
5559 	struct drm_i915_private *dev_priv = to_i915(dev);
5560 	int pipe = crtc->pipe;
5561 
5562 	/* To avoid upsetting the power well on haswell only disable the pfit if
5563 	 * it's in use. The hw state code will make sure we get this right. */
5564 	if (force || crtc->config->pch_pfit.enabled) {
5565 		I915_WRITE(PF_CTL(pipe), 0);
5566 		I915_WRITE(PF_WIN_POS(pipe), 0);
5567 		I915_WRITE(PF_WIN_SZ(pipe), 0);
5568 	}
5569 }
5570 
ironlake_crtc_disable(struct intel_crtc_state * old_crtc_state,struct drm_atomic_state * old_state)5571 static void ironlake_crtc_disable(struct intel_crtc_state *old_crtc_state,
5572 				  struct drm_atomic_state *old_state)
5573 {
5574 	struct drm_crtc *crtc = old_crtc_state->base.crtc;
5575 	struct drm_device *dev = crtc->dev;
5576 	struct drm_i915_private *dev_priv = to_i915(dev);
5577 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5578 	int pipe = intel_crtc->pipe;
5579 
5580 	/*
5581 	 * Sometimes spurious CPU pipe underruns happen when the
5582 	 * pipe is already disabled, but FDI RX/TX is still enabled.
5583 	 * Happens at least with VGA+HDMI cloning. Suppress them.
5584 	 */
5585 	if (intel_crtc->config->has_pch_encoder) {
5586 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5587 		intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5588 	}
5589 
5590 	intel_encoders_disable(crtc, old_crtc_state, old_state);
5591 
5592 	drm_crtc_vblank_off(crtc);
5593 	assert_vblank_disabled(crtc);
5594 
5595 	intel_disable_pipe(intel_crtc);
5596 
5597 	ironlake_pfit_disable(intel_crtc, false);
5598 
5599 	if (intel_crtc->config->has_pch_encoder)
5600 		ironlake_fdi_disable(crtc);
5601 
5602 	intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5603 
5604 	if (intel_crtc->config->has_pch_encoder) {
5605 		ironlake_disable_pch_transcoder(dev_priv, pipe);
5606 
5607 		if (HAS_PCH_CPT(dev_priv)) {
5608 			i915_reg_t reg;
5609 			u32 temp;
5610 
5611 			/* disable TRANS_DP_CTL */
5612 			reg = TRANS_DP_CTL(pipe);
5613 			temp = I915_READ(reg);
5614 			temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5615 				  TRANS_DP_PORT_SEL_MASK);
5616 			temp |= TRANS_DP_PORT_SEL_NONE;
5617 			I915_WRITE(reg, temp);
5618 
5619 			/* disable DPLL_SEL */
5620 			temp = I915_READ(PCH_DPLL_SEL);
5621 			temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5622 			I915_WRITE(PCH_DPLL_SEL, temp);
5623 		}
5624 
5625 		ironlake_fdi_pll_disable(intel_crtc);
5626 	}
5627 
5628 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5629 	intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5630 }
5631 
haswell_crtc_disable(struct intel_crtc_state * old_crtc_state,struct drm_atomic_state * old_state)5632 static void haswell_crtc_disable(struct intel_crtc_state *old_crtc_state,
5633 				 struct drm_atomic_state *old_state)
5634 {
5635 	struct drm_crtc *crtc = old_crtc_state->base.crtc;
5636 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5637 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5638 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5639 
5640 	if (intel_crtc->config->has_pch_encoder)
5641 		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
5642 
5643 	intel_encoders_disable(crtc, old_crtc_state, old_state);
5644 
5645 	drm_crtc_vblank_off(crtc);
5646 	assert_vblank_disabled(crtc);
5647 
5648 	/* XXX: Do the pipe assertions at the right place for BXT DSI. */
5649 	if (!transcoder_is_dsi(cpu_transcoder))
5650 		intel_disable_pipe(intel_crtc);
5651 
5652 	if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DP_MST))
5653 		intel_ddi_set_vc_payload_alloc(intel_crtc->config, false);
5654 
5655 	if (!transcoder_is_dsi(cpu_transcoder))
5656 		intel_ddi_disable_transcoder_func(old_crtc_state);
5657 
5658 	if (INTEL_GEN(dev_priv) >= 9)
5659 		skylake_scaler_disable(intel_crtc);
5660 	else
5661 		ironlake_pfit_disable(intel_crtc, false);
5662 
5663 	if (!transcoder_is_dsi(cpu_transcoder))
5664 		intel_ddi_disable_pipe_clock(intel_crtc->config);
5665 
5666 	intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5667 
5668 	if (old_crtc_state->has_pch_encoder)
5669 		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
5670 }
5671 
i9xx_pfit_enable(struct intel_crtc * crtc)5672 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5673 {
5674 	struct drm_device *dev = crtc->base.dev;
5675 	struct drm_i915_private *dev_priv = to_i915(dev);
5676 	struct intel_crtc_state *pipe_config = crtc->config;
5677 
5678 	if (!pipe_config->gmch_pfit.control)
5679 		return;
5680 
5681 	/*
5682 	 * The panel fitter should only be adjusted whilst the pipe is disabled,
5683 	 * according to register description and PRM.
5684 	 */
5685 	WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5686 	assert_pipe_disabled(dev_priv, crtc->pipe);
5687 
5688 	I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5689 	I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5690 
5691 	/* Border color in case we don't scale up to the full screen. Black by
5692 	 * default, change to something else for debugging. */
5693 	I915_WRITE(BCLRPAT(crtc->pipe), 0);
5694 }
5695 
intel_port_to_power_domain(enum port port)5696 enum intel_display_power_domain intel_port_to_power_domain(enum port port)
5697 {
5698 	switch (port) {
5699 	case PORT_A:
5700 		return POWER_DOMAIN_PORT_DDI_A_LANES;
5701 	case PORT_B:
5702 		return POWER_DOMAIN_PORT_DDI_B_LANES;
5703 	case PORT_C:
5704 		return POWER_DOMAIN_PORT_DDI_C_LANES;
5705 	case PORT_D:
5706 		return POWER_DOMAIN_PORT_DDI_D_LANES;
5707 	case PORT_E:
5708 		return POWER_DOMAIN_PORT_DDI_E_LANES;
5709 	default:
5710 		MISSING_CASE(port);
5711 		return POWER_DOMAIN_PORT_OTHER;
5712 	}
5713 }
5714 
get_crtc_power_domains(struct drm_crtc * crtc,struct intel_crtc_state * crtc_state)5715 static u64 get_crtc_power_domains(struct drm_crtc *crtc,
5716 				  struct intel_crtc_state *crtc_state)
5717 {
5718 	struct drm_device *dev = crtc->dev;
5719 	struct drm_i915_private *dev_priv = to_i915(dev);
5720 	struct drm_encoder *encoder;
5721 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5722 	enum pipe pipe = intel_crtc->pipe;
5723 	u64 mask;
5724 	enum transcoder transcoder = crtc_state->cpu_transcoder;
5725 
5726 	if (!crtc_state->base.active)
5727 		return 0;
5728 
5729 	mask = BIT(POWER_DOMAIN_PIPE(pipe));
5730 	mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5731 	if (crtc_state->pch_pfit.enabled ||
5732 	    crtc_state->pch_pfit.force_thru)
5733 		mask |= BIT_ULL(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5734 
5735 	drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5736 		struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5737 
5738 		mask |= BIT_ULL(intel_encoder->power_domain);
5739 	}
5740 
5741 	if (HAS_DDI(dev_priv) && crtc_state->has_audio)
5742 		mask |= BIT(POWER_DOMAIN_AUDIO);
5743 
5744 	if (crtc_state->shared_dpll)
5745 		mask |= BIT_ULL(POWER_DOMAIN_PLLS);
5746 
5747 	return mask;
5748 }
5749 
5750 static u64
modeset_get_crtc_power_domains(struct drm_crtc * crtc,struct intel_crtc_state * crtc_state)5751 modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5752 			       struct intel_crtc_state *crtc_state)
5753 {
5754 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5755 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5756 	enum intel_display_power_domain domain;
5757 	u64 domains, new_domains, old_domains;
5758 
5759 	old_domains = intel_crtc->enabled_power_domains;
5760 	intel_crtc->enabled_power_domains = new_domains =
5761 		get_crtc_power_domains(crtc, crtc_state);
5762 
5763 	domains = new_domains & ~old_domains;
5764 
5765 	for_each_power_domain(domain, domains)
5766 		intel_display_power_get(dev_priv, domain);
5767 
5768 	return old_domains & ~new_domains;
5769 }
5770 
modeset_put_power_domains(struct drm_i915_private * dev_priv,u64 domains)5771 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5772 				      u64 domains)
5773 {
5774 	enum intel_display_power_domain domain;
5775 
5776 	for_each_power_domain(domain, domains)
5777 		intel_display_power_put(dev_priv, domain);
5778 }
5779 
valleyview_crtc_enable(struct intel_crtc_state * pipe_config,struct drm_atomic_state * old_state)5780 static void valleyview_crtc_enable(struct intel_crtc_state *pipe_config,
5781 				   struct drm_atomic_state *old_state)
5782 {
5783 	struct intel_atomic_state *old_intel_state =
5784 		to_intel_atomic_state(old_state);
5785 	struct drm_crtc *crtc = pipe_config->base.crtc;
5786 	struct drm_device *dev = crtc->dev;
5787 	struct drm_i915_private *dev_priv = to_i915(dev);
5788 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5789 	int pipe = intel_crtc->pipe;
5790 
5791 	if (WARN_ON(intel_crtc->active))
5792 		return;
5793 
5794 	if (intel_crtc_has_dp_encoder(intel_crtc->config))
5795 		intel_dp_set_m_n(intel_crtc, M1_N1);
5796 
5797 	intel_set_pipe_timings(intel_crtc);
5798 	intel_set_pipe_src_size(intel_crtc);
5799 
5800 	if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
5801 		struct drm_i915_private *dev_priv = to_i915(dev);
5802 
5803 		I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
5804 		I915_WRITE(CHV_CANVAS(pipe), 0);
5805 	}
5806 
5807 	i9xx_set_pipeconf(intel_crtc);
5808 
5809 	intel_crtc->active = true;
5810 
5811 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5812 
5813 	intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
5814 
5815 	if (IS_CHERRYVIEW(dev_priv)) {
5816 		chv_prepare_pll(intel_crtc, intel_crtc->config);
5817 		chv_enable_pll(intel_crtc, intel_crtc->config);
5818 	} else {
5819 		vlv_prepare_pll(intel_crtc, intel_crtc->config);
5820 		vlv_enable_pll(intel_crtc, intel_crtc->config);
5821 	}
5822 
5823 	intel_encoders_pre_enable(crtc, pipe_config, old_state);
5824 
5825 	i9xx_pfit_enable(intel_crtc);
5826 
5827 	intel_color_load_luts(&pipe_config->base);
5828 
5829 	dev_priv->display.initial_watermarks(old_intel_state,
5830 					     pipe_config);
5831 	intel_enable_pipe(intel_crtc);
5832 
5833 	assert_vblank_disabled(crtc);
5834 	drm_crtc_vblank_on(crtc);
5835 
5836 	intel_encoders_enable(crtc, pipe_config, old_state);
5837 }
5838 
i9xx_set_pll_dividers(struct intel_crtc * crtc)5839 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
5840 {
5841 	struct drm_device *dev = crtc->base.dev;
5842 	struct drm_i915_private *dev_priv = to_i915(dev);
5843 
5844 	I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
5845 	I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
5846 }
5847 
i9xx_crtc_enable(struct intel_crtc_state * pipe_config,struct drm_atomic_state * old_state)5848 static void i9xx_crtc_enable(struct intel_crtc_state *pipe_config,
5849 			     struct drm_atomic_state *old_state)
5850 {
5851 	struct intel_atomic_state *old_intel_state =
5852 		to_intel_atomic_state(old_state);
5853 	struct drm_crtc *crtc = pipe_config->base.crtc;
5854 	struct drm_device *dev = crtc->dev;
5855 	struct drm_i915_private *dev_priv = to_i915(dev);
5856 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5857 	enum pipe pipe = intel_crtc->pipe;
5858 
5859 	if (WARN_ON(intel_crtc->active))
5860 		return;
5861 
5862 	i9xx_set_pll_dividers(intel_crtc);
5863 
5864 	if (intel_crtc_has_dp_encoder(intel_crtc->config))
5865 		intel_dp_set_m_n(intel_crtc, M1_N1);
5866 
5867 	intel_set_pipe_timings(intel_crtc);
5868 	intel_set_pipe_src_size(intel_crtc);
5869 
5870 	i9xx_set_pipeconf(intel_crtc);
5871 
5872 	intel_crtc->active = true;
5873 
5874 	if (!IS_GEN2(dev_priv))
5875 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5876 
5877 	intel_encoders_pre_enable(crtc, pipe_config, old_state);
5878 
5879 	i9xx_enable_pll(intel_crtc);
5880 
5881 	i9xx_pfit_enable(intel_crtc);
5882 
5883 	intel_color_load_luts(&pipe_config->base);
5884 
5885 	if (dev_priv->display.initial_watermarks != NULL)
5886 		dev_priv->display.initial_watermarks(old_intel_state,
5887 						     intel_crtc->config);
5888 	else
5889 		intel_update_watermarks(intel_crtc);
5890 	intel_enable_pipe(intel_crtc);
5891 
5892 	assert_vblank_disabled(crtc);
5893 	drm_crtc_vblank_on(crtc);
5894 
5895 	intel_encoders_enable(crtc, pipe_config, old_state);
5896 }
5897 
i9xx_pfit_disable(struct intel_crtc * crtc)5898 static void i9xx_pfit_disable(struct intel_crtc *crtc)
5899 {
5900 	struct drm_device *dev = crtc->base.dev;
5901 	struct drm_i915_private *dev_priv = to_i915(dev);
5902 
5903 	if (!crtc->config->gmch_pfit.control)
5904 		return;
5905 
5906 	assert_pipe_disabled(dev_priv, crtc->pipe);
5907 
5908 	DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5909 			 I915_READ(PFIT_CONTROL));
5910 	I915_WRITE(PFIT_CONTROL, 0);
5911 }
5912 
i9xx_crtc_disable(struct intel_crtc_state * old_crtc_state,struct drm_atomic_state * old_state)5913 static void i9xx_crtc_disable(struct intel_crtc_state *old_crtc_state,
5914 			      struct drm_atomic_state *old_state)
5915 {
5916 	struct drm_crtc *crtc = old_crtc_state->base.crtc;
5917 	struct drm_device *dev = crtc->dev;
5918 	struct drm_i915_private *dev_priv = to_i915(dev);
5919 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5920 	int pipe = intel_crtc->pipe;
5921 
5922 	/*
5923 	 * On gen2 planes are double buffered but the pipe isn't, so we must
5924 	 * wait for planes to fully turn off before disabling the pipe.
5925 	 */
5926 	if (IS_GEN2(dev_priv))
5927 		intel_wait_for_vblank(dev_priv, pipe);
5928 
5929 	intel_encoders_disable(crtc, old_crtc_state, old_state);
5930 
5931 	drm_crtc_vblank_off(crtc);
5932 	assert_vblank_disabled(crtc);
5933 
5934 	intel_disable_pipe(intel_crtc);
5935 
5936 	i9xx_pfit_disable(intel_crtc);
5937 
5938 	intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5939 
5940 	if (!intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DSI)) {
5941 		if (IS_CHERRYVIEW(dev_priv))
5942 			chv_disable_pll(dev_priv, pipe);
5943 		else if (IS_VALLEYVIEW(dev_priv))
5944 			vlv_disable_pll(dev_priv, pipe);
5945 		else
5946 			i9xx_disable_pll(intel_crtc);
5947 	}
5948 
5949 	intel_encoders_post_pll_disable(crtc, old_crtc_state, old_state);
5950 
5951 	if (!IS_GEN2(dev_priv))
5952 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5953 
5954 	if (!dev_priv->display.initial_watermarks)
5955 		intel_update_watermarks(intel_crtc);
5956 
5957 	/* clock the pipe down to 640x480@60 to potentially save power */
5958 	if (IS_I830(dev_priv))
5959 		i830_enable_pipe(dev_priv, pipe);
5960 }
5961 
intel_crtc_disable_noatomic(struct drm_crtc * crtc,struct drm_modeset_acquire_ctx * ctx)5962 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc,
5963 					struct drm_modeset_acquire_ctx *ctx)
5964 {
5965 	struct intel_encoder *encoder;
5966 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5967 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5968 	enum intel_display_power_domain domain;
5969 	struct intel_plane *plane;
5970 	u64 domains;
5971 	struct drm_atomic_state *state;
5972 	struct intel_crtc_state *crtc_state;
5973 	int ret;
5974 
5975 	if (!intel_crtc->active)
5976 		return;
5977 
5978 	for_each_intel_plane_on_crtc(&dev_priv->drm, intel_crtc, plane) {
5979 		const struct intel_plane_state *plane_state =
5980 			to_intel_plane_state(plane->base.state);
5981 
5982 		if (plane_state->base.visible)
5983 			intel_plane_disable_noatomic(intel_crtc, plane);
5984 	}
5985 
5986 	state = drm_atomic_state_alloc(crtc->dev);
5987 	if (!state) {
5988 		DRM_DEBUG_KMS("failed to disable [CRTC:%d:%s], out of memory",
5989 			      crtc->base.id, crtc->name);
5990 		return;
5991 	}
5992 
5993 	state->acquire_ctx = ctx;
5994 
5995 	/* Everything's already locked, -EDEADLK can't happen. */
5996 	crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
5997 	ret = drm_atomic_add_affected_connectors(state, crtc);
5998 
5999 	WARN_ON(IS_ERR(crtc_state) || ret);
6000 
6001 	dev_priv->display.crtc_disable(crtc_state, state);
6002 
6003 	drm_atomic_state_put(state);
6004 
6005 	DRM_DEBUG_KMS("[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n",
6006 		      crtc->base.id, crtc->name);
6007 
6008 	WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
6009 	crtc->state->active = false;
6010 	intel_crtc->active = false;
6011 	crtc->enabled = false;
6012 	crtc->state->connector_mask = 0;
6013 	crtc->state->encoder_mask = 0;
6014 
6015 	for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
6016 		encoder->base.crtc = NULL;
6017 
6018 	intel_fbc_disable(intel_crtc);
6019 	intel_update_watermarks(intel_crtc);
6020 	intel_disable_shared_dpll(intel_crtc);
6021 
6022 	domains = intel_crtc->enabled_power_domains;
6023 	for_each_power_domain(domain, domains)
6024 		intel_display_power_put(dev_priv, domain);
6025 	intel_crtc->enabled_power_domains = 0;
6026 
6027 	dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
6028 	dev_priv->min_pixclk[intel_crtc->pipe] = 0;
6029 }
6030 
6031 /*
6032  * turn all crtc's off, but do not adjust state
6033  * This has to be paired with a call to intel_modeset_setup_hw_state.
6034  */
intel_display_suspend(struct drm_device * dev)6035 int intel_display_suspend(struct drm_device *dev)
6036 {
6037 	struct drm_i915_private *dev_priv = to_i915(dev);
6038 	struct drm_atomic_state *state;
6039 	int ret;
6040 
6041 	state = drm_atomic_helper_suspend(dev);
6042 	ret = PTR_ERR_OR_ZERO(state);
6043 	if (ret)
6044 		DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6045 	else
6046 		dev_priv->modeset_restore_state = state;
6047 	return ret;
6048 }
6049 
intel_encoder_destroy(struct drm_encoder * encoder)6050 void intel_encoder_destroy(struct drm_encoder *encoder)
6051 {
6052 	struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6053 
6054 	drm_encoder_cleanup(encoder);
6055 	kfree(intel_encoder);
6056 }
6057 
6058 /* Cross check the actual hw state with our own modeset state tracking (and it's
6059  * internal consistency). */
intel_connector_verify_state(struct drm_crtc_state * crtc_state,struct drm_connector_state * conn_state)6060 static void intel_connector_verify_state(struct drm_crtc_state *crtc_state,
6061 					 struct drm_connector_state *conn_state)
6062 {
6063 	struct intel_connector *connector = to_intel_connector(conn_state->connector);
6064 
6065 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6066 		      connector->base.base.id,
6067 		      connector->base.name);
6068 
6069 	if (connector->get_hw_state(connector)) {
6070 		struct intel_encoder *encoder = connector->encoder;
6071 
6072 		I915_STATE_WARN(!crtc_state,
6073 			 "connector enabled without attached crtc\n");
6074 
6075 		if (!crtc_state)
6076 			return;
6077 
6078 		I915_STATE_WARN(!crtc_state->active,
6079 		      "connector is active, but attached crtc isn't\n");
6080 
6081 		if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6082 			return;
6083 
6084 		I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6085 			"atomic encoder doesn't match attached encoder\n");
6086 
6087 		I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6088 			"attached encoder crtc differs from connector crtc\n");
6089 	} else {
6090 		I915_STATE_WARN(crtc_state && crtc_state->active,
6091 			"attached crtc is active, but connector isn't\n");
6092 		I915_STATE_WARN(!crtc_state && conn_state->best_encoder,
6093 			"best encoder set without crtc!\n");
6094 	}
6095 }
6096 
intel_connector_init(struct intel_connector * connector)6097 int intel_connector_init(struct intel_connector *connector)
6098 {
6099 	struct intel_digital_connector_state *conn_state;
6100 
6101 	/*
6102 	 * Allocate enough memory to hold intel_digital_connector_state,
6103 	 * This might be a few bytes too many, but for connectors that don't
6104 	 * need it we'll free the state and allocate a smaller one on the first
6105 	 * succesful commit anyway.
6106 	 */
6107 	conn_state = kzalloc(sizeof(*conn_state), GFP_KERNEL);
6108 	if (!conn_state)
6109 		return -ENOMEM;
6110 
6111 	__drm_atomic_helper_connector_reset(&connector->base,
6112 					    &conn_state->base);
6113 
6114 	return 0;
6115 }
6116 
intel_connector_alloc(void)6117 struct intel_connector *intel_connector_alloc(void)
6118 {
6119 	struct intel_connector *connector;
6120 
6121 	connector = kzalloc(sizeof *connector, GFP_KERNEL);
6122 	if (!connector)
6123 		return NULL;
6124 
6125 	if (intel_connector_init(connector) < 0) {
6126 		kfree(connector);
6127 		return NULL;
6128 	}
6129 
6130 	return connector;
6131 }
6132 
6133 /* Simple connector->get_hw_state implementation for encoders that support only
6134  * one connector and no cloning and hence the encoder state determines the state
6135  * of the connector. */
intel_connector_get_hw_state(struct intel_connector * connector)6136 bool intel_connector_get_hw_state(struct intel_connector *connector)
6137 {
6138 	enum pipe pipe = 0;
6139 	struct intel_encoder *encoder = connector->encoder;
6140 
6141 	return encoder->get_hw_state(encoder, &pipe);
6142 }
6143 
pipe_required_fdi_lanes(struct intel_crtc_state * crtc_state)6144 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6145 {
6146 	if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6147 		return crtc_state->fdi_lanes;
6148 
6149 	return 0;
6150 }
6151 
ironlake_check_fdi_lanes(struct drm_device * dev,enum pipe pipe,struct intel_crtc_state * pipe_config)6152 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6153 				     struct intel_crtc_state *pipe_config)
6154 {
6155 	struct drm_i915_private *dev_priv = to_i915(dev);
6156 	struct drm_atomic_state *state = pipe_config->base.state;
6157 	struct intel_crtc *other_crtc;
6158 	struct intel_crtc_state *other_crtc_state;
6159 
6160 	DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6161 		      pipe_name(pipe), pipe_config->fdi_lanes);
6162 	if (pipe_config->fdi_lanes > 4) {
6163 		DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6164 			      pipe_name(pipe), pipe_config->fdi_lanes);
6165 		return -EINVAL;
6166 	}
6167 
6168 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
6169 		if (pipe_config->fdi_lanes > 2) {
6170 			DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6171 				      pipe_config->fdi_lanes);
6172 			return -EINVAL;
6173 		} else {
6174 			return 0;
6175 		}
6176 	}
6177 
6178 	if (INTEL_INFO(dev_priv)->num_pipes == 2)
6179 		return 0;
6180 
6181 	/* Ivybridge 3 pipe is really complicated */
6182 	switch (pipe) {
6183 	case PIPE_A:
6184 		return 0;
6185 	case PIPE_B:
6186 		if (pipe_config->fdi_lanes <= 2)
6187 			return 0;
6188 
6189 		other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_C);
6190 		other_crtc_state =
6191 			intel_atomic_get_crtc_state(state, other_crtc);
6192 		if (IS_ERR(other_crtc_state))
6193 			return PTR_ERR(other_crtc_state);
6194 
6195 		if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6196 			DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6197 				      pipe_name(pipe), pipe_config->fdi_lanes);
6198 			return -EINVAL;
6199 		}
6200 		return 0;
6201 	case PIPE_C:
6202 		if (pipe_config->fdi_lanes > 2) {
6203 			DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6204 				      pipe_name(pipe), pipe_config->fdi_lanes);
6205 			return -EINVAL;
6206 		}
6207 
6208 		other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_B);
6209 		other_crtc_state =
6210 			intel_atomic_get_crtc_state(state, other_crtc);
6211 		if (IS_ERR(other_crtc_state))
6212 			return PTR_ERR(other_crtc_state);
6213 
6214 		if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6215 			DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6216 			return -EINVAL;
6217 		}
6218 		return 0;
6219 	default:
6220 		BUG();
6221 	}
6222 }
6223 
6224 #define RETRY 1
ironlake_fdi_compute_config(struct intel_crtc * intel_crtc,struct intel_crtc_state * pipe_config)6225 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6226 				       struct intel_crtc_state *pipe_config)
6227 {
6228 	struct drm_device *dev = intel_crtc->base.dev;
6229 	const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6230 	int lane, link_bw, fdi_dotclock, ret;
6231 	bool needs_recompute = false;
6232 
6233 retry:
6234 	/* FDI is a binary signal running at ~2.7GHz, encoding
6235 	 * each output octet as 10 bits. The actual frequency
6236 	 * is stored as a divider into a 100MHz clock, and the
6237 	 * mode pixel clock is stored in units of 1KHz.
6238 	 * Hence the bw of each lane in terms of the mode signal
6239 	 * is:
6240 	 */
6241 	link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
6242 
6243 	fdi_dotclock = adjusted_mode->crtc_clock;
6244 
6245 	lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6246 					   pipe_config->pipe_bpp);
6247 
6248 	pipe_config->fdi_lanes = lane;
6249 
6250 	intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6251 			       link_bw, &pipe_config->fdi_m_n, false);
6252 
6253 	ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
6254 	if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6255 		pipe_config->pipe_bpp -= 2*3;
6256 		DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6257 			      pipe_config->pipe_bpp);
6258 		needs_recompute = true;
6259 		pipe_config->bw_constrained = true;
6260 
6261 		goto retry;
6262 	}
6263 
6264 	if (needs_recompute)
6265 		return RETRY;
6266 
6267 	return ret;
6268 }
6269 
pipe_config_supports_ips(struct drm_i915_private * dev_priv,struct intel_crtc_state * pipe_config)6270 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6271 				     struct intel_crtc_state *pipe_config)
6272 {
6273 	if (pipe_config->pipe_bpp > 24)
6274 		return false;
6275 
6276 	/* HSW can handle pixel rate up to cdclk? */
6277 	if (IS_HASWELL(dev_priv))
6278 		return true;
6279 
6280 	/*
6281 	 * We compare against max which means we must take
6282 	 * the increased cdclk requirement into account when
6283 	 * calculating the new cdclk.
6284 	 *
6285 	 * Should measure whether using a lower cdclk w/o IPS
6286 	 */
6287 	return pipe_config->pixel_rate <=
6288 		dev_priv->max_cdclk_freq * 95 / 100;
6289 }
6290 
hsw_compute_ips_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)6291 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6292 				   struct intel_crtc_state *pipe_config)
6293 {
6294 	struct drm_device *dev = crtc->base.dev;
6295 	struct drm_i915_private *dev_priv = to_i915(dev);
6296 
6297 	pipe_config->ips_enabled = i915.enable_ips &&
6298 		hsw_crtc_supports_ips(crtc) &&
6299 		pipe_config_supports_ips(dev_priv, pipe_config);
6300 }
6301 
intel_crtc_supports_double_wide(const struct intel_crtc * crtc)6302 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
6303 {
6304 	const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6305 
6306 	/* GDG double wide on either pipe, otherwise pipe A only */
6307 	return INTEL_INFO(dev_priv)->gen < 4 &&
6308 		(crtc->pipe == PIPE_A || IS_I915G(dev_priv));
6309 }
6310 
ilk_pipe_pixel_rate(const struct intel_crtc_state * pipe_config)6311 static uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
6312 {
6313 	uint32_t pixel_rate;
6314 
6315 	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
6316 
6317 	/*
6318 	 * We only use IF-ID interlacing. If we ever use
6319 	 * PF-ID we'll need to adjust the pixel_rate here.
6320 	 */
6321 
6322 	if (pipe_config->pch_pfit.enabled) {
6323 		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
6324 		uint32_t pfit_size = pipe_config->pch_pfit.size;
6325 
6326 		pipe_w = pipe_config->pipe_src_w;
6327 		pipe_h = pipe_config->pipe_src_h;
6328 
6329 		pfit_w = (pfit_size >> 16) & 0xFFFF;
6330 		pfit_h = pfit_size & 0xFFFF;
6331 		if (pipe_w < pfit_w)
6332 			pipe_w = pfit_w;
6333 		if (pipe_h < pfit_h)
6334 			pipe_h = pfit_h;
6335 
6336 		if (WARN_ON(!pfit_w || !pfit_h))
6337 			return pixel_rate;
6338 
6339 		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
6340 				     pfit_w * pfit_h);
6341 	}
6342 
6343 	return pixel_rate;
6344 }
6345 
intel_crtc_compute_pixel_rate(struct intel_crtc_state * crtc_state)6346 static void intel_crtc_compute_pixel_rate(struct intel_crtc_state *crtc_state)
6347 {
6348 	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
6349 
6350 	if (HAS_GMCH_DISPLAY(dev_priv))
6351 		/* FIXME calculate proper pipe pixel rate for GMCH pfit */
6352 		crtc_state->pixel_rate =
6353 			crtc_state->base.adjusted_mode.crtc_clock;
6354 	else
6355 		crtc_state->pixel_rate =
6356 			ilk_pipe_pixel_rate(crtc_state);
6357 }
6358 
intel_crtc_compute_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)6359 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6360 				     struct intel_crtc_state *pipe_config)
6361 {
6362 	struct drm_device *dev = crtc->base.dev;
6363 	struct drm_i915_private *dev_priv = to_i915(dev);
6364 	const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6365 	int clock_limit = dev_priv->max_dotclk_freq;
6366 
6367 	if (INTEL_GEN(dev_priv) < 4) {
6368 		clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
6369 
6370 		/*
6371 		 * Enable double wide mode when the dot clock
6372 		 * is > 90% of the (display) core speed.
6373 		 */
6374 		if (intel_crtc_supports_double_wide(crtc) &&
6375 		    adjusted_mode->crtc_clock > clock_limit) {
6376 			clock_limit = dev_priv->max_dotclk_freq;
6377 			pipe_config->double_wide = true;
6378 		}
6379 	}
6380 
6381 	if (adjusted_mode->crtc_clock > clock_limit) {
6382 		DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
6383 			      adjusted_mode->crtc_clock, clock_limit,
6384 			      yesno(pipe_config->double_wide));
6385 		return -EINVAL;
6386 	}
6387 
6388 	if (pipe_config->ycbcr420 && pipe_config->base.ctm) {
6389 		/*
6390 		 * There is only one pipe CSC unit per pipe, and we need that
6391 		 * for output conversion from RGB->YCBCR. So if CTM is already
6392 		 * applied we can't support YCBCR420 output.
6393 		 */
6394 		DRM_DEBUG_KMS("YCBCR420 and CTM together are not possible\n");
6395 		return -EINVAL;
6396 	}
6397 
6398 	/*
6399 	 * Pipe horizontal size must be even in:
6400 	 * - DVO ganged mode
6401 	 * - LVDS dual channel mode
6402 	 * - Double wide pipe
6403 	 */
6404 	if ((intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6405 	     intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6406 		pipe_config->pipe_src_w &= ~1;
6407 
6408 	/* Cantiga+ cannot handle modes with a hsync front porch of 0.
6409 	 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6410 	 */
6411 	if ((INTEL_GEN(dev_priv) > 4 || IS_G4X(dev_priv)) &&
6412 		adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
6413 		return -EINVAL;
6414 
6415 	intel_crtc_compute_pixel_rate(pipe_config);
6416 
6417 	if (HAS_IPS(dev_priv))
6418 		hsw_compute_ips_config(crtc, pipe_config);
6419 
6420 	if (pipe_config->has_pch_encoder)
6421 		return ironlake_fdi_compute_config(crtc, pipe_config);
6422 
6423 	return 0;
6424 }
6425 
6426 static void
intel_reduce_m_n_ratio(uint32_t * num,uint32_t * den)6427 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
6428 {
6429 	while (*num > DATA_LINK_M_N_MASK ||
6430 	       *den > DATA_LINK_M_N_MASK) {
6431 		*num >>= 1;
6432 		*den >>= 1;
6433 	}
6434 }
6435 
compute_m_n(unsigned int m,unsigned int n,uint32_t * ret_m,uint32_t * ret_n,bool reduce_m_n)6436 static void compute_m_n(unsigned int m, unsigned int n,
6437 			uint32_t *ret_m, uint32_t *ret_n,
6438 			bool reduce_m_n)
6439 {
6440 	/*
6441 	 * Reduce M/N as much as possible without loss in precision. Several DP
6442 	 * dongles in particular seem to be fussy about too large *link* M/N
6443 	 * values. The passed in values are more likely to have the least
6444 	 * significant bits zero than M after rounding below, so do this first.
6445 	 */
6446 	if (reduce_m_n) {
6447 		while ((m & 1) == 0 && (n & 1) == 0) {
6448 			m >>= 1;
6449 			n >>= 1;
6450 		}
6451 	}
6452 
6453 	*ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
6454 	*ret_m = div_u64((uint64_t) m * *ret_n, n);
6455 	intel_reduce_m_n_ratio(ret_m, ret_n);
6456 }
6457 
6458 void
intel_link_compute_m_n(int bits_per_pixel,int nlanes,int pixel_clock,int link_clock,struct intel_link_m_n * m_n,bool reduce_m_n)6459 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
6460 		       int pixel_clock, int link_clock,
6461 		       struct intel_link_m_n *m_n,
6462 		       bool reduce_m_n)
6463 {
6464 	m_n->tu = 64;
6465 
6466 	compute_m_n(bits_per_pixel * pixel_clock,
6467 		    link_clock * nlanes * 8,
6468 		    &m_n->gmch_m, &m_n->gmch_n,
6469 		    reduce_m_n);
6470 
6471 	compute_m_n(pixel_clock, link_clock,
6472 		    &m_n->link_m, &m_n->link_n,
6473 		    reduce_m_n);
6474 }
6475 
intel_panel_use_ssc(struct drm_i915_private * dev_priv)6476 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
6477 {
6478 	if (i915.panel_use_ssc >= 0)
6479 		return i915.panel_use_ssc != 0;
6480 	return dev_priv->vbt.lvds_use_ssc
6481 		&& !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
6482 }
6483 
pnv_dpll_compute_fp(struct dpll * dpll)6484 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
6485 {
6486 	return (1 << dpll->n) << 16 | dpll->m2;
6487 }
6488 
i9xx_dpll_compute_fp(struct dpll * dpll)6489 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
6490 {
6491 	return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
6492 }
6493 
i9xx_update_pll_dividers(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state,struct dpll * reduced_clock)6494 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
6495 				     struct intel_crtc_state *crtc_state,
6496 				     struct dpll *reduced_clock)
6497 {
6498 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6499 	u32 fp, fp2 = 0;
6500 
6501 	if (IS_PINEVIEW(dev_priv)) {
6502 		fp = pnv_dpll_compute_fp(&crtc_state->dpll);
6503 		if (reduced_clock)
6504 			fp2 = pnv_dpll_compute_fp(reduced_clock);
6505 	} else {
6506 		fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
6507 		if (reduced_clock)
6508 			fp2 = i9xx_dpll_compute_fp(reduced_clock);
6509 	}
6510 
6511 	crtc_state->dpll_hw_state.fp0 = fp;
6512 
6513 	crtc->lowfreq_avail = false;
6514 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6515 	    reduced_clock) {
6516 		crtc_state->dpll_hw_state.fp1 = fp2;
6517 		crtc->lowfreq_avail = true;
6518 	} else {
6519 		crtc_state->dpll_hw_state.fp1 = fp;
6520 	}
6521 }
6522 
vlv_pllb_recal_opamp(struct drm_i915_private * dev_priv,enum pipe pipe)6523 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
6524 		pipe)
6525 {
6526 	u32 reg_val;
6527 
6528 	/*
6529 	 * PLLB opamp always calibrates to max value of 0x3f, force enable it
6530 	 * and set it to a reasonable value instead.
6531 	 */
6532 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6533 	reg_val &= 0xffffff00;
6534 	reg_val |= 0x00000030;
6535 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6536 
6537 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6538 	reg_val &= 0x00ffffff;
6539 	reg_val |= 0x8c000000;
6540 	vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6541 
6542 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6543 	reg_val &= 0xffffff00;
6544 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6545 
6546 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6547 	reg_val &= 0x00ffffff;
6548 	reg_val |= 0xb0000000;
6549 	vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6550 }
6551 
intel_pch_transcoder_set_m_n(struct intel_crtc * crtc,struct intel_link_m_n * m_n)6552 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
6553 					 struct intel_link_m_n *m_n)
6554 {
6555 	struct drm_device *dev = crtc->base.dev;
6556 	struct drm_i915_private *dev_priv = to_i915(dev);
6557 	int pipe = crtc->pipe;
6558 
6559 	I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6560 	I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
6561 	I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
6562 	I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
6563 }
6564 
intel_cpu_transcoder_set_m_n(struct intel_crtc * crtc,struct intel_link_m_n * m_n,struct intel_link_m_n * m2_n2)6565 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
6566 					 struct intel_link_m_n *m_n,
6567 					 struct intel_link_m_n *m2_n2)
6568 {
6569 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6570 	int pipe = crtc->pipe;
6571 	enum transcoder transcoder = crtc->config->cpu_transcoder;
6572 
6573 	if (INTEL_GEN(dev_priv) >= 5) {
6574 		I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
6575 		I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
6576 		I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
6577 		I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
6578 		/* M2_N2 registers to be set only for gen < 8 (M2_N2 available
6579 		 * for gen < 8) and if DRRS is supported (to make sure the
6580 		 * registers are not unnecessarily accessed).
6581 		 */
6582 		if (m2_n2 && (IS_CHERRYVIEW(dev_priv) ||
6583 		    INTEL_GEN(dev_priv) < 8) && crtc->config->has_drrs) {
6584 			I915_WRITE(PIPE_DATA_M2(transcoder),
6585 					TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
6586 			I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
6587 			I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
6588 			I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
6589 		}
6590 	} else {
6591 		I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6592 		I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
6593 		I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
6594 		I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
6595 	}
6596 }
6597 
intel_dp_set_m_n(struct intel_crtc * crtc,enum link_m_n_set m_n)6598 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
6599 {
6600 	struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
6601 
6602 	if (m_n == M1_N1) {
6603 		dp_m_n = &crtc->config->dp_m_n;
6604 		dp_m2_n2 = &crtc->config->dp_m2_n2;
6605 	} else if (m_n == M2_N2) {
6606 
6607 		/*
6608 		 * M2_N2 registers are not supported. Hence m2_n2 divider value
6609 		 * needs to be programmed into M1_N1.
6610 		 */
6611 		dp_m_n = &crtc->config->dp_m2_n2;
6612 	} else {
6613 		DRM_ERROR("Unsupported divider value\n");
6614 		return;
6615 	}
6616 
6617 	if (crtc->config->has_pch_encoder)
6618 		intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
6619 	else
6620 		intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
6621 }
6622 
vlv_compute_dpll(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)6623 static void vlv_compute_dpll(struct intel_crtc *crtc,
6624 			     struct intel_crtc_state *pipe_config)
6625 {
6626 	pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
6627 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
6628 	if (crtc->pipe != PIPE_A)
6629 		pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6630 
6631 	/* DPLL not used with DSI, but still need the rest set up */
6632 	if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
6633 		pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
6634 			DPLL_EXT_BUFFER_ENABLE_VLV;
6635 
6636 	pipe_config->dpll_hw_state.dpll_md =
6637 		(pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6638 }
6639 
chv_compute_dpll(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)6640 static void chv_compute_dpll(struct intel_crtc *crtc,
6641 			     struct intel_crtc_state *pipe_config)
6642 {
6643 	pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
6644 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
6645 	if (crtc->pipe != PIPE_A)
6646 		pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6647 
6648 	/* DPLL not used with DSI, but still need the rest set up */
6649 	if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
6650 		pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
6651 
6652 	pipe_config->dpll_hw_state.dpll_md =
6653 		(pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6654 }
6655 
vlv_prepare_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)6656 static void vlv_prepare_pll(struct intel_crtc *crtc,
6657 			    const struct intel_crtc_state *pipe_config)
6658 {
6659 	struct drm_device *dev = crtc->base.dev;
6660 	struct drm_i915_private *dev_priv = to_i915(dev);
6661 	enum pipe pipe = crtc->pipe;
6662 	u32 mdiv;
6663 	u32 bestn, bestm1, bestm2, bestp1, bestp2;
6664 	u32 coreclk, reg_val;
6665 
6666 	/* Enable Refclk */
6667 	I915_WRITE(DPLL(pipe),
6668 		   pipe_config->dpll_hw_state.dpll &
6669 		   ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
6670 
6671 	/* No need to actually set up the DPLL with DSI */
6672 	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
6673 		return;
6674 
6675 	mutex_lock(&dev_priv->sb_lock);
6676 
6677 	bestn = pipe_config->dpll.n;
6678 	bestm1 = pipe_config->dpll.m1;
6679 	bestm2 = pipe_config->dpll.m2;
6680 	bestp1 = pipe_config->dpll.p1;
6681 	bestp2 = pipe_config->dpll.p2;
6682 
6683 	/* See eDP HDMI DPIO driver vbios notes doc */
6684 
6685 	/* PLL B needs special handling */
6686 	if (pipe == PIPE_B)
6687 		vlv_pllb_recal_opamp(dev_priv, pipe);
6688 
6689 	/* Set up Tx target for periodic Rcomp update */
6690 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
6691 
6692 	/* Disable target IRef on PLL */
6693 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
6694 	reg_val &= 0x00ffffff;
6695 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
6696 
6697 	/* Disable fast lock */
6698 	vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
6699 
6700 	/* Set idtafcrecal before PLL is enabled */
6701 	mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
6702 	mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
6703 	mdiv |= ((bestn << DPIO_N_SHIFT));
6704 	mdiv |= (1 << DPIO_K_SHIFT);
6705 
6706 	/*
6707 	 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
6708 	 * but we don't support that).
6709 	 * Note: don't use the DAC post divider as it seems unstable.
6710 	 */
6711 	mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
6712 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
6713 
6714 	mdiv |= DPIO_ENABLE_CALIBRATION;
6715 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
6716 
6717 	/* Set HBR and RBR LPF coefficients */
6718 	if (pipe_config->port_clock == 162000 ||
6719 	    intel_crtc_has_type(crtc->config, INTEL_OUTPUT_ANALOG) ||
6720 	    intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI))
6721 		vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
6722 				 0x009f0003);
6723 	else
6724 		vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
6725 				 0x00d0000f);
6726 
6727 	if (intel_crtc_has_dp_encoder(pipe_config)) {
6728 		/* Use SSC source */
6729 		if (pipe == PIPE_A)
6730 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6731 					 0x0df40000);
6732 		else
6733 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6734 					 0x0df70000);
6735 	} else { /* HDMI or VGA */
6736 		/* Use bend source */
6737 		if (pipe == PIPE_A)
6738 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6739 					 0x0df70000);
6740 		else
6741 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6742 					 0x0df40000);
6743 	}
6744 
6745 	coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
6746 	coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
6747 	if (intel_crtc_has_dp_encoder(crtc->config))
6748 		coreclk |= 0x01000000;
6749 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
6750 
6751 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
6752 	mutex_unlock(&dev_priv->sb_lock);
6753 }
6754 
chv_prepare_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)6755 static void chv_prepare_pll(struct intel_crtc *crtc,
6756 			    const struct intel_crtc_state *pipe_config)
6757 {
6758 	struct drm_device *dev = crtc->base.dev;
6759 	struct drm_i915_private *dev_priv = to_i915(dev);
6760 	enum pipe pipe = crtc->pipe;
6761 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
6762 	u32 loopfilter, tribuf_calcntr;
6763 	u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
6764 	u32 dpio_val;
6765 	int vco;
6766 
6767 	/* Enable Refclk and SSC */
6768 	I915_WRITE(DPLL(pipe),
6769 		   pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
6770 
6771 	/* No need to actually set up the DPLL with DSI */
6772 	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
6773 		return;
6774 
6775 	bestn = pipe_config->dpll.n;
6776 	bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
6777 	bestm1 = pipe_config->dpll.m1;
6778 	bestm2 = pipe_config->dpll.m2 >> 22;
6779 	bestp1 = pipe_config->dpll.p1;
6780 	bestp2 = pipe_config->dpll.p2;
6781 	vco = pipe_config->dpll.vco;
6782 	dpio_val = 0;
6783 	loopfilter = 0;
6784 
6785 	mutex_lock(&dev_priv->sb_lock);
6786 
6787 	/* p1 and p2 divider */
6788 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
6789 			5 << DPIO_CHV_S1_DIV_SHIFT |
6790 			bestp1 << DPIO_CHV_P1_DIV_SHIFT |
6791 			bestp2 << DPIO_CHV_P2_DIV_SHIFT |
6792 			1 << DPIO_CHV_K_DIV_SHIFT);
6793 
6794 	/* Feedback post-divider - m2 */
6795 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
6796 
6797 	/* Feedback refclk divider - n and m1 */
6798 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
6799 			DPIO_CHV_M1_DIV_BY_2 |
6800 			1 << DPIO_CHV_N_DIV_SHIFT);
6801 
6802 	/* M2 fraction division */
6803 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
6804 
6805 	/* M2 fraction division enable */
6806 	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
6807 	dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
6808 	dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
6809 	if (bestm2_frac)
6810 		dpio_val |= DPIO_CHV_FRAC_DIV_EN;
6811 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
6812 
6813 	/* Program digital lock detect threshold */
6814 	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
6815 	dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
6816 					DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
6817 	dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
6818 	if (!bestm2_frac)
6819 		dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
6820 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
6821 
6822 	/* Loop filter */
6823 	if (vco == 5400000) {
6824 		loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
6825 		loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
6826 		loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
6827 		tribuf_calcntr = 0x9;
6828 	} else if (vco <= 6200000) {
6829 		loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
6830 		loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
6831 		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6832 		tribuf_calcntr = 0x9;
6833 	} else if (vco <= 6480000) {
6834 		loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
6835 		loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
6836 		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6837 		tribuf_calcntr = 0x8;
6838 	} else {
6839 		/* Not supported. Apply the same limits as in the max case */
6840 		loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
6841 		loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
6842 		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6843 		tribuf_calcntr = 0;
6844 	}
6845 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
6846 
6847 	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
6848 	dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
6849 	dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
6850 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
6851 
6852 	/* AFC Recal */
6853 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
6854 			vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
6855 			DPIO_AFC_RECAL);
6856 
6857 	mutex_unlock(&dev_priv->sb_lock);
6858 }
6859 
6860 /**
6861  * vlv_force_pll_on - forcibly enable just the PLL
6862  * @dev_priv: i915 private structure
6863  * @pipe: pipe PLL to enable
6864  * @dpll: PLL configuration
6865  *
6866  * Enable the PLL for @pipe using the supplied @dpll config. To be used
6867  * in cases where we need the PLL enabled even when @pipe is not going to
6868  * be enabled.
6869  */
vlv_force_pll_on(struct drm_i915_private * dev_priv,enum pipe pipe,const struct dpll * dpll)6870 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe,
6871 		     const struct dpll *dpll)
6872 {
6873 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
6874 	struct intel_crtc_state *pipe_config;
6875 
6876 	pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
6877 	if (!pipe_config)
6878 		return -ENOMEM;
6879 
6880 	pipe_config->base.crtc = &crtc->base;
6881 	pipe_config->pixel_multiplier = 1;
6882 	pipe_config->dpll = *dpll;
6883 
6884 	if (IS_CHERRYVIEW(dev_priv)) {
6885 		chv_compute_dpll(crtc, pipe_config);
6886 		chv_prepare_pll(crtc, pipe_config);
6887 		chv_enable_pll(crtc, pipe_config);
6888 	} else {
6889 		vlv_compute_dpll(crtc, pipe_config);
6890 		vlv_prepare_pll(crtc, pipe_config);
6891 		vlv_enable_pll(crtc, pipe_config);
6892 	}
6893 
6894 	kfree(pipe_config);
6895 
6896 	return 0;
6897 }
6898 
6899 /**
6900  * vlv_force_pll_off - forcibly disable just the PLL
6901  * @dev_priv: i915 private structure
6902  * @pipe: pipe PLL to disable
6903  *
6904  * Disable the PLL for @pipe. To be used in cases where we need
6905  * the PLL enabled even when @pipe is not going to be enabled.
6906  */
vlv_force_pll_off(struct drm_i915_private * dev_priv,enum pipe pipe)6907 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe)
6908 {
6909 	if (IS_CHERRYVIEW(dev_priv))
6910 		chv_disable_pll(dev_priv, pipe);
6911 	else
6912 		vlv_disable_pll(dev_priv, pipe);
6913 }
6914 
i9xx_compute_dpll(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state,struct dpll * reduced_clock)6915 static void i9xx_compute_dpll(struct intel_crtc *crtc,
6916 			      struct intel_crtc_state *crtc_state,
6917 			      struct dpll *reduced_clock)
6918 {
6919 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6920 	u32 dpll;
6921 	struct dpll *clock = &crtc_state->dpll;
6922 
6923 	i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
6924 
6925 	dpll = DPLL_VGA_MODE_DIS;
6926 
6927 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
6928 		dpll |= DPLLB_MODE_LVDS;
6929 	else
6930 		dpll |= DPLLB_MODE_DAC_SERIAL;
6931 
6932 	if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
6933 	    IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
6934 		dpll |= (crtc_state->pixel_multiplier - 1)
6935 			<< SDVO_MULTIPLIER_SHIFT_HIRES;
6936 	}
6937 
6938 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
6939 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
6940 		dpll |= DPLL_SDVO_HIGH_SPEED;
6941 
6942 	if (intel_crtc_has_dp_encoder(crtc_state))
6943 		dpll |= DPLL_SDVO_HIGH_SPEED;
6944 
6945 	/* compute bitmask from p1 value */
6946 	if (IS_PINEVIEW(dev_priv))
6947 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
6948 	else {
6949 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6950 		if (IS_G4X(dev_priv) && reduced_clock)
6951 			dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6952 	}
6953 	switch (clock->p2) {
6954 	case 5:
6955 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6956 		break;
6957 	case 7:
6958 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6959 		break;
6960 	case 10:
6961 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6962 		break;
6963 	case 14:
6964 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6965 		break;
6966 	}
6967 	if (INTEL_GEN(dev_priv) >= 4)
6968 		dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
6969 
6970 	if (crtc_state->sdvo_tv_clock)
6971 		dpll |= PLL_REF_INPUT_TVCLKINBC;
6972 	else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6973 		 intel_panel_use_ssc(dev_priv))
6974 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6975 	else
6976 		dpll |= PLL_REF_INPUT_DREFCLK;
6977 
6978 	dpll |= DPLL_VCO_ENABLE;
6979 	crtc_state->dpll_hw_state.dpll = dpll;
6980 
6981 	if (INTEL_GEN(dev_priv) >= 4) {
6982 		u32 dpll_md = (crtc_state->pixel_multiplier - 1)
6983 			<< DPLL_MD_UDI_MULTIPLIER_SHIFT;
6984 		crtc_state->dpll_hw_state.dpll_md = dpll_md;
6985 	}
6986 }
6987 
i8xx_compute_dpll(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state,struct dpll * reduced_clock)6988 static void i8xx_compute_dpll(struct intel_crtc *crtc,
6989 			      struct intel_crtc_state *crtc_state,
6990 			      struct dpll *reduced_clock)
6991 {
6992 	struct drm_device *dev = crtc->base.dev;
6993 	struct drm_i915_private *dev_priv = to_i915(dev);
6994 	u32 dpll;
6995 	struct dpll *clock = &crtc_state->dpll;
6996 
6997 	i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
6998 
6999 	dpll = DPLL_VGA_MODE_DIS;
7000 
7001 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7002 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7003 	} else {
7004 		if (clock->p1 == 2)
7005 			dpll |= PLL_P1_DIVIDE_BY_TWO;
7006 		else
7007 			dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7008 		if (clock->p2 == 4)
7009 			dpll |= PLL_P2_DIVIDE_BY_4;
7010 	}
7011 
7012 	if (!IS_I830(dev_priv) &&
7013 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
7014 		dpll |= DPLL_DVO_2X_MODE;
7015 
7016 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7017 	    intel_panel_use_ssc(dev_priv))
7018 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7019 	else
7020 		dpll |= PLL_REF_INPUT_DREFCLK;
7021 
7022 	dpll |= DPLL_VCO_ENABLE;
7023 	crtc_state->dpll_hw_state.dpll = dpll;
7024 }
7025 
intel_set_pipe_timings(struct intel_crtc * intel_crtc)7026 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7027 {
7028 	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
7029 	enum pipe pipe = intel_crtc->pipe;
7030 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7031 	const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
7032 	uint32_t crtc_vtotal, crtc_vblank_end;
7033 	int vsyncshift = 0;
7034 
7035 	/* We need to be careful not to changed the adjusted mode, for otherwise
7036 	 * the hw state checker will get angry at the mismatch. */
7037 	crtc_vtotal = adjusted_mode->crtc_vtotal;
7038 	crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7039 
7040 	if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7041 		/* the chip adds 2 halflines automatically */
7042 		crtc_vtotal -= 1;
7043 		crtc_vblank_end -= 1;
7044 
7045 		if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
7046 			vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7047 		else
7048 			vsyncshift = adjusted_mode->crtc_hsync_start -
7049 				adjusted_mode->crtc_htotal / 2;
7050 		if (vsyncshift < 0)
7051 			vsyncshift += adjusted_mode->crtc_htotal;
7052 	}
7053 
7054 	if (INTEL_GEN(dev_priv) > 3)
7055 		I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7056 
7057 	I915_WRITE(HTOTAL(cpu_transcoder),
7058 		   (adjusted_mode->crtc_hdisplay - 1) |
7059 		   ((adjusted_mode->crtc_htotal - 1) << 16));
7060 	I915_WRITE(HBLANK(cpu_transcoder),
7061 		   (adjusted_mode->crtc_hblank_start - 1) |
7062 		   ((adjusted_mode->crtc_hblank_end - 1) << 16));
7063 	I915_WRITE(HSYNC(cpu_transcoder),
7064 		   (adjusted_mode->crtc_hsync_start - 1) |
7065 		   ((adjusted_mode->crtc_hsync_end - 1) << 16));
7066 
7067 	I915_WRITE(VTOTAL(cpu_transcoder),
7068 		   (adjusted_mode->crtc_vdisplay - 1) |
7069 		   ((crtc_vtotal - 1) << 16));
7070 	I915_WRITE(VBLANK(cpu_transcoder),
7071 		   (adjusted_mode->crtc_vblank_start - 1) |
7072 		   ((crtc_vblank_end - 1) << 16));
7073 	I915_WRITE(VSYNC(cpu_transcoder),
7074 		   (adjusted_mode->crtc_vsync_start - 1) |
7075 		   ((adjusted_mode->crtc_vsync_end - 1) << 16));
7076 
7077 	/* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7078 	 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7079 	 * documented on the DDI_FUNC_CTL register description, EDP Input Select
7080 	 * bits. */
7081 	if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP &&
7082 	    (pipe == PIPE_B || pipe == PIPE_C))
7083 		I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7084 
7085 }
7086 
intel_set_pipe_src_size(struct intel_crtc * intel_crtc)7087 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc)
7088 {
7089 	struct drm_device *dev = intel_crtc->base.dev;
7090 	struct drm_i915_private *dev_priv = to_i915(dev);
7091 	enum pipe pipe = intel_crtc->pipe;
7092 
7093 	/* pipesrc controls the size that is scaled from, which should
7094 	 * always be the user's requested size.
7095 	 */
7096 	I915_WRITE(PIPESRC(pipe),
7097 		   ((intel_crtc->config->pipe_src_w - 1) << 16) |
7098 		   (intel_crtc->config->pipe_src_h - 1));
7099 }
7100 
intel_get_pipe_timings(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)7101 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7102 				   struct intel_crtc_state *pipe_config)
7103 {
7104 	struct drm_device *dev = crtc->base.dev;
7105 	struct drm_i915_private *dev_priv = to_i915(dev);
7106 	enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7107 	uint32_t tmp;
7108 
7109 	tmp = I915_READ(HTOTAL(cpu_transcoder));
7110 	pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7111 	pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7112 	tmp = I915_READ(HBLANK(cpu_transcoder));
7113 	pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7114 	pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7115 	tmp = I915_READ(HSYNC(cpu_transcoder));
7116 	pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7117 	pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7118 
7119 	tmp = I915_READ(VTOTAL(cpu_transcoder));
7120 	pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7121 	pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7122 	tmp = I915_READ(VBLANK(cpu_transcoder));
7123 	pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7124 	pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7125 	tmp = I915_READ(VSYNC(cpu_transcoder));
7126 	pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7127 	pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7128 
7129 	if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7130 		pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7131 		pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7132 		pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7133 	}
7134 }
7135 
intel_get_pipe_src_size(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)7136 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
7137 				    struct intel_crtc_state *pipe_config)
7138 {
7139 	struct drm_device *dev = crtc->base.dev;
7140 	struct drm_i915_private *dev_priv = to_i915(dev);
7141 	u32 tmp;
7142 
7143 	tmp = I915_READ(PIPESRC(crtc->pipe));
7144 	pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7145 	pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7146 
7147 	pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7148 	pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7149 }
7150 
intel_mode_from_pipe_config(struct drm_display_mode * mode,struct intel_crtc_state * pipe_config)7151 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7152 				 struct intel_crtc_state *pipe_config)
7153 {
7154 	mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7155 	mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7156 	mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7157 	mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7158 
7159 	mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7160 	mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7161 	mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7162 	mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7163 
7164 	mode->flags = pipe_config->base.adjusted_mode.flags;
7165 	mode->type = DRM_MODE_TYPE_DRIVER;
7166 
7167 	mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7168 
7169 	mode->hsync = drm_mode_hsync(mode);
7170 	mode->vrefresh = drm_mode_vrefresh(mode);
7171 	drm_mode_set_name(mode);
7172 }
7173 
i9xx_set_pipeconf(struct intel_crtc * intel_crtc)7174 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7175 {
7176 	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
7177 	uint32_t pipeconf;
7178 
7179 	pipeconf = 0;
7180 
7181 	/* we keep both pipes enabled on 830 */
7182 	if (IS_I830(dev_priv))
7183 		pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7184 
7185 	if (intel_crtc->config->double_wide)
7186 		pipeconf |= PIPECONF_DOUBLE_WIDE;
7187 
7188 	/* only g4x and later have fancy bpc/dither controls */
7189 	if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
7190 	    IS_CHERRYVIEW(dev_priv)) {
7191 		/* Bspec claims that we can't use dithering for 30bpp pipes. */
7192 		if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7193 			pipeconf |= PIPECONF_DITHER_EN |
7194 				    PIPECONF_DITHER_TYPE_SP;
7195 
7196 		switch (intel_crtc->config->pipe_bpp) {
7197 		case 18:
7198 			pipeconf |= PIPECONF_6BPC;
7199 			break;
7200 		case 24:
7201 			pipeconf |= PIPECONF_8BPC;
7202 			break;
7203 		case 30:
7204 			pipeconf |= PIPECONF_10BPC;
7205 			break;
7206 		default:
7207 			/* Case prevented by intel_choose_pipe_bpp_dither. */
7208 			BUG();
7209 		}
7210 	}
7211 
7212 	if (HAS_PIPE_CXSR(dev_priv)) {
7213 		if (intel_crtc->lowfreq_avail) {
7214 			DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7215 			pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7216 		} else {
7217 			DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7218 		}
7219 	}
7220 
7221 	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7222 		if (INTEL_GEN(dev_priv) < 4 ||
7223 		    intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
7224 			pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7225 		else
7226 			pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7227 	} else
7228 		pipeconf |= PIPECONF_PROGRESSIVE;
7229 
7230 	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
7231 	     intel_crtc->config->limited_color_range)
7232 		pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7233 
7234 	I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7235 	POSTING_READ(PIPECONF(intel_crtc->pipe));
7236 }
7237 
i8xx_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)7238 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
7239 				   struct intel_crtc_state *crtc_state)
7240 {
7241 	struct drm_device *dev = crtc->base.dev;
7242 	struct drm_i915_private *dev_priv = to_i915(dev);
7243 	const struct intel_limit *limit;
7244 	int refclk = 48000;
7245 
7246 	memset(&crtc_state->dpll_hw_state, 0,
7247 	       sizeof(crtc_state->dpll_hw_state));
7248 
7249 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7250 		if (intel_panel_use_ssc(dev_priv)) {
7251 			refclk = dev_priv->vbt.lvds_ssc_freq;
7252 			DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7253 		}
7254 
7255 		limit = &intel_limits_i8xx_lvds;
7256 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
7257 		limit = &intel_limits_i8xx_dvo;
7258 	} else {
7259 		limit = &intel_limits_i8xx_dac;
7260 	}
7261 
7262 	if (!crtc_state->clock_set &&
7263 	    !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7264 				 refclk, NULL, &crtc_state->dpll)) {
7265 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
7266 		return -EINVAL;
7267 	}
7268 
7269 	i8xx_compute_dpll(crtc, crtc_state, NULL);
7270 
7271 	return 0;
7272 }
7273 
g4x_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)7274 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
7275 				  struct intel_crtc_state *crtc_state)
7276 {
7277 	struct drm_device *dev = crtc->base.dev;
7278 	struct drm_i915_private *dev_priv = to_i915(dev);
7279 	const struct intel_limit *limit;
7280 	int refclk = 96000;
7281 
7282 	memset(&crtc_state->dpll_hw_state, 0,
7283 	       sizeof(crtc_state->dpll_hw_state));
7284 
7285 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7286 		if (intel_panel_use_ssc(dev_priv)) {
7287 			refclk = dev_priv->vbt.lvds_ssc_freq;
7288 			DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7289 		}
7290 
7291 		if (intel_is_dual_link_lvds(dev))
7292 			limit = &intel_limits_g4x_dual_channel_lvds;
7293 		else
7294 			limit = &intel_limits_g4x_single_channel_lvds;
7295 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
7296 		   intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
7297 		limit = &intel_limits_g4x_hdmi;
7298 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
7299 		limit = &intel_limits_g4x_sdvo;
7300 	} else {
7301 		/* The option is for other outputs */
7302 		limit = &intel_limits_i9xx_sdvo;
7303 	}
7304 
7305 	if (!crtc_state->clock_set &&
7306 	    !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7307 				refclk, NULL, &crtc_state->dpll)) {
7308 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
7309 		return -EINVAL;
7310 	}
7311 
7312 	i9xx_compute_dpll(crtc, crtc_state, NULL);
7313 
7314 	return 0;
7315 }
7316 
pnv_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)7317 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
7318 				  struct intel_crtc_state *crtc_state)
7319 {
7320 	struct drm_device *dev = crtc->base.dev;
7321 	struct drm_i915_private *dev_priv = to_i915(dev);
7322 	const struct intel_limit *limit;
7323 	int refclk = 96000;
7324 
7325 	memset(&crtc_state->dpll_hw_state, 0,
7326 	       sizeof(crtc_state->dpll_hw_state));
7327 
7328 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7329 		if (intel_panel_use_ssc(dev_priv)) {
7330 			refclk = dev_priv->vbt.lvds_ssc_freq;
7331 			DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7332 		}
7333 
7334 		limit = &intel_limits_pineview_lvds;
7335 	} else {
7336 		limit = &intel_limits_pineview_sdvo;
7337 	}
7338 
7339 	if (!crtc_state->clock_set &&
7340 	    !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7341 				refclk, NULL, &crtc_state->dpll)) {
7342 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
7343 		return -EINVAL;
7344 	}
7345 
7346 	i9xx_compute_dpll(crtc, crtc_state, NULL);
7347 
7348 	return 0;
7349 }
7350 
i9xx_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)7351 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7352 				   struct intel_crtc_state *crtc_state)
7353 {
7354 	struct drm_device *dev = crtc->base.dev;
7355 	struct drm_i915_private *dev_priv = to_i915(dev);
7356 	const struct intel_limit *limit;
7357 	int refclk = 96000;
7358 
7359 	memset(&crtc_state->dpll_hw_state, 0,
7360 	       sizeof(crtc_state->dpll_hw_state));
7361 
7362 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7363 		if (intel_panel_use_ssc(dev_priv)) {
7364 			refclk = dev_priv->vbt.lvds_ssc_freq;
7365 			DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7366 		}
7367 
7368 		limit = &intel_limits_i9xx_lvds;
7369 	} else {
7370 		limit = &intel_limits_i9xx_sdvo;
7371 	}
7372 
7373 	if (!crtc_state->clock_set &&
7374 	    !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7375 				 refclk, NULL, &crtc_state->dpll)) {
7376 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
7377 		return -EINVAL;
7378 	}
7379 
7380 	i9xx_compute_dpll(crtc, crtc_state, NULL);
7381 
7382 	return 0;
7383 }
7384 
chv_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)7385 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
7386 				  struct intel_crtc_state *crtc_state)
7387 {
7388 	int refclk = 100000;
7389 	const struct intel_limit *limit = &intel_limits_chv;
7390 
7391 	memset(&crtc_state->dpll_hw_state, 0,
7392 	       sizeof(crtc_state->dpll_hw_state));
7393 
7394 	if (!crtc_state->clock_set &&
7395 	    !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7396 				refclk, NULL, &crtc_state->dpll)) {
7397 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
7398 		return -EINVAL;
7399 	}
7400 
7401 	chv_compute_dpll(crtc, crtc_state);
7402 
7403 	return 0;
7404 }
7405 
vlv_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)7406 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
7407 				  struct intel_crtc_state *crtc_state)
7408 {
7409 	int refclk = 100000;
7410 	const struct intel_limit *limit = &intel_limits_vlv;
7411 
7412 	memset(&crtc_state->dpll_hw_state, 0,
7413 	       sizeof(crtc_state->dpll_hw_state));
7414 
7415 	if (!crtc_state->clock_set &&
7416 	    !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7417 				refclk, NULL, &crtc_state->dpll)) {
7418 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
7419 		return -EINVAL;
7420 	}
7421 
7422 	vlv_compute_dpll(crtc, crtc_state);
7423 
7424 	return 0;
7425 }
7426 
i9xx_get_pfit_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)7427 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7428 				 struct intel_crtc_state *pipe_config)
7429 {
7430 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7431 	uint32_t tmp;
7432 
7433 	if (INTEL_GEN(dev_priv) <= 3 &&
7434 	    (IS_I830(dev_priv) || !IS_MOBILE(dev_priv)))
7435 		return;
7436 
7437 	tmp = I915_READ(PFIT_CONTROL);
7438 	if (!(tmp & PFIT_ENABLE))
7439 		return;
7440 
7441 	/* Check whether the pfit is attached to our pipe. */
7442 	if (INTEL_GEN(dev_priv) < 4) {
7443 		if (crtc->pipe != PIPE_B)
7444 			return;
7445 	} else {
7446 		if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7447 			return;
7448 	}
7449 
7450 	pipe_config->gmch_pfit.control = tmp;
7451 	pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7452 }
7453 
vlv_crtc_clock_get(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)7454 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
7455 			       struct intel_crtc_state *pipe_config)
7456 {
7457 	struct drm_device *dev = crtc->base.dev;
7458 	struct drm_i915_private *dev_priv = to_i915(dev);
7459 	int pipe = pipe_config->cpu_transcoder;
7460 	struct dpll clock;
7461 	u32 mdiv;
7462 	int refclk = 100000;
7463 
7464 	/* In case of DSI, DPLL will not be used */
7465 	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7466 		return;
7467 
7468 	mutex_lock(&dev_priv->sb_lock);
7469 	mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
7470 	mutex_unlock(&dev_priv->sb_lock);
7471 
7472 	clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
7473 	clock.m2 = mdiv & DPIO_M2DIV_MASK;
7474 	clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
7475 	clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
7476 	clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
7477 
7478 	pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
7479 }
7480 
7481 static void
i9xx_get_initial_plane_config(struct intel_crtc * crtc,struct intel_initial_plane_config * plane_config)7482 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
7483 			      struct intel_initial_plane_config *plane_config)
7484 {
7485 	struct drm_device *dev = crtc->base.dev;
7486 	struct drm_i915_private *dev_priv = to_i915(dev);
7487 	u32 val, base, offset;
7488 	int pipe = crtc->pipe, plane = crtc->plane;
7489 	int fourcc, pixel_format;
7490 	unsigned int aligned_height;
7491 	struct drm_framebuffer *fb;
7492 	struct intel_framebuffer *intel_fb;
7493 
7494 	val = I915_READ(DSPCNTR(plane));
7495 	if (!(val & DISPLAY_PLANE_ENABLE))
7496 		return;
7497 
7498 	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7499 	if (!intel_fb) {
7500 		DRM_DEBUG_KMS("failed to alloc fb\n");
7501 		return;
7502 	}
7503 
7504 	fb = &intel_fb->base;
7505 
7506 	fb->dev = dev;
7507 
7508 	if (INTEL_GEN(dev_priv) >= 4) {
7509 		if (val & DISPPLANE_TILED) {
7510 			plane_config->tiling = I915_TILING_X;
7511 			fb->modifier = I915_FORMAT_MOD_X_TILED;
7512 		}
7513 	}
7514 
7515 	pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7516 	fourcc = i9xx_format_to_fourcc(pixel_format);
7517 	fb->format = drm_format_info(fourcc);
7518 
7519 	if (INTEL_GEN(dev_priv) >= 4) {
7520 		if (plane_config->tiling)
7521 			offset = I915_READ(DSPTILEOFF(plane));
7522 		else
7523 			offset = I915_READ(DSPLINOFF(plane));
7524 		base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7525 	} else {
7526 		base = I915_READ(DSPADDR(plane));
7527 	}
7528 	plane_config->base = base;
7529 
7530 	val = I915_READ(PIPESRC(pipe));
7531 	fb->width = ((val >> 16) & 0xfff) + 1;
7532 	fb->height = ((val >> 0) & 0xfff) + 1;
7533 
7534 	val = I915_READ(DSPSTRIDE(pipe));
7535 	fb->pitches[0] = val & 0xffffffc0;
7536 
7537 	aligned_height = intel_fb_align_height(fb, 0, fb->height);
7538 
7539 	plane_config->size = fb->pitches[0] * aligned_height;
7540 
7541 	DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7542 		      pipe_name(pipe), plane, fb->width, fb->height,
7543 		      fb->format->cpp[0] * 8, base, fb->pitches[0],
7544 		      plane_config->size);
7545 
7546 	plane_config->fb = intel_fb;
7547 }
7548 
chv_crtc_clock_get(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)7549 static void chv_crtc_clock_get(struct intel_crtc *crtc,
7550 			       struct intel_crtc_state *pipe_config)
7551 {
7552 	struct drm_device *dev = crtc->base.dev;
7553 	struct drm_i915_private *dev_priv = to_i915(dev);
7554 	int pipe = pipe_config->cpu_transcoder;
7555 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
7556 	struct dpll clock;
7557 	u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
7558 	int refclk = 100000;
7559 
7560 	/* In case of DSI, DPLL will not be used */
7561 	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7562 		return;
7563 
7564 	mutex_lock(&dev_priv->sb_lock);
7565 	cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
7566 	pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
7567 	pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
7568 	pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
7569 	pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7570 	mutex_unlock(&dev_priv->sb_lock);
7571 
7572 	clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
7573 	clock.m2 = (pll_dw0 & 0xff) << 22;
7574 	if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
7575 		clock.m2 |= pll_dw2 & 0x3fffff;
7576 	clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
7577 	clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
7578 	clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
7579 
7580 	pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
7581 }
7582 
i9xx_get_pipe_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)7583 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
7584 				 struct intel_crtc_state *pipe_config)
7585 {
7586 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7587 	enum intel_display_power_domain power_domain;
7588 	uint32_t tmp;
7589 	bool ret;
7590 
7591 	power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
7592 	if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
7593 		return false;
7594 
7595 	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7596 	pipe_config->shared_dpll = NULL;
7597 
7598 	ret = false;
7599 
7600 	tmp = I915_READ(PIPECONF(crtc->pipe));
7601 	if (!(tmp & PIPECONF_ENABLE))
7602 		goto out;
7603 
7604 	if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
7605 	    IS_CHERRYVIEW(dev_priv)) {
7606 		switch (tmp & PIPECONF_BPC_MASK) {
7607 		case PIPECONF_6BPC:
7608 			pipe_config->pipe_bpp = 18;
7609 			break;
7610 		case PIPECONF_8BPC:
7611 			pipe_config->pipe_bpp = 24;
7612 			break;
7613 		case PIPECONF_10BPC:
7614 			pipe_config->pipe_bpp = 30;
7615 			break;
7616 		default:
7617 			break;
7618 		}
7619 	}
7620 
7621 	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
7622 	    (tmp & PIPECONF_COLOR_RANGE_SELECT))
7623 		pipe_config->limited_color_range = true;
7624 
7625 	if (INTEL_GEN(dev_priv) < 4)
7626 		pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
7627 
7628 	intel_get_pipe_timings(crtc, pipe_config);
7629 	intel_get_pipe_src_size(crtc, pipe_config);
7630 
7631 	i9xx_get_pfit_config(crtc, pipe_config);
7632 
7633 	if (INTEL_GEN(dev_priv) >= 4) {
7634 		/* No way to read it out on pipes B and C */
7635 		if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A)
7636 			tmp = dev_priv->chv_dpll_md[crtc->pipe];
7637 		else
7638 			tmp = I915_READ(DPLL_MD(crtc->pipe));
7639 		pipe_config->pixel_multiplier =
7640 			((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
7641 			 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
7642 		pipe_config->dpll_hw_state.dpll_md = tmp;
7643 	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
7644 		   IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
7645 		tmp = I915_READ(DPLL(crtc->pipe));
7646 		pipe_config->pixel_multiplier =
7647 			((tmp & SDVO_MULTIPLIER_MASK)
7648 			 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
7649 	} else {
7650 		/* Note that on i915G/GM the pixel multiplier is in the sdvo
7651 		 * port and will be fixed up in the encoder->get_config
7652 		 * function. */
7653 		pipe_config->pixel_multiplier = 1;
7654 	}
7655 	pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
7656 	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
7657 		/*
7658 		 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
7659 		 * on 830. Filter it out here so that we don't
7660 		 * report errors due to that.
7661 		 */
7662 		if (IS_I830(dev_priv))
7663 			pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
7664 
7665 		pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
7666 		pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
7667 	} else {
7668 		/* Mask out read-only status bits. */
7669 		pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
7670 						     DPLL_PORTC_READY_MASK |
7671 						     DPLL_PORTB_READY_MASK);
7672 	}
7673 
7674 	if (IS_CHERRYVIEW(dev_priv))
7675 		chv_crtc_clock_get(crtc, pipe_config);
7676 	else if (IS_VALLEYVIEW(dev_priv))
7677 		vlv_crtc_clock_get(crtc, pipe_config);
7678 	else
7679 		i9xx_crtc_clock_get(crtc, pipe_config);
7680 
7681 	/*
7682 	 * Normally the dotclock is filled in by the encoder .get_config()
7683 	 * but in case the pipe is enabled w/o any ports we need a sane
7684 	 * default.
7685 	 */
7686 	pipe_config->base.adjusted_mode.crtc_clock =
7687 		pipe_config->port_clock / pipe_config->pixel_multiplier;
7688 
7689 	ret = true;
7690 
7691 out:
7692 	intel_display_power_put(dev_priv, power_domain);
7693 
7694 	return ret;
7695 }
7696 
ironlake_init_pch_refclk(struct drm_i915_private * dev_priv)7697 static void ironlake_init_pch_refclk(struct drm_i915_private *dev_priv)
7698 {
7699 	struct intel_encoder *encoder;
7700 	int i;
7701 	u32 val, final;
7702 	bool has_lvds = false;
7703 	bool has_cpu_edp = false;
7704 	bool has_panel = false;
7705 	bool has_ck505 = false;
7706 	bool can_ssc = false;
7707 	bool using_ssc_source = false;
7708 
7709 	/* We need to take the global config into account */
7710 	for_each_intel_encoder(&dev_priv->drm, encoder) {
7711 		switch (encoder->type) {
7712 		case INTEL_OUTPUT_LVDS:
7713 			has_panel = true;
7714 			has_lvds = true;
7715 			break;
7716 		case INTEL_OUTPUT_EDP:
7717 			has_panel = true;
7718 			if (enc_to_dig_port(&encoder->base)->port == PORT_A)
7719 				has_cpu_edp = true;
7720 			break;
7721 		default:
7722 			break;
7723 		}
7724 	}
7725 
7726 	if (HAS_PCH_IBX(dev_priv)) {
7727 		has_ck505 = dev_priv->vbt.display_clock_mode;
7728 		can_ssc = has_ck505;
7729 	} else {
7730 		has_ck505 = false;
7731 		can_ssc = true;
7732 	}
7733 
7734 	/* Check if any DPLLs are using the SSC source */
7735 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
7736 		u32 temp = I915_READ(PCH_DPLL(i));
7737 
7738 		if (!(temp & DPLL_VCO_ENABLE))
7739 			continue;
7740 
7741 		if ((temp & PLL_REF_INPUT_MASK) ==
7742 		    PLLB_REF_INPUT_SPREADSPECTRUMIN) {
7743 			using_ssc_source = true;
7744 			break;
7745 		}
7746 	}
7747 
7748 	DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
7749 		      has_panel, has_lvds, has_ck505, using_ssc_source);
7750 
7751 	/* Ironlake: try to setup display ref clock before DPLL
7752 	 * enabling. This is only under driver's control after
7753 	 * PCH B stepping, previous chipset stepping should be
7754 	 * ignoring this setting.
7755 	 */
7756 	val = I915_READ(PCH_DREF_CONTROL);
7757 
7758 	/* As we must carefully and slowly disable/enable each source in turn,
7759 	 * compute the final state we want first and check if we need to
7760 	 * make any changes at all.
7761 	 */
7762 	final = val;
7763 	final &= ~DREF_NONSPREAD_SOURCE_MASK;
7764 	if (has_ck505)
7765 		final |= DREF_NONSPREAD_CK505_ENABLE;
7766 	else
7767 		final |= DREF_NONSPREAD_SOURCE_ENABLE;
7768 
7769 	final &= ~DREF_SSC_SOURCE_MASK;
7770 	final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7771 	final &= ~DREF_SSC1_ENABLE;
7772 
7773 	if (has_panel) {
7774 		final |= DREF_SSC_SOURCE_ENABLE;
7775 
7776 		if (intel_panel_use_ssc(dev_priv) && can_ssc)
7777 			final |= DREF_SSC1_ENABLE;
7778 
7779 		if (has_cpu_edp) {
7780 			if (intel_panel_use_ssc(dev_priv) && can_ssc)
7781 				final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7782 			else
7783 				final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7784 		} else
7785 			final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7786 	} else if (using_ssc_source) {
7787 		final |= DREF_SSC_SOURCE_ENABLE;
7788 		final |= DREF_SSC1_ENABLE;
7789 	}
7790 
7791 	if (final == val)
7792 		return;
7793 
7794 	/* Always enable nonspread source */
7795 	val &= ~DREF_NONSPREAD_SOURCE_MASK;
7796 
7797 	if (has_ck505)
7798 		val |= DREF_NONSPREAD_CK505_ENABLE;
7799 	else
7800 		val |= DREF_NONSPREAD_SOURCE_ENABLE;
7801 
7802 	if (has_panel) {
7803 		val &= ~DREF_SSC_SOURCE_MASK;
7804 		val |= DREF_SSC_SOURCE_ENABLE;
7805 
7806 		/* SSC must be turned on before enabling the CPU output  */
7807 		if (intel_panel_use_ssc(dev_priv) && can_ssc) {
7808 			DRM_DEBUG_KMS("Using SSC on panel\n");
7809 			val |= DREF_SSC1_ENABLE;
7810 		} else
7811 			val &= ~DREF_SSC1_ENABLE;
7812 
7813 		/* Get SSC going before enabling the outputs */
7814 		I915_WRITE(PCH_DREF_CONTROL, val);
7815 		POSTING_READ(PCH_DREF_CONTROL);
7816 		udelay(200);
7817 
7818 		val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7819 
7820 		/* Enable CPU source on CPU attached eDP */
7821 		if (has_cpu_edp) {
7822 			if (intel_panel_use_ssc(dev_priv) && can_ssc) {
7823 				DRM_DEBUG_KMS("Using SSC on eDP\n");
7824 				val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7825 			} else
7826 				val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7827 		} else
7828 			val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7829 
7830 		I915_WRITE(PCH_DREF_CONTROL, val);
7831 		POSTING_READ(PCH_DREF_CONTROL);
7832 		udelay(200);
7833 	} else {
7834 		DRM_DEBUG_KMS("Disabling CPU source output\n");
7835 
7836 		val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7837 
7838 		/* Turn off CPU output */
7839 		val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7840 
7841 		I915_WRITE(PCH_DREF_CONTROL, val);
7842 		POSTING_READ(PCH_DREF_CONTROL);
7843 		udelay(200);
7844 
7845 		if (!using_ssc_source) {
7846 			DRM_DEBUG_KMS("Disabling SSC source\n");
7847 
7848 			/* Turn off the SSC source */
7849 			val &= ~DREF_SSC_SOURCE_MASK;
7850 			val |= DREF_SSC_SOURCE_DISABLE;
7851 
7852 			/* Turn off SSC1 */
7853 			val &= ~DREF_SSC1_ENABLE;
7854 
7855 			I915_WRITE(PCH_DREF_CONTROL, val);
7856 			POSTING_READ(PCH_DREF_CONTROL);
7857 			udelay(200);
7858 		}
7859 	}
7860 
7861 	BUG_ON(val != final);
7862 }
7863 
lpt_reset_fdi_mphy(struct drm_i915_private * dev_priv)7864 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
7865 {
7866 	uint32_t tmp;
7867 
7868 	tmp = I915_READ(SOUTH_CHICKEN2);
7869 	tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
7870 	I915_WRITE(SOUTH_CHICKEN2, tmp);
7871 
7872 	if (wait_for_us(I915_READ(SOUTH_CHICKEN2) &
7873 			FDI_MPHY_IOSFSB_RESET_STATUS, 100))
7874 		DRM_ERROR("FDI mPHY reset assert timeout\n");
7875 
7876 	tmp = I915_READ(SOUTH_CHICKEN2);
7877 	tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
7878 	I915_WRITE(SOUTH_CHICKEN2, tmp);
7879 
7880 	if (wait_for_us((I915_READ(SOUTH_CHICKEN2) &
7881 			 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
7882 		DRM_ERROR("FDI mPHY reset de-assert timeout\n");
7883 }
7884 
7885 /* WaMPhyProgramming:hsw */
lpt_program_fdi_mphy(struct drm_i915_private * dev_priv)7886 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
7887 {
7888 	uint32_t tmp;
7889 
7890 	tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
7891 	tmp &= ~(0xFF << 24);
7892 	tmp |= (0x12 << 24);
7893 	intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
7894 
7895 	tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
7896 	tmp |= (1 << 11);
7897 	intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
7898 
7899 	tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
7900 	tmp |= (1 << 11);
7901 	intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
7902 
7903 	tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
7904 	tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7905 	intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
7906 
7907 	tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
7908 	tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7909 	intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
7910 
7911 	tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
7912 	tmp &= ~(7 << 13);
7913 	tmp |= (5 << 13);
7914 	intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
7915 
7916 	tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
7917 	tmp &= ~(7 << 13);
7918 	tmp |= (5 << 13);
7919 	intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
7920 
7921 	tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
7922 	tmp &= ~0xFF;
7923 	tmp |= 0x1C;
7924 	intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
7925 
7926 	tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
7927 	tmp &= ~0xFF;
7928 	tmp |= 0x1C;
7929 	intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
7930 
7931 	tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
7932 	tmp &= ~(0xFF << 16);
7933 	tmp |= (0x1C << 16);
7934 	intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
7935 
7936 	tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
7937 	tmp &= ~(0xFF << 16);
7938 	tmp |= (0x1C << 16);
7939 	intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
7940 
7941 	tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
7942 	tmp |= (1 << 27);
7943 	intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
7944 
7945 	tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
7946 	tmp |= (1 << 27);
7947 	intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
7948 
7949 	tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
7950 	tmp &= ~(0xF << 28);
7951 	tmp |= (4 << 28);
7952 	intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
7953 
7954 	tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
7955 	tmp &= ~(0xF << 28);
7956 	tmp |= (4 << 28);
7957 	intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
7958 }
7959 
7960 /* Implements 3 different sequences from BSpec chapter "Display iCLK
7961  * Programming" based on the parameters passed:
7962  * - Sequence to enable CLKOUT_DP
7963  * - Sequence to enable CLKOUT_DP without spread
7964  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
7965  */
lpt_enable_clkout_dp(struct drm_i915_private * dev_priv,bool with_spread,bool with_fdi)7966 static void lpt_enable_clkout_dp(struct drm_i915_private *dev_priv,
7967 				 bool with_spread, bool with_fdi)
7968 {
7969 	uint32_t reg, tmp;
7970 
7971 	if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
7972 		with_spread = true;
7973 	if (WARN(HAS_PCH_LPT_LP(dev_priv) &&
7974 	    with_fdi, "LP PCH doesn't have FDI\n"))
7975 		with_fdi = false;
7976 
7977 	mutex_lock(&dev_priv->sb_lock);
7978 
7979 	tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7980 	tmp &= ~SBI_SSCCTL_DISABLE;
7981 	tmp |= SBI_SSCCTL_PATHALT;
7982 	intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7983 
7984 	udelay(24);
7985 
7986 	if (with_spread) {
7987 		tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7988 		tmp &= ~SBI_SSCCTL_PATHALT;
7989 		intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7990 
7991 		if (with_fdi) {
7992 			lpt_reset_fdi_mphy(dev_priv);
7993 			lpt_program_fdi_mphy(dev_priv);
7994 		}
7995 	}
7996 
7997 	reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
7998 	tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7999 	tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8000 	intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8001 
8002 	mutex_unlock(&dev_priv->sb_lock);
8003 }
8004 
8005 /* Sequence to disable CLKOUT_DP */
lpt_disable_clkout_dp(struct drm_i915_private * dev_priv)8006 static void lpt_disable_clkout_dp(struct drm_i915_private *dev_priv)
8007 {
8008 	uint32_t reg, tmp;
8009 
8010 	mutex_lock(&dev_priv->sb_lock);
8011 
8012 	reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
8013 	tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8014 	tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8015 	intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8016 
8017 	tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8018 	if (!(tmp & SBI_SSCCTL_DISABLE)) {
8019 		if (!(tmp & SBI_SSCCTL_PATHALT)) {
8020 			tmp |= SBI_SSCCTL_PATHALT;
8021 			intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8022 			udelay(32);
8023 		}
8024 		tmp |= SBI_SSCCTL_DISABLE;
8025 		intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8026 	}
8027 
8028 	mutex_unlock(&dev_priv->sb_lock);
8029 }
8030 
8031 #define BEND_IDX(steps) ((50 + (steps)) / 5)
8032 
8033 static const uint16_t sscdivintphase[] = {
8034 	[BEND_IDX( 50)] = 0x3B23,
8035 	[BEND_IDX( 45)] = 0x3B23,
8036 	[BEND_IDX( 40)] = 0x3C23,
8037 	[BEND_IDX( 35)] = 0x3C23,
8038 	[BEND_IDX( 30)] = 0x3D23,
8039 	[BEND_IDX( 25)] = 0x3D23,
8040 	[BEND_IDX( 20)] = 0x3E23,
8041 	[BEND_IDX( 15)] = 0x3E23,
8042 	[BEND_IDX( 10)] = 0x3F23,
8043 	[BEND_IDX(  5)] = 0x3F23,
8044 	[BEND_IDX(  0)] = 0x0025,
8045 	[BEND_IDX( -5)] = 0x0025,
8046 	[BEND_IDX(-10)] = 0x0125,
8047 	[BEND_IDX(-15)] = 0x0125,
8048 	[BEND_IDX(-20)] = 0x0225,
8049 	[BEND_IDX(-25)] = 0x0225,
8050 	[BEND_IDX(-30)] = 0x0325,
8051 	[BEND_IDX(-35)] = 0x0325,
8052 	[BEND_IDX(-40)] = 0x0425,
8053 	[BEND_IDX(-45)] = 0x0425,
8054 	[BEND_IDX(-50)] = 0x0525,
8055 };
8056 
8057 /*
8058  * Bend CLKOUT_DP
8059  * steps -50 to 50 inclusive, in steps of 5
8060  * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
8061  * change in clock period = -(steps / 10) * 5.787 ps
8062  */
lpt_bend_clkout_dp(struct drm_i915_private * dev_priv,int steps)8063 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
8064 {
8065 	uint32_t tmp;
8066 	int idx = BEND_IDX(steps);
8067 
8068 	if (WARN_ON(steps % 5 != 0))
8069 		return;
8070 
8071 	if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
8072 		return;
8073 
8074 	mutex_lock(&dev_priv->sb_lock);
8075 
8076 	if (steps % 10 != 0)
8077 		tmp = 0xAAAAAAAB;
8078 	else
8079 		tmp = 0x00000000;
8080 	intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
8081 
8082 	tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
8083 	tmp &= 0xffff0000;
8084 	tmp |= sscdivintphase[idx];
8085 	intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
8086 
8087 	mutex_unlock(&dev_priv->sb_lock);
8088 }
8089 
8090 #undef BEND_IDX
8091 
lpt_init_pch_refclk(struct drm_i915_private * dev_priv)8092 static void lpt_init_pch_refclk(struct drm_i915_private *dev_priv)
8093 {
8094 	struct intel_encoder *encoder;
8095 	bool has_vga = false;
8096 
8097 	for_each_intel_encoder(&dev_priv->drm, encoder) {
8098 		switch (encoder->type) {
8099 		case INTEL_OUTPUT_ANALOG:
8100 			has_vga = true;
8101 			break;
8102 		default:
8103 			break;
8104 		}
8105 	}
8106 
8107 	if (has_vga) {
8108 		lpt_bend_clkout_dp(dev_priv, 0);
8109 		lpt_enable_clkout_dp(dev_priv, true, true);
8110 	} else {
8111 		lpt_disable_clkout_dp(dev_priv);
8112 	}
8113 }
8114 
8115 /*
8116  * Initialize reference clocks when the driver loads
8117  */
intel_init_pch_refclk(struct drm_i915_private * dev_priv)8118 void intel_init_pch_refclk(struct drm_i915_private *dev_priv)
8119 {
8120 	if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))
8121 		ironlake_init_pch_refclk(dev_priv);
8122 	else if (HAS_PCH_LPT(dev_priv))
8123 		lpt_init_pch_refclk(dev_priv);
8124 }
8125 
ironlake_set_pipeconf(struct drm_crtc * crtc)8126 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8127 {
8128 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
8129 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8130 	int pipe = intel_crtc->pipe;
8131 	uint32_t val;
8132 
8133 	val = 0;
8134 
8135 	switch (intel_crtc->config->pipe_bpp) {
8136 	case 18:
8137 		val |= PIPECONF_6BPC;
8138 		break;
8139 	case 24:
8140 		val |= PIPECONF_8BPC;
8141 		break;
8142 	case 30:
8143 		val |= PIPECONF_10BPC;
8144 		break;
8145 	case 36:
8146 		val |= PIPECONF_12BPC;
8147 		break;
8148 	default:
8149 		/* Case prevented by intel_choose_pipe_bpp_dither. */
8150 		BUG();
8151 	}
8152 
8153 	if (intel_crtc->config->dither)
8154 		val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8155 
8156 	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8157 		val |= PIPECONF_INTERLACED_ILK;
8158 	else
8159 		val |= PIPECONF_PROGRESSIVE;
8160 
8161 	if (intel_crtc->config->limited_color_range)
8162 		val |= PIPECONF_COLOR_RANGE_SELECT;
8163 
8164 	I915_WRITE(PIPECONF(pipe), val);
8165 	POSTING_READ(PIPECONF(pipe));
8166 }
8167 
haswell_set_pipeconf(struct drm_crtc * crtc)8168 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8169 {
8170 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
8171 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8172 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8173 	u32 val = 0;
8174 
8175 	if (IS_HASWELL(dev_priv) && intel_crtc->config->dither)
8176 		val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8177 
8178 	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8179 		val |= PIPECONF_INTERLACED_ILK;
8180 	else
8181 		val |= PIPECONF_PROGRESSIVE;
8182 
8183 	I915_WRITE(PIPECONF(cpu_transcoder), val);
8184 	POSTING_READ(PIPECONF(cpu_transcoder));
8185 }
8186 
haswell_set_pipemisc(struct drm_crtc * crtc)8187 static void haswell_set_pipemisc(struct drm_crtc *crtc)
8188 {
8189 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
8190 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8191 	struct intel_crtc_state *config = intel_crtc->config;
8192 
8193 	if (IS_BROADWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 9) {
8194 		u32 val = 0;
8195 
8196 		switch (intel_crtc->config->pipe_bpp) {
8197 		case 18:
8198 			val |= PIPEMISC_DITHER_6_BPC;
8199 			break;
8200 		case 24:
8201 			val |= PIPEMISC_DITHER_8_BPC;
8202 			break;
8203 		case 30:
8204 			val |= PIPEMISC_DITHER_10_BPC;
8205 			break;
8206 		case 36:
8207 			val |= PIPEMISC_DITHER_12_BPC;
8208 			break;
8209 		default:
8210 			/* Case prevented by pipe_config_set_bpp. */
8211 			BUG();
8212 		}
8213 
8214 		if (intel_crtc->config->dither)
8215 			val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8216 
8217 		if (config->ycbcr420) {
8218 			val |= PIPEMISC_OUTPUT_COLORSPACE_YUV |
8219 				PIPEMISC_YUV420_ENABLE |
8220 				PIPEMISC_YUV420_MODE_FULL_BLEND;
8221 		}
8222 
8223 		I915_WRITE(PIPEMISC(intel_crtc->pipe), val);
8224 	}
8225 }
8226 
ironlake_get_lanes_required(int target_clock,int link_bw,int bpp)8227 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8228 {
8229 	/*
8230 	 * Account for spread spectrum to avoid
8231 	 * oversubscribing the link. Max center spread
8232 	 * is 2.5%; use 5% for safety's sake.
8233 	 */
8234 	u32 bps = target_clock * bpp * 21 / 20;
8235 	return DIV_ROUND_UP(bps, link_bw * 8);
8236 }
8237 
ironlake_needs_fb_cb_tune(struct dpll * dpll,int factor)8238 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8239 {
8240 	return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8241 }
8242 
ironlake_compute_dpll(struct intel_crtc * intel_crtc,struct intel_crtc_state * crtc_state,struct dpll * reduced_clock)8243 static void ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8244 				  struct intel_crtc_state *crtc_state,
8245 				  struct dpll *reduced_clock)
8246 {
8247 	struct drm_crtc *crtc = &intel_crtc->base;
8248 	struct drm_device *dev = crtc->dev;
8249 	struct drm_i915_private *dev_priv = to_i915(dev);
8250 	u32 dpll, fp, fp2;
8251 	int factor;
8252 
8253 	/* Enable autotuning of the PLL clock (if permissible) */
8254 	factor = 21;
8255 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8256 		if ((intel_panel_use_ssc(dev_priv) &&
8257 		     dev_priv->vbt.lvds_ssc_freq == 100000) ||
8258 		    (HAS_PCH_IBX(dev_priv) && intel_is_dual_link_lvds(dev)))
8259 			factor = 25;
8260 	} else if (crtc_state->sdvo_tv_clock)
8261 		factor = 20;
8262 
8263 	fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8264 
8265 	if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8266 		fp |= FP_CB_TUNE;
8267 
8268 	if (reduced_clock) {
8269 		fp2 = i9xx_dpll_compute_fp(reduced_clock);
8270 
8271 		if (reduced_clock->m < factor * reduced_clock->n)
8272 			fp2 |= FP_CB_TUNE;
8273 	} else {
8274 		fp2 = fp;
8275 	}
8276 
8277 	dpll = 0;
8278 
8279 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
8280 		dpll |= DPLLB_MODE_LVDS;
8281 	else
8282 		dpll |= DPLLB_MODE_DAC_SERIAL;
8283 
8284 	dpll |= (crtc_state->pixel_multiplier - 1)
8285 		<< PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8286 
8287 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
8288 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
8289 		dpll |= DPLL_SDVO_HIGH_SPEED;
8290 
8291 	if (intel_crtc_has_dp_encoder(crtc_state))
8292 		dpll |= DPLL_SDVO_HIGH_SPEED;
8293 
8294 	/*
8295 	 * The high speed IO clock is only really required for
8296 	 * SDVO/HDMI/DP, but we also enable it for CRT to make it
8297 	 * possible to share the DPLL between CRT and HDMI. Enabling
8298 	 * the clock needlessly does no real harm, except use up a
8299 	 * bit of power potentially.
8300 	 *
8301 	 * We'll limit this to IVB with 3 pipes, since it has only two
8302 	 * DPLLs and so DPLL sharing is the only way to get three pipes
8303 	 * driving PCH ports at the same time. On SNB we could do this,
8304 	 * and potentially avoid enabling the second DPLL, but it's not
8305 	 * clear if it''s a win or loss power wise. No point in doing
8306 	 * this on ILK at all since it has a fixed DPLL<->pipe mapping.
8307 	 */
8308 	if (INTEL_INFO(dev_priv)->num_pipes == 3 &&
8309 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
8310 		dpll |= DPLL_SDVO_HIGH_SPEED;
8311 
8312 	/* compute bitmask from p1 value */
8313 	dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8314 	/* also FPA1 */
8315 	dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8316 
8317 	switch (crtc_state->dpll.p2) {
8318 	case 5:
8319 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8320 		break;
8321 	case 7:
8322 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8323 		break;
8324 	case 10:
8325 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8326 		break;
8327 	case 14:
8328 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8329 		break;
8330 	}
8331 
8332 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8333 	    intel_panel_use_ssc(dev_priv))
8334 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8335 	else
8336 		dpll |= PLL_REF_INPUT_DREFCLK;
8337 
8338 	dpll |= DPLL_VCO_ENABLE;
8339 
8340 	crtc_state->dpll_hw_state.dpll = dpll;
8341 	crtc_state->dpll_hw_state.fp0 = fp;
8342 	crtc_state->dpll_hw_state.fp1 = fp2;
8343 }
8344 
ironlake_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)8345 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8346 				       struct intel_crtc_state *crtc_state)
8347 {
8348 	struct drm_device *dev = crtc->base.dev;
8349 	struct drm_i915_private *dev_priv = to_i915(dev);
8350 	const struct intel_limit *limit;
8351 	int refclk = 120000;
8352 
8353 	memset(&crtc_state->dpll_hw_state, 0,
8354 	       sizeof(crtc_state->dpll_hw_state));
8355 
8356 	crtc->lowfreq_avail = false;
8357 
8358 	/* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8359 	if (!crtc_state->has_pch_encoder)
8360 		return 0;
8361 
8362 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8363 		if (intel_panel_use_ssc(dev_priv)) {
8364 			DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8365 				      dev_priv->vbt.lvds_ssc_freq);
8366 			refclk = dev_priv->vbt.lvds_ssc_freq;
8367 		}
8368 
8369 		if (intel_is_dual_link_lvds(dev)) {
8370 			if (refclk == 100000)
8371 				limit = &intel_limits_ironlake_dual_lvds_100m;
8372 			else
8373 				limit = &intel_limits_ironlake_dual_lvds;
8374 		} else {
8375 			if (refclk == 100000)
8376 				limit = &intel_limits_ironlake_single_lvds_100m;
8377 			else
8378 				limit = &intel_limits_ironlake_single_lvds;
8379 		}
8380 	} else {
8381 		limit = &intel_limits_ironlake_dac;
8382 	}
8383 
8384 	if (!crtc_state->clock_set &&
8385 	    !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8386 				refclk, NULL, &crtc_state->dpll)) {
8387 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
8388 		return -EINVAL;
8389 	}
8390 
8391 	ironlake_compute_dpll(crtc, crtc_state, NULL);
8392 
8393 	if (!intel_get_shared_dpll(crtc, crtc_state, NULL)) {
8394 		DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8395 				 pipe_name(crtc->pipe));
8396 		return -EINVAL;
8397 	}
8398 
8399 	return 0;
8400 }
8401 
intel_pch_transcoder_get_m_n(struct intel_crtc * crtc,struct intel_link_m_n * m_n)8402 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8403 					 struct intel_link_m_n *m_n)
8404 {
8405 	struct drm_device *dev = crtc->base.dev;
8406 	struct drm_i915_private *dev_priv = to_i915(dev);
8407 	enum pipe pipe = crtc->pipe;
8408 
8409 	m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8410 	m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8411 	m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8412 		& ~TU_SIZE_MASK;
8413 	m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8414 	m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8415 		    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8416 }
8417 
intel_cpu_transcoder_get_m_n(struct intel_crtc * crtc,enum transcoder transcoder,struct intel_link_m_n * m_n,struct intel_link_m_n * m2_n2)8418 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8419 					 enum transcoder transcoder,
8420 					 struct intel_link_m_n *m_n,
8421 					 struct intel_link_m_n *m2_n2)
8422 {
8423 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8424 	enum pipe pipe = crtc->pipe;
8425 
8426 	if (INTEL_GEN(dev_priv) >= 5) {
8427 		m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8428 		m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8429 		m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
8430 			& ~TU_SIZE_MASK;
8431 		m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
8432 		m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
8433 			    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8434 		/* Read M2_N2 registers only for gen < 8 (M2_N2 available for
8435 		 * gen < 8) and if DRRS is supported (to make sure the
8436 		 * registers are not unnecessarily read).
8437 		 */
8438 		if (m2_n2 && INTEL_GEN(dev_priv) < 8 &&
8439 			crtc->config->has_drrs) {
8440 			m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
8441 			m2_n2->link_n =	I915_READ(PIPE_LINK_N2(transcoder));
8442 			m2_n2->gmch_m =	I915_READ(PIPE_DATA_M2(transcoder))
8443 					& ~TU_SIZE_MASK;
8444 			m2_n2->gmch_n =	I915_READ(PIPE_DATA_N2(transcoder));
8445 			m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
8446 					& TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8447 		}
8448 	} else {
8449 		m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
8450 		m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
8451 		m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
8452 			& ~TU_SIZE_MASK;
8453 		m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
8454 		m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
8455 			    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8456 	}
8457 }
8458 
intel_dp_get_m_n(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)8459 void intel_dp_get_m_n(struct intel_crtc *crtc,
8460 		      struct intel_crtc_state *pipe_config)
8461 {
8462 	if (pipe_config->has_pch_encoder)
8463 		intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
8464 	else
8465 		intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8466 					     &pipe_config->dp_m_n,
8467 					     &pipe_config->dp_m2_n2);
8468 }
8469 
ironlake_get_fdi_m_n_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)8470 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
8471 					struct intel_crtc_state *pipe_config)
8472 {
8473 	intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8474 				     &pipe_config->fdi_m_n, NULL);
8475 }
8476 
skylake_get_pfit_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)8477 static void skylake_get_pfit_config(struct intel_crtc *crtc,
8478 				    struct intel_crtc_state *pipe_config)
8479 {
8480 	struct drm_device *dev = crtc->base.dev;
8481 	struct drm_i915_private *dev_priv = to_i915(dev);
8482 	struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
8483 	uint32_t ps_ctrl = 0;
8484 	int id = -1;
8485 	int i;
8486 
8487 	/* find scaler attached to this pipe */
8488 	for (i = 0; i < crtc->num_scalers; i++) {
8489 		ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
8490 		if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
8491 			id = i;
8492 			pipe_config->pch_pfit.enabled = true;
8493 			pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
8494 			pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
8495 			break;
8496 		}
8497 	}
8498 
8499 	scaler_state->scaler_id = id;
8500 	if (id >= 0) {
8501 		scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
8502 	} else {
8503 		scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
8504 	}
8505 }
8506 
8507 static void
skylake_get_initial_plane_config(struct intel_crtc * crtc,struct intel_initial_plane_config * plane_config)8508 skylake_get_initial_plane_config(struct intel_crtc *crtc,
8509 				 struct intel_initial_plane_config *plane_config)
8510 {
8511 	struct drm_device *dev = crtc->base.dev;
8512 	struct drm_i915_private *dev_priv = to_i915(dev);
8513 	u32 val, base, offset, stride_mult, tiling;
8514 	int pipe = crtc->pipe;
8515 	int fourcc, pixel_format;
8516 	unsigned int aligned_height;
8517 	struct drm_framebuffer *fb;
8518 	struct intel_framebuffer *intel_fb;
8519 
8520 	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8521 	if (!intel_fb) {
8522 		DRM_DEBUG_KMS("failed to alloc fb\n");
8523 		return;
8524 	}
8525 
8526 	fb = &intel_fb->base;
8527 
8528 	fb->dev = dev;
8529 
8530 	val = I915_READ(PLANE_CTL(pipe, 0));
8531 	if (!(val & PLANE_CTL_ENABLE))
8532 		goto error;
8533 
8534 	pixel_format = val & PLANE_CTL_FORMAT_MASK;
8535 	fourcc = skl_format_to_fourcc(pixel_format,
8536 				      val & PLANE_CTL_ORDER_RGBX,
8537 				      val & PLANE_CTL_ALPHA_MASK);
8538 	fb->format = drm_format_info(fourcc);
8539 
8540 	tiling = val & PLANE_CTL_TILED_MASK;
8541 	switch (tiling) {
8542 	case PLANE_CTL_TILED_LINEAR:
8543 		fb->modifier = DRM_FORMAT_MOD_LINEAR;
8544 		break;
8545 	case PLANE_CTL_TILED_X:
8546 		plane_config->tiling = I915_TILING_X;
8547 		fb->modifier = I915_FORMAT_MOD_X_TILED;
8548 		break;
8549 	case PLANE_CTL_TILED_Y:
8550 		if (val & PLANE_CTL_DECOMPRESSION_ENABLE)
8551 			fb->modifier = I915_FORMAT_MOD_Y_TILED_CCS;
8552 		else
8553 			fb->modifier = I915_FORMAT_MOD_Y_TILED;
8554 		break;
8555 	case PLANE_CTL_TILED_YF:
8556 		if (val & PLANE_CTL_DECOMPRESSION_ENABLE)
8557 			fb->modifier = I915_FORMAT_MOD_Yf_TILED_CCS;
8558 		else
8559 			fb->modifier = I915_FORMAT_MOD_Yf_TILED;
8560 		break;
8561 	default:
8562 		MISSING_CASE(tiling);
8563 		goto error;
8564 	}
8565 
8566 	base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
8567 	plane_config->base = base;
8568 
8569 	offset = I915_READ(PLANE_OFFSET(pipe, 0));
8570 
8571 	val = I915_READ(PLANE_SIZE(pipe, 0));
8572 	fb->height = ((val >> 16) & 0xfff) + 1;
8573 	fb->width = ((val >> 0) & 0x1fff) + 1;
8574 
8575 	val = I915_READ(PLANE_STRIDE(pipe, 0));
8576 	stride_mult = intel_fb_stride_alignment(fb, 0);
8577 	fb->pitches[0] = (val & 0x3ff) * stride_mult;
8578 
8579 	aligned_height = intel_fb_align_height(fb, 0, fb->height);
8580 
8581 	plane_config->size = fb->pitches[0] * aligned_height;
8582 
8583 	DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8584 		      pipe_name(pipe), fb->width, fb->height,
8585 		      fb->format->cpp[0] * 8, base, fb->pitches[0],
8586 		      plane_config->size);
8587 
8588 	plane_config->fb = intel_fb;
8589 	return;
8590 
8591 error:
8592 	kfree(intel_fb);
8593 }
8594 
ironlake_get_pfit_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)8595 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
8596 				     struct intel_crtc_state *pipe_config)
8597 {
8598 	struct drm_device *dev = crtc->base.dev;
8599 	struct drm_i915_private *dev_priv = to_i915(dev);
8600 	uint32_t tmp;
8601 
8602 	tmp = I915_READ(PF_CTL(crtc->pipe));
8603 
8604 	if (tmp & PF_ENABLE) {
8605 		pipe_config->pch_pfit.enabled = true;
8606 		pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
8607 		pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
8608 
8609 		/* We currently do not free assignements of panel fitters on
8610 		 * ivb/hsw (since we don't use the higher upscaling modes which
8611 		 * differentiates them) so just WARN about this case for now. */
8612 		if (IS_GEN7(dev_priv)) {
8613 			WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
8614 				PF_PIPE_SEL_IVB(crtc->pipe));
8615 		}
8616 	}
8617 }
8618 
8619 static void
ironlake_get_initial_plane_config(struct intel_crtc * crtc,struct intel_initial_plane_config * plane_config)8620 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
8621 				  struct intel_initial_plane_config *plane_config)
8622 {
8623 	struct drm_device *dev = crtc->base.dev;
8624 	struct drm_i915_private *dev_priv = to_i915(dev);
8625 	u32 val, base, offset;
8626 	int pipe = crtc->pipe;
8627 	int fourcc, pixel_format;
8628 	unsigned int aligned_height;
8629 	struct drm_framebuffer *fb;
8630 	struct intel_framebuffer *intel_fb;
8631 
8632 	val = I915_READ(DSPCNTR(pipe));
8633 	if (!(val & DISPLAY_PLANE_ENABLE))
8634 		return;
8635 
8636 	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8637 	if (!intel_fb) {
8638 		DRM_DEBUG_KMS("failed to alloc fb\n");
8639 		return;
8640 	}
8641 
8642 	fb = &intel_fb->base;
8643 
8644 	fb->dev = dev;
8645 
8646 	if (INTEL_GEN(dev_priv) >= 4) {
8647 		if (val & DISPPLANE_TILED) {
8648 			plane_config->tiling = I915_TILING_X;
8649 			fb->modifier = I915_FORMAT_MOD_X_TILED;
8650 		}
8651 	}
8652 
8653 	pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8654 	fourcc = i9xx_format_to_fourcc(pixel_format);
8655 	fb->format = drm_format_info(fourcc);
8656 
8657 	base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
8658 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
8659 		offset = I915_READ(DSPOFFSET(pipe));
8660 	} else {
8661 		if (plane_config->tiling)
8662 			offset = I915_READ(DSPTILEOFF(pipe));
8663 		else
8664 			offset = I915_READ(DSPLINOFF(pipe));
8665 	}
8666 	plane_config->base = base;
8667 
8668 	val = I915_READ(PIPESRC(pipe));
8669 	fb->width = ((val >> 16) & 0xfff) + 1;
8670 	fb->height = ((val >> 0) & 0xfff) + 1;
8671 
8672 	val = I915_READ(DSPSTRIDE(pipe));
8673 	fb->pitches[0] = val & 0xffffffc0;
8674 
8675 	aligned_height = intel_fb_align_height(fb, 0, fb->height);
8676 
8677 	plane_config->size = fb->pitches[0] * aligned_height;
8678 
8679 	DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8680 		      pipe_name(pipe), fb->width, fb->height,
8681 		      fb->format->cpp[0] * 8, base, fb->pitches[0],
8682 		      plane_config->size);
8683 
8684 	plane_config->fb = intel_fb;
8685 }
8686 
ironlake_get_pipe_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)8687 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
8688 				     struct intel_crtc_state *pipe_config)
8689 {
8690 	struct drm_device *dev = crtc->base.dev;
8691 	struct drm_i915_private *dev_priv = to_i915(dev);
8692 	enum intel_display_power_domain power_domain;
8693 	uint32_t tmp;
8694 	bool ret;
8695 
8696 	power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8697 	if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8698 		return false;
8699 
8700 	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8701 	pipe_config->shared_dpll = NULL;
8702 
8703 	ret = false;
8704 	tmp = I915_READ(PIPECONF(crtc->pipe));
8705 	if (!(tmp & PIPECONF_ENABLE))
8706 		goto out;
8707 
8708 	switch (tmp & PIPECONF_BPC_MASK) {
8709 	case PIPECONF_6BPC:
8710 		pipe_config->pipe_bpp = 18;
8711 		break;
8712 	case PIPECONF_8BPC:
8713 		pipe_config->pipe_bpp = 24;
8714 		break;
8715 	case PIPECONF_10BPC:
8716 		pipe_config->pipe_bpp = 30;
8717 		break;
8718 	case PIPECONF_12BPC:
8719 		pipe_config->pipe_bpp = 36;
8720 		break;
8721 	default:
8722 		break;
8723 	}
8724 
8725 	if (tmp & PIPECONF_COLOR_RANGE_SELECT)
8726 		pipe_config->limited_color_range = true;
8727 
8728 	if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
8729 		struct intel_shared_dpll *pll;
8730 		enum intel_dpll_id pll_id;
8731 
8732 		pipe_config->has_pch_encoder = true;
8733 
8734 		tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
8735 		pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8736 					  FDI_DP_PORT_WIDTH_SHIFT) + 1;
8737 
8738 		ironlake_get_fdi_m_n_config(crtc, pipe_config);
8739 
8740 		if (HAS_PCH_IBX(dev_priv)) {
8741 			/*
8742 			 * The pipe->pch transcoder and pch transcoder->pll
8743 			 * mapping is fixed.
8744 			 */
8745 			pll_id = (enum intel_dpll_id) crtc->pipe;
8746 		} else {
8747 			tmp = I915_READ(PCH_DPLL_SEL);
8748 			if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
8749 				pll_id = DPLL_ID_PCH_PLL_B;
8750 			else
8751 				pll_id= DPLL_ID_PCH_PLL_A;
8752 		}
8753 
8754 		pipe_config->shared_dpll =
8755 			intel_get_shared_dpll_by_id(dev_priv, pll_id);
8756 		pll = pipe_config->shared_dpll;
8757 
8758 		WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
8759 						 &pipe_config->dpll_hw_state));
8760 
8761 		tmp = pipe_config->dpll_hw_state.dpll;
8762 		pipe_config->pixel_multiplier =
8763 			((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
8764 			 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
8765 
8766 		ironlake_pch_clock_get(crtc, pipe_config);
8767 	} else {
8768 		pipe_config->pixel_multiplier = 1;
8769 	}
8770 
8771 	intel_get_pipe_timings(crtc, pipe_config);
8772 	intel_get_pipe_src_size(crtc, pipe_config);
8773 
8774 	ironlake_get_pfit_config(crtc, pipe_config);
8775 
8776 	ret = true;
8777 
8778 out:
8779 	intel_display_power_put(dev_priv, power_domain);
8780 
8781 	return ret;
8782 }
8783 
assert_can_disable_lcpll(struct drm_i915_private * dev_priv)8784 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
8785 {
8786 	struct drm_device *dev = &dev_priv->drm;
8787 	struct intel_crtc *crtc;
8788 
8789 	for_each_intel_crtc(dev, crtc)
8790 		I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
8791 		     pipe_name(crtc->pipe));
8792 
8793 	I915_STATE_WARN(I915_READ(HSW_PWR_WELL_CTL_DRIVER(HSW_DISP_PW_GLOBAL)),
8794 			"Display power well on\n");
8795 	I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
8796 	I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
8797 	I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
8798 	I915_STATE_WARN(I915_READ(PP_STATUS(0)) & PP_ON, "Panel power on\n");
8799 	I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
8800 	     "CPU PWM1 enabled\n");
8801 	if (IS_HASWELL(dev_priv))
8802 		I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
8803 		     "CPU PWM2 enabled\n");
8804 	I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
8805 	     "PCH PWM1 enabled\n");
8806 	I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
8807 	     "Utility pin enabled\n");
8808 	I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
8809 
8810 	/*
8811 	 * In theory we can still leave IRQs enabled, as long as only the HPD
8812 	 * interrupts remain enabled. We used to check for that, but since it's
8813 	 * gen-specific and since we only disable LCPLL after we fully disable
8814 	 * the interrupts, the check below should be enough.
8815 	 */
8816 	I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
8817 }
8818 
hsw_read_dcomp(struct drm_i915_private * dev_priv)8819 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
8820 {
8821 	if (IS_HASWELL(dev_priv))
8822 		return I915_READ(D_COMP_HSW);
8823 	else
8824 		return I915_READ(D_COMP_BDW);
8825 }
8826 
hsw_write_dcomp(struct drm_i915_private * dev_priv,uint32_t val)8827 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
8828 {
8829 	if (IS_HASWELL(dev_priv)) {
8830 		mutex_lock(&dev_priv->rps.hw_lock);
8831 		if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
8832 					    val))
8833 			DRM_DEBUG_KMS("Failed to write to D_COMP\n");
8834 		mutex_unlock(&dev_priv->rps.hw_lock);
8835 	} else {
8836 		I915_WRITE(D_COMP_BDW, val);
8837 		POSTING_READ(D_COMP_BDW);
8838 	}
8839 }
8840 
8841 /*
8842  * This function implements pieces of two sequences from BSpec:
8843  * - Sequence for display software to disable LCPLL
8844  * - Sequence for display software to allow package C8+
8845  * The steps implemented here are just the steps that actually touch the LCPLL
8846  * register. Callers should take care of disabling all the display engine
8847  * functions, doing the mode unset, fixing interrupts, etc.
8848  */
hsw_disable_lcpll(struct drm_i915_private * dev_priv,bool switch_to_fclk,bool allow_power_down)8849 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
8850 			      bool switch_to_fclk, bool allow_power_down)
8851 {
8852 	uint32_t val;
8853 
8854 	assert_can_disable_lcpll(dev_priv);
8855 
8856 	val = I915_READ(LCPLL_CTL);
8857 
8858 	if (switch_to_fclk) {
8859 		val |= LCPLL_CD_SOURCE_FCLK;
8860 		I915_WRITE(LCPLL_CTL, val);
8861 
8862 		if (wait_for_us(I915_READ(LCPLL_CTL) &
8863 				LCPLL_CD_SOURCE_FCLK_DONE, 1))
8864 			DRM_ERROR("Switching to FCLK failed\n");
8865 
8866 		val = I915_READ(LCPLL_CTL);
8867 	}
8868 
8869 	val |= LCPLL_PLL_DISABLE;
8870 	I915_WRITE(LCPLL_CTL, val);
8871 	POSTING_READ(LCPLL_CTL);
8872 
8873 	if (intel_wait_for_register(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 0, 1))
8874 		DRM_ERROR("LCPLL still locked\n");
8875 
8876 	val = hsw_read_dcomp(dev_priv);
8877 	val |= D_COMP_COMP_DISABLE;
8878 	hsw_write_dcomp(dev_priv, val);
8879 	ndelay(100);
8880 
8881 	if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
8882 		     1))
8883 		DRM_ERROR("D_COMP RCOMP still in progress\n");
8884 
8885 	if (allow_power_down) {
8886 		val = I915_READ(LCPLL_CTL);
8887 		val |= LCPLL_POWER_DOWN_ALLOW;
8888 		I915_WRITE(LCPLL_CTL, val);
8889 		POSTING_READ(LCPLL_CTL);
8890 	}
8891 }
8892 
8893 /*
8894  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
8895  * source.
8896  */
hsw_restore_lcpll(struct drm_i915_private * dev_priv)8897 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
8898 {
8899 	uint32_t val;
8900 
8901 	val = I915_READ(LCPLL_CTL);
8902 
8903 	if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
8904 		    LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
8905 		return;
8906 
8907 	/*
8908 	 * Make sure we're not on PC8 state before disabling PC8, otherwise
8909 	 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
8910 	 */
8911 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
8912 
8913 	if (val & LCPLL_POWER_DOWN_ALLOW) {
8914 		val &= ~LCPLL_POWER_DOWN_ALLOW;
8915 		I915_WRITE(LCPLL_CTL, val);
8916 		POSTING_READ(LCPLL_CTL);
8917 	}
8918 
8919 	val = hsw_read_dcomp(dev_priv);
8920 	val |= D_COMP_COMP_FORCE;
8921 	val &= ~D_COMP_COMP_DISABLE;
8922 	hsw_write_dcomp(dev_priv, val);
8923 
8924 	val = I915_READ(LCPLL_CTL);
8925 	val &= ~LCPLL_PLL_DISABLE;
8926 	I915_WRITE(LCPLL_CTL, val);
8927 
8928 	if (intel_wait_for_register(dev_priv,
8929 				    LCPLL_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
8930 				    5))
8931 		DRM_ERROR("LCPLL not locked yet\n");
8932 
8933 	if (val & LCPLL_CD_SOURCE_FCLK) {
8934 		val = I915_READ(LCPLL_CTL);
8935 		val &= ~LCPLL_CD_SOURCE_FCLK;
8936 		I915_WRITE(LCPLL_CTL, val);
8937 
8938 		if (wait_for_us((I915_READ(LCPLL_CTL) &
8939 				 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
8940 			DRM_ERROR("Switching back to LCPLL failed\n");
8941 	}
8942 
8943 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
8944 	intel_update_cdclk(dev_priv);
8945 }
8946 
8947 /*
8948  * Package states C8 and deeper are really deep PC states that can only be
8949  * reached when all the devices on the system allow it, so even if the graphics
8950  * device allows PC8+, it doesn't mean the system will actually get to these
8951  * states. Our driver only allows PC8+ when going into runtime PM.
8952  *
8953  * The requirements for PC8+ are that all the outputs are disabled, the power
8954  * well is disabled and most interrupts are disabled, and these are also
8955  * requirements for runtime PM. When these conditions are met, we manually do
8956  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
8957  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
8958  * hang the machine.
8959  *
8960  * When we really reach PC8 or deeper states (not just when we allow it) we lose
8961  * the state of some registers, so when we come back from PC8+ we need to
8962  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
8963  * need to take care of the registers kept by RC6. Notice that this happens even
8964  * if we don't put the device in PCI D3 state (which is what currently happens
8965  * because of the runtime PM support).
8966  *
8967  * For more, read "Display Sequences for Package C8" on the hardware
8968  * documentation.
8969  */
hsw_enable_pc8(struct drm_i915_private * dev_priv)8970 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
8971 {
8972 	uint32_t val;
8973 
8974 	DRM_DEBUG_KMS("Enabling package C8+\n");
8975 
8976 	if (HAS_PCH_LPT_LP(dev_priv)) {
8977 		val = I915_READ(SOUTH_DSPCLK_GATE_D);
8978 		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8979 		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8980 	}
8981 
8982 	lpt_disable_clkout_dp(dev_priv);
8983 	hsw_disable_lcpll(dev_priv, true, true);
8984 }
8985 
hsw_disable_pc8(struct drm_i915_private * dev_priv)8986 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
8987 {
8988 	uint32_t val;
8989 
8990 	DRM_DEBUG_KMS("Disabling package C8+\n");
8991 
8992 	hsw_restore_lcpll(dev_priv);
8993 	lpt_init_pch_refclk(dev_priv);
8994 
8995 	if (HAS_PCH_LPT_LP(dev_priv)) {
8996 		val = I915_READ(SOUTH_DSPCLK_GATE_D);
8997 		val |= PCH_LP_PARTITION_LEVEL_DISABLE;
8998 		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8999 	}
9000 }
9001 
haswell_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)9002 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9003 				      struct intel_crtc_state *crtc_state)
9004 {
9005 	if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) {
9006 		struct intel_encoder *encoder =
9007 			intel_ddi_get_crtc_new_encoder(crtc_state);
9008 
9009 		if (!intel_get_shared_dpll(crtc, crtc_state, encoder)) {
9010 			DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
9011 					 pipe_name(crtc->pipe));
9012 			return -EINVAL;
9013 		}
9014 	}
9015 
9016 	crtc->lowfreq_avail = false;
9017 
9018 	return 0;
9019 }
9020 
cannonlake_get_ddi_pll(struct drm_i915_private * dev_priv,enum port port,struct intel_crtc_state * pipe_config)9021 static void cannonlake_get_ddi_pll(struct drm_i915_private *dev_priv,
9022 				   enum port port,
9023 				   struct intel_crtc_state *pipe_config)
9024 {
9025 	enum intel_dpll_id id;
9026 	u32 temp;
9027 
9028 	temp = I915_READ(DPCLKA_CFGCR0) & DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(port);
9029 	id = temp >> (port * 2);
9030 
9031 	if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL2))
9032 		return;
9033 
9034 	pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9035 }
9036 
bxt_get_ddi_pll(struct drm_i915_private * dev_priv,enum port port,struct intel_crtc_state * pipe_config)9037 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9038 				enum port port,
9039 				struct intel_crtc_state *pipe_config)
9040 {
9041 	enum intel_dpll_id id;
9042 
9043 	switch (port) {
9044 	case PORT_A:
9045 		id = DPLL_ID_SKL_DPLL0;
9046 		break;
9047 	case PORT_B:
9048 		id = DPLL_ID_SKL_DPLL1;
9049 		break;
9050 	case PORT_C:
9051 		id = DPLL_ID_SKL_DPLL2;
9052 		break;
9053 	default:
9054 		DRM_ERROR("Incorrect port type\n");
9055 		return;
9056 	}
9057 
9058 	pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9059 }
9060 
skylake_get_ddi_pll(struct drm_i915_private * dev_priv,enum port port,struct intel_crtc_state * pipe_config)9061 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9062 				enum port port,
9063 				struct intel_crtc_state *pipe_config)
9064 {
9065 	enum intel_dpll_id id;
9066 	u32 temp;
9067 
9068 	temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9069 	id = temp >> (port * 3 + 1);
9070 
9071 	if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL3))
9072 		return;
9073 
9074 	pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9075 }
9076 
haswell_get_ddi_pll(struct drm_i915_private * dev_priv,enum port port,struct intel_crtc_state * pipe_config)9077 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9078 				enum port port,
9079 				struct intel_crtc_state *pipe_config)
9080 {
9081 	enum intel_dpll_id id;
9082 	uint32_t ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9083 
9084 	switch (ddi_pll_sel) {
9085 	case PORT_CLK_SEL_WRPLL1:
9086 		id = DPLL_ID_WRPLL1;
9087 		break;
9088 	case PORT_CLK_SEL_WRPLL2:
9089 		id = DPLL_ID_WRPLL2;
9090 		break;
9091 	case PORT_CLK_SEL_SPLL:
9092 		id = DPLL_ID_SPLL;
9093 		break;
9094 	case PORT_CLK_SEL_LCPLL_810:
9095 		id = DPLL_ID_LCPLL_810;
9096 		break;
9097 	case PORT_CLK_SEL_LCPLL_1350:
9098 		id = DPLL_ID_LCPLL_1350;
9099 		break;
9100 	case PORT_CLK_SEL_LCPLL_2700:
9101 		id = DPLL_ID_LCPLL_2700;
9102 		break;
9103 	default:
9104 		MISSING_CASE(ddi_pll_sel);
9105 		/* fall through */
9106 	case PORT_CLK_SEL_NONE:
9107 		return;
9108 	}
9109 
9110 	pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9111 }
9112 
hsw_get_transcoder_state(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config,u64 * power_domain_mask)9113 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
9114 				     struct intel_crtc_state *pipe_config,
9115 				     u64 *power_domain_mask)
9116 {
9117 	struct drm_device *dev = crtc->base.dev;
9118 	struct drm_i915_private *dev_priv = to_i915(dev);
9119 	enum intel_display_power_domain power_domain;
9120 	u32 tmp;
9121 
9122 	/*
9123 	 * The pipe->transcoder mapping is fixed with the exception of the eDP
9124 	 * transcoder handled below.
9125 	 */
9126 	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9127 
9128 	/*
9129 	 * XXX: Do intel_display_power_get_if_enabled before reading this (for
9130 	 * consistency and less surprising code; it's in always on power).
9131 	 */
9132 	tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9133 	if (tmp & TRANS_DDI_FUNC_ENABLE) {
9134 		enum pipe trans_edp_pipe;
9135 		switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9136 		default:
9137 			WARN(1, "unknown pipe linked to edp transcoder\n");
9138 		case TRANS_DDI_EDP_INPUT_A_ONOFF:
9139 		case TRANS_DDI_EDP_INPUT_A_ON:
9140 			trans_edp_pipe = PIPE_A;
9141 			break;
9142 		case TRANS_DDI_EDP_INPUT_B_ONOFF:
9143 			trans_edp_pipe = PIPE_B;
9144 			break;
9145 		case TRANS_DDI_EDP_INPUT_C_ONOFF:
9146 			trans_edp_pipe = PIPE_C;
9147 			break;
9148 		}
9149 
9150 		if (trans_edp_pipe == crtc->pipe)
9151 			pipe_config->cpu_transcoder = TRANSCODER_EDP;
9152 	}
9153 
9154 	power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
9155 	if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9156 		return false;
9157 	*power_domain_mask |= BIT_ULL(power_domain);
9158 
9159 	tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9160 
9161 	return tmp & PIPECONF_ENABLE;
9162 }
9163 
bxt_get_dsi_transcoder_state(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config,u64 * power_domain_mask)9164 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
9165 					 struct intel_crtc_state *pipe_config,
9166 					 u64 *power_domain_mask)
9167 {
9168 	struct drm_device *dev = crtc->base.dev;
9169 	struct drm_i915_private *dev_priv = to_i915(dev);
9170 	enum intel_display_power_domain power_domain;
9171 	enum port port;
9172 	enum transcoder cpu_transcoder;
9173 	u32 tmp;
9174 
9175 	for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
9176 		if (port == PORT_A)
9177 			cpu_transcoder = TRANSCODER_DSI_A;
9178 		else
9179 			cpu_transcoder = TRANSCODER_DSI_C;
9180 
9181 		power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
9182 		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9183 			continue;
9184 		*power_domain_mask |= BIT_ULL(power_domain);
9185 
9186 		/*
9187 		 * The PLL needs to be enabled with a valid divider
9188 		 * configuration, otherwise accessing DSI registers will hang
9189 		 * the machine. See BSpec North Display Engine
9190 		 * registers/MIPI[BXT]. We can break out here early, since we
9191 		 * need the same DSI PLL to be enabled for both DSI ports.
9192 		 */
9193 		if (!intel_dsi_pll_is_enabled(dev_priv))
9194 			break;
9195 
9196 		/* XXX: this works for video mode only */
9197 		tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
9198 		if (!(tmp & DPI_ENABLE))
9199 			continue;
9200 
9201 		tmp = I915_READ(MIPI_CTRL(port));
9202 		if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
9203 			continue;
9204 
9205 		pipe_config->cpu_transcoder = cpu_transcoder;
9206 		break;
9207 	}
9208 
9209 	return transcoder_is_dsi(pipe_config->cpu_transcoder);
9210 }
9211 
haswell_get_ddi_port_state(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)9212 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9213 				       struct intel_crtc_state *pipe_config)
9214 {
9215 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9216 	struct intel_shared_dpll *pll;
9217 	enum port port;
9218 	uint32_t tmp;
9219 
9220 	tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9221 
9222 	port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9223 
9224 	if (IS_CANNONLAKE(dev_priv))
9225 		cannonlake_get_ddi_pll(dev_priv, port, pipe_config);
9226 	else if (IS_GEN9_BC(dev_priv))
9227 		skylake_get_ddi_pll(dev_priv, port, pipe_config);
9228 	else if (IS_GEN9_LP(dev_priv))
9229 		bxt_get_ddi_pll(dev_priv, port, pipe_config);
9230 	else
9231 		haswell_get_ddi_pll(dev_priv, port, pipe_config);
9232 
9233 	pll = pipe_config->shared_dpll;
9234 	if (pll) {
9235 		WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9236 						 &pipe_config->dpll_hw_state));
9237 	}
9238 
9239 	/*
9240 	 * Haswell has only FDI/PCH transcoder A. It is which is connected to
9241 	 * DDI E. So just check whether this pipe is wired to DDI E and whether
9242 	 * the PCH transcoder is on.
9243 	 */
9244 	if (INTEL_GEN(dev_priv) < 9 &&
9245 	    (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9246 		pipe_config->has_pch_encoder = true;
9247 
9248 		tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9249 		pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9250 					  FDI_DP_PORT_WIDTH_SHIFT) + 1;
9251 
9252 		ironlake_get_fdi_m_n_config(crtc, pipe_config);
9253 	}
9254 }
9255 
haswell_get_pipe_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)9256 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9257 				    struct intel_crtc_state *pipe_config)
9258 {
9259 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9260 	enum intel_display_power_domain power_domain;
9261 	u64 power_domain_mask;
9262 	bool active;
9263 
9264 	intel_crtc_init_scalers(crtc, pipe_config);
9265 
9266 	power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9267 	if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9268 		return false;
9269 	power_domain_mask = BIT_ULL(power_domain);
9270 
9271 	pipe_config->shared_dpll = NULL;
9272 
9273 	active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_mask);
9274 
9275 	if (IS_GEN9_LP(dev_priv) &&
9276 	    bxt_get_dsi_transcoder_state(crtc, pipe_config, &power_domain_mask)) {
9277 		WARN_ON(active);
9278 		active = true;
9279 	}
9280 
9281 	if (!active)
9282 		goto out;
9283 
9284 	if (!transcoder_is_dsi(pipe_config->cpu_transcoder)) {
9285 		haswell_get_ddi_port_state(crtc, pipe_config);
9286 		intel_get_pipe_timings(crtc, pipe_config);
9287 	}
9288 
9289 	intel_get_pipe_src_size(crtc, pipe_config);
9290 
9291 	pipe_config->gamma_mode =
9292 		I915_READ(GAMMA_MODE(crtc->pipe)) & GAMMA_MODE_MODE_MASK;
9293 
9294 	if (IS_BROADWELL(dev_priv) || dev_priv->info.gen >= 9) {
9295 		u32 tmp = I915_READ(PIPEMISC(crtc->pipe));
9296 		bool clrspace_yuv = tmp & PIPEMISC_OUTPUT_COLORSPACE_YUV;
9297 
9298 		if (IS_GEMINILAKE(dev_priv) || dev_priv->info.gen >= 10) {
9299 			bool blend_mode_420 = tmp &
9300 					      PIPEMISC_YUV420_MODE_FULL_BLEND;
9301 
9302 			pipe_config->ycbcr420 = tmp & PIPEMISC_YUV420_ENABLE;
9303 			if (pipe_config->ycbcr420 != clrspace_yuv ||
9304 			    pipe_config->ycbcr420 != blend_mode_420)
9305 				DRM_DEBUG_KMS("Bad 4:2:0 mode (%08x)\n", tmp);
9306 		} else if (clrspace_yuv) {
9307 			DRM_DEBUG_KMS("YCbCr 4:2:0 Unsupported\n");
9308 		}
9309 	}
9310 
9311 	power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
9312 	if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
9313 		power_domain_mask |= BIT_ULL(power_domain);
9314 		if (INTEL_GEN(dev_priv) >= 9)
9315 			skylake_get_pfit_config(crtc, pipe_config);
9316 		else
9317 			ironlake_get_pfit_config(crtc, pipe_config);
9318 	}
9319 
9320 	if (IS_HASWELL(dev_priv))
9321 		pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9322 			(I915_READ(IPS_CTL) & IPS_ENABLE);
9323 
9324 	if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
9325 	    !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
9326 		pipe_config->pixel_multiplier =
9327 			I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9328 	} else {
9329 		pipe_config->pixel_multiplier = 1;
9330 	}
9331 
9332 out:
9333 	for_each_power_domain(power_domain, power_domain_mask)
9334 		intel_display_power_put(dev_priv, power_domain);
9335 
9336 	return active;
9337 }
9338 
intel_cursor_base(const struct intel_plane_state * plane_state)9339 static u32 intel_cursor_base(const struct intel_plane_state *plane_state)
9340 {
9341 	struct drm_i915_private *dev_priv =
9342 		to_i915(plane_state->base.plane->dev);
9343 	const struct drm_framebuffer *fb = plane_state->base.fb;
9344 	const struct drm_i915_gem_object *obj = intel_fb_obj(fb);
9345 	u32 base;
9346 
9347 	if (INTEL_INFO(dev_priv)->cursor_needs_physical)
9348 		base = obj->phys_handle->busaddr;
9349 	else
9350 		base = intel_plane_ggtt_offset(plane_state);
9351 
9352 	base += plane_state->main.offset;
9353 
9354 	/* ILK+ do this automagically */
9355 	if (HAS_GMCH_DISPLAY(dev_priv) &&
9356 	    plane_state->base.rotation & DRM_MODE_ROTATE_180)
9357 		base += (plane_state->base.crtc_h *
9358 			 plane_state->base.crtc_w - 1) * fb->format->cpp[0];
9359 
9360 	return base;
9361 }
9362 
intel_cursor_position(const struct intel_plane_state * plane_state)9363 static u32 intel_cursor_position(const struct intel_plane_state *plane_state)
9364 {
9365 	int x = plane_state->base.crtc_x;
9366 	int y = plane_state->base.crtc_y;
9367 	u32 pos = 0;
9368 
9369 	if (x < 0) {
9370 		pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
9371 		x = -x;
9372 	}
9373 	pos |= x << CURSOR_X_SHIFT;
9374 
9375 	if (y < 0) {
9376 		pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
9377 		y = -y;
9378 	}
9379 	pos |= y << CURSOR_Y_SHIFT;
9380 
9381 	return pos;
9382 }
9383 
intel_cursor_size_ok(const struct intel_plane_state * plane_state)9384 static bool intel_cursor_size_ok(const struct intel_plane_state *plane_state)
9385 {
9386 	const struct drm_mode_config *config =
9387 		&plane_state->base.plane->dev->mode_config;
9388 	int width = plane_state->base.crtc_w;
9389 	int height = plane_state->base.crtc_h;
9390 
9391 	return width > 0 && width <= config->cursor_width &&
9392 		height > 0 && height <= config->cursor_height;
9393 }
9394 
intel_check_cursor(struct intel_crtc_state * crtc_state,struct intel_plane_state * plane_state)9395 static int intel_check_cursor(struct intel_crtc_state *crtc_state,
9396 			      struct intel_plane_state *plane_state)
9397 {
9398 	const struct drm_framebuffer *fb = plane_state->base.fb;
9399 	int src_x, src_y;
9400 	u32 offset;
9401 	int ret;
9402 
9403 	ret = drm_plane_helper_check_state(&plane_state->base,
9404 					   &plane_state->clip,
9405 					   DRM_PLANE_HELPER_NO_SCALING,
9406 					   DRM_PLANE_HELPER_NO_SCALING,
9407 					   true, true);
9408 	if (ret)
9409 		return ret;
9410 
9411 	if (!fb)
9412 		return 0;
9413 
9414 	if (fb->modifier != DRM_FORMAT_MOD_LINEAR) {
9415 		DRM_DEBUG_KMS("cursor cannot be tiled\n");
9416 		return -EINVAL;
9417 	}
9418 
9419 	src_x = plane_state->base.src_x >> 16;
9420 	src_y = plane_state->base.src_y >> 16;
9421 
9422 	intel_add_fb_offsets(&src_x, &src_y, plane_state, 0);
9423 	offset = intel_compute_tile_offset(&src_x, &src_y, plane_state, 0);
9424 
9425 	if (src_x != 0 || src_y != 0) {
9426 		DRM_DEBUG_KMS("Arbitrary cursor panning not supported\n");
9427 		return -EINVAL;
9428 	}
9429 
9430 	plane_state->main.offset = offset;
9431 
9432 	return 0;
9433 }
9434 
i845_cursor_ctl(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)9435 static u32 i845_cursor_ctl(const struct intel_crtc_state *crtc_state,
9436 			   const struct intel_plane_state *plane_state)
9437 {
9438 	const struct drm_framebuffer *fb = plane_state->base.fb;
9439 
9440 	return CURSOR_ENABLE |
9441 		CURSOR_GAMMA_ENABLE |
9442 		CURSOR_FORMAT_ARGB |
9443 		CURSOR_STRIDE(fb->pitches[0]);
9444 }
9445 
i845_cursor_size_ok(const struct intel_plane_state * plane_state)9446 static bool i845_cursor_size_ok(const struct intel_plane_state *plane_state)
9447 {
9448 	int width = plane_state->base.crtc_w;
9449 
9450 	/*
9451 	 * 845g/865g are only limited by the width of their cursors,
9452 	 * the height is arbitrary up to the precision of the register.
9453 	 */
9454 	return intel_cursor_size_ok(plane_state) && IS_ALIGNED(width, 64);
9455 }
9456 
i845_check_cursor(struct intel_plane * plane,struct intel_crtc_state * crtc_state,struct intel_plane_state * plane_state)9457 static int i845_check_cursor(struct intel_plane *plane,
9458 			     struct intel_crtc_state *crtc_state,
9459 			     struct intel_plane_state *plane_state)
9460 {
9461 	const struct drm_framebuffer *fb = plane_state->base.fb;
9462 	int ret;
9463 
9464 	ret = intel_check_cursor(crtc_state, plane_state);
9465 	if (ret)
9466 		return ret;
9467 
9468 	/* if we want to turn off the cursor ignore width and height */
9469 	if (!fb)
9470 		return 0;
9471 
9472 	/* Check for which cursor types we support */
9473 	if (!i845_cursor_size_ok(plane_state)) {
9474 		DRM_DEBUG("Cursor dimension %dx%d not supported\n",
9475 			  plane_state->base.crtc_w,
9476 			  plane_state->base.crtc_h);
9477 		return -EINVAL;
9478 	}
9479 
9480 	switch (fb->pitches[0]) {
9481 	case 256:
9482 	case 512:
9483 	case 1024:
9484 	case 2048:
9485 		break;
9486 	default:
9487 		DRM_DEBUG_KMS("Invalid cursor stride (%u)\n",
9488 			      fb->pitches[0]);
9489 		return -EINVAL;
9490 	}
9491 
9492 	plane_state->ctl = i845_cursor_ctl(crtc_state, plane_state);
9493 
9494 	return 0;
9495 }
9496 
i845_update_cursor(struct intel_plane * plane,const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)9497 static void i845_update_cursor(struct intel_plane *plane,
9498 			       const struct intel_crtc_state *crtc_state,
9499 			       const struct intel_plane_state *plane_state)
9500 {
9501 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
9502 	u32 cntl = 0, base = 0, pos = 0, size = 0;
9503 	unsigned long irqflags;
9504 
9505 	if (plane_state && plane_state->base.visible) {
9506 		unsigned int width = plane_state->base.crtc_w;
9507 		unsigned int height = plane_state->base.crtc_h;
9508 
9509 		cntl = plane_state->ctl;
9510 		size = (height << 12) | width;
9511 
9512 		base = intel_cursor_base(plane_state);
9513 		pos = intel_cursor_position(plane_state);
9514 	}
9515 
9516 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
9517 
9518 	/* On these chipsets we can only modify the base/size/stride
9519 	 * whilst the cursor is disabled.
9520 	 */
9521 	if (plane->cursor.base != base ||
9522 	    plane->cursor.size != size ||
9523 	    plane->cursor.cntl != cntl) {
9524 		I915_WRITE_FW(CURCNTR(PIPE_A), 0);
9525 		I915_WRITE_FW(CURBASE(PIPE_A), base);
9526 		I915_WRITE_FW(CURSIZE, size);
9527 		I915_WRITE_FW(CURPOS(PIPE_A), pos);
9528 		I915_WRITE_FW(CURCNTR(PIPE_A), cntl);
9529 
9530 		plane->cursor.base = base;
9531 		plane->cursor.size = size;
9532 		plane->cursor.cntl = cntl;
9533 	} else {
9534 		I915_WRITE_FW(CURPOS(PIPE_A), pos);
9535 	}
9536 
9537 	POSTING_READ_FW(CURCNTR(PIPE_A));
9538 
9539 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
9540 }
9541 
i845_disable_cursor(struct intel_plane * plane,struct intel_crtc * crtc)9542 static void i845_disable_cursor(struct intel_plane *plane,
9543 				struct intel_crtc *crtc)
9544 {
9545 	i845_update_cursor(plane, NULL, NULL);
9546 }
9547 
i845_cursor_get_hw_state(struct intel_plane * plane)9548 static bool i845_cursor_get_hw_state(struct intel_plane *plane)
9549 {
9550 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
9551 	enum intel_display_power_domain power_domain;
9552 	bool ret;
9553 
9554 	power_domain = POWER_DOMAIN_PIPE(PIPE_A);
9555 	if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9556 		return false;
9557 
9558 	ret = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
9559 
9560 	intel_display_power_put(dev_priv, power_domain);
9561 
9562 	return ret;
9563 }
9564 
i9xx_cursor_ctl(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)9565 static u32 i9xx_cursor_ctl(const struct intel_crtc_state *crtc_state,
9566 			   const struct intel_plane_state *plane_state)
9567 {
9568 	struct drm_i915_private *dev_priv =
9569 		to_i915(plane_state->base.plane->dev);
9570 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
9571 	u32 cntl;
9572 
9573 	cntl = MCURSOR_GAMMA_ENABLE;
9574 
9575 	if (HAS_DDI(dev_priv))
9576 		cntl |= CURSOR_PIPE_CSC_ENABLE;
9577 
9578 	cntl |= MCURSOR_PIPE_SELECT(crtc->pipe);
9579 
9580 	switch (plane_state->base.crtc_w) {
9581 	case 64:
9582 		cntl |= CURSOR_MODE_64_ARGB_AX;
9583 		break;
9584 	case 128:
9585 		cntl |= CURSOR_MODE_128_ARGB_AX;
9586 		break;
9587 	case 256:
9588 		cntl |= CURSOR_MODE_256_ARGB_AX;
9589 		break;
9590 	default:
9591 		MISSING_CASE(plane_state->base.crtc_w);
9592 		return 0;
9593 	}
9594 
9595 	if (plane_state->base.rotation & DRM_MODE_ROTATE_180)
9596 		cntl |= CURSOR_ROTATE_180;
9597 
9598 	return cntl;
9599 }
9600 
i9xx_cursor_size_ok(const struct intel_plane_state * plane_state)9601 static bool i9xx_cursor_size_ok(const struct intel_plane_state *plane_state)
9602 {
9603 	struct drm_i915_private *dev_priv =
9604 		to_i915(plane_state->base.plane->dev);
9605 	int width = plane_state->base.crtc_w;
9606 	int height = plane_state->base.crtc_h;
9607 
9608 	if (!intel_cursor_size_ok(plane_state))
9609 		return false;
9610 
9611 	/* Cursor width is limited to a few power-of-two sizes */
9612 	switch (width) {
9613 	case 256:
9614 	case 128:
9615 	case 64:
9616 		break;
9617 	default:
9618 		return false;
9619 	}
9620 
9621 	/*
9622 	 * IVB+ have CUR_FBC_CTL which allows an arbitrary cursor
9623 	 * height from 8 lines up to the cursor width, when the
9624 	 * cursor is not rotated. Everything else requires square
9625 	 * cursors.
9626 	 */
9627 	if (HAS_CUR_FBC(dev_priv) &&
9628 	    plane_state->base.rotation & DRM_MODE_ROTATE_0) {
9629 		if (height < 8 || height > width)
9630 			return false;
9631 	} else {
9632 		if (height != width)
9633 			return false;
9634 	}
9635 
9636 	return true;
9637 }
9638 
i9xx_check_cursor(struct intel_plane * plane,struct intel_crtc_state * crtc_state,struct intel_plane_state * plane_state)9639 static int i9xx_check_cursor(struct intel_plane *plane,
9640 			     struct intel_crtc_state *crtc_state,
9641 			     struct intel_plane_state *plane_state)
9642 {
9643 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
9644 	const struct drm_framebuffer *fb = plane_state->base.fb;
9645 	enum pipe pipe = plane->pipe;
9646 	int ret;
9647 
9648 	ret = intel_check_cursor(crtc_state, plane_state);
9649 	if (ret)
9650 		return ret;
9651 
9652 	/* if we want to turn off the cursor ignore width and height */
9653 	if (!fb)
9654 		return 0;
9655 
9656 	/* Check for which cursor types we support */
9657 	if (!i9xx_cursor_size_ok(plane_state)) {
9658 		DRM_DEBUG("Cursor dimension %dx%d not supported\n",
9659 			  plane_state->base.crtc_w,
9660 			  plane_state->base.crtc_h);
9661 		return -EINVAL;
9662 	}
9663 
9664 	if (fb->pitches[0] != plane_state->base.crtc_w * fb->format->cpp[0]) {
9665 		DRM_DEBUG_KMS("Invalid cursor stride (%u) (cursor width %d)\n",
9666 			      fb->pitches[0], plane_state->base.crtc_w);
9667 		return -EINVAL;
9668 	}
9669 
9670 	/*
9671 	 * There's something wrong with the cursor on CHV pipe C.
9672 	 * If it straddles the left edge of the screen then
9673 	 * moving it away from the edge or disabling it often
9674 	 * results in a pipe underrun, and often that can lead to
9675 	 * dead pipe (constant underrun reported, and it scans
9676 	 * out just a solid color). To recover from that, the
9677 	 * display power well must be turned off and on again.
9678 	 * Refuse the put the cursor into that compromised position.
9679 	 */
9680 	if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_C &&
9681 	    plane_state->base.visible && plane_state->base.crtc_x < 0) {
9682 		DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
9683 		return -EINVAL;
9684 	}
9685 
9686 	plane_state->ctl = i9xx_cursor_ctl(crtc_state, plane_state);
9687 
9688 	return 0;
9689 }
9690 
i9xx_update_cursor(struct intel_plane * plane,const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)9691 static void i9xx_update_cursor(struct intel_plane *plane,
9692 			       const struct intel_crtc_state *crtc_state,
9693 			       const struct intel_plane_state *plane_state)
9694 {
9695 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
9696 	enum pipe pipe = plane->pipe;
9697 	u32 cntl = 0, base = 0, pos = 0, fbc_ctl = 0;
9698 	unsigned long irqflags;
9699 
9700 	if (plane_state && plane_state->base.visible) {
9701 		cntl = plane_state->ctl;
9702 
9703 		if (plane_state->base.crtc_h != plane_state->base.crtc_w)
9704 			fbc_ctl = CUR_FBC_CTL_EN | (plane_state->base.crtc_h - 1);
9705 
9706 		base = intel_cursor_base(plane_state);
9707 		pos = intel_cursor_position(plane_state);
9708 	}
9709 
9710 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
9711 
9712 	/*
9713 	 * On some platforms writing CURCNTR first will also
9714 	 * cause CURPOS to be armed by the CURBASE write.
9715 	 * Without the CURCNTR write the CURPOS write would
9716 	 * arm itself. Thus we always start the full update
9717 	 * with a CURCNTR write.
9718 	 *
9719 	 * On other platforms CURPOS always requires the
9720 	 * CURBASE write to arm the update. Additonally
9721 	 * a write to any of the cursor register will cancel
9722 	 * an already armed cursor update. Thus leaving out
9723 	 * the CURBASE write after CURPOS could lead to a
9724 	 * cursor that doesn't appear to move, or even change
9725 	 * shape. Thus we always write CURBASE.
9726 	 *
9727 	 * CURCNTR and CUR_FBC_CTL are always
9728 	 * armed by the CURBASE write only.
9729 	 */
9730 	if (plane->cursor.base != base ||
9731 	    plane->cursor.size != fbc_ctl ||
9732 	    plane->cursor.cntl != cntl) {
9733 		I915_WRITE_FW(CURCNTR(pipe), cntl);
9734 		if (HAS_CUR_FBC(dev_priv))
9735 			I915_WRITE_FW(CUR_FBC_CTL(pipe), fbc_ctl);
9736 		I915_WRITE_FW(CURPOS(pipe), pos);
9737 		I915_WRITE_FW(CURBASE(pipe), base);
9738 
9739 		plane->cursor.base = base;
9740 		plane->cursor.size = fbc_ctl;
9741 		plane->cursor.cntl = cntl;
9742 	} else {
9743 		I915_WRITE_FW(CURPOS(pipe), pos);
9744 		I915_WRITE_FW(CURBASE(pipe), base);
9745 	}
9746 
9747 	POSTING_READ_FW(CURBASE(pipe));
9748 
9749 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
9750 }
9751 
i9xx_disable_cursor(struct intel_plane * plane,struct intel_crtc * crtc)9752 static void i9xx_disable_cursor(struct intel_plane *plane,
9753 				struct intel_crtc *crtc)
9754 {
9755 	i9xx_update_cursor(plane, NULL, NULL);
9756 }
9757 
i9xx_cursor_get_hw_state(struct intel_plane * plane)9758 static bool i9xx_cursor_get_hw_state(struct intel_plane *plane)
9759 {
9760 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
9761 	enum intel_display_power_domain power_domain;
9762 	enum pipe pipe = plane->pipe;
9763 	bool ret;
9764 
9765 	/*
9766 	 * Not 100% correct for planes that can move between pipes,
9767 	 * but that's only the case for gen2-3 which don't have any
9768 	 * display power wells.
9769 	 */
9770 	power_domain = POWER_DOMAIN_PIPE(pipe);
9771 	if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9772 		return false;
9773 
9774 	ret = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
9775 
9776 	intel_display_power_put(dev_priv, power_domain);
9777 
9778 	return ret;
9779 }
9780 
9781 /* VESA 640x480x72Hz mode to set on the pipe */
9782 static struct drm_display_mode load_detect_mode = {
9783 	DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
9784 		 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
9785 };
9786 
9787 struct drm_framebuffer *
intel_framebuffer_create(struct drm_i915_gem_object * obj,struct drm_mode_fb_cmd2 * mode_cmd)9788 intel_framebuffer_create(struct drm_i915_gem_object *obj,
9789 			 struct drm_mode_fb_cmd2 *mode_cmd)
9790 {
9791 	struct intel_framebuffer *intel_fb;
9792 	int ret;
9793 
9794 	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9795 	if (!intel_fb)
9796 		return ERR_PTR(-ENOMEM);
9797 
9798 	ret = intel_framebuffer_init(intel_fb, obj, mode_cmd);
9799 	if (ret)
9800 		goto err;
9801 
9802 	return &intel_fb->base;
9803 
9804 err:
9805 	kfree(intel_fb);
9806 	return ERR_PTR(ret);
9807 }
9808 
9809 static u32
intel_framebuffer_pitch_for_width(int width,int bpp)9810 intel_framebuffer_pitch_for_width(int width, int bpp)
9811 {
9812 	u32 pitch = DIV_ROUND_UP(width * bpp, 8);
9813 	return ALIGN(pitch, 64);
9814 }
9815 
9816 static u32
intel_framebuffer_size_for_mode(struct drm_display_mode * mode,int bpp)9817 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
9818 {
9819 	u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
9820 	return PAGE_ALIGN(pitch * mode->vdisplay);
9821 }
9822 
9823 static struct drm_framebuffer *
intel_framebuffer_create_for_mode(struct drm_device * dev,struct drm_display_mode * mode,int depth,int bpp)9824 intel_framebuffer_create_for_mode(struct drm_device *dev,
9825 				  struct drm_display_mode *mode,
9826 				  int depth, int bpp)
9827 {
9828 	struct drm_framebuffer *fb;
9829 	struct drm_i915_gem_object *obj;
9830 	struct drm_mode_fb_cmd2 mode_cmd = { 0 };
9831 
9832 	obj = i915_gem_object_create(to_i915(dev),
9833 				    intel_framebuffer_size_for_mode(mode, bpp));
9834 	if (IS_ERR(obj))
9835 		return ERR_CAST(obj);
9836 
9837 	mode_cmd.width = mode->hdisplay;
9838 	mode_cmd.height = mode->vdisplay;
9839 	mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
9840 								bpp);
9841 	mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
9842 
9843 	fb = intel_framebuffer_create(obj, &mode_cmd);
9844 	if (IS_ERR(fb))
9845 		i915_gem_object_put(obj);
9846 
9847 	return fb;
9848 }
9849 
9850 static struct drm_framebuffer *
mode_fits_in_fbdev(struct drm_device * dev,struct drm_display_mode * mode)9851 mode_fits_in_fbdev(struct drm_device *dev,
9852 		   struct drm_display_mode *mode)
9853 {
9854 #ifdef CONFIG_DRM_FBDEV_EMULATION
9855 	struct drm_i915_private *dev_priv = to_i915(dev);
9856 	struct drm_i915_gem_object *obj;
9857 	struct drm_framebuffer *fb;
9858 
9859 	if (!dev_priv->fbdev)
9860 		return NULL;
9861 
9862 	if (!dev_priv->fbdev->fb)
9863 		return NULL;
9864 
9865 	obj = dev_priv->fbdev->fb->obj;
9866 	BUG_ON(!obj);
9867 
9868 	fb = &dev_priv->fbdev->fb->base;
9869 	if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
9870 							       fb->format->cpp[0] * 8))
9871 		return NULL;
9872 
9873 	if (obj->base.size < mode->vdisplay * fb->pitches[0])
9874 		return NULL;
9875 
9876 	drm_framebuffer_reference(fb);
9877 	return fb;
9878 #else
9879 	return NULL;
9880 #endif
9881 }
9882 
intel_modeset_setup_plane_state(struct drm_atomic_state * state,struct drm_crtc * crtc,struct drm_display_mode * mode,struct drm_framebuffer * fb,int x,int y)9883 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
9884 					   struct drm_crtc *crtc,
9885 					   struct drm_display_mode *mode,
9886 					   struct drm_framebuffer *fb,
9887 					   int x, int y)
9888 {
9889 	struct drm_plane_state *plane_state;
9890 	int hdisplay, vdisplay;
9891 	int ret;
9892 
9893 	plane_state = drm_atomic_get_plane_state(state, crtc->primary);
9894 	if (IS_ERR(plane_state))
9895 		return PTR_ERR(plane_state);
9896 
9897 	if (mode)
9898 		drm_mode_get_hv_timing(mode, &hdisplay, &vdisplay);
9899 	else
9900 		hdisplay = vdisplay = 0;
9901 
9902 	ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
9903 	if (ret)
9904 		return ret;
9905 	drm_atomic_set_fb_for_plane(plane_state, fb);
9906 	plane_state->crtc_x = 0;
9907 	plane_state->crtc_y = 0;
9908 	plane_state->crtc_w = hdisplay;
9909 	plane_state->crtc_h = vdisplay;
9910 	plane_state->src_x = x << 16;
9911 	plane_state->src_y = y << 16;
9912 	plane_state->src_w = hdisplay << 16;
9913 	plane_state->src_h = vdisplay << 16;
9914 
9915 	return 0;
9916 }
9917 
intel_get_load_detect_pipe(struct drm_connector * connector,struct drm_display_mode * mode,struct intel_load_detect_pipe * old,struct drm_modeset_acquire_ctx * ctx)9918 int intel_get_load_detect_pipe(struct drm_connector *connector,
9919 			       struct drm_display_mode *mode,
9920 			       struct intel_load_detect_pipe *old,
9921 			       struct drm_modeset_acquire_ctx *ctx)
9922 {
9923 	struct intel_crtc *intel_crtc;
9924 	struct intel_encoder *intel_encoder =
9925 		intel_attached_encoder(connector);
9926 	struct drm_crtc *possible_crtc;
9927 	struct drm_encoder *encoder = &intel_encoder->base;
9928 	struct drm_crtc *crtc = NULL;
9929 	struct drm_device *dev = encoder->dev;
9930 	struct drm_i915_private *dev_priv = to_i915(dev);
9931 	struct drm_framebuffer *fb;
9932 	struct drm_mode_config *config = &dev->mode_config;
9933 	struct drm_atomic_state *state = NULL, *restore_state = NULL;
9934 	struct drm_connector_state *connector_state;
9935 	struct intel_crtc_state *crtc_state;
9936 	int ret, i = -1;
9937 
9938 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
9939 		      connector->base.id, connector->name,
9940 		      encoder->base.id, encoder->name);
9941 
9942 	old->restore_state = NULL;
9943 
9944 	WARN_ON(!drm_modeset_is_locked(&config->connection_mutex));
9945 
9946 	/*
9947 	 * Algorithm gets a little messy:
9948 	 *
9949 	 *   - if the connector already has an assigned crtc, use it (but make
9950 	 *     sure it's on first)
9951 	 *
9952 	 *   - try to find the first unused crtc that can drive this connector,
9953 	 *     and use that if we find one
9954 	 */
9955 
9956 	/* See if we already have a CRTC for this connector */
9957 	if (connector->state->crtc) {
9958 		crtc = connector->state->crtc;
9959 
9960 		ret = drm_modeset_lock(&crtc->mutex, ctx);
9961 		if (ret)
9962 			goto fail;
9963 
9964 		/* Make sure the crtc and connector are running */
9965 		goto found;
9966 	}
9967 
9968 	/* Find an unused one (if possible) */
9969 	for_each_crtc(dev, possible_crtc) {
9970 		i++;
9971 		if (!(encoder->possible_crtcs & (1 << i)))
9972 			continue;
9973 
9974 		ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
9975 		if (ret)
9976 			goto fail;
9977 
9978 		if (possible_crtc->state->enable) {
9979 			drm_modeset_unlock(&possible_crtc->mutex);
9980 			continue;
9981 		}
9982 
9983 		crtc = possible_crtc;
9984 		break;
9985 	}
9986 
9987 	/*
9988 	 * If we didn't find an unused CRTC, don't use any.
9989 	 */
9990 	if (!crtc) {
9991 		DRM_DEBUG_KMS("no pipe available for load-detect\n");
9992 		ret = -ENODEV;
9993 		goto fail;
9994 	}
9995 
9996 found:
9997 	intel_crtc = to_intel_crtc(crtc);
9998 
9999 	ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10000 	if (ret)
10001 		goto fail;
10002 
10003 	state = drm_atomic_state_alloc(dev);
10004 	restore_state = drm_atomic_state_alloc(dev);
10005 	if (!state || !restore_state) {
10006 		ret = -ENOMEM;
10007 		goto fail;
10008 	}
10009 
10010 	state->acquire_ctx = ctx;
10011 	restore_state->acquire_ctx = ctx;
10012 
10013 	connector_state = drm_atomic_get_connector_state(state, connector);
10014 	if (IS_ERR(connector_state)) {
10015 		ret = PTR_ERR(connector_state);
10016 		goto fail;
10017 	}
10018 
10019 	ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
10020 	if (ret)
10021 		goto fail;
10022 
10023 	crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10024 	if (IS_ERR(crtc_state)) {
10025 		ret = PTR_ERR(crtc_state);
10026 		goto fail;
10027 	}
10028 
10029 	crtc_state->base.active = crtc_state->base.enable = true;
10030 
10031 	if (!mode)
10032 		mode = &load_detect_mode;
10033 
10034 	/* We need a framebuffer large enough to accommodate all accesses
10035 	 * that the plane may generate whilst we perform load detection.
10036 	 * We can not rely on the fbcon either being present (we get called
10037 	 * during its initialisation to detect all boot displays, or it may
10038 	 * not even exist) or that it is large enough to satisfy the
10039 	 * requested mode.
10040 	 */
10041 	fb = mode_fits_in_fbdev(dev, mode);
10042 	if (fb == NULL) {
10043 		DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10044 		fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10045 	} else
10046 		DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10047 	if (IS_ERR(fb)) {
10048 		DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10049 		ret = PTR_ERR(fb);
10050 		goto fail;
10051 	}
10052 
10053 	ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10054 	if (ret)
10055 		goto fail;
10056 
10057 	drm_framebuffer_unreference(fb);
10058 
10059 	ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
10060 	if (ret)
10061 		goto fail;
10062 
10063 	ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
10064 	if (!ret)
10065 		ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
10066 	if (!ret)
10067 		ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
10068 	if (ret) {
10069 		DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
10070 		goto fail;
10071 	}
10072 
10073 	ret = drm_atomic_commit(state);
10074 	if (ret) {
10075 		DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10076 		goto fail;
10077 	}
10078 
10079 	old->restore_state = restore_state;
10080 	drm_atomic_state_put(state);
10081 
10082 	/* let the connector get through one full cycle before testing */
10083 	intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
10084 	return true;
10085 
10086 fail:
10087 	if (state) {
10088 		drm_atomic_state_put(state);
10089 		state = NULL;
10090 	}
10091 	if (restore_state) {
10092 		drm_atomic_state_put(restore_state);
10093 		restore_state = NULL;
10094 	}
10095 
10096 	if (ret == -EDEADLK)
10097 		return ret;
10098 
10099 	return false;
10100 }
10101 
intel_release_load_detect_pipe(struct drm_connector * connector,struct intel_load_detect_pipe * old,struct drm_modeset_acquire_ctx * ctx)10102 void intel_release_load_detect_pipe(struct drm_connector *connector,
10103 				    struct intel_load_detect_pipe *old,
10104 				    struct drm_modeset_acquire_ctx *ctx)
10105 {
10106 	struct intel_encoder *intel_encoder =
10107 		intel_attached_encoder(connector);
10108 	struct drm_encoder *encoder = &intel_encoder->base;
10109 	struct drm_atomic_state *state = old->restore_state;
10110 	int ret;
10111 
10112 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10113 		      connector->base.id, connector->name,
10114 		      encoder->base.id, encoder->name);
10115 
10116 	if (!state)
10117 		return;
10118 
10119 	ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
10120 	if (ret)
10121 		DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
10122 	drm_atomic_state_put(state);
10123 }
10124 
i9xx_pll_refclk(struct drm_device * dev,const struct intel_crtc_state * pipe_config)10125 static int i9xx_pll_refclk(struct drm_device *dev,
10126 			   const struct intel_crtc_state *pipe_config)
10127 {
10128 	struct drm_i915_private *dev_priv = to_i915(dev);
10129 	u32 dpll = pipe_config->dpll_hw_state.dpll;
10130 
10131 	if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10132 		return dev_priv->vbt.lvds_ssc_freq;
10133 	else if (HAS_PCH_SPLIT(dev_priv))
10134 		return 120000;
10135 	else if (!IS_GEN2(dev_priv))
10136 		return 96000;
10137 	else
10138 		return 48000;
10139 }
10140 
10141 /* Returns the clock of the currently programmed mode of the given pipe. */
i9xx_crtc_clock_get(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)10142 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10143 				struct intel_crtc_state *pipe_config)
10144 {
10145 	struct drm_device *dev = crtc->base.dev;
10146 	struct drm_i915_private *dev_priv = to_i915(dev);
10147 	int pipe = pipe_config->cpu_transcoder;
10148 	u32 dpll = pipe_config->dpll_hw_state.dpll;
10149 	u32 fp;
10150 	struct dpll clock;
10151 	int port_clock;
10152 	int refclk = i9xx_pll_refclk(dev, pipe_config);
10153 
10154 	if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10155 		fp = pipe_config->dpll_hw_state.fp0;
10156 	else
10157 		fp = pipe_config->dpll_hw_state.fp1;
10158 
10159 	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10160 	if (IS_PINEVIEW(dev_priv)) {
10161 		clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10162 		clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10163 	} else {
10164 		clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10165 		clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10166 	}
10167 
10168 	if (!IS_GEN2(dev_priv)) {
10169 		if (IS_PINEVIEW(dev_priv))
10170 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10171 				DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10172 		else
10173 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10174 			       DPLL_FPA01_P1_POST_DIV_SHIFT);
10175 
10176 		switch (dpll & DPLL_MODE_MASK) {
10177 		case DPLLB_MODE_DAC_SERIAL:
10178 			clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10179 				5 : 10;
10180 			break;
10181 		case DPLLB_MODE_LVDS:
10182 			clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10183 				7 : 14;
10184 			break;
10185 		default:
10186 			DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10187 				  "mode\n", (int)(dpll & DPLL_MODE_MASK));
10188 			return;
10189 		}
10190 
10191 		if (IS_PINEVIEW(dev_priv))
10192 			port_clock = pnv_calc_dpll_params(refclk, &clock);
10193 		else
10194 			port_clock = i9xx_calc_dpll_params(refclk, &clock);
10195 	} else {
10196 		u32 lvds = IS_I830(dev_priv) ? 0 : I915_READ(LVDS);
10197 		bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10198 
10199 		if (is_lvds) {
10200 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10201 				       DPLL_FPA01_P1_POST_DIV_SHIFT);
10202 
10203 			if (lvds & LVDS_CLKB_POWER_UP)
10204 				clock.p2 = 7;
10205 			else
10206 				clock.p2 = 14;
10207 		} else {
10208 			if (dpll & PLL_P1_DIVIDE_BY_TWO)
10209 				clock.p1 = 2;
10210 			else {
10211 				clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10212 					    DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10213 			}
10214 			if (dpll & PLL_P2_DIVIDE_BY_4)
10215 				clock.p2 = 4;
10216 			else
10217 				clock.p2 = 2;
10218 		}
10219 
10220 		port_clock = i9xx_calc_dpll_params(refclk, &clock);
10221 	}
10222 
10223 	/*
10224 	 * This value includes pixel_multiplier. We will use
10225 	 * port_clock to compute adjusted_mode.crtc_clock in the
10226 	 * encoder's get_config() function.
10227 	 */
10228 	pipe_config->port_clock = port_clock;
10229 }
10230 
intel_dotclock_calculate(int link_freq,const struct intel_link_m_n * m_n)10231 int intel_dotclock_calculate(int link_freq,
10232 			     const struct intel_link_m_n *m_n)
10233 {
10234 	/*
10235 	 * The calculation for the data clock is:
10236 	 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10237 	 * But we want to avoid losing precison if possible, so:
10238 	 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10239 	 *
10240 	 * and the link clock is simpler:
10241 	 * link_clock = (m * link_clock) / n
10242 	 */
10243 
10244 	if (!m_n->link_n)
10245 		return 0;
10246 
10247 	return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10248 }
10249 
ironlake_pch_clock_get(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)10250 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10251 				   struct intel_crtc_state *pipe_config)
10252 {
10253 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10254 
10255 	/* read out port_clock from the DPLL */
10256 	i9xx_crtc_clock_get(crtc, pipe_config);
10257 
10258 	/*
10259 	 * In case there is an active pipe without active ports,
10260 	 * we may need some idea for the dotclock anyway.
10261 	 * Calculate one based on the FDI configuration.
10262 	 */
10263 	pipe_config->base.adjusted_mode.crtc_clock =
10264 		intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
10265 					 &pipe_config->fdi_m_n);
10266 }
10267 
10268 /** Returns the currently programmed mode of the given pipe. */
intel_crtc_mode_get(struct drm_device * dev,struct drm_crtc * crtc)10269 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10270 					     struct drm_crtc *crtc)
10271 {
10272 	struct drm_i915_private *dev_priv = to_i915(dev);
10273 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10274 	enum transcoder cpu_transcoder;
10275 	struct drm_display_mode *mode;
10276 	struct intel_crtc_state *pipe_config;
10277 	u32 htot, hsync, vtot, vsync;
10278 	enum pipe pipe = intel_crtc->pipe;
10279 
10280 	mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10281 	if (!mode)
10282 		return NULL;
10283 
10284 	pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10285 	if (!pipe_config) {
10286 		kfree(mode);
10287 		return NULL;
10288 	}
10289 
10290 	/*
10291 	 * Construct a pipe_config sufficient for getting the clock info
10292 	 * back out of crtc_clock_get.
10293 	 *
10294 	 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10295 	 * to use a real value here instead.
10296 	 */
10297 	pipe_config->cpu_transcoder = (enum transcoder) pipe;
10298 	pipe_config->pixel_multiplier = 1;
10299 	pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10300 	pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10301 	pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10302 	i9xx_crtc_clock_get(intel_crtc, pipe_config);
10303 
10304 	mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
10305 
10306 	cpu_transcoder = pipe_config->cpu_transcoder;
10307 	htot = I915_READ(HTOTAL(cpu_transcoder));
10308 	hsync = I915_READ(HSYNC(cpu_transcoder));
10309 	vtot = I915_READ(VTOTAL(cpu_transcoder));
10310 	vsync = I915_READ(VSYNC(cpu_transcoder));
10311 
10312 	mode->hdisplay = (htot & 0xffff) + 1;
10313 	mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10314 	mode->hsync_start = (hsync & 0xffff) + 1;
10315 	mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10316 	mode->vdisplay = (vtot & 0xffff) + 1;
10317 	mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10318 	mode->vsync_start = (vsync & 0xffff) + 1;
10319 	mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10320 
10321 	drm_mode_set_name(mode);
10322 
10323 	kfree(pipe_config);
10324 
10325 	return mode;
10326 }
10327 
intel_crtc_destroy(struct drm_crtc * crtc)10328 static void intel_crtc_destroy(struct drm_crtc *crtc)
10329 {
10330 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10331 
10332 	drm_crtc_cleanup(crtc);
10333 	kfree(intel_crtc);
10334 }
10335 
10336 /**
10337  * intel_wm_need_update - Check whether watermarks need updating
10338  * @plane: drm plane
10339  * @state: new plane state
10340  *
10341  * Check current plane state versus the new one to determine whether
10342  * watermarks need to be recalculated.
10343  *
10344  * Returns true or false.
10345  */
intel_wm_need_update(struct drm_plane * plane,struct drm_plane_state * state)10346 static bool intel_wm_need_update(struct drm_plane *plane,
10347 				 struct drm_plane_state *state)
10348 {
10349 	struct intel_plane_state *new = to_intel_plane_state(state);
10350 	struct intel_plane_state *cur = to_intel_plane_state(plane->state);
10351 
10352 	/* Update watermarks on tiling or size changes. */
10353 	if (new->base.visible != cur->base.visible)
10354 		return true;
10355 
10356 	if (!cur->base.fb || !new->base.fb)
10357 		return false;
10358 
10359 	if (cur->base.fb->modifier != new->base.fb->modifier ||
10360 	    cur->base.rotation != new->base.rotation ||
10361 	    drm_rect_width(&new->base.src) != drm_rect_width(&cur->base.src) ||
10362 	    drm_rect_height(&new->base.src) != drm_rect_height(&cur->base.src) ||
10363 	    drm_rect_width(&new->base.dst) != drm_rect_width(&cur->base.dst) ||
10364 	    drm_rect_height(&new->base.dst) != drm_rect_height(&cur->base.dst))
10365 		return true;
10366 
10367 	return false;
10368 }
10369 
needs_scaling(struct intel_plane_state * state)10370 static bool needs_scaling(struct intel_plane_state *state)
10371 {
10372 	int src_w = drm_rect_width(&state->base.src) >> 16;
10373 	int src_h = drm_rect_height(&state->base.src) >> 16;
10374 	int dst_w = drm_rect_width(&state->base.dst);
10375 	int dst_h = drm_rect_height(&state->base.dst);
10376 
10377 	return (src_w != dst_w || src_h != dst_h);
10378 }
10379 
intel_plane_atomic_calc_changes(struct drm_crtc_state * crtc_state,struct drm_plane_state * plane_state)10380 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
10381 				    struct drm_plane_state *plane_state)
10382 {
10383 	struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
10384 	struct drm_crtc *crtc = crtc_state->crtc;
10385 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10386 	struct intel_plane *plane = to_intel_plane(plane_state->plane);
10387 	struct drm_device *dev = crtc->dev;
10388 	struct drm_i915_private *dev_priv = to_i915(dev);
10389 	struct intel_plane_state *old_plane_state =
10390 		to_intel_plane_state(plane->base.state);
10391 	bool mode_changed = needs_modeset(crtc_state);
10392 	bool was_crtc_enabled = crtc->state->active;
10393 	bool is_crtc_enabled = crtc_state->active;
10394 	bool turn_off, turn_on, visible, was_visible;
10395 	struct drm_framebuffer *fb = plane_state->fb;
10396 	int ret;
10397 
10398 	if (INTEL_GEN(dev_priv) >= 9 && plane->id != PLANE_CURSOR) {
10399 		ret = skl_update_scaler_plane(
10400 			to_intel_crtc_state(crtc_state),
10401 			to_intel_plane_state(plane_state));
10402 		if (ret)
10403 			return ret;
10404 	}
10405 
10406 	was_visible = old_plane_state->base.visible;
10407 	visible = plane_state->visible;
10408 
10409 	if (!was_crtc_enabled && WARN_ON(was_visible))
10410 		was_visible = false;
10411 
10412 	/*
10413 	 * Visibility is calculated as if the crtc was on, but
10414 	 * after scaler setup everything depends on it being off
10415 	 * when the crtc isn't active.
10416 	 *
10417 	 * FIXME this is wrong for watermarks. Watermarks should also
10418 	 * be computed as if the pipe would be active. Perhaps move
10419 	 * per-plane wm computation to the .check_plane() hook, and
10420 	 * only combine the results from all planes in the current place?
10421 	 */
10422 	if (!is_crtc_enabled) {
10423 		plane_state->visible = visible = false;
10424 		to_intel_crtc_state(crtc_state)->active_planes &= ~BIT(plane->id);
10425 	}
10426 
10427 	if (!was_visible && !visible)
10428 		return 0;
10429 
10430 	if (fb != old_plane_state->base.fb)
10431 		pipe_config->fb_changed = true;
10432 
10433 	turn_off = was_visible && (!visible || mode_changed);
10434 	turn_on = visible && (!was_visible || mode_changed);
10435 
10436 	DRM_DEBUG_ATOMIC("[CRTC:%d:%s] has [PLANE:%d:%s] with fb %i\n",
10437 			 intel_crtc->base.base.id, intel_crtc->base.name,
10438 			 plane->base.base.id, plane->base.name,
10439 			 fb ? fb->base.id : -1);
10440 
10441 	DRM_DEBUG_ATOMIC("[PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
10442 			 plane->base.base.id, plane->base.name,
10443 			 was_visible, visible,
10444 			 turn_off, turn_on, mode_changed);
10445 
10446 	if (turn_on) {
10447 		if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
10448 			pipe_config->update_wm_pre = true;
10449 
10450 		/* must disable cxsr around plane enable/disable */
10451 		if (plane->id != PLANE_CURSOR)
10452 			pipe_config->disable_cxsr = true;
10453 	} else if (turn_off) {
10454 		if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
10455 			pipe_config->update_wm_post = true;
10456 
10457 		/* must disable cxsr around plane enable/disable */
10458 		if (plane->id != PLANE_CURSOR)
10459 			pipe_config->disable_cxsr = true;
10460 	} else if (intel_wm_need_update(&plane->base, plane_state)) {
10461 		if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) {
10462 			/* FIXME bollocks */
10463 			pipe_config->update_wm_pre = true;
10464 			pipe_config->update_wm_post = true;
10465 		}
10466 	}
10467 
10468 	if (visible || was_visible)
10469 		pipe_config->fb_bits |= plane->frontbuffer_bit;
10470 
10471 	/*
10472 	 * WaCxSRDisabledForSpriteScaling:ivb
10473 	 *
10474 	 * cstate->update_wm was already set above, so this flag will
10475 	 * take effect when we commit and program watermarks.
10476 	 */
10477 	if (plane->id == PLANE_SPRITE0 && IS_IVYBRIDGE(dev_priv) &&
10478 	    needs_scaling(to_intel_plane_state(plane_state)) &&
10479 	    !needs_scaling(old_plane_state))
10480 		pipe_config->disable_lp_wm = true;
10481 
10482 	return 0;
10483 }
10484 
encoders_cloneable(const struct intel_encoder * a,const struct intel_encoder * b)10485 static bool encoders_cloneable(const struct intel_encoder *a,
10486 			       const struct intel_encoder *b)
10487 {
10488 	/* masks could be asymmetric, so check both ways */
10489 	return a == b || (a->cloneable & (1 << b->type) &&
10490 			  b->cloneable & (1 << a->type));
10491 }
10492 
check_single_encoder_cloning(struct drm_atomic_state * state,struct intel_crtc * crtc,struct intel_encoder * encoder)10493 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
10494 					 struct intel_crtc *crtc,
10495 					 struct intel_encoder *encoder)
10496 {
10497 	struct intel_encoder *source_encoder;
10498 	struct drm_connector *connector;
10499 	struct drm_connector_state *connector_state;
10500 	int i;
10501 
10502 	for_each_new_connector_in_state(state, connector, connector_state, i) {
10503 		if (connector_state->crtc != &crtc->base)
10504 			continue;
10505 
10506 		source_encoder =
10507 			to_intel_encoder(connector_state->best_encoder);
10508 		if (!encoders_cloneable(encoder, source_encoder))
10509 			return false;
10510 	}
10511 
10512 	return true;
10513 }
10514 
intel_crtc_atomic_check(struct drm_crtc * crtc,struct drm_crtc_state * crtc_state)10515 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
10516 				   struct drm_crtc_state *crtc_state)
10517 {
10518 	struct drm_device *dev = crtc->dev;
10519 	struct drm_i915_private *dev_priv = to_i915(dev);
10520 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10521 	struct intel_crtc_state *pipe_config =
10522 		to_intel_crtc_state(crtc_state);
10523 	struct drm_atomic_state *state = crtc_state->state;
10524 	int ret;
10525 	bool mode_changed = needs_modeset(crtc_state);
10526 
10527 	if (mode_changed && !crtc_state->active)
10528 		pipe_config->update_wm_post = true;
10529 
10530 	if (mode_changed && crtc_state->enable &&
10531 	    dev_priv->display.crtc_compute_clock &&
10532 	    !WARN_ON(pipe_config->shared_dpll)) {
10533 		ret = dev_priv->display.crtc_compute_clock(intel_crtc,
10534 							   pipe_config);
10535 		if (ret)
10536 			return ret;
10537 	}
10538 
10539 	if (crtc_state->color_mgmt_changed) {
10540 		ret = intel_color_check(crtc, crtc_state);
10541 		if (ret)
10542 			return ret;
10543 
10544 		/*
10545 		 * Changing color management on Intel hardware is
10546 		 * handled as part of planes update.
10547 		 */
10548 		crtc_state->planes_changed = true;
10549 	}
10550 
10551 	ret = 0;
10552 	if (dev_priv->display.compute_pipe_wm) {
10553 		ret = dev_priv->display.compute_pipe_wm(pipe_config);
10554 		if (ret) {
10555 			DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
10556 			return ret;
10557 		}
10558 	}
10559 
10560 	if (dev_priv->display.compute_intermediate_wm &&
10561 	    !to_intel_atomic_state(state)->skip_intermediate_wm) {
10562 		if (WARN_ON(!dev_priv->display.compute_pipe_wm))
10563 			return 0;
10564 
10565 		/*
10566 		 * Calculate 'intermediate' watermarks that satisfy both the
10567 		 * old state and the new state.  We can program these
10568 		 * immediately.
10569 		 */
10570 		ret = dev_priv->display.compute_intermediate_wm(dev,
10571 								intel_crtc,
10572 								pipe_config);
10573 		if (ret) {
10574 			DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
10575 			return ret;
10576 		}
10577 	} else if (dev_priv->display.compute_intermediate_wm) {
10578 		if (HAS_PCH_SPLIT(dev_priv) && INTEL_GEN(dev_priv) < 9)
10579 			pipe_config->wm.ilk.intermediate = pipe_config->wm.ilk.optimal;
10580 	}
10581 
10582 	if (INTEL_GEN(dev_priv) >= 9) {
10583 		if (mode_changed)
10584 			ret = skl_update_scaler_crtc(pipe_config);
10585 
10586 		if (!ret)
10587 			ret = skl_check_pipe_max_pixel_rate(intel_crtc,
10588 							    pipe_config);
10589 		if (!ret)
10590 			ret = intel_atomic_setup_scalers(dev_priv, intel_crtc,
10591 							 pipe_config);
10592 	}
10593 
10594 	return ret;
10595 }
10596 
10597 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
10598 	.atomic_begin = intel_begin_crtc_commit,
10599 	.atomic_flush = intel_finish_crtc_commit,
10600 	.atomic_check = intel_crtc_atomic_check,
10601 };
10602 
intel_modeset_update_connector_atomic_state(struct drm_device * dev)10603 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
10604 {
10605 	struct intel_connector *connector;
10606 	struct drm_connector_list_iter conn_iter;
10607 
10608 	drm_connector_list_iter_begin(dev, &conn_iter);
10609 	for_each_intel_connector_iter(connector, &conn_iter) {
10610 		if (connector->base.state->crtc)
10611 			drm_connector_unreference(&connector->base);
10612 
10613 		if (connector->base.encoder) {
10614 			connector->base.state->best_encoder =
10615 				connector->base.encoder;
10616 			connector->base.state->crtc =
10617 				connector->base.encoder->crtc;
10618 
10619 			drm_connector_reference(&connector->base);
10620 		} else {
10621 			connector->base.state->best_encoder = NULL;
10622 			connector->base.state->crtc = NULL;
10623 		}
10624 	}
10625 	drm_connector_list_iter_end(&conn_iter);
10626 }
10627 
10628 static void
connected_sink_compute_bpp(struct intel_connector * connector,struct intel_crtc_state * pipe_config)10629 connected_sink_compute_bpp(struct intel_connector *connector,
10630 			   struct intel_crtc_state *pipe_config)
10631 {
10632 	const struct drm_display_info *info = &connector->base.display_info;
10633 	int bpp = pipe_config->pipe_bpp;
10634 
10635 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
10636 		      connector->base.base.id,
10637 		      connector->base.name);
10638 
10639 	/* Don't use an invalid EDID bpc value */
10640 	if (info->bpc != 0 && info->bpc * 3 < bpp) {
10641 		DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
10642 			      bpp, info->bpc * 3);
10643 		pipe_config->pipe_bpp = info->bpc * 3;
10644 	}
10645 
10646 	/* Clamp bpp to 8 on screens without EDID 1.4 */
10647 	if (info->bpc == 0 && bpp > 24) {
10648 		DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
10649 			      bpp);
10650 		pipe_config->pipe_bpp = 24;
10651 	}
10652 }
10653 
10654 static int
compute_baseline_pipe_bpp(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)10655 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
10656 			  struct intel_crtc_state *pipe_config)
10657 {
10658 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10659 	struct drm_atomic_state *state;
10660 	struct drm_connector *connector;
10661 	struct drm_connector_state *connector_state;
10662 	int bpp, i;
10663 
10664 	if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
10665 	    IS_CHERRYVIEW(dev_priv)))
10666 		bpp = 10*3;
10667 	else if (INTEL_GEN(dev_priv) >= 5)
10668 		bpp = 12*3;
10669 	else
10670 		bpp = 8*3;
10671 
10672 
10673 	pipe_config->pipe_bpp = bpp;
10674 
10675 	state = pipe_config->base.state;
10676 
10677 	/* Clamp display bpp to EDID value */
10678 	for_each_new_connector_in_state(state, connector, connector_state, i) {
10679 		if (connector_state->crtc != &crtc->base)
10680 			continue;
10681 
10682 		connected_sink_compute_bpp(to_intel_connector(connector),
10683 					   pipe_config);
10684 	}
10685 
10686 	return bpp;
10687 }
10688 
intel_dump_crtc_timings(const struct drm_display_mode * mode)10689 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
10690 {
10691 	DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
10692 			"type: 0x%x flags: 0x%x\n",
10693 		mode->crtc_clock,
10694 		mode->crtc_hdisplay, mode->crtc_hsync_start,
10695 		mode->crtc_hsync_end, mode->crtc_htotal,
10696 		mode->crtc_vdisplay, mode->crtc_vsync_start,
10697 		mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
10698 }
10699 
10700 static inline void
intel_dump_m_n_config(struct intel_crtc_state * pipe_config,char * id,unsigned int lane_count,struct intel_link_m_n * m_n)10701 intel_dump_m_n_config(struct intel_crtc_state *pipe_config, char *id,
10702 		      unsigned int lane_count, struct intel_link_m_n *m_n)
10703 {
10704 	DRM_DEBUG_KMS("%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10705 		      id, lane_count,
10706 		      m_n->gmch_m, m_n->gmch_n,
10707 		      m_n->link_m, m_n->link_n, m_n->tu);
10708 }
10709 
intel_dump_pipe_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config,const char * context)10710 static void intel_dump_pipe_config(struct intel_crtc *crtc,
10711 				   struct intel_crtc_state *pipe_config,
10712 				   const char *context)
10713 {
10714 	struct drm_device *dev = crtc->base.dev;
10715 	struct drm_i915_private *dev_priv = to_i915(dev);
10716 	struct drm_plane *plane;
10717 	struct intel_plane *intel_plane;
10718 	struct intel_plane_state *state;
10719 	struct drm_framebuffer *fb;
10720 
10721 	DRM_DEBUG_KMS("[CRTC:%d:%s]%s\n",
10722 		      crtc->base.base.id, crtc->base.name, context);
10723 
10724 	DRM_DEBUG_KMS("cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n",
10725 		      transcoder_name(pipe_config->cpu_transcoder),
10726 		      pipe_config->pipe_bpp, pipe_config->dither);
10727 
10728 	if (pipe_config->has_pch_encoder)
10729 		intel_dump_m_n_config(pipe_config, "fdi",
10730 				      pipe_config->fdi_lanes,
10731 				      &pipe_config->fdi_m_n);
10732 
10733 	if (pipe_config->ycbcr420)
10734 		DRM_DEBUG_KMS("YCbCr 4:2:0 output enabled\n");
10735 
10736 	if (intel_crtc_has_dp_encoder(pipe_config)) {
10737 		intel_dump_m_n_config(pipe_config, "dp m_n",
10738 				pipe_config->lane_count, &pipe_config->dp_m_n);
10739 		if (pipe_config->has_drrs)
10740 			intel_dump_m_n_config(pipe_config, "dp m2_n2",
10741 					      pipe_config->lane_count,
10742 					      &pipe_config->dp_m2_n2);
10743 	}
10744 
10745 	DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
10746 		      pipe_config->has_audio, pipe_config->has_infoframe);
10747 
10748 	DRM_DEBUG_KMS("requested mode:\n");
10749 	drm_mode_debug_printmodeline(&pipe_config->base.mode);
10750 	DRM_DEBUG_KMS("adjusted mode:\n");
10751 	drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
10752 	intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
10753 	DRM_DEBUG_KMS("port clock: %d, pipe src size: %dx%d, pixel rate %d\n",
10754 		      pipe_config->port_clock,
10755 		      pipe_config->pipe_src_w, pipe_config->pipe_src_h,
10756 		      pipe_config->pixel_rate);
10757 
10758 	if (INTEL_GEN(dev_priv) >= 9)
10759 		DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
10760 			      crtc->num_scalers,
10761 			      pipe_config->scaler_state.scaler_users,
10762 		              pipe_config->scaler_state.scaler_id);
10763 
10764 	if (HAS_GMCH_DISPLAY(dev_priv))
10765 		DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10766 			      pipe_config->gmch_pfit.control,
10767 			      pipe_config->gmch_pfit.pgm_ratios,
10768 			      pipe_config->gmch_pfit.lvds_border_bits);
10769 	else
10770 		DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
10771 			      pipe_config->pch_pfit.pos,
10772 			      pipe_config->pch_pfit.size,
10773 		              enableddisabled(pipe_config->pch_pfit.enabled));
10774 
10775 	DRM_DEBUG_KMS("ips: %i, double wide: %i\n",
10776 		      pipe_config->ips_enabled, pipe_config->double_wide);
10777 
10778 	intel_dpll_dump_hw_state(dev_priv, &pipe_config->dpll_hw_state);
10779 
10780 	DRM_DEBUG_KMS("planes on this crtc\n");
10781 	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
10782 		struct drm_format_name_buf format_name;
10783 		intel_plane = to_intel_plane(plane);
10784 		if (intel_plane->pipe != crtc->pipe)
10785 			continue;
10786 
10787 		state = to_intel_plane_state(plane->state);
10788 		fb = state->base.fb;
10789 		if (!fb) {
10790 			DRM_DEBUG_KMS("[PLANE:%d:%s] disabled, scaler_id = %d\n",
10791 				      plane->base.id, plane->name, state->scaler_id);
10792 			continue;
10793 		}
10794 
10795 		DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d, fb = %ux%u format = %s\n",
10796 			      plane->base.id, plane->name,
10797 			      fb->base.id, fb->width, fb->height,
10798 			      drm_get_format_name(fb->format->format, &format_name));
10799 		if (INTEL_GEN(dev_priv) >= 9)
10800 			DRM_DEBUG_KMS("\tscaler:%d src %dx%d+%d+%d dst %dx%d+%d+%d\n",
10801 				      state->scaler_id,
10802 				      state->base.src.x1 >> 16,
10803 				      state->base.src.y1 >> 16,
10804 				      drm_rect_width(&state->base.src) >> 16,
10805 				      drm_rect_height(&state->base.src) >> 16,
10806 				      state->base.dst.x1, state->base.dst.y1,
10807 				      drm_rect_width(&state->base.dst),
10808 				      drm_rect_height(&state->base.dst));
10809 	}
10810 }
10811 
check_digital_port_conflicts(struct drm_atomic_state * state)10812 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
10813 {
10814 	struct drm_device *dev = state->dev;
10815 	struct drm_connector *connector;
10816 	struct drm_connector_list_iter conn_iter;
10817 	unsigned int used_ports = 0;
10818 	unsigned int used_mst_ports = 0;
10819 
10820 	/*
10821 	 * Walk the connector list instead of the encoder
10822 	 * list to detect the problem on ddi platforms
10823 	 * where there's just one encoder per digital port.
10824 	 */
10825 	drm_connector_list_iter_begin(dev, &conn_iter);
10826 	drm_for_each_connector_iter(connector, &conn_iter) {
10827 		struct drm_connector_state *connector_state;
10828 		struct intel_encoder *encoder;
10829 
10830 		connector_state = drm_atomic_get_existing_connector_state(state, connector);
10831 		if (!connector_state)
10832 			connector_state = connector->state;
10833 
10834 		if (!connector_state->best_encoder)
10835 			continue;
10836 
10837 		encoder = to_intel_encoder(connector_state->best_encoder);
10838 
10839 		WARN_ON(!connector_state->crtc);
10840 
10841 		switch (encoder->type) {
10842 			unsigned int port_mask;
10843 		case INTEL_OUTPUT_UNKNOWN:
10844 			if (WARN_ON(!HAS_DDI(to_i915(dev))))
10845 				break;
10846 		case INTEL_OUTPUT_DP:
10847 		case INTEL_OUTPUT_HDMI:
10848 		case INTEL_OUTPUT_EDP:
10849 			port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
10850 
10851 			/* the same port mustn't appear more than once */
10852 			if (used_ports & port_mask)
10853 				return false;
10854 
10855 			used_ports |= port_mask;
10856 			break;
10857 		case INTEL_OUTPUT_DP_MST:
10858 			used_mst_ports |=
10859 				1 << enc_to_mst(&encoder->base)->primary->port;
10860 			break;
10861 		default:
10862 			break;
10863 		}
10864 	}
10865 	drm_connector_list_iter_end(&conn_iter);
10866 
10867 	/* can't mix MST and SST/HDMI on the same port */
10868 	if (used_ports & used_mst_ports)
10869 		return false;
10870 
10871 	return true;
10872 }
10873 
10874 static void
clear_intel_crtc_state(struct intel_crtc_state * crtc_state)10875 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
10876 {
10877 	struct drm_i915_private *dev_priv =
10878 		to_i915(crtc_state->base.crtc->dev);
10879 	struct intel_crtc_scaler_state scaler_state;
10880 	struct intel_dpll_hw_state dpll_hw_state;
10881 	struct intel_shared_dpll *shared_dpll;
10882 	struct intel_crtc_wm_state wm_state;
10883 	bool force_thru;
10884 
10885 	/* FIXME: before the switch to atomic started, a new pipe_config was
10886 	 * kzalloc'd. Code that depends on any field being zero should be
10887 	 * fixed, so that the crtc_state can be safely duplicated. For now,
10888 	 * only fields that are know to not cause problems are preserved. */
10889 
10890 	scaler_state = crtc_state->scaler_state;
10891 	shared_dpll = crtc_state->shared_dpll;
10892 	dpll_hw_state = crtc_state->dpll_hw_state;
10893 	force_thru = crtc_state->pch_pfit.force_thru;
10894 	if (IS_G4X(dev_priv) ||
10895 	    IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
10896 		wm_state = crtc_state->wm;
10897 
10898 	/* Keep base drm_crtc_state intact, only clear our extended struct */
10899 	BUILD_BUG_ON(offsetof(struct intel_crtc_state, base));
10900 	memset(&crtc_state->base + 1, 0,
10901 	       sizeof(*crtc_state) - sizeof(crtc_state->base));
10902 
10903 	crtc_state->scaler_state = scaler_state;
10904 	crtc_state->shared_dpll = shared_dpll;
10905 	crtc_state->dpll_hw_state = dpll_hw_state;
10906 	crtc_state->pch_pfit.force_thru = force_thru;
10907 	if (IS_G4X(dev_priv) ||
10908 	    IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
10909 		crtc_state->wm = wm_state;
10910 }
10911 
10912 static int
intel_modeset_pipe_config(struct drm_crtc * crtc,struct intel_crtc_state * pipe_config)10913 intel_modeset_pipe_config(struct drm_crtc *crtc,
10914 			  struct intel_crtc_state *pipe_config)
10915 {
10916 	struct drm_atomic_state *state = pipe_config->base.state;
10917 	struct intel_encoder *encoder;
10918 	struct drm_connector *connector;
10919 	struct drm_connector_state *connector_state;
10920 	int base_bpp, ret = -EINVAL;
10921 	int i;
10922 	bool retry = true;
10923 
10924 	clear_intel_crtc_state(pipe_config);
10925 
10926 	pipe_config->cpu_transcoder =
10927 		(enum transcoder) to_intel_crtc(crtc)->pipe;
10928 
10929 	/*
10930 	 * Sanitize sync polarity flags based on requested ones. If neither
10931 	 * positive or negative polarity is requested, treat this as meaning
10932 	 * negative polarity.
10933 	 */
10934 	if (!(pipe_config->base.adjusted_mode.flags &
10935 	      (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10936 		pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10937 
10938 	if (!(pipe_config->base.adjusted_mode.flags &
10939 	      (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10940 		pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10941 
10942 	base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10943 					     pipe_config);
10944 	if (base_bpp < 0)
10945 		goto fail;
10946 
10947 	/*
10948 	 * Determine the real pipe dimensions. Note that stereo modes can
10949 	 * increase the actual pipe size due to the frame doubling and
10950 	 * insertion of additional space for blanks between the frame. This
10951 	 * is stored in the crtc timings. We use the requested mode to do this
10952 	 * computation to clearly distinguish it from the adjusted mode, which
10953 	 * can be changed by the connectors in the below retry loop.
10954 	 */
10955 	drm_mode_get_hv_timing(&pipe_config->base.mode,
10956 			       &pipe_config->pipe_src_w,
10957 			       &pipe_config->pipe_src_h);
10958 
10959 	for_each_new_connector_in_state(state, connector, connector_state, i) {
10960 		if (connector_state->crtc != crtc)
10961 			continue;
10962 
10963 		encoder = to_intel_encoder(connector_state->best_encoder);
10964 
10965 		if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) {
10966 			DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10967 			goto fail;
10968 		}
10969 
10970 		/*
10971 		 * Determine output_types before calling the .compute_config()
10972 		 * hooks so that the hooks can use this information safely.
10973 		 */
10974 		pipe_config->output_types |= 1 << encoder->type;
10975 	}
10976 
10977 encoder_retry:
10978 	/* Ensure the port clock defaults are reset when retrying. */
10979 	pipe_config->port_clock = 0;
10980 	pipe_config->pixel_multiplier = 1;
10981 
10982 	/* Fill in default crtc timings, allow encoders to overwrite them. */
10983 	drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
10984 			      CRTC_STEREO_DOUBLE);
10985 
10986 	/* Pass our mode to the connectors and the CRTC to give them a chance to
10987 	 * adjust it according to limitations or connector properties, and also
10988 	 * a chance to reject the mode entirely.
10989 	 */
10990 	for_each_new_connector_in_state(state, connector, connector_state, i) {
10991 		if (connector_state->crtc != crtc)
10992 			continue;
10993 
10994 		encoder = to_intel_encoder(connector_state->best_encoder);
10995 
10996 		if (!(encoder->compute_config(encoder, pipe_config, connector_state))) {
10997 			DRM_DEBUG_KMS("Encoder config failure\n");
10998 			goto fail;
10999 		}
11000 	}
11001 
11002 	/* Set default port clock if not overwritten by the encoder. Needs to be
11003 	 * done afterwards in case the encoder adjusts the mode. */
11004 	if (!pipe_config->port_clock)
11005 		pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
11006 			* pipe_config->pixel_multiplier;
11007 
11008 	ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
11009 	if (ret < 0) {
11010 		DRM_DEBUG_KMS("CRTC fixup failed\n");
11011 		goto fail;
11012 	}
11013 
11014 	if (ret == RETRY) {
11015 		if (WARN(!retry, "loop in pipe configuration computation\n")) {
11016 			ret = -EINVAL;
11017 			goto fail;
11018 		}
11019 
11020 		DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
11021 		retry = false;
11022 		goto encoder_retry;
11023 	}
11024 
11025 	/* Dithering seems to not pass-through bits correctly when it should, so
11026 	 * only enable it on 6bpc panels and when its not a compliance
11027 	 * test requesting 6bpc video pattern.
11028 	 */
11029 	pipe_config->dither = (pipe_config->pipe_bpp == 6*3) &&
11030 		!pipe_config->dither_force_disable;
11031 	DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
11032 		      base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
11033 
11034 fail:
11035 	return ret;
11036 }
11037 
11038 static void
intel_modeset_update_crtc_state(struct drm_atomic_state * state)11039 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
11040 {
11041 	struct drm_crtc *crtc;
11042 	struct drm_crtc_state *new_crtc_state;
11043 	int i;
11044 
11045 	/* Double check state. */
11046 	for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
11047 		to_intel_crtc(crtc)->config = to_intel_crtc_state(new_crtc_state);
11048 
11049 		/*
11050 		 * Update legacy state to satisfy fbc code. This can
11051 		 * be removed when fbc uses the atomic state.
11052 		 */
11053 		if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
11054 			struct drm_plane_state *plane_state = crtc->primary->state;
11055 
11056 			crtc->primary->fb = plane_state->fb;
11057 			crtc->x = plane_state->src_x >> 16;
11058 			crtc->y = plane_state->src_y >> 16;
11059 		}
11060 	}
11061 }
11062 
intel_fuzzy_clock_check(int clock1,int clock2)11063 static bool intel_fuzzy_clock_check(int clock1, int clock2)
11064 {
11065 	int diff;
11066 
11067 	if (clock1 == clock2)
11068 		return true;
11069 
11070 	if (!clock1 || !clock2)
11071 		return false;
11072 
11073 	diff = abs(clock1 - clock2);
11074 
11075 	if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
11076 		return true;
11077 
11078 	return false;
11079 }
11080 
11081 static bool
intel_compare_m_n(unsigned int m,unsigned int n,unsigned int m2,unsigned int n2,bool exact)11082 intel_compare_m_n(unsigned int m, unsigned int n,
11083 		  unsigned int m2, unsigned int n2,
11084 		  bool exact)
11085 {
11086 	if (m == m2 && n == n2)
11087 		return true;
11088 
11089 	if (exact || !m || !n || !m2 || !n2)
11090 		return false;
11091 
11092 	BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
11093 
11094 	if (n > n2) {
11095 		while (n > n2) {
11096 			m2 <<= 1;
11097 			n2 <<= 1;
11098 		}
11099 	} else if (n < n2) {
11100 		while (n < n2) {
11101 			m <<= 1;
11102 			n <<= 1;
11103 		}
11104 	}
11105 
11106 	if (n != n2)
11107 		return false;
11108 
11109 	return intel_fuzzy_clock_check(m, m2);
11110 }
11111 
11112 static bool
intel_compare_link_m_n(const struct intel_link_m_n * m_n,struct intel_link_m_n * m2_n2,bool adjust)11113 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
11114 		       struct intel_link_m_n *m2_n2,
11115 		       bool adjust)
11116 {
11117 	if (m_n->tu == m2_n2->tu &&
11118 	    intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
11119 			      m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
11120 	    intel_compare_m_n(m_n->link_m, m_n->link_n,
11121 			      m2_n2->link_m, m2_n2->link_n, !adjust)) {
11122 		if (adjust)
11123 			*m2_n2 = *m_n;
11124 
11125 		return true;
11126 	}
11127 
11128 	return false;
11129 }
11130 
11131 static void __printf(3, 4)
pipe_config_err(bool adjust,const char * name,const char * format,...)11132 pipe_config_err(bool adjust, const char *name, const char *format, ...)
11133 {
11134 	char *level;
11135 	unsigned int category;
11136 	struct va_format vaf;
11137 	va_list args;
11138 
11139 	if (adjust) {
11140 		level = KERN_DEBUG;
11141 		category = DRM_UT_KMS;
11142 	} else {
11143 		level = KERN_ERR;
11144 		category = DRM_UT_NONE;
11145 	}
11146 
11147 	va_start(args, format);
11148 	vaf.fmt = format;
11149 	vaf.va = &args;
11150 
11151 	drm_printk(level, category, "mismatch in %s %pV", name, &vaf);
11152 
11153 	va_end(args);
11154 }
11155 
11156 static bool
intel_pipe_config_compare(struct drm_i915_private * dev_priv,struct intel_crtc_state * current_config,struct intel_crtc_state * pipe_config,bool adjust)11157 intel_pipe_config_compare(struct drm_i915_private *dev_priv,
11158 			  struct intel_crtc_state *current_config,
11159 			  struct intel_crtc_state *pipe_config,
11160 			  bool adjust)
11161 {
11162 	bool ret = true;
11163 
11164 #define PIPE_CONF_CHECK_X(name)	\
11165 	if (current_config->name != pipe_config->name) { \
11166 		pipe_config_err(adjust, __stringify(name), \
11167 			  "(expected 0x%08x, found 0x%08x)\n", \
11168 			  current_config->name, \
11169 			  pipe_config->name); \
11170 		ret = false; \
11171 	}
11172 
11173 #define PIPE_CONF_CHECK_I(name)	\
11174 	if (current_config->name != pipe_config->name) { \
11175 		pipe_config_err(adjust, __stringify(name), \
11176 			  "(expected %i, found %i)\n", \
11177 			  current_config->name, \
11178 			  pipe_config->name); \
11179 		ret = false; \
11180 	}
11181 
11182 #define PIPE_CONF_CHECK_P(name)	\
11183 	if (current_config->name != pipe_config->name) { \
11184 		pipe_config_err(adjust, __stringify(name), \
11185 			  "(expected %p, found %p)\n", \
11186 			  current_config->name, \
11187 			  pipe_config->name); \
11188 		ret = false; \
11189 	}
11190 
11191 #define PIPE_CONF_CHECK_M_N(name) \
11192 	if (!intel_compare_link_m_n(&current_config->name, \
11193 				    &pipe_config->name,\
11194 				    adjust)) { \
11195 		pipe_config_err(adjust, __stringify(name), \
11196 			  "(expected tu %i gmch %i/%i link %i/%i, " \
11197 			  "found tu %i, gmch %i/%i link %i/%i)\n", \
11198 			  current_config->name.tu, \
11199 			  current_config->name.gmch_m, \
11200 			  current_config->name.gmch_n, \
11201 			  current_config->name.link_m, \
11202 			  current_config->name.link_n, \
11203 			  pipe_config->name.tu, \
11204 			  pipe_config->name.gmch_m, \
11205 			  pipe_config->name.gmch_n, \
11206 			  pipe_config->name.link_m, \
11207 			  pipe_config->name.link_n); \
11208 		ret = false; \
11209 	}
11210 
11211 /* This is required for BDW+ where there is only one set of registers for
11212  * switching between high and low RR.
11213  * This macro can be used whenever a comparison has to be made between one
11214  * hw state and multiple sw state variables.
11215  */
11216 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
11217 	if (!intel_compare_link_m_n(&current_config->name, \
11218 				    &pipe_config->name, adjust) && \
11219 	    !intel_compare_link_m_n(&current_config->alt_name, \
11220 				    &pipe_config->name, adjust)) { \
11221 		pipe_config_err(adjust, __stringify(name), \
11222 			  "(expected tu %i gmch %i/%i link %i/%i, " \
11223 			  "or tu %i gmch %i/%i link %i/%i, " \
11224 			  "found tu %i, gmch %i/%i link %i/%i)\n", \
11225 			  current_config->name.tu, \
11226 			  current_config->name.gmch_m, \
11227 			  current_config->name.gmch_n, \
11228 			  current_config->name.link_m, \
11229 			  current_config->name.link_n, \
11230 			  current_config->alt_name.tu, \
11231 			  current_config->alt_name.gmch_m, \
11232 			  current_config->alt_name.gmch_n, \
11233 			  current_config->alt_name.link_m, \
11234 			  current_config->alt_name.link_n, \
11235 			  pipe_config->name.tu, \
11236 			  pipe_config->name.gmch_m, \
11237 			  pipe_config->name.gmch_n, \
11238 			  pipe_config->name.link_m, \
11239 			  pipe_config->name.link_n); \
11240 		ret = false; \
11241 	}
11242 
11243 #define PIPE_CONF_CHECK_FLAGS(name, mask)	\
11244 	if ((current_config->name ^ pipe_config->name) & (mask)) { \
11245 		pipe_config_err(adjust, __stringify(name), \
11246 			  "(%x) (expected %i, found %i)\n", \
11247 			  (mask), \
11248 			  current_config->name & (mask), \
11249 			  pipe_config->name & (mask)); \
11250 		ret = false; \
11251 	}
11252 
11253 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
11254 	if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
11255 		pipe_config_err(adjust, __stringify(name), \
11256 			  "(expected %i, found %i)\n", \
11257 			  current_config->name, \
11258 			  pipe_config->name); \
11259 		ret = false; \
11260 	}
11261 
11262 #define PIPE_CONF_QUIRK(quirk)	\
11263 	((current_config->quirks | pipe_config->quirks) & (quirk))
11264 
11265 	PIPE_CONF_CHECK_I(cpu_transcoder);
11266 
11267 	PIPE_CONF_CHECK_I(has_pch_encoder);
11268 	PIPE_CONF_CHECK_I(fdi_lanes);
11269 	PIPE_CONF_CHECK_M_N(fdi_m_n);
11270 
11271 	PIPE_CONF_CHECK_I(lane_count);
11272 	PIPE_CONF_CHECK_X(lane_lat_optim_mask);
11273 
11274 	if (INTEL_GEN(dev_priv) < 8) {
11275 		PIPE_CONF_CHECK_M_N(dp_m_n);
11276 
11277 		if (current_config->has_drrs)
11278 			PIPE_CONF_CHECK_M_N(dp_m2_n2);
11279 	} else
11280 		PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
11281 
11282 	PIPE_CONF_CHECK_X(output_types);
11283 
11284 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
11285 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
11286 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
11287 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
11288 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
11289 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
11290 
11291 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
11292 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
11293 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
11294 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
11295 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
11296 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
11297 
11298 	PIPE_CONF_CHECK_I(pixel_multiplier);
11299 	PIPE_CONF_CHECK_I(has_hdmi_sink);
11300 	if ((INTEL_GEN(dev_priv) < 8 && !IS_HASWELL(dev_priv)) ||
11301 	    IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
11302 		PIPE_CONF_CHECK_I(limited_color_range);
11303 
11304 	PIPE_CONF_CHECK_I(hdmi_scrambling);
11305 	PIPE_CONF_CHECK_I(hdmi_high_tmds_clock_ratio);
11306 	PIPE_CONF_CHECK_I(has_infoframe);
11307 	PIPE_CONF_CHECK_I(ycbcr420);
11308 
11309 	PIPE_CONF_CHECK_I(has_audio);
11310 
11311 	PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11312 			      DRM_MODE_FLAG_INTERLACE);
11313 
11314 	if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
11315 		PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11316 				      DRM_MODE_FLAG_PHSYNC);
11317 		PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11318 				      DRM_MODE_FLAG_NHSYNC);
11319 		PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11320 				      DRM_MODE_FLAG_PVSYNC);
11321 		PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11322 				      DRM_MODE_FLAG_NVSYNC);
11323 	}
11324 
11325 	PIPE_CONF_CHECK_X(gmch_pfit.control);
11326 	/* pfit ratios are autocomputed by the hw on gen4+ */
11327 	if (INTEL_GEN(dev_priv) < 4)
11328 		PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
11329 	PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
11330 
11331 	if (!adjust) {
11332 		PIPE_CONF_CHECK_I(pipe_src_w);
11333 		PIPE_CONF_CHECK_I(pipe_src_h);
11334 
11335 		PIPE_CONF_CHECK_I(pch_pfit.enabled);
11336 		if (current_config->pch_pfit.enabled) {
11337 			PIPE_CONF_CHECK_X(pch_pfit.pos);
11338 			PIPE_CONF_CHECK_X(pch_pfit.size);
11339 		}
11340 
11341 		PIPE_CONF_CHECK_I(scaler_state.scaler_id);
11342 		PIPE_CONF_CHECK_CLOCK_FUZZY(pixel_rate);
11343 	}
11344 
11345 	/* BDW+ don't expose a synchronous way to read the state */
11346 	if (IS_HASWELL(dev_priv))
11347 		PIPE_CONF_CHECK_I(ips_enabled);
11348 
11349 	PIPE_CONF_CHECK_I(double_wide);
11350 
11351 	PIPE_CONF_CHECK_P(shared_dpll);
11352 	PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
11353 	PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
11354 	PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
11355 	PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
11356 	PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
11357 	PIPE_CONF_CHECK_X(dpll_hw_state.spll);
11358 	PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
11359 	PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
11360 	PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
11361 
11362 	PIPE_CONF_CHECK_X(dsi_pll.ctrl);
11363 	PIPE_CONF_CHECK_X(dsi_pll.div);
11364 
11365 	if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5)
11366 		PIPE_CONF_CHECK_I(pipe_bpp);
11367 
11368 	PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
11369 	PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
11370 
11371 #undef PIPE_CONF_CHECK_X
11372 #undef PIPE_CONF_CHECK_I
11373 #undef PIPE_CONF_CHECK_P
11374 #undef PIPE_CONF_CHECK_FLAGS
11375 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
11376 #undef PIPE_CONF_QUIRK
11377 
11378 	return ret;
11379 }
11380 
intel_pipe_config_sanity_check(struct drm_i915_private * dev_priv,const struct intel_crtc_state * pipe_config)11381 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
11382 					   const struct intel_crtc_state *pipe_config)
11383 {
11384 	if (pipe_config->has_pch_encoder) {
11385 		int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
11386 							    &pipe_config->fdi_m_n);
11387 		int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
11388 
11389 		/*
11390 		 * FDI already provided one idea for the dotclock.
11391 		 * Yell if the encoder disagrees.
11392 		 */
11393 		WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
11394 		     "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
11395 		     fdi_dotclock, dotclock);
11396 	}
11397 }
11398 
verify_wm_state(struct drm_crtc * crtc,struct drm_crtc_state * new_state)11399 static void verify_wm_state(struct drm_crtc *crtc,
11400 			    struct drm_crtc_state *new_state)
11401 {
11402 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
11403 	struct skl_ddb_allocation hw_ddb, *sw_ddb;
11404 	struct skl_pipe_wm hw_wm, *sw_wm;
11405 	struct skl_plane_wm *hw_plane_wm, *sw_plane_wm;
11406 	struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry;
11407 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11408 	const enum pipe pipe = intel_crtc->pipe;
11409 	int plane, level, max_level = ilk_wm_max_level(dev_priv);
11410 
11411 	if (INTEL_GEN(dev_priv) < 9 || !new_state->active)
11412 		return;
11413 
11414 	skl_pipe_wm_get_hw_state(crtc, &hw_wm);
11415 	sw_wm = &to_intel_crtc_state(new_state)->wm.skl.optimal;
11416 
11417 	skl_ddb_get_hw_state(dev_priv, &hw_ddb);
11418 	sw_ddb = &dev_priv->wm.skl_hw.ddb;
11419 
11420 	/* planes */
11421 	for_each_universal_plane(dev_priv, pipe, plane) {
11422 		hw_plane_wm = &hw_wm.planes[plane];
11423 		sw_plane_wm = &sw_wm->planes[plane];
11424 
11425 		/* Watermarks */
11426 		for (level = 0; level <= max_level; level++) {
11427 			if (skl_wm_level_equals(&hw_plane_wm->wm[level],
11428 						&sw_plane_wm->wm[level]))
11429 				continue;
11430 
11431 			DRM_ERROR("mismatch in WM pipe %c plane %d level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
11432 				  pipe_name(pipe), plane + 1, level,
11433 				  sw_plane_wm->wm[level].plane_en,
11434 				  sw_plane_wm->wm[level].plane_res_b,
11435 				  sw_plane_wm->wm[level].plane_res_l,
11436 				  hw_plane_wm->wm[level].plane_en,
11437 				  hw_plane_wm->wm[level].plane_res_b,
11438 				  hw_plane_wm->wm[level].plane_res_l);
11439 		}
11440 
11441 		if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
11442 					 &sw_plane_wm->trans_wm)) {
11443 			DRM_ERROR("mismatch in trans WM pipe %c plane %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
11444 				  pipe_name(pipe), plane + 1,
11445 				  sw_plane_wm->trans_wm.plane_en,
11446 				  sw_plane_wm->trans_wm.plane_res_b,
11447 				  sw_plane_wm->trans_wm.plane_res_l,
11448 				  hw_plane_wm->trans_wm.plane_en,
11449 				  hw_plane_wm->trans_wm.plane_res_b,
11450 				  hw_plane_wm->trans_wm.plane_res_l);
11451 		}
11452 
11453 		/* DDB */
11454 		hw_ddb_entry = &hw_ddb.plane[pipe][plane];
11455 		sw_ddb_entry = &sw_ddb->plane[pipe][plane];
11456 
11457 		if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
11458 			DRM_ERROR("mismatch in DDB state pipe %c plane %d (expected (%u,%u), found (%u,%u))\n",
11459 				  pipe_name(pipe), plane + 1,
11460 				  sw_ddb_entry->start, sw_ddb_entry->end,
11461 				  hw_ddb_entry->start, hw_ddb_entry->end);
11462 		}
11463 	}
11464 
11465 	/*
11466 	 * cursor
11467 	 * If the cursor plane isn't active, we may not have updated it's ddb
11468 	 * allocation. In that case since the ddb allocation will be updated
11469 	 * once the plane becomes visible, we can skip this check
11470 	 */
11471 	if (1) {
11472 		hw_plane_wm = &hw_wm.planes[PLANE_CURSOR];
11473 		sw_plane_wm = &sw_wm->planes[PLANE_CURSOR];
11474 
11475 		/* Watermarks */
11476 		for (level = 0; level <= max_level; level++) {
11477 			if (skl_wm_level_equals(&hw_plane_wm->wm[level],
11478 						&sw_plane_wm->wm[level]))
11479 				continue;
11480 
11481 			DRM_ERROR("mismatch in WM pipe %c cursor level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
11482 				  pipe_name(pipe), level,
11483 				  sw_plane_wm->wm[level].plane_en,
11484 				  sw_plane_wm->wm[level].plane_res_b,
11485 				  sw_plane_wm->wm[level].plane_res_l,
11486 				  hw_plane_wm->wm[level].plane_en,
11487 				  hw_plane_wm->wm[level].plane_res_b,
11488 				  hw_plane_wm->wm[level].plane_res_l);
11489 		}
11490 
11491 		if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
11492 					 &sw_plane_wm->trans_wm)) {
11493 			DRM_ERROR("mismatch in trans WM pipe %c cursor (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
11494 				  pipe_name(pipe),
11495 				  sw_plane_wm->trans_wm.plane_en,
11496 				  sw_plane_wm->trans_wm.plane_res_b,
11497 				  sw_plane_wm->trans_wm.plane_res_l,
11498 				  hw_plane_wm->trans_wm.plane_en,
11499 				  hw_plane_wm->trans_wm.plane_res_b,
11500 				  hw_plane_wm->trans_wm.plane_res_l);
11501 		}
11502 
11503 		/* DDB */
11504 		hw_ddb_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
11505 		sw_ddb_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
11506 
11507 		if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
11508 			DRM_ERROR("mismatch in DDB state pipe %c cursor (expected (%u,%u), found (%u,%u))\n",
11509 				  pipe_name(pipe),
11510 				  sw_ddb_entry->start, sw_ddb_entry->end,
11511 				  hw_ddb_entry->start, hw_ddb_entry->end);
11512 		}
11513 	}
11514 }
11515 
11516 static void
verify_connector_state(struct drm_device * dev,struct drm_atomic_state * state,struct drm_crtc * crtc)11517 verify_connector_state(struct drm_device *dev,
11518 		       struct drm_atomic_state *state,
11519 		       struct drm_crtc *crtc)
11520 {
11521 	struct drm_connector *connector;
11522 	struct drm_connector_state *new_conn_state;
11523 	int i;
11524 
11525 	for_each_new_connector_in_state(state, connector, new_conn_state, i) {
11526 		struct drm_encoder *encoder = connector->encoder;
11527 		struct drm_crtc_state *crtc_state = NULL;
11528 
11529 		if (new_conn_state->crtc != crtc)
11530 			continue;
11531 
11532 		if (crtc)
11533 			crtc_state = drm_atomic_get_new_crtc_state(state, new_conn_state->crtc);
11534 
11535 		intel_connector_verify_state(crtc_state, new_conn_state);
11536 
11537 		I915_STATE_WARN(new_conn_state->best_encoder != encoder,
11538 		     "connector's atomic encoder doesn't match legacy encoder\n");
11539 	}
11540 }
11541 
11542 static void
verify_encoder_state(struct drm_device * dev,struct drm_atomic_state * state)11543 verify_encoder_state(struct drm_device *dev, struct drm_atomic_state *state)
11544 {
11545 	struct intel_encoder *encoder;
11546 	struct drm_connector *connector;
11547 	struct drm_connector_state *old_conn_state, *new_conn_state;
11548 	int i;
11549 
11550 	for_each_intel_encoder(dev, encoder) {
11551 		bool enabled = false, found = false;
11552 		enum pipe pipe;
11553 
11554 		DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
11555 			      encoder->base.base.id,
11556 			      encoder->base.name);
11557 
11558 		for_each_oldnew_connector_in_state(state, connector, old_conn_state,
11559 						   new_conn_state, i) {
11560 			if (old_conn_state->best_encoder == &encoder->base)
11561 				found = true;
11562 
11563 			if (new_conn_state->best_encoder != &encoder->base)
11564 				continue;
11565 			found = enabled = true;
11566 
11567 			I915_STATE_WARN(new_conn_state->crtc !=
11568 					encoder->base.crtc,
11569 			     "connector's crtc doesn't match encoder crtc\n");
11570 		}
11571 
11572 		if (!found)
11573 			continue;
11574 
11575 		I915_STATE_WARN(!!encoder->base.crtc != enabled,
11576 		     "encoder's enabled state mismatch "
11577 		     "(expected %i, found %i)\n",
11578 		     !!encoder->base.crtc, enabled);
11579 
11580 		if (!encoder->base.crtc) {
11581 			bool active;
11582 
11583 			active = encoder->get_hw_state(encoder, &pipe);
11584 			I915_STATE_WARN(active,
11585 			     "encoder detached but still enabled on pipe %c.\n",
11586 			     pipe_name(pipe));
11587 		}
11588 	}
11589 }
11590 
11591 static void
verify_crtc_state(struct drm_crtc * crtc,struct drm_crtc_state * old_crtc_state,struct drm_crtc_state * new_crtc_state)11592 verify_crtc_state(struct drm_crtc *crtc,
11593 		  struct drm_crtc_state *old_crtc_state,
11594 		  struct drm_crtc_state *new_crtc_state)
11595 {
11596 	struct drm_device *dev = crtc->dev;
11597 	struct drm_i915_private *dev_priv = to_i915(dev);
11598 	struct intel_encoder *encoder;
11599 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11600 	struct intel_crtc_state *pipe_config, *sw_config;
11601 	struct drm_atomic_state *old_state;
11602 	bool active;
11603 
11604 	old_state = old_crtc_state->state;
11605 	__drm_atomic_helper_crtc_destroy_state(old_crtc_state);
11606 	pipe_config = to_intel_crtc_state(old_crtc_state);
11607 	memset(pipe_config, 0, sizeof(*pipe_config));
11608 	pipe_config->base.crtc = crtc;
11609 	pipe_config->base.state = old_state;
11610 
11611 	DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name);
11612 
11613 	active = dev_priv->display.get_pipe_config(intel_crtc, pipe_config);
11614 
11615 	/* we keep both pipes enabled on 830 */
11616 	if (IS_I830(dev_priv))
11617 		active = new_crtc_state->active;
11618 
11619 	I915_STATE_WARN(new_crtc_state->active != active,
11620 	     "crtc active state doesn't match with hw state "
11621 	     "(expected %i, found %i)\n", new_crtc_state->active, active);
11622 
11623 	I915_STATE_WARN(intel_crtc->active != new_crtc_state->active,
11624 	     "transitional active state does not match atomic hw state "
11625 	     "(expected %i, found %i)\n", new_crtc_state->active, intel_crtc->active);
11626 
11627 	for_each_encoder_on_crtc(dev, crtc, encoder) {
11628 		enum pipe pipe;
11629 
11630 		active = encoder->get_hw_state(encoder, &pipe);
11631 		I915_STATE_WARN(active != new_crtc_state->active,
11632 			"[ENCODER:%i] active %i with crtc active %i\n",
11633 			encoder->base.base.id, active, new_crtc_state->active);
11634 
11635 		I915_STATE_WARN(active && intel_crtc->pipe != pipe,
11636 				"Encoder connected to wrong pipe %c\n",
11637 				pipe_name(pipe));
11638 
11639 		if (active) {
11640 			pipe_config->output_types |= 1 << encoder->type;
11641 			encoder->get_config(encoder, pipe_config);
11642 		}
11643 	}
11644 
11645 	intel_crtc_compute_pixel_rate(pipe_config);
11646 
11647 	if (!new_crtc_state->active)
11648 		return;
11649 
11650 	intel_pipe_config_sanity_check(dev_priv, pipe_config);
11651 
11652 	sw_config = to_intel_crtc_state(new_crtc_state);
11653 	if (!intel_pipe_config_compare(dev_priv, sw_config,
11654 				       pipe_config, false)) {
11655 		I915_STATE_WARN(1, "pipe state doesn't match!\n");
11656 		intel_dump_pipe_config(intel_crtc, pipe_config,
11657 				       "[hw state]");
11658 		intel_dump_pipe_config(intel_crtc, sw_config,
11659 				       "[sw state]");
11660 	}
11661 }
11662 
11663 static void
verify_single_dpll_state(struct drm_i915_private * dev_priv,struct intel_shared_dpll * pll,struct drm_crtc * crtc,struct drm_crtc_state * new_state)11664 verify_single_dpll_state(struct drm_i915_private *dev_priv,
11665 			 struct intel_shared_dpll *pll,
11666 			 struct drm_crtc *crtc,
11667 			 struct drm_crtc_state *new_state)
11668 {
11669 	struct intel_dpll_hw_state dpll_hw_state;
11670 	unsigned crtc_mask;
11671 	bool active;
11672 
11673 	memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
11674 
11675 	DRM_DEBUG_KMS("%s\n", pll->name);
11676 
11677 	active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state);
11678 
11679 	if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) {
11680 		I915_STATE_WARN(!pll->on && pll->active_mask,
11681 		     "pll in active use but not on in sw tracking\n");
11682 		I915_STATE_WARN(pll->on && !pll->active_mask,
11683 		     "pll is on but not used by any active crtc\n");
11684 		I915_STATE_WARN(pll->on != active,
11685 		     "pll on state mismatch (expected %i, found %i)\n",
11686 		     pll->on, active);
11687 	}
11688 
11689 	if (!crtc) {
11690 		I915_STATE_WARN(pll->active_mask & ~pll->state.crtc_mask,
11691 				"more active pll users than references: %x vs %x\n",
11692 				pll->active_mask, pll->state.crtc_mask);
11693 
11694 		return;
11695 	}
11696 
11697 	crtc_mask = 1 << drm_crtc_index(crtc);
11698 
11699 	if (new_state->active)
11700 		I915_STATE_WARN(!(pll->active_mask & crtc_mask),
11701 				"pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
11702 				pipe_name(drm_crtc_index(crtc)), pll->active_mask);
11703 	else
11704 		I915_STATE_WARN(pll->active_mask & crtc_mask,
11705 				"pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
11706 				pipe_name(drm_crtc_index(crtc)), pll->active_mask);
11707 
11708 	I915_STATE_WARN(!(pll->state.crtc_mask & crtc_mask),
11709 			"pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
11710 			crtc_mask, pll->state.crtc_mask);
11711 
11712 	I915_STATE_WARN(pll->on && memcmp(&pll->state.hw_state,
11713 					  &dpll_hw_state,
11714 					  sizeof(dpll_hw_state)),
11715 			"pll hw state mismatch\n");
11716 }
11717 
11718 static void
verify_shared_dpll_state(struct drm_device * dev,struct drm_crtc * crtc,struct drm_crtc_state * old_crtc_state,struct drm_crtc_state * new_crtc_state)11719 verify_shared_dpll_state(struct drm_device *dev, struct drm_crtc *crtc,
11720 			 struct drm_crtc_state *old_crtc_state,
11721 			 struct drm_crtc_state *new_crtc_state)
11722 {
11723 	struct drm_i915_private *dev_priv = to_i915(dev);
11724 	struct intel_crtc_state *old_state = to_intel_crtc_state(old_crtc_state);
11725 	struct intel_crtc_state *new_state = to_intel_crtc_state(new_crtc_state);
11726 
11727 	if (new_state->shared_dpll)
11728 		verify_single_dpll_state(dev_priv, new_state->shared_dpll, crtc, new_crtc_state);
11729 
11730 	if (old_state->shared_dpll &&
11731 	    old_state->shared_dpll != new_state->shared_dpll) {
11732 		unsigned crtc_mask = 1 << drm_crtc_index(crtc);
11733 		struct intel_shared_dpll *pll = old_state->shared_dpll;
11734 
11735 		I915_STATE_WARN(pll->active_mask & crtc_mask,
11736 				"pll active mismatch (didn't expect pipe %c in active mask)\n",
11737 				pipe_name(drm_crtc_index(crtc)));
11738 		I915_STATE_WARN(pll->state.crtc_mask & crtc_mask,
11739 				"pll enabled crtcs mismatch (found %x in enabled mask)\n",
11740 				pipe_name(drm_crtc_index(crtc)));
11741 	}
11742 }
11743 
11744 static void
intel_modeset_verify_crtc(struct drm_crtc * crtc,struct drm_atomic_state * state,struct drm_crtc_state * old_state,struct drm_crtc_state * new_state)11745 intel_modeset_verify_crtc(struct drm_crtc *crtc,
11746 			  struct drm_atomic_state *state,
11747 			  struct drm_crtc_state *old_state,
11748 			  struct drm_crtc_state *new_state)
11749 {
11750 	if (!needs_modeset(new_state) &&
11751 	    !to_intel_crtc_state(new_state)->update_pipe)
11752 		return;
11753 
11754 	verify_wm_state(crtc, new_state);
11755 	verify_connector_state(crtc->dev, state, crtc);
11756 	verify_crtc_state(crtc, old_state, new_state);
11757 	verify_shared_dpll_state(crtc->dev, crtc, old_state, new_state);
11758 }
11759 
11760 static void
verify_disabled_dpll_state(struct drm_device * dev)11761 verify_disabled_dpll_state(struct drm_device *dev)
11762 {
11763 	struct drm_i915_private *dev_priv = to_i915(dev);
11764 	int i;
11765 
11766 	for (i = 0; i < dev_priv->num_shared_dpll; i++)
11767 		verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
11768 }
11769 
11770 static void
intel_modeset_verify_disabled(struct drm_device * dev,struct drm_atomic_state * state)11771 intel_modeset_verify_disabled(struct drm_device *dev,
11772 			      struct drm_atomic_state *state)
11773 {
11774 	verify_encoder_state(dev, state);
11775 	verify_connector_state(dev, state, NULL);
11776 	verify_disabled_dpll_state(dev);
11777 }
11778 
update_scanline_offset(struct intel_crtc * crtc)11779 static void update_scanline_offset(struct intel_crtc *crtc)
11780 {
11781 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11782 
11783 	/*
11784 	 * The scanline counter increments at the leading edge of hsync.
11785 	 *
11786 	 * On most platforms it starts counting from vtotal-1 on the
11787 	 * first active line. That means the scanline counter value is
11788 	 * always one less than what we would expect. Ie. just after
11789 	 * start of vblank, which also occurs at start of hsync (on the
11790 	 * last active line), the scanline counter will read vblank_start-1.
11791 	 *
11792 	 * On gen2 the scanline counter starts counting from 1 instead
11793 	 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
11794 	 * to keep the value positive), instead of adding one.
11795 	 *
11796 	 * On HSW+ the behaviour of the scanline counter depends on the output
11797 	 * type. For DP ports it behaves like most other platforms, but on HDMI
11798 	 * there's an extra 1 line difference. So we need to add two instead of
11799 	 * one to the value.
11800 	 *
11801 	 * On VLV/CHV DSI the scanline counter would appear to increment
11802 	 * approx. 1/3 of a scanline before start of vblank. Unfortunately
11803 	 * that means we can't tell whether we're in vblank or not while
11804 	 * we're on that particular line. We must still set scanline_offset
11805 	 * to 1 so that the vblank timestamps come out correct when we query
11806 	 * the scanline counter from within the vblank interrupt handler.
11807 	 * However if queried just before the start of vblank we'll get an
11808 	 * answer that's slightly in the future.
11809 	 */
11810 	if (IS_GEN2(dev_priv)) {
11811 		const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
11812 		int vtotal;
11813 
11814 		vtotal = adjusted_mode->crtc_vtotal;
11815 		if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
11816 			vtotal /= 2;
11817 
11818 		crtc->scanline_offset = vtotal - 1;
11819 	} else if (HAS_DDI(dev_priv) &&
11820 		   intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI)) {
11821 		crtc->scanline_offset = 2;
11822 	} else
11823 		crtc->scanline_offset = 1;
11824 }
11825 
intel_modeset_clear_plls(struct drm_atomic_state * state)11826 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
11827 {
11828 	struct drm_device *dev = state->dev;
11829 	struct drm_i915_private *dev_priv = to_i915(dev);
11830 	struct drm_crtc *crtc;
11831 	struct drm_crtc_state *old_crtc_state, *new_crtc_state;
11832 	int i;
11833 
11834 	if (!dev_priv->display.crtc_compute_clock)
11835 		return;
11836 
11837 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
11838 		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11839 		struct intel_shared_dpll *old_dpll =
11840 			to_intel_crtc_state(old_crtc_state)->shared_dpll;
11841 
11842 		if (!needs_modeset(new_crtc_state))
11843 			continue;
11844 
11845 		to_intel_crtc_state(new_crtc_state)->shared_dpll = NULL;
11846 
11847 		if (!old_dpll)
11848 			continue;
11849 
11850 		intel_release_shared_dpll(old_dpll, intel_crtc, state);
11851 	}
11852 }
11853 
11854 /*
11855  * This implements the workaround described in the "notes" section of the mode
11856  * set sequence documentation. When going from no pipes or single pipe to
11857  * multiple pipes, and planes are enabled after the pipe, we need to wait at
11858  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
11859  */
haswell_mode_set_planes_workaround(struct drm_atomic_state * state)11860 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
11861 {
11862 	struct drm_crtc_state *crtc_state;
11863 	struct intel_crtc *intel_crtc;
11864 	struct drm_crtc *crtc;
11865 	struct intel_crtc_state *first_crtc_state = NULL;
11866 	struct intel_crtc_state *other_crtc_state = NULL;
11867 	enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
11868 	int i;
11869 
11870 	/* look at all crtc's that are going to be enabled in during modeset */
11871 	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
11872 		intel_crtc = to_intel_crtc(crtc);
11873 
11874 		if (!crtc_state->active || !needs_modeset(crtc_state))
11875 			continue;
11876 
11877 		if (first_crtc_state) {
11878 			other_crtc_state = to_intel_crtc_state(crtc_state);
11879 			break;
11880 		} else {
11881 			first_crtc_state = to_intel_crtc_state(crtc_state);
11882 			first_pipe = intel_crtc->pipe;
11883 		}
11884 	}
11885 
11886 	/* No workaround needed? */
11887 	if (!first_crtc_state)
11888 		return 0;
11889 
11890 	/* w/a possibly needed, check how many crtc's are already enabled. */
11891 	for_each_intel_crtc(state->dev, intel_crtc) {
11892 		struct intel_crtc_state *pipe_config;
11893 
11894 		pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
11895 		if (IS_ERR(pipe_config))
11896 			return PTR_ERR(pipe_config);
11897 
11898 		pipe_config->hsw_workaround_pipe = INVALID_PIPE;
11899 
11900 		if (!pipe_config->base.active ||
11901 		    needs_modeset(&pipe_config->base))
11902 			continue;
11903 
11904 		/* 2 or more enabled crtcs means no need for w/a */
11905 		if (enabled_pipe != INVALID_PIPE)
11906 			return 0;
11907 
11908 		enabled_pipe = intel_crtc->pipe;
11909 	}
11910 
11911 	if (enabled_pipe != INVALID_PIPE)
11912 		first_crtc_state->hsw_workaround_pipe = enabled_pipe;
11913 	else if (other_crtc_state)
11914 		other_crtc_state->hsw_workaround_pipe = first_pipe;
11915 
11916 	return 0;
11917 }
11918 
intel_lock_all_pipes(struct drm_atomic_state * state)11919 static int intel_lock_all_pipes(struct drm_atomic_state *state)
11920 {
11921 	struct drm_crtc *crtc;
11922 
11923 	/* Add all pipes to the state */
11924 	for_each_crtc(state->dev, crtc) {
11925 		struct drm_crtc_state *crtc_state;
11926 
11927 		crtc_state = drm_atomic_get_crtc_state(state, crtc);
11928 		if (IS_ERR(crtc_state))
11929 			return PTR_ERR(crtc_state);
11930 	}
11931 
11932 	return 0;
11933 }
11934 
intel_modeset_all_pipes(struct drm_atomic_state * state)11935 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
11936 {
11937 	struct drm_crtc *crtc;
11938 
11939 	/*
11940 	 * Add all pipes to the state, and force
11941 	 * a modeset on all the active ones.
11942 	 */
11943 	for_each_crtc(state->dev, crtc) {
11944 		struct drm_crtc_state *crtc_state;
11945 		int ret;
11946 
11947 		crtc_state = drm_atomic_get_crtc_state(state, crtc);
11948 		if (IS_ERR(crtc_state))
11949 			return PTR_ERR(crtc_state);
11950 
11951 		if (!crtc_state->active || needs_modeset(crtc_state))
11952 			continue;
11953 
11954 		crtc_state->mode_changed = true;
11955 
11956 		ret = drm_atomic_add_affected_connectors(state, crtc);
11957 		if (ret)
11958 			return ret;
11959 
11960 		ret = drm_atomic_add_affected_planes(state, crtc);
11961 		if (ret)
11962 			return ret;
11963 	}
11964 
11965 	return 0;
11966 }
11967 
intel_modeset_checks(struct drm_atomic_state * state)11968 static int intel_modeset_checks(struct drm_atomic_state *state)
11969 {
11970 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
11971 	struct drm_i915_private *dev_priv = to_i915(state->dev);
11972 	struct drm_crtc *crtc;
11973 	struct drm_crtc_state *old_crtc_state, *new_crtc_state;
11974 	int ret = 0, i;
11975 
11976 	if (!check_digital_port_conflicts(state)) {
11977 		DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
11978 		return -EINVAL;
11979 	}
11980 
11981 	intel_state->modeset = true;
11982 	intel_state->active_crtcs = dev_priv->active_crtcs;
11983 	intel_state->cdclk.logical = dev_priv->cdclk.logical;
11984 	intel_state->cdclk.actual = dev_priv->cdclk.actual;
11985 
11986 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
11987 		if (new_crtc_state->active)
11988 			intel_state->active_crtcs |= 1 << i;
11989 		else
11990 			intel_state->active_crtcs &= ~(1 << i);
11991 
11992 		if (old_crtc_state->active != new_crtc_state->active)
11993 			intel_state->active_pipe_changes |= drm_crtc_mask(crtc);
11994 	}
11995 
11996 	/*
11997 	 * See if the config requires any additional preparation, e.g.
11998 	 * to adjust global state with pipes off.  We need to do this
11999 	 * here so we can get the modeset_pipe updated config for the new
12000 	 * mode set on this crtc.  For other crtcs we need to use the
12001 	 * adjusted_mode bits in the crtc directly.
12002 	 */
12003 	if (dev_priv->display.modeset_calc_cdclk) {
12004 		ret = dev_priv->display.modeset_calc_cdclk(state);
12005 		if (ret < 0)
12006 			return ret;
12007 
12008 		/*
12009 		 * Writes to dev_priv->cdclk.logical must protected by
12010 		 * holding all the crtc locks, even if we don't end up
12011 		 * touching the hardware
12012 		 */
12013 		if (!intel_cdclk_state_compare(&dev_priv->cdclk.logical,
12014 					       &intel_state->cdclk.logical)) {
12015 			ret = intel_lock_all_pipes(state);
12016 			if (ret < 0)
12017 				return ret;
12018 		}
12019 
12020 		/* All pipes must be switched off while we change the cdclk. */
12021 		if (!intel_cdclk_state_compare(&dev_priv->cdclk.actual,
12022 					       &intel_state->cdclk.actual)) {
12023 			ret = intel_modeset_all_pipes(state);
12024 			if (ret < 0)
12025 				return ret;
12026 		}
12027 
12028 		DRM_DEBUG_KMS("New cdclk calculated to be logical %u kHz, actual %u kHz\n",
12029 			      intel_state->cdclk.logical.cdclk,
12030 			      intel_state->cdclk.actual.cdclk);
12031 	} else {
12032 		to_intel_atomic_state(state)->cdclk.logical = dev_priv->cdclk.logical;
12033 	}
12034 
12035 	intel_modeset_clear_plls(state);
12036 
12037 	if (IS_HASWELL(dev_priv))
12038 		return haswell_mode_set_planes_workaround(state);
12039 
12040 	return 0;
12041 }
12042 
12043 /*
12044  * Handle calculation of various watermark data at the end of the atomic check
12045  * phase.  The code here should be run after the per-crtc and per-plane 'check'
12046  * handlers to ensure that all derived state has been updated.
12047  */
calc_watermark_data(struct drm_atomic_state * state)12048 static int calc_watermark_data(struct drm_atomic_state *state)
12049 {
12050 	struct drm_device *dev = state->dev;
12051 	struct drm_i915_private *dev_priv = to_i915(dev);
12052 
12053 	/* Is there platform-specific watermark information to calculate? */
12054 	if (dev_priv->display.compute_global_watermarks)
12055 		return dev_priv->display.compute_global_watermarks(state);
12056 
12057 	return 0;
12058 }
12059 
12060 /**
12061  * intel_atomic_check - validate state object
12062  * @dev: drm device
12063  * @state: state to validate
12064  */
intel_atomic_check(struct drm_device * dev,struct drm_atomic_state * state)12065 static int intel_atomic_check(struct drm_device *dev,
12066 			      struct drm_atomic_state *state)
12067 {
12068 	struct drm_i915_private *dev_priv = to_i915(dev);
12069 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
12070 	struct drm_crtc *crtc;
12071 	struct drm_crtc_state *old_crtc_state, *crtc_state;
12072 	int ret, i;
12073 	bool any_ms = false;
12074 
12075 	ret = drm_atomic_helper_check_modeset(dev, state);
12076 	if (ret)
12077 		return ret;
12078 
12079 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, crtc_state, i) {
12080 		struct intel_crtc_state *pipe_config =
12081 			to_intel_crtc_state(crtc_state);
12082 
12083 		/* Catch I915_MODE_FLAG_INHERITED */
12084 		if (crtc_state->mode.private_flags != old_crtc_state->mode.private_flags)
12085 			crtc_state->mode_changed = true;
12086 
12087 		if (!needs_modeset(crtc_state))
12088 			continue;
12089 
12090 		if (!crtc_state->enable) {
12091 			any_ms = true;
12092 			continue;
12093 		}
12094 
12095 		/* FIXME: For only active_changed we shouldn't need to do any
12096 		 * state recomputation at all. */
12097 
12098 		ret = drm_atomic_add_affected_connectors(state, crtc);
12099 		if (ret)
12100 			return ret;
12101 
12102 		ret = intel_modeset_pipe_config(crtc, pipe_config);
12103 		if (ret) {
12104 			intel_dump_pipe_config(to_intel_crtc(crtc),
12105 					       pipe_config, "[failed]");
12106 			return ret;
12107 		}
12108 
12109 		if (i915.fastboot &&
12110 		    intel_pipe_config_compare(dev_priv,
12111 					to_intel_crtc_state(old_crtc_state),
12112 					pipe_config, true)) {
12113 			crtc_state->mode_changed = false;
12114 			pipe_config->update_pipe = true;
12115 		}
12116 
12117 		if (needs_modeset(crtc_state))
12118 			any_ms = true;
12119 
12120 		ret = drm_atomic_add_affected_planes(state, crtc);
12121 		if (ret)
12122 			return ret;
12123 
12124 		intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
12125 				       needs_modeset(crtc_state) ?
12126 				       "[modeset]" : "[fastset]");
12127 	}
12128 
12129 	if (any_ms) {
12130 		ret = intel_modeset_checks(state);
12131 
12132 		if (ret)
12133 			return ret;
12134 	} else {
12135 		intel_state->cdclk.logical = dev_priv->cdclk.logical;
12136 	}
12137 
12138 	ret = drm_atomic_helper_check_planes(dev, state);
12139 	if (ret)
12140 		return ret;
12141 
12142 	intel_fbc_choose_crtc(dev_priv, state);
12143 	return calc_watermark_data(state);
12144 }
12145 
intel_atomic_prepare_commit(struct drm_device * dev,struct drm_atomic_state * state)12146 static int intel_atomic_prepare_commit(struct drm_device *dev,
12147 				       struct drm_atomic_state *state)
12148 {
12149 	return drm_atomic_helper_prepare_planes(dev, state);
12150 }
12151 
intel_crtc_get_vblank_counter(struct intel_crtc * crtc)12152 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
12153 {
12154 	struct drm_device *dev = crtc->base.dev;
12155 
12156 	if (!dev->max_vblank_count)
12157 		return drm_crtc_accurate_vblank_count(&crtc->base);
12158 
12159 	return dev->driver->get_vblank_counter(dev, crtc->pipe);
12160 }
12161 
intel_atomic_wait_for_vblanks(struct drm_device * dev,struct drm_i915_private * dev_priv,unsigned crtc_mask)12162 static void intel_atomic_wait_for_vblanks(struct drm_device *dev,
12163 					  struct drm_i915_private *dev_priv,
12164 					  unsigned crtc_mask)
12165 {
12166 	unsigned last_vblank_count[I915_MAX_PIPES];
12167 	enum pipe pipe;
12168 	int ret;
12169 
12170 	if (!crtc_mask)
12171 		return;
12172 
12173 	for_each_pipe(dev_priv, pipe) {
12174 		struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv,
12175 								  pipe);
12176 
12177 		if (!((1 << pipe) & crtc_mask))
12178 			continue;
12179 
12180 		ret = drm_crtc_vblank_get(&crtc->base);
12181 		if (WARN_ON(ret != 0)) {
12182 			crtc_mask &= ~(1 << pipe);
12183 			continue;
12184 		}
12185 
12186 		last_vblank_count[pipe] = drm_crtc_vblank_count(&crtc->base);
12187 	}
12188 
12189 	for_each_pipe(dev_priv, pipe) {
12190 		struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv,
12191 								  pipe);
12192 		long lret;
12193 
12194 		if (!((1 << pipe) & crtc_mask))
12195 			continue;
12196 
12197 		lret = wait_event_timeout(dev->vblank[pipe].queue,
12198 				last_vblank_count[pipe] !=
12199 					drm_crtc_vblank_count(&crtc->base),
12200 				msecs_to_jiffies(50));
12201 
12202 		WARN(!lret, "pipe %c vblank wait timed out\n", pipe_name(pipe));
12203 
12204 		drm_crtc_vblank_put(&crtc->base);
12205 	}
12206 }
12207 
needs_vblank_wait(struct intel_crtc_state * crtc_state)12208 static bool needs_vblank_wait(struct intel_crtc_state *crtc_state)
12209 {
12210 	/* fb updated, need to unpin old fb */
12211 	if (crtc_state->fb_changed)
12212 		return true;
12213 
12214 	/* wm changes, need vblank before final wm's */
12215 	if (crtc_state->update_wm_post)
12216 		return true;
12217 
12218 	if (crtc_state->wm.need_postvbl_update)
12219 		return true;
12220 
12221 	return false;
12222 }
12223 
intel_update_crtc(struct drm_crtc * crtc,struct drm_atomic_state * state,struct drm_crtc_state * old_crtc_state,struct drm_crtc_state * new_crtc_state,unsigned int * crtc_vblank_mask)12224 static void intel_update_crtc(struct drm_crtc *crtc,
12225 			      struct drm_atomic_state *state,
12226 			      struct drm_crtc_state *old_crtc_state,
12227 			      struct drm_crtc_state *new_crtc_state,
12228 			      unsigned int *crtc_vblank_mask)
12229 {
12230 	struct drm_device *dev = crtc->dev;
12231 	struct drm_i915_private *dev_priv = to_i915(dev);
12232 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12233 	struct intel_crtc_state *pipe_config = to_intel_crtc_state(new_crtc_state);
12234 	bool modeset = needs_modeset(new_crtc_state);
12235 
12236 	if (modeset) {
12237 		update_scanline_offset(intel_crtc);
12238 		dev_priv->display.crtc_enable(pipe_config, state);
12239 	} else {
12240 		intel_pre_plane_update(to_intel_crtc_state(old_crtc_state),
12241 				       pipe_config);
12242 	}
12243 
12244 	if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
12245 		intel_fbc_enable(
12246 		    intel_crtc, pipe_config,
12247 		    to_intel_plane_state(crtc->primary->state));
12248 	}
12249 
12250 	drm_atomic_helper_commit_planes_on_crtc(old_crtc_state);
12251 
12252 	if (needs_vblank_wait(pipe_config))
12253 		*crtc_vblank_mask |= drm_crtc_mask(crtc);
12254 }
12255 
intel_update_crtcs(struct drm_atomic_state * state,unsigned int * crtc_vblank_mask)12256 static void intel_update_crtcs(struct drm_atomic_state *state,
12257 			       unsigned int *crtc_vblank_mask)
12258 {
12259 	struct drm_crtc *crtc;
12260 	struct drm_crtc_state *old_crtc_state, *new_crtc_state;
12261 	int i;
12262 
12263 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
12264 		if (!new_crtc_state->active)
12265 			continue;
12266 
12267 		intel_update_crtc(crtc, state, old_crtc_state,
12268 				  new_crtc_state, crtc_vblank_mask);
12269 	}
12270 }
12271 
skl_update_crtcs(struct drm_atomic_state * state,unsigned int * crtc_vblank_mask)12272 static void skl_update_crtcs(struct drm_atomic_state *state,
12273 			     unsigned int *crtc_vblank_mask)
12274 {
12275 	struct drm_i915_private *dev_priv = to_i915(state->dev);
12276 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
12277 	struct drm_crtc *crtc;
12278 	struct intel_crtc *intel_crtc;
12279 	struct drm_crtc_state *old_crtc_state, *new_crtc_state;
12280 	struct intel_crtc_state *cstate;
12281 	unsigned int updated = 0;
12282 	bool progress;
12283 	enum pipe pipe;
12284 	int i;
12285 
12286 	const struct skl_ddb_entry *entries[I915_MAX_PIPES] = {};
12287 
12288 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i)
12289 		/* ignore allocations for crtc's that have been turned off. */
12290 		if (new_crtc_state->active)
12291 			entries[i] = &to_intel_crtc_state(old_crtc_state)->wm.skl.ddb;
12292 
12293 	/*
12294 	 * Whenever the number of active pipes changes, we need to make sure we
12295 	 * update the pipes in the right order so that their ddb allocations
12296 	 * never overlap with eachother inbetween CRTC updates. Otherwise we'll
12297 	 * cause pipe underruns and other bad stuff.
12298 	 */
12299 	do {
12300 		progress = false;
12301 
12302 		for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
12303 			bool vbl_wait = false;
12304 			unsigned int cmask = drm_crtc_mask(crtc);
12305 
12306 			intel_crtc = to_intel_crtc(crtc);
12307 			cstate = to_intel_crtc_state(crtc->state);
12308 			pipe = intel_crtc->pipe;
12309 
12310 			if (updated & cmask || !cstate->base.active)
12311 				continue;
12312 
12313 			if (skl_ddb_allocation_overlaps(entries, &cstate->wm.skl.ddb, i))
12314 				continue;
12315 
12316 			updated |= cmask;
12317 			entries[i] = &cstate->wm.skl.ddb;
12318 
12319 			/*
12320 			 * If this is an already active pipe, it's DDB changed,
12321 			 * and this isn't the last pipe that needs updating
12322 			 * then we need to wait for a vblank to pass for the
12323 			 * new ddb allocation to take effect.
12324 			 */
12325 			if (!skl_ddb_entry_equal(&cstate->wm.skl.ddb,
12326 						 &to_intel_crtc_state(old_crtc_state)->wm.skl.ddb) &&
12327 			    !new_crtc_state->active_changed &&
12328 			    intel_state->wm_results.dirty_pipes != updated)
12329 				vbl_wait = true;
12330 
12331 			intel_update_crtc(crtc, state, old_crtc_state,
12332 					  new_crtc_state, crtc_vblank_mask);
12333 
12334 			if (vbl_wait)
12335 				intel_wait_for_vblank(dev_priv, pipe);
12336 
12337 			progress = true;
12338 		}
12339 	} while (progress);
12340 }
12341 
intel_atomic_helper_free_state(struct drm_i915_private * dev_priv)12342 static void intel_atomic_helper_free_state(struct drm_i915_private *dev_priv)
12343 {
12344 	struct intel_atomic_state *state, *next;
12345 	struct llist_node *freed;
12346 
12347 	freed = llist_del_all(&dev_priv->atomic_helper.free_list);
12348 	llist_for_each_entry_safe(state, next, freed, freed)
12349 		drm_atomic_state_put(&state->base);
12350 }
12351 
intel_atomic_helper_free_state_worker(struct work_struct * work)12352 static void intel_atomic_helper_free_state_worker(struct work_struct *work)
12353 {
12354 	struct drm_i915_private *dev_priv =
12355 		container_of(work, typeof(*dev_priv), atomic_helper.free_work);
12356 
12357 	intel_atomic_helper_free_state(dev_priv);
12358 }
12359 
intel_atomic_commit_fence_wait(struct intel_atomic_state * intel_state)12360 static void intel_atomic_commit_fence_wait(struct intel_atomic_state *intel_state)
12361 {
12362 	struct wait_queue_entry wait_fence, wait_reset;
12363 	struct drm_i915_private *dev_priv = to_i915(intel_state->base.dev);
12364 
12365 	init_wait_entry(&wait_fence, 0);
12366 	init_wait_entry(&wait_reset, 0);
12367 	for (;;) {
12368 		prepare_to_wait(&intel_state->commit_ready.wait,
12369 				&wait_fence, TASK_UNINTERRUPTIBLE);
12370 		prepare_to_wait(&dev_priv->gpu_error.wait_queue,
12371 				&wait_reset, TASK_UNINTERRUPTIBLE);
12372 
12373 
12374 		if (i915_sw_fence_done(&intel_state->commit_ready)
12375 		    || test_bit(I915_RESET_MODESET, &dev_priv->gpu_error.flags))
12376 			break;
12377 
12378 		schedule();
12379 	}
12380 	finish_wait(&intel_state->commit_ready.wait, &wait_fence);
12381 	finish_wait(&dev_priv->gpu_error.wait_queue, &wait_reset);
12382 }
12383 
intel_atomic_commit_tail(struct drm_atomic_state * state)12384 static void intel_atomic_commit_tail(struct drm_atomic_state *state)
12385 {
12386 	struct drm_device *dev = state->dev;
12387 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
12388 	struct drm_i915_private *dev_priv = to_i915(dev);
12389 	struct drm_crtc_state *old_crtc_state, *new_crtc_state;
12390 	struct drm_crtc *crtc;
12391 	struct intel_crtc_state *intel_cstate;
12392 	u64 put_domains[I915_MAX_PIPES] = {};
12393 	unsigned crtc_vblank_mask = 0;
12394 	int i;
12395 
12396 	intel_atomic_commit_fence_wait(intel_state);
12397 
12398 	drm_atomic_helper_wait_for_dependencies(state);
12399 
12400 	if (intel_state->modeset)
12401 		intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
12402 
12403 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
12404 		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12405 
12406 		if (needs_modeset(new_crtc_state) ||
12407 		    to_intel_crtc_state(new_crtc_state)->update_pipe) {
12408 
12409 			put_domains[to_intel_crtc(crtc)->pipe] =
12410 				modeset_get_crtc_power_domains(crtc,
12411 					to_intel_crtc_state(new_crtc_state));
12412 		}
12413 
12414 		if (!needs_modeset(new_crtc_state))
12415 			continue;
12416 
12417 		intel_pre_plane_update(to_intel_crtc_state(old_crtc_state),
12418 				       to_intel_crtc_state(new_crtc_state));
12419 
12420 		if (old_crtc_state->active) {
12421 			intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask);
12422 			dev_priv->display.crtc_disable(to_intel_crtc_state(old_crtc_state), state);
12423 			intel_crtc->active = false;
12424 			intel_fbc_disable(intel_crtc);
12425 			intel_disable_shared_dpll(intel_crtc);
12426 
12427 			/*
12428 			 * Underruns don't always raise
12429 			 * interrupts, so check manually.
12430 			 */
12431 			intel_check_cpu_fifo_underruns(dev_priv);
12432 			intel_check_pch_fifo_underruns(dev_priv);
12433 
12434 			if (!crtc->state->active) {
12435 				/*
12436 				 * Make sure we don't call initial_watermarks
12437 				 * for ILK-style watermark updates.
12438 				 *
12439 				 * No clue what this is supposed to achieve.
12440 				 */
12441 				if (INTEL_GEN(dev_priv) >= 9)
12442 					dev_priv->display.initial_watermarks(intel_state,
12443 									     to_intel_crtc_state(crtc->state));
12444 			}
12445 		}
12446 	}
12447 
12448 	/* Only after disabling all output pipelines that will be changed can we
12449 	 * update the the output configuration. */
12450 	intel_modeset_update_crtc_state(state);
12451 
12452 	if (intel_state->modeset) {
12453 		drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
12454 
12455 		intel_set_cdclk(dev_priv, &dev_priv->cdclk.actual);
12456 
12457 		/*
12458 		 * SKL workaround: bspec recommends we disable the SAGV when we
12459 		 * have more then one pipe enabled
12460 		 */
12461 		if (!intel_can_enable_sagv(state))
12462 			intel_disable_sagv(dev_priv);
12463 
12464 		intel_modeset_verify_disabled(dev, state);
12465 	}
12466 
12467 	/* Complete the events for pipes that have now been disabled */
12468 	for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
12469 		bool modeset = needs_modeset(new_crtc_state);
12470 
12471 		/* Complete events for now disable pipes here. */
12472 		if (modeset && !new_crtc_state->active && new_crtc_state->event) {
12473 			spin_lock_irq(&dev->event_lock);
12474 			drm_crtc_send_vblank_event(crtc, new_crtc_state->event);
12475 			spin_unlock_irq(&dev->event_lock);
12476 
12477 			new_crtc_state->event = NULL;
12478 		}
12479 	}
12480 
12481 	/* Now enable the clocks, plane, pipe, and connectors that we set up. */
12482 	dev_priv->display.update_crtcs(state, &crtc_vblank_mask);
12483 
12484 	/* FIXME: We should call drm_atomic_helper_commit_hw_done() here
12485 	 * already, but still need the state for the delayed optimization. To
12486 	 * fix this:
12487 	 * - wrap the optimization/post_plane_update stuff into a per-crtc work.
12488 	 * - schedule that vblank worker _before_ calling hw_done
12489 	 * - at the start of commit_tail, cancel it _synchrously
12490 	 * - switch over to the vblank wait helper in the core after that since
12491 	 *   we don't need out special handling any more.
12492 	 */
12493 	if (!state->legacy_cursor_update)
12494 		intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask);
12495 
12496 	/*
12497 	 * Now that the vblank has passed, we can go ahead and program the
12498 	 * optimal watermarks on platforms that need two-step watermark
12499 	 * programming.
12500 	 *
12501 	 * TODO: Move this (and other cleanup) to an async worker eventually.
12502 	 */
12503 	for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
12504 		intel_cstate = to_intel_crtc_state(new_crtc_state);
12505 
12506 		if (dev_priv->display.optimize_watermarks)
12507 			dev_priv->display.optimize_watermarks(intel_state,
12508 							      intel_cstate);
12509 	}
12510 
12511 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
12512 		intel_post_plane_update(to_intel_crtc_state(old_crtc_state));
12513 
12514 		if (put_domains[i])
12515 			modeset_put_power_domains(dev_priv, put_domains[i]);
12516 
12517 		intel_modeset_verify_crtc(crtc, state, old_crtc_state, new_crtc_state);
12518 	}
12519 
12520 	if (intel_state->modeset && intel_can_enable_sagv(state))
12521 		intel_enable_sagv(dev_priv);
12522 
12523 	drm_atomic_helper_commit_hw_done(state);
12524 
12525 	if (intel_state->modeset) {
12526 		/* As one of the primary mmio accessors, KMS has a high
12527 		 * likelihood of triggering bugs in unclaimed access. After we
12528 		 * finish modesetting, see if an error has been flagged, and if
12529 		 * so enable debugging for the next modeset - and hope we catch
12530 		 * the culprit.
12531 		 */
12532 		intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
12533 		intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
12534 	}
12535 
12536 	drm_atomic_helper_cleanup_planes(dev, state);
12537 
12538 	drm_atomic_helper_commit_cleanup_done(state);
12539 
12540 	drm_atomic_state_put(state);
12541 
12542 	intel_atomic_helper_free_state(dev_priv);
12543 }
12544 
intel_atomic_commit_work(struct work_struct * work)12545 static void intel_atomic_commit_work(struct work_struct *work)
12546 {
12547 	struct drm_atomic_state *state =
12548 		container_of(work, struct drm_atomic_state, commit_work);
12549 
12550 	intel_atomic_commit_tail(state);
12551 }
12552 
12553 static int __i915_sw_fence_call
intel_atomic_commit_ready(struct i915_sw_fence * fence,enum i915_sw_fence_notify notify)12554 intel_atomic_commit_ready(struct i915_sw_fence *fence,
12555 			  enum i915_sw_fence_notify notify)
12556 {
12557 	struct intel_atomic_state *state =
12558 		container_of(fence, struct intel_atomic_state, commit_ready);
12559 
12560 	switch (notify) {
12561 	case FENCE_COMPLETE:
12562 		/* we do blocking waits in the worker, nothing to do here */
12563 		break;
12564 	case FENCE_FREE:
12565 		{
12566 			struct intel_atomic_helper *helper =
12567 				&to_i915(state->base.dev)->atomic_helper;
12568 
12569 			if (llist_add(&state->freed, &helper->free_list))
12570 				schedule_work(&helper->free_work);
12571 			break;
12572 		}
12573 	}
12574 
12575 	return NOTIFY_DONE;
12576 }
12577 
intel_atomic_track_fbs(struct drm_atomic_state * state)12578 static void intel_atomic_track_fbs(struct drm_atomic_state *state)
12579 {
12580 	struct drm_plane_state *old_plane_state, *new_plane_state;
12581 	struct drm_plane *plane;
12582 	int i;
12583 
12584 	for_each_oldnew_plane_in_state(state, plane, old_plane_state, new_plane_state, i)
12585 		i915_gem_track_fb(intel_fb_obj(old_plane_state->fb),
12586 				  intel_fb_obj(new_plane_state->fb),
12587 				  to_intel_plane(plane)->frontbuffer_bit);
12588 }
12589 
12590 /**
12591  * intel_atomic_commit - commit validated state object
12592  * @dev: DRM device
12593  * @state: the top-level driver state object
12594  * @nonblock: nonblocking commit
12595  *
12596  * This function commits a top-level state object that has been validated
12597  * with drm_atomic_helper_check().
12598  *
12599  * RETURNS
12600  * Zero for success or -errno.
12601  */
intel_atomic_commit(struct drm_device * dev,struct drm_atomic_state * state,bool nonblock)12602 static int intel_atomic_commit(struct drm_device *dev,
12603 			       struct drm_atomic_state *state,
12604 			       bool nonblock)
12605 {
12606 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
12607 	struct drm_i915_private *dev_priv = to_i915(dev);
12608 	int ret = 0;
12609 
12610 	ret = drm_atomic_helper_setup_commit(state, nonblock);
12611 	if (ret)
12612 		return ret;
12613 
12614 	drm_atomic_state_get(state);
12615 	i915_sw_fence_init(&intel_state->commit_ready,
12616 			   intel_atomic_commit_ready);
12617 
12618 	ret = intel_atomic_prepare_commit(dev, state);
12619 	if (ret) {
12620 		DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
12621 		i915_sw_fence_commit(&intel_state->commit_ready);
12622 		return ret;
12623 	}
12624 
12625 	/*
12626 	 * The intel_legacy_cursor_update() fast path takes care
12627 	 * of avoiding the vblank waits for simple cursor
12628 	 * movement and flips. For cursor on/off and size changes,
12629 	 * we want to perform the vblank waits so that watermark
12630 	 * updates happen during the correct frames. Gen9+ have
12631 	 * double buffered watermarks and so shouldn't need this.
12632 	 *
12633 	 * Do this after drm_atomic_helper_setup_commit() and
12634 	 * intel_atomic_prepare_commit() because we still want
12635 	 * to skip the flip and fb cleanup waits. Although that
12636 	 * does risk yanking the mapping from under the display
12637 	 * engine.
12638 	 *
12639 	 * FIXME doing watermarks and fb cleanup from a vblank worker
12640 	 * (assuming we had any) would solve these problems.
12641 	 */
12642 	if (INTEL_GEN(dev_priv) < 9)
12643 		state->legacy_cursor_update = false;
12644 
12645 	ret = drm_atomic_helper_swap_state(state, true);
12646 	if (ret) {
12647 		i915_sw_fence_commit(&intel_state->commit_ready);
12648 
12649 		drm_atomic_helper_cleanup_planes(dev, state);
12650 		return ret;
12651 	}
12652 	dev_priv->wm.distrust_bios_wm = false;
12653 	intel_shared_dpll_swap_state(state);
12654 	intel_atomic_track_fbs(state);
12655 
12656 	if (intel_state->modeset) {
12657 		memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
12658 		       sizeof(intel_state->min_pixclk));
12659 		dev_priv->active_crtcs = intel_state->active_crtcs;
12660 		dev_priv->cdclk.logical = intel_state->cdclk.logical;
12661 		dev_priv->cdclk.actual = intel_state->cdclk.actual;
12662 	}
12663 
12664 	drm_atomic_state_get(state);
12665 	INIT_WORK(&state->commit_work, intel_atomic_commit_work);
12666 
12667 	i915_sw_fence_commit(&intel_state->commit_ready);
12668 	if (nonblock)
12669 		queue_work(system_unbound_wq, &state->commit_work);
12670 	else
12671 		intel_atomic_commit_tail(state);
12672 
12673 
12674 	return 0;
12675 }
12676 
12677 static const struct drm_crtc_funcs intel_crtc_funcs = {
12678 	.gamma_set = drm_atomic_helper_legacy_gamma_set,
12679 	.set_config = drm_atomic_helper_set_config,
12680 	.destroy = intel_crtc_destroy,
12681 	.page_flip = drm_atomic_helper_page_flip,
12682 	.atomic_duplicate_state = intel_crtc_duplicate_state,
12683 	.atomic_destroy_state = intel_crtc_destroy_state,
12684 	.set_crc_source = intel_crtc_set_crc_source,
12685 };
12686 
12687 /**
12688  * intel_prepare_plane_fb - Prepare fb for usage on plane
12689  * @plane: drm plane to prepare for
12690  * @fb: framebuffer to prepare for presentation
12691  *
12692  * Prepares a framebuffer for usage on a display plane.  Generally this
12693  * involves pinning the underlying object and updating the frontbuffer tracking
12694  * bits.  Some older platforms need special physical address handling for
12695  * cursor planes.
12696  *
12697  * Must be called with struct_mutex held.
12698  *
12699  * Returns 0 on success, negative error code on failure.
12700  */
12701 int
intel_prepare_plane_fb(struct drm_plane * plane,struct drm_plane_state * new_state)12702 intel_prepare_plane_fb(struct drm_plane *plane,
12703 		       struct drm_plane_state *new_state)
12704 {
12705 	struct intel_atomic_state *intel_state =
12706 		to_intel_atomic_state(new_state->state);
12707 	struct drm_i915_private *dev_priv = to_i915(plane->dev);
12708 	struct drm_framebuffer *fb = new_state->fb;
12709 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12710 	struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
12711 	int ret;
12712 
12713 	if (old_obj) {
12714 		struct drm_crtc_state *crtc_state =
12715 			drm_atomic_get_existing_crtc_state(new_state->state,
12716 							   plane->state->crtc);
12717 
12718 		/* Big Hammer, we also need to ensure that any pending
12719 		 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
12720 		 * current scanout is retired before unpinning the old
12721 		 * framebuffer. Note that we rely on userspace rendering
12722 		 * into the buffer attached to the pipe they are waiting
12723 		 * on. If not, userspace generates a GPU hang with IPEHR
12724 		 * point to the MI_WAIT_FOR_EVENT.
12725 		 *
12726 		 * This should only fail upon a hung GPU, in which case we
12727 		 * can safely continue.
12728 		 */
12729 		if (needs_modeset(crtc_state)) {
12730 			ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
12731 							      old_obj->resv, NULL,
12732 							      false, 0,
12733 							      GFP_KERNEL);
12734 			if (ret < 0)
12735 				return ret;
12736 		}
12737 	}
12738 
12739 	if (new_state->fence) { /* explicit fencing */
12740 		ret = i915_sw_fence_await_dma_fence(&intel_state->commit_ready,
12741 						    new_state->fence,
12742 						    I915_FENCE_TIMEOUT,
12743 						    GFP_KERNEL);
12744 		if (ret < 0)
12745 			return ret;
12746 	}
12747 
12748 	if (!obj)
12749 		return 0;
12750 
12751 	ret = i915_gem_object_pin_pages(obj);
12752 	if (ret)
12753 		return ret;
12754 
12755 	ret = mutex_lock_interruptible(&dev_priv->drm.struct_mutex);
12756 	if (ret) {
12757 		i915_gem_object_unpin_pages(obj);
12758 		return ret;
12759 	}
12760 
12761 	if (plane->type == DRM_PLANE_TYPE_CURSOR &&
12762 	    INTEL_INFO(dev_priv)->cursor_needs_physical) {
12763 		const int align = intel_cursor_alignment(dev_priv);
12764 
12765 		ret = i915_gem_object_attach_phys(obj, align);
12766 	} else {
12767 		struct i915_vma *vma;
12768 
12769 		vma = intel_pin_and_fence_fb_obj(fb, new_state->rotation);
12770 		if (!IS_ERR(vma))
12771 			to_intel_plane_state(new_state)->vma = vma;
12772 		else
12773 			ret =  PTR_ERR(vma);
12774 	}
12775 
12776 	i915_gem_object_wait_priority(obj, 0, I915_PRIORITY_DISPLAY);
12777 
12778 	mutex_unlock(&dev_priv->drm.struct_mutex);
12779 	i915_gem_object_unpin_pages(obj);
12780 	if (ret)
12781 		return ret;
12782 
12783 	if (!new_state->fence) { /* implicit fencing */
12784 		ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
12785 						      obj->resv, NULL,
12786 						      false, I915_FENCE_TIMEOUT,
12787 						      GFP_KERNEL);
12788 		if (ret < 0)
12789 			return ret;
12790 	}
12791 
12792 	return 0;
12793 }
12794 
12795 /**
12796  * intel_cleanup_plane_fb - Cleans up an fb after plane use
12797  * @plane: drm plane to clean up for
12798  * @fb: old framebuffer that was on plane
12799  *
12800  * Cleans up a framebuffer that has just been removed from a plane.
12801  *
12802  * Must be called with struct_mutex held.
12803  */
12804 void
intel_cleanup_plane_fb(struct drm_plane * plane,struct drm_plane_state * old_state)12805 intel_cleanup_plane_fb(struct drm_plane *plane,
12806 		       struct drm_plane_state *old_state)
12807 {
12808 	struct i915_vma *vma;
12809 
12810 	/* Should only be called after a successful intel_prepare_plane_fb()! */
12811 	vma = fetch_and_zero(&to_intel_plane_state(old_state)->vma);
12812 	if (vma) {
12813 		mutex_lock(&plane->dev->struct_mutex);
12814 		intel_unpin_fb_vma(vma);
12815 		mutex_unlock(&plane->dev->struct_mutex);
12816 	}
12817 }
12818 
12819 int
skl_max_scale(struct intel_crtc * intel_crtc,struct intel_crtc_state * crtc_state)12820 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
12821 {
12822 	struct drm_i915_private *dev_priv;
12823 	int max_scale;
12824 	int crtc_clock, max_dotclk;
12825 
12826 	if (!intel_crtc || !crtc_state->base.enable)
12827 		return DRM_PLANE_HELPER_NO_SCALING;
12828 
12829 	dev_priv = to_i915(intel_crtc->base.dev);
12830 
12831 	crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
12832 	max_dotclk = to_intel_atomic_state(crtc_state->base.state)->cdclk.logical.cdclk;
12833 
12834 	if (IS_GEMINILAKE(dev_priv))
12835 		max_dotclk *= 2;
12836 
12837 	if (WARN_ON_ONCE(!crtc_clock || max_dotclk < crtc_clock))
12838 		return DRM_PLANE_HELPER_NO_SCALING;
12839 
12840 	/*
12841 	 * skl max scale is lower of:
12842 	 *    close to 3 but not 3, -1 is for that purpose
12843 	 *            or
12844 	 *    cdclk/crtc_clock
12845 	 */
12846 	max_scale = min((1 << 16) * 3 - 1,
12847 			(1 << 8) * ((max_dotclk << 8) / crtc_clock));
12848 
12849 	return max_scale;
12850 }
12851 
12852 static int
intel_check_primary_plane(struct intel_plane * plane,struct intel_crtc_state * crtc_state,struct intel_plane_state * state)12853 intel_check_primary_plane(struct intel_plane *plane,
12854 			  struct intel_crtc_state *crtc_state,
12855 			  struct intel_plane_state *state)
12856 {
12857 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
12858 	struct drm_crtc *crtc = state->base.crtc;
12859 	int min_scale = DRM_PLANE_HELPER_NO_SCALING;
12860 	int max_scale = DRM_PLANE_HELPER_NO_SCALING;
12861 	bool can_position = false;
12862 	int ret;
12863 
12864 	if (INTEL_GEN(dev_priv) >= 9) {
12865 		/* use scaler when colorkey is not required */
12866 		if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
12867 			min_scale = 1;
12868 			max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
12869 		}
12870 		can_position = true;
12871 	}
12872 
12873 	ret = drm_plane_helper_check_state(&state->base,
12874 					   &state->clip,
12875 					   min_scale, max_scale,
12876 					   can_position, true);
12877 	if (ret)
12878 		return ret;
12879 
12880 	if (!state->base.fb)
12881 		return 0;
12882 
12883 	if (INTEL_GEN(dev_priv) >= 9) {
12884 		ret = skl_check_plane_surface(state);
12885 		if (ret)
12886 			return ret;
12887 
12888 		state->ctl = skl_plane_ctl(crtc_state, state);
12889 	} else {
12890 		ret = i9xx_check_plane_surface(state);
12891 		if (ret)
12892 			return ret;
12893 
12894 		state->ctl = i9xx_plane_ctl(crtc_state, state);
12895 	}
12896 
12897 	return 0;
12898 }
12899 
intel_begin_crtc_commit(struct drm_crtc * crtc,struct drm_crtc_state * old_crtc_state)12900 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
12901 				    struct drm_crtc_state *old_crtc_state)
12902 {
12903 	struct drm_device *dev = crtc->dev;
12904 	struct drm_i915_private *dev_priv = to_i915(dev);
12905 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12906 	struct intel_crtc_state *intel_cstate =
12907 		to_intel_crtc_state(crtc->state);
12908 	struct intel_crtc_state *old_intel_cstate =
12909 		to_intel_crtc_state(old_crtc_state);
12910 	struct intel_atomic_state *old_intel_state =
12911 		to_intel_atomic_state(old_crtc_state->state);
12912 	bool modeset = needs_modeset(crtc->state);
12913 
12914 	if (!modeset &&
12915 	    (intel_cstate->base.color_mgmt_changed ||
12916 	     intel_cstate->update_pipe)) {
12917 		intel_color_set_csc(crtc->state);
12918 		intel_color_load_luts(crtc->state);
12919 	}
12920 
12921 	/* Perform vblank evasion around commit operation */
12922 	intel_pipe_update_start(intel_crtc);
12923 
12924 	if (modeset)
12925 		goto out;
12926 
12927 	if (intel_cstate->update_pipe)
12928 		intel_update_pipe_config(intel_crtc, old_intel_cstate);
12929 	else if (INTEL_GEN(dev_priv) >= 9)
12930 		skl_detach_scalers(intel_crtc);
12931 
12932 out:
12933 	if (dev_priv->display.atomic_update_watermarks)
12934 		dev_priv->display.atomic_update_watermarks(old_intel_state,
12935 							   intel_cstate);
12936 }
12937 
intel_finish_crtc_commit(struct drm_crtc * crtc,struct drm_crtc_state * old_crtc_state)12938 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
12939 				     struct drm_crtc_state *old_crtc_state)
12940 {
12941 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12942 
12943 	intel_pipe_update_end(intel_crtc);
12944 }
12945 
12946 /**
12947  * intel_plane_destroy - destroy a plane
12948  * @plane: plane to destroy
12949  *
12950  * Common destruction function for all types of planes (primary, cursor,
12951  * sprite).
12952  */
intel_plane_destroy(struct drm_plane * plane)12953 void intel_plane_destroy(struct drm_plane *plane)
12954 {
12955 	drm_plane_cleanup(plane);
12956 	kfree(to_intel_plane(plane));
12957 }
12958 
i8xx_mod_supported(uint32_t format,uint64_t modifier)12959 static bool i8xx_mod_supported(uint32_t format, uint64_t modifier)
12960 {
12961 	switch (format) {
12962 	case DRM_FORMAT_C8:
12963 	case DRM_FORMAT_RGB565:
12964 	case DRM_FORMAT_XRGB1555:
12965 	case DRM_FORMAT_XRGB8888:
12966 		return modifier == DRM_FORMAT_MOD_LINEAR ||
12967 			modifier == I915_FORMAT_MOD_X_TILED;
12968 	default:
12969 		return false;
12970 	}
12971 }
12972 
i965_mod_supported(uint32_t format,uint64_t modifier)12973 static bool i965_mod_supported(uint32_t format, uint64_t modifier)
12974 {
12975 	switch (format) {
12976 	case DRM_FORMAT_C8:
12977 	case DRM_FORMAT_RGB565:
12978 	case DRM_FORMAT_XRGB8888:
12979 	case DRM_FORMAT_XBGR8888:
12980 	case DRM_FORMAT_XRGB2101010:
12981 	case DRM_FORMAT_XBGR2101010:
12982 		return modifier == DRM_FORMAT_MOD_LINEAR ||
12983 			modifier == I915_FORMAT_MOD_X_TILED;
12984 	default:
12985 		return false;
12986 	}
12987 }
12988 
skl_mod_supported(uint32_t format,uint64_t modifier)12989 static bool skl_mod_supported(uint32_t format, uint64_t modifier)
12990 {
12991 	switch (format) {
12992 	case DRM_FORMAT_XRGB8888:
12993 	case DRM_FORMAT_XBGR8888:
12994 	case DRM_FORMAT_ARGB8888:
12995 	case DRM_FORMAT_ABGR8888:
12996 		if (modifier == I915_FORMAT_MOD_Yf_TILED_CCS ||
12997 		    modifier == I915_FORMAT_MOD_Y_TILED_CCS)
12998 			return true;
12999 		/* fall through */
13000 	case DRM_FORMAT_RGB565:
13001 	case DRM_FORMAT_XRGB2101010:
13002 	case DRM_FORMAT_XBGR2101010:
13003 	case DRM_FORMAT_YUYV:
13004 	case DRM_FORMAT_YVYU:
13005 	case DRM_FORMAT_UYVY:
13006 	case DRM_FORMAT_VYUY:
13007 		if (modifier == I915_FORMAT_MOD_Yf_TILED)
13008 			return true;
13009 		/* fall through */
13010 	case DRM_FORMAT_C8:
13011 		if (modifier == DRM_FORMAT_MOD_LINEAR ||
13012 		    modifier == I915_FORMAT_MOD_X_TILED ||
13013 		    modifier == I915_FORMAT_MOD_Y_TILED)
13014 			return true;
13015 		/* fall through */
13016 	default:
13017 		return false;
13018 	}
13019 }
13020 
intel_primary_plane_format_mod_supported(struct drm_plane * plane,uint32_t format,uint64_t modifier)13021 static bool intel_primary_plane_format_mod_supported(struct drm_plane *plane,
13022 						     uint32_t format,
13023 						     uint64_t modifier)
13024 {
13025 	struct drm_i915_private *dev_priv = to_i915(plane->dev);
13026 
13027 	if (WARN_ON(modifier == DRM_FORMAT_MOD_INVALID))
13028 		return false;
13029 
13030 	if ((modifier >> 56) != DRM_FORMAT_MOD_VENDOR_INTEL &&
13031 	    modifier != DRM_FORMAT_MOD_LINEAR)
13032 		return false;
13033 
13034 	if (INTEL_GEN(dev_priv) >= 9)
13035 		return skl_mod_supported(format, modifier);
13036 	else if (INTEL_GEN(dev_priv) >= 4)
13037 		return i965_mod_supported(format, modifier);
13038 	else
13039 		return i8xx_mod_supported(format, modifier);
13040 
13041 	unreachable();
13042 }
13043 
intel_cursor_plane_format_mod_supported(struct drm_plane * plane,uint32_t format,uint64_t modifier)13044 static bool intel_cursor_plane_format_mod_supported(struct drm_plane *plane,
13045 						    uint32_t format,
13046 						    uint64_t modifier)
13047 {
13048 	if (WARN_ON(modifier == DRM_FORMAT_MOD_INVALID))
13049 		return false;
13050 
13051 	return modifier == DRM_FORMAT_MOD_LINEAR && format == DRM_FORMAT_ARGB8888;
13052 }
13053 
13054 static struct drm_plane_funcs intel_plane_funcs = {
13055 	.update_plane = drm_atomic_helper_update_plane,
13056 	.disable_plane = drm_atomic_helper_disable_plane,
13057 	.destroy = intel_plane_destroy,
13058 	.atomic_get_property = intel_plane_atomic_get_property,
13059 	.atomic_set_property = intel_plane_atomic_set_property,
13060 	.atomic_duplicate_state = intel_plane_duplicate_state,
13061 	.atomic_destroy_state = intel_plane_destroy_state,
13062 	.format_mod_supported = intel_primary_plane_format_mod_supported,
13063 };
13064 
13065 static int
intel_legacy_cursor_update(struct drm_plane * plane,struct drm_crtc * crtc,struct drm_framebuffer * fb,int crtc_x,int crtc_y,unsigned int crtc_w,unsigned int crtc_h,uint32_t src_x,uint32_t src_y,uint32_t src_w,uint32_t src_h,struct drm_modeset_acquire_ctx * ctx)13066 intel_legacy_cursor_update(struct drm_plane *plane,
13067 			   struct drm_crtc *crtc,
13068 			   struct drm_framebuffer *fb,
13069 			   int crtc_x, int crtc_y,
13070 			   unsigned int crtc_w, unsigned int crtc_h,
13071 			   uint32_t src_x, uint32_t src_y,
13072 			   uint32_t src_w, uint32_t src_h,
13073 			   struct drm_modeset_acquire_ctx *ctx)
13074 {
13075 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
13076 	int ret;
13077 	struct drm_plane_state *old_plane_state, *new_plane_state;
13078 	struct intel_plane *intel_plane = to_intel_plane(plane);
13079 	struct drm_framebuffer *old_fb;
13080 	struct drm_crtc_state *crtc_state = crtc->state;
13081 	struct i915_vma *old_vma, *vma;
13082 
13083 	/*
13084 	 * When crtc is inactive or there is a modeset pending,
13085 	 * wait for it to complete in the slowpath
13086 	 */
13087 	if (!crtc_state->active || needs_modeset(crtc_state) ||
13088 	    to_intel_crtc_state(crtc_state)->update_pipe)
13089 		goto slow;
13090 
13091 	old_plane_state = plane->state;
13092 
13093 	/*
13094 	 * If any parameters change that may affect watermarks,
13095 	 * take the slowpath. Only changing fb or position should be
13096 	 * in the fastpath.
13097 	 */
13098 	if (old_plane_state->crtc != crtc ||
13099 	    old_plane_state->src_w != src_w ||
13100 	    old_plane_state->src_h != src_h ||
13101 	    old_plane_state->crtc_w != crtc_w ||
13102 	    old_plane_state->crtc_h != crtc_h ||
13103 	    !old_plane_state->fb != !fb)
13104 		goto slow;
13105 
13106 	new_plane_state = intel_plane_duplicate_state(plane);
13107 	if (!new_plane_state)
13108 		return -ENOMEM;
13109 
13110 	drm_atomic_set_fb_for_plane(new_plane_state, fb);
13111 
13112 	new_plane_state->src_x = src_x;
13113 	new_plane_state->src_y = src_y;
13114 	new_plane_state->src_w = src_w;
13115 	new_plane_state->src_h = src_h;
13116 	new_plane_state->crtc_x = crtc_x;
13117 	new_plane_state->crtc_y = crtc_y;
13118 	new_plane_state->crtc_w = crtc_w;
13119 	new_plane_state->crtc_h = crtc_h;
13120 
13121 	ret = intel_plane_atomic_check_with_state(to_intel_crtc_state(crtc->state),
13122 						  to_intel_plane_state(new_plane_state));
13123 	if (ret)
13124 		goto out_free;
13125 
13126 	ret = mutex_lock_interruptible(&dev_priv->drm.struct_mutex);
13127 	if (ret)
13128 		goto out_free;
13129 
13130 	if (INTEL_INFO(dev_priv)->cursor_needs_physical) {
13131 		int align = intel_cursor_alignment(dev_priv);
13132 
13133 		ret = i915_gem_object_attach_phys(intel_fb_obj(fb), align);
13134 		if (ret) {
13135 			DRM_DEBUG_KMS("failed to attach phys object\n");
13136 			goto out_unlock;
13137 		}
13138 	} else {
13139 		vma = intel_pin_and_fence_fb_obj(fb, new_plane_state->rotation);
13140 		if (IS_ERR(vma)) {
13141 			DRM_DEBUG_KMS("failed to pin object\n");
13142 
13143 			ret = PTR_ERR(vma);
13144 			goto out_unlock;
13145 		}
13146 
13147 		to_intel_plane_state(new_plane_state)->vma = vma;
13148 	}
13149 
13150 	old_fb = old_plane_state->fb;
13151 	old_vma = to_intel_plane_state(old_plane_state)->vma;
13152 
13153 	i915_gem_track_fb(intel_fb_obj(old_fb), intel_fb_obj(fb),
13154 			  intel_plane->frontbuffer_bit);
13155 
13156 	/* Swap plane state */
13157 	new_plane_state->fence = old_plane_state->fence;
13158 	*to_intel_plane_state(old_plane_state) = *to_intel_plane_state(new_plane_state);
13159 	new_plane_state->fence = NULL;
13160 	new_plane_state->fb = old_fb;
13161 	to_intel_plane_state(new_plane_state)->vma = NULL;
13162 
13163 	if (plane->state->visible) {
13164 		trace_intel_update_plane(plane, to_intel_crtc(crtc));
13165 		intel_plane->update_plane(intel_plane,
13166 					  to_intel_crtc_state(crtc->state),
13167 					  to_intel_plane_state(plane->state));
13168 	} else {
13169 		trace_intel_disable_plane(plane, to_intel_crtc(crtc));
13170 		intel_plane->disable_plane(intel_plane, to_intel_crtc(crtc));
13171 	}
13172 
13173 	if (old_vma)
13174 		intel_unpin_fb_vma(old_vma);
13175 
13176 out_unlock:
13177 	mutex_unlock(&dev_priv->drm.struct_mutex);
13178 out_free:
13179 	intel_plane_destroy_state(plane, new_plane_state);
13180 	return ret;
13181 
13182 slow:
13183 	return drm_atomic_helper_update_plane(plane, crtc, fb,
13184 					      crtc_x, crtc_y, crtc_w, crtc_h,
13185 					      src_x, src_y, src_w, src_h, ctx);
13186 }
13187 
13188 static const struct drm_plane_funcs intel_cursor_plane_funcs = {
13189 	.update_plane = intel_legacy_cursor_update,
13190 	.disable_plane = drm_atomic_helper_disable_plane,
13191 	.destroy = intel_plane_destroy,
13192 	.atomic_get_property = intel_plane_atomic_get_property,
13193 	.atomic_set_property = intel_plane_atomic_set_property,
13194 	.atomic_duplicate_state = intel_plane_duplicate_state,
13195 	.atomic_destroy_state = intel_plane_destroy_state,
13196 	.format_mod_supported = intel_cursor_plane_format_mod_supported,
13197 };
13198 
13199 static struct intel_plane *
intel_primary_plane_create(struct drm_i915_private * dev_priv,enum pipe pipe)13200 intel_primary_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe)
13201 {
13202 	struct intel_plane *primary = NULL;
13203 	struct intel_plane_state *state = NULL;
13204 	const uint32_t *intel_primary_formats;
13205 	unsigned int supported_rotations;
13206 	unsigned int num_formats;
13207 	const uint64_t *modifiers;
13208 	int ret;
13209 
13210 	primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13211 	if (!primary) {
13212 		ret = -ENOMEM;
13213 		goto fail;
13214 	}
13215 
13216 	state = intel_create_plane_state(&primary->base);
13217 	if (!state) {
13218 		ret = -ENOMEM;
13219 		goto fail;
13220 	}
13221 
13222 	primary->base.state = &state->base;
13223 
13224 	primary->can_scale = false;
13225 	primary->max_downscale = 1;
13226 	if (INTEL_GEN(dev_priv) >= 9) {
13227 		primary->can_scale = true;
13228 		state->scaler_id = -1;
13229 	}
13230 	primary->pipe = pipe;
13231 	/*
13232 	 * On gen2/3 only plane A can do FBC, but the panel fitter and LVDS
13233 	 * port is hooked to pipe B. Hence we want plane A feeding pipe B.
13234 	 */
13235 	if (HAS_FBC(dev_priv) && INTEL_GEN(dev_priv) < 4)
13236 		primary->plane = (enum plane) !pipe;
13237 	else
13238 		primary->plane = (enum plane) pipe;
13239 	primary->id = PLANE_PRIMARY;
13240 	primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
13241 	primary->check_plane = intel_check_primary_plane;
13242 
13243 	if (INTEL_GEN(dev_priv) >= 10) {
13244 		intel_primary_formats = skl_primary_formats;
13245 		num_formats = ARRAY_SIZE(skl_primary_formats);
13246 		modifiers = skl_format_modifiers_ccs;
13247 
13248 		primary->update_plane = skylake_update_primary_plane;
13249 		primary->disable_plane = skylake_disable_primary_plane;
13250 		primary->get_hw_state = skl_plane_get_hw_state;
13251 	} else if (INTEL_GEN(dev_priv) >= 9) {
13252 		intel_primary_formats = skl_primary_formats;
13253 		num_formats = ARRAY_SIZE(skl_primary_formats);
13254 		if (pipe < PIPE_C)
13255 			modifiers = skl_format_modifiers_ccs;
13256 		else
13257 			modifiers = skl_format_modifiers_noccs;
13258 
13259 		primary->update_plane = skylake_update_primary_plane;
13260 		primary->disable_plane = skylake_disable_primary_plane;
13261 		primary->get_hw_state = skl_plane_get_hw_state;
13262 	} else if (INTEL_GEN(dev_priv) >= 4) {
13263 		intel_primary_formats = i965_primary_formats;
13264 		num_formats = ARRAY_SIZE(i965_primary_formats);
13265 		modifiers = i9xx_format_modifiers;
13266 
13267 		primary->update_plane = i9xx_update_primary_plane;
13268 		primary->disable_plane = i9xx_disable_primary_plane;
13269 		primary->get_hw_state = i9xx_plane_get_hw_state;
13270 	} else {
13271 		intel_primary_formats = i8xx_primary_formats;
13272 		num_formats = ARRAY_SIZE(i8xx_primary_formats);
13273 		modifiers = i9xx_format_modifiers;
13274 
13275 		primary->update_plane = i9xx_update_primary_plane;
13276 		primary->disable_plane = i9xx_disable_primary_plane;
13277 		primary->get_hw_state = i9xx_plane_get_hw_state;
13278 	}
13279 
13280 	if (INTEL_GEN(dev_priv) >= 9)
13281 		ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
13282 					       0, &intel_plane_funcs,
13283 					       intel_primary_formats, num_formats,
13284 					       modifiers,
13285 					       DRM_PLANE_TYPE_PRIMARY,
13286 					       "plane 1%c", pipe_name(pipe));
13287 	else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
13288 		ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
13289 					       0, &intel_plane_funcs,
13290 					       intel_primary_formats, num_formats,
13291 					       modifiers,
13292 					       DRM_PLANE_TYPE_PRIMARY,
13293 					       "primary %c", pipe_name(pipe));
13294 	else
13295 		ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
13296 					       0, &intel_plane_funcs,
13297 					       intel_primary_formats, num_formats,
13298 					       modifiers,
13299 					       DRM_PLANE_TYPE_PRIMARY,
13300 					       "plane %c", plane_name(primary->plane));
13301 	if (ret)
13302 		goto fail;
13303 
13304 	if (INTEL_GEN(dev_priv) >= 9) {
13305 		supported_rotations =
13306 			DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_90 |
13307 			DRM_MODE_ROTATE_180 | DRM_MODE_ROTATE_270;
13308 	} else if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
13309 		supported_rotations =
13310 			DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180 |
13311 			DRM_MODE_REFLECT_X;
13312 	} else if (INTEL_GEN(dev_priv) >= 4) {
13313 		supported_rotations =
13314 			DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180;
13315 	} else {
13316 		supported_rotations = DRM_MODE_ROTATE_0;
13317 	}
13318 
13319 	if (INTEL_GEN(dev_priv) >= 4)
13320 		drm_plane_create_rotation_property(&primary->base,
13321 						   DRM_MODE_ROTATE_0,
13322 						   supported_rotations);
13323 
13324 	drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13325 
13326 	return primary;
13327 
13328 fail:
13329 	kfree(state);
13330 	kfree(primary);
13331 
13332 	return ERR_PTR(ret);
13333 }
13334 
13335 static struct intel_plane *
intel_cursor_plane_create(struct drm_i915_private * dev_priv,enum pipe pipe)13336 intel_cursor_plane_create(struct drm_i915_private *dev_priv,
13337 			  enum pipe pipe)
13338 {
13339 	struct intel_plane *cursor = NULL;
13340 	struct intel_plane_state *state = NULL;
13341 	int ret;
13342 
13343 	cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
13344 	if (!cursor) {
13345 		ret = -ENOMEM;
13346 		goto fail;
13347 	}
13348 
13349 	state = intel_create_plane_state(&cursor->base);
13350 	if (!state) {
13351 		ret = -ENOMEM;
13352 		goto fail;
13353 	}
13354 
13355 	cursor->base.state = &state->base;
13356 
13357 	cursor->can_scale = false;
13358 	cursor->max_downscale = 1;
13359 	cursor->pipe = pipe;
13360 	cursor->plane = pipe;
13361 	cursor->id = PLANE_CURSOR;
13362 	cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
13363 
13364 	if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) {
13365 		cursor->update_plane = i845_update_cursor;
13366 		cursor->disable_plane = i845_disable_cursor;
13367 		cursor->get_hw_state = i845_cursor_get_hw_state;
13368 		cursor->check_plane = i845_check_cursor;
13369 	} else {
13370 		cursor->update_plane = i9xx_update_cursor;
13371 		cursor->disable_plane = i9xx_disable_cursor;
13372 		cursor->get_hw_state = i9xx_cursor_get_hw_state;
13373 		cursor->check_plane = i9xx_check_cursor;
13374 	}
13375 
13376 	cursor->cursor.base = ~0;
13377 	cursor->cursor.cntl = ~0;
13378 
13379 	if (IS_I845G(dev_priv) || IS_I865G(dev_priv) || HAS_CUR_FBC(dev_priv))
13380 		cursor->cursor.size = ~0;
13381 
13382 	ret = drm_universal_plane_init(&dev_priv->drm, &cursor->base,
13383 				       0, &intel_cursor_plane_funcs,
13384 				       intel_cursor_formats,
13385 				       ARRAY_SIZE(intel_cursor_formats),
13386 				       cursor_format_modifiers,
13387 				       DRM_PLANE_TYPE_CURSOR,
13388 				       "cursor %c", pipe_name(pipe));
13389 	if (ret)
13390 		goto fail;
13391 
13392 	if (INTEL_GEN(dev_priv) >= 4)
13393 		drm_plane_create_rotation_property(&cursor->base,
13394 						   DRM_MODE_ROTATE_0,
13395 						   DRM_MODE_ROTATE_0 |
13396 						   DRM_MODE_ROTATE_180);
13397 
13398 	if (INTEL_GEN(dev_priv) >= 9)
13399 		state->scaler_id = -1;
13400 
13401 	drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
13402 
13403 	return cursor;
13404 
13405 fail:
13406 	kfree(state);
13407 	kfree(cursor);
13408 
13409 	return ERR_PTR(ret);
13410 }
13411 
intel_crtc_init_scalers(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)13412 static void intel_crtc_init_scalers(struct intel_crtc *crtc,
13413 				    struct intel_crtc_state *crtc_state)
13414 {
13415 	struct intel_crtc_scaler_state *scaler_state =
13416 		&crtc_state->scaler_state;
13417 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
13418 	int i;
13419 
13420 	crtc->num_scalers = dev_priv->info.num_scalers[crtc->pipe];
13421 	if (!crtc->num_scalers)
13422 		return;
13423 
13424 	for (i = 0; i < crtc->num_scalers; i++) {
13425 		struct intel_scaler *scaler = &scaler_state->scalers[i];
13426 
13427 		scaler->in_use = 0;
13428 		scaler->mode = PS_SCALER_MODE_DYN;
13429 	}
13430 
13431 	scaler_state->scaler_id = -1;
13432 }
13433 
intel_crtc_init(struct drm_i915_private * dev_priv,enum pipe pipe)13434 static int intel_crtc_init(struct drm_i915_private *dev_priv, enum pipe pipe)
13435 {
13436 	struct intel_crtc *intel_crtc;
13437 	struct intel_crtc_state *crtc_state = NULL;
13438 	struct intel_plane *primary = NULL;
13439 	struct intel_plane *cursor = NULL;
13440 	int sprite, ret;
13441 
13442 	intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
13443 	if (!intel_crtc)
13444 		return -ENOMEM;
13445 
13446 	crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
13447 	if (!crtc_state) {
13448 		ret = -ENOMEM;
13449 		goto fail;
13450 	}
13451 	intel_crtc->config = crtc_state;
13452 	intel_crtc->base.state = &crtc_state->base;
13453 	crtc_state->base.crtc = &intel_crtc->base;
13454 
13455 	primary = intel_primary_plane_create(dev_priv, pipe);
13456 	if (IS_ERR(primary)) {
13457 		ret = PTR_ERR(primary);
13458 		goto fail;
13459 	}
13460 	intel_crtc->plane_ids_mask |= BIT(primary->id);
13461 
13462 	for_each_sprite(dev_priv, pipe, sprite) {
13463 		struct intel_plane *plane;
13464 
13465 		plane = intel_sprite_plane_create(dev_priv, pipe, sprite);
13466 		if (IS_ERR(plane)) {
13467 			ret = PTR_ERR(plane);
13468 			goto fail;
13469 		}
13470 		intel_crtc->plane_ids_mask |= BIT(plane->id);
13471 	}
13472 
13473 	cursor = intel_cursor_plane_create(dev_priv, pipe);
13474 	if (IS_ERR(cursor)) {
13475 		ret = PTR_ERR(cursor);
13476 		goto fail;
13477 	}
13478 	intel_crtc->plane_ids_mask |= BIT(cursor->id);
13479 
13480 	ret = drm_crtc_init_with_planes(&dev_priv->drm, &intel_crtc->base,
13481 					&primary->base, &cursor->base,
13482 					&intel_crtc_funcs,
13483 					"pipe %c", pipe_name(pipe));
13484 	if (ret)
13485 		goto fail;
13486 
13487 	intel_crtc->pipe = pipe;
13488 	intel_crtc->plane = primary->plane;
13489 
13490 	/* initialize shared scalers */
13491 	intel_crtc_init_scalers(intel_crtc, crtc_state);
13492 
13493 	BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
13494 	       dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
13495 	dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = intel_crtc;
13496 	dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = intel_crtc;
13497 
13498 	drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
13499 
13500 	intel_color_init(&intel_crtc->base);
13501 
13502 	WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
13503 
13504 	return 0;
13505 
13506 fail:
13507 	/*
13508 	 * drm_mode_config_cleanup() will free up any
13509 	 * crtcs/planes already initialized.
13510 	 */
13511 	kfree(crtc_state);
13512 	kfree(intel_crtc);
13513 
13514 	return ret;
13515 }
13516 
intel_get_pipe_from_connector(struct intel_connector * connector)13517 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
13518 {
13519 	struct drm_device *dev = connector->base.dev;
13520 
13521 	WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
13522 
13523 	if (!connector->base.state->crtc)
13524 		return INVALID_PIPE;
13525 
13526 	return to_intel_crtc(connector->base.state->crtc)->pipe;
13527 }
13528 
intel_get_pipe_from_crtc_id(struct drm_device * dev,void * data,struct drm_file * file)13529 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
13530 				struct drm_file *file)
13531 {
13532 	struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
13533 	struct drm_crtc *drmmode_crtc;
13534 	struct intel_crtc *crtc;
13535 
13536 	drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
13537 	if (!drmmode_crtc)
13538 		return -ENOENT;
13539 
13540 	crtc = to_intel_crtc(drmmode_crtc);
13541 	pipe_from_crtc_id->pipe = crtc->pipe;
13542 
13543 	return 0;
13544 }
13545 
intel_encoder_clones(struct intel_encoder * encoder)13546 static int intel_encoder_clones(struct intel_encoder *encoder)
13547 {
13548 	struct drm_device *dev = encoder->base.dev;
13549 	struct intel_encoder *source_encoder;
13550 	int index_mask = 0;
13551 	int entry = 0;
13552 
13553 	for_each_intel_encoder(dev, source_encoder) {
13554 		if (encoders_cloneable(encoder, source_encoder))
13555 			index_mask |= (1 << entry);
13556 
13557 		entry++;
13558 	}
13559 
13560 	return index_mask;
13561 }
13562 
has_edp_a(struct drm_i915_private * dev_priv)13563 static bool has_edp_a(struct drm_i915_private *dev_priv)
13564 {
13565 	if (!IS_MOBILE(dev_priv))
13566 		return false;
13567 
13568 	if ((I915_READ(DP_A) & DP_DETECTED) == 0)
13569 		return false;
13570 
13571 	if (IS_GEN5(dev_priv) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
13572 		return false;
13573 
13574 	return true;
13575 }
13576 
intel_crt_present(struct drm_i915_private * dev_priv)13577 static bool intel_crt_present(struct drm_i915_private *dev_priv)
13578 {
13579 	if (INTEL_GEN(dev_priv) >= 9)
13580 		return false;
13581 
13582 	if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv))
13583 		return false;
13584 
13585 	if (IS_CHERRYVIEW(dev_priv))
13586 		return false;
13587 
13588 	if (HAS_PCH_LPT_H(dev_priv) &&
13589 	    I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
13590 		return false;
13591 
13592 	/* DDI E can't be used if DDI A requires 4 lanes */
13593 	if (HAS_DDI(dev_priv) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
13594 		return false;
13595 
13596 	if (!dev_priv->vbt.int_crt_support)
13597 		return false;
13598 
13599 	return true;
13600 }
13601 
intel_pps_unlock_regs_wa(struct drm_i915_private * dev_priv)13602 void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv)
13603 {
13604 	int pps_num;
13605 	int pps_idx;
13606 
13607 	if (HAS_DDI(dev_priv))
13608 		return;
13609 	/*
13610 	 * This w/a is needed at least on CPT/PPT, but to be sure apply it
13611 	 * everywhere where registers can be write protected.
13612 	 */
13613 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
13614 		pps_num = 2;
13615 	else
13616 		pps_num = 1;
13617 
13618 	for (pps_idx = 0; pps_idx < pps_num; pps_idx++) {
13619 		u32 val = I915_READ(PP_CONTROL(pps_idx));
13620 
13621 		val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS;
13622 		I915_WRITE(PP_CONTROL(pps_idx), val);
13623 	}
13624 }
13625 
intel_pps_init(struct drm_i915_private * dev_priv)13626 static void intel_pps_init(struct drm_i915_private *dev_priv)
13627 {
13628 	if (HAS_PCH_SPLIT(dev_priv) || IS_GEN9_LP(dev_priv))
13629 		dev_priv->pps_mmio_base = PCH_PPS_BASE;
13630 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
13631 		dev_priv->pps_mmio_base = VLV_PPS_BASE;
13632 	else
13633 		dev_priv->pps_mmio_base = PPS_BASE;
13634 
13635 	intel_pps_unlock_regs_wa(dev_priv);
13636 }
13637 
intel_setup_outputs(struct drm_i915_private * dev_priv)13638 static void intel_setup_outputs(struct drm_i915_private *dev_priv)
13639 {
13640 	struct intel_encoder *encoder;
13641 	bool dpd_is_edp = false;
13642 
13643 	intel_pps_init(dev_priv);
13644 
13645 	/*
13646 	 * intel_edp_init_connector() depends on this completing first, to
13647 	 * prevent the registeration of both eDP and LVDS and the incorrect
13648 	 * sharing of the PPS.
13649 	 */
13650 	intel_lvds_init(dev_priv);
13651 
13652 	if (intel_crt_present(dev_priv))
13653 		intel_crt_init(dev_priv);
13654 
13655 	if (IS_GEN9_LP(dev_priv)) {
13656 		/*
13657 		 * FIXME: Broxton doesn't support port detection via the
13658 		 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
13659 		 * detect the ports.
13660 		 */
13661 		intel_ddi_init(dev_priv, PORT_A);
13662 		intel_ddi_init(dev_priv, PORT_B);
13663 		intel_ddi_init(dev_priv, PORT_C);
13664 
13665 		intel_dsi_init(dev_priv);
13666 	} else if (HAS_DDI(dev_priv)) {
13667 		int found;
13668 
13669 		/*
13670 		 * Haswell uses DDI functions to detect digital outputs.
13671 		 * On SKL pre-D0 the strap isn't connected, so we assume
13672 		 * it's there.
13673 		 */
13674 		found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
13675 		/* WaIgnoreDDIAStrap: skl */
13676 		if (found || IS_GEN9_BC(dev_priv))
13677 			intel_ddi_init(dev_priv, PORT_A);
13678 
13679 		/* DDI B, C and D detection is indicated by the SFUSE_STRAP
13680 		 * register */
13681 		found = I915_READ(SFUSE_STRAP);
13682 
13683 		if (found & SFUSE_STRAP_DDIB_DETECTED)
13684 			intel_ddi_init(dev_priv, PORT_B);
13685 		if (found & SFUSE_STRAP_DDIC_DETECTED)
13686 			intel_ddi_init(dev_priv, PORT_C);
13687 		if (found & SFUSE_STRAP_DDID_DETECTED)
13688 			intel_ddi_init(dev_priv, PORT_D);
13689 		/*
13690 		 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
13691 		 */
13692 		if (IS_GEN9_BC(dev_priv) &&
13693 		    (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
13694 		     dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
13695 		     dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
13696 			intel_ddi_init(dev_priv, PORT_E);
13697 
13698 	} else if (HAS_PCH_SPLIT(dev_priv)) {
13699 		int found;
13700 		dpd_is_edp = intel_dp_is_edp(dev_priv, PORT_D);
13701 
13702 		if (has_edp_a(dev_priv))
13703 			intel_dp_init(dev_priv, DP_A, PORT_A);
13704 
13705 		if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
13706 			/* PCH SDVOB multiplex with HDMIB */
13707 			found = intel_sdvo_init(dev_priv, PCH_SDVOB, PORT_B);
13708 			if (!found)
13709 				intel_hdmi_init(dev_priv, PCH_HDMIB, PORT_B);
13710 			if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
13711 				intel_dp_init(dev_priv, PCH_DP_B, PORT_B);
13712 		}
13713 
13714 		if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
13715 			intel_hdmi_init(dev_priv, PCH_HDMIC, PORT_C);
13716 
13717 		if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
13718 			intel_hdmi_init(dev_priv, PCH_HDMID, PORT_D);
13719 
13720 		if (I915_READ(PCH_DP_C) & DP_DETECTED)
13721 			intel_dp_init(dev_priv, PCH_DP_C, PORT_C);
13722 
13723 		if (I915_READ(PCH_DP_D) & DP_DETECTED)
13724 			intel_dp_init(dev_priv, PCH_DP_D, PORT_D);
13725 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
13726 		bool has_edp, has_port;
13727 
13728 		/*
13729 		 * The DP_DETECTED bit is the latched state of the DDC
13730 		 * SDA pin at boot. However since eDP doesn't require DDC
13731 		 * (no way to plug in a DP->HDMI dongle) the DDC pins for
13732 		 * eDP ports may have been muxed to an alternate function.
13733 		 * Thus we can't rely on the DP_DETECTED bit alone to detect
13734 		 * eDP ports. Consult the VBT as well as DP_DETECTED to
13735 		 * detect eDP ports.
13736 		 *
13737 		 * Sadly the straps seem to be missing sometimes even for HDMI
13738 		 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
13739 		 * and VBT for the presence of the port. Additionally we can't
13740 		 * trust the port type the VBT declares as we've seen at least
13741 		 * HDMI ports that the VBT claim are DP or eDP.
13742 		 */
13743 		has_edp = intel_dp_is_edp(dev_priv, PORT_B);
13744 		has_port = intel_bios_is_port_present(dev_priv, PORT_B);
13745 		if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port)
13746 			has_edp &= intel_dp_init(dev_priv, VLV_DP_B, PORT_B);
13747 		if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
13748 			intel_hdmi_init(dev_priv, VLV_HDMIB, PORT_B);
13749 
13750 		has_edp = intel_dp_is_edp(dev_priv, PORT_C);
13751 		has_port = intel_bios_is_port_present(dev_priv, PORT_C);
13752 		if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port)
13753 			has_edp &= intel_dp_init(dev_priv, VLV_DP_C, PORT_C);
13754 		if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
13755 			intel_hdmi_init(dev_priv, VLV_HDMIC, PORT_C);
13756 
13757 		if (IS_CHERRYVIEW(dev_priv)) {
13758 			/*
13759 			 * eDP not supported on port D,
13760 			 * so no need to worry about it
13761 			 */
13762 			has_port = intel_bios_is_port_present(dev_priv, PORT_D);
13763 			if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port)
13764 				intel_dp_init(dev_priv, CHV_DP_D, PORT_D);
13765 			if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port)
13766 				intel_hdmi_init(dev_priv, CHV_HDMID, PORT_D);
13767 		}
13768 
13769 		intel_dsi_init(dev_priv);
13770 	} else if (!IS_GEN2(dev_priv) && !IS_PINEVIEW(dev_priv)) {
13771 		bool found = false;
13772 
13773 		if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
13774 			DRM_DEBUG_KMS("probing SDVOB\n");
13775 			found = intel_sdvo_init(dev_priv, GEN3_SDVOB, PORT_B);
13776 			if (!found && IS_G4X(dev_priv)) {
13777 				DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
13778 				intel_hdmi_init(dev_priv, GEN4_HDMIB, PORT_B);
13779 			}
13780 
13781 			if (!found && IS_G4X(dev_priv))
13782 				intel_dp_init(dev_priv, DP_B, PORT_B);
13783 		}
13784 
13785 		/* Before G4X SDVOC doesn't have its own detect register */
13786 
13787 		if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
13788 			DRM_DEBUG_KMS("probing SDVOC\n");
13789 			found = intel_sdvo_init(dev_priv, GEN3_SDVOC, PORT_C);
13790 		}
13791 
13792 		if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
13793 
13794 			if (IS_G4X(dev_priv)) {
13795 				DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
13796 				intel_hdmi_init(dev_priv, GEN4_HDMIC, PORT_C);
13797 			}
13798 			if (IS_G4X(dev_priv))
13799 				intel_dp_init(dev_priv, DP_C, PORT_C);
13800 		}
13801 
13802 		if (IS_G4X(dev_priv) && (I915_READ(DP_D) & DP_DETECTED))
13803 			intel_dp_init(dev_priv, DP_D, PORT_D);
13804 	} else if (IS_GEN2(dev_priv))
13805 		intel_dvo_init(dev_priv);
13806 
13807 	if (SUPPORTS_TV(dev_priv))
13808 		intel_tv_init(dev_priv);
13809 
13810 	intel_psr_init(dev_priv);
13811 
13812 	for_each_intel_encoder(&dev_priv->drm, encoder) {
13813 		encoder->base.possible_crtcs = encoder->crtc_mask;
13814 		encoder->base.possible_clones =
13815 			intel_encoder_clones(encoder);
13816 	}
13817 
13818 	intel_init_pch_refclk(dev_priv);
13819 
13820 	drm_helper_move_panel_connectors_to_head(&dev_priv->drm);
13821 }
13822 
intel_user_framebuffer_destroy(struct drm_framebuffer * fb)13823 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
13824 {
13825 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
13826 
13827 	drm_framebuffer_cleanup(fb);
13828 
13829 	i915_gem_object_lock(intel_fb->obj);
13830 	WARN_ON(!intel_fb->obj->framebuffer_references--);
13831 	i915_gem_object_unlock(intel_fb->obj);
13832 
13833 	i915_gem_object_put(intel_fb->obj);
13834 
13835 	kfree(intel_fb);
13836 }
13837 
intel_user_framebuffer_create_handle(struct drm_framebuffer * fb,struct drm_file * file,unsigned int * handle)13838 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
13839 						struct drm_file *file,
13840 						unsigned int *handle)
13841 {
13842 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
13843 	struct drm_i915_gem_object *obj = intel_fb->obj;
13844 
13845 	if (obj->userptr.mm) {
13846 		DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
13847 		return -EINVAL;
13848 	}
13849 
13850 	return drm_gem_handle_create(file, &obj->base, handle);
13851 }
13852 
intel_user_framebuffer_dirty(struct drm_framebuffer * fb,struct drm_file * file,unsigned flags,unsigned color,struct drm_clip_rect * clips,unsigned num_clips)13853 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
13854 					struct drm_file *file,
13855 					unsigned flags, unsigned color,
13856 					struct drm_clip_rect *clips,
13857 					unsigned num_clips)
13858 {
13859 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13860 
13861 	i915_gem_object_flush_if_display(obj);
13862 	intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
13863 
13864 	return 0;
13865 }
13866 
13867 static const struct drm_framebuffer_funcs intel_fb_funcs = {
13868 	.destroy = intel_user_framebuffer_destroy,
13869 	.create_handle = intel_user_framebuffer_create_handle,
13870 	.dirty = intel_user_framebuffer_dirty,
13871 };
13872 
13873 static
intel_fb_pitch_limit(struct drm_i915_private * dev_priv,uint64_t fb_modifier,uint32_t pixel_format)13874 u32 intel_fb_pitch_limit(struct drm_i915_private *dev_priv,
13875 			 uint64_t fb_modifier, uint32_t pixel_format)
13876 {
13877 	u32 gen = INTEL_GEN(dev_priv);
13878 
13879 	if (gen >= 9) {
13880 		int cpp = drm_format_plane_cpp(pixel_format, 0);
13881 
13882 		/* "The stride in bytes must not exceed the of the size of 8K
13883 		 *  pixels and 32K bytes."
13884 		 */
13885 		return min(8192 * cpp, 32768);
13886 	} else if (gen >= 5 && !HAS_GMCH_DISPLAY(dev_priv)) {
13887 		return 32*1024;
13888 	} else if (gen >= 4) {
13889 		if (fb_modifier == I915_FORMAT_MOD_X_TILED)
13890 			return 16*1024;
13891 		else
13892 			return 32*1024;
13893 	} else if (gen >= 3) {
13894 		if (fb_modifier == I915_FORMAT_MOD_X_TILED)
13895 			return 8*1024;
13896 		else
13897 			return 16*1024;
13898 	} else {
13899 		/* XXX DSPC is limited to 4k tiled */
13900 		return 8*1024;
13901 	}
13902 }
13903 
intel_framebuffer_init(struct intel_framebuffer * intel_fb,struct drm_i915_gem_object * obj,struct drm_mode_fb_cmd2 * mode_cmd)13904 static int intel_framebuffer_init(struct intel_framebuffer *intel_fb,
13905 				  struct drm_i915_gem_object *obj,
13906 				  struct drm_mode_fb_cmd2 *mode_cmd)
13907 {
13908 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
13909 	struct drm_framebuffer *fb = &intel_fb->base;
13910 	struct drm_format_name_buf format_name;
13911 	u32 pitch_limit;
13912 	unsigned int tiling, stride;
13913 	int ret = -EINVAL;
13914 	int i;
13915 
13916 	i915_gem_object_lock(obj);
13917 	obj->framebuffer_references++;
13918 	tiling = i915_gem_object_get_tiling(obj);
13919 	stride = i915_gem_object_get_stride(obj);
13920 	i915_gem_object_unlock(obj);
13921 
13922 	if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
13923 		/*
13924 		 * If there's a fence, enforce that
13925 		 * the fb modifier and tiling mode match.
13926 		 */
13927 		if (tiling != I915_TILING_NONE &&
13928 		    tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
13929 			DRM_DEBUG_KMS("tiling_mode doesn't match fb modifier\n");
13930 			goto err;
13931 		}
13932 	} else {
13933 		if (tiling == I915_TILING_X) {
13934 			mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
13935 		} else if (tiling == I915_TILING_Y) {
13936 			DRM_DEBUG_KMS("No Y tiling for legacy addfb\n");
13937 			goto err;
13938 		}
13939 	}
13940 
13941 	/* Passed in modifier sanity checking. */
13942 	switch (mode_cmd->modifier[0]) {
13943 	case I915_FORMAT_MOD_Y_TILED_CCS:
13944 	case I915_FORMAT_MOD_Yf_TILED_CCS:
13945 		switch (mode_cmd->pixel_format) {
13946 		case DRM_FORMAT_XBGR8888:
13947 		case DRM_FORMAT_ABGR8888:
13948 		case DRM_FORMAT_XRGB8888:
13949 		case DRM_FORMAT_ARGB8888:
13950 			break;
13951 		default:
13952 			DRM_DEBUG_KMS("RC supported only with RGB8888 formats\n");
13953 			goto err;
13954 		}
13955 		/* fall through */
13956 	case I915_FORMAT_MOD_Y_TILED:
13957 	case I915_FORMAT_MOD_Yf_TILED:
13958 		if (INTEL_GEN(dev_priv) < 9) {
13959 			DRM_DEBUG_KMS("Unsupported tiling 0x%llx!\n",
13960 				      mode_cmd->modifier[0]);
13961 			goto err;
13962 		}
13963 	case DRM_FORMAT_MOD_LINEAR:
13964 	case I915_FORMAT_MOD_X_TILED:
13965 		break;
13966 	default:
13967 		DRM_DEBUG_KMS("Unsupported fb modifier 0x%llx!\n",
13968 			      mode_cmd->modifier[0]);
13969 		goto err;
13970 	}
13971 
13972 	/*
13973 	 * gen2/3 display engine uses the fence if present,
13974 	 * so the tiling mode must match the fb modifier exactly.
13975 	 */
13976 	if (INTEL_INFO(dev_priv)->gen < 4 &&
13977 	    tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
13978 		DRM_DEBUG_KMS("tiling_mode must match fb modifier exactly on gen2/3\n");
13979 		goto err;
13980 	}
13981 
13982 	pitch_limit = intel_fb_pitch_limit(dev_priv, mode_cmd->modifier[0],
13983 					   mode_cmd->pixel_format);
13984 	if (mode_cmd->pitches[0] > pitch_limit) {
13985 		DRM_DEBUG_KMS("%s pitch (%u) must be at most %d\n",
13986 			      mode_cmd->modifier[0] != DRM_FORMAT_MOD_LINEAR ?
13987 			      "tiled" : "linear",
13988 			      mode_cmd->pitches[0], pitch_limit);
13989 		goto err;
13990 	}
13991 
13992 	/*
13993 	 * If there's a fence, enforce that
13994 	 * the fb pitch and fence stride match.
13995 	 */
13996 	if (tiling != I915_TILING_NONE && mode_cmd->pitches[0] != stride) {
13997 		DRM_DEBUG_KMS("pitch (%d) must match tiling stride (%d)\n",
13998 			      mode_cmd->pitches[0], stride);
13999 		goto err;
14000 	}
14001 
14002 	/* Reject formats not supported by any plane early. */
14003 	switch (mode_cmd->pixel_format) {
14004 	case DRM_FORMAT_C8:
14005 	case DRM_FORMAT_RGB565:
14006 	case DRM_FORMAT_XRGB8888:
14007 	case DRM_FORMAT_ARGB8888:
14008 		break;
14009 	case DRM_FORMAT_XRGB1555:
14010 		if (INTEL_GEN(dev_priv) > 3) {
14011 			DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14012 				      drm_get_format_name(mode_cmd->pixel_format, &format_name));
14013 			goto err;
14014 		}
14015 		break;
14016 	case DRM_FORMAT_ABGR8888:
14017 		if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
14018 		    INTEL_GEN(dev_priv) < 9) {
14019 			DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14020 				      drm_get_format_name(mode_cmd->pixel_format, &format_name));
14021 			goto err;
14022 		}
14023 		break;
14024 	case DRM_FORMAT_XBGR8888:
14025 	case DRM_FORMAT_XRGB2101010:
14026 	case DRM_FORMAT_XBGR2101010:
14027 		if (INTEL_GEN(dev_priv) < 4) {
14028 			DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14029 				      drm_get_format_name(mode_cmd->pixel_format, &format_name));
14030 			goto err;
14031 		}
14032 		break;
14033 	case DRM_FORMAT_ABGR2101010:
14034 		if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
14035 			DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14036 				      drm_get_format_name(mode_cmd->pixel_format, &format_name));
14037 			goto err;
14038 		}
14039 		break;
14040 	case DRM_FORMAT_YUYV:
14041 	case DRM_FORMAT_UYVY:
14042 	case DRM_FORMAT_YVYU:
14043 	case DRM_FORMAT_VYUY:
14044 		if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) {
14045 			DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14046 				      drm_get_format_name(mode_cmd->pixel_format, &format_name));
14047 			goto err;
14048 		}
14049 		break;
14050 	default:
14051 		DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14052 			      drm_get_format_name(mode_cmd->pixel_format, &format_name));
14053 		goto err;
14054 	}
14055 
14056 	/* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14057 	if (mode_cmd->offsets[0] != 0)
14058 		goto err;
14059 
14060 	drm_helper_mode_fill_fb_struct(&dev_priv->drm, fb, mode_cmd);
14061 
14062 	for (i = 0; i < fb->format->num_planes; i++) {
14063 		u32 stride_alignment;
14064 
14065 		if (mode_cmd->handles[i] != mode_cmd->handles[0]) {
14066 			DRM_DEBUG_KMS("bad plane %d handle\n", i);
14067 			goto err;
14068 		}
14069 
14070 		stride_alignment = intel_fb_stride_alignment(fb, i);
14071 
14072 		/*
14073 		 * Display WA #0531: skl,bxt,kbl,glk
14074 		 *
14075 		 * Render decompression and plane width > 3840
14076 		 * combined with horizontal panning requires the
14077 		 * plane stride to be a multiple of 4. We'll just
14078 		 * require the entire fb to accommodate that to avoid
14079 		 * potential runtime errors at plane configuration time.
14080 		 */
14081 		if (IS_GEN9(dev_priv) && i == 0 && fb->width > 3840 &&
14082 		    (fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
14083 		     fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS))
14084 			stride_alignment *= 4;
14085 
14086 		if (fb->pitches[i] & (stride_alignment - 1)) {
14087 			DRM_DEBUG_KMS("plane %d pitch (%d) must be at least %u byte aligned\n",
14088 				      i, fb->pitches[i], stride_alignment);
14089 			goto err;
14090 		}
14091 	}
14092 
14093 	intel_fb->obj = obj;
14094 
14095 	ret = intel_fill_fb_info(dev_priv, fb);
14096 	if (ret)
14097 		goto err;
14098 
14099 	ret = drm_framebuffer_init(&dev_priv->drm, fb, &intel_fb_funcs);
14100 	if (ret) {
14101 		DRM_ERROR("framebuffer init failed %d\n", ret);
14102 		goto err;
14103 	}
14104 
14105 	return 0;
14106 
14107 err:
14108 	i915_gem_object_lock(obj);
14109 	obj->framebuffer_references--;
14110 	i915_gem_object_unlock(obj);
14111 	return ret;
14112 }
14113 
14114 static struct drm_framebuffer *
intel_user_framebuffer_create(struct drm_device * dev,struct drm_file * filp,const struct drm_mode_fb_cmd2 * user_mode_cmd)14115 intel_user_framebuffer_create(struct drm_device *dev,
14116 			      struct drm_file *filp,
14117 			      const struct drm_mode_fb_cmd2 *user_mode_cmd)
14118 {
14119 	struct drm_framebuffer *fb;
14120 	struct drm_i915_gem_object *obj;
14121 	struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
14122 
14123 	obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]);
14124 	if (!obj)
14125 		return ERR_PTR(-ENOENT);
14126 
14127 	fb = intel_framebuffer_create(obj, &mode_cmd);
14128 	if (IS_ERR(fb))
14129 		i915_gem_object_put(obj);
14130 
14131 	return fb;
14132 }
14133 
intel_atomic_state_free(struct drm_atomic_state * state)14134 static void intel_atomic_state_free(struct drm_atomic_state *state)
14135 {
14136 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14137 
14138 	drm_atomic_state_default_release(state);
14139 
14140 	i915_sw_fence_fini(&intel_state->commit_ready);
14141 
14142 	kfree(state);
14143 }
14144 
14145 static const struct drm_mode_config_funcs intel_mode_funcs = {
14146 	.fb_create = intel_user_framebuffer_create,
14147 	.get_format_info = intel_get_format_info,
14148 	.output_poll_changed = intel_fbdev_output_poll_changed,
14149 	.atomic_check = intel_atomic_check,
14150 	.atomic_commit = intel_atomic_commit,
14151 	.atomic_state_alloc = intel_atomic_state_alloc,
14152 	.atomic_state_clear = intel_atomic_state_clear,
14153 	.atomic_state_free = intel_atomic_state_free,
14154 };
14155 
14156 /**
14157  * intel_init_display_hooks - initialize the display modesetting hooks
14158  * @dev_priv: device private
14159  */
intel_init_display_hooks(struct drm_i915_private * dev_priv)14160 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
14161 {
14162 	intel_init_cdclk_hooks(dev_priv);
14163 
14164 	if (INTEL_INFO(dev_priv)->gen >= 9) {
14165 		dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14166 		dev_priv->display.get_initial_plane_config =
14167 			skylake_get_initial_plane_config;
14168 		dev_priv->display.crtc_compute_clock =
14169 			haswell_crtc_compute_clock;
14170 		dev_priv->display.crtc_enable = haswell_crtc_enable;
14171 		dev_priv->display.crtc_disable = haswell_crtc_disable;
14172 	} else if (HAS_DDI(dev_priv)) {
14173 		dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14174 		dev_priv->display.get_initial_plane_config =
14175 			ironlake_get_initial_plane_config;
14176 		dev_priv->display.crtc_compute_clock =
14177 			haswell_crtc_compute_clock;
14178 		dev_priv->display.crtc_enable = haswell_crtc_enable;
14179 		dev_priv->display.crtc_disable = haswell_crtc_disable;
14180 	} else if (HAS_PCH_SPLIT(dev_priv)) {
14181 		dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14182 		dev_priv->display.get_initial_plane_config =
14183 			ironlake_get_initial_plane_config;
14184 		dev_priv->display.crtc_compute_clock =
14185 			ironlake_crtc_compute_clock;
14186 		dev_priv->display.crtc_enable = ironlake_crtc_enable;
14187 		dev_priv->display.crtc_disable = ironlake_crtc_disable;
14188 	} else if (IS_CHERRYVIEW(dev_priv)) {
14189 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14190 		dev_priv->display.get_initial_plane_config =
14191 			i9xx_get_initial_plane_config;
14192 		dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
14193 		dev_priv->display.crtc_enable = valleyview_crtc_enable;
14194 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
14195 	} else if (IS_VALLEYVIEW(dev_priv)) {
14196 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14197 		dev_priv->display.get_initial_plane_config =
14198 			i9xx_get_initial_plane_config;
14199 		dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
14200 		dev_priv->display.crtc_enable = valleyview_crtc_enable;
14201 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
14202 	} else if (IS_G4X(dev_priv)) {
14203 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14204 		dev_priv->display.get_initial_plane_config =
14205 			i9xx_get_initial_plane_config;
14206 		dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
14207 		dev_priv->display.crtc_enable = i9xx_crtc_enable;
14208 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
14209 	} else if (IS_PINEVIEW(dev_priv)) {
14210 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14211 		dev_priv->display.get_initial_plane_config =
14212 			i9xx_get_initial_plane_config;
14213 		dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
14214 		dev_priv->display.crtc_enable = i9xx_crtc_enable;
14215 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
14216 	} else if (!IS_GEN2(dev_priv)) {
14217 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14218 		dev_priv->display.get_initial_plane_config =
14219 			i9xx_get_initial_plane_config;
14220 		dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14221 		dev_priv->display.crtc_enable = i9xx_crtc_enable;
14222 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
14223 	} else {
14224 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14225 		dev_priv->display.get_initial_plane_config =
14226 			i9xx_get_initial_plane_config;
14227 		dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
14228 		dev_priv->display.crtc_enable = i9xx_crtc_enable;
14229 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
14230 	}
14231 
14232 	if (IS_GEN5(dev_priv)) {
14233 		dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14234 	} else if (IS_GEN6(dev_priv)) {
14235 		dev_priv->display.fdi_link_train = gen6_fdi_link_train;
14236 	} else if (IS_IVYBRIDGE(dev_priv)) {
14237 		/* FIXME: detect B0+ stepping and use auto training */
14238 		dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
14239 	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
14240 		dev_priv->display.fdi_link_train = hsw_fdi_link_train;
14241 	}
14242 
14243 	if (dev_priv->info.gen >= 9)
14244 		dev_priv->display.update_crtcs = skl_update_crtcs;
14245 	else
14246 		dev_priv->display.update_crtcs = intel_update_crtcs;
14247 }
14248 
14249 /*
14250  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14251  */
quirk_ssc_force_disable(struct drm_device * dev)14252 static void quirk_ssc_force_disable(struct drm_device *dev)
14253 {
14254 	struct drm_i915_private *dev_priv = to_i915(dev);
14255 	dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
14256 	DRM_INFO("applying lvds SSC disable quirk\n");
14257 }
14258 
14259 /*
14260  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14261  * brightness value
14262  */
quirk_invert_brightness(struct drm_device * dev)14263 static void quirk_invert_brightness(struct drm_device *dev)
14264 {
14265 	struct drm_i915_private *dev_priv = to_i915(dev);
14266 	dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
14267 	DRM_INFO("applying inverted panel brightness quirk\n");
14268 }
14269 
14270 /* Some VBT's incorrectly indicate no backlight is present */
quirk_backlight_present(struct drm_device * dev)14271 static void quirk_backlight_present(struct drm_device *dev)
14272 {
14273 	struct drm_i915_private *dev_priv = to_i915(dev);
14274 	dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14275 	DRM_INFO("applying backlight present quirk\n");
14276 }
14277 
14278 /* Toshiba Satellite P50-C-18C requires T12 delay to be min 800ms
14279  * which is 300 ms greater than eDP spec T12 min.
14280  */
quirk_increase_t12_delay(struct drm_device * dev)14281 static void quirk_increase_t12_delay(struct drm_device *dev)
14282 {
14283 	struct drm_i915_private *dev_priv = to_i915(dev);
14284 
14285 	dev_priv->quirks |= QUIRK_INCREASE_T12_DELAY;
14286 	DRM_INFO("Applying T12 delay quirk\n");
14287 }
14288 
14289 /*
14290  * GeminiLake NUC HDMI outputs require additional off time
14291  * this allows the onboard retimer to correctly sync to signal
14292  */
quirk_increase_ddi_disabled_time(struct drm_device * dev)14293 static void quirk_increase_ddi_disabled_time(struct drm_device *dev)
14294 {
14295 	struct drm_i915_private *dev_priv = to_i915(dev);
14296 
14297 	dev_priv->quirks |= QUIRK_INCREASE_DDI_DISABLED_TIME;
14298 	DRM_INFO("Applying Increase DDI Disabled quirk\n");
14299 }
14300 
14301 struct intel_quirk {
14302 	int device;
14303 	int subsystem_vendor;
14304 	int subsystem_device;
14305 	void (*hook)(struct drm_device *dev);
14306 };
14307 
14308 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14309 struct intel_dmi_quirk {
14310 	void (*hook)(struct drm_device *dev);
14311 	const struct dmi_system_id (*dmi_id_list)[];
14312 };
14313 
intel_dmi_reverse_brightness(const struct dmi_system_id * id)14314 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14315 {
14316 	DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14317 	return 1;
14318 }
14319 
14320 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14321 	{
14322 		.dmi_id_list = &(const struct dmi_system_id[]) {
14323 			{
14324 				.callback = intel_dmi_reverse_brightness,
14325 				.ident = "NCR Corporation",
14326 				.matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14327 					    DMI_MATCH(DMI_PRODUCT_NAME, ""),
14328 				},
14329 			},
14330 			{ }  /* terminating entry */
14331 		},
14332 		.hook = quirk_invert_brightness,
14333 	},
14334 };
14335 
14336 static struct intel_quirk intel_quirks[] = {
14337 	/* Lenovo U160 cannot use SSC on LVDS */
14338 	{ 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
14339 
14340 	/* Sony Vaio Y cannot use SSC on LVDS */
14341 	{ 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
14342 
14343 	/* Acer Aspire 5734Z must invert backlight brightness */
14344 	{ 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
14345 
14346 	/* Acer/eMachines G725 */
14347 	{ 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
14348 
14349 	/* Acer/eMachines e725 */
14350 	{ 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
14351 
14352 	/* Acer/Packard Bell NCL20 */
14353 	{ 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
14354 
14355 	/* Acer Aspire 4736Z */
14356 	{ 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
14357 
14358 	/* Acer Aspire 5336 */
14359 	{ 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
14360 
14361 	/* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
14362 	{ 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
14363 
14364 	/* Acer C720 Chromebook (Core i3 4005U) */
14365 	{ 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
14366 
14367 	/* Apple Macbook 2,1 (Core 2 T7400) */
14368 	{ 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
14369 
14370 	/* Apple Macbook 4,1 */
14371 	{ 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
14372 
14373 	/* Toshiba CB35 Chromebook (Celeron 2955U) */
14374 	{ 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
14375 
14376 	/* HP Chromebook 14 (Celeron 2955U) */
14377 	{ 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
14378 
14379 	/* Dell Chromebook 11 */
14380 	{ 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
14381 
14382 	/* Dell Chromebook 11 (2015 version) */
14383 	{ 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
14384 
14385 	/* Toshiba Satellite P50-C-18C */
14386 	{ 0x191B, 0x1179, 0xF840, quirk_increase_t12_delay },
14387 
14388 	/* GeminiLake NUC */
14389 	{ 0x3185, 0x8086, 0x2072, quirk_increase_ddi_disabled_time },
14390 	{ 0x3184, 0x8086, 0x2072, quirk_increase_ddi_disabled_time },
14391 	/* ASRock ITX*/
14392 	{ 0x3185, 0x1849, 0x2212, quirk_increase_ddi_disabled_time },
14393 	{ 0x3184, 0x1849, 0x2212, quirk_increase_ddi_disabled_time },
14394 };
14395 
intel_init_quirks(struct drm_device * dev)14396 static void intel_init_quirks(struct drm_device *dev)
14397 {
14398 	struct pci_dev *d = dev->pdev;
14399 	int i;
14400 
14401 	for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
14402 		struct intel_quirk *q = &intel_quirks[i];
14403 
14404 		if (d->device == q->device &&
14405 		    (d->subsystem_vendor == q->subsystem_vendor ||
14406 		     q->subsystem_vendor == PCI_ANY_ID) &&
14407 		    (d->subsystem_device == q->subsystem_device ||
14408 		     q->subsystem_device == PCI_ANY_ID))
14409 			q->hook(dev);
14410 	}
14411 	for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
14412 		if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
14413 			intel_dmi_quirks[i].hook(dev);
14414 	}
14415 }
14416 
14417 /* Disable the VGA plane that we never use */
i915_disable_vga(struct drm_i915_private * dev_priv)14418 static void i915_disable_vga(struct drm_i915_private *dev_priv)
14419 {
14420 	struct pci_dev *pdev = dev_priv->drm.pdev;
14421 	u8 sr1;
14422 	i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv);
14423 
14424 	/* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
14425 	vga_get_uninterruptible(pdev, VGA_RSRC_LEGACY_IO);
14426 	outb(SR01, VGA_SR_INDEX);
14427 	sr1 = inb(VGA_SR_DATA);
14428 	outb(sr1 | 1<<5, VGA_SR_DATA);
14429 	vga_put(pdev, VGA_RSRC_LEGACY_IO);
14430 	udelay(300);
14431 
14432 	I915_WRITE(vga_reg, VGA_DISP_DISABLE);
14433 	POSTING_READ(vga_reg);
14434 }
14435 
intel_modeset_init_hw(struct drm_device * dev)14436 void intel_modeset_init_hw(struct drm_device *dev)
14437 {
14438 	struct drm_i915_private *dev_priv = to_i915(dev);
14439 
14440 	intel_update_cdclk(dev_priv);
14441 	dev_priv->cdclk.logical = dev_priv->cdclk.actual = dev_priv->cdclk.hw;
14442 }
14443 
14444 /*
14445  * Calculate what we think the watermarks should be for the state we've read
14446  * out of the hardware and then immediately program those watermarks so that
14447  * we ensure the hardware settings match our internal state.
14448  *
14449  * We can calculate what we think WM's should be by creating a duplicate of the
14450  * current state (which was constructed during hardware readout) and running it
14451  * through the atomic check code to calculate new watermark values in the
14452  * state object.
14453  */
sanitize_watermarks(struct drm_device * dev)14454 static void sanitize_watermarks(struct drm_device *dev)
14455 {
14456 	struct drm_i915_private *dev_priv = to_i915(dev);
14457 	struct drm_atomic_state *state;
14458 	struct intel_atomic_state *intel_state;
14459 	struct drm_crtc *crtc;
14460 	struct drm_crtc_state *cstate;
14461 	struct drm_modeset_acquire_ctx ctx;
14462 	int ret;
14463 	int i;
14464 
14465 	/* Only supported on platforms that use atomic watermark design */
14466 	if (!dev_priv->display.optimize_watermarks)
14467 		return;
14468 
14469 	/*
14470 	 * We need to hold connection_mutex before calling duplicate_state so
14471 	 * that the connector loop is protected.
14472 	 */
14473 	drm_modeset_acquire_init(&ctx, 0);
14474 retry:
14475 	ret = drm_modeset_lock_all_ctx(dev, &ctx);
14476 	if (ret == -EDEADLK) {
14477 		drm_modeset_backoff(&ctx);
14478 		goto retry;
14479 	} else if (WARN_ON(ret)) {
14480 		goto fail;
14481 	}
14482 
14483 	state = drm_atomic_helper_duplicate_state(dev, &ctx);
14484 	if (WARN_ON(IS_ERR(state)))
14485 		goto fail;
14486 
14487 	intel_state = to_intel_atomic_state(state);
14488 
14489 	/*
14490 	 * Hardware readout is the only time we don't want to calculate
14491 	 * intermediate watermarks (since we don't trust the current
14492 	 * watermarks).
14493 	 */
14494 	if (!HAS_GMCH_DISPLAY(dev_priv))
14495 		intel_state->skip_intermediate_wm = true;
14496 
14497 	ret = intel_atomic_check(dev, state);
14498 	if (ret) {
14499 		/*
14500 		 * If we fail here, it means that the hardware appears to be
14501 		 * programmed in a way that shouldn't be possible, given our
14502 		 * understanding of watermark requirements.  This might mean a
14503 		 * mistake in the hardware readout code or a mistake in the
14504 		 * watermark calculations for a given platform.  Raise a WARN
14505 		 * so that this is noticeable.
14506 		 *
14507 		 * If this actually happens, we'll have to just leave the
14508 		 * BIOS-programmed watermarks untouched and hope for the best.
14509 		 */
14510 		WARN(true, "Could not determine valid watermarks for inherited state\n");
14511 		goto put_state;
14512 	}
14513 
14514 	/* Write calculated watermark values back */
14515 	for_each_new_crtc_in_state(state, crtc, cstate, i) {
14516 		struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
14517 
14518 		cs->wm.need_postvbl_update = true;
14519 		dev_priv->display.optimize_watermarks(intel_state, cs);
14520 
14521 		to_intel_crtc_state(crtc->state)->wm = cs->wm;
14522 	}
14523 
14524 put_state:
14525 	drm_atomic_state_put(state);
14526 fail:
14527 	drm_modeset_drop_locks(&ctx);
14528 	drm_modeset_acquire_fini(&ctx);
14529 }
14530 
intel_modeset_init(struct drm_device * dev)14531 int intel_modeset_init(struct drm_device *dev)
14532 {
14533 	struct drm_i915_private *dev_priv = to_i915(dev);
14534 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
14535 	enum pipe pipe;
14536 	struct intel_crtc *crtc;
14537 
14538 	drm_mode_config_init(dev);
14539 
14540 	dev->mode_config.min_width = 0;
14541 	dev->mode_config.min_height = 0;
14542 
14543 	dev->mode_config.preferred_depth = 24;
14544 	dev->mode_config.prefer_shadow = 1;
14545 
14546 	dev->mode_config.allow_fb_modifiers = true;
14547 
14548 	dev->mode_config.funcs = &intel_mode_funcs;
14549 
14550 	init_llist_head(&dev_priv->atomic_helper.free_list);
14551 	INIT_WORK(&dev_priv->atomic_helper.free_work,
14552 		  intel_atomic_helper_free_state_worker);
14553 
14554 	intel_init_quirks(dev);
14555 
14556 	intel_init_pm(dev_priv);
14557 
14558 	if (INTEL_INFO(dev_priv)->num_pipes == 0)
14559 		return 0;
14560 
14561 	/*
14562 	 * There may be no VBT; and if the BIOS enabled SSC we can
14563 	 * just keep using it to avoid unnecessary flicker.  Whereas if the
14564 	 * BIOS isn't using it, don't assume it will work even if the VBT
14565 	 * indicates as much.
14566 	 */
14567 	if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
14568 		bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
14569 					    DREF_SSC1_ENABLE);
14570 
14571 		if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
14572 			DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
14573 				     bios_lvds_use_ssc ? "en" : "dis",
14574 				     dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
14575 			dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
14576 		}
14577 	}
14578 
14579 	if (IS_GEN2(dev_priv)) {
14580 		dev->mode_config.max_width = 2048;
14581 		dev->mode_config.max_height = 2048;
14582 	} else if (IS_GEN3(dev_priv)) {
14583 		dev->mode_config.max_width = 4096;
14584 		dev->mode_config.max_height = 4096;
14585 	} else {
14586 		dev->mode_config.max_width = 8192;
14587 		dev->mode_config.max_height = 8192;
14588 	}
14589 
14590 	if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) {
14591 		dev->mode_config.cursor_width = IS_I845G(dev_priv) ? 64 : 512;
14592 		dev->mode_config.cursor_height = 1023;
14593 	} else if (IS_GEN2(dev_priv)) {
14594 		dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
14595 		dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
14596 	} else {
14597 		dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
14598 		dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
14599 	}
14600 
14601 	dev->mode_config.fb_base = ggtt->mappable_base;
14602 
14603 	DRM_DEBUG_KMS("%d display pipe%s available.\n",
14604 		      INTEL_INFO(dev_priv)->num_pipes,
14605 		      INTEL_INFO(dev_priv)->num_pipes > 1 ? "s" : "");
14606 
14607 	for_each_pipe(dev_priv, pipe) {
14608 		int ret;
14609 
14610 		ret = intel_crtc_init(dev_priv, pipe);
14611 		if (ret) {
14612 			drm_mode_config_cleanup(dev);
14613 			return ret;
14614 		}
14615 	}
14616 
14617 	intel_shared_dpll_init(dev);
14618 
14619 	intel_update_czclk(dev_priv);
14620 	intel_modeset_init_hw(dev);
14621 
14622 	if (dev_priv->max_cdclk_freq == 0)
14623 		intel_update_max_cdclk(dev_priv);
14624 
14625 	/* Just disable it once at startup */
14626 	i915_disable_vga(dev_priv);
14627 	intel_setup_outputs(dev_priv);
14628 
14629 	drm_modeset_lock_all(dev);
14630 	intel_modeset_setup_hw_state(dev, dev->mode_config.acquire_ctx);
14631 	drm_modeset_unlock_all(dev);
14632 
14633 	for_each_intel_crtc(dev, crtc) {
14634 		struct intel_initial_plane_config plane_config = {};
14635 
14636 		if (!crtc->active)
14637 			continue;
14638 
14639 		/*
14640 		 * Note that reserving the BIOS fb up front prevents us
14641 		 * from stuffing other stolen allocations like the ring
14642 		 * on top.  This prevents some ugliness at boot time, and
14643 		 * can even allow for smooth boot transitions if the BIOS
14644 		 * fb is large enough for the active pipe configuration.
14645 		 */
14646 		dev_priv->display.get_initial_plane_config(crtc,
14647 							   &plane_config);
14648 
14649 		/*
14650 		 * If the fb is shared between multiple heads, we'll
14651 		 * just get the first one.
14652 		 */
14653 		intel_find_initial_plane_obj(crtc, &plane_config);
14654 	}
14655 
14656 	/*
14657 	 * Make sure hardware watermarks really match the state we read out.
14658 	 * Note that we need to do this after reconstructing the BIOS fb's
14659 	 * since the watermark calculation done here will use pstate->fb.
14660 	 */
14661 	if (!HAS_GMCH_DISPLAY(dev_priv))
14662 		sanitize_watermarks(dev);
14663 
14664 	return 0;
14665 }
14666 
i830_enable_pipe(struct drm_i915_private * dev_priv,enum pipe pipe)14667 void i830_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe)
14668 {
14669 	/* 640x480@60Hz, ~25175 kHz */
14670 	struct dpll clock = {
14671 		.m1 = 18,
14672 		.m2 = 7,
14673 		.p1 = 13,
14674 		.p2 = 4,
14675 		.n = 2,
14676 	};
14677 	u32 dpll, fp;
14678 	int i;
14679 
14680 	WARN_ON(i9xx_calc_dpll_params(48000, &clock) != 25154);
14681 
14682 	DRM_DEBUG_KMS("enabling pipe %c due to force quirk (vco=%d dot=%d)\n",
14683 		      pipe_name(pipe), clock.vco, clock.dot);
14684 
14685 	fp = i9xx_dpll_compute_fp(&clock);
14686 	dpll = (I915_READ(DPLL(pipe)) & DPLL_DVO_2X_MODE) |
14687 		DPLL_VGA_MODE_DIS |
14688 		((clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT) |
14689 		PLL_P2_DIVIDE_BY_4 |
14690 		PLL_REF_INPUT_DREFCLK |
14691 		DPLL_VCO_ENABLE;
14692 
14693 	I915_WRITE(FP0(pipe), fp);
14694 	I915_WRITE(FP1(pipe), fp);
14695 
14696 	I915_WRITE(HTOTAL(pipe), (640 - 1) | ((800 - 1) << 16));
14697 	I915_WRITE(HBLANK(pipe), (640 - 1) | ((800 - 1) << 16));
14698 	I915_WRITE(HSYNC(pipe), (656 - 1) | ((752 - 1) << 16));
14699 	I915_WRITE(VTOTAL(pipe), (480 - 1) | ((525 - 1) << 16));
14700 	I915_WRITE(VBLANK(pipe), (480 - 1) | ((525 - 1) << 16));
14701 	I915_WRITE(VSYNC(pipe), (490 - 1) | ((492 - 1) << 16));
14702 	I915_WRITE(PIPESRC(pipe), ((640 - 1) << 16) | (480 - 1));
14703 
14704 	/*
14705 	 * Apparently we need to have VGA mode enabled prior to changing
14706 	 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
14707 	 * dividers, even though the register value does change.
14708 	 */
14709 	I915_WRITE(DPLL(pipe), dpll & ~DPLL_VGA_MODE_DIS);
14710 	I915_WRITE(DPLL(pipe), dpll);
14711 
14712 	/* Wait for the clocks to stabilize. */
14713 	POSTING_READ(DPLL(pipe));
14714 	udelay(150);
14715 
14716 	/* The pixel multiplier can only be updated once the
14717 	 * DPLL is enabled and the clocks are stable.
14718 	 *
14719 	 * So write it again.
14720 	 */
14721 	I915_WRITE(DPLL(pipe), dpll);
14722 
14723 	/* We do this three times for luck */
14724 	for (i = 0; i < 3 ; i++) {
14725 		I915_WRITE(DPLL(pipe), dpll);
14726 		POSTING_READ(DPLL(pipe));
14727 		udelay(150); /* wait for warmup */
14728 	}
14729 
14730 	I915_WRITE(PIPECONF(pipe), PIPECONF_ENABLE | PIPECONF_PROGRESSIVE);
14731 	POSTING_READ(PIPECONF(pipe));
14732 }
14733 
i830_disable_pipe(struct drm_i915_private * dev_priv,enum pipe pipe)14734 void i830_disable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe)
14735 {
14736 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
14737 
14738 	DRM_DEBUG_KMS("disabling pipe %c due to force quirk\n",
14739 		      pipe_name(pipe));
14740 
14741 	WARN_ON(I915_READ(DSPCNTR(PLANE_A)) & DISPLAY_PLANE_ENABLE);
14742 	WARN_ON(I915_READ(DSPCNTR(PLANE_B)) & DISPLAY_PLANE_ENABLE);
14743 	WARN_ON(I915_READ(DSPCNTR(PLANE_C)) & DISPLAY_PLANE_ENABLE);
14744 	WARN_ON(I915_READ(CURCNTR(PIPE_A)) & CURSOR_MODE);
14745 	WARN_ON(I915_READ(CURCNTR(PIPE_B)) & CURSOR_MODE);
14746 
14747 	I915_WRITE(PIPECONF(pipe), 0);
14748 	POSTING_READ(PIPECONF(pipe));
14749 
14750 	intel_wait_for_pipe_scanline_stopped(crtc);
14751 
14752 	I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
14753 	POSTING_READ(DPLL(pipe));
14754 }
14755 
intel_plane_mapping_ok(struct intel_crtc * crtc,struct intel_plane * primary)14756 static bool intel_plane_mapping_ok(struct intel_crtc *crtc,
14757 				   struct intel_plane *primary)
14758 {
14759 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
14760 	enum plane plane = primary->plane;
14761 	u32 val = I915_READ(DSPCNTR(plane));
14762 
14763 	return (val & DISPLAY_PLANE_ENABLE) == 0 ||
14764 		(val & DISPPLANE_SEL_PIPE_MASK) == DISPPLANE_SEL_PIPE(crtc->pipe);
14765 }
14766 
14767 static void
intel_sanitize_plane_mapping(struct drm_i915_private * dev_priv)14768 intel_sanitize_plane_mapping(struct drm_i915_private *dev_priv)
14769 {
14770 	struct intel_crtc *crtc;
14771 
14772 	if (INTEL_GEN(dev_priv) >= 4)
14773 		return;
14774 
14775 	for_each_intel_crtc(&dev_priv->drm, crtc) {
14776 		struct intel_plane *plane =
14777 			to_intel_plane(crtc->base.primary);
14778 
14779 		if (intel_plane_mapping_ok(crtc, plane))
14780 			continue;
14781 
14782 		DRM_DEBUG_KMS("%s attached to the wrong pipe, disabling plane\n",
14783 			      plane->base.name);
14784 		intel_plane_disable_noatomic(crtc, plane);
14785 	}
14786 }
14787 
intel_crtc_has_encoders(struct intel_crtc * crtc)14788 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
14789 {
14790 	struct drm_device *dev = crtc->base.dev;
14791 	struct intel_encoder *encoder;
14792 
14793 	for_each_encoder_on_crtc(dev, &crtc->base, encoder)
14794 		return true;
14795 
14796 	return false;
14797 }
14798 
intel_encoder_find_connector(struct intel_encoder * encoder)14799 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder)
14800 {
14801 	struct drm_device *dev = encoder->base.dev;
14802 	struct intel_connector *connector;
14803 
14804 	for_each_connector_on_encoder(dev, &encoder->base, connector)
14805 		return connector;
14806 
14807 	return NULL;
14808 }
14809 
has_pch_trancoder(struct drm_i915_private * dev_priv,enum transcoder pch_transcoder)14810 static bool has_pch_trancoder(struct drm_i915_private *dev_priv,
14811 			      enum transcoder pch_transcoder)
14812 {
14813 	return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
14814 		(HAS_PCH_LPT_H(dev_priv) && pch_transcoder == TRANSCODER_A);
14815 }
14816 
intel_sanitize_crtc(struct intel_crtc * crtc,struct drm_modeset_acquire_ctx * ctx)14817 static void intel_sanitize_crtc(struct intel_crtc *crtc,
14818 				struct drm_modeset_acquire_ctx *ctx)
14819 {
14820 	struct drm_device *dev = crtc->base.dev;
14821 	struct drm_i915_private *dev_priv = to_i915(dev);
14822 	enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
14823 
14824 	/* Clear any frame start delays used for debugging left by the BIOS */
14825 	if (!transcoder_is_dsi(cpu_transcoder)) {
14826 		i915_reg_t reg = PIPECONF(cpu_transcoder);
14827 
14828 		I915_WRITE(reg,
14829 			   I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
14830 	}
14831 
14832 	if (crtc->active) {
14833 		struct intel_plane *plane;
14834 
14835 		/* Disable everything but the primary plane */
14836 		for_each_intel_plane_on_crtc(dev, crtc, plane) {
14837 			const struct intel_plane_state *plane_state =
14838 				to_intel_plane_state(plane->base.state);
14839 
14840 			if (plane_state->base.visible &&
14841 			    plane->base.type != DRM_PLANE_TYPE_PRIMARY)
14842 				intel_plane_disable_noatomic(crtc, plane);
14843 		}
14844 	}
14845 
14846 	/* Adjust the state of the output pipe according to whether we
14847 	 * have active connectors/encoders. */
14848 	if (crtc->active && !intel_crtc_has_encoders(crtc))
14849 		intel_crtc_disable_noatomic(&crtc->base, ctx);
14850 
14851 	if (crtc->active || HAS_GMCH_DISPLAY(dev_priv)) {
14852 		/*
14853 		 * We start out with underrun reporting disabled to avoid races.
14854 		 * For correct bookkeeping mark this on active crtcs.
14855 		 *
14856 		 * Also on gmch platforms we dont have any hardware bits to
14857 		 * disable the underrun reporting. Which means we need to start
14858 		 * out with underrun reporting disabled also on inactive pipes,
14859 		 * since otherwise we'll complain about the garbage we read when
14860 		 * e.g. coming up after runtime pm.
14861 		 *
14862 		 * No protection against concurrent access is required - at
14863 		 * worst a fifo underrun happens which also sets this to false.
14864 		 */
14865 		crtc->cpu_fifo_underrun_disabled = true;
14866 		/*
14867 		 * We track the PCH trancoder underrun reporting state
14868 		 * within the crtc. With crtc for pipe A housing the underrun
14869 		 * reporting state for PCH transcoder A, crtc for pipe B housing
14870 		 * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A,
14871 		 * and marking underrun reporting as disabled for the non-existing
14872 		 * PCH transcoders B and C would prevent enabling the south
14873 		 * error interrupt (see cpt_can_enable_serr_int()).
14874 		 */
14875 		if (has_pch_trancoder(dev_priv, (enum transcoder)crtc->pipe))
14876 			crtc->pch_fifo_underrun_disabled = true;
14877 	}
14878 }
14879 
intel_sanitize_encoder(struct intel_encoder * encoder)14880 static void intel_sanitize_encoder(struct intel_encoder *encoder)
14881 {
14882 	struct intel_connector *connector;
14883 
14884 	/* We need to check both for a crtc link (meaning that the
14885 	 * encoder is active and trying to read from a pipe) and the
14886 	 * pipe itself being active. */
14887 	bool has_active_crtc = encoder->base.crtc &&
14888 		to_intel_crtc(encoder->base.crtc)->active;
14889 
14890 	connector = intel_encoder_find_connector(encoder);
14891 	if (connector && !has_active_crtc) {
14892 		DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
14893 			      encoder->base.base.id,
14894 			      encoder->base.name);
14895 
14896 		/* Connector is active, but has no active pipe. This is
14897 		 * fallout from our resume register restoring. Disable
14898 		 * the encoder manually again. */
14899 		if (encoder->base.crtc) {
14900 			struct drm_crtc_state *crtc_state = encoder->base.crtc->state;
14901 
14902 			DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
14903 				      encoder->base.base.id,
14904 				      encoder->base.name);
14905 			encoder->disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
14906 			if (encoder->post_disable)
14907 				encoder->post_disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
14908 		}
14909 		encoder->base.crtc = NULL;
14910 
14911 		/* Inconsistent output/port/pipe state happens presumably due to
14912 		 * a bug in one of the get_hw_state functions. Or someplace else
14913 		 * in our code, like the register restore mess on resume. Clamp
14914 		 * things to off as a safer default. */
14915 
14916 		connector->base.dpms = DRM_MODE_DPMS_OFF;
14917 		connector->base.encoder = NULL;
14918 	}
14919 	/* Enabled encoders without active connectors will be fixed in
14920 	 * the crtc fixup. */
14921 }
14922 
i915_redisable_vga_power_on(struct drm_i915_private * dev_priv)14923 void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv)
14924 {
14925 	i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv);
14926 
14927 	if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
14928 		DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
14929 		i915_disable_vga(dev_priv);
14930 	}
14931 }
14932 
i915_redisable_vga(struct drm_i915_private * dev_priv)14933 void i915_redisable_vga(struct drm_i915_private *dev_priv)
14934 {
14935 	/* This function can be called both from intel_modeset_setup_hw_state or
14936 	 * at a very early point in our resume sequence, where the power well
14937 	 * structures are not yet restored. Since this function is at a very
14938 	 * paranoid "someone might have enabled VGA while we were not looking"
14939 	 * level, just check if the power well is enabled instead of trying to
14940 	 * follow the "don't touch the power well if we don't need it" policy
14941 	 * the rest of the driver uses. */
14942 	if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
14943 		return;
14944 
14945 	i915_redisable_vga_power_on(dev_priv);
14946 
14947 	intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
14948 }
14949 
14950 /* FIXME read out full plane state for all planes */
readout_plane_state(struct intel_crtc * crtc)14951 static void readout_plane_state(struct intel_crtc *crtc)
14952 {
14953 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
14954 	struct intel_crtc_state *crtc_state =
14955 		to_intel_crtc_state(crtc->base.state);
14956 	struct intel_plane *plane;
14957 
14958 	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
14959 		struct intel_plane_state *plane_state =
14960 			to_intel_plane_state(plane->base.state);
14961 		bool visible = plane->get_hw_state(plane);
14962 
14963 		intel_set_plane_visible(crtc_state, plane_state, visible);
14964 	}
14965 }
14966 
intel_modeset_readout_hw_state(struct drm_device * dev)14967 static void intel_modeset_readout_hw_state(struct drm_device *dev)
14968 {
14969 	struct drm_i915_private *dev_priv = to_i915(dev);
14970 	enum pipe pipe;
14971 	struct intel_crtc *crtc;
14972 	struct intel_encoder *encoder;
14973 	struct intel_connector *connector;
14974 	struct drm_connector_list_iter conn_iter;
14975 	int i;
14976 
14977 	dev_priv->active_crtcs = 0;
14978 
14979 	for_each_intel_crtc(dev, crtc) {
14980 		struct intel_crtc_state *crtc_state =
14981 			to_intel_crtc_state(crtc->base.state);
14982 
14983 		__drm_atomic_helper_crtc_destroy_state(&crtc_state->base);
14984 		memset(crtc_state, 0, sizeof(*crtc_state));
14985 		crtc_state->base.crtc = &crtc->base;
14986 
14987 		crtc_state->base.active = crtc_state->base.enable =
14988 			dev_priv->display.get_pipe_config(crtc, crtc_state);
14989 
14990 		crtc->base.enabled = crtc_state->base.enable;
14991 		crtc->active = crtc_state->base.active;
14992 
14993 		if (crtc_state->base.active)
14994 			dev_priv->active_crtcs |= 1 << crtc->pipe;
14995 
14996 		readout_plane_state(crtc);
14997 
14998 		DRM_DEBUG_KMS("[CRTC:%d:%s] hw state readout: %s\n",
14999 			      crtc->base.base.id, crtc->base.name,
15000 			      enableddisabled(crtc_state->base.active));
15001 	}
15002 
15003 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15004 		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15005 
15006 		pll->on = pll->funcs.get_hw_state(dev_priv, pll,
15007 						  &pll->state.hw_state);
15008 		pll->state.crtc_mask = 0;
15009 		for_each_intel_crtc(dev, crtc) {
15010 			struct intel_crtc_state *crtc_state =
15011 				to_intel_crtc_state(crtc->base.state);
15012 
15013 			if (crtc_state->base.active &&
15014 			    crtc_state->shared_dpll == pll)
15015 				pll->state.crtc_mask |= 1 << crtc->pipe;
15016 		}
15017 		pll->active_mask = pll->state.crtc_mask;
15018 
15019 		DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15020 			      pll->name, pll->state.crtc_mask, pll->on);
15021 	}
15022 
15023 	for_each_intel_encoder(dev, encoder) {
15024 		pipe = 0;
15025 
15026 		if (encoder->get_hw_state(encoder, &pipe)) {
15027 			struct intel_crtc_state *crtc_state;
15028 
15029 			crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
15030 			crtc_state = to_intel_crtc_state(crtc->base.state);
15031 
15032 			encoder->base.crtc = &crtc->base;
15033 			crtc_state->output_types |= 1 << encoder->type;
15034 			encoder->get_config(encoder, crtc_state);
15035 		} else {
15036 			encoder->base.crtc = NULL;
15037 		}
15038 
15039 		DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15040 			      encoder->base.base.id, encoder->base.name,
15041 			      enableddisabled(encoder->base.crtc),
15042 			      pipe_name(pipe));
15043 	}
15044 
15045 	drm_connector_list_iter_begin(dev, &conn_iter);
15046 	for_each_intel_connector_iter(connector, &conn_iter) {
15047 		if (connector->get_hw_state(connector)) {
15048 			connector->base.dpms = DRM_MODE_DPMS_ON;
15049 
15050 			encoder = connector->encoder;
15051 			connector->base.encoder = &encoder->base;
15052 
15053 			if (encoder->base.crtc &&
15054 			    encoder->base.crtc->state->active) {
15055 				/*
15056 				 * This has to be done during hardware readout
15057 				 * because anything calling .crtc_disable may
15058 				 * rely on the connector_mask being accurate.
15059 				 */
15060 				encoder->base.crtc->state->connector_mask |=
15061 					1 << drm_connector_index(&connector->base);
15062 				encoder->base.crtc->state->encoder_mask |=
15063 					1 << drm_encoder_index(&encoder->base);
15064 			}
15065 
15066 		} else {
15067 			connector->base.dpms = DRM_MODE_DPMS_OFF;
15068 			connector->base.encoder = NULL;
15069 		}
15070 		DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15071 			      connector->base.base.id, connector->base.name,
15072 			      enableddisabled(connector->base.encoder));
15073 	}
15074 	drm_connector_list_iter_end(&conn_iter);
15075 
15076 	for_each_intel_crtc(dev, crtc) {
15077 		struct intel_crtc_state *crtc_state =
15078 			to_intel_crtc_state(crtc->base.state);
15079 		int pixclk = 0;
15080 
15081 		memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15082 		if (crtc_state->base.active) {
15083 			intel_mode_from_pipe_config(&crtc->base.mode, crtc_state);
15084 			intel_mode_from_pipe_config(&crtc_state->base.adjusted_mode, crtc_state);
15085 			WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15086 
15087 			/*
15088 			 * The initial mode needs to be set in order to keep
15089 			 * the atomic core happy. It wants a valid mode if the
15090 			 * crtc's enabled, so we do the above call.
15091 			 *
15092 			 * But we don't set all the derived state fully, hence
15093 			 * set a flag to indicate that a full recalculation is
15094 			 * needed on the next commit.
15095 			 */
15096 			crtc_state->base.mode.private_flags = I915_MODE_FLAG_INHERITED;
15097 
15098 			intel_crtc_compute_pixel_rate(crtc_state);
15099 
15100 			if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv) ||
15101 			    IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15102 				pixclk = crtc_state->pixel_rate;
15103 			else
15104 				WARN_ON(dev_priv->display.modeset_calc_cdclk);
15105 
15106 			/* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
15107 			if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
15108 				pixclk = DIV_ROUND_UP(pixclk * 100, 95);
15109 
15110 			drm_calc_timestamping_constants(&crtc->base,
15111 							&crtc_state->base.adjusted_mode);
15112 			update_scanline_offset(crtc);
15113 		}
15114 
15115 		dev_priv->min_pixclk[crtc->pipe] = pixclk;
15116 
15117 		intel_pipe_config_sanity_check(dev_priv, crtc_state);
15118 	}
15119 }
15120 
15121 static void
get_encoder_power_domains(struct drm_i915_private * dev_priv)15122 get_encoder_power_domains(struct drm_i915_private *dev_priv)
15123 {
15124 	struct intel_encoder *encoder;
15125 
15126 	for_each_intel_encoder(&dev_priv->drm, encoder) {
15127 		u64 get_domains;
15128 		enum intel_display_power_domain domain;
15129 
15130 		if (!encoder->get_power_domains)
15131 			continue;
15132 
15133 		get_domains = encoder->get_power_domains(encoder);
15134 		for_each_power_domain(domain, get_domains)
15135 			intel_display_power_get(dev_priv, domain);
15136 	}
15137 }
15138 
15139 /* Scan out the current hw modeset state,
15140  * and sanitizes it to the current state
15141  */
15142 static void
intel_modeset_setup_hw_state(struct drm_device * dev,struct drm_modeset_acquire_ctx * ctx)15143 intel_modeset_setup_hw_state(struct drm_device *dev,
15144 			     struct drm_modeset_acquire_ctx *ctx)
15145 {
15146 	struct drm_i915_private *dev_priv = to_i915(dev);
15147 	struct intel_crtc *crtc;
15148 	struct intel_encoder *encoder;
15149 	int i;
15150 
15151 	if (IS_HASWELL(dev_priv)) {
15152 		/*
15153 		 * WaRsPkgCStateDisplayPMReq:hsw
15154 		 * System hang if this isn't done before disabling all planes!
15155 		 */
15156 		I915_WRITE(CHICKEN_PAR1_1,
15157 			   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
15158 	}
15159 
15160 	intel_modeset_readout_hw_state(dev);
15161 
15162 	/* HW state is read out, now we need to sanitize this mess. */
15163 	get_encoder_power_domains(dev_priv);
15164 
15165 	/*
15166 	 * intel_sanitize_plane_mapping() may need to do vblank
15167 	 * waits, so we need vblank interrupts restored beforehand.
15168 	 */
15169 	for_each_intel_crtc(&dev_priv->drm, crtc) {
15170 		drm_crtc_vblank_reset(&crtc->base);
15171 
15172 		if (crtc->active)
15173 			drm_crtc_vblank_on(&crtc->base);
15174 	}
15175 
15176 	intel_sanitize_plane_mapping(dev_priv);
15177 
15178 	for_each_intel_encoder(dev, encoder)
15179 		intel_sanitize_encoder(encoder);
15180 
15181 	for_each_intel_crtc(&dev_priv->drm, crtc) {
15182 		intel_sanitize_crtc(crtc, ctx);
15183 		intel_dump_pipe_config(crtc, crtc->config,
15184 				       "[setup_hw_state]");
15185 	}
15186 
15187 	intel_modeset_update_connector_atomic_state(dev);
15188 
15189 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15190 		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15191 
15192 		if (!pll->on || pll->active_mask)
15193 			continue;
15194 
15195 		DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15196 
15197 		pll->funcs.disable(dev_priv, pll);
15198 		pll->on = false;
15199 	}
15200 
15201 	if (IS_G4X(dev_priv)) {
15202 		g4x_wm_get_hw_state(dev);
15203 		g4x_wm_sanitize(dev_priv);
15204 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
15205 		vlv_wm_get_hw_state(dev);
15206 		vlv_wm_sanitize(dev_priv);
15207 	} else if (INTEL_GEN(dev_priv) >= 9) {
15208 		skl_wm_get_hw_state(dev);
15209 	} else if (HAS_PCH_SPLIT(dev_priv)) {
15210 		ilk_wm_get_hw_state(dev);
15211 	}
15212 
15213 	for_each_intel_crtc(dev, crtc) {
15214 		u64 put_domains;
15215 
15216 		put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
15217 		if (WARN_ON(put_domains))
15218 			modeset_put_power_domains(dev_priv, put_domains);
15219 	}
15220 	intel_display_set_init_power(dev_priv, false);
15221 
15222 	intel_power_domains_verify_state(dev_priv);
15223 
15224 	intel_fbc_init_pipe_state(dev_priv);
15225 }
15226 
intel_display_resume(struct drm_device * dev)15227 void intel_display_resume(struct drm_device *dev)
15228 {
15229 	struct drm_i915_private *dev_priv = to_i915(dev);
15230 	struct drm_atomic_state *state = dev_priv->modeset_restore_state;
15231 	struct drm_modeset_acquire_ctx ctx;
15232 	int ret;
15233 
15234 	dev_priv->modeset_restore_state = NULL;
15235 	if (state)
15236 		state->acquire_ctx = &ctx;
15237 
15238 	drm_modeset_acquire_init(&ctx, 0);
15239 
15240 	while (1) {
15241 		ret = drm_modeset_lock_all_ctx(dev, &ctx);
15242 		if (ret != -EDEADLK)
15243 			break;
15244 
15245 		drm_modeset_backoff(&ctx);
15246 	}
15247 
15248 	if (!ret)
15249 		ret = __intel_display_resume(dev, state, &ctx);
15250 
15251 	drm_modeset_drop_locks(&ctx);
15252 	drm_modeset_acquire_fini(&ctx);
15253 
15254 	if (ret)
15255 		DRM_ERROR("Restoring old state failed with %i\n", ret);
15256 	if (state)
15257 		drm_atomic_state_put(state);
15258 }
15259 
intel_modeset_gem_init(struct drm_device * dev)15260 void intel_modeset_gem_init(struct drm_device *dev)
15261 {
15262 	struct drm_i915_private *dev_priv = to_i915(dev);
15263 
15264 	intel_init_gt_powersave(dev_priv);
15265 
15266 	intel_init_clock_gating(dev_priv);
15267 
15268 	intel_setup_overlay(dev_priv);
15269 }
15270 
intel_connector_register(struct drm_connector * connector)15271 int intel_connector_register(struct drm_connector *connector)
15272 {
15273 	struct intel_connector *intel_connector = to_intel_connector(connector);
15274 	int ret;
15275 
15276 	ret = intel_backlight_device_register(intel_connector);
15277 	if (ret)
15278 		goto err;
15279 
15280 	return 0;
15281 
15282 err:
15283 	return ret;
15284 }
15285 
intel_connector_unregister(struct drm_connector * connector)15286 void intel_connector_unregister(struct drm_connector *connector)
15287 {
15288 	struct intel_connector *intel_connector = to_intel_connector(connector);
15289 
15290 	intel_backlight_device_unregister(intel_connector);
15291 	intel_panel_destroy_backlight(connector);
15292 }
15293 
intel_hpd_poll_fini(struct drm_device * dev)15294 static void intel_hpd_poll_fini(struct drm_device *dev)
15295 {
15296 	struct intel_connector *connector;
15297 	struct drm_connector_list_iter conn_iter;
15298 
15299 	/* First disable polling... */
15300 	drm_kms_helper_poll_fini(dev);
15301 
15302 	/* Then kill the work that may have been queued by hpd. */
15303 	drm_connector_list_iter_begin(dev, &conn_iter);
15304 	for_each_intel_connector_iter(connector, &conn_iter) {
15305 		if (connector->modeset_retry_work.func)
15306 			cancel_work_sync(&connector->modeset_retry_work);
15307 	}
15308 	drm_connector_list_iter_end(&conn_iter);
15309 }
15310 
intel_modeset_cleanup(struct drm_device * dev)15311 void intel_modeset_cleanup(struct drm_device *dev)
15312 {
15313 	struct drm_i915_private *dev_priv = to_i915(dev);
15314 
15315 	flush_work(&dev_priv->atomic_helper.free_work);
15316 	WARN_ON(!llist_empty(&dev_priv->atomic_helper.free_list));
15317 
15318 	intel_disable_gt_powersave(dev_priv);
15319 
15320 	/*
15321 	 * Interrupts and polling as the first thing to avoid creating havoc.
15322 	 * Too much stuff here (turning of connectors, ...) would
15323 	 * experience fancy races otherwise.
15324 	 */
15325 	intel_irq_uninstall(dev_priv);
15326 
15327 	/*
15328 	 * Due to the hpd irq storm handling the hotplug work can re-arm the
15329 	 * poll handlers. Hence disable polling after hpd handling is shut down.
15330 	 */
15331 	intel_hpd_poll_fini(dev);
15332 
15333 	/* poll work can call into fbdev, hence clean that up afterwards */
15334 	intel_fbdev_fini(dev_priv);
15335 
15336 	intel_unregister_dsm_handler();
15337 
15338 	intel_fbc_global_disable(dev_priv);
15339 
15340 	/* flush any delayed tasks or pending work */
15341 	flush_scheduled_work();
15342 
15343 	drm_mode_config_cleanup(dev);
15344 
15345 	intel_cleanup_overlay(dev_priv);
15346 
15347 	intel_cleanup_gt_powersave(dev_priv);
15348 
15349 	intel_teardown_gmbus(dev_priv);
15350 }
15351 
intel_connector_attach_encoder(struct intel_connector * connector,struct intel_encoder * encoder)15352 void intel_connector_attach_encoder(struct intel_connector *connector,
15353 				    struct intel_encoder *encoder)
15354 {
15355 	connector->encoder = encoder;
15356 	drm_mode_connector_attach_encoder(&connector->base,
15357 					  &encoder->base);
15358 }
15359 
15360 /*
15361  * set vga decode state - true == enable VGA decode
15362  */
intel_modeset_vga_set_state(struct drm_i915_private * dev_priv,bool state)15363 int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv, bool state)
15364 {
15365 	unsigned reg = INTEL_GEN(dev_priv) >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
15366 	u16 gmch_ctrl;
15367 
15368 	if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15369 		DRM_ERROR("failed to read control word\n");
15370 		return -EIO;
15371 	}
15372 
15373 	if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15374 		return 0;
15375 
15376 	if (state)
15377 		gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15378 	else
15379 		gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
15380 
15381 	if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15382 		DRM_ERROR("failed to write control word\n");
15383 		return -EIO;
15384 	}
15385 
15386 	return 0;
15387 }
15388 
15389 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
15390 
15391 struct intel_display_error_state {
15392 
15393 	u32 power_well_driver;
15394 
15395 	int num_transcoders;
15396 
15397 	struct intel_cursor_error_state {
15398 		u32 control;
15399 		u32 position;
15400 		u32 base;
15401 		u32 size;
15402 	} cursor[I915_MAX_PIPES];
15403 
15404 	struct intel_pipe_error_state {
15405 		bool power_domain_on;
15406 		u32 source;
15407 		u32 stat;
15408 	} pipe[I915_MAX_PIPES];
15409 
15410 	struct intel_plane_error_state {
15411 		u32 control;
15412 		u32 stride;
15413 		u32 size;
15414 		u32 pos;
15415 		u32 addr;
15416 		u32 surface;
15417 		u32 tile_offset;
15418 	} plane[I915_MAX_PIPES];
15419 
15420 	struct intel_transcoder_error_state {
15421 		bool power_domain_on;
15422 		enum transcoder cpu_transcoder;
15423 
15424 		u32 conf;
15425 
15426 		u32 htotal;
15427 		u32 hblank;
15428 		u32 hsync;
15429 		u32 vtotal;
15430 		u32 vblank;
15431 		u32 vsync;
15432 	} transcoder[4];
15433 };
15434 
15435 struct intel_display_error_state *
intel_display_capture_error_state(struct drm_i915_private * dev_priv)15436 intel_display_capture_error_state(struct drm_i915_private *dev_priv)
15437 {
15438 	struct intel_display_error_state *error;
15439 	int transcoders[] = {
15440 		TRANSCODER_A,
15441 		TRANSCODER_B,
15442 		TRANSCODER_C,
15443 		TRANSCODER_EDP,
15444 	};
15445 	int i;
15446 
15447 	if (INTEL_INFO(dev_priv)->num_pipes == 0)
15448 		return NULL;
15449 
15450 	error = kzalloc(sizeof(*error), GFP_ATOMIC);
15451 	if (error == NULL)
15452 		return NULL;
15453 
15454 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
15455 		error->power_well_driver =
15456 			I915_READ(HSW_PWR_WELL_CTL_DRIVER(HSW_DISP_PW_GLOBAL));
15457 
15458 	for_each_pipe(dev_priv, i) {
15459 		error->pipe[i].power_domain_on =
15460 			__intel_display_power_is_enabled(dev_priv,
15461 							 POWER_DOMAIN_PIPE(i));
15462 		if (!error->pipe[i].power_domain_on)
15463 			continue;
15464 
15465 		error->cursor[i].control = I915_READ(CURCNTR(i));
15466 		error->cursor[i].position = I915_READ(CURPOS(i));
15467 		error->cursor[i].base = I915_READ(CURBASE(i));
15468 
15469 		error->plane[i].control = I915_READ(DSPCNTR(i));
15470 		error->plane[i].stride = I915_READ(DSPSTRIDE(i));
15471 		if (INTEL_GEN(dev_priv) <= 3) {
15472 			error->plane[i].size = I915_READ(DSPSIZE(i));
15473 			error->plane[i].pos = I915_READ(DSPPOS(i));
15474 		}
15475 		if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
15476 			error->plane[i].addr = I915_READ(DSPADDR(i));
15477 		if (INTEL_GEN(dev_priv) >= 4) {
15478 			error->plane[i].surface = I915_READ(DSPSURF(i));
15479 			error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15480 		}
15481 
15482 		error->pipe[i].source = I915_READ(PIPESRC(i));
15483 
15484 		if (HAS_GMCH_DISPLAY(dev_priv))
15485 			error->pipe[i].stat = I915_READ(PIPESTAT(i));
15486 	}
15487 
15488 	/* Note: this does not include DSI transcoders. */
15489 	error->num_transcoders = INTEL_INFO(dev_priv)->num_pipes;
15490 	if (HAS_DDI(dev_priv))
15491 		error->num_transcoders++; /* Account for eDP. */
15492 
15493 	for (i = 0; i < error->num_transcoders; i++) {
15494 		enum transcoder cpu_transcoder = transcoders[i];
15495 
15496 		error->transcoder[i].power_domain_on =
15497 			__intel_display_power_is_enabled(dev_priv,
15498 				POWER_DOMAIN_TRANSCODER(cpu_transcoder));
15499 		if (!error->transcoder[i].power_domain_on)
15500 			continue;
15501 
15502 		error->transcoder[i].cpu_transcoder = cpu_transcoder;
15503 
15504 		error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15505 		error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15506 		error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15507 		error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15508 		error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15509 		error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15510 		error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
15511 	}
15512 
15513 	return error;
15514 }
15515 
15516 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15517 
15518 void
intel_display_print_error_state(struct drm_i915_error_state_buf * m,struct intel_display_error_state * error)15519 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
15520 				struct intel_display_error_state *error)
15521 {
15522 	struct drm_i915_private *dev_priv = m->i915;
15523 	int i;
15524 
15525 	if (!error)
15526 		return;
15527 
15528 	err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev_priv)->num_pipes);
15529 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
15530 		err_printf(m, "PWR_WELL_CTL2: %08x\n",
15531 			   error->power_well_driver);
15532 	for_each_pipe(dev_priv, i) {
15533 		err_printf(m, "Pipe [%d]:\n", i);
15534 		err_printf(m, "  Power: %s\n",
15535 			   onoff(error->pipe[i].power_domain_on));
15536 		err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
15537 		err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
15538 
15539 		err_printf(m, "Plane [%d]:\n", i);
15540 		err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
15541 		err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
15542 		if (INTEL_GEN(dev_priv) <= 3) {
15543 			err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
15544 			err_printf(m, "  POS: %08x\n", error->plane[i].pos);
15545 		}
15546 		if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
15547 			err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
15548 		if (INTEL_GEN(dev_priv) >= 4) {
15549 			err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
15550 			err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
15551 		}
15552 
15553 		err_printf(m, "Cursor [%d]:\n", i);
15554 		err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
15555 		err_printf(m, "  POS: %08x\n", error->cursor[i].position);
15556 		err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
15557 	}
15558 
15559 	for (i = 0; i < error->num_transcoders; i++) {
15560 		err_printf(m, "CPU transcoder: %s\n",
15561 			   transcoder_name(error->transcoder[i].cpu_transcoder));
15562 		err_printf(m, "  Power: %s\n",
15563 			   onoff(error->transcoder[i].power_domain_on));
15564 		err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
15565 		err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
15566 		err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
15567 		err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
15568 		err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
15569 		err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
15570 		err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
15571 	}
15572 }
15573 
15574 #endif
15575