1 /*
2 * Re-map IO memory to kernel address space so that we can access it.
3 * This is needed for high PCI addresses that aren't mapped in the
4 * 640k-1MB IO memory area on PC's
5 *
6 * (C) Copyright 1995 1996 Linus Torvalds
7 */
8
9 #include <linux/bootmem.h>
10 #include <linux/init.h>
11 #include <linux/io.h>
12 #include <linux/ioport.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/mmiotrace.h>
16 #include <linux/mem_encrypt.h>
17 #include <linux/efi.h>
18
19 #include <asm/set_memory.h>
20 #include <asm/e820/api.h>
21 #include <asm/fixmap.h>
22 #include <asm/pgtable.h>
23 #include <asm/tlbflush.h>
24 #include <asm/pgalloc.h>
25 #include <asm/pat.h>
26 #include <asm/setup.h>
27
28 #include "physaddr.h"
29
30 /*
31 * Fix up the linear direct mapping of the kernel to avoid cache attribute
32 * conflicts.
33 */
ioremap_change_attr(unsigned long vaddr,unsigned long size,enum page_cache_mode pcm)34 int ioremap_change_attr(unsigned long vaddr, unsigned long size,
35 enum page_cache_mode pcm)
36 {
37 unsigned long nrpages = size >> PAGE_SHIFT;
38 int err;
39
40 switch (pcm) {
41 case _PAGE_CACHE_MODE_UC:
42 default:
43 err = _set_memory_uc(vaddr, nrpages);
44 break;
45 case _PAGE_CACHE_MODE_WC:
46 err = _set_memory_wc(vaddr, nrpages);
47 break;
48 case _PAGE_CACHE_MODE_WT:
49 err = _set_memory_wt(vaddr, nrpages);
50 break;
51 case _PAGE_CACHE_MODE_WB:
52 err = _set_memory_wb(vaddr, nrpages);
53 break;
54 }
55
56 return err;
57 }
58
__ioremap_check_ram(unsigned long start_pfn,unsigned long nr_pages,void * arg)59 static int __ioremap_check_ram(unsigned long start_pfn, unsigned long nr_pages,
60 void *arg)
61 {
62 unsigned long i;
63
64 for (i = 0; i < nr_pages; ++i)
65 if (pfn_valid(start_pfn + i) &&
66 !PageReserved(pfn_to_page(start_pfn + i)))
67 return 1;
68
69 return 0;
70 }
71
72 /*
73 * Remap an arbitrary physical address space into the kernel virtual
74 * address space. It transparently creates kernel huge I/O mapping when
75 * the physical address is aligned by a huge page size (1GB or 2MB) and
76 * the requested size is at least the huge page size.
77 *
78 * NOTE: MTRRs can override PAT memory types with a 4KB granularity.
79 * Therefore, the mapping code falls back to use a smaller page toward 4KB
80 * when a mapping range is covered by non-WB type of MTRRs.
81 *
82 * NOTE! We need to allow non-page-aligned mappings too: we will obviously
83 * have to convert them into an offset in a page-aligned mapping, but the
84 * caller shouldn't need to know that small detail.
85 */
__ioremap_caller(resource_size_t phys_addr,unsigned long size,enum page_cache_mode pcm,void * caller)86 static void __iomem *__ioremap_caller(resource_size_t phys_addr,
87 unsigned long size, enum page_cache_mode pcm, void *caller)
88 {
89 unsigned long offset, vaddr;
90 resource_size_t pfn, last_pfn, last_addr;
91 const resource_size_t unaligned_phys_addr = phys_addr;
92 const unsigned long unaligned_size = size;
93 struct vm_struct *area;
94 enum page_cache_mode new_pcm;
95 pgprot_t prot;
96 int retval;
97 void __iomem *ret_addr;
98
99 /* Don't allow wraparound or zero size */
100 last_addr = phys_addr + size - 1;
101 if (!size || last_addr < phys_addr)
102 return NULL;
103
104 if (!phys_addr_valid(phys_addr)) {
105 printk(KERN_WARNING "ioremap: invalid physical address %llx\n",
106 (unsigned long long)phys_addr);
107 WARN_ON_ONCE(1);
108 return NULL;
109 }
110
111 /*
112 * Don't allow anybody to remap normal RAM that we're using..
113 */
114 pfn = phys_addr >> PAGE_SHIFT;
115 last_pfn = last_addr >> PAGE_SHIFT;
116 if (walk_system_ram_range(pfn, last_pfn - pfn + 1, NULL,
117 __ioremap_check_ram) == 1) {
118 WARN_ONCE(1, "ioremap on RAM at %pa - %pa\n",
119 &phys_addr, &last_addr);
120 return NULL;
121 }
122
123 /*
124 * Mappings have to be page-aligned
125 */
126 offset = phys_addr & ~PAGE_MASK;
127 phys_addr &= PHYSICAL_PAGE_MASK;
128 size = PAGE_ALIGN(last_addr+1) - phys_addr;
129
130 retval = reserve_memtype(phys_addr, (u64)phys_addr + size,
131 pcm, &new_pcm);
132 if (retval) {
133 printk(KERN_ERR "ioremap reserve_memtype failed %d\n", retval);
134 return NULL;
135 }
136
137 if (pcm != new_pcm) {
138 if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) {
139 printk(KERN_ERR
140 "ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n",
141 (unsigned long long)phys_addr,
142 (unsigned long long)(phys_addr + size),
143 pcm, new_pcm);
144 goto err_free_memtype;
145 }
146 pcm = new_pcm;
147 }
148
149 prot = PAGE_KERNEL_IO;
150 switch (pcm) {
151 case _PAGE_CACHE_MODE_UC:
152 default:
153 prot = __pgprot(pgprot_val(prot) |
154 cachemode2protval(_PAGE_CACHE_MODE_UC));
155 break;
156 case _PAGE_CACHE_MODE_UC_MINUS:
157 prot = __pgprot(pgprot_val(prot) |
158 cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS));
159 break;
160 case _PAGE_CACHE_MODE_WC:
161 prot = __pgprot(pgprot_val(prot) |
162 cachemode2protval(_PAGE_CACHE_MODE_WC));
163 break;
164 case _PAGE_CACHE_MODE_WT:
165 prot = __pgprot(pgprot_val(prot) |
166 cachemode2protval(_PAGE_CACHE_MODE_WT));
167 break;
168 case _PAGE_CACHE_MODE_WB:
169 break;
170 }
171
172 /*
173 * Ok, go for it..
174 */
175 area = get_vm_area_caller(size, VM_IOREMAP, caller);
176 if (!area)
177 goto err_free_memtype;
178 area->phys_addr = phys_addr;
179 vaddr = (unsigned long) area->addr;
180
181 if (kernel_map_sync_memtype(phys_addr, size, pcm))
182 goto err_free_area;
183
184 if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot))
185 goto err_free_area;
186
187 ret_addr = (void __iomem *) (vaddr + offset);
188 mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr);
189
190 /*
191 * Check if the request spans more than any BAR in the iomem resource
192 * tree.
193 */
194 if (iomem_map_sanity_check(unaligned_phys_addr, unaligned_size))
195 pr_warn("caller %pS mapping multiple BARs\n", caller);
196
197 return ret_addr;
198 err_free_area:
199 free_vm_area(area);
200 err_free_memtype:
201 free_memtype(phys_addr, phys_addr + size);
202 return NULL;
203 }
204
205 /**
206 * ioremap_nocache - map bus memory into CPU space
207 * @phys_addr: bus address of the memory
208 * @size: size of the resource to map
209 *
210 * ioremap_nocache performs a platform specific sequence of operations to
211 * make bus memory CPU accessible via the readb/readw/readl/writeb/
212 * writew/writel functions and the other mmio helpers. The returned
213 * address is not guaranteed to be usable directly as a virtual
214 * address.
215 *
216 * This version of ioremap ensures that the memory is marked uncachable
217 * on the CPU as well as honouring existing caching rules from things like
218 * the PCI bus. Note that there are other caches and buffers on many
219 * busses. In particular driver authors should read up on PCI writes
220 *
221 * It's useful if some control registers are in such an area and
222 * write combining or read caching is not desirable:
223 *
224 * Must be freed with iounmap.
225 */
ioremap_nocache(resource_size_t phys_addr,unsigned long size)226 void __iomem *ioremap_nocache(resource_size_t phys_addr, unsigned long size)
227 {
228 /*
229 * Ideally, this should be:
230 * pat_enabled() ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS;
231 *
232 * Till we fix all X drivers to use ioremap_wc(), we will use
233 * UC MINUS. Drivers that are certain they need or can already
234 * be converted over to strong UC can use ioremap_uc().
235 */
236 enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS;
237
238 return __ioremap_caller(phys_addr, size, pcm,
239 __builtin_return_address(0));
240 }
241 EXPORT_SYMBOL(ioremap_nocache);
242
243 /**
244 * ioremap_uc - map bus memory into CPU space as strongly uncachable
245 * @phys_addr: bus address of the memory
246 * @size: size of the resource to map
247 *
248 * ioremap_uc performs a platform specific sequence of operations to
249 * make bus memory CPU accessible via the readb/readw/readl/writeb/
250 * writew/writel functions and the other mmio helpers. The returned
251 * address is not guaranteed to be usable directly as a virtual
252 * address.
253 *
254 * This version of ioremap ensures that the memory is marked with a strong
255 * preference as completely uncachable on the CPU when possible. For non-PAT
256 * systems this ends up setting page-attribute flags PCD=1, PWT=1. For PAT
257 * systems this will set the PAT entry for the pages as strong UC. This call
258 * will honor existing caching rules from things like the PCI bus. Note that
259 * there are other caches and buffers on many busses. In particular driver
260 * authors should read up on PCI writes.
261 *
262 * It's useful if some control registers are in such an area and
263 * write combining or read caching is not desirable:
264 *
265 * Must be freed with iounmap.
266 */
ioremap_uc(resource_size_t phys_addr,unsigned long size)267 void __iomem *ioremap_uc(resource_size_t phys_addr, unsigned long size)
268 {
269 enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC;
270
271 return __ioremap_caller(phys_addr, size, pcm,
272 __builtin_return_address(0));
273 }
274 EXPORT_SYMBOL_GPL(ioremap_uc);
275
276 /**
277 * ioremap_wc - map memory into CPU space write combined
278 * @phys_addr: bus address of the memory
279 * @size: size of the resource to map
280 *
281 * This version of ioremap ensures that the memory is marked write combining.
282 * Write combining allows faster writes to some hardware devices.
283 *
284 * Must be freed with iounmap.
285 */
ioremap_wc(resource_size_t phys_addr,unsigned long size)286 void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size)
287 {
288 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC,
289 __builtin_return_address(0));
290 }
291 EXPORT_SYMBOL(ioremap_wc);
292
293 /**
294 * ioremap_wt - map memory into CPU space write through
295 * @phys_addr: bus address of the memory
296 * @size: size of the resource to map
297 *
298 * This version of ioremap ensures that the memory is marked write through.
299 * Write through stores data into memory while keeping the cache up-to-date.
300 *
301 * Must be freed with iounmap.
302 */
ioremap_wt(resource_size_t phys_addr,unsigned long size)303 void __iomem *ioremap_wt(resource_size_t phys_addr, unsigned long size)
304 {
305 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WT,
306 __builtin_return_address(0));
307 }
308 EXPORT_SYMBOL(ioremap_wt);
309
ioremap_cache(resource_size_t phys_addr,unsigned long size)310 void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size)
311 {
312 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
313 __builtin_return_address(0));
314 }
315 EXPORT_SYMBOL(ioremap_cache);
316
ioremap_prot(resource_size_t phys_addr,unsigned long size,unsigned long prot_val)317 void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
318 unsigned long prot_val)
319 {
320 return __ioremap_caller(phys_addr, size,
321 pgprot2cachemode(__pgprot(prot_val)),
322 __builtin_return_address(0));
323 }
324 EXPORT_SYMBOL(ioremap_prot);
325
326 /**
327 * iounmap - Free a IO remapping
328 * @addr: virtual address from ioremap_*
329 *
330 * Caller must ensure there is only one unmapping for the same pointer.
331 */
iounmap(volatile void __iomem * addr)332 void iounmap(volatile void __iomem *addr)
333 {
334 struct vm_struct *p, *o;
335
336 if ((void __force *)addr <= high_memory)
337 return;
338
339 /*
340 * The PCI/ISA range special-casing was removed from __ioremap()
341 * so this check, in theory, can be removed. However, there are
342 * cases where iounmap() is called for addresses not obtained via
343 * ioremap() (vga16fb for example). Add a warning so that these
344 * cases can be caught and fixed.
345 */
346 if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) &&
347 (void __force *)addr < phys_to_virt(ISA_END_ADDRESS)) {
348 WARN(1, "iounmap() called for ISA range not obtained using ioremap()\n");
349 return;
350 }
351
352 mmiotrace_iounmap(addr);
353
354 addr = (volatile void __iomem *)
355 (PAGE_MASK & (unsigned long __force)addr);
356
357 /* Use the vm area unlocked, assuming the caller
358 ensures there isn't another iounmap for the same address
359 in parallel. Reuse of the virtual address is prevented by
360 leaving it in the global lists until we're done with it.
361 cpa takes care of the direct mappings. */
362 p = find_vm_area((void __force *)addr);
363
364 if (!p) {
365 printk(KERN_ERR "iounmap: bad address %p\n", addr);
366 dump_stack();
367 return;
368 }
369
370 free_memtype(p->phys_addr, p->phys_addr + get_vm_area_size(p));
371
372 /* Finally remove it */
373 o = remove_vm_area((void __force *)addr);
374 BUG_ON(p != o || o == NULL);
375 kfree(p);
376 }
377 EXPORT_SYMBOL(iounmap);
378
arch_ioremap_pud_supported(void)379 int __init arch_ioremap_pud_supported(void)
380 {
381 #ifdef CONFIG_X86_64
382 return boot_cpu_has(X86_FEATURE_GBPAGES);
383 #else
384 return 0;
385 #endif
386 }
387
arch_ioremap_pmd_supported(void)388 int __init arch_ioremap_pmd_supported(void)
389 {
390 return boot_cpu_has(X86_FEATURE_PSE);
391 }
392
393 /*
394 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
395 * access
396 */
xlate_dev_mem_ptr(phys_addr_t phys)397 void *xlate_dev_mem_ptr(phys_addr_t phys)
398 {
399 unsigned long start = phys & PAGE_MASK;
400 unsigned long offset = phys & ~PAGE_MASK;
401 void *vaddr;
402
403 /* memremap() maps if RAM, otherwise falls back to ioremap() */
404 vaddr = memremap(start, PAGE_SIZE, MEMREMAP_WB);
405
406 /* Only add the offset on success and return NULL if memremap() failed */
407 if (vaddr)
408 vaddr += offset;
409
410 return vaddr;
411 }
412
unxlate_dev_mem_ptr(phys_addr_t phys,void * addr)413 void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
414 {
415 memunmap((void *)((unsigned long)addr & PAGE_MASK));
416 }
417
418 /*
419 * Examine the physical address to determine if it is an area of memory
420 * that should be mapped decrypted. If the memory is not part of the
421 * kernel usable area it was accessed and created decrypted, so these
422 * areas should be mapped decrypted. And since the encryption key can
423 * change across reboots, persistent memory should also be mapped
424 * decrypted.
425 */
memremap_should_map_decrypted(resource_size_t phys_addr,unsigned long size)426 static bool memremap_should_map_decrypted(resource_size_t phys_addr,
427 unsigned long size)
428 {
429 int is_pmem;
430
431 /*
432 * Check if the address is part of a persistent memory region.
433 * This check covers areas added by E820, EFI and ACPI.
434 */
435 is_pmem = region_intersects(phys_addr, size, IORESOURCE_MEM,
436 IORES_DESC_PERSISTENT_MEMORY);
437 if (is_pmem != REGION_DISJOINT)
438 return true;
439
440 /*
441 * Check if the non-volatile attribute is set for an EFI
442 * reserved area.
443 */
444 if (efi_enabled(EFI_BOOT)) {
445 switch (efi_mem_type(phys_addr)) {
446 case EFI_RESERVED_TYPE:
447 if (efi_mem_attributes(phys_addr) & EFI_MEMORY_NV)
448 return true;
449 break;
450 default:
451 break;
452 }
453 }
454
455 /* Check if the address is outside kernel usable area */
456 switch (e820__get_entry_type(phys_addr, phys_addr + size - 1)) {
457 case E820_TYPE_RESERVED:
458 case E820_TYPE_ACPI:
459 case E820_TYPE_NVS:
460 case E820_TYPE_UNUSABLE:
461 case E820_TYPE_PRAM:
462 return true;
463 default:
464 break;
465 }
466
467 return false;
468 }
469
470 /*
471 * Examine the physical address to determine if it is EFI data. Check
472 * it against the boot params structure and EFI tables and memory types.
473 */
memremap_is_efi_data(resource_size_t phys_addr,unsigned long size)474 static bool memremap_is_efi_data(resource_size_t phys_addr,
475 unsigned long size)
476 {
477 u64 paddr;
478
479 /* Check if the address is part of EFI boot/runtime data */
480 if (!efi_enabled(EFI_BOOT))
481 return false;
482
483 paddr = boot_params.efi_info.efi_memmap_hi;
484 paddr <<= 32;
485 paddr |= boot_params.efi_info.efi_memmap;
486 if (phys_addr == paddr)
487 return true;
488
489 paddr = boot_params.efi_info.efi_systab_hi;
490 paddr <<= 32;
491 paddr |= boot_params.efi_info.efi_systab;
492 if (phys_addr == paddr)
493 return true;
494
495 if (efi_is_table_address(phys_addr))
496 return true;
497
498 switch (efi_mem_type(phys_addr)) {
499 case EFI_BOOT_SERVICES_DATA:
500 case EFI_RUNTIME_SERVICES_DATA:
501 return true;
502 default:
503 break;
504 }
505
506 return false;
507 }
508
509 /*
510 * Examine the physical address to determine if it is boot data by checking
511 * it against the boot params setup_data chain.
512 */
memremap_is_setup_data(resource_size_t phys_addr,unsigned long size)513 static bool memremap_is_setup_data(resource_size_t phys_addr,
514 unsigned long size)
515 {
516 struct setup_data *data;
517 u64 paddr, paddr_next;
518
519 paddr = boot_params.hdr.setup_data;
520 while (paddr) {
521 unsigned int len;
522
523 if (phys_addr == paddr)
524 return true;
525
526 data = memremap(paddr, sizeof(*data),
527 MEMREMAP_WB | MEMREMAP_DEC);
528
529 paddr_next = data->next;
530 len = data->len;
531
532 memunmap(data);
533
534 if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
535 return true;
536
537 paddr = paddr_next;
538 }
539
540 return false;
541 }
542
543 /*
544 * Examine the physical address to determine if it is boot data by checking
545 * it against the boot params setup_data chain (early boot version).
546 */
early_memremap_is_setup_data(resource_size_t phys_addr,unsigned long size)547 static bool __init early_memremap_is_setup_data(resource_size_t phys_addr,
548 unsigned long size)
549 {
550 struct setup_data *data;
551 u64 paddr, paddr_next;
552
553 paddr = boot_params.hdr.setup_data;
554 while (paddr) {
555 unsigned int len;
556
557 if (phys_addr == paddr)
558 return true;
559
560 data = early_memremap_decrypted(paddr, sizeof(*data));
561
562 paddr_next = data->next;
563 len = data->len;
564
565 early_memunmap(data, sizeof(*data));
566
567 if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
568 return true;
569
570 paddr = paddr_next;
571 }
572
573 return false;
574 }
575
576 /*
577 * Architecture function to determine if RAM remap is allowed. By default, a
578 * RAM remap will map the data as encrypted. Determine if a RAM remap should
579 * not be done so that the data will be mapped decrypted.
580 */
arch_memremap_can_ram_remap(resource_size_t phys_addr,unsigned long size,unsigned long flags)581 bool arch_memremap_can_ram_remap(resource_size_t phys_addr, unsigned long size,
582 unsigned long flags)
583 {
584 if (!sme_active())
585 return true;
586
587 if (flags & MEMREMAP_ENC)
588 return true;
589
590 if (flags & MEMREMAP_DEC)
591 return false;
592
593 if (memremap_is_setup_data(phys_addr, size) ||
594 memremap_is_efi_data(phys_addr, size) ||
595 memremap_should_map_decrypted(phys_addr, size))
596 return false;
597
598 return true;
599 }
600
601 /*
602 * Architecture override of __weak function to adjust the protection attributes
603 * used when remapping memory. By default, early_memremap() will map the data
604 * as encrypted. Determine if an encrypted mapping should not be done and set
605 * the appropriate protection attributes.
606 */
early_memremap_pgprot_adjust(resource_size_t phys_addr,unsigned long size,pgprot_t prot)607 pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr,
608 unsigned long size,
609 pgprot_t prot)
610 {
611 if (!sme_active())
612 return prot;
613
614 if (early_memremap_is_setup_data(phys_addr, size) ||
615 memremap_is_efi_data(phys_addr, size) ||
616 memremap_should_map_decrypted(phys_addr, size))
617 prot = pgprot_decrypted(prot);
618 else
619 prot = pgprot_encrypted(prot);
620
621 return prot;
622 }
623
phys_mem_access_encrypted(unsigned long phys_addr,unsigned long size)624 bool phys_mem_access_encrypted(unsigned long phys_addr, unsigned long size)
625 {
626 return arch_memremap_can_ram_remap(phys_addr, size, 0);
627 }
628
629 #ifdef CONFIG_ARCH_USE_MEMREMAP_PROT
630 /* Remap memory with encryption */
early_memremap_encrypted(resource_size_t phys_addr,unsigned long size)631 void __init *early_memremap_encrypted(resource_size_t phys_addr,
632 unsigned long size)
633 {
634 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC);
635 }
636
637 /*
638 * Remap memory with encryption and write-protected - cannot be called
639 * before pat_init() is called
640 */
early_memremap_encrypted_wp(resource_size_t phys_addr,unsigned long size)641 void __init *early_memremap_encrypted_wp(resource_size_t phys_addr,
642 unsigned long size)
643 {
644 /* Be sure the write-protect PAT entry is set for write-protect */
645 if (__pte2cachemode_tbl[_PAGE_CACHE_MODE_WP] != _PAGE_CACHE_MODE_WP)
646 return NULL;
647
648 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC_WP);
649 }
650
651 /* Remap memory without encryption */
early_memremap_decrypted(resource_size_t phys_addr,unsigned long size)652 void __init *early_memremap_decrypted(resource_size_t phys_addr,
653 unsigned long size)
654 {
655 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC);
656 }
657
658 /*
659 * Remap memory without encryption and write-protected - cannot be called
660 * before pat_init() is called
661 */
early_memremap_decrypted_wp(resource_size_t phys_addr,unsigned long size)662 void __init *early_memremap_decrypted_wp(resource_size_t phys_addr,
663 unsigned long size)
664 {
665 /* Be sure the write-protect PAT entry is set for write-protect */
666 if (__pte2cachemode_tbl[_PAGE_CACHE_MODE_WP] != _PAGE_CACHE_MODE_WP)
667 return NULL;
668
669 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC_WP);
670 }
671 #endif /* CONFIG_ARCH_USE_MEMREMAP_PROT */
672
673 static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss;
674
early_ioremap_pmd(unsigned long addr)675 static inline pmd_t * __init early_ioremap_pmd(unsigned long addr)
676 {
677 /* Don't assume we're using swapper_pg_dir at this point */
678 pgd_t *base = __va(read_cr3_pa());
679 pgd_t *pgd = &base[pgd_index(addr)];
680 p4d_t *p4d = p4d_offset(pgd, addr);
681 pud_t *pud = pud_offset(p4d, addr);
682 pmd_t *pmd = pmd_offset(pud, addr);
683
684 return pmd;
685 }
686
early_ioremap_pte(unsigned long addr)687 static inline pte_t * __init early_ioremap_pte(unsigned long addr)
688 {
689 return &bm_pte[pte_index(addr)];
690 }
691
is_early_ioremap_ptep(pte_t * ptep)692 bool __init is_early_ioremap_ptep(pte_t *ptep)
693 {
694 return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)];
695 }
696
early_ioremap_init(void)697 void __init early_ioremap_init(void)
698 {
699 pmd_t *pmd;
700
701 #ifdef CONFIG_X86_64
702 BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
703 #else
704 WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
705 #endif
706
707 early_ioremap_setup();
708
709 pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));
710 memset(bm_pte, 0, sizeof(bm_pte));
711 pmd_populate_kernel(&init_mm, pmd, bm_pte);
712
713 /*
714 * The boot-ioremap range spans multiple pmds, for which
715 * we are not prepared:
716 */
717 #define __FIXADDR_TOP (-PAGE_SIZE)
718 BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
719 != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
720 #undef __FIXADDR_TOP
721 if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) {
722 WARN_ON(1);
723 printk(KERN_WARNING "pmd %p != %p\n",
724 pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END)));
725 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
726 fix_to_virt(FIX_BTMAP_BEGIN));
727 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END): %08lx\n",
728 fix_to_virt(FIX_BTMAP_END));
729
730 printk(KERN_WARNING "FIX_BTMAP_END: %d\n", FIX_BTMAP_END);
731 printk(KERN_WARNING "FIX_BTMAP_BEGIN: %d\n",
732 FIX_BTMAP_BEGIN);
733 }
734 }
735
__early_set_fixmap(enum fixed_addresses idx,phys_addr_t phys,pgprot_t flags)736 void __init __early_set_fixmap(enum fixed_addresses idx,
737 phys_addr_t phys, pgprot_t flags)
738 {
739 unsigned long addr = __fix_to_virt(idx);
740 pte_t *pte;
741
742 if (idx >= __end_of_fixed_addresses) {
743 BUG();
744 return;
745 }
746 pte = early_ioremap_pte(addr);
747
748 if (pgprot_val(flags))
749 set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags));
750 else
751 pte_clear(&init_mm, addr, pte);
752 __flush_tlb_one_kernel(addr);
753 }
754