1 /*
2 * intel_scu_ipc.c: Driver for the Intel SCU IPC mechanism
3 *
4 * (C) Copyright 2008-2010,2015 Intel Corporation
5 * Author: Sreedhara DS (sreedhara.ds@intel.com)
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 *
12 * SCU running in ARC processor communicates with other entity running in IA
13 * core through IPC mechanism which in turn messaging between IA core ad SCU.
14 * SCU has two IPC mechanism IPC-1 and IPC-2. IPC-1 is used between IA32 and
15 * SCU where IPC-2 is used between P-Unit and SCU. This driver delas with
16 * IPC-1 Driver provides an API for power control unit registers (e.g. MSIC)
17 * along with other APIs.
18 */
19 #include <linux/delay.h>
20 #include <linux/errno.h>
21 #include <linux/init.h>
22 #include <linux/device.h>
23 #include <linux/pm.h>
24 #include <linux/pci.h>
25 #include <linux/interrupt.h>
26 #include <linux/sfi.h>
27 #include <asm/intel-mid.h>
28 #include <asm/intel_scu_ipc.h>
29
30 /* IPC defines the following message types */
31 #define IPCMSG_WATCHDOG_TIMER 0xF8 /* Set Kernel Watchdog Threshold */
32 #define IPCMSG_BATTERY 0xEF /* Coulomb Counter Accumulator */
33 #define IPCMSG_FW_UPDATE 0xFE /* Firmware update */
34 #define IPCMSG_PCNTRL 0xFF /* Power controller unit read/write */
35 #define IPCMSG_FW_REVISION 0xF4 /* Get firmware revision */
36
37 /* Command id associated with message IPCMSG_PCNTRL */
38 #define IPC_CMD_PCNTRL_W 0 /* Register write */
39 #define IPC_CMD_PCNTRL_R 1 /* Register read */
40 #define IPC_CMD_PCNTRL_M 2 /* Register read-modify-write */
41
42 /*
43 * IPC register summary
44 *
45 * IPC register blocks are memory mapped at fixed address of PCI BAR 0.
46 * To read or write information to the SCU, driver writes to IPC-1 memory
47 * mapped registers. The following is the IPC mechanism
48 *
49 * 1. IA core cDMI interface claims this transaction and converts it to a
50 * Transaction Layer Packet (TLP) message which is sent across the cDMI.
51 *
52 * 2. South Complex cDMI block receives this message and writes it to
53 * the IPC-1 register block, causing an interrupt to the SCU
54 *
55 * 3. SCU firmware decodes this interrupt and IPC message and the appropriate
56 * message handler is called within firmware.
57 */
58
59 #define IPC_WWBUF_SIZE 20 /* IPC Write buffer Size */
60 #define IPC_RWBUF_SIZE 20 /* IPC Read buffer Size */
61 #define IPC_IOC 0x100 /* IPC command register IOC bit */
62
63 #define PCI_DEVICE_ID_LINCROFT 0x082a
64 #define PCI_DEVICE_ID_PENWELL 0x080e
65 #define PCI_DEVICE_ID_CLOVERVIEW 0x08ea
66 #define PCI_DEVICE_ID_TANGIER 0x11a0
67
68 /* intel scu ipc driver data */
69 struct intel_scu_ipc_pdata_t {
70 u32 i2c_base;
71 u32 i2c_len;
72 };
73
74 static const struct intel_scu_ipc_pdata_t intel_scu_ipc_lincroft_pdata = {
75 .i2c_base = 0xff12b000,
76 .i2c_len = 0x10,
77 };
78
79 /* Penwell and Cloverview */
80 static const struct intel_scu_ipc_pdata_t intel_scu_ipc_penwell_pdata = {
81 .i2c_base = 0xff12b000,
82 .i2c_len = 0x10,
83 };
84
85 static const struct intel_scu_ipc_pdata_t intel_scu_ipc_tangier_pdata = {
86 .i2c_base = 0xff00d000,
87 .i2c_len = 0x10,
88 };
89
90 struct intel_scu_ipc_dev {
91 struct device *dev;
92 void __iomem *ipc_base;
93 void __iomem *i2c_base;
94 struct completion cmd_complete;
95 u8 irq_mode;
96 };
97
98 static struct intel_scu_ipc_dev ipcdev; /* Only one for now */
99
100 #define IPC_STATUS 0x04
101 #define IPC_STATUS_IRQ BIT(2)
102
103 /*
104 * IPC Read Buffer (Read Only):
105 * 16 byte buffer for receiving data from SCU, if IPC command
106 * processing results in response data
107 */
108 #define IPC_READ_BUFFER 0x90
109
110 #define IPC_I2C_CNTRL_ADDR 0
111 #define I2C_DATA_ADDR 0x04
112
113 static DEFINE_MUTEX(ipclock); /* lock used to prevent multiple call to SCU */
114
115 /*
116 * Send ipc command
117 * Command Register (Write Only):
118 * A write to this register results in an interrupt to the SCU core processor
119 * Format:
120 * |rfu2(8) | size(8) | command id(4) | rfu1(3) | ioc(1) | command(8)|
121 */
ipc_command(struct intel_scu_ipc_dev * scu,u32 cmd)122 static inline void ipc_command(struct intel_scu_ipc_dev *scu, u32 cmd)
123 {
124 reinit_completion(&scu->cmd_complete);
125 writel(cmd | IPC_IOC, scu->ipc_base);
126 }
127
128 /*
129 * Write ipc data
130 * IPC Write Buffer (Write Only):
131 * 16-byte buffer for sending data associated with IPC command to
132 * SCU. Size of the data is specified in the IPC_COMMAND_REG register
133 */
ipc_data_writel(struct intel_scu_ipc_dev * scu,u32 data,u32 offset)134 static inline void ipc_data_writel(struct intel_scu_ipc_dev *scu, u32 data, u32 offset)
135 {
136 writel(data, scu->ipc_base + 0x80 + offset);
137 }
138
139 /*
140 * Status Register (Read Only):
141 * Driver will read this register to get the ready/busy status of the IPC
142 * block and error status of the IPC command that was just processed by SCU
143 * Format:
144 * |rfu3(8)|error code(8)|initiator id(8)|cmd id(4)|rfu1(2)|error(1)|busy(1)|
145 */
ipc_read_status(struct intel_scu_ipc_dev * scu)146 static inline u8 ipc_read_status(struct intel_scu_ipc_dev *scu)
147 {
148 return __raw_readl(scu->ipc_base + 0x04);
149 }
150
151 /* Read ipc byte data */
ipc_data_readb(struct intel_scu_ipc_dev * scu,u32 offset)152 static inline u8 ipc_data_readb(struct intel_scu_ipc_dev *scu, u32 offset)
153 {
154 return readb(scu->ipc_base + IPC_READ_BUFFER + offset);
155 }
156
157 /* Read ipc u32 data */
ipc_data_readl(struct intel_scu_ipc_dev * scu,u32 offset)158 static inline u32 ipc_data_readl(struct intel_scu_ipc_dev *scu, u32 offset)
159 {
160 return readl(scu->ipc_base + IPC_READ_BUFFER + offset);
161 }
162
163 /* Wait till scu status is busy */
busy_loop(struct intel_scu_ipc_dev * scu)164 static inline int busy_loop(struct intel_scu_ipc_dev *scu)
165 {
166 u32 status = ipc_read_status(scu);
167 u32 loop_count = 100000;
168
169 /* break if scu doesn't reset busy bit after huge retry */
170 while ((status & BIT(0)) && --loop_count) {
171 udelay(1); /* scu processing time is in few u secods */
172 status = ipc_read_status(scu);
173 }
174
175 if (status & BIT(0)) {
176 dev_err(scu->dev, "IPC timed out");
177 return -ETIMEDOUT;
178 }
179
180 if (status & BIT(1))
181 return -EIO;
182
183 return 0;
184 }
185
186 /* Wait till ipc ioc interrupt is received or timeout in 3 HZ */
ipc_wait_for_interrupt(struct intel_scu_ipc_dev * scu)187 static inline int ipc_wait_for_interrupt(struct intel_scu_ipc_dev *scu)
188 {
189 int status;
190
191 if (!wait_for_completion_timeout(&scu->cmd_complete, 3 * HZ)) {
192 dev_err(scu->dev, "IPC timed out\n");
193 return -ETIMEDOUT;
194 }
195
196 status = ipc_read_status(scu);
197 if (status & BIT(1))
198 return -EIO;
199
200 return 0;
201 }
202
intel_scu_ipc_check_status(struct intel_scu_ipc_dev * scu)203 static int intel_scu_ipc_check_status(struct intel_scu_ipc_dev *scu)
204 {
205 return scu->irq_mode ? ipc_wait_for_interrupt(scu) : busy_loop(scu);
206 }
207
208 /* Read/Write power control(PMIC in Langwell, MSIC in PenWell) registers */
pwr_reg_rdwr(u16 * addr,u8 * data,u32 count,u32 op,u32 id)209 static int pwr_reg_rdwr(u16 *addr, u8 *data, u32 count, u32 op, u32 id)
210 {
211 struct intel_scu_ipc_dev *scu = &ipcdev;
212 int nc;
213 u32 offset = 0;
214 int err;
215 u8 cbuf[IPC_WWBUF_SIZE];
216 u32 *wbuf = (u32 *)&cbuf;
217
218 memset(cbuf, 0, sizeof(cbuf));
219
220 mutex_lock(&ipclock);
221
222 if (scu->dev == NULL) {
223 mutex_unlock(&ipclock);
224 return -ENODEV;
225 }
226
227 for (nc = 0; nc < count; nc++, offset += 2) {
228 cbuf[offset] = addr[nc];
229 cbuf[offset + 1] = addr[nc] >> 8;
230 }
231
232 if (id == IPC_CMD_PCNTRL_R) {
233 for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
234 ipc_data_writel(scu, wbuf[nc], offset);
235 ipc_command(scu, (count * 2) << 16 | id << 12 | 0 << 8 | op);
236 } else if (id == IPC_CMD_PCNTRL_W) {
237 for (nc = 0; nc < count; nc++, offset += 1)
238 cbuf[offset] = data[nc];
239 for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
240 ipc_data_writel(scu, wbuf[nc], offset);
241 ipc_command(scu, (count * 3) << 16 | id << 12 | 0 << 8 | op);
242 } else if (id == IPC_CMD_PCNTRL_M) {
243 cbuf[offset] = data[0];
244 cbuf[offset + 1] = data[1];
245 ipc_data_writel(scu, wbuf[0], 0); /* Write wbuff */
246 ipc_command(scu, 4 << 16 | id << 12 | 0 << 8 | op);
247 }
248
249 err = intel_scu_ipc_check_status(scu);
250 if (!err && id == IPC_CMD_PCNTRL_R) { /* Read rbuf */
251 /* Workaround: values are read as 0 without memcpy_fromio */
252 memcpy_fromio(cbuf, scu->ipc_base + 0x90, 16);
253 for (nc = 0; nc < count; nc++)
254 data[nc] = ipc_data_readb(scu, nc);
255 }
256 mutex_unlock(&ipclock);
257 return err;
258 }
259
260 /**
261 * intel_scu_ipc_ioread8 - read a word via the SCU
262 * @addr: register on SCU
263 * @data: return pointer for read byte
264 *
265 * Read a single register. Returns 0 on success or an error code. All
266 * locking between SCU accesses is handled for the caller.
267 *
268 * This function may sleep.
269 */
intel_scu_ipc_ioread8(u16 addr,u8 * data)270 int intel_scu_ipc_ioread8(u16 addr, u8 *data)
271 {
272 return pwr_reg_rdwr(&addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
273 }
274 EXPORT_SYMBOL(intel_scu_ipc_ioread8);
275
276 /**
277 * intel_scu_ipc_ioread16 - read a word via the SCU
278 * @addr: register on SCU
279 * @data: return pointer for read word
280 *
281 * Read a register pair. Returns 0 on success or an error code. All
282 * locking between SCU accesses is handled for the caller.
283 *
284 * This function may sleep.
285 */
intel_scu_ipc_ioread16(u16 addr,u16 * data)286 int intel_scu_ipc_ioread16(u16 addr, u16 *data)
287 {
288 u16 x[2] = {addr, addr + 1};
289 return pwr_reg_rdwr(x, (u8 *)data, 2, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
290 }
291 EXPORT_SYMBOL(intel_scu_ipc_ioread16);
292
293 /**
294 * intel_scu_ipc_ioread32 - read a dword via the SCU
295 * @addr: register on SCU
296 * @data: return pointer for read dword
297 *
298 * Read four registers. Returns 0 on success or an error code. All
299 * locking between SCU accesses is handled for the caller.
300 *
301 * This function may sleep.
302 */
intel_scu_ipc_ioread32(u16 addr,u32 * data)303 int intel_scu_ipc_ioread32(u16 addr, u32 *data)
304 {
305 u16 x[4] = {addr, addr + 1, addr + 2, addr + 3};
306 return pwr_reg_rdwr(x, (u8 *)data, 4, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
307 }
308 EXPORT_SYMBOL(intel_scu_ipc_ioread32);
309
310 /**
311 * intel_scu_ipc_iowrite8 - write a byte via the SCU
312 * @addr: register on SCU
313 * @data: byte to write
314 *
315 * Write a single register. Returns 0 on success or an error code. All
316 * locking between SCU accesses is handled for the caller.
317 *
318 * This function may sleep.
319 */
intel_scu_ipc_iowrite8(u16 addr,u8 data)320 int intel_scu_ipc_iowrite8(u16 addr, u8 data)
321 {
322 return pwr_reg_rdwr(&addr, &data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
323 }
324 EXPORT_SYMBOL(intel_scu_ipc_iowrite8);
325
326 /**
327 * intel_scu_ipc_iowrite16 - write a word via the SCU
328 * @addr: register on SCU
329 * @data: word to write
330 *
331 * Write two registers. Returns 0 on success or an error code. All
332 * locking between SCU accesses is handled for the caller.
333 *
334 * This function may sleep.
335 */
intel_scu_ipc_iowrite16(u16 addr,u16 data)336 int intel_scu_ipc_iowrite16(u16 addr, u16 data)
337 {
338 u16 x[2] = {addr, addr + 1};
339 return pwr_reg_rdwr(x, (u8 *)&data, 2, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
340 }
341 EXPORT_SYMBOL(intel_scu_ipc_iowrite16);
342
343 /**
344 * intel_scu_ipc_iowrite32 - write a dword via the SCU
345 * @addr: register on SCU
346 * @data: dword to write
347 *
348 * Write four registers. Returns 0 on success or an error code. All
349 * locking between SCU accesses is handled for the caller.
350 *
351 * This function may sleep.
352 */
intel_scu_ipc_iowrite32(u16 addr,u32 data)353 int intel_scu_ipc_iowrite32(u16 addr, u32 data)
354 {
355 u16 x[4] = {addr, addr + 1, addr + 2, addr + 3};
356 return pwr_reg_rdwr(x, (u8 *)&data, 4, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
357 }
358 EXPORT_SYMBOL(intel_scu_ipc_iowrite32);
359
360 /**
361 * intel_scu_ipc_readvv - read a set of registers
362 * @addr: register list
363 * @data: bytes to return
364 * @len: length of array
365 *
366 * Read registers. Returns 0 on success or an error code. All
367 * locking between SCU accesses is handled for the caller.
368 *
369 * The largest array length permitted by the hardware is 5 items.
370 *
371 * This function may sleep.
372 */
intel_scu_ipc_readv(u16 * addr,u8 * data,int len)373 int intel_scu_ipc_readv(u16 *addr, u8 *data, int len)
374 {
375 return pwr_reg_rdwr(addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
376 }
377 EXPORT_SYMBOL(intel_scu_ipc_readv);
378
379 /**
380 * intel_scu_ipc_writev - write a set of registers
381 * @addr: register list
382 * @data: bytes to write
383 * @len: length of array
384 *
385 * Write registers. Returns 0 on success or an error code. All
386 * locking between SCU accesses is handled for the caller.
387 *
388 * The largest array length permitted by the hardware is 5 items.
389 *
390 * This function may sleep.
391 *
392 */
intel_scu_ipc_writev(u16 * addr,u8 * data,int len)393 int intel_scu_ipc_writev(u16 *addr, u8 *data, int len)
394 {
395 return pwr_reg_rdwr(addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
396 }
397 EXPORT_SYMBOL(intel_scu_ipc_writev);
398
399 /**
400 * intel_scu_ipc_update_register - r/m/w a register
401 * @addr: register address
402 * @bits: bits to update
403 * @mask: mask of bits to update
404 *
405 * Read-modify-write power control unit register. The first data argument
406 * must be register value and second is mask value
407 * mask is a bitmap that indicates which bits to update.
408 * 0 = masked. Don't modify this bit, 1 = modify this bit.
409 * returns 0 on success or an error code.
410 *
411 * This function may sleep. Locking between SCU accesses is handled
412 * for the caller.
413 */
intel_scu_ipc_update_register(u16 addr,u8 bits,u8 mask)414 int intel_scu_ipc_update_register(u16 addr, u8 bits, u8 mask)
415 {
416 u8 data[2] = { bits, mask };
417 return pwr_reg_rdwr(&addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_M);
418 }
419 EXPORT_SYMBOL(intel_scu_ipc_update_register);
420
421 /**
422 * intel_scu_ipc_simple_command - send a simple command
423 * @cmd: command
424 * @sub: sub type
425 *
426 * Issue a simple command to the SCU. Do not use this interface if
427 * you must then access data as any data values may be overwritten
428 * by another SCU access by the time this function returns.
429 *
430 * This function may sleep. Locking for SCU accesses is handled for
431 * the caller.
432 */
intel_scu_ipc_simple_command(int cmd,int sub)433 int intel_scu_ipc_simple_command(int cmd, int sub)
434 {
435 struct intel_scu_ipc_dev *scu = &ipcdev;
436 int err;
437
438 mutex_lock(&ipclock);
439 if (scu->dev == NULL) {
440 mutex_unlock(&ipclock);
441 return -ENODEV;
442 }
443 ipc_command(scu, sub << 12 | cmd);
444 err = intel_scu_ipc_check_status(scu);
445 mutex_unlock(&ipclock);
446 return err;
447 }
448 EXPORT_SYMBOL(intel_scu_ipc_simple_command);
449
450 /**
451 * intel_scu_ipc_command - command with data
452 * @cmd: command
453 * @sub: sub type
454 * @in: input data
455 * @inlen: input length in dwords
456 * @out: output data
457 * @outlein: output length in dwords
458 *
459 * Issue a command to the SCU which involves data transfers. Do the
460 * data copies under the lock but leave it for the caller to interpret
461 */
intel_scu_ipc_command(int cmd,int sub,u32 * in,int inlen,u32 * out,int outlen)462 int intel_scu_ipc_command(int cmd, int sub, u32 *in, int inlen,
463 u32 *out, int outlen)
464 {
465 struct intel_scu_ipc_dev *scu = &ipcdev;
466 int i, err;
467
468 mutex_lock(&ipclock);
469 if (scu->dev == NULL) {
470 mutex_unlock(&ipclock);
471 return -ENODEV;
472 }
473
474 for (i = 0; i < inlen; i++)
475 ipc_data_writel(scu, *in++, 4 * i);
476
477 ipc_command(scu, (inlen << 16) | (sub << 12) | cmd);
478 err = intel_scu_ipc_check_status(scu);
479
480 if (!err) {
481 for (i = 0; i < outlen; i++)
482 *out++ = ipc_data_readl(scu, 4 * i);
483 }
484
485 mutex_unlock(&ipclock);
486 return err;
487 }
488 EXPORT_SYMBOL(intel_scu_ipc_command);
489
490 #define IPC_SPTR 0x08
491 #define IPC_DPTR 0x0C
492
493 /**
494 * intel_scu_ipc_raw_command() - IPC command with data and pointers
495 * @cmd: IPC command code.
496 * @sub: IPC command sub type.
497 * @in: input data of this IPC command.
498 * @inlen: input data length in dwords.
499 * @out: output data of this IPC command.
500 * @outlen: output data length in dwords.
501 * @sptr: data writing to SPTR register.
502 * @dptr: data writing to DPTR register.
503 *
504 * Send an IPC command to SCU with input/output data and source/dest pointers.
505 *
506 * Return: an IPC error code or 0 on success.
507 */
intel_scu_ipc_raw_command(int cmd,int sub,u8 * in,int inlen,u32 * out,int outlen,u32 dptr,u32 sptr)508 int intel_scu_ipc_raw_command(int cmd, int sub, u8 *in, int inlen,
509 u32 *out, int outlen, u32 dptr, u32 sptr)
510 {
511 struct intel_scu_ipc_dev *scu = &ipcdev;
512 int inbuflen = DIV_ROUND_UP(inlen, 4);
513 u32 inbuf[4];
514 int i, err;
515
516 /* Up to 16 bytes */
517 if (inbuflen > 4)
518 return -EINVAL;
519
520 mutex_lock(&ipclock);
521 if (scu->dev == NULL) {
522 mutex_unlock(&ipclock);
523 return -ENODEV;
524 }
525
526 writel(dptr, scu->ipc_base + IPC_DPTR);
527 writel(sptr, scu->ipc_base + IPC_SPTR);
528
529 /*
530 * SRAM controller doesn't support 8-bit writes, it only
531 * supports 32-bit writes, so we have to copy input data into
532 * the temporary buffer, and SCU FW will use the inlen to
533 * determine the actual input data length in the temporary
534 * buffer.
535 */
536 memcpy(inbuf, in, inlen);
537
538 for (i = 0; i < inbuflen; i++)
539 ipc_data_writel(scu, inbuf[i], 4 * i);
540
541 ipc_command(scu, (inlen << 16) | (sub << 12) | cmd);
542 err = intel_scu_ipc_check_status(scu);
543 if (!err) {
544 for (i = 0; i < outlen; i++)
545 *out++ = ipc_data_readl(scu, 4 * i);
546 }
547
548 mutex_unlock(&ipclock);
549 return err;
550 }
551 EXPORT_SYMBOL_GPL(intel_scu_ipc_raw_command);
552
553 /* I2C commands */
554 #define IPC_I2C_WRITE 1 /* I2C Write command */
555 #define IPC_I2C_READ 2 /* I2C Read command */
556
557 /**
558 * intel_scu_ipc_i2c_cntrl - I2C read/write operations
559 * @addr: I2C address + command bits
560 * @data: data to read/write
561 *
562 * Perform an an I2C read/write operation via the SCU. All locking is
563 * handled for the caller. This function may sleep.
564 *
565 * Returns an error code or 0 on success.
566 *
567 * This has to be in the IPC driver for the locking.
568 */
intel_scu_ipc_i2c_cntrl(u32 addr,u32 * data)569 int intel_scu_ipc_i2c_cntrl(u32 addr, u32 *data)
570 {
571 struct intel_scu_ipc_dev *scu = &ipcdev;
572 u32 cmd = 0;
573
574 mutex_lock(&ipclock);
575 if (scu->dev == NULL) {
576 mutex_unlock(&ipclock);
577 return -ENODEV;
578 }
579 cmd = (addr >> 24) & 0xFF;
580 if (cmd == IPC_I2C_READ) {
581 writel(addr, scu->i2c_base + IPC_I2C_CNTRL_ADDR);
582 /* Write not getting updated without delay */
583 mdelay(1);
584 *data = readl(scu->i2c_base + I2C_DATA_ADDR);
585 } else if (cmd == IPC_I2C_WRITE) {
586 writel(*data, scu->i2c_base + I2C_DATA_ADDR);
587 mdelay(1);
588 writel(addr, scu->i2c_base + IPC_I2C_CNTRL_ADDR);
589 } else {
590 dev_err(scu->dev,
591 "intel_scu_ipc: I2C INVALID_CMD = 0x%x\n", cmd);
592
593 mutex_unlock(&ipclock);
594 return -EIO;
595 }
596 mutex_unlock(&ipclock);
597 return 0;
598 }
599 EXPORT_SYMBOL(intel_scu_ipc_i2c_cntrl);
600
601 /*
602 * Interrupt handler gets called when ioc bit of IPC_COMMAND_REG set to 1
603 * When ioc bit is set to 1, caller api must wait for interrupt handler called
604 * which in turn unlocks the caller api. Currently this is not used
605 *
606 * This is edge triggered so we need take no action to clear anything
607 */
ioc(int irq,void * dev_id)608 static irqreturn_t ioc(int irq, void *dev_id)
609 {
610 struct intel_scu_ipc_dev *scu = dev_id;
611 int status = ipc_read_status(scu);
612
613 writel(status | IPC_STATUS_IRQ, scu->ipc_base + IPC_STATUS);
614 complete(&scu->cmd_complete);
615
616 return IRQ_HANDLED;
617 }
618
619 /**
620 * ipc_probe - probe an Intel SCU IPC
621 * @pdev: the PCI device matching
622 * @id: entry in the match table
623 *
624 * Enable and install an intel SCU IPC. This appears in the PCI space
625 * but uses some hard coded addresses as well.
626 */
ipc_probe(struct pci_dev * pdev,const struct pci_device_id * id)627 static int ipc_probe(struct pci_dev *pdev, const struct pci_device_id *id)
628 {
629 int err;
630 struct intel_scu_ipc_dev *scu = &ipcdev;
631 struct intel_scu_ipc_pdata_t *pdata;
632
633 if (scu->dev) /* We support only one SCU */
634 return -EBUSY;
635
636 pdata = (struct intel_scu_ipc_pdata_t *)id->driver_data;
637 if (!pdata)
638 return -ENODEV;
639
640 err = pcim_enable_device(pdev);
641 if (err)
642 return err;
643
644 err = pcim_iomap_regions(pdev, 1 << 0, pci_name(pdev));
645 if (err)
646 return err;
647
648 init_completion(&scu->cmd_complete);
649
650 scu->ipc_base = pcim_iomap_table(pdev)[0];
651
652 scu->i2c_base = ioremap_nocache(pdata->i2c_base, pdata->i2c_len);
653 if (!scu->i2c_base)
654 return -ENOMEM;
655
656 err = devm_request_irq(&pdev->dev, pdev->irq, ioc, 0, "intel_scu_ipc",
657 scu);
658 if (err)
659 return err;
660
661 /* Assign device at last */
662 scu->dev = &pdev->dev;
663
664 intel_scu_devices_create();
665
666 pci_set_drvdata(pdev, scu);
667 return 0;
668 }
669
670 #define SCU_DEVICE(id, pdata) {PCI_VDEVICE(INTEL, id), (kernel_ulong_t)&pdata}
671
672 static const struct pci_device_id pci_ids[] = {
673 SCU_DEVICE(PCI_DEVICE_ID_LINCROFT, intel_scu_ipc_lincroft_pdata),
674 SCU_DEVICE(PCI_DEVICE_ID_PENWELL, intel_scu_ipc_penwell_pdata),
675 SCU_DEVICE(PCI_DEVICE_ID_CLOVERVIEW, intel_scu_ipc_penwell_pdata),
676 SCU_DEVICE(PCI_DEVICE_ID_TANGIER, intel_scu_ipc_tangier_pdata),
677 {}
678 };
679
680 static struct pci_driver ipc_driver = {
681 .driver = {
682 .suppress_bind_attrs = true,
683 },
684 .name = "intel_scu_ipc",
685 .id_table = pci_ids,
686 .probe = ipc_probe,
687 };
688 builtin_pci_driver(ipc_driver);
689