1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * The Internet Protocol (IP) output module.
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Donald Becker, <becker@super.org>
11 * Alan Cox, <Alan.Cox@linux.org>
12 * Richard Underwood
13 * Stefan Becker, <stefanb@yello.ping.de>
14 * Jorge Cwik, <jorge@laser.satlink.net>
15 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16 * Hirokazu Takahashi, <taka@valinux.co.jp>
17 *
18 * See ip_input.c for original log
19 *
20 * Fixes:
21 * Alan Cox : Missing nonblock feature in ip_build_xmit.
22 * Mike Kilburn : htons() missing in ip_build_xmit.
23 * Bradford Johnson: Fix faulty handling of some frames when
24 * no route is found.
25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
26 * (in case if packet not accepted by
27 * output firewall rules)
28 * Mike McLagan : Routing by source
29 * Alexey Kuznetsov: use new route cache
30 * Andi Kleen: Fix broken PMTU recovery and remove
31 * some redundant tests.
32 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
33 * Andi Kleen : Replace ip_reply with ip_send_reply.
34 * Andi Kleen : Split fast and slow ip_build_xmit path
35 * for decreased register pressure on x86
36 * and more readibility.
37 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
38 * silently drop skb instead of failing with -EPERM.
39 * Detlev Wengorz : Copy protocol for fragments.
40 * Hirokazu Takahashi: HW checksumming for outgoing UDP
41 * datagrams.
42 * Hirokazu Takahashi: sendfile() on UDP works now.
43 */
44
45 #include <linux/uaccess.h>
46 #include <linux/module.h>
47 #include <linux/types.h>
48 #include <linux/kernel.h>
49 #include <linux/mm.h>
50 #include <linux/string.h>
51 #include <linux/errno.h>
52 #include <linux/highmem.h>
53 #include <linux/slab.h>
54
55 #include <linux/socket.h>
56 #include <linux/sockios.h>
57 #include <linux/in.h>
58 #include <linux/inet.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/proc_fs.h>
62 #include <linux/stat.h>
63 #include <linux/init.h>
64
65 #include <net/snmp.h>
66 #include <net/ip.h>
67 #include <net/protocol.h>
68 #include <net/route.h>
69 #include <net/xfrm.h>
70 #include <linux/skbuff.h>
71 #include <net/sock.h>
72 #include <net/arp.h>
73 #include <net/icmp.h>
74 #include <net/checksum.h>
75 #include <net/inetpeer.h>
76 #include <net/lwtunnel.h>
77 #include <linux/bpf-cgroup.h>
78 #include <linux/igmp.h>
79 #include <linux/netfilter_ipv4.h>
80 #include <linux/netfilter_bridge.h>
81 #include <linux/netlink.h>
82 #include <linux/tcp.h>
83
84 static int
85 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
86 unsigned int mtu,
87 int (*output)(struct net *, struct sock *, struct sk_buff *));
88
89 /* Generate a checksum for an outgoing IP datagram. */
ip_send_check(struct iphdr * iph)90 void ip_send_check(struct iphdr *iph)
91 {
92 iph->check = 0;
93 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
94 }
95 EXPORT_SYMBOL(ip_send_check);
96
__ip_local_out(struct net * net,struct sock * sk,struct sk_buff * skb)97 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
98 {
99 struct iphdr *iph = ip_hdr(skb);
100
101 iph->tot_len = htons(skb->len);
102 ip_send_check(iph);
103
104 /* if egress device is enslaved to an L3 master device pass the
105 * skb to its handler for processing
106 */
107 skb = l3mdev_ip_out(sk, skb);
108 if (unlikely(!skb))
109 return 0;
110
111 skb->protocol = htons(ETH_P_IP);
112
113 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT,
114 net, sk, skb, NULL, skb_dst(skb)->dev,
115 dst_output);
116 }
117
ip_local_out(struct net * net,struct sock * sk,struct sk_buff * skb)118 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
119 {
120 int err;
121
122 err = __ip_local_out(net, sk, skb);
123 if (likely(err == 1))
124 err = dst_output(net, sk, skb);
125
126 return err;
127 }
128 EXPORT_SYMBOL_GPL(ip_local_out);
129
ip_select_ttl(struct inet_sock * inet,struct dst_entry * dst)130 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
131 {
132 int ttl = inet->uc_ttl;
133
134 if (ttl < 0)
135 ttl = ip4_dst_hoplimit(dst);
136 return ttl;
137 }
138
139 /*
140 * Add an ip header to a skbuff and send it out.
141 *
142 */
ip_build_and_send_pkt(struct sk_buff * skb,const struct sock * sk,__be32 saddr,__be32 daddr,struct ip_options_rcu * opt)143 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk,
144 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
145 {
146 struct inet_sock *inet = inet_sk(sk);
147 struct rtable *rt = skb_rtable(skb);
148 struct net *net = sock_net(sk);
149 struct iphdr *iph;
150
151 /* Build the IP header. */
152 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
153 skb_reset_network_header(skb);
154 iph = ip_hdr(skb);
155 iph->version = 4;
156 iph->ihl = 5;
157 iph->tos = inet->tos;
158 iph->ttl = ip_select_ttl(inet, &rt->dst);
159 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
160 iph->saddr = saddr;
161 iph->protocol = sk->sk_protocol;
162 if (ip_dont_fragment(sk, &rt->dst)) {
163 iph->frag_off = htons(IP_DF);
164 iph->id = 0;
165 } else {
166 iph->frag_off = 0;
167 __ip_select_ident(net, iph, 1);
168 }
169
170 if (opt && opt->opt.optlen) {
171 iph->ihl += opt->opt.optlen>>2;
172 ip_options_build(skb, &opt->opt, daddr, rt, 0);
173 }
174
175 skb->priority = sk->sk_priority;
176 if (!skb->mark)
177 skb->mark = sk->sk_mark;
178
179 /* Send it out. */
180 return ip_local_out(net, skb->sk, skb);
181 }
182 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
183
ip_finish_output2(struct net * net,struct sock * sk,struct sk_buff * skb)184 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb)
185 {
186 struct dst_entry *dst = skb_dst(skb);
187 struct rtable *rt = (struct rtable *)dst;
188 struct net_device *dev = dst->dev;
189 unsigned int hh_len = LL_RESERVED_SPACE(dev);
190 struct neighbour *neigh;
191 u32 nexthop;
192
193 if (rt->rt_type == RTN_MULTICAST) {
194 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len);
195 } else if (rt->rt_type == RTN_BROADCAST)
196 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len);
197
198 /* Be paranoid, rather than too clever. */
199 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
200 struct sk_buff *skb2;
201
202 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
203 if (!skb2) {
204 kfree_skb(skb);
205 return -ENOMEM;
206 }
207 if (skb->sk)
208 skb_set_owner_w(skb2, skb->sk);
209 consume_skb(skb);
210 skb = skb2;
211 }
212
213 if (lwtunnel_xmit_redirect(dst->lwtstate)) {
214 int res = lwtunnel_xmit(skb);
215
216 if (res < 0 || res == LWTUNNEL_XMIT_DONE)
217 return res;
218 }
219
220 rcu_read_lock_bh();
221 nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr);
222 neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
223 if (unlikely(!neigh))
224 neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
225 if (!IS_ERR(neigh)) {
226 int res;
227
228 sock_confirm_neigh(skb, neigh);
229 res = neigh_output(neigh, skb);
230
231 rcu_read_unlock_bh();
232 return res;
233 }
234 rcu_read_unlock_bh();
235
236 net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
237 __func__);
238 kfree_skb(skb);
239 return -EINVAL;
240 }
241
ip_finish_output_gso(struct net * net,struct sock * sk,struct sk_buff * skb,unsigned int mtu)242 static int ip_finish_output_gso(struct net *net, struct sock *sk,
243 struct sk_buff *skb, unsigned int mtu)
244 {
245 netdev_features_t features;
246 struct sk_buff *segs;
247 int ret = 0;
248
249 /* common case: seglen is <= mtu
250 */
251 if (skb_gso_validate_mtu(skb, mtu))
252 return ip_finish_output2(net, sk, skb);
253
254 /* Slowpath - GSO segment length exceeds the egress MTU.
255 *
256 * This can happen in several cases:
257 * - Forwarding of a TCP GRO skb, when DF flag is not set.
258 * - Forwarding of an skb that arrived on a virtualization interface
259 * (virtio-net/vhost/tap) with TSO/GSO size set by other network
260 * stack.
261 * - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an
262 * interface with a smaller MTU.
263 * - Arriving GRO skb (or GSO skb in a virtualized environment) that is
264 * bridged to a NETIF_F_TSO tunnel stacked over an interface with an
265 * insufficent MTU.
266 */
267 features = netif_skb_features(skb);
268 BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_SGO_CB_OFFSET);
269 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
270 if (IS_ERR_OR_NULL(segs)) {
271 kfree_skb(skb);
272 return -ENOMEM;
273 }
274
275 consume_skb(skb);
276
277 do {
278 struct sk_buff *nskb = segs->next;
279 int err;
280
281 segs->next = NULL;
282 err = ip_fragment(net, sk, segs, mtu, ip_finish_output2);
283
284 if (err && ret == 0)
285 ret = err;
286 segs = nskb;
287 } while (segs);
288
289 return ret;
290 }
291
ip_finish_output(struct net * net,struct sock * sk,struct sk_buff * skb)292 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
293 {
294 unsigned int mtu;
295 int ret;
296
297 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
298 if (ret) {
299 kfree_skb(skb);
300 return ret;
301 }
302
303 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
304 /* Policy lookup after SNAT yielded a new policy */
305 if (skb_dst(skb)->xfrm) {
306 IPCB(skb)->flags |= IPSKB_REROUTED;
307 return dst_output(net, sk, skb);
308 }
309 #endif
310 mtu = ip_skb_dst_mtu(sk, skb);
311 if (skb_is_gso(skb))
312 return ip_finish_output_gso(net, sk, skb, mtu);
313
314 if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU))
315 return ip_fragment(net, sk, skb, mtu, ip_finish_output2);
316
317 return ip_finish_output2(net, sk, skb);
318 }
319
ip_mc_finish_output(struct net * net,struct sock * sk,struct sk_buff * skb)320 static int ip_mc_finish_output(struct net *net, struct sock *sk,
321 struct sk_buff *skb)
322 {
323 int ret;
324
325 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
326 if (ret) {
327 kfree_skb(skb);
328 return ret;
329 }
330
331 return dev_loopback_xmit(net, sk, skb);
332 }
333
ip_mc_output(struct net * net,struct sock * sk,struct sk_buff * skb)334 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb)
335 {
336 struct rtable *rt = skb_rtable(skb);
337 struct net_device *dev = rt->dst.dev;
338
339 /*
340 * If the indicated interface is up and running, send the packet.
341 */
342 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
343
344 skb->dev = dev;
345 skb->protocol = htons(ETH_P_IP);
346
347 /*
348 * Multicasts are looped back for other local users
349 */
350
351 if (rt->rt_flags&RTCF_MULTICAST) {
352 if (sk_mc_loop(sk)
353 #ifdef CONFIG_IP_MROUTE
354 /* Small optimization: do not loopback not local frames,
355 which returned after forwarding; they will be dropped
356 by ip_mr_input in any case.
357 Note, that local frames are looped back to be delivered
358 to local recipients.
359
360 This check is duplicated in ip_mr_input at the moment.
361 */
362 &&
363 ((rt->rt_flags & RTCF_LOCAL) ||
364 !(IPCB(skb)->flags & IPSKB_FORWARDED))
365 #endif
366 ) {
367 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
368 if (newskb)
369 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
370 net, sk, newskb, NULL, newskb->dev,
371 ip_mc_finish_output);
372 }
373
374 /* Multicasts with ttl 0 must not go beyond the host */
375
376 if (ip_hdr(skb)->ttl == 0) {
377 kfree_skb(skb);
378 return 0;
379 }
380 }
381
382 if (rt->rt_flags&RTCF_BROADCAST) {
383 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
384 if (newskb)
385 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
386 net, sk, newskb, NULL, newskb->dev,
387 ip_mc_finish_output);
388 }
389
390 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
391 net, sk, skb, NULL, skb->dev,
392 ip_finish_output,
393 !(IPCB(skb)->flags & IPSKB_REROUTED));
394 }
395
ip_output(struct net * net,struct sock * sk,struct sk_buff * skb)396 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb)
397 {
398 struct net_device *dev = skb_dst(skb)->dev;
399
400 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
401
402 skb->dev = dev;
403 skb->protocol = htons(ETH_P_IP);
404
405 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
406 net, sk, skb, NULL, dev,
407 ip_finish_output,
408 !(IPCB(skb)->flags & IPSKB_REROUTED));
409 }
410
411 /*
412 * copy saddr and daddr, possibly using 64bit load/stores
413 * Equivalent to :
414 * iph->saddr = fl4->saddr;
415 * iph->daddr = fl4->daddr;
416 */
ip_copy_addrs(struct iphdr * iph,const struct flowi4 * fl4)417 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
418 {
419 BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
420 offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
421 memcpy(&iph->saddr, &fl4->saddr,
422 sizeof(fl4->saddr) + sizeof(fl4->daddr));
423 }
424
425 /* Note: skb->sk can be different from sk, in case of tunnels */
ip_queue_xmit(struct sock * sk,struct sk_buff * skb,struct flowi * fl)426 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)
427 {
428 struct inet_sock *inet = inet_sk(sk);
429 struct net *net = sock_net(sk);
430 struct ip_options_rcu *inet_opt;
431 struct flowi4 *fl4;
432 struct rtable *rt;
433 struct iphdr *iph;
434 int res;
435
436 /* Skip all of this if the packet is already routed,
437 * f.e. by something like SCTP.
438 */
439 rcu_read_lock();
440 inet_opt = rcu_dereference(inet->inet_opt);
441 fl4 = &fl->u.ip4;
442 rt = skb_rtable(skb);
443 if (rt)
444 goto packet_routed;
445
446 /* Make sure we can route this packet. */
447 rt = (struct rtable *)__sk_dst_check(sk, 0);
448 if (!rt) {
449 __be32 daddr;
450
451 /* Use correct destination address if we have options. */
452 daddr = inet->inet_daddr;
453 if (inet_opt && inet_opt->opt.srr)
454 daddr = inet_opt->opt.faddr;
455
456 /* If this fails, retransmit mechanism of transport layer will
457 * keep trying until route appears or the connection times
458 * itself out.
459 */
460 rt = ip_route_output_ports(net, fl4, sk,
461 daddr, inet->inet_saddr,
462 inet->inet_dport,
463 inet->inet_sport,
464 sk->sk_protocol,
465 RT_CONN_FLAGS(sk),
466 sk->sk_bound_dev_if);
467 if (IS_ERR(rt))
468 goto no_route;
469 sk_setup_caps(sk, &rt->dst);
470 }
471 skb_dst_set_noref(skb, &rt->dst);
472
473 packet_routed:
474 if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
475 goto no_route;
476
477 /* OK, we know where to send it, allocate and build IP header. */
478 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
479 skb_reset_network_header(skb);
480 iph = ip_hdr(skb);
481 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
482 if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
483 iph->frag_off = htons(IP_DF);
484 else
485 iph->frag_off = 0;
486 iph->ttl = ip_select_ttl(inet, &rt->dst);
487 iph->protocol = sk->sk_protocol;
488 ip_copy_addrs(iph, fl4);
489
490 /* Transport layer set skb->h.foo itself. */
491
492 if (inet_opt && inet_opt->opt.optlen) {
493 iph->ihl += inet_opt->opt.optlen >> 2;
494 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
495 }
496
497 ip_select_ident_segs(net, skb, sk,
498 skb_shinfo(skb)->gso_segs ?: 1);
499
500 /* TODO : should we use skb->sk here instead of sk ? */
501 skb->priority = sk->sk_priority;
502 skb->mark = sk->sk_mark;
503
504 res = ip_local_out(net, sk, skb);
505 rcu_read_unlock();
506 return res;
507
508 no_route:
509 rcu_read_unlock();
510 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
511 kfree_skb(skb);
512 return -EHOSTUNREACH;
513 }
514 EXPORT_SYMBOL(ip_queue_xmit);
515
ip_copy_metadata(struct sk_buff * to,struct sk_buff * from)516 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
517 {
518 to->pkt_type = from->pkt_type;
519 to->priority = from->priority;
520 to->protocol = from->protocol;
521 to->skb_iif = from->skb_iif;
522 skb_dst_drop(to);
523 skb_dst_copy(to, from);
524 to->dev = from->dev;
525 to->mark = from->mark;
526
527 skb_copy_hash(to, from);
528
529 /* Copy the flags to each fragment. */
530 IPCB(to)->flags = IPCB(from)->flags;
531
532 #ifdef CONFIG_NET_SCHED
533 to->tc_index = from->tc_index;
534 #endif
535 nf_copy(to, from);
536 #if IS_ENABLED(CONFIG_IP_VS)
537 to->ipvs_property = from->ipvs_property;
538 #endif
539 skb_copy_secmark(to, from);
540 }
541
ip_fragment(struct net * net,struct sock * sk,struct sk_buff * skb,unsigned int mtu,int (* output)(struct net *,struct sock *,struct sk_buff *))542 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
543 unsigned int mtu,
544 int (*output)(struct net *, struct sock *, struct sk_buff *))
545 {
546 struct iphdr *iph = ip_hdr(skb);
547
548 if ((iph->frag_off & htons(IP_DF)) == 0)
549 return ip_do_fragment(net, sk, skb, output);
550
551 if (unlikely(!skb->ignore_df ||
552 (IPCB(skb)->frag_max_size &&
553 IPCB(skb)->frag_max_size > mtu))) {
554 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
555 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
556 htonl(mtu));
557 kfree_skb(skb);
558 return -EMSGSIZE;
559 }
560
561 return ip_do_fragment(net, sk, skb, output);
562 }
563
564 /*
565 * This IP datagram is too large to be sent in one piece. Break it up into
566 * smaller pieces (each of size equal to IP header plus
567 * a block of the data of the original IP data part) that will yet fit in a
568 * single device frame, and queue such a frame for sending.
569 */
570
ip_do_fragment(struct net * net,struct sock * sk,struct sk_buff * skb,int (* output)(struct net *,struct sock *,struct sk_buff *))571 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
572 int (*output)(struct net *, struct sock *, struct sk_buff *))
573 {
574 struct iphdr *iph;
575 int ptr;
576 struct sk_buff *skb2;
577 unsigned int mtu, hlen, left, len, ll_rs;
578 int offset;
579 __be16 not_last_frag;
580 struct rtable *rt = skb_rtable(skb);
581 int err = 0;
582
583 /* for offloaded checksums cleanup checksum before fragmentation */
584 if (skb->ip_summed == CHECKSUM_PARTIAL &&
585 (err = skb_checksum_help(skb)))
586 goto fail;
587
588 /*
589 * Point into the IP datagram header.
590 */
591
592 iph = ip_hdr(skb);
593
594 mtu = ip_skb_dst_mtu(sk, skb);
595 if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu)
596 mtu = IPCB(skb)->frag_max_size;
597
598 /*
599 * Setup starting values.
600 */
601
602 hlen = iph->ihl * 4;
603 mtu = mtu - hlen; /* Size of data space */
604 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
605 ll_rs = LL_RESERVED_SPACE(rt->dst.dev);
606
607 /* When frag_list is given, use it. First, check its validity:
608 * some transformers could create wrong frag_list or break existing
609 * one, it is not prohibited. In this case fall back to copying.
610 *
611 * LATER: this step can be merged to real generation of fragments,
612 * we can switch to copy when see the first bad fragment.
613 */
614 if (skb_has_frag_list(skb)) {
615 struct sk_buff *frag, *frag2;
616 unsigned int first_len = skb_pagelen(skb);
617
618 if (first_len - hlen > mtu ||
619 ((first_len - hlen) & 7) ||
620 ip_is_fragment(iph) ||
621 skb_cloned(skb) ||
622 skb_headroom(skb) < ll_rs)
623 goto slow_path;
624
625 skb_walk_frags(skb, frag) {
626 /* Correct geometry. */
627 if (frag->len > mtu ||
628 ((frag->len & 7) && frag->next) ||
629 skb_headroom(frag) < hlen + ll_rs)
630 goto slow_path_clean;
631
632 /* Partially cloned skb? */
633 if (skb_shared(frag))
634 goto slow_path_clean;
635
636 BUG_ON(frag->sk);
637 if (skb->sk) {
638 frag->sk = skb->sk;
639 frag->destructor = sock_wfree;
640 }
641 skb->truesize -= frag->truesize;
642 }
643
644 /* Everything is OK. Generate! */
645
646 err = 0;
647 offset = 0;
648 frag = skb_shinfo(skb)->frag_list;
649 skb_frag_list_init(skb);
650 skb->data_len = first_len - skb_headlen(skb);
651 skb->len = first_len;
652 iph->tot_len = htons(first_len);
653 iph->frag_off = htons(IP_MF);
654 ip_send_check(iph);
655
656 for (;;) {
657 /* Prepare header of the next frame,
658 * before previous one went down. */
659 if (frag) {
660 frag->ip_summed = CHECKSUM_NONE;
661 skb_reset_transport_header(frag);
662 __skb_push(frag, hlen);
663 skb_reset_network_header(frag);
664 memcpy(skb_network_header(frag), iph, hlen);
665 iph = ip_hdr(frag);
666 iph->tot_len = htons(frag->len);
667 ip_copy_metadata(frag, skb);
668 if (offset == 0)
669 ip_options_fragment(frag);
670 offset += skb->len - hlen;
671 iph->frag_off = htons(offset>>3);
672 if (frag->next)
673 iph->frag_off |= htons(IP_MF);
674 /* Ready, complete checksum */
675 ip_send_check(iph);
676 }
677
678 err = output(net, sk, skb);
679
680 if (!err)
681 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
682 if (err || !frag)
683 break;
684
685 skb = frag;
686 frag = skb->next;
687 skb->next = NULL;
688 }
689
690 if (err == 0) {
691 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
692 return 0;
693 }
694
695 while (frag) {
696 skb = frag->next;
697 kfree_skb(frag);
698 frag = skb;
699 }
700 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
701 return err;
702
703 slow_path_clean:
704 skb_walk_frags(skb, frag2) {
705 if (frag2 == frag)
706 break;
707 frag2->sk = NULL;
708 frag2->destructor = NULL;
709 skb->truesize += frag2->truesize;
710 }
711 }
712
713 slow_path:
714 iph = ip_hdr(skb);
715
716 left = skb->len - hlen; /* Space per frame */
717 ptr = hlen; /* Where to start from */
718
719 /*
720 * Fragment the datagram.
721 */
722
723 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
724 not_last_frag = iph->frag_off & htons(IP_MF);
725
726 /*
727 * Keep copying data until we run out.
728 */
729
730 while (left > 0) {
731 len = left;
732 /* IF: it doesn't fit, use 'mtu' - the data space left */
733 if (len > mtu)
734 len = mtu;
735 /* IF: we are not sending up to and including the packet end
736 then align the next start on an eight byte boundary */
737 if (len < left) {
738 len &= ~7;
739 }
740
741 /* Allocate buffer */
742 skb2 = alloc_skb(len + hlen + ll_rs, GFP_ATOMIC);
743 if (!skb2) {
744 err = -ENOMEM;
745 goto fail;
746 }
747
748 /*
749 * Set up data on packet
750 */
751
752 ip_copy_metadata(skb2, skb);
753 skb_reserve(skb2, ll_rs);
754 skb_put(skb2, len + hlen);
755 skb_reset_network_header(skb2);
756 skb2->transport_header = skb2->network_header + hlen;
757
758 /*
759 * Charge the memory for the fragment to any owner
760 * it might possess
761 */
762
763 if (skb->sk)
764 skb_set_owner_w(skb2, skb->sk);
765
766 /*
767 * Copy the packet header into the new buffer.
768 */
769
770 skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
771
772 /*
773 * Copy a block of the IP datagram.
774 */
775 if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
776 BUG();
777 left -= len;
778
779 /*
780 * Fill in the new header fields.
781 */
782 iph = ip_hdr(skb2);
783 iph->frag_off = htons((offset >> 3));
784
785 if (IPCB(skb)->flags & IPSKB_FRAG_PMTU)
786 iph->frag_off |= htons(IP_DF);
787
788 /* ANK: dirty, but effective trick. Upgrade options only if
789 * the segment to be fragmented was THE FIRST (otherwise,
790 * options are already fixed) and make it ONCE
791 * on the initial skb, so that all the following fragments
792 * will inherit fixed options.
793 */
794 if (offset == 0)
795 ip_options_fragment(skb);
796
797 /*
798 * Added AC : If we are fragmenting a fragment that's not the
799 * last fragment then keep MF on each bit
800 */
801 if (left > 0 || not_last_frag)
802 iph->frag_off |= htons(IP_MF);
803 ptr += len;
804 offset += len;
805
806 /*
807 * Put this fragment into the sending queue.
808 */
809 iph->tot_len = htons(len + hlen);
810
811 ip_send_check(iph);
812
813 err = output(net, sk, skb2);
814 if (err)
815 goto fail;
816
817 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
818 }
819 consume_skb(skb);
820 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
821 return err;
822
823 fail:
824 kfree_skb(skb);
825 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
826 return err;
827 }
828 EXPORT_SYMBOL(ip_do_fragment);
829
830 int
ip_generic_getfrag(void * from,char * to,int offset,int len,int odd,struct sk_buff * skb)831 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
832 {
833 struct msghdr *msg = from;
834
835 if (skb->ip_summed == CHECKSUM_PARTIAL) {
836 if (!copy_from_iter_full(to, len, &msg->msg_iter))
837 return -EFAULT;
838 } else {
839 __wsum csum = 0;
840 if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter))
841 return -EFAULT;
842 skb->csum = csum_block_add(skb->csum, csum, odd);
843 }
844 return 0;
845 }
846 EXPORT_SYMBOL(ip_generic_getfrag);
847
848 static inline __wsum
csum_page(struct page * page,int offset,int copy)849 csum_page(struct page *page, int offset, int copy)
850 {
851 char *kaddr;
852 __wsum csum;
853 kaddr = kmap(page);
854 csum = csum_partial(kaddr + offset, copy, 0);
855 kunmap(page);
856 return csum;
857 }
858
__ip_append_data(struct sock * sk,struct flowi4 * fl4,struct sk_buff_head * queue,struct inet_cork * cork,struct page_frag * pfrag,int getfrag (void * from,char * to,int offset,int len,int odd,struct sk_buff * skb),void * from,int length,int transhdrlen,unsigned int flags)859 static int __ip_append_data(struct sock *sk,
860 struct flowi4 *fl4,
861 struct sk_buff_head *queue,
862 struct inet_cork *cork,
863 struct page_frag *pfrag,
864 int getfrag(void *from, char *to, int offset,
865 int len, int odd, struct sk_buff *skb),
866 void *from, int length, int transhdrlen,
867 unsigned int flags)
868 {
869 struct inet_sock *inet = inet_sk(sk);
870 struct sk_buff *skb;
871
872 struct ip_options *opt = cork->opt;
873 int hh_len;
874 int exthdrlen;
875 int mtu;
876 int copy;
877 int err;
878 int offset = 0;
879 unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
880 int csummode = CHECKSUM_NONE;
881 struct rtable *rt = (struct rtable *)cork->dst;
882 u32 tskey = 0;
883
884 skb = skb_peek_tail(queue);
885
886 exthdrlen = !skb ? rt->dst.header_len : 0;
887 mtu = cork->fragsize;
888 if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP &&
889 sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)
890 tskey = sk->sk_tskey++;
891
892 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
893
894 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
895 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
896 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
897
898 if (cork->length + length > maxnonfragsize - fragheaderlen) {
899 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
900 mtu - (opt ? opt->optlen : 0));
901 return -EMSGSIZE;
902 }
903
904 /*
905 * transhdrlen > 0 means that this is the first fragment and we wish
906 * it won't be fragmented in the future.
907 */
908 if (transhdrlen &&
909 length + fragheaderlen <= mtu &&
910 rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) &&
911 !(flags & MSG_MORE) &&
912 !exthdrlen)
913 csummode = CHECKSUM_PARTIAL;
914
915 cork->length += length;
916
917 /* So, what's going on in the loop below?
918 *
919 * We use calculated fragment length to generate chained skb,
920 * each of segments is IP fragment ready for sending to network after
921 * adding appropriate IP header.
922 */
923
924 if (!skb)
925 goto alloc_new_skb;
926
927 while (length > 0) {
928 /* Check if the remaining data fits into current packet. */
929 copy = mtu - skb->len;
930 if (copy < length)
931 copy = maxfraglen - skb->len;
932 if (copy <= 0) {
933 char *data;
934 unsigned int datalen;
935 unsigned int fraglen;
936 unsigned int fraggap;
937 unsigned int alloclen;
938 struct sk_buff *skb_prev;
939 alloc_new_skb:
940 skb_prev = skb;
941 if (skb_prev)
942 fraggap = skb_prev->len - maxfraglen;
943 else
944 fraggap = 0;
945
946 /*
947 * If remaining data exceeds the mtu,
948 * we know we need more fragment(s).
949 */
950 datalen = length + fraggap;
951 if (datalen > mtu - fragheaderlen)
952 datalen = maxfraglen - fragheaderlen;
953 fraglen = datalen + fragheaderlen;
954
955 if ((flags & MSG_MORE) &&
956 !(rt->dst.dev->features&NETIF_F_SG))
957 alloclen = mtu;
958 else
959 alloclen = fraglen;
960
961 alloclen += exthdrlen;
962
963 /* The last fragment gets additional space at tail.
964 * Note, with MSG_MORE we overallocate on fragments,
965 * because we have no idea what fragment will be
966 * the last.
967 */
968 if (datalen == length + fraggap)
969 alloclen += rt->dst.trailer_len;
970
971 if (transhdrlen) {
972 skb = sock_alloc_send_skb(sk,
973 alloclen + hh_len + 15,
974 (flags & MSG_DONTWAIT), &err);
975 } else {
976 skb = NULL;
977 if (refcount_read(&sk->sk_wmem_alloc) <=
978 2 * sk->sk_sndbuf)
979 skb = sock_wmalloc(sk,
980 alloclen + hh_len + 15, 1,
981 sk->sk_allocation);
982 if (unlikely(!skb))
983 err = -ENOBUFS;
984 }
985 if (!skb)
986 goto error;
987
988 /*
989 * Fill in the control structures
990 */
991 skb->ip_summed = csummode;
992 skb->csum = 0;
993 skb_reserve(skb, hh_len);
994
995 /* only the initial fragment is time stamped */
996 skb_shinfo(skb)->tx_flags = cork->tx_flags;
997 cork->tx_flags = 0;
998 skb_shinfo(skb)->tskey = tskey;
999 tskey = 0;
1000
1001 /*
1002 * Find where to start putting bytes.
1003 */
1004 data = skb_put(skb, fraglen + exthdrlen);
1005 skb_set_network_header(skb, exthdrlen);
1006 skb->transport_header = (skb->network_header +
1007 fragheaderlen);
1008 data += fragheaderlen + exthdrlen;
1009
1010 if (fraggap) {
1011 skb->csum = skb_copy_and_csum_bits(
1012 skb_prev, maxfraglen,
1013 data + transhdrlen, fraggap, 0);
1014 skb_prev->csum = csum_sub(skb_prev->csum,
1015 skb->csum);
1016 data += fraggap;
1017 pskb_trim_unique(skb_prev, maxfraglen);
1018 }
1019
1020 copy = datalen - transhdrlen - fraggap;
1021 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
1022 err = -EFAULT;
1023 kfree_skb(skb);
1024 goto error;
1025 }
1026
1027 offset += copy;
1028 length -= datalen - fraggap;
1029 transhdrlen = 0;
1030 exthdrlen = 0;
1031 csummode = CHECKSUM_NONE;
1032
1033 if ((flags & MSG_CONFIRM) && !skb_prev)
1034 skb_set_dst_pending_confirm(skb, 1);
1035
1036 /*
1037 * Put the packet on the pending queue.
1038 */
1039 __skb_queue_tail(queue, skb);
1040 continue;
1041 }
1042
1043 if (copy > length)
1044 copy = length;
1045
1046 if (!(rt->dst.dev->features&NETIF_F_SG) &&
1047 skb_tailroom(skb) >= copy) {
1048 unsigned int off;
1049
1050 off = skb->len;
1051 if (getfrag(from, skb_put(skb, copy),
1052 offset, copy, off, skb) < 0) {
1053 __skb_trim(skb, off);
1054 err = -EFAULT;
1055 goto error;
1056 }
1057 } else {
1058 int i = skb_shinfo(skb)->nr_frags;
1059
1060 err = -ENOMEM;
1061 if (!sk_page_frag_refill(sk, pfrag))
1062 goto error;
1063
1064 if (!skb_can_coalesce(skb, i, pfrag->page,
1065 pfrag->offset)) {
1066 err = -EMSGSIZE;
1067 if (i == MAX_SKB_FRAGS)
1068 goto error;
1069
1070 __skb_fill_page_desc(skb, i, pfrag->page,
1071 pfrag->offset, 0);
1072 skb_shinfo(skb)->nr_frags = ++i;
1073 get_page(pfrag->page);
1074 }
1075 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1076 if (getfrag(from,
1077 page_address(pfrag->page) + pfrag->offset,
1078 offset, copy, skb->len, skb) < 0)
1079 goto error_efault;
1080
1081 pfrag->offset += copy;
1082 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1083 skb->len += copy;
1084 skb->data_len += copy;
1085 skb->truesize += copy;
1086 refcount_add(copy, &sk->sk_wmem_alloc);
1087 }
1088 offset += copy;
1089 length -= copy;
1090 }
1091
1092 return 0;
1093
1094 error_efault:
1095 err = -EFAULT;
1096 error:
1097 cork->length -= length;
1098 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1099 return err;
1100 }
1101
ip_setup_cork(struct sock * sk,struct inet_cork * cork,struct ipcm_cookie * ipc,struct rtable ** rtp)1102 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1103 struct ipcm_cookie *ipc, struct rtable **rtp)
1104 {
1105 struct ip_options_rcu *opt;
1106 struct rtable *rt;
1107
1108 /*
1109 * setup for corking.
1110 */
1111 opt = ipc->opt;
1112 if (opt) {
1113 if (!cork->opt) {
1114 cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1115 sk->sk_allocation);
1116 if (unlikely(!cork->opt))
1117 return -ENOBUFS;
1118 }
1119 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1120 cork->flags |= IPCORK_OPT;
1121 cork->addr = ipc->addr;
1122 }
1123 rt = *rtp;
1124 if (unlikely(!rt))
1125 return -EFAULT;
1126
1127 cork->fragsize = ip_sk_use_pmtu(sk) ?
1128 dst_mtu(&rt->dst) : READ_ONCE(rt->dst.dev->mtu);
1129
1130 if (!inetdev_valid_mtu(cork->fragsize))
1131 return -ENETUNREACH;
1132
1133 cork->dst = &rt->dst;
1134 /* We stole this route, caller should not release it. */
1135 *rtp = NULL;
1136
1137 cork->length = 0;
1138 cork->ttl = ipc->ttl;
1139 cork->tos = ipc->tos;
1140 cork->priority = ipc->priority;
1141 cork->tx_flags = ipc->tx_flags;
1142
1143 return 0;
1144 }
1145
1146 /*
1147 * ip_append_data() and ip_append_page() can make one large IP datagram
1148 * from many pieces of data. Each pieces will be holded on the socket
1149 * until ip_push_pending_frames() is called. Each piece can be a page
1150 * or non-page data.
1151 *
1152 * Not only UDP, other transport protocols - e.g. raw sockets - can use
1153 * this interface potentially.
1154 *
1155 * LATER: length must be adjusted by pad at tail, when it is required.
1156 */
ip_append_data(struct sock * sk,struct flowi4 * fl4,int getfrag (void * from,char * to,int offset,int len,int odd,struct sk_buff * skb),void * from,int length,int transhdrlen,struct ipcm_cookie * ipc,struct rtable ** rtp,unsigned int flags)1157 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1158 int getfrag(void *from, char *to, int offset, int len,
1159 int odd, struct sk_buff *skb),
1160 void *from, int length, int transhdrlen,
1161 struct ipcm_cookie *ipc, struct rtable **rtp,
1162 unsigned int flags)
1163 {
1164 struct inet_sock *inet = inet_sk(sk);
1165 int err;
1166
1167 if (flags&MSG_PROBE)
1168 return 0;
1169
1170 if (skb_queue_empty(&sk->sk_write_queue)) {
1171 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1172 if (err)
1173 return err;
1174 } else {
1175 transhdrlen = 0;
1176 }
1177
1178 return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1179 sk_page_frag(sk), getfrag,
1180 from, length, transhdrlen, flags);
1181 }
1182
ip_append_page(struct sock * sk,struct flowi4 * fl4,struct page * page,int offset,size_t size,int flags)1183 ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1184 int offset, size_t size, int flags)
1185 {
1186 struct inet_sock *inet = inet_sk(sk);
1187 struct sk_buff *skb;
1188 struct rtable *rt;
1189 struct ip_options *opt = NULL;
1190 struct inet_cork *cork;
1191 int hh_len;
1192 int mtu;
1193 int len;
1194 int err;
1195 unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize;
1196
1197 if (inet->hdrincl)
1198 return -EPERM;
1199
1200 if (flags&MSG_PROBE)
1201 return 0;
1202
1203 if (skb_queue_empty(&sk->sk_write_queue))
1204 return -EINVAL;
1205
1206 cork = &inet->cork.base;
1207 rt = (struct rtable *)cork->dst;
1208 if (cork->flags & IPCORK_OPT)
1209 opt = cork->opt;
1210
1211 if (!(rt->dst.dev->features&NETIF_F_SG))
1212 return -EOPNOTSUPP;
1213
1214 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1215 mtu = cork->fragsize;
1216
1217 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1218 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1219 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
1220
1221 if (cork->length + size > maxnonfragsize - fragheaderlen) {
1222 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
1223 mtu - (opt ? opt->optlen : 0));
1224 return -EMSGSIZE;
1225 }
1226
1227 skb = skb_peek_tail(&sk->sk_write_queue);
1228 if (!skb)
1229 return -EINVAL;
1230
1231 cork->length += size;
1232
1233 while (size > 0) {
1234 /* Check if the remaining data fits into current packet. */
1235 len = mtu - skb->len;
1236 if (len < size)
1237 len = maxfraglen - skb->len;
1238
1239 if (len <= 0) {
1240 struct sk_buff *skb_prev;
1241 int alloclen;
1242
1243 skb_prev = skb;
1244 fraggap = skb_prev->len - maxfraglen;
1245
1246 alloclen = fragheaderlen + hh_len + fraggap + 15;
1247 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1248 if (unlikely(!skb)) {
1249 err = -ENOBUFS;
1250 goto error;
1251 }
1252
1253 /*
1254 * Fill in the control structures
1255 */
1256 skb->ip_summed = CHECKSUM_NONE;
1257 skb->csum = 0;
1258 skb_reserve(skb, hh_len);
1259
1260 /*
1261 * Find where to start putting bytes.
1262 */
1263 skb_put(skb, fragheaderlen + fraggap);
1264 skb_reset_network_header(skb);
1265 skb->transport_header = (skb->network_header +
1266 fragheaderlen);
1267 if (fraggap) {
1268 skb->csum = skb_copy_and_csum_bits(skb_prev,
1269 maxfraglen,
1270 skb_transport_header(skb),
1271 fraggap, 0);
1272 skb_prev->csum = csum_sub(skb_prev->csum,
1273 skb->csum);
1274 pskb_trim_unique(skb_prev, maxfraglen);
1275 }
1276
1277 /*
1278 * Put the packet on the pending queue.
1279 */
1280 __skb_queue_tail(&sk->sk_write_queue, skb);
1281 continue;
1282 }
1283
1284 if (len > size)
1285 len = size;
1286
1287 if (skb_append_pagefrags(skb, page, offset, len)) {
1288 err = -EMSGSIZE;
1289 goto error;
1290 }
1291
1292 if (skb->ip_summed == CHECKSUM_NONE) {
1293 __wsum csum;
1294 csum = csum_page(page, offset, len);
1295 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1296 }
1297
1298 skb->len += len;
1299 skb->data_len += len;
1300 skb->truesize += len;
1301 refcount_add(len, &sk->sk_wmem_alloc);
1302 offset += len;
1303 size -= len;
1304 }
1305 return 0;
1306
1307 error:
1308 cork->length -= size;
1309 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1310 return err;
1311 }
1312
ip_cork_release(struct inet_cork * cork)1313 static void ip_cork_release(struct inet_cork *cork)
1314 {
1315 cork->flags &= ~IPCORK_OPT;
1316 kfree(cork->opt);
1317 cork->opt = NULL;
1318 dst_release(cork->dst);
1319 cork->dst = NULL;
1320 }
1321
1322 /*
1323 * Combined all pending IP fragments on the socket as one IP datagram
1324 * and push them out.
1325 */
__ip_make_skb(struct sock * sk,struct flowi4 * fl4,struct sk_buff_head * queue,struct inet_cork * cork)1326 struct sk_buff *__ip_make_skb(struct sock *sk,
1327 struct flowi4 *fl4,
1328 struct sk_buff_head *queue,
1329 struct inet_cork *cork)
1330 {
1331 struct sk_buff *skb, *tmp_skb;
1332 struct sk_buff **tail_skb;
1333 struct inet_sock *inet = inet_sk(sk);
1334 struct net *net = sock_net(sk);
1335 struct ip_options *opt = NULL;
1336 struct rtable *rt = (struct rtable *)cork->dst;
1337 struct iphdr *iph;
1338 __be16 df = 0;
1339 __u8 ttl;
1340
1341 skb = __skb_dequeue(queue);
1342 if (!skb)
1343 goto out;
1344 tail_skb = &(skb_shinfo(skb)->frag_list);
1345
1346 /* move skb->data to ip header from ext header */
1347 if (skb->data < skb_network_header(skb))
1348 __skb_pull(skb, skb_network_offset(skb));
1349 while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1350 __skb_pull(tmp_skb, skb_network_header_len(skb));
1351 *tail_skb = tmp_skb;
1352 tail_skb = &(tmp_skb->next);
1353 skb->len += tmp_skb->len;
1354 skb->data_len += tmp_skb->len;
1355 skb->truesize += tmp_skb->truesize;
1356 tmp_skb->destructor = NULL;
1357 tmp_skb->sk = NULL;
1358 }
1359
1360 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1361 * to fragment the frame generated here. No matter, what transforms
1362 * how transforms change size of the packet, it will come out.
1363 */
1364 skb->ignore_df = ip_sk_ignore_df(sk);
1365
1366 /* DF bit is set when we want to see DF on outgoing frames.
1367 * If ignore_df is set too, we still allow to fragment this frame
1368 * locally. */
1369 if (inet->pmtudisc == IP_PMTUDISC_DO ||
1370 inet->pmtudisc == IP_PMTUDISC_PROBE ||
1371 (skb->len <= dst_mtu(&rt->dst) &&
1372 ip_dont_fragment(sk, &rt->dst)))
1373 df = htons(IP_DF);
1374
1375 if (cork->flags & IPCORK_OPT)
1376 opt = cork->opt;
1377
1378 if (cork->ttl != 0)
1379 ttl = cork->ttl;
1380 else if (rt->rt_type == RTN_MULTICAST)
1381 ttl = inet->mc_ttl;
1382 else
1383 ttl = ip_select_ttl(inet, &rt->dst);
1384
1385 iph = ip_hdr(skb);
1386 iph->version = 4;
1387 iph->ihl = 5;
1388 iph->tos = (cork->tos != -1) ? cork->tos : inet->tos;
1389 iph->frag_off = df;
1390 iph->ttl = ttl;
1391 iph->protocol = sk->sk_protocol;
1392 ip_copy_addrs(iph, fl4);
1393 ip_select_ident(net, skb, sk);
1394
1395 if (opt) {
1396 iph->ihl += opt->optlen>>2;
1397 ip_options_build(skb, opt, cork->addr, rt, 0);
1398 }
1399
1400 skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority;
1401 skb->mark = sk->sk_mark;
1402 /*
1403 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1404 * on dst refcount
1405 */
1406 cork->dst = NULL;
1407 skb_dst_set(skb, &rt->dst);
1408
1409 if (iph->protocol == IPPROTO_ICMP)
1410 icmp_out_count(net, ((struct icmphdr *)
1411 skb_transport_header(skb))->type);
1412
1413 ip_cork_release(cork);
1414 out:
1415 return skb;
1416 }
1417
ip_send_skb(struct net * net,struct sk_buff * skb)1418 int ip_send_skb(struct net *net, struct sk_buff *skb)
1419 {
1420 int err;
1421
1422 err = ip_local_out(net, skb->sk, skb);
1423 if (err) {
1424 if (err > 0)
1425 err = net_xmit_errno(err);
1426 if (err)
1427 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1428 }
1429
1430 return err;
1431 }
1432
ip_push_pending_frames(struct sock * sk,struct flowi4 * fl4)1433 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1434 {
1435 struct sk_buff *skb;
1436
1437 skb = ip_finish_skb(sk, fl4);
1438 if (!skb)
1439 return 0;
1440
1441 /* Netfilter gets whole the not fragmented skb. */
1442 return ip_send_skb(sock_net(sk), skb);
1443 }
1444
1445 /*
1446 * Throw away all pending data on the socket.
1447 */
__ip_flush_pending_frames(struct sock * sk,struct sk_buff_head * queue,struct inet_cork * cork)1448 static void __ip_flush_pending_frames(struct sock *sk,
1449 struct sk_buff_head *queue,
1450 struct inet_cork *cork)
1451 {
1452 struct sk_buff *skb;
1453
1454 while ((skb = __skb_dequeue_tail(queue)) != NULL)
1455 kfree_skb(skb);
1456
1457 ip_cork_release(cork);
1458 }
1459
ip_flush_pending_frames(struct sock * sk)1460 void ip_flush_pending_frames(struct sock *sk)
1461 {
1462 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1463 }
1464
ip_make_skb(struct sock * sk,struct flowi4 * fl4,int getfrag (void * from,char * to,int offset,int len,int odd,struct sk_buff * skb),void * from,int length,int transhdrlen,struct ipcm_cookie * ipc,struct rtable ** rtp,unsigned int flags)1465 struct sk_buff *ip_make_skb(struct sock *sk,
1466 struct flowi4 *fl4,
1467 int getfrag(void *from, char *to, int offset,
1468 int len, int odd, struct sk_buff *skb),
1469 void *from, int length, int transhdrlen,
1470 struct ipcm_cookie *ipc, struct rtable **rtp,
1471 unsigned int flags)
1472 {
1473 struct inet_cork cork;
1474 struct sk_buff_head queue;
1475 int err;
1476
1477 if (flags & MSG_PROBE)
1478 return NULL;
1479
1480 __skb_queue_head_init(&queue);
1481
1482 cork.flags = 0;
1483 cork.addr = 0;
1484 cork.opt = NULL;
1485 err = ip_setup_cork(sk, &cork, ipc, rtp);
1486 if (err)
1487 return ERR_PTR(err);
1488
1489 err = __ip_append_data(sk, fl4, &queue, &cork,
1490 ¤t->task_frag, getfrag,
1491 from, length, transhdrlen, flags);
1492 if (err) {
1493 __ip_flush_pending_frames(sk, &queue, &cork);
1494 return ERR_PTR(err);
1495 }
1496
1497 return __ip_make_skb(sk, fl4, &queue, &cork);
1498 }
1499
1500 /*
1501 * Fetch data from kernel space and fill in checksum if needed.
1502 */
ip_reply_glue_bits(void * dptr,char * to,int offset,int len,int odd,struct sk_buff * skb)1503 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1504 int len, int odd, struct sk_buff *skb)
1505 {
1506 __wsum csum;
1507
1508 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1509 skb->csum = csum_block_add(skb->csum, csum, odd);
1510 return 0;
1511 }
1512
1513 /*
1514 * Generic function to send a packet as reply to another packet.
1515 * Used to send some TCP resets/acks so far.
1516 */
ip_send_unicast_reply(struct sock * sk,struct sk_buff * skb,const struct ip_options * sopt,__be32 daddr,__be32 saddr,const struct ip_reply_arg * arg,unsigned int len)1517 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb,
1518 const struct ip_options *sopt,
1519 __be32 daddr, __be32 saddr,
1520 const struct ip_reply_arg *arg,
1521 unsigned int len)
1522 {
1523 struct ip_options_data replyopts;
1524 struct ipcm_cookie ipc;
1525 struct flowi4 fl4;
1526 struct rtable *rt = skb_rtable(skb);
1527 struct net *net = sock_net(sk);
1528 struct sk_buff *nskb;
1529 int err;
1530 int oif;
1531
1532 if (__ip_options_echo(net, &replyopts.opt.opt, skb, sopt))
1533 return;
1534
1535 ipc.addr = daddr;
1536 ipc.opt = NULL;
1537 ipc.tx_flags = 0;
1538 ipc.ttl = 0;
1539 ipc.tos = -1;
1540
1541 if (replyopts.opt.opt.optlen) {
1542 ipc.opt = &replyopts.opt;
1543
1544 if (replyopts.opt.opt.srr)
1545 daddr = replyopts.opt.opt.faddr;
1546 }
1547
1548 oif = arg->bound_dev_if;
1549 if (!oif && netif_index_is_l3_master(net, skb->skb_iif))
1550 oif = skb->skb_iif;
1551
1552 flowi4_init_output(&fl4, oif,
1553 IP4_REPLY_MARK(net, skb->mark),
1554 RT_TOS(arg->tos),
1555 RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1556 ip_reply_arg_flowi_flags(arg),
1557 daddr, saddr,
1558 tcp_hdr(skb)->source, tcp_hdr(skb)->dest,
1559 arg->uid);
1560 security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1561 rt = ip_route_output_key(net, &fl4);
1562 if (IS_ERR(rt))
1563 return;
1564
1565 inet_sk(sk)->tos = arg->tos;
1566
1567 sk->sk_priority = skb->priority;
1568 sk->sk_protocol = ip_hdr(skb)->protocol;
1569 sk->sk_bound_dev_if = arg->bound_dev_if;
1570 sk->sk_sndbuf = sysctl_wmem_default;
1571 sk->sk_mark = fl4.flowi4_mark;
1572 err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base,
1573 len, 0, &ipc, &rt, MSG_DONTWAIT);
1574 if (unlikely(err)) {
1575 ip_flush_pending_frames(sk);
1576 goto out;
1577 }
1578
1579 nskb = skb_peek(&sk->sk_write_queue);
1580 if (nskb) {
1581 if (arg->csumoffset >= 0)
1582 *((__sum16 *)skb_transport_header(nskb) +
1583 arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1584 arg->csum));
1585 nskb->ip_summed = CHECKSUM_NONE;
1586 ip_push_pending_frames(sk, &fl4);
1587 }
1588 out:
1589 ip_rt_put(rt);
1590 }
1591
ip_init(void)1592 void __init ip_init(void)
1593 {
1594 ip_rt_init();
1595 inet_initpeers();
1596
1597 #if defined(CONFIG_IP_MULTICAST)
1598 igmp_mc_init();
1599 #endif
1600 }
1601