• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * intel_scu_ipc.c: Driver for the Intel SCU IPC mechanism
3  *
4  * (C) Copyright 2008-2010,2015 Intel Corporation
5  * Author: Sreedhara DS (sreedhara.ds@intel.com)
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  *
12  * SCU running in ARC processor communicates with other entity running in IA
13  * core through IPC mechanism which in turn messaging between IA core ad SCU.
14  * SCU has two IPC mechanism IPC-1 and IPC-2. IPC-1 is used between IA32 and
15  * SCU where IPC-2 is used between P-Unit and SCU. This driver delas with
16  * IPC-1 Driver provides an API for power control unit registers (e.g. MSIC)
17  * along with other APIs.
18  */
19 #include <linux/delay.h>
20 #include <linux/errno.h>
21 #include <linux/init.h>
22 #include <linux/device.h>
23 #include <linux/pm.h>
24 #include <linux/pci.h>
25 #include <linux/interrupt.h>
26 #include <linux/sfi.h>
27 #include <asm/intel-mid.h>
28 #include <asm/intel_scu_ipc.h>
29 
30 /* IPC defines the following message types */
31 #define IPCMSG_WATCHDOG_TIMER 0xF8 /* Set Kernel Watchdog Threshold */
32 #define IPCMSG_BATTERY        0xEF /* Coulomb Counter Accumulator */
33 #define IPCMSG_FW_UPDATE      0xFE /* Firmware update */
34 #define IPCMSG_PCNTRL         0xFF /* Power controller unit read/write */
35 #define IPCMSG_FW_REVISION    0xF4 /* Get firmware revision */
36 
37 /* Command id associated with message IPCMSG_PCNTRL */
38 #define IPC_CMD_PCNTRL_W      0 /* Register write */
39 #define IPC_CMD_PCNTRL_R      1 /* Register read */
40 #define IPC_CMD_PCNTRL_M      2 /* Register read-modify-write */
41 
42 /*
43  * IPC register summary
44  *
45  * IPC register blocks are memory mapped at fixed address of PCI BAR 0.
46  * To read or write information to the SCU, driver writes to IPC-1 memory
47  * mapped registers. The following is the IPC mechanism
48  *
49  * 1. IA core cDMI interface claims this transaction and converts it to a
50  *    Transaction Layer Packet (TLP) message which is sent across the cDMI.
51  *
52  * 2. South Complex cDMI block receives this message and writes it to
53  *    the IPC-1 register block, causing an interrupt to the SCU
54  *
55  * 3. SCU firmware decodes this interrupt and IPC message and the appropriate
56  *    message handler is called within firmware.
57  */
58 
59 #define IPC_WWBUF_SIZE    20		/* IPC Write buffer Size */
60 #define IPC_RWBUF_SIZE    20		/* IPC Read buffer Size */
61 #define IPC_IOC	          0x100		/* IPC command register IOC bit */
62 
63 #define PCI_DEVICE_ID_LINCROFT		0x082a
64 #define PCI_DEVICE_ID_PENWELL		0x080e
65 #define PCI_DEVICE_ID_CLOVERVIEW	0x08ea
66 #define PCI_DEVICE_ID_TANGIER		0x11a0
67 
68 /* intel scu ipc driver data */
69 struct intel_scu_ipc_pdata_t {
70 	u32 i2c_base;
71 	u32 i2c_len;
72 };
73 
74 static const struct intel_scu_ipc_pdata_t intel_scu_ipc_lincroft_pdata = {
75 	.i2c_base = 0xff12b000,
76 	.i2c_len = 0x10,
77 };
78 
79 /* Penwell and Cloverview */
80 static const struct intel_scu_ipc_pdata_t intel_scu_ipc_penwell_pdata = {
81 	.i2c_base = 0xff12b000,
82 	.i2c_len = 0x10,
83 };
84 
85 static const struct intel_scu_ipc_pdata_t intel_scu_ipc_tangier_pdata = {
86 	.i2c_base  = 0xff00d000,
87 	.i2c_len = 0x10,
88 };
89 
90 struct intel_scu_ipc_dev {
91 	struct device *dev;
92 	void __iomem *ipc_base;
93 	void __iomem *i2c_base;
94 	struct completion cmd_complete;
95 	u8 irq_mode;
96 };
97 
98 static struct intel_scu_ipc_dev  ipcdev; /* Only one for now */
99 
100 #define IPC_STATUS		0x04
101 #define IPC_STATUS_IRQ		BIT(2)
102 
103 /*
104  * IPC Read Buffer (Read Only):
105  * 16 byte buffer for receiving data from SCU, if IPC command
106  * processing results in response data
107  */
108 #define IPC_READ_BUFFER		0x90
109 
110 #define IPC_I2C_CNTRL_ADDR	0
111 #define I2C_DATA_ADDR		0x04
112 
113 static DEFINE_MUTEX(ipclock); /* lock used to prevent multiple call to SCU */
114 
115 /*
116  * Send ipc command
117  * Command Register (Write Only):
118  * A write to this register results in an interrupt to the SCU core processor
119  * Format:
120  * |rfu2(8) | size(8) | command id(4) | rfu1(3) | ioc(1) | command(8)|
121  */
ipc_command(struct intel_scu_ipc_dev * scu,u32 cmd)122 static inline void ipc_command(struct intel_scu_ipc_dev *scu, u32 cmd)
123 {
124 	reinit_completion(&scu->cmd_complete);
125 	writel(cmd | IPC_IOC, scu->ipc_base);
126 }
127 
128 /*
129  * Write ipc data
130  * IPC Write Buffer (Write Only):
131  * 16-byte buffer for sending data associated with IPC command to
132  * SCU. Size of the data is specified in the IPC_COMMAND_REG register
133  */
ipc_data_writel(struct intel_scu_ipc_dev * scu,u32 data,u32 offset)134 static inline void ipc_data_writel(struct intel_scu_ipc_dev *scu, u32 data, u32 offset)
135 {
136 	writel(data, scu->ipc_base + 0x80 + offset);
137 }
138 
139 /*
140  * Status Register (Read Only):
141  * Driver will read this register to get the ready/busy status of the IPC
142  * block and error status of the IPC command that was just processed by SCU
143  * Format:
144  * |rfu3(8)|error code(8)|initiator id(8)|cmd id(4)|rfu1(2)|error(1)|busy(1)|
145  */
ipc_read_status(struct intel_scu_ipc_dev * scu)146 static inline u8 ipc_read_status(struct intel_scu_ipc_dev *scu)
147 {
148 	return __raw_readl(scu->ipc_base + 0x04);
149 }
150 
151 /* Read ipc byte data */
ipc_data_readb(struct intel_scu_ipc_dev * scu,u32 offset)152 static inline u8 ipc_data_readb(struct intel_scu_ipc_dev *scu, u32 offset)
153 {
154 	return readb(scu->ipc_base + IPC_READ_BUFFER + offset);
155 }
156 
157 /* Read ipc u32 data */
ipc_data_readl(struct intel_scu_ipc_dev * scu,u32 offset)158 static inline u32 ipc_data_readl(struct intel_scu_ipc_dev *scu, u32 offset)
159 {
160 	return readl(scu->ipc_base + IPC_READ_BUFFER + offset);
161 }
162 
163 /* Wait till scu status is busy */
busy_loop(struct intel_scu_ipc_dev * scu)164 static inline int busy_loop(struct intel_scu_ipc_dev *scu)
165 {
166 	u32 status = ipc_read_status(scu);
167 	u32 loop_count = 100000;
168 
169 	/* break if scu doesn't reset busy bit after huge retry */
170 	while ((status & BIT(0)) && --loop_count) {
171 		udelay(1); /* scu processing time is in few u secods */
172 		status = ipc_read_status(scu);
173 	}
174 
175 	if (status & BIT(0)) {
176 		dev_err(scu->dev, "IPC timed out");
177 		return -ETIMEDOUT;
178 	}
179 
180 	if (status & BIT(1))
181 		return -EIO;
182 
183 	return 0;
184 }
185 
186 /* Wait till ipc ioc interrupt is received or timeout in 3 HZ */
ipc_wait_for_interrupt(struct intel_scu_ipc_dev * scu)187 static inline int ipc_wait_for_interrupt(struct intel_scu_ipc_dev *scu)
188 {
189 	int status;
190 
191 	if (!wait_for_completion_timeout(&scu->cmd_complete, 3 * HZ)) {
192 		dev_err(scu->dev, "IPC timed out\n");
193 		return -ETIMEDOUT;
194 	}
195 
196 	status = ipc_read_status(scu);
197 	if (status & BIT(1))
198 		return -EIO;
199 
200 	return 0;
201 }
202 
intel_scu_ipc_check_status(struct intel_scu_ipc_dev * scu)203 static int intel_scu_ipc_check_status(struct intel_scu_ipc_dev *scu)
204 {
205 	return scu->irq_mode ? ipc_wait_for_interrupt(scu) : busy_loop(scu);
206 }
207 
208 /* Read/Write power control(PMIC in Langwell, MSIC in PenWell) registers */
pwr_reg_rdwr(u16 * addr,u8 * data,u32 count,u32 op,u32 id)209 static int pwr_reg_rdwr(u16 *addr, u8 *data, u32 count, u32 op, u32 id)
210 {
211 	struct intel_scu_ipc_dev *scu = &ipcdev;
212 	int nc;
213 	u32 offset = 0;
214 	int err;
215 	u8 cbuf[IPC_WWBUF_SIZE];
216 	u32 *wbuf = (u32 *)&cbuf;
217 
218 	memset(cbuf, 0, sizeof(cbuf));
219 
220 	mutex_lock(&ipclock);
221 
222 	if (scu->dev == NULL) {
223 		mutex_unlock(&ipclock);
224 		return -ENODEV;
225 	}
226 
227 	for (nc = 0; nc < count; nc++, offset += 2) {
228 		cbuf[offset] = addr[nc];
229 		cbuf[offset + 1] = addr[nc] >> 8;
230 	}
231 
232 	if (id == IPC_CMD_PCNTRL_R) {
233 		for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
234 			ipc_data_writel(scu, wbuf[nc], offset);
235 		ipc_command(scu, (count * 2) << 16 | id << 12 | 0 << 8 | op);
236 	} else if (id == IPC_CMD_PCNTRL_W) {
237 		for (nc = 0; nc < count; nc++, offset += 1)
238 			cbuf[offset] = data[nc];
239 		for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
240 			ipc_data_writel(scu, wbuf[nc], offset);
241 		ipc_command(scu, (count * 3) << 16 | id << 12 | 0 << 8 | op);
242 	} else if (id == IPC_CMD_PCNTRL_M) {
243 		cbuf[offset] = data[0];
244 		cbuf[offset + 1] = data[1];
245 		ipc_data_writel(scu, wbuf[0], 0); /* Write wbuff */
246 		ipc_command(scu, 4 << 16 | id << 12 | 0 << 8 | op);
247 	}
248 
249 	err = intel_scu_ipc_check_status(scu);
250 	if (!err && id == IPC_CMD_PCNTRL_R) { /* Read rbuf */
251 		/* Workaround: values are read as 0 without memcpy_fromio */
252 		memcpy_fromio(cbuf, scu->ipc_base + 0x90, 16);
253 		for (nc = 0; nc < count; nc++)
254 			data[nc] = ipc_data_readb(scu, nc);
255 	}
256 	mutex_unlock(&ipclock);
257 	return err;
258 }
259 
260 /**
261  *	intel_scu_ipc_ioread8		-	read a word via the SCU
262  *	@addr: register on SCU
263  *	@data: return pointer for read byte
264  *
265  *	Read a single register. Returns 0 on success or an error code. All
266  *	locking between SCU accesses is handled for the caller.
267  *
268  *	This function may sleep.
269  */
intel_scu_ipc_ioread8(u16 addr,u8 * data)270 int intel_scu_ipc_ioread8(u16 addr, u8 *data)
271 {
272 	return pwr_reg_rdwr(&addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
273 }
274 EXPORT_SYMBOL(intel_scu_ipc_ioread8);
275 
276 /**
277  *	intel_scu_ipc_ioread16		-	read a word via the SCU
278  *	@addr: register on SCU
279  *	@data: return pointer for read word
280  *
281  *	Read a register pair. Returns 0 on success or an error code. All
282  *	locking between SCU accesses is handled for the caller.
283  *
284  *	This function may sleep.
285  */
intel_scu_ipc_ioread16(u16 addr,u16 * data)286 int intel_scu_ipc_ioread16(u16 addr, u16 *data)
287 {
288 	u16 x[2] = {addr, addr + 1};
289 	return pwr_reg_rdwr(x, (u8 *)data, 2, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
290 }
291 EXPORT_SYMBOL(intel_scu_ipc_ioread16);
292 
293 /**
294  *	intel_scu_ipc_ioread32		-	read a dword via the SCU
295  *	@addr: register on SCU
296  *	@data: return pointer for read dword
297  *
298  *	Read four registers. Returns 0 on success or an error code. All
299  *	locking between SCU accesses is handled for the caller.
300  *
301  *	This function may sleep.
302  */
intel_scu_ipc_ioread32(u16 addr,u32 * data)303 int intel_scu_ipc_ioread32(u16 addr, u32 *data)
304 {
305 	u16 x[4] = {addr, addr + 1, addr + 2, addr + 3};
306 	return pwr_reg_rdwr(x, (u8 *)data, 4, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
307 }
308 EXPORT_SYMBOL(intel_scu_ipc_ioread32);
309 
310 /**
311  *	intel_scu_ipc_iowrite8		-	write a byte via the SCU
312  *	@addr: register on SCU
313  *	@data: byte to write
314  *
315  *	Write a single register. Returns 0 on success or an error code. All
316  *	locking between SCU accesses is handled for the caller.
317  *
318  *	This function may sleep.
319  */
intel_scu_ipc_iowrite8(u16 addr,u8 data)320 int intel_scu_ipc_iowrite8(u16 addr, u8 data)
321 {
322 	return pwr_reg_rdwr(&addr, &data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
323 }
324 EXPORT_SYMBOL(intel_scu_ipc_iowrite8);
325 
326 /**
327  *	intel_scu_ipc_iowrite16		-	write a word via the SCU
328  *	@addr: register on SCU
329  *	@data: word to write
330  *
331  *	Write two registers. Returns 0 on success or an error code. All
332  *	locking between SCU accesses is handled for the caller.
333  *
334  *	This function may sleep.
335  */
intel_scu_ipc_iowrite16(u16 addr,u16 data)336 int intel_scu_ipc_iowrite16(u16 addr, u16 data)
337 {
338 	u16 x[2] = {addr, addr + 1};
339 	return pwr_reg_rdwr(x, (u8 *)&data, 2, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
340 }
341 EXPORT_SYMBOL(intel_scu_ipc_iowrite16);
342 
343 /**
344  *	intel_scu_ipc_iowrite32		-	write a dword via the SCU
345  *	@addr: register on SCU
346  *	@data: dword to write
347  *
348  *	Write four registers. Returns 0 on success or an error code. All
349  *	locking between SCU accesses is handled for the caller.
350  *
351  *	This function may sleep.
352  */
intel_scu_ipc_iowrite32(u16 addr,u32 data)353 int intel_scu_ipc_iowrite32(u16 addr, u32 data)
354 {
355 	u16 x[4] = {addr, addr + 1, addr + 2, addr + 3};
356 	return pwr_reg_rdwr(x, (u8 *)&data, 4, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
357 }
358 EXPORT_SYMBOL(intel_scu_ipc_iowrite32);
359 
360 /**
361  *	intel_scu_ipc_readvv		-	read a set of registers
362  *	@addr: register list
363  *	@data: bytes to return
364  *	@len: length of array
365  *
366  *	Read registers. Returns 0 on success or an error code. All
367  *	locking between SCU accesses is handled for the caller.
368  *
369  *	The largest array length permitted by the hardware is 5 items.
370  *
371  *	This function may sleep.
372  */
intel_scu_ipc_readv(u16 * addr,u8 * data,int len)373 int intel_scu_ipc_readv(u16 *addr, u8 *data, int len)
374 {
375 	return pwr_reg_rdwr(addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
376 }
377 EXPORT_SYMBOL(intel_scu_ipc_readv);
378 
379 /**
380  *	intel_scu_ipc_writev		-	write a set of registers
381  *	@addr: register list
382  *	@data: bytes to write
383  *	@len: length of array
384  *
385  *	Write registers. Returns 0 on success or an error code. All
386  *	locking between SCU accesses is handled for the caller.
387  *
388  *	The largest array length permitted by the hardware is 5 items.
389  *
390  *	This function may sleep.
391  *
392  */
intel_scu_ipc_writev(u16 * addr,u8 * data,int len)393 int intel_scu_ipc_writev(u16 *addr, u8 *data, int len)
394 {
395 	return pwr_reg_rdwr(addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
396 }
397 EXPORT_SYMBOL(intel_scu_ipc_writev);
398 
399 /**
400  *	intel_scu_ipc_update_register	-	r/m/w a register
401  *	@addr: register address
402  *	@bits: bits to update
403  *	@mask: mask of bits to update
404  *
405  *	Read-modify-write power control unit register. The first data argument
406  *	must be register value and second is mask value
407  *	mask is a bitmap that indicates which bits to update.
408  *	0 = masked. Don't modify this bit, 1 = modify this bit.
409  *	returns 0 on success or an error code.
410  *
411  *	This function may sleep. Locking between SCU accesses is handled
412  *	for the caller.
413  */
intel_scu_ipc_update_register(u16 addr,u8 bits,u8 mask)414 int intel_scu_ipc_update_register(u16 addr, u8 bits, u8 mask)
415 {
416 	u8 data[2] = { bits, mask };
417 	return pwr_reg_rdwr(&addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_M);
418 }
419 EXPORT_SYMBOL(intel_scu_ipc_update_register);
420 
421 /**
422  *	intel_scu_ipc_simple_command	-	send a simple command
423  *	@cmd: command
424  *	@sub: sub type
425  *
426  *	Issue a simple command to the SCU. Do not use this interface if
427  *	you must then access data as any data values may be overwritten
428  *	by another SCU access by the time this function returns.
429  *
430  *	This function may sleep. Locking for SCU accesses is handled for
431  *	the caller.
432  */
intel_scu_ipc_simple_command(int cmd,int sub)433 int intel_scu_ipc_simple_command(int cmd, int sub)
434 {
435 	struct intel_scu_ipc_dev *scu = &ipcdev;
436 	int err;
437 
438 	mutex_lock(&ipclock);
439 	if (scu->dev == NULL) {
440 		mutex_unlock(&ipclock);
441 		return -ENODEV;
442 	}
443 	ipc_command(scu, sub << 12 | cmd);
444 	err = intel_scu_ipc_check_status(scu);
445 	mutex_unlock(&ipclock);
446 	return err;
447 }
448 EXPORT_SYMBOL(intel_scu_ipc_simple_command);
449 
450 /**
451  *	intel_scu_ipc_command	-	command with data
452  *	@cmd: command
453  *	@sub: sub type
454  *	@in: input data
455  *	@inlen: input length in dwords
456  *	@out: output data
457  *	@outlein: output length in dwords
458  *
459  *	Issue a command to the SCU which involves data transfers. Do the
460  *	data copies under the lock but leave it for the caller to interpret
461  */
intel_scu_ipc_command(int cmd,int sub,u32 * in,int inlen,u32 * out,int outlen)462 int intel_scu_ipc_command(int cmd, int sub, u32 *in, int inlen,
463 			  u32 *out, int outlen)
464 {
465 	struct intel_scu_ipc_dev *scu = &ipcdev;
466 	int i, err;
467 
468 	mutex_lock(&ipclock);
469 	if (scu->dev == NULL) {
470 		mutex_unlock(&ipclock);
471 		return -ENODEV;
472 	}
473 
474 	for (i = 0; i < inlen; i++)
475 		ipc_data_writel(scu, *in++, 4 * i);
476 
477 	ipc_command(scu, (inlen << 16) | (sub << 12) | cmd);
478 	err = intel_scu_ipc_check_status(scu);
479 
480 	if (!err) {
481 		for (i = 0; i < outlen; i++)
482 			*out++ = ipc_data_readl(scu, 4 * i);
483 	}
484 
485 	mutex_unlock(&ipclock);
486 	return err;
487 }
488 EXPORT_SYMBOL(intel_scu_ipc_command);
489 
490 #define IPC_SPTR		0x08
491 #define IPC_DPTR		0x0C
492 
493 /**
494  * intel_scu_ipc_raw_command() - IPC command with data and pointers
495  * @cmd:	IPC command code.
496  * @sub:	IPC command sub type.
497  * @in:		input data of this IPC command.
498  * @inlen:	input data length in dwords.
499  * @out:	output data of this IPC command.
500  * @outlen:	output data length in dwords.
501  * @sptr:	data writing to SPTR register.
502  * @dptr:	data writing to DPTR register.
503  *
504  * Send an IPC command to SCU with input/output data and source/dest pointers.
505  *
506  * Return:	an IPC error code or 0 on success.
507  */
intel_scu_ipc_raw_command(int cmd,int sub,u8 * in,int inlen,u32 * out,int outlen,u32 dptr,u32 sptr)508 int intel_scu_ipc_raw_command(int cmd, int sub, u8 *in, int inlen,
509 			      u32 *out, int outlen, u32 dptr, u32 sptr)
510 {
511 	struct intel_scu_ipc_dev *scu = &ipcdev;
512 	int inbuflen = DIV_ROUND_UP(inlen, 4);
513 	u32 inbuf[4];
514 	int i, err;
515 
516 	/* Up to 16 bytes */
517 	if (inbuflen > 4)
518 		return -EINVAL;
519 
520 	mutex_lock(&ipclock);
521 	if (scu->dev == NULL) {
522 		mutex_unlock(&ipclock);
523 		return -ENODEV;
524 	}
525 
526 	writel(dptr, scu->ipc_base + IPC_DPTR);
527 	writel(sptr, scu->ipc_base + IPC_SPTR);
528 
529 	/*
530 	 * SRAM controller doesn't support 8-bit writes, it only
531 	 * supports 32-bit writes, so we have to copy input data into
532 	 * the temporary buffer, and SCU FW will use the inlen to
533 	 * determine the actual input data length in the temporary
534 	 * buffer.
535 	 */
536 	memcpy(inbuf, in, inlen);
537 
538 	for (i = 0; i < inbuflen; i++)
539 		ipc_data_writel(scu, inbuf[i], 4 * i);
540 
541 	ipc_command(scu, (inlen << 16) | (sub << 12) | cmd);
542 	err = intel_scu_ipc_check_status(scu);
543 	if (!err) {
544 		for (i = 0; i < outlen; i++)
545 			*out++ = ipc_data_readl(scu, 4 * i);
546 	}
547 
548 	mutex_unlock(&ipclock);
549 	return err;
550 }
551 EXPORT_SYMBOL_GPL(intel_scu_ipc_raw_command);
552 
553 /* I2C commands */
554 #define IPC_I2C_WRITE 1 /* I2C Write command */
555 #define IPC_I2C_READ  2 /* I2C Read command */
556 
557 /**
558  *	intel_scu_ipc_i2c_cntrl		-	I2C read/write operations
559  *	@addr: I2C address + command bits
560  *	@data: data to read/write
561  *
562  *	Perform an an I2C read/write operation via the SCU. All locking is
563  *	handled for the caller. This function may sleep.
564  *
565  *	Returns an error code or 0 on success.
566  *
567  *	This has to be in the IPC driver for the locking.
568  */
intel_scu_ipc_i2c_cntrl(u32 addr,u32 * data)569 int intel_scu_ipc_i2c_cntrl(u32 addr, u32 *data)
570 {
571 	struct intel_scu_ipc_dev *scu = &ipcdev;
572 	u32 cmd = 0;
573 
574 	mutex_lock(&ipclock);
575 	if (scu->dev == NULL) {
576 		mutex_unlock(&ipclock);
577 		return -ENODEV;
578 	}
579 	cmd = (addr >> 24) & 0xFF;
580 	if (cmd == IPC_I2C_READ) {
581 		writel(addr, scu->i2c_base + IPC_I2C_CNTRL_ADDR);
582 		/* Write not getting updated without delay */
583 		mdelay(1);
584 		*data = readl(scu->i2c_base + I2C_DATA_ADDR);
585 	} else if (cmd == IPC_I2C_WRITE) {
586 		writel(*data, scu->i2c_base + I2C_DATA_ADDR);
587 		mdelay(1);
588 		writel(addr, scu->i2c_base + IPC_I2C_CNTRL_ADDR);
589 	} else {
590 		dev_err(scu->dev,
591 			"intel_scu_ipc: I2C INVALID_CMD = 0x%x\n", cmd);
592 
593 		mutex_unlock(&ipclock);
594 		return -EIO;
595 	}
596 	mutex_unlock(&ipclock);
597 	return 0;
598 }
599 EXPORT_SYMBOL(intel_scu_ipc_i2c_cntrl);
600 
601 /*
602  * Interrupt handler gets called when ioc bit of IPC_COMMAND_REG set to 1
603  * When ioc bit is set to 1, caller api must wait for interrupt handler called
604  * which in turn unlocks the caller api. Currently this is not used
605  *
606  * This is edge triggered so we need take no action to clear anything
607  */
ioc(int irq,void * dev_id)608 static irqreturn_t ioc(int irq, void *dev_id)
609 {
610 	struct intel_scu_ipc_dev *scu = dev_id;
611 	int status = ipc_read_status(scu);
612 
613 	writel(status | IPC_STATUS_IRQ, scu->ipc_base + IPC_STATUS);
614 	complete(&scu->cmd_complete);
615 
616 	return IRQ_HANDLED;
617 }
618 
619 /**
620  *	ipc_probe	-	probe an Intel SCU IPC
621  *	@pdev: the PCI device matching
622  *	@id: entry in the match table
623  *
624  *	Enable and install an intel SCU IPC. This appears in the PCI space
625  *	but uses some hard coded addresses as well.
626  */
ipc_probe(struct pci_dev * pdev,const struct pci_device_id * id)627 static int ipc_probe(struct pci_dev *pdev, const struct pci_device_id *id)
628 {
629 	int err;
630 	struct intel_scu_ipc_dev *scu = &ipcdev;
631 	struct intel_scu_ipc_pdata_t *pdata;
632 
633 	if (scu->dev)		/* We support only one SCU */
634 		return -EBUSY;
635 
636 	pdata = (struct intel_scu_ipc_pdata_t *)id->driver_data;
637 	if (!pdata)
638 		return -ENODEV;
639 
640 	err = pcim_enable_device(pdev);
641 	if (err)
642 		return err;
643 
644 	err = pcim_iomap_regions(pdev, 1 << 0, pci_name(pdev));
645 	if (err)
646 		return err;
647 
648 	init_completion(&scu->cmd_complete);
649 
650 	scu->ipc_base = pcim_iomap_table(pdev)[0];
651 
652 	scu->i2c_base = ioremap_nocache(pdata->i2c_base, pdata->i2c_len);
653 	if (!scu->i2c_base)
654 		return -ENOMEM;
655 
656 	err = devm_request_irq(&pdev->dev, pdev->irq, ioc, 0, "intel_scu_ipc",
657 			       scu);
658 	if (err)
659 		return err;
660 
661 	/* Assign device at last */
662 	scu->dev = &pdev->dev;
663 
664 	intel_scu_devices_create();
665 
666 	pci_set_drvdata(pdev, scu);
667 	return 0;
668 }
669 
670 #define SCU_DEVICE(id, pdata)	{PCI_VDEVICE(INTEL, id), (kernel_ulong_t)&pdata}
671 
672 static const struct pci_device_id pci_ids[] = {
673 	SCU_DEVICE(PCI_DEVICE_ID_LINCROFT,	intel_scu_ipc_lincroft_pdata),
674 	SCU_DEVICE(PCI_DEVICE_ID_PENWELL,	intel_scu_ipc_penwell_pdata),
675 	SCU_DEVICE(PCI_DEVICE_ID_CLOVERVIEW,	intel_scu_ipc_penwell_pdata),
676 	SCU_DEVICE(PCI_DEVICE_ID_TANGIER,	intel_scu_ipc_tangier_pdata),
677 	{}
678 };
679 
680 static struct pci_driver ipc_driver = {
681 	.driver = {
682 		.suppress_bind_attrs = true,
683 	},
684 	.name = "intel_scu_ipc",
685 	.id_table = pci_ids,
686 	.probe = ipc_probe,
687 };
688 builtin_pci_driver(ipc_driver);
689