1 /*
2 * linux/kernel/irq/manage.c
3 *
4 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
5 * Copyright (C) 2005-2006 Thomas Gleixner
6 *
7 * This file contains driver APIs to the irq subsystem.
8 */
9
10 #define pr_fmt(fmt) "genirq: " fmt
11
12 #include <linux/irq.h>
13 #include <linux/kthread.h>
14 #include <linux/module.h>
15 #include <linux/random.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <uapi/linux/sched/types.h>
22 #include <linux/task_work.h>
23
24 #include "internals.h"
25
26 #ifdef CONFIG_IRQ_FORCED_THREADING
27 __read_mostly bool force_irqthreads;
28
setup_forced_irqthreads(char * arg)29 static int __init setup_forced_irqthreads(char *arg)
30 {
31 force_irqthreads = true;
32 return 0;
33 }
34 early_param("threadirqs", setup_forced_irqthreads);
35 #endif
36
__synchronize_hardirq(struct irq_desc * desc)37 static void __synchronize_hardirq(struct irq_desc *desc)
38 {
39 bool inprogress;
40
41 do {
42 unsigned long flags;
43
44 /*
45 * Wait until we're out of the critical section. This might
46 * give the wrong answer due to the lack of memory barriers.
47 */
48 while (irqd_irq_inprogress(&desc->irq_data))
49 cpu_relax();
50
51 /* Ok, that indicated we're done: double-check carefully. */
52 raw_spin_lock_irqsave(&desc->lock, flags);
53 inprogress = irqd_irq_inprogress(&desc->irq_data);
54 raw_spin_unlock_irqrestore(&desc->lock, flags);
55
56 /* Oops, that failed? */
57 } while (inprogress);
58 }
59
60 /**
61 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
62 * @irq: interrupt number to wait for
63 *
64 * This function waits for any pending hard IRQ handlers for this
65 * interrupt to complete before returning. If you use this
66 * function while holding a resource the IRQ handler may need you
67 * will deadlock. It does not take associated threaded handlers
68 * into account.
69 *
70 * Do not use this for shutdown scenarios where you must be sure
71 * that all parts (hardirq and threaded handler) have completed.
72 *
73 * Returns: false if a threaded handler is active.
74 *
75 * This function may be called - with care - from IRQ context.
76 */
synchronize_hardirq(unsigned int irq)77 bool synchronize_hardirq(unsigned int irq)
78 {
79 struct irq_desc *desc = irq_to_desc(irq);
80
81 if (desc) {
82 __synchronize_hardirq(desc);
83 return !atomic_read(&desc->threads_active);
84 }
85
86 return true;
87 }
88 EXPORT_SYMBOL(synchronize_hardirq);
89
90 /**
91 * synchronize_irq - wait for pending IRQ handlers (on other CPUs)
92 * @irq: interrupt number to wait for
93 *
94 * This function waits for any pending IRQ handlers for this interrupt
95 * to complete before returning. If you use this function while
96 * holding a resource the IRQ handler may need you will deadlock.
97 *
98 * This function may be called - with care - from IRQ context.
99 */
synchronize_irq(unsigned int irq)100 void synchronize_irq(unsigned int irq)
101 {
102 struct irq_desc *desc = irq_to_desc(irq);
103
104 if (desc) {
105 __synchronize_hardirq(desc);
106 /*
107 * We made sure that no hardirq handler is
108 * running. Now verify that no threaded handlers are
109 * active.
110 */
111 wait_event(desc->wait_for_threads,
112 !atomic_read(&desc->threads_active));
113 }
114 }
115 EXPORT_SYMBOL(synchronize_irq);
116
117 #ifdef CONFIG_SMP
118 cpumask_var_t irq_default_affinity;
119
__irq_can_set_affinity(struct irq_desc * desc)120 static bool __irq_can_set_affinity(struct irq_desc *desc)
121 {
122 if (!desc || !irqd_can_balance(&desc->irq_data) ||
123 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
124 return false;
125 return true;
126 }
127
128 /**
129 * irq_can_set_affinity - Check if the affinity of a given irq can be set
130 * @irq: Interrupt to check
131 *
132 */
irq_can_set_affinity(unsigned int irq)133 int irq_can_set_affinity(unsigned int irq)
134 {
135 return __irq_can_set_affinity(irq_to_desc(irq));
136 }
137
138 /**
139 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
140 * @irq: Interrupt to check
141 *
142 * Like irq_can_set_affinity() above, but additionally checks for the
143 * AFFINITY_MANAGED flag.
144 */
irq_can_set_affinity_usr(unsigned int irq)145 bool irq_can_set_affinity_usr(unsigned int irq)
146 {
147 struct irq_desc *desc = irq_to_desc(irq);
148
149 return __irq_can_set_affinity(desc) &&
150 !irqd_affinity_is_managed(&desc->irq_data);
151 }
152
153 /**
154 * irq_set_thread_affinity - Notify irq threads to adjust affinity
155 * @desc: irq descriptor which has affitnity changed
156 *
157 * We just set IRQTF_AFFINITY and delegate the affinity setting
158 * to the interrupt thread itself. We can not call
159 * set_cpus_allowed_ptr() here as we hold desc->lock and this
160 * code can be called from hard interrupt context.
161 */
irq_set_thread_affinity(struct irq_desc * desc)162 void irq_set_thread_affinity(struct irq_desc *desc)
163 {
164 struct irqaction *action;
165
166 for_each_action_of_desc(desc, action)
167 if (action->thread)
168 set_bit(IRQTF_AFFINITY, &action->thread_flags);
169 }
170
irq_validate_effective_affinity(struct irq_data * data)171 static void irq_validate_effective_affinity(struct irq_data *data)
172 {
173 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
174 const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
175 struct irq_chip *chip = irq_data_get_irq_chip(data);
176
177 if (!cpumask_empty(m))
178 return;
179 pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
180 chip->name, data->irq);
181 #endif
182 }
183
irq_do_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)184 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
185 bool force)
186 {
187 struct irq_desc *desc = irq_data_to_desc(data);
188 struct irq_chip *chip = irq_data_get_irq_chip(data);
189 int ret;
190
191 if (!chip || !chip->irq_set_affinity)
192 return -EINVAL;
193
194 ret = chip->irq_set_affinity(data, mask, force);
195 switch (ret) {
196 case IRQ_SET_MASK_OK:
197 case IRQ_SET_MASK_OK_DONE:
198 cpumask_copy(desc->irq_common_data.affinity, mask);
199 case IRQ_SET_MASK_OK_NOCOPY:
200 irq_validate_effective_affinity(data);
201 irq_set_thread_affinity(desc);
202 ret = 0;
203 }
204
205 return ret;
206 }
207
irq_set_affinity_locked(struct irq_data * data,const struct cpumask * mask,bool force)208 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
209 bool force)
210 {
211 struct irq_chip *chip = irq_data_get_irq_chip(data);
212 struct irq_desc *desc = irq_data_to_desc(data);
213 int ret = 0;
214
215 if (!chip || !chip->irq_set_affinity)
216 return -EINVAL;
217
218 if (irq_can_move_pcntxt(data)) {
219 ret = irq_do_set_affinity(data, mask, force);
220 } else {
221 irqd_set_move_pending(data);
222 irq_copy_pending(desc, mask);
223 }
224
225 if (desc->affinity_notify) {
226 kref_get(&desc->affinity_notify->kref);
227 if (!schedule_work(&desc->affinity_notify->work)) {
228 /* Work was already scheduled, drop our extra ref */
229 kref_put(&desc->affinity_notify->kref,
230 desc->affinity_notify->release);
231 }
232 }
233 irqd_set(data, IRQD_AFFINITY_SET);
234
235 return ret;
236 }
237
__irq_set_affinity(unsigned int irq,const struct cpumask * mask,bool force)238 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
239 {
240 struct irq_desc *desc = irq_to_desc(irq);
241 unsigned long flags;
242 int ret;
243
244 if (!desc)
245 return -EINVAL;
246
247 raw_spin_lock_irqsave(&desc->lock, flags);
248 ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
249 raw_spin_unlock_irqrestore(&desc->lock, flags);
250 return ret;
251 }
252
irq_set_affinity_hint(unsigned int irq,const struct cpumask * m)253 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
254 {
255 unsigned long flags;
256 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
257
258 if (!desc)
259 return -EINVAL;
260 desc->affinity_hint = m;
261 irq_put_desc_unlock(desc, flags);
262 /* set the initial affinity to prevent every interrupt being on CPU0 */
263 if (m)
264 __irq_set_affinity(irq, m, false);
265 return 0;
266 }
267 EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
268
irq_affinity_notify(struct work_struct * work)269 static void irq_affinity_notify(struct work_struct *work)
270 {
271 struct irq_affinity_notify *notify =
272 container_of(work, struct irq_affinity_notify, work);
273 struct irq_desc *desc = irq_to_desc(notify->irq);
274 cpumask_var_t cpumask;
275 unsigned long flags;
276
277 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
278 goto out;
279
280 raw_spin_lock_irqsave(&desc->lock, flags);
281 if (irq_move_pending(&desc->irq_data))
282 irq_get_pending(cpumask, desc);
283 else
284 cpumask_copy(cpumask, desc->irq_common_data.affinity);
285 raw_spin_unlock_irqrestore(&desc->lock, flags);
286
287 notify->notify(notify, cpumask);
288
289 free_cpumask_var(cpumask);
290 out:
291 kref_put(¬ify->kref, notify->release);
292 }
293
294 /**
295 * irq_set_affinity_notifier - control notification of IRQ affinity changes
296 * @irq: Interrupt for which to enable/disable notification
297 * @notify: Context for notification, or %NULL to disable
298 * notification. Function pointers must be initialised;
299 * the other fields will be initialised by this function.
300 *
301 * Must be called in process context. Notification may only be enabled
302 * after the IRQ is allocated and must be disabled before the IRQ is
303 * freed using free_irq().
304 */
305 int
irq_set_affinity_notifier(unsigned int irq,struct irq_affinity_notify * notify)306 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
307 {
308 struct irq_desc *desc = irq_to_desc(irq);
309 struct irq_affinity_notify *old_notify;
310 unsigned long flags;
311
312 /* The release function is promised process context */
313 might_sleep();
314
315 if (!desc)
316 return -EINVAL;
317
318 /* Complete initialisation of *notify */
319 if (notify) {
320 notify->irq = irq;
321 kref_init(¬ify->kref);
322 INIT_WORK(¬ify->work, irq_affinity_notify);
323 }
324
325 raw_spin_lock_irqsave(&desc->lock, flags);
326 old_notify = desc->affinity_notify;
327 desc->affinity_notify = notify;
328 raw_spin_unlock_irqrestore(&desc->lock, flags);
329
330 if (old_notify) {
331 if (cancel_work_sync(&old_notify->work)) {
332 /* Pending work had a ref, put that one too */
333 kref_put(&old_notify->kref, old_notify->release);
334 }
335 kref_put(&old_notify->kref, old_notify->release);
336 }
337
338 return 0;
339 }
340 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
341
342 #ifndef CONFIG_AUTO_IRQ_AFFINITY
343 /*
344 * Generic version of the affinity autoselector.
345 */
irq_setup_affinity(struct irq_desc * desc)346 int irq_setup_affinity(struct irq_desc *desc)
347 {
348 struct cpumask *set = irq_default_affinity;
349 int ret, node = irq_desc_get_node(desc);
350 static DEFINE_RAW_SPINLOCK(mask_lock);
351 static struct cpumask mask;
352
353 /* Excludes PER_CPU and NO_BALANCE interrupts */
354 if (!__irq_can_set_affinity(desc))
355 return 0;
356
357 raw_spin_lock(&mask_lock);
358 /*
359 * Preserve the managed affinity setting and a userspace affinity
360 * setup, but make sure that one of the targets is online.
361 */
362 if (irqd_affinity_is_managed(&desc->irq_data) ||
363 irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
364 if (cpumask_intersects(desc->irq_common_data.affinity,
365 cpu_online_mask))
366 set = desc->irq_common_data.affinity;
367 else
368 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
369 }
370
371 cpumask_and(&mask, cpu_online_mask, set);
372 if (cpumask_empty(&mask))
373 cpumask_copy(&mask, cpu_online_mask);
374
375 if (node != NUMA_NO_NODE) {
376 const struct cpumask *nodemask = cpumask_of_node(node);
377
378 /* make sure at least one of the cpus in nodemask is online */
379 if (cpumask_intersects(&mask, nodemask))
380 cpumask_and(&mask, &mask, nodemask);
381 }
382 ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
383 raw_spin_unlock(&mask_lock);
384 return ret;
385 }
386 #else
387 /* Wrapper for ALPHA specific affinity selector magic */
irq_setup_affinity(struct irq_desc * desc)388 int irq_setup_affinity(struct irq_desc *desc)
389 {
390 return irq_select_affinity(irq_desc_get_irq(desc));
391 }
392 #endif /* CONFIG_AUTO_IRQ_AFFINITY */
393 #endif /* CONFIG_SMP */
394
395
396 /**
397 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
398 * @irq: interrupt number to set affinity
399 * @vcpu_info: vCPU specific data
400 *
401 * This function uses the vCPU specific data to set the vCPU
402 * affinity for an irq. The vCPU specific data is passed from
403 * outside, such as KVM. One example code path is as below:
404 * KVM -> IOMMU -> irq_set_vcpu_affinity().
405 */
irq_set_vcpu_affinity(unsigned int irq,void * vcpu_info)406 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
407 {
408 unsigned long flags;
409 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
410 struct irq_data *data;
411 struct irq_chip *chip;
412 int ret = -ENOSYS;
413
414 if (!desc)
415 return -EINVAL;
416
417 data = irq_desc_get_irq_data(desc);
418 do {
419 chip = irq_data_get_irq_chip(data);
420 if (chip && chip->irq_set_vcpu_affinity)
421 break;
422 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
423 data = data->parent_data;
424 #else
425 data = NULL;
426 #endif
427 } while (data);
428
429 if (data)
430 ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
431 irq_put_desc_unlock(desc, flags);
432
433 return ret;
434 }
435 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
436
__disable_irq(struct irq_desc * desc)437 void __disable_irq(struct irq_desc *desc)
438 {
439 if (!desc->depth++)
440 irq_disable(desc);
441 }
442
__disable_irq_nosync(unsigned int irq)443 static int __disable_irq_nosync(unsigned int irq)
444 {
445 unsigned long flags;
446 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
447
448 if (!desc)
449 return -EINVAL;
450 __disable_irq(desc);
451 irq_put_desc_busunlock(desc, flags);
452 return 0;
453 }
454
455 /**
456 * disable_irq_nosync - disable an irq without waiting
457 * @irq: Interrupt to disable
458 *
459 * Disable the selected interrupt line. Disables and Enables are
460 * nested.
461 * Unlike disable_irq(), this function does not ensure existing
462 * instances of the IRQ handler have completed before returning.
463 *
464 * This function may be called from IRQ context.
465 */
disable_irq_nosync(unsigned int irq)466 void disable_irq_nosync(unsigned int irq)
467 {
468 __disable_irq_nosync(irq);
469 }
470 EXPORT_SYMBOL(disable_irq_nosync);
471
472 /**
473 * disable_irq - disable an irq and wait for completion
474 * @irq: Interrupt to disable
475 *
476 * Disable the selected interrupt line. Enables and Disables are
477 * nested.
478 * This function waits for any pending IRQ handlers for this interrupt
479 * to complete before returning. If you use this function while
480 * holding a resource the IRQ handler may need you will deadlock.
481 *
482 * This function may be called - with care - from IRQ context.
483 */
disable_irq(unsigned int irq)484 void disable_irq(unsigned int irq)
485 {
486 if (!__disable_irq_nosync(irq))
487 synchronize_irq(irq);
488 }
489 EXPORT_SYMBOL(disable_irq);
490
491 /**
492 * disable_hardirq - disables an irq and waits for hardirq completion
493 * @irq: Interrupt to disable
494 *
495 * Disable the selected interrupt line. Enables and Disables are
496 * nested.
497 * This function waits for any pending hard IRQ handlers for this
498 * interrupt to complete before returning. If you use this function while
499 * holding a resource the hard IRQ handler may need you will deadlock.
500 *
501 * When used to optimistically disable an interrupt from atomic context
502 * the return value must be checked.
503 *
504 * Returns: false if a threaded handler is active.
505 *
506 * This function may be called - with care - from IRQ context.
507 */
disable_hardirq(unsigned int irq)508 bool disable_hardirq(unsigned int irq)
509 {
510 if (!__disable_irq_nosync(irq))
511 return synchronize_hardirq(irq);
512
513 return false;
514 }
515 EXPORT_SYMBOL_GPL(disable_hardirq);
516
__enable_irq(struct irq_desc * desc)517 void __enable_irq(struct irq_desc *desc)
518 {
519 switch (desc->depth) {
520 case 0:
521 err_out:
522 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
523 irq_desc_get_irq(desc));
524 break;
525 case 1: {
526 if (desc->istate & IRQS_SUSPENDED)
527 goto err_out;
528 /* Prevent probing on this irq: */
529 irq_settings_set_noprobe(desc);
530 /*
531 * Call irq_startup() not irq_enable() here because the
532 * interrupt might be marked NOAUTOEN. So irq_startup()
533 * needs to be invoked when it gets enabled the first
534 * time. If it was already started up, then irq_startup()
535 * will invoke irq_enable() under the hood.
536 */
537 irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
538 break;
539 }
540 default:
541 desc->depth--;
542 }
543 }
544
545 /**
546 * enable_irq - enable handling of an irq
547 * @irq: Interrupt to enable
548 *
549 * Undoes the effect of one call to disable_irq(). If this
550 * matches the last disable, processing of interrupts on this
551 * IRQ line is re-enabled.
552 *
553 * This function may be called from IRQ context only when
554 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
555 */
enable_irq(unsigned int irq)556 void enable_irq(unsigned int irq)
557 {
558 unsigned long flags;
559 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
560
561 if (!desc)
562 return;
563 if (WARN(!desc->irq_data.chip,
564 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
565 goto out;
566
567 __enable_irq(desc);
568 out:
569 irq_put_desc_busunlock(desc, flags);
570 }
571 EXPORT_SYMBOL(enable_irq);
572
set_irq_wake_real(unsigned int irq,unsigned int on)573 static int set_irq_wake_real(unsigned int irq, unsigned int on)
574 {
575 struct irq_desc *desc = irq_to_desc(irq);
576 int ret = -ENXIO;
577
578 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE)
579 return 0;
580
581 if (desc->irq_data.chip->irq_set_wake)
582 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
583
584 return ret;
585 }
586
587 /**
588 * irq_set_irq_wake - control irq power management wakeup
589 * @irq: interrupt to control
590 * @on: enable/disable power management wakeup
591 *
592 * Enable/disable power management wakeup mode, which is
593 * disabled by default. Enables and disables must match,
594 * just as they match for non-wakeup mode support.
595 *
596 * Wakeup mode lets this IRQ wake the system from sleep
597 * states like "suspend to RAM".
598 */
irq_set_irq_wake(unsigned int irq,unsigned int on)599 int irq_set_irq_wake(unsigned int irq, unsigned int on)
600 {
601 unsigned long flags;
602 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
603 int ret = 0;
604
605 if (!desc)
606 return -EINVAL;
607
608 /* wakeup-capable irqs can be shared between drivers that
609 * don't need to have the same sleep mode behaviors.
610 */
611 if (on) {
612 if (desc->wake_depth++ == 0) {
613 ret = set_irq_wake_real(irq, on);
614 if (ret)
615 desc->wake_depth = 0;
616 else
617 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
618 }
619 } else {
620 if (desc->wake_depth == 0) {
621 WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
622 } else if (--desc->wake_depth == 0) {
623 ret = set_irq_wake_real(irq, on);
624 if (ret)
625 desc->wake_depth = 1;
626 else
627 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
628 }
629 }
630 irq_put_desc_busunlock(desc, flags);
631 return ret;
632 }
633 EXPORT_SYMBOL(irq_set_irq_wake);
634
635 /*
636 * Internal function that tells the architecture code whether a
637 * particular irq has been exclusively allocated or is available
638 * for driver use.
639 */
can_request_irq(unsigned int irq,unsigned long irqflags)640 int can_request_irq(unsigned int irq, unsigned long irqflags)
641 {
642 unsigned long flags;
643 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
644 int canrequest = 0;
645
646 if (!desc)
647 return 0;
648
649 if (irq_settings_can_request(desc)) {
650 if (!desc->action ||
651 irqflags & desc->action->flags & IRQF_SHARED)
652 canrequest = 1;
653 }
654 irq_put_desc_unlock(desc, flags);
655 return canrequest;
656 }
657
__irq_set_trigger(struct irq_desc * desc,unsigned long flags)658 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
659 {
660 struct irq_chip *chip = desc->irq_data.chip;
661 int ret, unmask = 0;
662
663 if (!chip || !chip->irq_set_type) {
664 /*
665 * IRQF_TRIGGER_* but the PIC does not support multiple
666 * flow-types?
667 */
668 pr_debug("No set_type function for IRQ %d (%s)\n",
669 irq_desc_get_irq(desc),
670 chip ? (chip->name ? : "unknown") : "unknown");
671 return 0;
672 }
673
674 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
675 if (!irqd_irq_masked(&desc->irq_data))
676 mask_irq(desc);
677 if (!irqd_irq_disabled(&desc->irq_data))
678 unmask = 1;
679 }
680
681 /* Mask all flags except trigger mode */
682 flags &= IRQ_TYPE_SENSE_MASK;
683 ret = chip->irq_set_type(&desc->irq_data, flags);
684
685 switch (ret) {
686 case IRQ_SET_MASK_OK:
687 case IRQ_SET_MASK_OK_DONE:
688 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
689 irqd_set(&desc->irq_data, flags);
690
691 case IRQ_SET_MASK_OK_NOCOPY:
692 flags = irqd_get_trigger_type(&desc->irq_data);
693 irq_settings_set_trigger_mask(desc, flags);
694 irqd_clear(&desc->irq_data, IRQD_LEVEL);
695 irq_settings_clr_level(desc);
696 if (flags & IRQ_TYPE_LEVEL_MASK) {
697 irq_settings_set_level(desc);
698 irqd_set(&desc->irq_data, IRQD_LEVEL);
699 }
700
701 ret = 0;
702 break;
703 default:
704 pr_err("Setting trigger mode %lu for irq %u failed (%pF)\n",
705 flags, irq_desc_get_irq(desc), chip->irq_set_type);
706 }
707 if (unmask)
708 unmask_irq(desc);
709 return ret;
710 }
711
712 #ifdef CONFIG_HARDIRQS_SW_RESEND
irq_set_parent(int irq,int parent_irq)713 int irq_set_parent(int irq, int parent_irq)
714 {
715 unsigned long flags;
716 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
717
718 if (!desc)
719 return -EINVAL;
720
721 desc->parent_irq = parent_irq;
722
723 irq_put_desc_unlock(desc, flags);
724 return 0;
725 }
726 EXPORT_SYMBOL_GPL(irq_set_parent);
727 #endif
728
729 /*
730 * Default primary interrupt handler for threaded interrupts. Is
731 * assigned as primary handler when request_threaded_irq is called
732 * with handler == NULL. Useful for oneshot interrupts.
733 */
irq_default_primary_handler(int irq,void * dev_id)734 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
735 {
736 return IRQ_WAKE_THREAD;
737 }
738
739 /*
740 * Primary handler for nested threaded interrupts. Should never be
741 * called.
742 */
irq_nested_primary_handler(int irq,void * dev_id)743 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
744 {
745 WARN(1, "Primary handler called for nested irq %d\n", irq);
746 return IRQ_NONE;
747 }
748
irq_forced_secondary_handler(int irq,void * dev_id)749 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
750 {
751 WARN(1, "Secondary action handler called for irq %d\n", irq);
752 return IRQ_NONE;
753 }
754
irq_wait_for_interrupt(struct irqaction * action)755 static int irq_wait_for_interrupt(struct irqaction *action)
756 {
757 set_current_state(TASK_INTERRUPTIBLE);
758
759 while (!kthread_should_stop()) {
760
761 if (test_and_clear_bit(IRQTF_RUNTHREAD,
762 &action->thread_flags)) {
763 __set_current_state(TASK_RUNNING);
764 return 0;
765 }
766 schedule();
767 set_current_state(TASK_INTERRUPTIBLE);
768 }
769 __set_current_state(TASK_RUNNING);
770 return -1;
771 }
772
773 /*
774 * Oneshot interrupts keep the irq line masked until the threaded
775 * handler finished. unmask if the interrupt has not been disabled and
776 * is marked MASKED.
777 */
irq_finalize_oneshot(struct irq_desc * desc,struct irqaction * action)778 static void irq_finalize_oneshot(struct irq_desc *desc,
779 struct irqaction *action)
780 {
781 if (!(desc->istate & IRQS_ONESHOT) ||
782 action->handler == irq_forced_secondary_handler)
783 return;
784 again:
785 chip_bus_lock(desc);
786 raw_spin_lock_irq(&desc->lock);
787
788 /*
789 * Implausible though it may be we need to protect us against
790 * the following scenario:
791 *
792 * The thread is faster done than the hard interrupt handler
793 * on the other CPU. If we unmask the irq line then the
794 * interrupt can come in again and masks the line, leaves due
795 * to IRQS_INPROGRESS and the irq line is masked forever.
796 *
797 * This also serializes the state of shared oneshot handlers
798 * versus "desc->threads_onehsot |= action->thread_mask;" in
799 * irq_wake_thread(). See the comment there which explains the
800 * serialization.
801 */
802 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
803 raw_spin_unlock_irq(&desc->lock);
804 chip_bus_sync_unlock(desc);
805 cpu_relax();
806 goto again;
807 }
808
809 /*
810 * Now check again, whether the thread should run. Otherwise
811 * we would clear the threads_oneshot bit of this thread which
812 * was just set.
813 */
814 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
815 goto out_unlock;
816
817 desc->threads_oneshot &= ~action->thread_mask;
818
819 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
820 irqd_irq_masked(&desc->irq_data))
821 unmask_threaded_irq(desc);
822
823 out_unlock:
824 raw_spin_unlock_irq(&desc->lock);
825 chip_bus_sync_unlock(desc);
826 }
827
828 #ifdef CONFIG_SMP
829 /*
830 * Check whether we need to change the affinity of the interrupt thread.
831 */
832 static void
irq_thread_check_affinity(struct irq_desc * desc,struct irqaction * action)833 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
834 {
835 cpumask_var_t mask;
836 bool valid = true;
837
838 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
839 return;
840
841 /*
842 * In case we are out of memory we set IRQTF_AFFINITY again and
843 * try again next time
844 */
845 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
846 set_bit(IRQTF_AFFINITY, &action->thread_flags);
847 return;
848 }
849
850 raw_spin_lock_irq(&desc->lock);
851 /*
852 * This code is triggered unconditionally. Check the affinity
853 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
854 */
855 if (cpumask_available(desc->irq_common_data.affinity))
856 cpumask_copy(mask, desc->irq_common_data.affinity);
857 else
858 valid = false;
859 raw_spin_unlock_irq(&desc->lock);
860
861 if (valid)
862 set_cpus_allowed_ptr(current, mask);
863 free_cpumask_var(mask);
864 }
865 #else
866 static inline void
irq_thread_check_affinity(struct irq_desc * desc,struct irqaction * action)867 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
868 #endif
869
870 /*
871 * Interrupts which are not explicitely requested as threaded
872 * interrupts rely on the implicit bh/preempt disable of the hard irq
873 * context. So we need to disable bh here to avoid deadlocks and other
874 * side effects.
875 */
876 static irqreturn_t
irq_forced_thread_fn(struct irq_desc * desc,struct irqaction * action)877 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
878 {
879 irqreturn_t ret;
880
881 local_bh_disable();
882 ret = action->thread_fn(action->irq, action->dev_id);
883 if (ret == IRQ_HANDLED)
884 atomic_inc(&desc->threads_handled);
885
886 irq_finalize_oneshot(desc, action);
887 local_bh_enable();
888 return ret;
889 }
890
891 /*
892 * Interrupts explicitly requested as threaded interrupts want to be
893 * preemtible - many of them need to sleep and wait for slow busses to
894 * complete.
895 */
irq_thread_fn(struct irq_desc * desc,struct irqaction * action)896 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
897 struct irqaction *action)
898 {
899 irqreturn_t ret;
900
901 ret = action->thread_fn(action->irq, action->dev_id);
902 if (ret == IRQ_HANDLED)
903 atomic_inc(&desc->threads_handled);
904
905 irq_finalize_oneshot(desc, action);
906 return ret;
907 }
908
wake_threads_waitq(struct irq_desc * desc)909 static void wake_threads_waitq(struct irq_desc *desc)
910 {
911 if (atomic_dec_and_test(&desc->threads_active))
912 wake_up(&desc->wait_for_threads);
913 }
914
irq_thread_dtor(struct callback_head * unused)915 static void irq_thread_dtor(struct callback_head *unused)
916 {
917 struct task_struct *tsk = current;
918 struct irq_desc *desc;
919 struct irqaction *action;
920
921 if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
922 return;
923
924 action = kthread_data(tsk);
925
926 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
927 tsk->comm, tsk->pid, action->irq);
928
929
930 desc = irq_to_desc(action->irq);
931 /*
932 * If IRQTF_RUNTHREAD is set, we need to decrement
933 * desc->threads_active and wake possible waiters.
934 */
935 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
936 wake_threads_waitq(desc);
937
938 /* Prevent a stale desc->threads_oneshot */
939 irq_finalize_oneshot(desc, action);
940 }
941
irq_wake_secondary(struct irq_desc * desc,struct irqaction * action)942 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
943 {
944 struct irqaction *secondary = action->secondary;
945
946 if (WARN_ON_ONCE(!secondary))
947 return;
948
949 raw_spin_lock_irq(&desc->lock);
950 __irq_wake_thread(desc, secondary);
951 raw_spin_unlock_irq(&desc->lock);
952 }
953
954 /*
955 * Interrupt handler thread
956 */
irq_thread(void * data)957 static int irq_thread(void *data)
958 {
959 struct callback_head on_exit_work;
960 struct irqaction *action = data;
961 struct irq_desc *desc = irq_to_desc(action->irq);
962 irqreturn_t (*handler_fn)(struct irq_desc *desc,
963 struct irqaction *action);
964
965 if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
966 &action->thread_flags))
967 handler_fn = irq_forced_thread_fn;
968 else
969 handler_fn = irq_thread_fn;
970
971 init_task_work(&on_exit_work, irq_thread_dtor);
972 task_work_add(current, &on_exit_work, false);
973
974 irq_thread_check_affinity(desc, action);
975
976 while (!irq_wait_for_interrupt(action)) {
977 irqreturn_t action_ret;
978
979 irq_thread_check_affinity(desc, action);
980
981 action_ret = handler_fn(desc, action);
982 if (action_ret == IRQ_WAKE_THREAD)
983 irq_wake_secondary(desc, action);
984
985 wake_threads_waitq(desc);
986 }
987
988 /*
989 * This is the regular exit path. __free_irq() is stopping the
990 * thread via kthread_stop() after calling
991 * synchronize_irq(). So neither IRQTF_RUNTHREAD nor the
992 * oneshot mask bit can be set. We cannot verify that as we
993 * cannot touch the oneshot mask at this point anymore as
994 * __setup_irq() might have given out currents thread_mask
995 * again.
996 */
997 task_work_cancel(current, irq_thread_dtor);
998 return 0;
999 }
1000
1001 /**
1002 * irq_wake_thread - wake the irq thread for the action identified by dev_id
1003 * @irq: Interrupt line
1004 * @dev_id: Device identity for which the thread should be woken
1005 *
1006 */
irq_wake_thread(unsigned int irq,void * dev_id)1007 void irq_wake_thread(unsigned int irq, void *dev_id)
1008 {
1009 struct irq_desc *desc = irq_to_desc(irq);
1010 struct irqaction *action;
1011 unsigned long flags;
1012
1013 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1014 return;
1015
1016 raw_spin_lock_irqsave(&desc->lock, flags);
1017 for_each_action_of_desc(desc, action) {
1018 if (action->dev_id == dev_id) {
1019 if (action->thread)
1020 __irq_wake_thread(desc, action);
1021 break;
1022 }
1023 }
1024 raw_spin_unlock_irqrestore(&desc->lock, flags);
1025 }
1026 EXPORT_SYMBOL_GPL(irq_wake_thread);
1027
irq_setup_forced_threading(struct irqaction * new)1028 static int irq_setup_forced_threading(struct irqaction *new)
1029 {
1030 if (!force_irqthreads)
1031 return 0;
1032 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1033 return 0;
1034
1035 /*
1036 * No further action required for interrupts which are requested as
1037 * threaded interrupts already
1038 */
1039 if (new->handler == irq_default_primary_handler)
1040 return 0;
1041
1042 new->flags |= IRQF_ONESHOT;
1043
1044 /*
1045 * Handle the case where we have a real primary handler and a
1046 * thread handler. We force thread them as well by creating a
1047 * secondary action.
1048 */
1049 if (new->handler && new->thread_fn) {
1050 /* Allocate the secondary action */
1051 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1052 if (!new->secondary)
1053 return -ENOMEM;
1054 new->secondary->handler = irq_forced_secondary_handler;
1055 new->secondary->thread_fn = new->thread_fn;
1056 new->secondary->dev_id = new->dev_id;
1057 new->secondary->irq = new->irq;
1058 new->secondary->name = new->name;
1059 }
1060 /* Deal with the primary handler */
1061 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1062 new->thread_fn = new->handler;
1063 new->handler = irq_default_primary_handler;
1064 return 0;
1065 }
1066
irq_request_resources(struct irq_desc * desc)1067 static int irq_request_resources(struct irq_desc *desc)
1068 {
1069 struct irq_data *d = &desc->irq_data;
1070 struct irq_chip *c = d->chip;
1071
1072 return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1073 }
1074
irq_release_resources(struct irq_desc * desc)1075 static void irq_release_resources(struct irq_desc *desc)
1076 {
1077 struct irq_data *d = &desc->irq_data;
1078 struct irq_chip *c = d->chip;
1079
1080 if (c->irq_release_resources)
1081 c->irq_release_resources(d);
1082 }
1083
1084 static int
setup_irq_thread(struct irqaction * new,unsigned int irq,bool secondary)1085 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1086 {
1087 struct task_struct *t;
1088 struct sched_param param = {
1089 .sched_priority = MAX_USER_RT_PRIO/2,
1090 };
1091
1092 if (!secondary) {
1093 t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1094 new->name);
1095 } else {
1096 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1097 new->name);
1098 param.sched_priority -= 1;
1099 }
1100
1101 if (IS_ERR(t))
1102 return PTR_ERR(t);
1103
1104 sched_setscheduler_nocheck(t, SCHED_FIFO, ¶m);
1105
1106 /*
1107 * We keep the reference to the task struct even if
1108 * the thread dies to avoid that the interrupt code
1109 * references an already freed task_struct.
1110 */
1111 get_task_struct(t);
1112 new->thread = t;
1113 /*
1114 * Tell the thread to set its affinity. This is
1115 * important for shared interrupt handlers as we do
1116 * not invoke setup_affinity() for the secondary
1117 * handlers as everything is already set up. Even for
1118 * interrupts marked with IRQF_NO_BALANCE this is
1119 * correct as we want the thread to move to the cpu(s)
1120 * on which the requesting code placed the interrupt.
1121 */
1122 set_bit(IRQTF_AFFINITY, &new->thread_flags);
1123 return 0;
1124 }
1125
1126 /*
1127 * Internal function to register an irqaction - typically used to
1128 * allocate special interrupts that are part of the architecture.
1129 *
1130 * Locking rules:
1131 *
1132 * desc->request_mutex Provides serialization against a concurrent free_irq()
1133 * chip_bus_lock Provides serialization for slow bus operations
1134 * desc->lock Provides serialization against hard interrupts
1135 *
1136 * chip_bus_lock and desc->lock are sufficient for all other management and
1137 * interrupt related functions. desc->request_mutex solely serializes
1138 * request/free_irq().
1139 */
1140 static int
__setup_irq(unsigned int irq,struct irq_desc * desc,struct irqaction * new)1141 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1142 {
1143 struct irqaction *old, **old_ptr;
1144 unsigned long flags, thread_mask = 0;
1145 int ret, nested, shared = 0;
1146
1147 if (!desc)
1148 return -EINVAL;
1149
1150 if (desc->irq_data.chip == &no_irq_chip)
1151 return -ENOSYS;
1152 if (!try_module_get(desc->owner))
1153 return -ENODEV;
1154
1155 new->irq = irq;
1156
1157 /*
1158 * If the trigger type is not specified by the caller,
1159 * then use the default for this interrupt.
1160 */
1161 if (!(new->flags & IRQF_TRIGGER_MASK))
1162 new->flags |= irqd_get_trigger_type(&desc->irq_data);
1163
1164 /*
1165 * Check whether the interrupt nests into another interrupt
1166 * thread.
1167 */
1168 nested = irq_settings_is_nested_thread(desc);
1169 if (nested) {
1170 if (!new->thread_fn) {
1171 ret = -EINVAL;
1172 goto out_mput;
1173 }
1174 /*
1175 * Replace the primary handler which was provided from
1176 * the driver for non nested interrupt handling by the
1177 * dummy function which warns when called.
1178 */
1179 new->handler = irq_nested_primary_handler;
1180 } else {
1181 if (irq_settings_can_thread(desc)) {
1182 ret = irq_setup_forced_threading(new);
1183 if (ret)
1184 goto out_mput;
1185 }
1186 }
1187
1188 /*
1189 * Create a handler thread when a thread function is supplied
1190 * and the interrupt does not nest into another interrupt
1191 * thread.
1192 */
1193 if (new->thread_fn && !nested) {
1194 ret = setup_irq_thread(new, irq, false);
1195 if (ret)
1196 goto out_mput;
1197 if (new->secondary) {
1198 ret = setup_irq_thread(new->secondary, irq, true);
1199 if (ret)
1200 goto out_thread;
1201 }
1202 }
1203
1204 /*
1205 * Drivers are often written to work w/o knowledge about the
1206 * underlying irq chip implementation, so a request for a
1207 * threaded irq without a primary hard irq context handler
1208 * requires the ONESHOT flag to be set. Some irq chips like
1209 * MSI based interrupts are per se one shot safe. Check the
1210 * chip flags, so we can avoid the unmask dance at the end of
1211 * the threaded handler for those.
1212 */
1213 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1214 new->flags &= ~IRQF_ONESHOT;
1215
1216 /*
1217 * Protects against a concurrent __free_irq() call which might wait
1218 * for synchronize_irq() to complete without holding the optional
1219 * chip bus lock and desc->lock.
1220 */
1221 mutex_lock(&desc->request_mutex);
1222
1223 /*
1224 * Acquire bus lock as the irq_request_resources() callback below
1225 * might rely on the serialization or the magic power management
1226 * functions which are abusing the irq_bus_lock() callback,
1227 */
1228 chip_bus_lock(desc);
1229
1230 /* First installed action requests resources. */
1231 if (!desc->action) {
1232 ret = irq_request_resources(desc);
1233 if (ret) {
1234 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1235 new->name, irq, desc->irq_data.chip->name);
1236 goto out_bus_unlock;
1237 }
1238 }
1239
1240 /*
1241 * The following block of code has to be executed atomically
1242 * protected against a concurrent interrupt and any of the other
1243 * management calls which are not serialized via
1244 * desc->request_mutex or the optional bus lock.
1245 */
1246 raw_spin_lock_irqsave(&desc->lock, flags);
1247 old_ptr = &desc->action;
1248 old = *old_ptr;
1249 if (old) {
1250 /*
1251 * Can't share interrupts unless both agree to and are
1252 * the same type (level, edge, polarity). So both flag
1253 * fields must have IRQF_SHARED set and the bits which
1254 * set the trigger type must match. Also all must
1255 * agree on ONESHOT.
1256 */
1257 unsigned int oldtype;
1258
1259 /*
1260 * If nobody did set the configuration before, inherit
1261 * the one provided by the requester.
1262 */
1263 if (irqd_trigger_type_was_set(&desc->irq_data)) {
1264 oldtype = irqd_get_trigger_type(&desc->irq_data);
1265 } else {
1266 oldtype = new->flags & IRQF_TRIGGER_MASK;
1267 irqd_set_trigger_type(&desc->irq_data, oldtype);
1268 }
1269
1270 if (!((old->flags & new->flags) & IRQF_SHARED) ||
1271 (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1272 ((old->flags ^ new->flags) & IRQF_ONESHOT))
1273 goto mismatch;
1274
1275 /* All handlers must agree on per-cpuness */
1276 if ((old->flags & IRQF_PERCPU) !=
1277 (new->flags & IRQF_PERCPU))
1278 goto mismatch;
1279
1280 /* add new interrupt at end of irq queue */
1281 do {
1282 /*
1283 * Or all existing action->thread_mask bits,
1284 * so we can find the next zero bit for this
1285 * new action.
1286 */
1287 thread_mask |= old->thread_mask;
1288 old_ptr = &old->next;
1289 old = *old_ptr;
1290 } while (old);
1291 shared = 1;
1292 }
1293
1294 /*
1295 * Setup the thread mask for this irqaction for ONESHOT. For
1296 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1297 * conditional in irq_wake_thread().
1298 */
1299 if (new->flags & IRQF_ONESHOT) {
1300 /*
1301 * Unlikely to have 32 resp 64 irqs sharing one line,
1302 * but who knows.
1303 */
1304 if (thread_mask == ~0UL) {
1305 ret = -EBUSY;
1306 goto out_unlock;
1307 }
1308 /*
1309 * The thread_mask for the action is or'ed to
1310 * desc->thread_active to indicate that the
1311 * IRQF_ONESHOT thread handler has been woken, but not
1312 * yet finished. The bit is cleared when a thread
1313 * completes. When all threads of a shared interrupt
1314 * line have completed desc->threads_active becomes
1315 * zero and the interrupt line is unmasked. See
1316 * handle.c:irq_wake_thread() for further information.
1317 *
1318 * If no thread is woken by primary (hard irq context)
1319 * interrupt handlers, then desc->threads_active is
1320 * also checked for zero to unmask the irq line in the
1321 * affected hard irq flow handlers
1322 * (handle_[fasteoi|level]_irq).
1323 *
1324 * The new action gets the first zero bit of
1325 * thread_mask assigned. See the loop above which or's
1326 * all existing action->thread_mask bits.
1327 */
1328 new->thread_mask = 1 << ffz(thread_mask);
1329
1330 } else if (new->handler == irq_default_primary_handler &&
1331 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1332 /*
1333 * The interrupt was requested with handler = NULL, so
1334 * we use the default primary handler for it. But it
1335 * does not have the oneshot flag set. In combination
1336 * with level interrupts this is deadly, because the
1337 * default primary handler just wakes the thread, then
1338 * the irq lines is reenabled, but the device still
1339 * has the level irq asserted. Rinse and repeat....
1340 *
1341 * While this works for edge type interrupts, we play
1342 * it safe and reject unconditionally because we can't
1343 * say for sure which type this interrupt really
1344 * has. The type flags are unreliable as the
1345 * underlying chip implementation can override them.
1346 */
1347 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n",
1348 irq);
1349 ret = -EINVAL;
1350 goto out_unlock;
1351 }
1352
1353 if (!shared) {
1354 init_waitqueue_head(&desc->wait_for_threads);
1355
1356 /* Setup the type (level, edge polarity) if configured: */
1357 if (new->flags & IRQF_TRIGGER_MASK) {
1358 ret = __irq_set_trigger(desc,
1359 new->flags & IRQF_TRIGGER_MASK);
1360
1361 if (ret)
1362 goto out_unlock;
1363 }
1364
1365 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1366 IRQS_ONESHOT | IRQS_WAITING);
1367 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1368
1369 if (new->flags & IRQF_PERCPU) {
1370 irqd_set(&desc->irq_data, IRQD_PER_CPU);
1371 irq_settings_set_per_cpu(desc);
1372 }
1373
1374 if (new->flags & IRQF_ONESHOT)
1375 desc->istate |= IRQS_ONESHOT;
1376
1377 /* Exclude IRQ from balancing if requested */
1378 if (new->flags & IRQF_NOBALANCING) {
1379 irq_settings_set_no_balancing(desc);
1380 irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1381 }
1382
1383 if (irq_settings_can_autoenable(desc)) {
1384 irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1385 } else {
1386 /*
1387 * Shared interrupts do not go well with disabling
1388 * auto enable. The sharing interrupt might request
1389 * it while it's still disabled and then wait for
1390 * interrupts forever.
1391 */
1392 WARN_ON_ONCE(new->flags & IRQF_SHARED);
1393 /* Undo nested disables: */
1394 desc->depth = 1;
1395 }
1396
1397 } else if (new->flags & IRQF_TRIGGER_MASK) {
1398 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1399 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1400
1401 if (nmsk != omsk)
1402 /* hope the handler works with current trigger mode */
1403 pr_warn("irq %d uses trigger mode %u; requested %u\n",
1404 irq, omsk, nmsk);
1405 }
1406
1407 *old_ptr = new;
1408
1409 irq_pm_install_action(desc, new);
1410
1411 /* Reset broken irq detection when installing new handler */
1412 desc->irq_count = 0;
1413 desc->irqs_unhandled = 0;
1414
1415 /*
1416 * Check whether we disabled the irq via the spurious handler
1417 * before. Reenable it and give it another chance.
1418 */
1419 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1420 desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1421 __enable_irq(desc);
1422 }
1423
1424 raw_spin_unlock_irqrestore(&desc->lock, flags);
1425 chip_bus_sync_unlock(desc);
1426 mutex_unlock(&desc->request_mutex);
1427
1428 irq_setup_timings(desc, new);
1429
1430 /*
1431 * Strictly no need to wake it up, but hung_task complains
1432 * when no hard interrupt wakes the thread up.
1433 */
1434 if (new->thread)
1435 wake_up_process(new->thread);
1436 if (new->secondary)
1437 wake_up_process(new->secondary->thread);
1438
1439 register_irq_proc(irq, desc);
1440 irq_add_debugfs_entry(irq, desc);
1441 new->dir = NULL;
1442 register_handler_proc(irq, new);
1443 return 0;
1444
1445 mismatch:
1446 if (!(new->flags & IRQF_PROBE_SHARED)) {
1447 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1448 irq, new->flags, new->name, old->flags, old->name);
1449 #ifdef CONFIG_DEBUG_SHIRQ
1450 dump_stack();
1451 #endif
1452 }
1453 ret = -EBUSY;
1454
1455 out_unlock:
1456 raw_spin_unlock_irqrestore(&desc->lock, flags);
1457
1458 if (!desc->action)
1459 irq_release_resources(desc);
1460 out_bus_unlock:
1461 chip_bus_sync_unlock(desc);
1462 mutex_unlock(&desc->request_mutex);
1463
1464 out_thread:
1465 if (new->thread) {
1466 struct task_struct *t = new->thread;
1467
1468 new->thread = NULL;
1469 kthread_stop(t);
1470 put_task_struct(t);
1471 }
1472 if (new->secondary && new->secondary->thread) {
1473 struct task_struct *t = new->secondary->thread;
1474
1475 new->secondary->thread = NULL;
1476 kthread_stop(t);
1477 put_task_struct(t);
1478 }
1479 out_mput:
1480 module_put(desc->owner);
1481 return ret;
1482 }
1483
1484 /**
1485 * setup_irq - setup an interrupt
1486 * @irq: Interrupt line to setup
1487 * @act: irqaction for the interrupt
1488 *
1489 * Used to statically setup interrupts in the early boot process.
1490 */
setup_irq(unsigned int irq,struct irqaction * act)1491 int setup_irq(unsigned int irq, struct irqaction *act)
1492 {
1493 int retval;
1494 struct irq_desc *desc = irq_to_desc(irq);
1495
1496 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1497 return -EINVAL;
1498
1499 retval = irq_chip_pm_get(&desc->irq_data);
1500 if (retval < 0)
1501 return retval;
1502
1503 retval = __setup_irq(irq, desc, act);
1504
1505 if (retval)
1506 irq_chip_pm_put(&desc->irq_data);
1507
1508 return retval;
1509 }
1510 EXPORT_SYMBOL_GPL(setup_irq);
1511
1512 /*
1513 * Internal function to unregister an irqaction - used to free
1514 * regular and special interrupts that are part of the architecture.
1515 */
__free_irq(unsigned int irq,void * dev_id)1516 static struct irqaction *__free_irq(unsigned int irq, void *dev_id)
1517 {
1518 struct irq_desc *desc = irq_to_desc(irq);
1519 struct irqaction *action, **action_ptr;
1520 unsigned long flags;
1521
1522 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1523
1524 if (!desc)
1525 return NULL;
1526
1527 mutex_lock(&desc->request_mutex);
1528 chip_bus_lock(desc);
1529 raw_spin_lock_irqsave(&desc->lock, flags);
1530
1531 /*
1532 * There can be multiple actions per IRQ descriptor, find the right
1533 * one based on the dev_id:
1534 */
1535 action_ptr = &desc->action;
1536 for (;;) {
1537 action = *action_ptr;
1538
1539 if (!action) {
1540 WARN(1, "Trying to free already-free IRQ %d\n", irq);
1541 raw_spin_unlock_irqrestore(&desc->lock, flags);
1542 chip_bus_sync_unlock(desc);
1543 mutex_unlock(&desc->request_mutex);
1544 return NULL;
1545 }
1546
1547 if (action->dev_id == dev_id)
1548 break;
1549 action_ptr = &action->next;
1550 }
1551
1552 /* Found it - now remove it from the list of entries: */
1553 *action_ptr = action->next;
1554
1555 irq_pm_remove_action(desc, action);
1556
1557 /* If this was the last handler, shut down the IRQ line: */
1558 if (!desc->action) {
1559 irq_settings_clr_disable_unlazy(desc);
1560 irq_shutdown(desc);
1561 }
1562
1563 #ifdef CONFIG_SMP
1564 /* make sure affinity_hint is cleaned up */
1565 if (WARN_ON_ONCE(desc->affinity_hint))
1566 desc->affinity_hint = NULL;
1567 #endif
1568
1569 raw_spin_unlock_irqrestore(&desc->lock, flags);
1570 /*
1571 * Drop bus_lock here so the changes which were done in the chip
1572 * callbacks above are synced out to the irq chips which hang
1573 * behind a slow bus (I2C, SPI) before calling synchronize_irq().
1574 *
1575 * Aside of that the bus_lock can also be taken from the threaded
1576 * handler in irq_finalize_oneshot() which results in a deadlock
1577 * because synchronize_irq() would wait forever for the thread to
1578 * complete, which is blocked on the bus lock.
1579 *
1580 * The still held desc->request_mutex() protects against a
1581 * concurrent request_irq() of this irq so the release of resources
1582 * and timing data is properly serialized.
1583 */
1584 chip_bus_sync_unlock(desc);
1585
1586 unregister_handler_proc(irq, action);
1587
1588 /* Make sure it's not being used on another CPU: */
1589 synchronize_irq(irq);
1590
1591 #ifdef CONFIG_DEBUG_SHIRQ
1592 /*
1593 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1594 * event to happen even now it's being freed, so let's make sure that
1595 * is so by doing an extra call to the handler ....
1596 *
1597 * ( We do this after actually deregistering it, to make sure that a
1598 * 'real' IRQ doesn't run in * parallel with our fake. )
1599 */
1600 if (action->flags & IRQF_SHARED) {
1601 local_irq_save(flags);
1602 action->handler(irq, dev_id);
1603 local_irq_restore(flags);
1604 }
1605 #endif
1606
1607 if (action->thread) {
1608 kthread_stop(action->thread);
1609 put_task_struct(action->thread);
1610 if (action->secondary && action->secondary->thread) {
1611 kthread_stop(action->secondary->thread);
1612 put_task_struct(action->secondary->thread);
1613 }
1614 }
1615
1616 /* Last action releases resources */
1617 if (!desc->action) {
1618 /*
1619 * Reaquire bus lock as irq_release_resources() might
1620 * require it to deallocate resources over the slow bus.
1621 */
1622 chip_bus_lock(desc);
1623 irq_release_resources(desc);
1624 chip_bus_sync_unlock(desc);
1625 irq_remove_timings(desc);
1626 }
1627
1628 mutex_unlock(&desc->request_mutex);
1629
1630 irq_chip_pm_put(&desc->irq_data);
1631 module_put(desc->owner);
1632 kfree(action->secondary);
1633 return action;
1634 }
1635
1636 /**
1637 * remove_irq - free an interrupt
1638 * @irq: Interrupt line to free
1639 * @act: irqaction for the interrupt
1640 *
1641 * Used to remove interrupts statically setup by the early boot process.
1642 */
remove_irq(unsigned int irq,struct irqaction * act)1643 void remove_irq(unsigned int irq, struct irqaction *act)
1644 {
1645 struct irq_desc *desc = irq_to_desc(irq);
1646
1647 if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1648 __free_irq(irq, act->dev_id);
1649 }
1650 EXPORT_SYMBOL_GPL(remove_irq);
1651
1652 /**
1653 * free_irq - free an interrupt allocated with request_irq
1654 * @irq: Interrupt line to free
1655 * @dev_id: Device identity to free
1656 *
1657 * Remove an interrupt handler. The handler is removed and if the
1658 * interrupt line is no longer in use by any driver it is disabled.
1659 * On a shared IRQ the caller must ensure the interrupt is disabled
1660 * on the card it drives before calling this function. The function
1661 * does not return until any executing interrupts for this IRQ
1662 * have completed.
1663 *
1664 * This function must not be called from interrupt context.
1665 *
1666 * Returns the devname argument passed to request_irq.
1667 */
free_irq(unsigned int irq,void * dev_id)1668 const void *free_irq(unsigned int irq, void *dev_id)
1669 {
1670 struct irq_desc *desc = irq_to_desc(irq);
1671 struct irqaction *action;
1672 const char *devname;
1673
1674 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1675 return NULL;
1676
1677 #ifdef CONFIG_SMP
1678 if (WARN_ON(desc->affinity_notify))
1679 desc->affinity_notify = NULL;
1680 #endif
1681
1682 action = __free_irq(irq, dev_id);
1683
1684 if (!action)
1685 return NULL;
1686
1687 devname = action->name;
1688 kfree(action);
1689 return devname;
1690 }
1691 EXPORT_SYMBOL(free_irq);
1692
1693 /**
1694 * request_threaded_irq - allocate an interrupt line
1695 * @irq: Interrupt line to allocate
1696 * @handler: Function to be called when the IRQ occurs.
1697 * Primary handler for threaded interrupts
1698 * If NULL and thread_fn != NULL the default
1699 * primary handler is installed
1700 * @thread_fn: Function called from the irq handler thread
1701 * If NULL, no irq thread is created
1702 * @irqflags: Interrupt type flags
1703 * @devname: An ascii name for the claiming device
1704 * @dev_id: A cookie passed back to the handler function
1705 *
1706 * This call allocates interrupt resources and enables the
1707 * interrupt line and IRQ handling. From the point this
1708 * call is made your handler function may be invoked. Since
1709 * your handler function must clear any interrupt the board
1710 * raises, you must take care both to initialise your hardware
1711 * and to set up the interrupt handler in the right order.
1712 *
1713 * If you want to set up a threaded irq handler for your device
1714 * then you need to supply @handler and @thread_fn. @handler is
1715 * still called in hard interrupt context and has to check
1716 * whether the interrupt originates from the device. If yes it
1717 * needs to disable the interrupt on the device and return
1718 * IRQ_WAKE_THREAD which will wake up the handler thread and run
1719 * @thread_fn. This split handler design is necessary to support
1720 * shared interrupts.
1721 *
1722 * Dev_id must be globally unique. Normally the address of the
1723 * device data structure is used as the cookie. Since the handler
1724 * receives this value it makes sense to use it.
1725 *
1726 * If your interrupt is shared you must pass a non NULL dev_id
1727 * as this is required when freeing the interrupt.
1728 *
1729 * Flags:
1730 *
1731 * IRQF_SHARED Interrupt is shared
1732 * IRQF_TRIGGER_* Specify active edge(s) or level
1733 *
1734 */
request_threaded_irq(unsigned int irq,irq_handler_t handler,irq_handler_t thread_fn,unsigned long irqflags,const char * devname,void * dev_id)1735 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
1736 irq_handler_t thread_fn, unsigned long irqflags,
1737 const char *devname, void *dev_id)
1738 {
1739 struct irqaction *action;
1740 struct irq_desc *desc;
1741 int retval;
1742
1743 if (irq == IRQ_NOTCONNECTED)
1744 return -ENOTCONN;
1745
1746 /*
1747 * Sanity-check: shared interrupts must pass in a real dev-ID,
1748 * otherwise we'll have trouble later trying to figure out
1749 * which interrupt is which (messes up the interrupt freeing
1750 * logic etc).
1751 *
1752 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
1753 * it cannot be set along with IRQF_NO_SUSPEND.
1754 */
1755 if (((irqflags & IRQF_SHARED) && !dev_id) ||
1756 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
1757 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
1758 return -EINVAL;
1759
1760 desc = irq_to_desc(irq);
1761 if (!desc)
1762 return -EINVAL;
1763
1764 if (!irq_settings_can_request(desc) ||
1765 WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1766 return -EINVAL;
1767
1768 if (!handler) {
1769 if (!thread_fn)
1770 return -EINVAL;
1771 handler = irq_default_primary_handler;
1772 }
1773
1774 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1775 if (!action)
1776 return -ENOMEM;
1777
1778 action->handler = handler;
1779 action->thread_fn = thread_fn;
1780 action->flags = irqflags;
1781 action->name = devname;
1782 action->dev_id = dev_id;
1783
1784 retval = irq_chip_pm_get(&desc->irq_data);
1785 if (retval < 0) {
1786 kfree(action);
1787 return retval;
1788 }
1789
1790 retval = __setup_irq(irq, desc, action);
1791
1792 if (retval) {
1793 irq_chip_pm_put(&desc->irq_data);
1794 kfree(action->secondary);
1795 kfree(action);
1796 }
1797
1798 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
1799 if (!retval && (irqflags & IRQF_SHARED)) {
1800 /*
1801 * It's a shared IRQ -- the driver ought to be prepared for it
1802 * to happen immediately, so let's make sure....
1803 * We disable the irq to make sure that a 'real' IRQ doesn't
1804 * run in parallel with our fake.
1805 */
1806 unsigned long flags;
1807
1808 disable_irq(irq);
1809 local_irq_save(flags);
1810
1811 handler(irq, dev_id);
1812
1813 local_irq_restore(flags);
1814 enable_irq(irq);
1815 }
1816 #endif
1817 return retval;
1818 }
1819 EXPORT_SYMBOL(request_threaded_irq);
1820
1821 /**
1822 * request_any_context_irq - allocate an interrupt line
1823 * @irq: Interrupt line to allocate
1824 * @handler: Function to be called when the IRQ occurs.
1825 * Threaded handler for threaded interrupts.
1826 * @flags: Interrupt type flags
1827 * @name: An ascii name for the claiming device
1828 * @dev_id: A cookie passed back to the handler function
1829 *
1830 * This call allocates interrupt resources and enables the
1831 * interrupt line and IRQ handling. It selects either a
1832 * hardirq or threaded handling method depending on the
1833 * context.
1834 *
1835 * On failure, it returns a negative value. On success,
1836 * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
1837 */
request_any_context_irq(unsigned int irq,irq_handler_t handler,unsigned long flags,const char * name,void * dev_id)1838 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
1839 unsigned long flags, const char *name, void *dev_id)
1840 {
1841 struct irq_desc *desc;
1842 int ret;
1843
1844 if (irq == IRQ_NOTCONNECTED)
1845 return -ENOTCONN;
1846
1847 desc = irq_to_desc(irq);
1848 if (!desc)
1849 return -EINVAL;
1850
1851 if (irq_settings_is_nested_thread(desc)) {
1852 ret = request_threaded_irq(irq, NULL, handler,
1853 flags, name, dev_id);
1854 return !ret ? IRQC_IS_NESTED : ret;
1855 }
1856
1857 ret = request_irq(irq, handler, flags, name, dev_id);
1858 return !ret ? IRQC_IS_HARDIRQ : ret;
1859 }
1860 EXPORT_SYMBOL_GPL(request_any_context_irq);
1861
enable_percpu_irq(unsigned int irq,unsigned int type)1862 void enable_percpu_irq(unsigned int irq, unsigned int type)
1863 {
1864 unsigned int cpu = smp_processor_id();
1865 unsigned long flags;
1866 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1867
1868 if (!desc)
1869 return;
1870
1871 /*
1872 * If the trigger type is not specified by the caller, then
1873 * use the default for this interrupt.
1874 */
1875 type &= IRQ_TYPE_SENSE_MASK;
1876 if (type == IRQ_TYPE_NONE)
1877 type = irqd_get_trigger_type(&desc->irq_data);
1878
1879 if (type != IRQ_TYPE_NONE) {
1880 int ret;
1881
1882 ret = __irq_set_trigger(desc, type);
1883
1884 if (ret) {
1885 WARN(1, "failed to set type for IRQ%d\n", irq);
1886 goto out;
1887 }
1888 }
1889
1890 irq_percpu_enable(desc, cpu);
1891 out:
1892 irq_put_desc_unlock(desc, flags);
1893 }
1894 EXPORT_SYMBOL_GPL(enable_percpu_irq);
1895
1896 /**
1897 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
1898 * @irq: Linux irq number to check for
1899 *
1900 * Must be called from a non migratable context. Returns the enable
1901 * state of a per cpu interrupt on the current cpu.
1902 */
irq_percpu_is_enabled(unsigned int irq)1903 bool irq_percpu_is_enabled(unsigned int irq)
1904 {
1905 unsigned int cpu = smp_processor_id();
1906 struct irq_desc *desc;
1907 unsigned long flags;
1908 bool is_enabled;
1909
1910 desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1911 if (!desc)
1912 return false;
1913
1914 is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
1915 irq_put_desc_unlock(desc, flags);
1916
1917 return is_enabled;
1918 }
1919 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
1920
disable_percpu_irq(unsigned int irq)1921 void disable_percpu_irq(unsigned int irq)
1922 {
1923 unsigned int cpu = smp_processor_id();
1924 unsigned long flags;
1925 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1926
1927 if (!desc)
1928 return;
1929
1930 irq_percpu_disable(desc, cpu);
1931 irq_put_desc_unlock(desc, flags);
1932 }
1933 EXPORT_SYMBOL_GPL(disable_percpu_irq);
1934
1935 /*
1936 * Internal function to unregister a percpu irqaction.
1937 */
__free_percpu_irq(unsigned int irq,void __percpu * dev_id)1938 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
1939 {
1940 struct irq_desc *desc = irq_to_desc(irq);
1941 struct irqaction *action;
1942 unsigned long flags;
1943
1944 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1945
1946 if (!desc)
1947 return NULL;
1948
1949 raw_spin_lock_irqsave(&desc->lock, flags);
1950
1951 action = desc->action;
1952 if (!action || action->percpu_dev_id != dev_id) {
1953 WARN(1, "Trying to free already-free IRQ %d\n", irq);
1954 goto bad;
1955 }
1956
1957 if (!cpumask_empty(desc->percpu_enabled)) {
1958 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
1959 irq, cpumask_first(desc->percpu_enabled));
1960 goto bad;
1961 }
1962
1963 /* Found it - now remove it from the list of entries: */
1964 desc->action = NULL;
1965
1966 raw_spin_unlock_irqrestore(&desc->lock, flags);
1967
1968 unregister_handler_proc(irq, action);
1969
1970 irq_chip_pm_put(&desc->irq_data);
1971 module_put(desc->owner);
1972 return action;
1973
1974 bad:
1975 raw_spin_unlock_irqrestore(&desc->lock, flags);
1976 return NULL;
1977 }
1978
1979 /**
1980 * remove_percpu_irq - free a per-cpu interrupt
1981 * @irq: Interrupt line to free
1982 * @act: irqaction for the interrupt
1983 *
1984 * Used to remove interrupts statically setup by the early boot process.
1985 */
remove_percpu_irq(unsigned int irq,struct irqaction * act)1986 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
1987 {
1988 struct irq_desc *desc = irq_to_desc(irq);
1989
1990 if (desc && irq_settings_is_per_cpu_devid(desc))
1991 __free_percpu_irq(irq, act->percpu_dev_id);
1992 }
1993
1994 /**
1995 * free_percpu_irq - free an interrupt allocated with request_percpu_irq
1996 * @irq: Interrupt line to free
1997 * @dev_id: Device identity to free
1998 *
1999 * Remove a percpu interrupt handler. The handler is removed, but
2000 * the interrupt line is not disabled. This must be done on each
2001 * CPU before calling this function. The function does not return
2002 * until any executing interrupts for this IRQ have completed.
2003 *
2004 * This function must not be called from interrupt context.
2005 */
free_percpu_irq(unsigned int irq,void __percpu * dev_id)2006 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2007 {
2008 struct irq_desc *desc = irq_to_desc(irq);
2009
2010 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2011 return;
2012
2013 chip_bus_lock(desc);
2014 kfree(__free_percpu_irq(irq, dev_id));
2015 chip_bus_sync_unlock(desc);
2016 }
2017 EXPORT_SYMBOL_GPL(free_percpu_irq);
2018
2019 /**
2020 * setup_percpu_irq - setup a per-cpu interrupt
2021 * @irq: Interrupt line to setup
2022 * @act: irqaction for the interrupt
2023 *
2024 * Used to statically setup per-cpu interrupts in the early boot process.
2025 */
setup_percpu_irq(unsigned int irq,struct irqaction * act)2026 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2027 {
2028 struct irq_desc *desc = irq_to_desc(irq);
2029 int retval;
2030
2031 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2032 return -EINVAL;
2033
2034 retval = irq_chip_pm_get(&desc->irq_data);
2035 if (retval < 0)
2036 return retval;
2037
2038 retval = __setup_irq(irq, desc, act);
2039
2040 if (retval)
2041 irq_chip_pm_put(&desc->irq_data);
2042
2043 return retval;
2044 }
2045
2046 /**
2047 * __request_percpu_irq - allocate a percpu interrupt line
2048 * @irq: Interrupt line to allocate
2049 * @handler: Function to be called when the IRQ occurs.
2050 * @flags: Interrupt type flags (IRQF_TIMER only)
2051 * @devname: An ascii name for the claiming device
2052 * @dev_id: A percpu cookie passed back to the handler function
2053 *
2054 * This call allocates interrupt resources and enables the
2055 * interrupt on the local CPU. If the interrupt is supposed to be
2056 * enabled on other CPUs, it has to be done on each CPU using
2057 * enable_percpu_irq().
2058 *
2059 * Dev_id must be globally unique. It is a per-cpu variable, and
2060 * the handler gets called with the interrupted CPU's instance of
2061 * that variable.
2062 */
__request_percpu_irq(unsigned int irq,irq_handler_t handler,unsigned long flags,const char * devname,void __percpu * dev_id)2063 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2064 unsigned long flags, const char *devname,
2065 void __percpu *dev_id)
2066 {
2067 struct irqaction *action;
2068 struct irq_desc *desc;
2069 int retval;
2070
2071 if (!dev_id)
2072 return -EINVAL;
2073
2074 desc = irq_to_desc(irq);
2075 if (!desc || !irq_settings_can_request(desc) ||
2076 !irq_settings_is_per_cpu_devid(desc))
2077 return -EINVAL;
2078
2079 if (flags && flags != IRQF_TIMER)
2080 return -EINVAL;
2081
2082 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2083 if (!action)
2084 return -ENOMEM;
2085
2086 action->handler = handler;
2087 action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2088 action->name = devname;
2089 action->percpu_dev_id = dev_id;
2090
2091 retval = irq_chip_pm_get(&desc->irq_data);
2092 if (retval < 0) {
2093 kfree(action);
2094 return retval;
2095 }
2096
2097 retval = __setup_irq(irq, desc, action);
2098
2099 if (retval) {
2100 irq_chip_pm_put(&desc->irq_data);
2101 kfree(action);
2102 }
2103
2104 return retval;
2105 }
2106 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2107
2108 /**
2109 * irq_get_irqchip_state - returns the irqchip state of a interrupt.
2110 * @irq: Interrupt line that is forwarded to a VM
2111 * @which: One of IRQCHIP_STATE_* the caller wants to know about
2112 * @state: a pointer to a boolean where the state is to be storeed
2113 *
2114 * This call snapshots the internal irqchip state of an
2115 * interrupt, returning into @state the bit corresponding to
2116 * stage @which
2117 *
2118 * This function should be called with preemption disabled if the
2119 * interrupt controller has per-cpu registers.
2120 */
irq_get_irqchip_state(unsigned int irq,enum irqchip_irq_state which,bool * state)2121 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2122 bool *state)
2123 {
2124 struct irq_desc *desc;
2125 struct irq_data *data;
2126 struct irq_chip *chip;
2127 unsigned long flags;
2128 int err = -EINVAL;
2129
2130 desc = irq_get_desc_buslock(irq, &flags, 0);
2131 if (!desc)
2132 return err;
2133
2134 data = irq_desc_get_irq_data(desc);
2135
2136 do {
2137 chip = irq_data_get_irq_chip(data);
2138 if (chip->irq_get_irqchip_state)
2139 break;
2140 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2141 data = data->parent_data;
2142 #else
2143 data = NULL;
2144 #endif
2145 } while (data);
2146
2147 if (data)
2148 err = chip->irq_get_irqchip_state(data, which, state);
2149
2150 irq_put_desc_busunlock(desc, flags);
2151 return err;
2152 }
2153 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2154
2155 /**
2156 * irq_set_irqchip_state - set the state of a forwarded interrupt.
2157 * @irq: Interrupt line that is forwarded to a VM
2158 * @which: State to be restored (one of IRQCHIP_STATE_*)
2159 * @val: Value corresponding to @which
2160 *
2161 * This call sets the internal irqchip state of an interrupt,
2162 * depending on the value of @which.
2163 *
2164 * This function should be called with preemption disabled if the
2165 * interrupt controller has per-cpu registers.
2166 */
irq_set_irqchip_state(unsigned int irq,enum irqchip_irq_state which,bool val)2167 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2168 bool val)
2169 {
2170 struct irq_desc *desc;
2171 struct irq_data *data;
2172 struct irq_chip *chip;
2173 unsigned long flags;
2174 int err = -EINVAL;
2175
2176 desc = irq_get_desc_buslock(irq, &flags, 0);
2177 if (!desc)
2178 return err;
2179
2180 data = irq_desc_get_irq_data(desc);
2181
2182 do {
2183 chip = irq_data_get_irq_chip(data);
2184 if (chip->irq_set_irqchip_state)
2185 break;
2186 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2187 data = data->parent_data;
2188 #else
2189 data = NULL;
2190 #endif
2191 } while (data);
2192
2193 if (data)
2194 err = chip->irq_set_irqchip_state(data, which, val);
2195
2196 irq_put_desc_busunlock(desc, flags);
2197 return err;
2198 }
2199 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2200