1 /*
2 * Copyright(c) 2015 - 2017 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47
48 /*
49 * This file contains all of the code that is specific to the HFI chip
50 */
51
52 #include <linux/pci.h>
53 #include <linux/delay.h>
54 #include <linux/interrupt.h>
55 #include <linux/module.h>
56
57 #include "hfi.h"
58 #include "trace.h"
59 #include "mad.h"
60 #include "pio.h"
61 #include "sdma.h"
62 #include "eprom.h"
63 #include "efivar.h"
64 #include "platform.h"
65 #include "aspm.h"
66 #include "affinity.h"
67 #include "debugfs.h"
68
69 #define NUM_IB_PORTS 1
70
71 uint kdeth_qp;
72 module_param_named(kdeth_qp, kdeth_qp, uint, S_IRUGO);
73 MODULE_PARM_DESC(kdeth_qp, "Set the KDETH queue pair prefix");
74
75 uint num_vls = HFI1_MAX_VLS_SUPPORTED;
76 module_param(num_vls, uint, S_IRUGO);
77 MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)");
78
79 /*
80 * Default time to aggregate two 10K packets from the idle state
81 * (timer not running). The timer starts at the end of the first packet,
82 * so only the time for one 10K packet and header plus a bit extra is needed.
83 * 10 * 1024 + 64 header byte = 10304 byte
84 * 10304 byte / 12.5 GB/s = 824.32ns
85 */
86 uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */
87 module_param(rcv_intr_timeout, uint, S_IRUGO);
88 MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns");
89
90 uint rcv_intr_count = 16; /* same as qib */
91 module_param(rcv_intr_count, uint, S_IRUGO);
92 MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count");
93
94 ushort link_crc_mask = SUPPORTED_CRCS;
95 module_param(link_crc_mask, ushort, S_IRUGO);
96 MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link");
97
98 uint loopback;
99 module_param_named(loopback, loopback, uint, S_IRUGO);
100 MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable");
101
102 /* Other driver tunables */
103 uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/
104 static ushort crc_14b_sideband = 1;
105 static uint use_flr = 1;
106 uint quick_linkup; /* skip LNI */
107
108 struct flag_table {
109 u64 flag; /* the flag */
110 char *str; /* description string */
111 u16 extra; /* extra information */
112 u16 unused0;
113 u32 unused1;
114 };
115
116 /* str must be a string constant */
117 #define FLAG_ENTRY(str, extra, flag) {flag, str, extra}
118 #define FLAG_ENTRY0(str, flag) {flag, str, 0}
119
120 /* Send Error Consequences */
121 #define SEC_WRITE_DROPPED 0x1
122 #define SEC_PACKET_DROPPED 0x2
123 #define SEC_SC_HALTED 0x4 /* per-context only */
124 #define SEC_SPC_FREEZE 0x8 /* per-HFI only */
125
126 #define DEFAULT_KRCVQS 2
127 #define MIN_KERNEL_KCTXTS 2
128 #define FIRST_KERNEL_KCTXT 1
129
130 /*
131 * RSM instance allocation
132 * 0 - Verbs
133 * 1 - User Fecn Handling
134 * 2 - Vnic
135 */
136 #define RSM_INS_VERBS 0
137 #define RSM_INS_FECN 1
138 #define RSM_INS_VNIC 2
139
140 /* Bit offset into the GUID which carries HFI id information */
141 #define GUID_HFI_INDEX_SHIFT 39
142
143 /* extract the emulation revision */
144 #define emulator_rev(dd) ((dd)->irev >> 8)
145 /* parallel and serial emulation versions are 3 and 4 respectively */
146 #define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3)
147 #define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4)
148
149 /* RSM fields for Verbs */
150 /* packet type */
151 #define IB_PACKET_TYPE 2ull
152 #define QW_SHIFT 6ull
153 /* QPN[7..1] */
154 #define QPN_WIDTH 7ull
155
156 /* LRH.BTH: QW 0, OFFSET 48 - for match */
157 #define LRH_BTH_QW 0ull
158 #define LRH_BTH_BIT_OFFSET 48ull
159 #define LRH_BTH_OFFSET(off) ((LRH_BTH_QW << QW_SHIFT) | (off))
160 #define LRH_BTH_MATCH_OFFSET LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET)
161 #define LRH_BTH_SELECT
162 #define LRH_BTH_MASK 3ull
163 #define LRH_BTH_VALUE 2ull
164
165 /* LRH.SC[3..0] QW 0, OFFSET 56 - for match */
166 #define LRH_SC_QW 0ull
167 #define LRH_SC_BIT_OFFSET 56ull
168 #define LRH_SC_OFFSET(off) ((LRH_SC_QW << QW_SHIFT) | (off))
169 #define LRH_SC_MATCH_OFFSET LRH_SC_OFFSET(LRH_SC_BIT_OFFSET)
170 #define LRH_SC_MASK 128ull
171 #define LRH_SC_VALUE 0ull
172
173 /* SC[n..0] QW 0, OFFSET 60 - for select */
174 #define LRH_SC_SELECT_OFFSET ((LRH_SC_QW << QW_SHIFT) | (60ull))
175
176 /* QPN[m+n:1] QW 1, OFFSET 1 */
177 #define QPN_SELECT_OFFSET ((1ull << QW_SHIFT) | (1ull))
178
179 /* RSM fields for Vnic */
180 /* L2_TYPE: QW 0, OFFSET 61 - for match */
181 #define L2_TYPE_QW 0ull
182 #define L2_TYPE_BIT_OFFSET 61ull
183 #define L2_TYPE_OFFSET(off) ((L2_TYPE_QW << QW_SHIFT) | (off))
184 #define L2_TYPE_MATCH_OFFSET L2_TYPE_OFFSET(L2_TYPE_BIT_OFFSET)
185 #define L2_TYPE_MASK 3ull
186 #define L2_16B_VALUE 2ull
187
188 /* L4_TYPE QW 1, OFFSET 0 - for match */
189 #define L4_TYPE_QW 1ull
190 #define L4_TYPE_BIT_OFFSET 0ull
191 #define L4_TYPE_OFFSET(off) ((L4_TYPE_QW << QW_SHIFT) | (off))
192 #define L4_TYPE_MATCH_OFFSET L4_TYPE_OFFSET(L4_TYPE_BIT_OFFSET)
193 #define L4_16B_TYPE_MASK 0xFFull
194 #define L4_16B_ETH_VALUE 0x78ull
195
196 /* 16B VESWID - for select */
197 #define L4_16B_HDR_VESWID_OFFSET ((2 << QW_SHIFT) | (16ull))
198 /* 16B ENTROPY - for select */
199 #define L2_16B_ENTROPY_OFFSET ((1 << QW_SHIFT) | (32ull))
200
201 /* defines to build power on SC2VL table */
202 #define SC2VL_VAL( \
203 num, \
204 sc0, sc0val, \
205 sc1, sc1val, \
206 sc2, sc2val, \
207 sc3, sc3val, \
208 sc4, sc4val, \
209 sc5, sc5val, \
210 sc6, sc6val, \
211 sc7, sc7val) \
212 ( \
213 ((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \
214 ((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \
215 ((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \
216 ((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \
217 ((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \
218 ((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \
219 ((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \
220 ((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT) \
221 )
222
223 #define DC_SC_VL_VAL( \
224 range, \
225 e0, e0val, \
226 e1, e1val, \
227 e2, e2val, \
228 e3, e3val, \
229 e4, e4val, \
230 e5, e5val, \
231 e6, e6val, \
232 e7, e7val, \
233 e8, e8val, \
234 e9, e9val, \
235 e10, e10val, \
236 e11, e11val, \
237 e12, e12val, \
238 e13, e13val, \
239 e14, e14val, \
240 e15, e15val) \
241 ( \
242 ((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \
243 ((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \
244 ((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \
245 ((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \
246 ((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \
247 ((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \
248 ((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \
249 ((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \
250 ((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \
251 ((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \
252 ((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \
253 ((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \
254 ((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \
255 ((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \
256 ((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \
257 ((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \
258 )
259
260 /* all CceStatus sub-block freeze bits */
261 #define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \
262 | CCE_STATUS_RXE_FROZE_SMASK \
263 | CCE_STATUS_TXE_FROZE_SMASK \
264 | CCE_STATUS_TXE_PIO_FROZE_SMASK)
265 /* all CceStatus sub-block TXE pause bits */
266 #define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \
267 | CCE_STATUS_TXE_PAUSED_SMASK \
268 | CCE_STATUS_SDMA_PAUSED_SMASK)
269 /* all CceStatus sub-block RXE pause bits */
270 #define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK
271
272 #define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL
273 #define CNTR_32BIT_MAX 0x00000000FFFFFFFF
274
275 /*
276 * CCE Error flags.
277 */
278 static struct flag_table cce_err_status_flags[] = {
279 /* 0*/ FLAG_ENTRY0("CceCsrParityErr",
280 CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK),
281 /* 1*/ FLAG_ENTRY0("CceCsrReadBadAddrErr",
282 CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK),
283 /* 2*/ FLAG_ENTRY0("CceCsrWriteBadAddrErr",
284 CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK),
285 /* 3*/ FLAG_ENTRY0("CceTrgtAsyncFifoParityErr",
286 CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK),
287 /* 4*/ FLAG_ENTRY0("CceTrgtAccessErr",
288 CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK),
289 /* 5*/ FLAG_ENTRY0("CceRspdDataParityErr",
290 CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK),
291 /* 6*/ FLAG_ENTRY0("CceCli0AsyncFifoParityErr",
292 CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK),
293 /* 7*/ FLAG_ENTRY0("CceCsrCfgBusParityErr",
294 CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK),
295 /* 8*/ FLAG_ENTRY0("CceCli2AsyncFifoParityErr",
296 CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK),
297 /* 9*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
298 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK),
299 /*10*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
300 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK),
301 /*11*/ FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError",
302 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK),
303 /*12*/ FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError",
304 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK),
305 /*13*/ FLAG_ENTRY0("PcicRetryMemCorErr",
306 CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK),
307 /*14*/ FLAG_ENTRY0("PcicRetryMemCorErr",
308 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK),
309 /*15*/ FLAG_ENTRY0("PcicPostHdQCorErr",
310 CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK),
311 /*16*/ FLAG_ENTRY0("PcicPostHdQCorErr",
312 CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK),
313 /*17*/ FLAG_ENTRY0("PcicPostHdQCorErr",
314 CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK),
315 /*18*/ FLAG_ENTRY0("PcicCplDatQCorErr",
316 CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK),
317 /*19*/ FLAG_ENTRY0("PcicNPostHQParityErr",
318 CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK),
319 /*20*/ FLAG_ENTRY0("PcicNPostDatQParityErr",
320 CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK),
321 /*21*/ FLAG_ENTRY0("PcicRetryMemUncErr",
322 CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK),
323 /*22*/ FLAG_ENTRY0("PcicRetrySotMemUncErr",
324 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK),
325 /*23*/ FLAG_ENTRY0("PcicPostHdQUncErr",
326 CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK),
327 /*24*/ FLAG_ENTRY0("PcicPostDatQUncErr",
328 CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK),
329 /*25*/ FLAG_ENTRY0("PcicCplHdQUncErr",
330 CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK),
331 /*26*/ FLAG_ENTRY0("PcicCplDatQUncErr",
332 CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK),
333 /*27*/ FLAG_ENTRY0("PcicTransmitFrontParityErr",
334 CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK),
335 /*28*/ FLAG_ENTRY0("PcicTransmitBackParityErr",
336 CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK),
337 /*29*/ FLAG_ENTRY0("PcicReceiveParityErr",
338 CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK),
339 /*30*/ FLAG_ENTRY0("CceTrgtCplTimeoutErr",
340 CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK),
341 /*31*/ FLAG_ENTRY0("LATriggered",
342 CCE_ERR_STATUS_LA_TRIGGERED_SMASK),
343 /*32*/ FLAG_ENTRY0("CceSegReadBadAddrErr",
344 CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK),
345 /*33*/ FLAG_ENTRY0("CceSegWriteBadAddrErr",
346 CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK),
347 /*34*/ FLAG_ENTRY0("CceRcplAsyncFifoParityErr",
348 CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK),
349 /*35*/ FLAG_ENTRY0("CceRxdmaConvFifoParityErr",
350 CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK),
351 /*36*/ FLAG_ENTRY0("CceMsixTableCorErr",
352 CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK),
353 /*37*/ FLAG_ENTRY0("CceMsixTableUncErr",
354 CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK),
355 /*38*/ FLAG_ENTRY0("CceIntMapCorErr",
356 CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK),
357 /*39*/ FLAG_ENTRY0("CceIntMapUncErr",
358 CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK),
359 /*40*/ FLAG_ENTRY0("CceMsixCsrParityErr",
360 CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK),
361 /*41-63 reserved*/
362 };
363
364 /*
365 * Misc Error flags
366 */
367 #define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK
368 static struct flag_table misc_err_status_flags[] = {
369 /* 0*/ FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)),
370 /* 1*/ FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)),
371 /* 2*/ FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)),
372 /* 3*/ FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)),
373 /* 4*/ FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)),
374 /* 5*/ FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)),
375 /* 6*/ FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)),
376 /* 7*/ FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)),
377 /* 8*/ FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)),
378 /* 9*/ FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)),
379 /*10*/ FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)),
380 /*11*/ FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)),
381 /*12*/ FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL))
382 };
383
384 /*
385 * TXE PIO Error flags and consequences
386 */
387 static struct flag_table pio_err_status_flags[] = {
388 /* 0*/ FLAG_ENTRY("PioWriteBadCtxt",
389 SEC_WRITE_DROPPED,
390 SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK),
391 /* 1*/ FLAG_ENTRY("PioWriteAddrParity",
392 SEC_SPC_FREEZE,
393 SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK),
394 /* 2*/ FLAG_ENTRY("PioCsrParity",
395 SEC_SPC_FREEZE,
396 SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK),
397 /* 3*/ FLAG_ENTRY("PioSbMemFifo0",
398 SEC_SPC_FREEZE,
399 SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK),
400 /* 4*/ FLAG_ENTRY("PioSbMemFifo1",
401 SEC_SPC_FREEZE,
402 SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK),
403 /* 5*/ FLAG_ENTRY("PioPccFifoParity",
404 SEC_SPC_FREEZE,
405 SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK),
406 /* 6*/ FLAG_ENTRY("PioPecFifoParity",
407 SEC_SPC_FREEZE,
408 SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK),
409 /* 7*/ FLAG_ENTRY("PioSbrdctlCrrelParity",
410 SEC_SPC_FREEZE,
411 SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK),
412 /* 8*/ FLAG_ENTRY("PioSbrdctrlCrrelFifoParity",
413 SEC_SPC_FREEZE,
414 SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK),
415 /* 9*/ FLAG_ENTRY("PioPktEvictFifoParityErr",
416 SEC_SPC_FREEZE,
417 SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK),
418 /*10*/ FLAG_ENTRY("PioSmPktResetParity",
419 SEC_SPC_FREEZE,
420 SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK),
421 /*11*/ FLAG_ENTRY("PioVlLenMemBank0Unc",
422 SEC_SPC_FREEZE,
423 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK),
424 /*12*/ FLAG_ENTRY("PioVlLenMemBank1Unc",
425 SEC_SPC_FREEZE,
426 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK),
427 /*13*/ FLAG_ENTRY("PioVlLenMemBank0Cor",
428 0,
429 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK),
430 /*14*/ FLAG_ENTRY("PioVlLenMemBank1Cor",
431 0,
432 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK),
433 /*15*/ FLAG_ENTRY("PioCreditRetFifoParity",
434 SEC_SPC_FREEZE,
435 SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK),
436 /*16*/ FLAG_ENTRY("PioPpmcPblFifo",
437 SEC_SPC_FREEZE,
438 SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK),
439 /*17*/ FLAG_ENTRY("PioInitSmIn",
440 0,
441 SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK),
442 /*18*/ FLAG_ENTRY("PioPktEvictSmOrArbSm",
443 SEC_SPC_FREEZE,
444 SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK),
445 /*19*/ FLAG_ENTRY("PioHostAddrMemUnc",
446 SEC_SPC_FREEZE,
447 SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK),
448 /*20*/ FLAG_ENTRY("PioHostAddrMemCor",
449 0,
450 SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK),
451 /*21*/ FLAG_ENTRY("PioWriteDataParity",
452 SEC_SPC_FREEZE,
453 SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK),
454 /*22*/ FLAG_ENTRY("PioStateMachine",
455 SEC_SPC_FREEZE,
456 SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK),
457 /*23*/ FLAG_ENTRY("PioWriteQwValidParity",
458 SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
459 SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK),
460 /*24*/ FLAG_ENTRY("PioBlockQwCountParity",
461 SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
462 SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK),
463 /*25*/ FLAG_ENTRY("PioVlfVlLenParity",
464 SEC_SPC_FREEZE,
465 SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK),
466 /*26*/ FLAG_ENTRY("PioVlfSopParity",
467 SEC_SPC_FREEZE,
468 SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK),
469 /*27*/ FLAG_ENTRY("PioVlFifoParity",
470 SEC_SPC_FREEZE,
471 SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK),
472 /*28*/ FLAG_ENTRY("PioPpmcBqcMemParity",
473 SEC_SPC_FREEZE,
474 SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK),
475 /*29*/ FLAG_ENTRY("PioPpmcSopLen",
476 SEC_SPC_FREEZE,
477 SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK),
478 /*30-31 reserved*/
479 /*32*/ FLAG_ENTRY("PioCurrentFreeCntParity",
480 SEC_SPC_FREEZE,
481 SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK),
482 /*33*/ FLAG_ENTRY("PioLastReturnedCntParity",
483 SEC_SPC_FREEZE,
484 SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK),
485 /*34*/ FLAG_ENTRY("PioPccSopHeadParity",
486 SEC_SPC_FREEZE,
487 SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK),
488 /*35*/ FLAG_ENTRY("PioPecSopHeadParityErr",
489 SEC_SPC_FREEZE,
490 SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK),
491 /*36-63 reserved*/
492 };
493
494 /* TXE PIO errors that cause an SPC freeze */
495 #define ALL_PIO_FREEZE_ERR \
496 (SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \
497 | SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \
498 | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \
499 | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \
500 | SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \
501 | SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \
502 | SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \
503 | SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \
504 | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \
505 | SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \
506 | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \
507 | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \
508 | SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \
509 | SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \
510 | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \
511 | SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \
512 | SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \
513 | SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \
514 | SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \
515 | SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \
516 | SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \
517 | SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \
518 | SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \
519 | SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \
520 | SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \
521 | SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \
522 | SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \
523 | SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \
524 | SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK)
525
526 /*
527 * TXE SDMA Error flags
528 */
529 static struct flag_table sdma_err_status_flags[] = {
530 /* 0*/ FLAG_ENTRY0("SDmaRpyTagErr",
531 SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK),
532 /* 1*/ FLAG_ENTRY0("SDmaCsrParityErr",
533 SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK),
534 /* 2*/ FLAG_ENTRY0("SDmaPcieReqTrackingUncErr",
535 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK),
536 /* 3*/ FLAG_ENTRY0("SDmaPcieReqTrackingCorErr",
537 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK),
538 /*04-63 reserved*/
539 };
540
541 /* TXE SDMA errors that cause an SPC freeze */
542 #define ALL_SDMA_FREEZE_ERR \
543 (SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \
544 | SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \
545 | SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK)
546
547 /* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */
548 #define PORT_DISCARD_EGRESS_ERRS \
549 (SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \
550 | SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \
551 | SEND_EGRESS_ERR_INFO_VL_ERR_SMASK)
552
553 /*
554 * TXE Egress Error flags
555 */
556 #define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK
557 static struct flag_table egress_err_status_flags[] = {
558 /* 0*/ FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)),
559 /* 1*/ FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)),
560 /* 2 reserved */
561 /* 3*/ FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr",
562 SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)),
563 /* 4*/ FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)),
564 /* 5*/ FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)),
565 /* 6 reserved */
566 /* 7*/ FLAG_ENTRY0("TxPioLaunchIntfParityErr",
567 SEES(TX_PIO_LAUNCH_INTF_PARITY)),
568 /* 8*/ FLAG_ENTRY0("TxSdmaLaunchIntfParityErr",
569 SEES(TX_SDMA_LAUNCH_INTF_PARITY)),
570 /* 9-10 reserved */
571 /*11*/ FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr",
572 SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)),
573 /*12*/ FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)),
574 /*13*/ FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)),
575 /*14*/ FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)),
576 /*15*/ FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)),
577 /*16*/ FLAG_ENTRY0("TxSdma0DisallowedPacketErr",
578 SEES(TX_SDMA0_DISALLOWED_PACKET)),
579 /*17*/ FLAG_ENTRY0("TxSdma1DisallowedPacketErr",
580 SEES(TX_SDMA1_DISALLOWED_PACKET)),
581 /*18*/ FLAG_ENTRY0("TxSdma2DisallowedPacketErr",
582 SEES(TX_SDMA2_DISALLOWED_PACKET)),
583 /*19*/ FLAG_ENTRY0("TxSdma3DisallowedPacketErr",
584 SEES(TX_SDMA3_DISALLOWED_PACKET)),
585 /*20*/ FLAG_ENTRY0("TxSdma4DisallowedPacketErr",
586 SEES(TX_SDMA4_DISALLOWED_PACKET)),
587 /*21*/ FLAG_ENTRY0("TxSdma5DisallowedPacketErr",
588 SEES(TX_SDMA5_DISALLOWED_PACKET)),
589 /*22*/ FLAG_ENTRY0("TxSdma6DisallowedPacketErr",
590 SEES(TX_SDMA6_DISALLOWED_PACKET)),
591 /*23*/ FLAG_ENTRY0("TxSdma7DisallowedPacketErr",
592 SEES(TX_SDMA7_DISALLOWED_PACKET)),
593 /*24*/ FLAG_ENTRY0("TxSdma8DisallowedPacketErr",
594 SEES(TX_SDMA8_DISALLOWED_PACKET)),
595 /*25*/ FLAG_ENTRY0("TxSdma9DisallowedPacketErr",
596 SEES(TX_SDMA9_DISALLOWED_PACKET)),
597 /*26*/ FLAG_ENTRY0("TxSdma10DisallowedPacketErr",
598 SEES(TX_SDMA10_DISALLOWED_PACKET)),
599 /*27*/ FLAG_ENTRY0("TxSdma11DisallowedPacketErr",
600 SEES(TX_SDMA11_DISALLOWED_PACKET)),
601 /*28*/ FLAG_ENTRY0("TxSdma12DisallowedPacketErr",
602 SEES(TX_SDMA12_DISALLOWED_PACKET)),
603 /*29*/ FLAG_ENTRY0("TxSdma13DisallowedPacketErr",
604 SEES(TX_SDMA13_DISALLOWED_PACKET)),
605 /*30*/ FLAG_ENTRY0("TxSdma14DisallowedPacketErr",
606 SEES(TX_SDMA14_DISALLOWED_PACKET)),
607 /*31*/ FLAG_ENTRY0("TxSdma15DisallowedPacketErr",
608 SEES(TX_SDMA15_DISALLOWED_PACKET)),
609 /*32*/ FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr",
610 SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)),
611 /*33*/ FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr",
612 SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)),
613 /*34*/ FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr",
614 SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)),
615 /*35*/ FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr",
616 SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)),
617 /*36*/ FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr",
618 SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)),
619 /*37*/ FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr",
620 SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)),
621 /*38*/ FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr",
622 SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)),
623 /*39*/ FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr",
624 SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)),
625 /*40*/ FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr",
626 SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)),
627 /*41*/ FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)),
628 /*42*/ FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)),
629 /*43*/ FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)),
630 /*44*/ FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)),
631 /*45*/ FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)),
632 /*46*/ FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)),
633 /*47*/ FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)),
634 /*48*/ FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)),
635 /*49*/ FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)),
636 /*50*/ FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)),
637 /*51*/ FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)),
638 /*52*/ FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)),
639 /*53*/ FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)),
640 /*54*/ FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)),
641 /*55*/ FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)),
642 /*56*/ FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)),
643 /*57*/ FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)),
644 /*58*/ FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)),
645 /*59*/ FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)),
646 /*60*/ FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)),
647 /*61*/ FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)),
648 /*62*/ FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr",
649 SEES(TX_READ_SDMA_MEMORY_CSR_UNC)),
650 /*63*/ FLAG_ENTRY0("TxReadPioMemoryCsrUncErr",
651 SEES(TX_READ_PIO_MEMORY_CSR_UNC)),
652 };
653
654 /*
655 * TXE Egress Error Info flags
656 */
657 #define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK
658 static struct flag_table egress_err_info_flags[] = {
659 /* 0*/ FLAG_ENTRY0("Reserved", 0ull),
660 /* 1*/ FLAG_ENTRY0("VLErr", SEEI(VL)),
661 /* 2*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
662 /* 3*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
663 /* 4*/ FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)),
664 /* 5*/ FLAG_ENTRY0("SLIDErr", SEEI(SLID)),
665 /* 6*/ FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)),
666 /* 7*/ FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)),
667 /* 8*/ FLAG_ENTRY0("RawErr", SEEI(RAW)),
668 /* 9*/ FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)),
669 /*10*/ FLAG_ENTRY0("GRHErr", SEEI(GRH)),
670 /*11*/ FLAG_ENTRY0("BypassErr", SEEI(BYPASS)),
671 /*12*/ FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)),
672 /*13*/ FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)),
673 /*14*/ FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)),
674 /*15*/ FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)),
675 /*16*/ FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)),
676 /*17*/ FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)),
677 /*18*/ FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)),
678 /*19*/ FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)),
679 /*20*/ FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)),
680 /*21*/ FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)),
681 };
682
683 /* TXE Egress errors that cause an SPC freeze */
684 #define ALL_TXE_EGRESS_FREEZE_ERR \
685 (SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \
686 | SEES(TX_PIO_LAUNCH_INTF_PARITY) \
687 | SEES(TX_SDMA_LAUNCH_INTF_PARITY) \
688 | SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \
689 | SEES(TX_LAUNCH_CSR_PARITY) \
690 | SEES(TX_SBRD_CTL_CSR_PARITY) \
691 | SEES(TX_CONFIG_PARITY) \
692 | SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \
693 | SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \
694 | SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \
695 | SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \
696 | SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \
697 | SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \
698 | SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \
699 | SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \
700 | SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \
701 | SEES(TX_CREDIT_RETURN_PARITY))
702
703 /*
704 * TXE Send error flags
705 */
706 #define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK
707 static struct flag_table send_err_status_flags[] = {
708 /* 0*/ FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)),
709 /* 1*/ FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)),
710 /* 2*/ FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR))
711 };
712
713 /*
714 * TXE Send Context Error flags and consequences
715 */
716 static struct flag_table sc_err_status_flags[] = {
717 /* 0*/ FLAG_ENTRY("InconsistentSop",
718 SEC_PACKET_DROPPED | SEC_SC_HALTED,
719 SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK),
720 /* 1*/ FLAG_ENTRY("DisallowedPacket",
721 SEC_PACKET_DROPPED | SEC_SC_HALTED,
722 SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK),
723 /* 2*/ FLAG_ENTRY("WriteCrossesBoundary",
724 SEC_WRITE_DROPPED | SEC_SC_HALTED,
725 SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK),
726 /* 3*/ FLAG_ENTRY("WriteOverflow",
727 SEC_WRITE_DROPPED | SEC_SC_HALTED,
728 SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK),
729 /* 4*/ FLAG_ENTRY("WriteOutOfBounds",
730 SEC_WRITE_DROPPED | SEC_SC_HALTED,
731 SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK),
732 /* 5-63 reserved*/
733 };
734
735 /*
736 * RXE Receive Error flags
737 */
738 #define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK
739 static struct flag_table rxe_err_status_flags[] = {
740 /* 0*/ FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)),
741 /* 1*/ FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)),
742 /* 2*/ FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)),
743 /* 3*/ FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)),
744 /* 4*/ FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)),
745 /* 5*/ FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)),
746 /* 6*/ FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)),
747 /* 7*/ FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)),
748 /* 8*/ FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)),
749 /* 9*/ FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)),
750 /*10*/ FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)),
751 /*11*/ FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)),
752 /*12*/ FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)),
753 /*13*/ FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)),
754 /*14*/ FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)),
755 /*15*/ FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)),
756 /*16*/ FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr",
757 RXES(RBUF_LOOKUP_DES_REG_UNC_COR)),
758 /*17*/ FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)),
759 /*18*/ FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)),
760 /*19*/ FLAG_ENTRY0("RxRbufBlockListReadUncErr",
761 RXES(RBUF_BLOCK_LIST_READ_UNC)),
762 /*20*/ FLAG_ENTRY0("RxRbufBlockListReadCorErr",
763 RXES(RBUF_BLOCK_LIST_READ_COR)),
764 /*21*/ FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr",
765 RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)),
766 /*22*/ FLAG_ENTRY0("RxRbufCsrQEntCntParityErr",
767 RXES(RBUF_CSR_QENT_CNT_PARITY)),
768 /*23*/ FLAG_ENTRY0("RxRbufCsrQNextBufParityErr",
769 RXES(RBUF_CSR_QNEXT_BUF_PARITY)),
770 /*24*/ FLAG_ENTRY0("RxRbufCsrQVldBitParityErr",
771 RXES(RBUF_CSR_QVLD_BIT_PARITY)),
772 /*25*/ FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)),
773 /*26*/ FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)),
774 /*27*/ FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr",
775 RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)),
776 /*28*/ FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)),
777 /*29*/ FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)),
778 /*30*/ FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)),
779 /*31*/ FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)),
780 /*32*/ FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)),
781 /*33*/ FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)),
782 /*34*/ FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)),
783 /*35*/ FLAG_ENTRY0("RxRbufFlInitdoneParityErr",
784 RXES(RBUF_FL_INITDONE_PARITY)),
785 /*36*/ FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr",
786 RXES(RBUF_FL_INIT_WR_ADDR_PARITY)),
787 /*37*/ FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)),
788 /*38*/ FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)),
789 /*39*/ FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)),
790 /*40*/ FLAG_ENTRY0("RxLookupDesPart1UncCorErr",
791 RXES(LOOKUP_DES_PART1_UNC_COR)),
792 /*41*/ FLAG_ENTRY0("RxLookupDesPart2ParityErr",
793 RXES(LOOKUP_DES_PART2_PARITY)),
794 /*42*/ FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)),
795 /*43*/ FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)),
796 /*44*/ FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)),
797 /*45*/ FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)),
798 /*46*/ FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)),
799 /*47*/ FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)),
800 /*48*/ FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)),
801 /*49*/ FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)),
802 /*50*/ FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)),
803 /*51*/ FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)),
804 /*52*/ FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)),
805 /*53*/ FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)),
806 /*54*/ FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)),
807 /*55*/ FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)),
808 /*56*/ FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)),
809 /*57*/ FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)),
810 /*58*/ FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)),
811 /*59*/ FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)),
812 /*60*/ FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)),
813 /*61*/ FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)),
814 /*62*/ FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)),
815 /*63*/ FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY))
816 };
817
818 /* RXE errors that will trigger an SPC freeze */
819 #define ALL_RXE_FREEZE_ERR \
820 (RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \
821 | RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \
822 | RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \
823 | RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \
824 | RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \
825 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \
826 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \
827 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \
828 | RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \
829 | RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \
830 | RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \
831 | RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \
832 | RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \
833 | RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \
834 | RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \
835 | RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \
836 | RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \
837 | RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \
838 | RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \
839 | RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \
840 | RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \
841 | RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \
842 | RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \
843 | RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \
844 | RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \
845 | RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \
846 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \
847 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \
848 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \
849 | RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \
850 | RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \
851 | RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \
852 | RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \
853 | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \
854 | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \
855 | RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \
856 | RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \
857 | RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \
858 | RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \
859 | RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \
860 | RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \
861 | RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \
862 | RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \
863 | RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK)
864
865 #define RXE_FREEZE_ABORT_MASK \
866 (RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \
867 RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \
868 RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK)
869
870 /*
871 * DCC Error Flags
872 */
873 #define DCCE(name) DCC_ERR_FLG_##name##_SMASK
874 static struct flag_table dcc_err_flags[] = {
875 FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)),
876 FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)),
877 FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)),
878 FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)),
879 FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)),
880 FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)),
881 FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)),
882 FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)),
883 FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)),
884 FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)),
885 FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)),
886 FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)),
887 FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)),
888 FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)),
889 FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)),
890 FLAG_ENTRY0("link_err", DCCE(LINK_ERR)),
891 FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)),
892 FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)),
893 FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)),
894 FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)),
895 FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)),
896 FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)),
897 FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)),
898 FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)),
899 FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)),
900 FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)),
901 FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)),
902 FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)),
903 FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)),
904 FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)),
905 FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)),
906 FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)),
907 FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)),
908 FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)),
909 FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)),
910 FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)),
911 FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)),
912 FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)),
913 FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)),
914 FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)),
915 FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)),
916 FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)),
917 FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)),
918 FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)),
919 FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)),
920 FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)),
921 };
922
923 /*
924 * LCB error flags
925 */
926 #define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK
927 static struct flag_table lcb_err_flags[] = {
928 /* 0*/ FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)),
929 /* 1*/ FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)),
930 /* 2*/ FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)),
931 /* 3*/ FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST",
932 LCBE(ALL_LNS_FAILED_REINIT_TEST)),
933 /* 4*/ FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)),
934 /* 5*/ FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)),
935 /* 6*/ FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)),
936 /* 7*/ FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)),
937 /* 8*/ FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)),
938 /* 9*/ FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)),
939 /*10*/ FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)),
940 /*11*/ FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)),
941 /*12*/ FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)),
942 /*13*/ FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER",
943 LCBE(UNEXPECTED_ROUND_TRIP_MARKER)),
944 /*14*/ FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)),
945 /*15*/ FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)),
946 /*16*/ FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)),
947 /*17*/ FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)),
948 /*18*/ FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)),
949 /*19*/ FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE",
950 LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)),
951 /*20*/ FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)),
952 /*21*/ FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)),
953 /*22*/ FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)),
954 /*23*/ FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)),
955 /*24*/ FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)),
956 /*25*/ FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)),
957 /*26*/ FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP",
958 LCBE(RST_FOR_INCOMPLT_RND_TRIP)),
959 /*27*/ FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)),
960 /*28*/ FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE",
961 LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)),
962 /*29*/ FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR",
963 LCBE(REDUNDANT_FLIT_PARITY_ERR))
964 };
965
966 /*
967 * DC8051 Error Flags
968 */
969 #define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK
970 static struct flag_table dc8051_err_flags[] = {
971 FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)),
972 FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)),
973 FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)),
974 FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)),
975 FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)),
976 FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)),
977 FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)),
978 FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)),
979 FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES",
980 D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)),
981 FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)),
982 };
983
984 /*
985 * DC8051 Information Error flags
986 *
987 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field.
988 */
989 static struct flag_table dc8051_info_err_flags[] = {
990 FLAG_ENTRY0("Spico ROM check failed", SPICO_ROM_FAILED),
991 FLAG_ENTRY0("Unknown frame received", UNKNOWN_FRAME),
992 FLAG_ENTRY0("Target BER not met", TARGET_BER_NOT_MET),
993 FLAG_ENTRY0("Serdes internal loopback failure",
994 FAILED_SERDES_INTERNAL_LOOPBACK),
995 FLAG_ENTRY0("Failed SerDes init", FAILED_SERDES_INIT),
996 FLAG_ENTRY0("Failed LNI(Polling)", FAILED_LNI_POLLING),
997 FLAG_ENTRY0("Failed LNI(Debounce)", FAILED_LNI_DEBOUNCE),
998 FLAG_ENTRY0("Failed LNI(EstbComm)", FAILED_LNI_ESTBCOMM),
999 FLAG_ENTRY0("Failed LNI(OptEq)", FAILED_LNI_OPTEQ),
1000 FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1),
1001 FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2),
1002 FLAG_ENTRY0("Failed LNI(ConfigLT)", FAILED_LNI_CONFIGLT),
1003 FLAG_ENTRY0("Host Handshake Timeout", HOST_HANDSHAKE_TIMEOUT),
1004 FLAG_ENTRY0("External Device Request Timeout",
1005 EXTERNAL_DEVICE_REQ_TIMEOUT),
1006 };
1007
1008 /*
1009 * DC8051 Information Host Information flags
1010 *
1011 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field.
1012 */
1013 static struct flag_table dc8051_info_host_msg_flags[] = {
1014 FLAG_ENTRY0("Host request done", 0x0001),
1015 FLAG_ENTRY0("BC PWR_MGM message", 0x0002),
1016 FLAG_ENTRY0("BC SMA message", 0x0004),
1017 FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008),
1018 FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010),
1019 FLAG_ENTRY0("External device config request", 0x0020),
1020 FLAG_ENTRY0("VerifyCap all frames received", 0x0040),
1021 FLAG_ENTRY0("LinkUp achieved", 0x0080),
1022 FLAG_ENTRY0("Link going down", 0x0100),
1023 FLAG_ENTRY0("Link width downgraded", 0x0200),
1024 };
1025
1026 static u32 encoded_size(u32 size);
1027 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate);
1028 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state);
1029 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
1030 u8 *continuous);
1031 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
1032 u8 *vcu, u16 *vl15buf, u8 *crc_sizes);
1033 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
1034 u8 *remote_tx_rate, u16 *link_widths);
1035 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
1036 u8 *flag_bits, u16 *link_widths);
1037 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
1038 u8 *device_rev);
1039 static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed);
1040 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx);
1041 static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx,
1042 u8 *tx_polarity_inversion,
1043 u8 *rx_polarity_inversion, u8 *max_rate);
1044 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
1045 unsigned int context, u64 err_status);
1046 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg);
1047 static void handle_dcc_err(struct hfi1_devdata *dd,
1048 unsigned int context, u64 err_status);
1049 static void handle_lcb_err(struct hfi1_devdata *dd,
1050 unsigned int context, u64 err_status);
1051 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg);
1052 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1053 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1054 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1055 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1056 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1057 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1058 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1059 static void set_partition_keys(struct hfi1_pportdata *ppd);
1060 static const char *link_state_name(u32 state);
1061 static const char *link_state_reason_name(struct hfi1_pportdata *ppd,
1062 u32 state);
1063 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
1064 u64 *out_data);
1065 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data);
1066 static int thermal_init(struct hfi1_devdata *dd);
1067
1068 static void update_statusp(struct hfi1_pportdata *ppd, u32 state);
1069 static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
1070 int msecs);
1071 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1072 int msecs);
1073 static void log_state_transition(struct hfi1_pportdata *ppd, u32 state);
1074 static void log_physical_state(struct hfi1_pportdata *ppd, u32 state);
1075 static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1076 int msecs);
1077 static int wait_phys_link_out_of_offline(struct hfi1_pportdata *ppd,
1078 int msecs);
1079 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc);
1080 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr);
1081 static void handle_temp_err(struct hfi1_devdata *dd);
1082 static void dc_shutdown(struct hfi1_devdata *dd);
1083 static void dc_start(struct hfi1_devdata *dd);
1084 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
1085 unsigned int *np);
1086 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd);
1087 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms);
1088 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index);
1089
1090 /*
1091 * Error interrupt table entry. This is used as input to the interrupt
1092 * "clear down" routine used for all second tier error interrupt register.
1093 * Second tier interrupt registers have a single bit representing them
1094 * in the top-level CceIntStatus.
1095 */
1096 struct err_reg_info {
1097 u32 status; /* status CSR offset */
1098 u32 clear; /* clear CSR offset */
1099 u32 mask; /* mask CSR offset */
1100 void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg);
1101 const char *desc;
1102 };
1103
1104 #define NUM_MISC_ERRS (IS_GENERAL_ERR_END - IS_GENERAL_ERR_START)
1105 #define NUM_DC_ERRS (IS_DC_END - IS_DC_START)
1106 #define NUM_VARIOUS (IS_VARIOUS_END - IS_VARIOUS_START)
1107
1108 /*
1109 * Helpers for building HFI and DC error interrupt table entries. Different
1110 * helpers are needed because of inconsistent register names.
1111 */
1112 #define EE(reg, handler, desc) \
1113 { reg##_STATUS, reg##_CLEAR, reg##_MASK, \
1114 handler, desc }
1115 #define DC_EE1(reg, handler, desc) \
1116 { reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc }
1117 #define DC_EE2(reg, handler, desc) \
1118 { reg##_FLG, reg##_CLR, reg##_EN, handler, desc }
1119
1120 /*
1121 * Table of the "misc" grouping of error interrupts. Each entry refers to
1122 * another register containing more information.
1123 */
1124 static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = {
1125 /* 0*/ EE(CCE_ERR, handle_cce_err, "CceErr"),
1126 /* 1*/ EE(RCV_ERR, handle_rxe_err, "RxeErr"),
1127 /* 2*/ EE(MISC_ERR, handle_misc_err, "MiscErr"),
1128 /* 3*/ { 0, 0, 0, NULL }, /* reserved */
1129 /* 4*/ EE(SEND_PIO_ERR, handle_pio_err, "PioErr"),
1130 /* 5*/ EE(SEND_DMA_ERR, handle_sdma_err, "SDmaErr"),
1131 /* 6*/ EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"),
1132 /* 7*/ EE(SEND_ERR, handle_txe_err, "TxeErr")
1133 /* the rest are reserved */
1134 };
1135
1136 /*
1137 * Index into the Various section of the interrupt sources
1138 * corresponding to the Critical Temperature interrupt.
1139 */
1140 #define TCRIT_INT_SOURCE 4
1141
1142 /*
1143 * SDMA error interrupt entry - refers to another register containing more
1144 * information.
1145 */
1146 static const struct err_reg_info sdma_eng_err =
1147 EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr");
1148
1149 static const struct err_reg_info various_err[NUM_VARIOUS] = {
1150 /* 0*/ { 0, 0, 0, NULL }, /* PbcInt */
1151 /* 1*/ { 0, 0, 0, NULL }, /* GpioAssertInt */
1152 /* 2*/ EE(ASIC_QSFP1, handle_qsfp_int, "QSFP1"),
1153 /* 3*/ EE(ASIC_QSFP2, handle_qsfp_int, "QSFP2"),
1154 /* 4*/ { 0, 0, 0, NULL }, /* TCritInt */
1155 /* rest are reserved */
1156 };
1157
1158 /*
1159 * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG
1160 * register can not be derived from the MTU value because 10K is not
1161 * a power of 2. Therefore, we need a constant. Everything else can
1162 * be calculated.
1163 */
1164 #define DCC_CFG_PORT_MTU_CAP_10240 7
1165
1166 /*
1167 * Table of the DC grouping of error interrupts. Each entry refers to
1168 * another register containing more information.
1169 */
1170 static const struct err_reg_info dc_errs[NUM_DC_ERRS] = {
1171 /* 0*/ DC_EE1(DCC_ERR, handle_dcc_err, "DCC Err"),
1172 /* 1*/ DC_EE2(DC_LCB_ERR, handle_lcb_err, "LCB Err"),
1173 /* 2*/ DC_EE2(DC_DC8051_ERR, handle_8051_interrupt, "DC8051 Interrupt"),
1174 /* 3*/ /* dc_lbm_int - special, see is_dc_int() */
1175 /* the rest are reserved */
1176 };
1177
1178 struct cntr_entry {
1179 /*
1180 * counter name
1181 */
1182 char *name;
1183
1184 /*
1185 * csr to read for name (if applicable)
1186 */
1187 u64 csr;
1188
1189 /*
1190 * offset into dd or ppd to store the counter's value
1191 */
1192 int offset;
1193
1194 /*
1195 * flags
1196 */
1197 u8 flags;
1198
1199 /*
1200 * accessor for stat element, context either dd or ppd
1201 */
1202 u64 (*rw_cntr)(const struct cntr_entry *, void *context, int vl,
1203 int mode, u64 data);
1204 };
1205
1206 #define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0
1207 #define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159
1208
1209 #define CNTR_ELEM(name, csr, offset, flags, accessor) \
1210 { \
1211 name, \
1212 csr, \
1213 offset, \
1214 flags, \
1215 accessor \
1216 }
1217
1218 /* 32bit RXE */
1219 #define RXE32_PORT_CNTR_ELEM(name, counter, flags) \
1220 CNTR_ELEM(#name, \
1221 (counter * 8 + RCV_COUNTER_ARRAY32), \
1222 0, flags | CNTR_32BIT, \
1223 port_access_u32_csr)
1224
1225 #define RXE32_DEV_CNTR_ELEM(name, counter, flags) \
1226 CNTR_ELEM(#name, \
1227 (counter * 8 + RCV_COUNTER_ARRAY32), \
1228 0, flags | CNTR_32BIT, \
1229 dev_access_u32_csr)
1230
1231 /* 64bit RXE */
1232 #define RXE64_PORT_CNTR_ELEM(name, counter, flags) \
1233 CNTR_ELEM(#name, \
1234 (counter * 8 + RCV_COUNTER_ARRAY64), \
1235 0, flags, \
1236 port_access_u64_csr)
1237
1238 #define RXE64_DEV_CNTR_ELEM(name, counter, flags) \
1239 CNTR_ELEM(#name, \
1240 (counter * 8 + RCV_COUNTER_ARRAY64), \
1241 0, flags, \
1242 dev_access_u64_csr)
1243
1244 #define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx
1245 #define OVR_ELM(ctx) \
1246 CNTR_ELEM("RcvHdrOvr" #ctx, \
1247 (RCV_HDR_OVFL_CNT + ctx * 0x100), \
1248 0, CNTR_NORMAL, port_access_u64_csr)
1249
1250 /* 32bit TXE */
1251 #define TXE32_PORT_CNTR_ELEM(name, counter, flags) \
1252 CNTR_ELEM(#name, \
1253 (counter * 8 + SEND_COUNTER_ARRAY32), \
1254 0, flags | CNTR_32BIT, \
1255 port_access_u32_csr)
1256
1257 /* 64bit TXE */
1258 #define TXE64_PORT_CNTR_ELEM(name, counter, flags) \
1259 CNTR_ELEM(#name, \
1260 (counter * 8 + SEND_COUNTER_ARRAY64), \
1261 0, flags, \
1262 port_access_u64_csr)
1263
1264 # define TX64_DEV_CNTR_ELEM(name, counter, flags) \
1265 CNTR_ELEM(#name,\
1266 counter * 8 + SEND_COUNTER_ARRAY64, \
1267 0, \
1268 flags, \
1269 dev_access_u64_csr)
1270
1271 /* CCE */
1272 #define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \
1273 CNTR_ELEM(#name, \
1274 (counter * 8 + CCE_COUNTER_ARRAY32), \
1275 0, flags | CNTR_32BIT, \
1276 dev_access_u32_csr)
1277
1278 #define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \
1279 CNTR_ELEM(#name, \
1280 (counter * 8 + CCE_INT_COUNTER_ARRAY32), \
1281 0, flags | CNTR_32BIT, \
1282 dev_access_u32_csr)
1283
1284 /* DC */
1285 #define DC_PERF_CNTR(name, counter, flags) \
1286 CNTR_ELEM(#name, \
1287 counter, \
1288 0, \
1289 flags, \
1290 dev_access_u64_csr)
1291
1292 #define DC_PERF_CNTR_LCB(name, counter, flags) \
1293 CNTR_ELEM(#name, \
1294 counter, \
1295 0, \
1296 flags, \
1297 dc_access_lcb_cntr)
1298
1299 /* ibp counters */
1300 #define SW_IBP_CNTR(name, cntr) \
1301 CNTR_ELEM(#name, \
1302 0, \
1303 0, \
1304 CNTR_SYNTH, \
1305 access_ibp_##cntr)
1306
1307 /**
1308 * hfi_addr_from_offset - return addr for readq/writeq
1309 * @dd - the dd device
1310 * @offset - the offset of the CSR within bar0
1311 *
1312 * This routine selects the appropriate base address
1313 * based on the indicated offset.
1314 */
hfi1_addr_from_offset(const struct hfi1_devdata * dd,u32 offset)1315 static inline void __iomem *hfi1_addr_from_offset(
1316 const struct hfi1_devdata *dd,
1317 u32 offset)
1318 {
1319 if (offset >= dd->base2_start)
1320 return dd->kregbase2 + (offset - dd->base2_start);
1321 return dd->kregbase1 + offset;
1322 }
1323
1324 /**
1325 * read_csr - read CSR at the indicated offset
1326 * @dd - the dd device
1327 * @offset - the offset of the CSR within bar0
1328 *
1329 * Return: the value read or all FF's if there
1330 * is no mapping
1331 */
read_csr(const struct hfi1_devdata * dd,u32 offset)1332 u64 read_csr(const struct hfi1_devdata *dd, u32 offset)
1333 {
1334 if (dd->flags & HFI1_PRESENT)
1335 return readq(hfi1_addr_from_offset(dd, offset));
1336 return -1;
1337 }
1338
1339 /**
1340 * write_csr - write CSR at the indicated offset
1341 * @dd - the dd device
1342 * @offset - the offset of the CSR within bar0
1343 * @value - value to write
1344 */
write_csr(const struct hfi1_devdata * dd,u32 offset,u64 value)1345 void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value)
1346 {
1347 if (dd->flags & HFI1_PRESENT) {
1348 void __iomem *base = hfi1_addr_from_offset(dd, offset);
1349
1350 /* avoid write to RcvArray */
1351 if (WARN_ON(offset >= RCV_ARRAY && offset < dd->base2_start))
1352 return;
1353 writeq(value, base);
1354 }
1355 }
1356
1357 /**
1358 * get_csr_addr - return te iomem address for offset
1359 * @dd - the dd device
1360 * @offset - the offset of the CSR within bar0
1361 *
1362 * Return: The iomem address to use in subsequent
1363 * writeq/readq operations.
1364 */
get_csr_addr(const struct hfi1_devdata * dd,u32 offset)1365 void __iomem *get_csr_addr(
1366 const struct hfi1_devdata *dd,
1367 u32 offset)
1368 {
1369 if (dd->flags & HFI1_PRESENT)
1370 return hfi1_addr_from_offset(dd, offset);
1371 return NULL;
1372 }
1373
read_write_csr(const struct hfi1_devdata * dd,u32 csr,int mode,u64 value)1374 static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr,
1375 int mode, u64 value)
1376 {
1377 u64 ret;
1378
1379 if (mode == CNTR_MODE_R) {
1380 ret = read_csr(dd, csr);
1381 } else if (mode == CNTR_MODE_W) {
1382 write_csr(dd, csr, value);
1383 ret = value;
1384 } else {
1385 dd_dev_err(dd, "Invalid cntr register access mode");
1386 return 0;
1387 }
1388
1389 hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode);
1390 return ret;
1391 }
1392
1393 /* Dev Access */
dev_access_u32_csr(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1394 static u64 dev_access_u32_csr(const struct cntr_entry *entry,
1395 void *context, int vl, int mode, u64 data)
1396 {
1397 struct hfi1_devdata *dd = context;
1398 u64 csr = entry->csr;
1399
1400 if (entry->flags & CNTR_SDMA) {
1401 if (vl == CNTR_INVALID_VL)
1402 return 0;
1403 csr += 0x100 * vl;
1404 } else {
1405 if (vl != CNTR_INVALID_VL)
1406 return 0;
1407 }
1408 return read_write_csr(dd, csr, mode, data);
1409 }
1410
access_sde_err_cnt(const struct cntr_entry * entry,void * context,int idx,int mode,u64 data)1411 static u64 access_sde_err_cnt(const struct cntr_entry *entry,
1412 void *context, int idx, int mode, u64 data)
1413 {
1414 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1415
1416 if (dd->per_sdma && idx < dd->num_sdma)
1417 return dd->per_sdma[idx].err_cnt;
1418 return 0;
1419 }
1420
access_sde_int_cnt(const struct cntr_entry * entry,void * context,int idx,int mode,u64 data)1421 static u64 access_sde_int_cnt(const struct cntr_entry *entry,
1422 void *context, int idx, int mode, u64 data)
1423 {
1424 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1425
1426 if (dd->per_sdma && idx < dd->num_sdma)
1427 return dd->per_sdma[idx].sdma_int_cnt;
1428 return 0;
1429 }
1430
access_sde_idle_int_cnt(const struct cntr_entry * entry,void * context,int idx,int mode,u64 data)1431 static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry,
1432 void *context, int idx, int mode, u64 data)
1433 {
1434 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1435
1436 if (dd->per_sdma && idx < dd->num_sdma)
1437 return dd->per_sdma[idx].idle_int_cnt;
1438 return 0;
1439 }
1440
access_sde_progress_int_cnt(const struct cntr_entry * entry,void * context,int idx,int mode,u64 data)1441 static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry,
1442 void *context, int idx, int mode,
1443 u64 data)
1444 {
1445 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1446
1447 if (dd->per_sdma && idx < dd->num_sdma)
1448 return dd->per_sdma[idx].progress_int_cnt;
1449 return 0;
1450 }
1451
dev_access_u64_csr(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1452 static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context,
1453 int vl, int mode, u64 data)
1454 {
1455 struct hfi1_devdata *dd = context;
1456
1457 u64 val = 0;
1458 u64 csr = entry->csr;
1459
1460 if (entry->flags & CNTR_VL) {
1461 if (vl == CNTR_INVALID_VL)
1462 return 0;
1463 csr += 8 * vl;
1464 } else {
1465 if (vl != CNTR_INVALID_VL)
1466 return 0;
1467 }
1468
1469 val = read_write_csr(dd, csr, mode, data);
1470 return val;
1471 }
1472
dc_access_lcb_cntr(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1473 static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context,
1474 int vl, int mode, u64 data)
1475 {
1476 struct hfi1_devdata *dd = context;
1477 u32 csr = entry->csr;
1478 int ret = 0;
1479
1480 if (vl != CNTR_INVALID_VL)
1481 return 0;
1482 if (mode == CNTR_MODE_R)
1483 ret = read_lcb_csr(dd, csr, &data);
1484 else if (mode == CNTR_MODE_W)
1485 ret = write_lcb_csr(dd, csr, data);
1486
1487 if (ret) {
1488 dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr);
1489 return 0;
1490 }
1491
1492 hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode);
1493 return data;
1494 }
1495
1496 /* Port Access */
port_access_u32_csr(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1497 static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context,
1498 int vl, int mode, u64 data)
1499 {
1500 struct hfi1_pportdata *ppd = context;
1501
1502 if (vl != CNTR_INVALID_VL)
1503 return 0;
1504 return read_write_csr(ppd->dd, entry->csr, mode, data);
1505 }
1506
port_access_u64_csr(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1507 static u64 port_access_u64_csr(const struct cntr_entry *entry,
1508 void *context, int vl, int mode, u64 data)
1509 {
1510 struct hfi1_pportdata *ppd = context;
1511 u64 val;
1512 u64 csr = entry->csr;
1513
1514 if (entry->flags & CNTR_VL) {
1515 if (vl == CNTR_INVALID_VL)
1516 return 0;
1517 csr += 8 * vl;
1518 } else {
1519 if (vl != CNTR_INVALID_VL)
1520 return 0;
1521 }
1522 val = read_write_csr(ppd->dd, csr, mode, data);
1523 return val;
1524 }
1525
1526 /* Software defined */
read_write_sw(struct hfi1_devdata * dd,u64 * cntr,int mode,u64 data)1527 static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode,
1528 u64 data)
1529 {
1530 u64 ret;
1531
1532 if (mode == CNTR_MODE_R) {
1533 ret = *cntr;
1534 } else if (mode == CNTR_MODE_W) {
1535 *cntr = data;
1536 ret = data;
1537 } else {
1538 dd_dev_err(dd, "Invalid cntr sw access mode");
1539 return 0;
1540 }
1541
1542 hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode);
1543
1544 return ret;
1545 }
1546
access_sw_link_dn_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1547 static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context,
1548 int vl, int mode, u64 data)
1549 {
1550 struct hfi1_pportdata *ppd = context;
1551
1552 if (vl != CNTR_INVALID_VL)
1553 return 0;
1554 return read_write_sw(ppd->dd, &ppd->link_downed, mode, data);
1555 }
1556
access_sw_link_up_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1557 static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context,
1558 int vl, int mode, u64 data)
1559 {
1560 struct hfi1_pportdata *ppd = context;
1561
1562 if (vl != CNTR_INVALID_VL)
1563 return 0;
1564 return read_write_sw(ppd->dd, &ppd->link_up, mode, data);
1565 }
1566
access_sw_unknown_frame_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1567 static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry,
1568 void *context, int vl, int mode,
1569 u64 data)
1570 {
1571 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1572
1573 if (vl != CNTR_INVALID_VL)
1574 return 0;
1575 return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data);
1576 }
1577
access_sw_xmit_discards(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1578 static u64 access_sw_xmit_discards(const struct cntr_entry *entry,
1579 void *context, int vl, int mode, u64 data)
1580 {
1581 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1582 u64 zero = 0;
1583 u64 *counter;
1584
1585 if (vl == CNTR_INVALID_VL)
1586 counter = &ppd->port_xmit_discards;
1587 else if (vl >= 0 && vl < C_VL_COUNT)
1588 counter = &ppd->port_xmit_discards_vl[vl];
1589 else
1590 counter = &zero;
1591
1592 return read_write_sw(ppd->dd, counter, mode, data);
1593 }
1594
access_xmit_constraint_errs(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1595 static u64 access_xmit_constraint_errs(const struct cntr_entry *entry,
1596 void *context, int vl, int mode,
1597 u64 data)
1598 {
1599 struct hfi1_pportdata *ppd = context;
1600
1601 if (vl != CNTR_INVALID_VL)
1602 return 0;
1603
1604 return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors,
1605 mode, data);
1606 }
1607
access_rcv_constraint_errs(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1608 static u64 access_rcv_constraint_errs(const struct cntr_entry *entry,
1609 void *context, int vl, int mode, u64 data)
1610 {
1611 struct hfi1_pportdata *ppd = context;
1612
1613 if (vl != CNTR_INVALID_VL)
1614 return 0;
1615
1616 return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors,
1617 mode, data);
1618 }
1619
get_all_cpu_total(u64 __percpu * cntr)1620 u64 get_all_cpu_total(u64 __percpu *cntr)
1621 {
1622 int cpu;
1623 u64 counter = 0;
1624
1625 for_each_possible_cpu(cpu)
1626 counter += *per_cpu_ptr(cntr, cpu);
1627 return counter;
1628 }
1629
read_write_cpu(struct hfi1_devdata * dd,u64 * z_val,u64 __percpu * cntr,int vl,int mode,u64 data)1630 static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val,
1631 u64 __percpu *cntr,
1632 int vl, int mode, u64 data)
1633 {
1634 u64 ret = 0;
1635
1636 if (vl != CNTR_INVALID_VL)
1637 return 0;
1638
1639 if (mode == CNTR_MODE_R) {
1640 ret = get_all_cpu_total(cntr) - *z_val;
1641 } else if (mode == CNTR_MODE_W) {
1642 /* A write can only zero the counter */
1643 if (data == 0)
1644 *z_val = get_all_cpu_total(cntr);
1645 else
1646 dd_dev_err(dd, "Per CPU cntrs can only be zeroed");
1647 } else {
1648 dd_dev_err(dd, "Invalid cntr sw cpu access mode");
1649 return 0;
1650 }
1651
1652 return ret;
1653 }
1654
access_sw_cpu_intr(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1655 static u64 access_sw_cpu_intr(const struct cntr_entry *entry,
1656 void *context, int vl, int mode, u64 data)
1657 {
1658 struct hfi1_devdata *dd = context;
1659
1660 return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl,
1661 mode, data);
1662 }
1663
access_sw_cpu_rcv_limit(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1664 static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry,
1665 void *context, int vl, int mode, u64 data)
1666 {
1667 struct hfi1_devdata *dd = context;
1668
1669 return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl,
1670 mode, data);
1671 }
1672
access_sw_pio_wait(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1673 static u64 access_sw_pio_wait(const struct cntr_entry *entry,
1674 void *context, int vl, int mode, u64 data)
1675 {
1676 struct hfi1_devdata *dd = context;
1677
1678 return dd->verbs_dev.n_piowait;
1679 }
1680
access_sw_pio_drain(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1681 static u64 access_sw_pio_drain(const struct cntr_entry *entry,
1682 void *context, int vl, int mode, u64 data)
1683 {
1684 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1685
1686 return dd->verbs_dev.n_piodrain;
1687 }
1688
access_sw_ctx0_seq_drop(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1689 static u64 access_sw_ctx0_seq_drop(const struct cntr_entry *entry,
1690 void *context, int vl, int mode, u64 data)
1691 {
1692 struct hfi1_devdata *dd = context;
1693
1694 return dd->ctx0_seq_drop;
1695 }
1696
access_sw_vtx_wait(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1697 static u64 access_sw_vtx_wait(const struct cntr_entry *entry,
1698 void *context, int vl, int mode, u64 data)
1699 {
1700 struct hfi1_devdata *dd = context;
1701
1702 return dd->verbs_dev.n_txwait;
1703 }
1704
access_sw_kmem_wait(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1705 static u64 access_sw_kmem_wait(const struct cntr_entry *entry,
1706 void *context, int vl, int mode, u64 data)
1707 {
1708 struct hfi1_devdata *dd = context;
1709
1710 return dd->verbs_dev.n_kmem_wait;
1711 }
1712
access_sw_send_schedule(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1713 static u64 access_sw_send_schedule(const struct cntr_entry *entry,
1714 void *context, int vl, int mode, u64 data)
1715 {
1716 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1717
1718 return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl,
1719 mode, data);
1720 }
1721
1722 /* Software counters for the error status bits within MISC_ERR_STATUS */
access_misc_pll_lock_fail_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1723 static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry,
1724 void *context, int vl, int mode,
1725 u64 data)
1726 {
1727 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1728
1729 return dd->misc_err_status_cnt[12];
1730 }
1731
access_misc_mbist_fail_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1732 static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry,
1733 void *context, int vl, int mode,
1734 u64 data)
1735 {
1736 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1737
1738 return dd->misc_err_status_cnt[11];
1739 }
1740
access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1741 static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry,
1742 void *context, int vl, int mode,
1743 u64 data)
1744 {
1745 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1746
1747 return dd->misc_err_status_cnt[10];
1748 }
1749
access_misc_efuse_done_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1750 static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry,
1751 void *context, int vl,
1752 int mode, u64 data)
1753 {
1754 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1755
1756 return dd->misc_err_status_cnt[9];
1757 }
1758
access_misc_efuse_write_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1759 static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry,
1760 void *context, int vl, int mode,
1761 u64 data)
1762 {
1763 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1764
1765 return dd->misc_err_status_cnt[8];
1766 }
1767
access_misc_efuse_read_bad_addr_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1768 static u64 access_misc_efuse_read_bad_addr_err_cnt(
1769 const struct cntr_entry *entry,
1770 void *context, int vl, int mode, u64 data)
1771 {
1772 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1773
1774 return dd->misc_err_status_cnt[7];
1775 }
1776
access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1777 static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry,
1778 void *context, int vl,
1779 int mode, u64 data)
1780 {
1781 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1782
1783 return dd->misc_err_status_cnt[6];
1784 }
1785
access_misc_fw_auth_failed_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1786 static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry,
1787 void *context, int vl, int mode,
1788 u64 data)
1789 {
1790 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1791
1792 return dd->misc_err_status_cnt[5];
1793 }
1794
access_misc_key_mismatch_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1795 static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry,
1796 void *context, int vl, int mode,
1797 u64 data)
1798 {
1799 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1800
1801 return dd->misc_err_status_cnt[4];
1802 }
1803
access_misc_sbus_write_failed_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1804 static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry,
1805 void *context, int vl,
1806 int mode, u64 data)
1807 {
1808 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1809
1810 return dd->misc_err_status_cnt[3];
1811 }
1812
access_misc_csr_write_bad_addr_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1813 static u64 access_misc_csr_write_bad_addr_err_cnt(
1814 const struct cntr_entry *entry,
1815 void *context, int vl, int mode, u64 data)
1816 {
1817 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1818
1819 return dd->misc_err_status_cnt[2];
1820 }
1821
access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1822 static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1823 void *context, int vl,
1824 int mode, u64 data)
1825 {
1826 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1827
1828 return dd->misc_err_status_cnt[1];
1829 }
1830
access_misc_csr_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1831 static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry,
1832 void *context, int vl, int mode,
1833 u64 data)
1834 {
1835 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1836
1837 return dd->misc_err_status_cnt[0];
1838 }
1839
1840 /*
1841 * Software counter for the aggregate of
1842 * individual CceErrStatus counters
1843 */
access_sw_cce_err_status_aggregated_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1844 static u64 access_sw_cce_err_status_aggregated_cnt(
1845 const struct cntr_entry *entry,
1846 void *context, int vl, int mode, u64 data)
1847 {
1848 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1849
1850 return dd->sw_cce_err_status_aggregate;
1851 }
1852
1853 /*
1854 * Software counters corresponding to each of the
1855 * error status bits within CceErrStatus
1856 */
access_cce_msix_csr_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1857 static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry,
1858 void *context, int vl, int mode,
1859 u64 data)
1860 {
1861 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1862
1863 return dd->cce_err_status_cnt[40];
1864 }
1865
access_cce_int_map_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1866 static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry,
1867 void *context, int vl, int mode,
1868 u64 data)
1869 {
1870 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1871
1872 return dd->cce_err_status_cnt[39];
1873 }
1874
access_cce_int_map_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1875 static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry,
1876 void *context, int vl, int mode,
1877 u64 data)
1878 {
1879 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1880
1881 return dd->cce_err_status_cnt[38];
1882 }
1883
access_cce_msix_table_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1884 static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry,
1885 void *context, int vl, int mode,
1886 u64 data)
1887 {
1888 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1889
1890 return dd->cce_err_status_cnt[37];
1891 }
1892
access_cce_msix_table_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1893 static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry,
1894 void *context, int vl, int mode,
1895 u64 data)
1896 {
1897 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1898
1899 return dd->cce_err_status_cnt[36];
1900 }
1901
access_cce_rxdma_conv_fifo_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1902 static u64 access_cce_rxdma_conv_fifo_parity_err_cnt(
1903 const struct cntr_entry *entry,
1904 void *context, int vl, int mode, u64 data)
1905 {
1906 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1907
1908 return dd->cce_err_status_cnt[35];
1909 }
1910
access_cce_rcpl_async_fifo_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1911 static u64 access_cce_rcpl_async_fifo_parity_err_cnt(
1912 const struct cntr_entry *entry,
1913 void *context, int vl, int mode, u64 data)
1914 {
1915 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1916
1917 return dd->cce_err_status_cnt[34];
1918 }
1919
access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1920 static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry,
1921 void *context, int vl,
1922 int mode, u64 data)
1923 {
1924 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1925
1926 return dd->cce_err_status_cnt[33];
1927 }
1928
access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1929 static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1930 void *context, int vl, int mode,
1931 u64 data)
1932 {
1933 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1934
1935 return dd->cce_err_status_cnt[32];
1936 }
1937
access_la_triggered_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1938 static u64 access_la_triggered_cnt(const struct cntr_entry *entry,
1939 void *context, int vl, int mode, u64 data)
1940 {
1941 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1942
1943 return dd->cce_err_status_cnt[31];
1944 }
1945
access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1946 static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry,
1947 void *context, int vl, int mode,
1948 u64 data)
1949 {
1950 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1951
1952 return dd->cce_err_status_cnt[30];
1953 }
1954
access_pcic_receive_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1955 static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry,
1956 void *context, int vl, int mode,
1957 u64 data)
1958 {
1959 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1960
1961 return dd->cce_err_status_cnt[29];
1962 }
1963
access_pcic_transmit_back_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1964 static u64 access_pcic_transmit_back_parity_err_cnt(
1965 const struct cntr_entry *entry,
1966 void *context, int vl, int mode, u64 data)
1967 {
1968 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1969
1970 return dd->cce_err_status_cnt[28];
1971 }
1972
access_pcic_transmit_front_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1973 static u64 access_pcic_transmit_front_parity_err_cnt(
1974 const struct cntr_entry *entry,
1975 void *context, int vl, int mode, u64 data)
1976 {
1977 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1978
1979 return dd->cce_err_status_cnt[27];
1980 }
1981
access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1982 static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1983 void *context, int vl, int mode,
1984 u64 data)
1985 {
1986 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1987
1988 return dd->cce_err_status_cnt[26];
1989 }
1990
access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1991 static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1992 void *context, int vl, int mode,
1993 u64 data)
1994 {
1995 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1996
1997 return dd->cce_err_status_cnt[25];
1998 }
1999
access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2000 static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry,
2001 void *context, int vl, int mode,
2002 u64 data)
2003 {
2004 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2005
2006 return dd->cce_err_status_cnt[24];
2007 }
2008
access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2009 static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry,
2010 void *context, int vl, int mode,
2011 u64 data)
2012 {
2013 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2014
2015 return dd->cce_err_status_cnt[23];
2016 }
2017
access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2018 static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry,
2019 void *context, int vl,
2020 int mode, u64 data)
2021 {
2022 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2023
2024 return dd->cce_err_status_cnt[22];
2025 }
2026
access_pcic_retry_mem_unc_err(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2027 static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry,
2028 void *context, int vl, int mode,
2029 u64 data)
2030 {
2031 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2032
2033 return dd->cce_err_status_cnt[21];
2034 }
2035
access_pcic_n_post_dat_q_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2036 static u64 access_pcic_n_post_dat_q_parity_err_cnt(
2037 const struct cntr_entry *entry,
2038 void *context, int vl, int mode, u64 data)
2039 {
2040 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2041
2042 return dd->cce_err_status_cnt[20];
2043 }
2044
access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2045 static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry,
2046 void *context, int vl,
2047 int mode, u64 data)
2048 {
2049 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2050
2051 return dd->cce_err_status_cnt[19];
2052 }
2053
access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2054 static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2055 void *context, int vl, int mode,
2056 u64 data)
2057 {
2058 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2059
2060 return dd->cce_err_status_cnt[18];
2061 }
2062
access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2063 static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2064 void *context, int vl, int mode,
2065 u64 data)
2066 {
2067 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2068
2069 return dd->cce_err_status_cnt[17];
2070 }
2071
access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2072 static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2073 void *context, int vl, int mode,
2074 u64 data)
2075 {
2076 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2077
2078 return dd->cce_err_status_cnt[16];
2079 }
2080
access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2081 static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2082 void *context, int vl, int mode,
2083 u64 data)
2084 {
2085 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2086
2087 return dd->cce_err_status_cnt[15];
2088 }
2089
access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2090 static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry,
2091 void *context, int vl,
2092 int mode, u64 data)
2093 {
2094 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2095
2096 return dd->cce_err_status_cnt[14];
2097 }
2098
access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2099 static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry,
2100 void *context, int vl, int mode,
2101 u64 data)
2102 {
2103 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2104
2105 return dd->cce_err_status_cnt[13];
2106 }
2107
access_cce_cli1_async_fifo_dbg_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2108 static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt(
2109 const struct cntr_entry *entry,
2110 void *context, int vl, int mode, u64 data)
2111 {
2112 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2113
2114 return dd->cce_err_status_cnt[12];
2115 }
2116
access_cce_cli1_async_fifo_rxdma_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2117 static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt(
2118 const struct cntr_entry *entry,
2119 void *context, int vl, int mode, u64 data)
2120 {
2121 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2122
2123 return dd->cce_err_status_cnt[11];
2124 }
2125
access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2126 static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt(
2127 const struct cntr_entry *entry,
2128 void *context, int vl, int mode, u64 data)
2129 {
2130 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2131
2132 return dd->cce_err_status_cnt[10];
2133 }
2134
access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2135 static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt(
2136 const struct cntr_entry *entry,
2137 void *context, int vl, int mode, u64 data)
2138 {
2139 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2140
2141 return dd->cce_err_status_cnt[9];
2142 }
2143
access_cce_cli2_async_fifo_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2144 static u64 access_cce_cli2_async_fifo_parity_err_cnt(
2145 const struct cntr_entry *entry,
2146 void *context, int vl, int mode, u64 data)
2147 {
2148 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2149
2150 return dd->cce_err_status_cnt[8];
2151 }
2152
access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2153 static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry,
2154 void *context, int vl,
2155 int mode, u64 data)
2156 {
2157 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2158
2159 return dd->cce_err_status_cnt[7];
2160 }
2161
access_cce_cli0_async_fifo_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2162 static u64 access_cce_cli0_async_fifo_parity_err_cnt(
2163 const struct cntr_entry *entry,
2164 void *context, int vl, int mode, u64 data)
2165 {
2166 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2167
2168 return dd->cce_err_status_cnt[6];
2169 }
2170
access_cce_rspd_data_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2171 static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry,
2172 void *context, int vl, int mode,
2173 u64 data)
2174 {
2175 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2176
2177 return dd->cce_err_status_cnt[5];
2178 }
2179
access_cce_trgt_access_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2180 static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry,
2181 void *context, int vl, int mode,
2182 u64 data)
2183 {
2184 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2185
2186 return dd->cce_err_status_cnt[4];
2187 }
2188
access_cce_trgt_async_fifo_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2189 static u64 access_cce_trgt_async_fifo_parity_err_cnt(
2190 const struct cntr_entry *entry,
2191 void *context, int vl, int mode, u64 data)
2192 {
2193 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2194
2195 return dd->cce_err_status_cnt[3];
2196 }
2197
access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2198 static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2199 void *context, int vl,
2200 int mode, u64 data)
2201 {
2202 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2203
2204 return dd->cce_err_status_cnt[2];
2205 }
2206
access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2207 static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2208 void *context, int vl,
2209 int mode, u64 data)
2210 {
2211 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2212
2213 return dd->cce_err_status_cnt[1];
2214 }
2215
access_ccs_csr_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2216 static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry,
2217 void *context, int vl, int mode,
2218 u64 data)
2219 {
2220 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2221
2222 return dd->cce_err_status_cnt[0];
2223 }
2224
2225 /*
2226 * Software counters corresponding to each of the
2227 * error status bits within RcvErrStatus
2228 */
access_rx_csr_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2229 static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry,
2230 void *context, int vl, int mode,
2231 u64 data)
2232 {
2233 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2234
2235 return dd->rcv_err_status_cnt[63];
2236 }
2237
access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2238 static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2239 void *context, int vl,
2240 int mode, u64 data)
2241 {
2242 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2243
2244 return dd->rcv_err_status_cnt[62];
2245 }
2246
access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2247 static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2248 void *context, int vl, int mode,
2249 u64 data)
2250 {
2251 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2252
2253 return dd->rcv_err_status_cnt[61];
2254 }
2255
access_rx_dma_csr_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2256 static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry,
2257 void *context, int vl, int mode,
2258 u64 data)
2259 {
2260 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2261
2262 return dd->rcv_err_status_cnt[60];
2263 }
2264
access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2265 static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2266 void *context, int vl,
2267 int mode, u64 data)
2268 {
2269 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2270
2271 return dd->rcv_err_status_cnt[59];
2272 }
2273
access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2274 static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2275 void *context, int vl,
2276 int mode, u64 data)
2277 {
2278 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2279
2280 return dd->rcv_err_status_cnt[58];
2281 }
2282
access_rx_dma_csr_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2283 static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry,
2284 void *context, int vl, int mode,
2285 u64 data)
2286 {
2287 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2288
2289 return dd->rcv_err_status_cnt[57];
2290 }
2291
access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2292 static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry,
2293 void *context, int vl, int mode,
2294 u64 data)
2295 {
2296 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2297
2298 return dd->rcv_err_status_cnt[56];
2299 }
2300
access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2301 static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry,
2302 void *context, int vl, int mode,
2303 u64 data)
2304 {
2305 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2306
2307 return dd->rcv_err_status_cnt[55];
2308 }
2309
access_rx_dma_data_fifo_rd_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2310 static u64 access_rx_dma_data_fifo_rd_cor_err_cnt(
2311 const struct cntr_entry *entry,
2312 void *context, int vl, int mode, u64 data)
2313 {
2314 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2315
2316 return dd->rcv_err_status_cnt[54];
2317 }
2318
access_rx_dma_data_fifo_rd_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2319 static u64 access_rx_dma_data_fifo_rd_unc_err_cnt(
2320 const struct cntr_entry *entry,
2321 void *context, int vl, int mode, u64 data)
2322 {
2323 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2324
2325 return dd->rcv_err_status_cnt[53];
2326 }
2327
access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2328 static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry,
2329 void *context, int vl,
2330 int mode, u64 data)
2331 {
2332 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2333
2334 return dd->rcv_err_status_cnt[52];
2335 }
2336
access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2337 static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry,
2338 void *context, int vl,
2339 int mode, u64 data)
2340 {
2341 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2342
2343 return dd->rcv_err_status_cnt[51];
2344 }
2345
access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2346 static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry,
2347 void *context, int vl,
2348 int mode, u64 data)
2349 {
2350 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2351
2352 return dd->rcv_err_status_cnt[50];
2353 }
2354
access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2355 static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry,
2356 void *context, int vl,
2357 int mode, u64 data)
2358 {
2359 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2360
2361 return dd->rcv_err_status_cnt[49];
2362 }
2363
access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2364 static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry,
2365 void *context, int vl,
2366 int mode, u64 data)
2367 {
2368 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2369
2370 return dd->rcv_err_status_cnt[48];
2371 }
2372
access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2373 static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry,
2374 void *context, int vl,
2375 int mode, u64 data)
2376 {
2377 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2378
2379 return dd->rcv_err_status_cnt[47];
2380 }
2381
access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2382 static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry,
2383 void *context, int vl, int mode,
2384 u64 data)
2385 {
2386 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2387
2388 return dd->rcv_err_status_cnt[46];
2389 }
2390
access_rx_hq_intr_csr_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2391 static u64 access_rx_hq_intr_csr_parity_err_cnt(
2392 const struct cntr_entry *entry,
2393 void *context, int vl, int mode, u64 data)
2394 {
2395 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2396
2397 return dd->rcv_err_status_cnt[45];
2398 }
2399
access_rx_lookup_csr_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2400 static u64 access_rx_lookup_csr_parity_err_cnt(
2401 const struct cntr_entry *entry,
2402 void *context, int vl, int mode, u64 data)
2403 {
2404 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2405
2406 return dd->rcv_err_status_cnt[44];
2407 }
2408
access_rx_lookup_rcv_array_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2409 static u64 access_rx_lookup_rcv_array_cor_err_cnt(
2410 const struct cntr_entry *entry,
2411 void *context, int vl, int mode, u64 data)
2412 {
2413 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2414
2415 return dd->rcv_err_status_cnt[43];
2416 }
2417
access_rx_lookup_rcv_array_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2418 static u64 access_rx_lookup_rcv_array_unc_err_cnt(
2419 const struct cntr_entry *entry,
2420 void *context, int vl, int mode, u64 data)
2421 {
2422 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2423
2424 return dd->rcv_err_status_cnt[42];
2425 }
2426
access_rx_lookup_des_part2_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2427 static u64 access_rx_lookup_des_part2_parity_err_cnt(
2428 const struct cntr_entry *entry,
2429 void *context, int vl, int mode, u64 data)
2430 {
2431 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2432
2433 return dd->rcv_err_status_cnt[41];
2434 }
2435
access_rx_lookup_des_part1_unc_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2436 static u64 access_rx_lookup_des_part1_unc_cor_err_cnt(
2437 const struct cntr_entry *entry,
2438 void *context, int vl, int mode, u64 data)
2439 {
2440 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2441
2442 return dd->rcv_err_status_cnt[40];
2443 }
2444
access_rx_lookup_des_part1_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2445 static u64 access_rx_lookup_des_part1_unc_err_cnt(
2446 const struct cntr_entry *entry,
2447 void *context, int vl, int mode, u64 data)
2448 {
2449 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2450
2451 return dd->rcv_err_status_cnt[39];
2452 }
2453
access_rx_rbuf_next_free_buf_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2454 static u64 access_rx_rbuf_next_free_buf_cor_err_cnt(
2455 const struct cntr_entry *entry,
2456 void *context, int vl, int mode, u64 data)
2457 {
2458 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2459
2460 return dd->rcv_err_status_cnt[38];
2461 }
2462
access_rx_rbuf_next_free_buf_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2463 static u64 access_rx_rbuf_next_free_buf_unc_err_cnt(
2464 const struct cntr_entry *entry,
2465 void *context, int vl, int mode, u64 data)
2466 {
2467 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2468
2469 return dd->rcv_err_status_cnt[37];
2470 }
2471
access_rbuf_fl_init_wr_addr_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2472 static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt(
2473 const struct cntr_entry *entry,
2474 void *context, int vl, int mode, u64 data)
2475 {
2476 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2477
2478 return dd->rcv_err_status_cnt[36];
2479 }
2480
access_rx_rbuf_fl_initdone_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2481 static u64 access_rx_rbuf_fl_initdone_parity_err_cnt(
2482 const struct cntr_entry *entry,
2483 void *context, int vl, int mode, u64 data)
2484 {
2485 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2486
2487 return dd->rcv_err_status_cnt[35];
2488 }
2489
access_rx_rbuf_fl_write_addr_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2490 static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt(
2491 const struct cntr_entry *entry,
2492 void *context, int vl, int mode, u64 data)
2493 {
2494 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2495
2496 return dd->rcv_err_status_cnt[34];
2497 }
2498
access_rx_rbuf_fl_rd_addr_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2499 static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt(
2500 const struct cntr_entry *entry,
2501 void *context, int vl, int mode, u64 data)
2502 {
2503 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2504
2505 return dd->rcv_err_status_cnt[33];
2506 }
2507
access_rx_rbuf_empty_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2508 static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry,
2509 void *context, int vl, int mode,
2510 u64 data)
2511 {
2512 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2513
2514 return dd->rcv_err_status_cnt[32];
2515 }
2516
access_rx_rbuf_full_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2517 static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry,
2518 void *context, int vl, int mode,
2519 u64 data)
2520 {
2521 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2522
2523 return dd->rcv_err_status_cnt[31];
2524 }
2525
access_rbuf_bad_lookup_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2526 static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry,
2527 void *context, int vl, int mode,
2528 u64 data)
2529 {
2530 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2531
2532 return dd->rcv_err_status_cnt[30];
2533 }
2534
access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2535 static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry,
2536 void *context, int vl, int mode,
2537 u64 data)
2538 {
2539 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2540
2541 return dd->rcv_err_status_cnt[29];
2542 }
2543
access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2544 static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry,
2545 void *context, int vl,
2546 int mode, u64 data)
2547 {
2548 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2549
2550 return dd->rcv_err_status_cnt[28];
2551 }
2552
access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2553 static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt(
2554 const struct cntr_entry *entry,
2555 void *context, int vl, int mode, u64 data)
2556 {
2557 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2558
2559 return dd->rcv_err_status_cnt[27];
2560 }
2561
access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2562 static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt(
2563 const struct cntr_entry *entry,
2564 void *context, int vl, int mode, u64 data)
2565 {
2566 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2567
2568 return dd->rcv_err_status_cnt[26];
2569 }
2570
access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2571 static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt(
2572 const struct cntr_entry *entry,
2573 void *context, int vl, int mode, u64 data)
2574 {
2575 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2576
2577 return dd->rcv_err_status_cnt[25];
2578 }
2579
access_rx_rbuf_csr_q_vld_bit_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2580 static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt(
2581 const struct cntr_entry *entry,
2582 void *context, int vl, int mode, u64 data)
2583 {
2584 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2585
2586 return dd->rcv_err_status_cnt[24];
2587 }
2588
access_rx_rbuf_csr_q_next_buf_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2589 static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt(
2590 const struct cntr_entry *entry,
2591 void *context, int vl, int mode, u64 data)
2592 {
2593 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2594
2595 return dd->rcv_err_status_cnt[23];
2596 }
2597
access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2598 static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt(
2599 const struct cntr_entry *entry,
2600 void *context, int vl, int mode, u64 data)
2601 {
2602 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2603
2604 return dd->rcv_err_status_cnt[22];
2605 }
2606
access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2607 static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt(
2608 const struct cntr_entry *entry,
2609 void *context, int vl, int mode, u64 data)
2610 {
2611 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2612
2613 return dd->rcv_err_status_cnt[21];
2614 }
2615
access_rx_rbuf_block_list_read_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2616 static u64 access_rx_rbuf_block_list_read_cor_err_cnt(
2617 const struct cntr_entry *entry,
2618 void *context, int vl, int mode, u64 data)
2619 {
2620 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2621
2622 return dd->rcv_err_status_cnt[20];
2623 }
2624
access_rx_rbuf_block_list_read_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2625 static u64 access_rx_rbuf_block_list_read_unc_err_cnt(
2626 const struct cntr_entry *entry,
2627 void *context, int vl, int mode, u64 data)
2628 {
2629 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2630
2631 return dd->rcv_err_status_cnt[19];
2632 }
2633
access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2634 static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry,
2635 void *context, int vl,
2636 int mode, u64 data)
2637 {
2638 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2639
2640 return dd->rcv_err_status_cnt[18];
2641 }
2642
access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2643 static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry,
2644 void *context, int vl,
2645 int mode, u64 data)
2646 {
2647 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2648
2649 return dd->rcv_err_status_cnt[17];
2650 }
2651
access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2652 static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt(
2653 const struct cntr_entry *entry,
2654 void *context, int vl, int mode, u64 data)
2655 {
2656 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2657
2658 return dd->rcv_err_status_cnt[16];
2659 }
2660
access_rx_rbuf_lookup_des_reg_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2661 static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt(
2662 const struct cntr_entry *entry,
2663 void *context, int vl, int mode, u64 data)
2664 {
2665 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2666
2667 return dd->rcv_err_status_cnt[15];
2668 }
2669
access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2670 static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry,
2671 void *context, int vl,
2672 int mode, u64 data)
2673 {
2674 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2675
2676 return dd->rcv_err_status_cnt[14];
2677 }
2678
access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2679 static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry,
2680 void *context, int vl,
2681 int mode, u64 data)
2682 {
2683 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2684
2685 return dd->rcv_err_status_cnt[13];
2686 }
2687
access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2688 static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2689 void *context, int vl, int mode,
2690 u64 data)
2691 {
2692 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2693
2694 return dd->rcv_err_status_cnt[12];
2695 }
2696
access_rx_dma_flag_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2697 static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry,
2698 void *context, int vl, int mode,
2699 u64 data)
2700 {
2701 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2702
2703 return dd->rcv_err_status_cnt[11];
2704 }
2705
access_rx_dma_flag_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2706 static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry,
2707 void *context, int vl, int mode,
2708 u64 data)
2709 {
2710 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2711
2712 return dd->rcv_err_status_cnt[10];
2713 }
2714
access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2715 static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry,
2716 void *context, int vl, int mode,
2717 u64 data)
2718 {
2719 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2720
2721 return dd->rcv_err_status_cnt[9];
2722 }
2723
access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2724 static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry,
2725 void *context, int vl, int mode,
2726 u64 data)
2727 {
2728 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2729
2730 return dd->rcv_err_status_cnt[8];
2731 }
2732
access_rx_rcv_qp_map_table_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2733 static u64 access_rx_rcv_qp_map_table_cor_err_cnt(
2734 const struct cntr_entry *entry,
2735 void *context, int vl, int mode, u64 data)
2736 {
2737 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2738
2739 return dd->rcv_err_status_cnt[7];
2740 }
2741
access_rx_rcv_qp_map_table_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2742 static u64 access_rx_rcv_qp_map_table_unc_err_cnt(
2743 const struct cntr_entry *entry,
2744 void *context, int vl, int mode, u64 data)
2745 {
2746 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2747
2748 return dd->rcv_err_status_cnt[6];
2749 }
2750
access_rx_rcv_data_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2751 static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry,
2752 void *context, int vl, int mode,
2753 u64 data)
2754 {
2755 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2756
2757 return dd->rcv_err_status_cnt[5];
2758 }
2759
access_rx_rcv_data_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2760 static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry,
2761 void *context, int vl, int mode,
2762 u64 data)
2763 {
2764 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2765
2766 return dd->rcv_err_status_cnt[4];
2767 }
2768
access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2769 static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry,
2770 void *context, int vl, int mode,
2771 u64 data)
2772 {
2773 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2774
2775 return dd->rcv_err_status_cnt[3];
2776 }
2777
access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2778 static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry,
2779 void *context, int vl, int mode,
2780 u64 data)
2781 {
2782 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2783
2784 return dd->rcv_err_status_cnt[2];
2785 }
2786
access_rx_dc_intf_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2787 static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry,
2788 void *context, int vl, int mode,
2789 u64 data)
2790 {
2791 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2792
2793 return dd->rcv_err_status_cnt[1];
2794 }
2795
access_rx_dma_csr_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2796 static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry,
2797 void *context, int vl, int mode,
2798 u64 data)
2799 {
2800 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2801
2802 return dd->rcv_err_status_cnt[0];
2803 }
2804
2805 /*
2806 * Software counters corresponding to each of the
2807 * error status bits within SendPioErrStatus
2808 */
access_pio_pec_sop_head_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2809 static u64 access_pio_pec_sop_head_parity_err_cnt(
2810 const struct cntr_entry *entry,
2811 void *context, int vl, int mode, u64 data)
2812 {
2813 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2814
2815 return dd->send_pio_err_status_cnt[35];
2816 }
2817
access_pio_pcc_sop_head_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2818 static u64 access_pio_pcc_sop_head_parity_err_cnt(
2819 const struct cntr_entry *entry,
2820 void *context, int vl, int mode, u64 data)
2821 {
2822 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2823
2824 return dd->send_pio_err_status_cnt[34];
2825 }
2826
access_pio_last_returned_cnt_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2827 static u64 access_pio_last_returned_cnt_parity_err_cnt(
2828 const struct cntr_entry *entry,
2829 void *context, int vl, int mode, u64 data)
2830 {
2831 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2832
2833 return dd->send_pio_err_status_cnt[33];
2834 }
2835
access_pio_current_free_cnt_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2836 static u64 access_pio_current_free_cnt_parity_err_cnt(
2837 const struct cntr_entry *entry,
2838 void *context, int vl, int mode, u64 data)
2839 {
2840 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2841
2842 return dd->send_pio_err_status_cnt[32];
2843 }
2844
access_pio_reserved_31_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2845 static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry,
2846 void *context, int vl, int mode,
2847 u64 data)
2848 {
2849 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2850
2851 return dd->send_pio_err_status_cnt[31];
2852 }
2853
access_pio_reserved_30_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2854 static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry,
2855 void *context, int vl, int mode,
2856 u64 data)
2857 {
2858 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2859
2860 return dd->send_pio_err_status_cnt[30];
2861 }
2862
access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2863 static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry,
2864 void *context, int vl, int mode,
2865 u64 data)
2866 {
2867 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2868
2869 return dd->send_pio_err_status_cnt[29];
2870 }
2871
access_pio_ppmc_bqc_mem_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2872 static u64 access_pio_ppmc_bqc_mem_parity_err_cnt(
2873 const struct cntr_entry *entry,
2874 void *context, int vl, int mode, u64 data)
2875 {
2876 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2877
2878 return dd->send_pio_err_status_cnt[28];
2879 }
2880
access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2881 static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry,
2882 void *context, int vl, int mode,
2883 u64 data)
2884 {
2885 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2886
2887 return dd->send_pio_err_status_cnt[27];
2888 }
2889
access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2890 static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry,
2891 void *context, int vl, int mode,
2892 u64 data)
2893 {
2894 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2895
2896 return dd->send_pio_err_status_cnt[26];
2897 }
2898
access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2899 static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry,
2900 void *context, int vl,
2901 int mode, u64 data)
2902 {
2903 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2904
2905 return dd->send_pio_err_status_cnt[25];
2906 }
2907
access_pio_block_qw_count_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2908 static u64 access_pio_block_qw_count_parity_err_cnt(
2909 const struct cntr_entry *entry,
2910 void *context, int vl, int mode, u64 data)
2911 {
2912 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2913
2914 return dd->send_pio_err_status_cnt[24];
2915 }
2916
access_pio_write_qw_valid_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2917 static u64 access_pio_write_qw_valid_parity_err_cnt(
2918 const struct cntr_entry *entry,
2919 void *context, int vl, int mode, u64 data)
2920 {
2921 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2922
2923 return dd->send_pio_err_status_cnt[23];
2924 }
2925
access_pio_state_machine_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2926 static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry,
2927 void *context, int vl, int mode,
2928 u64 data)
2929 {
2930 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2931
2932 return dd->send_pio_err_status_cnt[22];
2933 }
2934
access_pio_write_data_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2935 static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry,
2936 void *context, int vl,
2937 int mode, u64 data)
2938 {
2939 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2940
2941 return dd->send_pio_err_status_cnt[21];
2942 }
2943
access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2944 static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry,
2945 void *context, int vl,
2946 int mode, u64 data)
2947 {
2948 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2949
2950 return dd->send_pio_err_status_cnt[20];
2951 }
2952
access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2953 static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry,
2954 void *context, int vl,
2955 int mode, u64 data)
2956 {
2957 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2958
2959 return dd->send_pio_err_status_cnt[19];
2960 }
2961
access_pio_pkt_evict_sm_or_arb_sm_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2962 static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt(
2963 const struct cntr_entry *entry,
2964 void *context, int vl, int mode, u64 data)
2965 {
2966 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2967
2968 return dd->send_pio_err_status_cnt[18];
2969 }
2970
access_pio_init_sm_in_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2971 static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry,
2972 void *context, int vl, int mode,
2973 u64 data)
2974 {
2975 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2976
2977 return dd->send_pio_err_status_cnt[17];
2978 }
2979
access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2980 static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry,
2981 void *context, int vl, int mode,
2982 u64 data)
2983 {
2984 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2985
2986 return dd->send_pio_err_status_cnt[16];
2987 }
2988
access_pio_credit_ret_fifo_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2989 static u64 access_pio_credit_ret_fifo_parity_err_cnt(
2990 const struct cntr_entry *entry,
2991 void *context, int vl, int mode, u64 data)
2992 {
2993 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2994
2995 return dd->send_pio_err_status_cnt[15];
2996 }
2997
access_pio_v1_len_mem_bank1_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2998 static u64 access_pio_v1_len_mem_bank1_cor_err_cnt(
2999 const struct cntr_entry *entry,
3000 void *context, int vl, int mode, u64 data)
3001 {
3002 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3003
3004 return dd->send_pio_err_status_cnt[14];
3005 }
3006
access_pio_v1_len_mem_bank0_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3007 static u64 access_pio_v1_len_mem_bank0_cor_err_cnt(
3008 const struct cntr_entry *entry,
3009 void *context, int vl, int mode, u64 data)
3010 {
3011 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3012
3013 return dd->send_pio_err_status_cnt[13];
3014 }
3015
access_pio_v1_len_mem_bank1_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3016 static u64 access_pio_v1_len_mem_bank1_unc_err_cnt(
3017 const struct cntr_entry *entry,
3018 void *context, int vl, int mode, u64 data)
3019 {
3020 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3021
3022 return dd->send_pio_err_status_cnt[12];
3023 }
3024
access_pio_v1_len_mem_bank0_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3025 static u64 access_pio_v1_len_mem_bank0_unc_err_cnt(
3026 const struct cntr_entry *entry,
3027 void *context, int vl, int mode, u64 data)
3028 {
3029 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3030
3031 return dd->send_pio_err_status_cnt[11];
3032 }
3033
access_pio_sm_pkt_reset_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3034 static u64 access_pio_sm_pkt_reset_parity_err_cnt(
3035 const struct cntr_entry *entry,
3036 void *context, int vl, int mode, u64 data)
3037 {
3038 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3039
3040 return dd->send_pio_err_status_cnt[10];
3041 }
3042
access_pio_pkt_evict_fifo_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3043 static u64 access_pio_pkt_evict_fifo_parity_err_cnt(
3044 const struct cntr_entry *entry,
3045 void *context, int vl, int mode, u64 data)
3046 {
3047 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3048
3049 return dd->send_pio_err_status_cnt[9];
3050 }
3051
access_pio_sbrdctrl_crrel_fifo_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3052 static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt(
3053 const struct cntr_entry *entry,
3054 void *context, int vl, int mode, u64 data)
3055 {
3056 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3057
3058 return dd->send_pio_err_status_cnt[8];
3059 }
3060
access_pio_sbrdctl_crrel_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3061 static u64 access_pio_sbrdctl_crrel_parity_err_cnt(
3062 const struct cntr_entry *entry,
3063 void *context, int vl, int mode, u64 data)
3064 {
3065 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3066
3067 return dd->send_pio_err_status_cnt[7];
3068 }
3069
access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3070 static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry,
3071 void *context, int vl, int mode,
3072 u64 data)
3073 {
3074 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3075
3076 return dd->send_pio_err_status_cnt[6];
3077 }
3078
access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3079 static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry,
3080 void *context, int vl, int mode,
3081 u64 data)
3082 {
3083 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3084
3085 return dd->send_pio_err_status_cnt[5];
3086 }
3087
access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3088 static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry,
3089 void *context, int vl, int mode,
3090 u64 data)
3091 {
3092 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3093
3094 return dd->send_pio_err_status_cnt[4];
3095 }
3096
access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3097 static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry,
3098 void *context, int vl, int mode,
3099 u64 data)
3100 {
3101 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3102
3103 return dd->send_pio_err_status_cnt[3];
3104 }
3105
access_pio_csr_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3106 static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry,
3107 void *context, int vl, int mode,
3108 u64 data)
3109 {
3110 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3111
3112 return dd->send_pio_err_status_cnt[2];
3113 }
3114
access_pio_write_addr_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3115 static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry,
3116 void *context, int vl,
3117 int mode, u64 data)
3118 {
3119 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3120
3121 return dd->send_pio_err_status_cnt[1];
3122 }
3123
access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3124 static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry,
3125 void *context, int vl, int mode,
3126 u64 data)
3127 {
3128 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3129
3130 return dd->send_pio_err_status_cnt[0];
3131 }
3132
3133 /*
3134 * Software counters corresponding to each of the
3135 * error status bits within SendDmaErrStatus
3136 */
access_sdma_pcie_req_tracking_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3137 static u64 access_sdma_pcie_req_tracking_cor_err_cnt(
3138 const struct cntr_entry *entry,
3139 void *context, int vl, int mode, u64 data)
3140 {
3141 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3142
3143 return dd->send_dma_err_status_cnt[3];
3144 }
3145
access_sdma_pcie_req_tracking_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3146 static u64 access_sdma_pcie_req_tracking_unc_err_cnt(
3147 const struct cntr_entry *entry,
3148 void *context, int vl, int mode, u64 data)
3149 {
3150 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3151
3152 return dd->send_dma_err_status_cnt[2];
3153 }
3154
access_sdma_csr_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3155 static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry,
3156 void *context, int vl, int mode,
3157 u64 data)
3158 {
3159 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3160
3161 return dd->send_dma_err_status_cnt[1];
3162 }
3163
access_sdma_rpy_tag_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3164 static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry,
3165 void *context, int vl, int mode,
3166 u64 data)
3167 {
3168 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3169
3170 return dd->send_dma_err_status_cnt[0];
3171 }
3172
3173 /*
3174 * Software counters corresponding to each of the
3175 * error status bits within SendEgressErrStatus
3176 */
access_tx_read_pio_memory_csr_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3177 static u64 access_tx_read_pio_memory_csr_unc_err_cnt(
3178 const struct cntr_entry *entry,
3179 void *context, int vl, int mode, u64 data)
3180 {
3181 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3182
3183 return dd->send_egress_err_status_cnt[63];
3184 }
3185
access_tx_read_sdma_memory_csr_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3186 static u64 access_tx_read_sdma_memory_csr_err_cnt(
3187 const struct cntr_entry *entry,
3188 void *context, int vl, int mode, u64 data)
3189 {
3190 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3191
3192 return dd->send_egress_err_status_cnt[62];
3193 }
3194
access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3195 static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry,
3196 void *context, int vl, int mode,
3197 u64 data)
3198 {
3199 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3200
3201 return dd->send_egress_err_status_cnt[61];
3202 }
3203
access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3204 static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry,
3205 void *context, int vl,
3206 int mode, u64 data)
3207 {
3208 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3209
3210 return dd->send_egress_err_status_cnt[60];
3211 }
3212
access_tx_read_sdma_memory_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3213 static u64 access_tx_read_sdma_memory_cor_err_cnt(
3214 const struct cntr_entry *entry,
3215 void *context, int vl, int mode, u64 data)
3216 {
3217 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3218
3219 return dd->send_egress_err_status_cnt[59];
3220 }
3221
access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3222 static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry,
3223 void *context, int vl, int mode,
3224 u64 data)
3225 {
3226 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3227
3228 return dd->send_egress_err_status_cnt[58];
3229 }
3230
access_tx_credit_overrun_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3231 static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry,
3232 void *context, int vl, int mode,
3233 u64 data)
3234 {
3235 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3236
3237 return dd->send_egress_err_status_cnt[57];
3238 }
3239
access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3240 static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry,
3241 void *context, int vl, int mode,
3242 u64 data)
3243 {
3244 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3245
3246 return dd->send_egress_err_status_cnt[56];
3247 }
3248
access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3249 static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry,
3250 void *context, int vl, int mode,
3251 u64 data)
3252 {
3253 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3254
3255 return dd->send_egress_err_status_cnt[55];
3256 }
3257
access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3258 static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry,
3259 void *context, int vl, int mode,
3260 u64 data)
3261 {
3262 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3263
3264 return dd->send_egress_err_status_cnt[54];
3265 }
3266
access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3267 static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry,
3268 void *context, int vl, int mode,
3269 u64 data)
3270 {
3271 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3272
3273 return dd->send_egress_err_status_cnt[53];
3274 }
3275
access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3276 static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry,
3277 void *context, int vl, int mode,
3278 u64 data)
3279 {
3280 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3281
3282 return dd->send_egress_err_status_cnt[52];
3283 }
3284
access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3285 static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry,
3286 void *context, int vl, int mode,
3287 u64 data)
3288 {
3289 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3290
3291 return dd->send_egress_err_status_cnt[51];
3292 }
3293
access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3294 static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry,
3295 void *context, int vl, int mode,
3296 u64 data)
3297 {
3298 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3299
3300 return dd->send_egress_err_status_cnt[50];
3301 }
3302
access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3303 static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry,
3304 void *context, int vl, int mode,
3305 u64 data)
3306 {
3307 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3308
3309 return dd->send_egress_err_status_cnt[49];
3310 }
3311
access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3312 static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry,
3313 void *context, int vl, int mode,
3314 u64 data)
3315 {
3316 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3317
3318 return dd->send_egress_err_status_cnt[48];
3319 }
3320
access_tx_credit_return_vl_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3321 static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry,
3322 void *context, int vl, int mode,
3323 u64 data)
3324 {
3325 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3326
3327 return dd->send_egress_err_status_cnt[47];
3328 }
3329
access_tx_hcrc_insertion_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3330 static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry,
3331 void *context, int vl, int mode,
3332 u64 data)
3333 {
3334 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3335
3336 return dd->send_egress_err_status_cnt[46];
3337 }
3338
access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3339 static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry,
3340 void *context, int vl, int mode,
3341 u64 data)
3342 {
3343 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3344
3345 return dd->send_egress_err_status_cnt[45];
3346 }
3347
access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3348 static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry,
3349 void *context, int vl,
3350 int mode, u64 data)
3351 {
3352 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3353
3354 return dd->send_egress_err_status_cnt[44];
3355 }
3356
access_tx_read_sdma_memory_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3357 static u64 access_tx_read_sdma_memory_unc_err_cnt(
3358 const struct cntr_entry *entry,
3359 void *context, int vl, int mode, u64 data)
3360 {
3361 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3362
3363 return dd->send_egress_err_status_cnt[43];
3364 }
3365
access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3366 static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry,
3367 void *context, int vl, int mode,
3368 u64 data)
3369 {
3370 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3371
3372 return dd->send_egress_err_status_cnt[42];
3373 }
3374
access_tx_credit_return_partiy_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3375 static u64 access_tx_credit_return_partiy_err_cnt(
3376 const struct cntr_entry *entry,
3377 void *context, int vl, int mode, u64 data)
3378 {
3379 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3380
3381 return dd->send_egress_err_status_cnt[41];
3382 }
3383
access_tx_launch_fifo8_unc_or_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3384 static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt(
3385 const struct cntr_entry *entry,
3386 void *context, int vl, int mode, u64 data)
3387 {
3388 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3389
3390 return dd->send_egress_err_status_cnt[40];
3391 }
3392
access_tx_launch_fifo7_unc_or_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3393 static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt(
3394 const struct cntr_entry *entry,
3395 void *context, int vl, int mode, u64 data)
3396 {
3397 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3398
3399 return dd->send_egress_err_status_cnt[39];
3400 }
3401
access_tx_launch_fifo6_unc_or_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3402 static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt(
3403 const struct cntr_entry *entry,
3404 void *context, int vl, int mode, u64 data)
3405 {
3406 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3407
3408 return dd->send_egress_err_status_cnt[38];
3409 }
3410
access_tx_launch_fifo5_unc_or_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3411 static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt(
3412 const struct cntr_entry *entry,
3413 void *context, int vl, int mode, u64 data)
3414 {
3415 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3416
3417 return dd->send_egress_err_status_cnt[37];
3418 }
3419
access_tx_launch_fifo4_unc_or_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3420 static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt(
3421 const struct cntr_entry *entry,
3422 void *context, int vl, int mode, u64 data)
3423 {
3424 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3425
3426 return dd->send_egress_err_status_cnt[36];
3427 }
3428
access_tx_launch_fifo3_unc_or_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3429 static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt(
3430 const struct cntr_entry *entry,
3431 void *context, int vl, int mode, u64 data)
3432 {
3433 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3434
3435 return dd->send_egress_err_status_cnt[35];
3436 }
3437
access_tx_launch_fifo2_unc_or_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3438 static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt(
3439 const struct cntr_entry *entry,
3440 void *context, int vl, int mode, u64 data)
3441 {
3442 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3443
3444 return dd->send_egress_err_status_cnt[34];
3445 }
3446
access_tx_launch_fifo1_unc_or_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3447 static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt(
3448 const struct cntr_entry *entry,
3449 void *context, int vl, int mode, u64 data)
3450 {
3451 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3452
3453 return dd->send_egress_err_status_cnt[33];
3454 }
3455
access_tx_launch_fifo0_unc_or_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3456 static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt(
3457 const struct cntr_entry *entry,
3458 void *context, int vl, int mode, u64 data)
3459 {
3460 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3461
3462 return dd->send_egress_err_status_cnt[32];
3463 }
3464
access_tx_sdma15_disallowed_packet_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3465 static u64 access_tx_sdma15_disallowed_packet_err_cnt(
3466 const struct cntr_entry *entry,
3467 void *context, int vl, int mode, u64 data)
3468 {
3469 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3470
3471 return dd->send_egress_err_status_cnt[31];
3472 }
3473
access_tx_sdma14_disallowed_packet_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3474 static u64 access_tx_sdma14_disallowed_packet_err_cnt(
3475 const struct cntr_entry *entry,
3476 void *context, int vl, int mode, u64 data)
3477 {
3478 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3479
3480 return dd->send_egress_err_status_cnt[30];
3481 }
3482
access_tx_sdma13_disallowed_packet_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3483 static u64 access_tx_sdma13_disallowed_packet_err_cnt(
3484 const struct cntr_entry *entry,
3485 void *context, int vl, int mode, u64 data)
3486 {
3487 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3488
3489 return dd->send_egress_err_status_cnt[29];
3490 }
3491
access_tx_sdma12_disallowed_packet_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3492 static u64 access_tx_sdma12_disallowed_packet_err_cnt(
3493 const struct cntr_entry *entry,
3494 void *context, int vl, int mode, u64 data)
3495 {
3496 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3497
3498 return dd->send_egress_err_status_cnt[28];
3499 }
3500
access_tx_sdma11_disallowed_packet_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3501 static u64 access_tx_sdma11_disallowed_packet_err_cnt(
3502 const struct cntr_entry *entry,
3503 void *context, int vl, int mode, u64 data)
3504 {
3505 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3506
3507 return dd->send_egress_err_status_cnt[27];
3508 }
3509
access_tx_sdma10_disallowed_packet_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3510 static u64 access_tx_sdma10_disallowed_packet_err_cnt(
3511 const struct cntr_entry *entry,
3512 void *context, int vl, int mode, u64 data)
3513 {
3514 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3515
3516 return dd->send_egress_err_status_cnt[26];
3517 }
3518
access_tx_sdma9_disallowed_packet_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3519 static u64 access_tx_sdma9_disallowed_packet_err_cnt(
3520 const struct cntr_entry *entry,
3521 void *context, int vl, int mode, u64 data)
3522 {
3523 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3524
3525 return dd->send_egress_err_status_cnt[25];
3526 }
3527
access_tx_sdma8_disallowed_packet_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3528 static u64 access_tx_sdma8_disallowed_packet_err_cnt(
3529 const struct cntr_entry *entry,
3530 void *context, int vl, int mode, u64 data)
3531 {
3532 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3533
3534 return dd->send_egress_err_status_cnt[24];
3535 }
3536
access_tx_sdma7_disallowed_packet_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3537 static u64 access_tx_sdma7_disallowed_packet_err_cnt(
3538 const struct cntr_entry *entry,
3539 void *context, int vl, int mode, u64 data)
3540 {
3541 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3542
3543 return dd->send_egress_err_status_cnt[23];
3544 }
3545
access_tx_sdma6_disallowed_packet_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3546 static u64 access_tx_sdma6_disallowed_packet_err_cnt(
3547 const struct cntr_entry *entry,
3548 void *context, int vl, int mode, u64 data)
3549 {
3550 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3551
3552 return dd->send_egress_err_status_cnt[22];
3553 }
3554
access_tx_sdma5_disallowed_packet_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3555 static u64 access_tx_sdma5_disallowed_packet_err_cnt(
3556 const struct cntr_entry *entry,
3557 void *context, int vl, int mode, u64 data)
3558 {
3559 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3560
3561 return dd->send_egress_err_status_cnt[21];
3562 }
3563
access_tx_sdma4_disallowed_packet_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3564 static u64 access_tx_sdma4_disallowed_packet_err_cnt(
3565 const struct cntr_entry *entry,
3566 void *context, int vl, int mode, u64 data)
3567 {
3568 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3569
3570 return dd->send_egress_err_status_cnt[20];
3571 }
3572
access_tx_sdma3_disallowed_packet_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3573 static u64 access_tx_sdma3_disallowed_packet_err_cnt(
3574 const struct cntr_entry *entry,
3575 void *context, int vl, int mode, u64 data)
3576 {
3577 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3578
3579 return dd->send_egress_err_status_cnt[19];
3580 }
3581
access_tx_sdma2_disallowed_packet_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3582 static u64 access_tx_sdma2_disallowed_packet_err_cnt(
3583 const struct cntr_entry *entry,
3584 void *context, int vl, int mode, u64 data)
3585 {
3586 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3587
3588 return dd->send_egress_err_status_cnt[18];
3589 }
3590
access_tx_sdma1_disallowed_packet_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3591 static u64 access_tx_sdma1_disallowed_packet_err_cnt(
3592 const struct cntr_entry *entry,
3593 void *context, int vl, int mode, u64 data)
3594 {
3595 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3596
3597 return dd->send_egress_err_status_cnt[17];
3598 }
3599
access_tx_sdma0_disallowed_packet_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3600 static u64 access_tx_sdma0_disallowed_packet_err_cnt(
3601 const struct cntr_entry *entry,
3602 void *context, int vl, int mode, u64 data)
3603 {
3604 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3605
3606 return dd->send_egress_err_status_cnt[16];
3607 }
3608
access_tx_config_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3609 static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry,
3610 void *context, int vl, int mode,
3611 u64 data)
3612 {
3613 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3614
3615 return dd->send_egress_err_status_cnt[15];
3616 }
3617
access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3618 static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry,
3619 void *context, int vl,
3620 int mode, u64 data)
3621 {
3622 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3623
3624 return dd->send_egress_err_status_cnt[14];
3625 }
3626
access_tx_launch_csr_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3627 static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry,
3628 void *context, int vl, int mode,
3629 u64 data)
3630 {
3631 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3632
3633 return dd->send_egress_err_status_cnt[13];
3634 }
3635
access_tx_illegal_vl_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3636 static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry,
3637 void *context, int vl, int mode,
3638 u64 data)
3639 {
3640 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3641
3642 return dd->send_egress_err_status_cnt[12];
3643 }
3644
access_tx_sbrd_ctl_state_machine_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3645 static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt(
3646 const struct cntr_entry *entry,
3647 void *context, int vl, int mode, u64 data)
3648 {
3649 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3650
3651 return dd->send_egress_err_status_cnt[11];
3652 }
3653
access_egress_reserved_10_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3654 static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry,
3655 void *context, int vl, int mode,
3656 u64 data)
3657 {
3658 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3659
3660 return dd->send_egress_err_status_cnt[10];
3661 }
3662
access_egress_reserved_9_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3663 static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry,
3664 void *context, int vl, int mode,
3665 u64 data)
3666 {
3667 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3668
3669 return dd->send_egress_err_status_cnt[9];
3670 }
3671
access_tx_sdma_launch_intf_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3672 static u64 access_tx_sdma_launch_intf_parity_err_cnt(
3673 const struct cntr_entry *entry,
3674 void *context, int vl, int mode, u64 data)
3675 {
3676 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3677
3678 return dd->send_egress_err_status_cnt[8];
3679 }
3680
access_tx_pio_launch_intf_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3681 static u64 access_tx_pio_launch_intf_parity_err_cnt(
3682 const struct cntr_entry *entry,
3683 void *context, int vl, int mode, u64 data)
3684 {
3685 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3686
3687 return dd->send_egress_err_status_cnt[7];
3688 }
3689
access_egress_reserved_6_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3690 static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry,
3691 void *context, int vl, int mode,
3692 u64 data)
3693 {
3694 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3695
3696 return dd->send_egress_err_status_cnt[6];
3697 }
3698
access_tx_incorrect_link_state_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3699 static u64 access_tx_incorrect_link_state_err_cnt(
3700 const struct cntr_entry *entry,
3701 void *context, int vl, int mode, u64 data)
3702 {
3703 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3704
3705 return dd->send_egress_err_status_cnt[5];
3706 }
3707
access_tx_linkdown_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3708 static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry,
3709 void *context, int vl, int mode,
3710 u64 data)
3711 {
3712 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3713
3714 return dd->send_egress_err_status_cnt[4];
3715 }
3716
access_tx_egress_fifi_underrun_or_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3717 static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt(
3718 const struct cntr_entry *entry,
3719 void *context, int vl, int mode, u64 data)
3720 {
3721 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3722
3723 return dd->send_egress_err_status_cnt[3];
3724 }
3725
access_egress_reserved_2_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3726 static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry,
3727 void *context, int vl, int mode,
3728 u64 data)
3729 {
3730 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3731
3732 return dd->send_egress_err_status_cnt[2];
3733 }
3734
access_tx_pkt_integrity_mem_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3735 static u64 access_tx_pkt_integrity_mem_unc_err_cnt(
3736 const struct cntr_entry *entry,
3737 void *context, int vl, int mode, u64 data)
3738 {
3739 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3740
3741 return dd->send_egress_err_status_cnt[1];
3742 }
3743
access_tx_pkt_integrity_mem_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3744 static u64 access_tx_pkt_integrity_mem_cor_err_cnt(
3745 const struct cntr_entry *entry,
3746 void *context, int vl, int mode, u64 data)
3747 {
3748 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3749
3750 return dd->send_egress_err_status_cnt[0];
3751 }
3752
3753 /*
3754 * Software counters corresponding to each of the
3755 * error status bits within SendErrStatus
3756 */
access_send_csr_write_bad_addr_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3757 static u64 access_send_csr_write_bad_addr_err_cnt(
3758 const struct cntr_entry *entry,
3759 void *context, int vl, int mode, u64 data)
3760 {
3761 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3762
3763 return dd->send_err_status_cnt[2];
3764 }
3765
access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3766 static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
3767 void *context, int vl,
3768 int mode, u64 data)
3769 {
3770 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3771
3772 return dd->send_err_status_cnt[1];
3773 }
3774
access_send_csr_parity_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3775 static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry,
3776 void *context, int vl, int mode,
3777 u64 data)
3778 {
3779 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3780
3781 return dd->send_err_status_cnt[0];
3782 }
3783
3784 /*
3785 * Software counters corresponding to each of the
3786 * error status bits within SendCtxtErrStatus
3787 */
access_pio_write_out_of_bounds_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3788 static u64 access_pio_write_out_of_bounds_err_cnt(
3789 const struct cntr_entry *entry,
3790 void *context, int vl, int mode, u64 data)
3791 {
3792 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3793
3794 return dd->sw_ctxt_err_status_cnt[4];
3795 }
3796
access_pio_write_overflow_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3797 static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry,
3798 void *context, int vl, int mode,
3799 u64 data)
3800 {
3801 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3802
3803 return dd->sw_ctxt_err_status_cnt[3];
3804 }
3805
access_pio_write_crosses_boundary_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3806 static u64 access_pio_write_crosses_boundary_err_cnt(
3807 const struct cntr_entry *entry,
3808 void *context, int vl, int mode, u64 data)
3809 {
3810 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3811
3812 return dd->sw_ctxt_err_status_cnt[2];
3813 }
3814
access_pio_disallowed_packet_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3815 static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry,
3816 void *context, int vl,
3817 int mode, u64 data)
3818 {
3819 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3820
3821 return dd->sw_ctxt_err_status_cnt[1];
3822 }
3823
access_pio_inconsistent_sop_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3824 static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry,
3825 void *context, int vl, int mode,
3826 u64 data)
3827 {
3828 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3829
3830 return dd->sw_ctxt_err_status_cnt[0];
3831 }
3832
3833 /*
3834 * Software counters corresponding to each of the
3835 * error status bits within SendDmaEngErrStatus
3836 */
access_sdma_header_request_fifo_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3837 static u64 access_sdma_header_request_fifo_cor_err_cnt(
3838 const struct cntr_entry *entry,
3839 void *context, int vl, int mode, u64 data)
3840 {
3841 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3842
3843 return dd->sw_send_dma_eng_err_status_cnt[23];
3844 }
3845
access_sdma_header_storage_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3846 static u64 access_sdma_header_storage_cor_err_cnt(
3847 const struct cntr_entry *entry,
3848 void *context, int vl, int mode, u64 data)
3849 {
3850 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3851
3852 return dd->sw_send_dma_eng_err_status_cnt[22];
3853 }
3854
access_sdma_packet_tracking_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3855 static u64 access_sdma_packet_tracking_cor_err_cnt(
3856 const struct cntr_entry *entry,
3857 void *context, int vl, int mode, u64 data)
3858 {
3859 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3860
3861 return dd->sw_send_dma_eng_err_status_cnt[21];
3862 }
3863
access_sdma_assembly_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3864 static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry,
3865 void *context, int vl, int mode,
3866 u64 data)
3867 {
3868 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3869
3870 return dd->sw_send_dma_eng_err_status_cnt[20];
3871 }
3872
access_sdma_desc_table_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3873 static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry,
3874 void *context, int vl, int mode,
3875 u64 data)
3876 {
3877 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3878
3879 return dd->sw_send_dma_eng_err_status_cnt[19];
3880 }
3881
access_sdma_header_request_fifo_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3882 static u64 access_sdma_header_request_fifo_unc_err_cnt(
3883 const struct cntr_entry *entry,
3884 void *context, int vl, int mode, u64 data)
3885 {
3886 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3887
3888 return dd->sw_send_dma_eng_err_status_cnt[18];
3889 }
3890
access_sdma_header_storage_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3891 static u64 access_sdma_header_storage_unc_err_cnt(
3892 const struct cntr_entry *entry,
3893 void *context, int vl, int mode, u64 data)
3894 {
3895 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3896
3897 return dd->sw_send_dma_eng_err_status_cnt[17];
3898 }
3899
access_sdma_packet_tracking_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3900 static u64 access_sdma_packet_tracking_unc_err_cnt(
3901 const struct cntr_entry *entry,
3902 void *context, int vl, int mode, u64 data)
3903 {
3904 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3905
3906 return dd->sw_send_dma_eng_err_status_cnt[16];
3907 }
3908
access_sdma_assembly_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3909 static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry,
3910 void *context, int vl, int mode,
3911 u64 data)
3912 {
3913 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3914
3915 return dd->sw_send_dma_eng_err_status_cnt[15];
3916 }
3917
access_sdma_desc_table_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3918 static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry,
3919 void *context, int vl, int mode,
3920 u64 data)
3921 {
3922 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3923
3924 return dd->sw_send_dma_eng_err_status_cnt[14];
3925 }
3926
access_sdma_timeout_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3927 static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry,
3928 void *context, int vl, int mode,
3929 u64 data)
3930 {
3931 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3932
3933 return dd->sw_send_dma_eng_err_status_cnt[13];
3934 }
3935
access_sdma_header_length_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3936 static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry,
3937 void *context, int vl, int mode,
3938 u64 data)
3939 {
3940 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3941
3942 return dd->sw_send_dma_eng_err_status_cnt[12];
3943 }
3944
access_sdma_header_address_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3945 static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry,
3946 void *context, int vl, int mode,
3947 u64 data)
3948 {
3949 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3950
3951 return dd->sw_send_dma_eng_err_status_cnt[11];
3952 }
3953
access_sdma_header_select_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3954 static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry,
3955 void *context, int vl, int mode,
3956 u64 data)
3957 {
3958 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3959
3960 return dd->sw_send_dma_eng_err_status_cnt[10];
3961 }
3962
access_sdma_reserved_9_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3963 static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry,
3964 void *context, int vl, int mode,
3965 u64 data)
3966 {
3967 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3968
3969 return dd->sw_send_dma_eng_err_status_cnt[9];
3970 }
3971
access_sdma_packet_desc_overflow_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3972 static u64 access_sdma_packet_desc_overflow_err_cnt(
3973 const struct cntr_entry *entry,
3974 void *context, int vl, int mode, u64 data)
3975 {
3976 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3977
3978 return dd->sw_send_dma_eng_err_status_cnt[8];
3979 }
3980
access_sdma_length_mismatch_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3981 static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry,
3982 void *context, int vl,
3983 int mode, u64 data)
3984 {
3985 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3986
3987 return dd->sw_send_dma_eng_err_status_cnt[7];
3988 }
3989
access_sdma_halt_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3990 static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry,
3991 void *context, int vl, int mode, u64 data)
3992 {
3993 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3994
3995 return dd->sw_send_dma_eng_err_status_cnt[6];
3996 }
3997
access_sdma_mem_read_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3998 static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry,
3999 void *context, int vl, int mode,
4000 u64 data)
4001 {
4002 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4003
4004 return dd->sw_send_dma_eng_err_status_cnt[5];
4005 }
4006
access_sdma_first_desc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)4007 static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry,
4008 void *context, int vl, int mode,
4009 u64 data)
4010 {
4011 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4012
4013 return dd->sw_send_dma_eng_err_status_cnt[4];
4014 }
4015
access_sdma_tail_out_of_bounds_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)4016 static u64 access_sdma_tail_out_of_bounds_err_cnt(
4017 const struct cntr_entry *entry,
4018 void *context, int vl, int mode, u64 data)
4019 {
4020 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4021
4022 return dd->sw_send_dma_eng_err_status_cnt[3];
4023 }
4024
access_sdma_too_long_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)4025 static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry,
4026 void *context, int vl, int mode,
4027 u64 data)
4028 {
4029 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4030
4031 return dd->sw_send_dma_eng_err_status_cnt[2];
4032 }
4033
access_sdma_gen_mismatch_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)4034 static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry,
4035 void *context, int vl, int mode,
4036 u64 data)
4037 {
4038 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4039
4040 return dd->sw_send_dma_eng_err_status_cnt[1];
4041 }
4042
access_sdma_wrong_dw_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)4043 static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry,
4044 void *context, int vl, int mode,
4045 u64 data)
4046 {
4047 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4048
4049 return dd->sw_send_dma_eng_err_status_cnt[0];
4050 }
4051
access_dc_rcv_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)4052 static u64 access_dc_rcv_err_cnt(const struct cntr_entry *entry,
4053 void *context, int vl, int mode,
4054 u64 data)
4055 {
4056 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4057
4058 u64 val = 0;
4059 u64 csr = entry->csr;
4060
4061 val = read_write_csr(dd, csr, mode, data);
4062 if (mode == CNTR_MODE_R) {
4063 val = val > CNTR_MAX - dd->sw_rcv_bypass_packet_errors ?
4064 CNTR_MAX : val + dd->sw_rcv_bypass_packet_errors;
4065 } else if (mode == CNTR_MODE_W) {
4066 dd->sw_rcv_bypass_packet_errors = 0;
4067 } else {
4068 dd_dev_err(dd, "Invalid cntr register access mode");
4069 return 0;
4070 }
4071 return val;
4072 }
4073
4074 #define def_access_sw_cpu(cntr) \
4075 static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry, \
4076 void *context, int vl, int mode, u64 data) \
4077 { \
4078 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \
4079 return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr, \
4080 ppd->ibport_data.rvp.cntr, vl, \
4081 mode, data); \
4082 }
4083
4084 def_access_sw_cpu(rc_acks);
4085 def_access_sw_cpu(rc_qacks);
4086 def_access_sw_cpu(rc_delayed_comp);
4087
4088 #define def_access_ibp_counter(cntr) \
4089 static u64 access_ibp_##cntr(const struct cntr_entry *entry, \
4090 void *context, int vl, int mode, u64 data) \
4091 { \
4092 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \
4093 \
4094 if (vl != CNTR_INVALID_VL) \
4095 return 0; \
4096 \
4097 return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr, \
4098 mode, data); \
4099 }
4100
4101 def_access_ibp_counter(loop_pkts);
4102 def_access_ibp_counter(rc_resends);
4103 def_access_ibp_counter(rnr_naks);
4104 def_access_ibp_counter(other_naks);
4105 def_access_ibp_counter(rc_timeouts);
4106 def_access_ibp_counter(pkt_drops);
4107 def_access_ibp_counter(dmawait);
4108 def_access_ibp_counter(rc_seqnak);
4109 def_access_ibp_counter(rc_dupreq);
4110 def_access_ibp_counter(rdma_seq);
4111 def_access_ibp_counter(unaligned);
4112 def_access_ibp_counter(seq_naks);
4113
4114 static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = {
4115 [C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH),
4116 [C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT,
4117 CNTR_NORMAL),
4118 [C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT,
4119 CNTR_NORMAL),
4120 [C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs,
4121 RCV_TID_FLOW_GEN_MISMATCH_CNT,
4122 CNTR_NORMAL),
4123 [C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL,
4124 CNTR_NORMAL),
4125 [C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs,
4126 RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL),
4127 [C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt,
4128 CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL),
4129 [C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT,
4130 CNTR_NORMAL),
4131 [C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT,
4132 CNTR_NORMAL),
4133 [C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT,
4134 CNTR_NORMAL),
4135 [C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT,
4136 CNTR_NORMAL),
4137 [C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT,
4138 CNTR_NORMAL),
4139 [C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT,
4140 CNTR_NORMAL),
4141 [C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt,
4142 CCE_RCV_URGENT_INT_CNT, CNTR_NORMAL),
4143 [C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt,
4144 CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL),
4145 [C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT,
4146 CNTR_SYNTH),
4147 [C_DC_RCV_ERR] = CNTR_ELEM("DcRecvErr", DCC_ERR_PORTRCV_ERR_CNT, 0, CNTR_SYNTH,
4148 access_dc_rcv_err_cnt),
4149 [C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT,
4150 CNTR_SYNTH),
4151 [C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT,
4152 CNTR_SYNTH),
4153 [C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT,
4154 CNTR_SYNTH),
4155 [C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts,
4156 DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH),
4157 [C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts,
4158 DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT,
4159 CNTR_SYNTH),
4160 [C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr,
4161 DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH),
4162 [C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT,
4163 CNTR_SYNTH),
4164 [C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT,
4165 CNTR_SYNTH),
4166 [C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT,
4167 CNTR_SYNTH),
4168 [C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT,
4169 CNTR_SYNTH),
4170 [C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT,
4171 CNTR_SYNTH),
4172 [C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT,
4173 CNTR_SYNTH),
4174 [C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT,
4175 CNTR_SYNTH),
4176 [C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT,
4177 CNTR_SYNTH | CNTR_VL),
4178 [C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT,
4179 CNTR_SYNTH | CNTR_VL),
4180 [C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH),
4181 [C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT,
4182 CNTR_SYNTH | CNTR_VL),
4183 [C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH),
4184 [C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT,
4185 CNTR_SYNTH | CNTR_VL),
4186 [C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT,
4187 CNTR_SYNTH),
4188 [C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT,
4189 CNTR_SYNTH | CNTR_VL),
4190 [C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT,
4191 CNTR_SYNTH),
4192 [C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT,
4193 CNTR_SYNTH | CNTR_VL),
4194 [C_DC_TOTAL_CRC] =
4195 DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR,
4196 CNTR_SYNTH),
4197 [C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0,
4198 CNTR_SYNTH),
4199 [C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1,
4200 CNTR_SYNTH),
4201 [C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2,
4202 CNTR_SYNTH),
4203 [C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3,
4204 CNTR_SYNTH),
4205 [C_DC_CRC_MULT_LN] =
4206 DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN,
4207 CNTR_SYNTH),
4208 [C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT,
4209 CNTR_SYNTH),
4210 [C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT,
4211 CNTR_SYNTH),
4212 [C_DC_SEQ_CRC_CNT] =
4213 DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT,
4214 CNTR_SYNTH),
4215 [C_DC_ESC0_ONLY_CNT] =
4216 DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT,
4217 CNTR_SYNTH),
4218 [C_DC_ESC0_PLUS1_CNT] =
4219 DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT,
4220 CNTR_SYNTH),
4221 [C_DC_ESC0_PLUS2_CNT] =
4222 DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT,
4223 CNTR_SYNTH),
4224 [C_DC_REINIT_FROM_PEER_CNT] =
4225 DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT,
4226 CNTR_SYNTH),
4227 [C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT,
4228 CNTR_SYNTH),
4229 [C_DC_MISC_FLG_CNT] =
4230 DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT,
4231 CNTR_SYNTH),
4232 [C_DC_PRF_GOOD_LTP_CNT] =
4233 DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH),
4234 [C_DC_PRF_ACCEPTED_LTP_CNT] =
4235 DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT,
4236 CNTR_SYNTH),
4237 [C_DC_PRF_RX_FLIT_CNT] =
4238 DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH),
4239 [C_DC_PRF_TX_FLIT_CNT] =
4240 DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH),
4241 [C_DC_PRF_CLK_CNTR] =
4242 DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH),
4243 [C_DC_PG_DBG_FLIT_CRDTS_CNT] =
4244 DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH),
4245 [C_DC_PG_STS_PAUSE_COMPLETE_CNT] =
4246 DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT,
4247 CNTR_SYNTH),
4248 [C_DC_PG_STS_TX_SBE_CNT] =
4249 DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH),
4250 [C_DC_PG_STS_TX_MBE_CNT] =
4251 DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT,
4252 CNTR_SYNTH),
4253 [C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL,
4254 access_sw_cpu_intr),
4255 [C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL,
4256 access_sw_cpu_rcv_limit),
4257 [C_SW_CTX0_SEQ_DROP] = CNTR_ELEM("SeqDrop0", 0, 0, CNTR_NORMAL,
4258 access_sw_ctx0_seq_drop),
4259 [C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL,
4260 access_sw_vtx_wait),
4261 [C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL,
4262 access_sw_pio_wait),
4263 [C_SW_PIO_DRAIN] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL,
4264 access_sw_pio_drain),
4265 [C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL,
4266 access_sw_kmem_wait),
4267 [C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL,
4268 access_sw_send_schedule),
4269 [C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn",
4270 SEND_DMA_DESC_FETCHED_CNT, 0,
4271 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4272 dev_access_u32_csr),
4273 [C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0,
4274 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4275 access_sde_int_cnt),
4276 [C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0,
4277 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4278 access_sde_err_cnt),
4279 [C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0,
4280 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4281 access_sde_idle_int_cnt),
4282 [C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0,
4283 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4284 access_sde_progress_int_cnt),
4285 /* MISC_ERR_STATUS */
4286 [C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0,
4287 CNTR_NORMAL,
4288 access_misc_pll_lock_fail_err_cnt),
4289 [C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0,
4290 CNTR_NORMAL,
4291 access_misc_mbist_fail_err_cnt),
4292 [C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0,
4293 CNTR_NORMAL,
4294 access_misc_invalid_eep_cmd_err_cnt),
4295 [C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0,
4296 CNTR_NORMAL,
4297 access_misc_efuse_done_parity_err_cnt),
4298 [C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0,
4299 CNTR_NORMAL,
4300 access_misc_efuse_write_err_cnt),
4301 [C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0,
4302 0, CNTR_NORMAL,
4303 access_misc_efuse_read_bad_addr_err_cnt),
4304 [C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0,
4305 CNTR_NORMAL,
4306 access_misc_efuse_csr_parity_err_cnt),
4307 [C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0,
4308 CNTR_NORMAL,
4309 access_misc_fw_auth_failed_err_cnt),
4310 [C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0,
4311 CNTR_NORMAL,
4312 access_misc_key_mismatch_err_cnt),
4313 [C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0,
4314 CNTR_NORMAL,
4315 access_misc_sbus_write_failed_err_cnt),
4316 [C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0,
4317 CNTR_NORMAL,
4318 access_misc_csr_write_bad_addr_err_cnt),
4319 [C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0,
4320 CNTR_NORMAL,
4321 access_misc_csr_read_bad_addr_err_cnt),
4322 [C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0,
4323 CNTR_NORMAL,
4324 access_misc_csr_parity_err_cnt),
4325 /* CceErrStatus */
4326 [C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0,
4327 CNTR_NORMAL,
4328 access_sw_cce_err_status_aggregated_cnt),
4329 [C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0,
4330 CNTR_NORMAL,
4331 access_cce_msix_csr_parity_err_cnt),
4332 [C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0,
4333 CNTR_NORMAL,
4334 access_cce_int_map_unc_err_cnt),
4335 [C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0,
4336 CNTR_NORMAL,
4337 access_cce_int_map_cor_err_cnt),
4338 [C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0,
4339 CNTR_NORMAL,
4340 access_cce_msix_table_unc_err_cnt),
4341 [C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0,
4342 CNTR_NORMAL,
4343 access_cce_msix_table_cor_err_cnt),
4344 [C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0,
4345 0, CNTR_NORMAL,
4346 access_cce_rxdma_conv_fifo_parity_err_cnt),
4347 [C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0,
4348 0, CNTR_NORMAL,
4349 access_cce_rcpl_async_fifo_parity_err_cnt),
4350 [C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0,
4351 CNTR_NORMAL,
4352 access_cce_seg_write_bad_addr_err_cnt),
4353 [C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0,
4354 CNTR_NORMAL,
4355 access_cce_seg_read_bad_addr_err_cnt),
4356 [C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0,
4357 CNTR_NORMAL,
4358 access_la_triggered_cnt),
4359 [C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0,
4360 CNTR_NORMAL,
4361 access_cce_trgt_cpl_timeout_err_cnt),
4362 [C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0,
4363 CNTR_NORMAL,
4364 access_pcic_receive_parity_err_cnt),
4365 [C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0,
4366 CNTR_NORMAL,
4367 access_pcic_transmit_back_parity_err_cnt),
4368 [C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0,
4369 0, CNTR_NORMAL,
4370 access_pcic_transmit_front_parity_err_cnt),
4371 [C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0,
4372 CNTR_NORMAL,
4373 access_pcic_cpl_dat_q_unc_err_cnt),
4374 [C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0,
4375 CNTR_NORMAL,
4376 access_pcic_cpl_hd_q_unc_err_cnt),
4377 [C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0,
4378 CNTR_NORMAL,
4379 access_pcic_post_dat_q_unc_err_cnt),
4380 [C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0,
4381 CNTR_NORMAL,
4382 access_pcic_post_hd_q_unc_err_cnt),
4383 [C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0,
4384 CNTR_NORMAL,
4385 access_pcic_retry_sot_mem_unc_err_cnt),
4386 [C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0,
4387 CNTR_NORMAL,
4388 access_pcic_retry_mem_unc_err),
4389 [C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0,
4390 CNTR_NORMAL,
4391 access_pcic_n_post_dat_q_parity_err_cnt),
4392 [C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0,
4393 CNTR_NORMAL,
4394 access_pcic_n_post_h_q_parity_err_cnt),
4395 [C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0,
4396 CNTR_NORMAL,
4397 access_pcic_cpl_dat_q_cor_err_cnt),
4398 [C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0,
4399 CNTR_NORMAL,
4400 access_pcic_cpl_hd_q_cor_err_cnt),
4401 [C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0,
4402 CNTR_NORMAL,
4403 access_pcic_post_dat_q_cor_err_cnt),
4404 [C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0,
4405 CNTR_NORMAL,
4406 access_pcic_post_hd_q_cor_err_cnt),
4407 [C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0,
4408 CNTR_NORMAL,
4409 access_pcic_retry_sot_mem_cor_err_cnt),
4410 [C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0,
4411 CNTR_NORMAL,
4412 access_pcic_retry_mem_cor_err_cnt),
4413 [C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM(
4414 "CceCli1AsyncFifoDbgParityError", 0, 0,
4415 CNTR_NORMAL,
4416 access_cce_cli1_async_fifo_dbg_parity_err_cnt),
4417 [C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM(
4418 "CceCli1AsyncFifoRxdmaParityError", 0, 0,
4419 CNTR_NORMAL,
4420 access_cce_cli1_async_fifo_rxdma_parity_err_cnt
4421 ),
4422 [C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM(
4423 "CceCli1AsyncFifoSdmaHdParityErr", 0, 0,
4424 CNTR_NORMAL,
4425 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt),
4426 [C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM(
4427 "CceCli1AsyncFifoPioCrdtParityErr", 0, 0,
4428 CNTR_NORMAL,
4429 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt),
4430 [C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0,
4431 0, CNTR_NORMAL,
4432 access_cce_cli2_async_fifo_parity_err_cnt),
4433 [C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0,
4434 CNTR_NORMAL,
4435 access_cce_csr_cfg_bus_parity_err_cnt),
4436 [C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0,
4437 0, CNTR_NORMAL,
4438 access_cce_cli0_async_fifo_parity_err_cnt),
4439 [C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0,
4440 CNTR_NORMAL,
4441 access_cce_rspd_data_parity_err_cnt),
4442 [C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0,
4443 CNTR_NORMAL,
4444 access_cce_trgt_access_err_cnt),
4445 [C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0,
4446 0, CNTR_NORMAL,
4447 access_cce_trgt_async_fifo_parity_err_cnt),
4448 [C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0,
4449 CNTR_NORMAL,
4450 access_cce_csr_write_bad_addr_err_cnt),
4451 [C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0,
4452 CNTR_NORMAL,
4453 access_cce_csr_read_bad_addr_err_cnt),
4454 [C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0,
4455 CNTR_NORMAL,
4456 access_ccs_csr_parity_err_cnt),
4457
4458 /* RcvErrStatus */
4459 [C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0,
4460 CNTR_NORMAL,
4461 access_rx_csr_parity_err_cnt),
4462 [C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0,
4463 CNTR_NORMAL,
4464 access_rx_csr_write_bad_addr_err_cnt),
4465 [C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0,
4466 CNTR_NORMAL,
4467 access_rx_csr_read_bad_addr_err_cnt),
4468 [C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0,
4469 CNTR_NORMAL,
4470 access_rx_dma_csr_unc_err_cnt),
4471 [C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0,
4472 CNTR_NORMAL,
4473 access_rx_dma_dq_fsm_encoding_err_cnt),
4474 [C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0,
4475 CNTR_NORMAL,
4476 access_rx_dma_eq_fsm_encoding_err_cnt),
4477 [C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0,
4478 CNTR_NORMAL,
4479 access_rx_dma_csr_parity_err_cnt),
4480 [C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0,
4481 CNTR_NORMAL,
4482 access_rx_rbuf_data_cor_err_cnt),
4483 [C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0,
4484 CNTR_NORMAL,
4485 access_rx_rbuf_data_unc_err_cnt),
4486 [C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0,
4487 CNTR_NORMAL,
4488 access_rx_dma_data_fifo_rd_cor_err_cnt),
4489 [C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0,
4490 CNTR_NORMAL,
4491 access_rx_dma_data_fifo_rd_unc_err_cnt),
4492 [C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0,
4493 CNTR_NORMAL,
4494 access_rx_dma_hdr_fifo_rd_cor_err_cnt),
4495 [C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0,
4496 CNTR_NORMAL,
4497 access_rx_dma_hdr_fifo_rd_unc_err_cnt),
4498 [C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0,
4499 CNTR_NORMAL,
4500 access_rx_rbuf_desc_part2_cor_err_cnt),
4501 [C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0,
4502 CNTR_NORMAL,
4503 access_rx_rbuf_desc_part2_unc_err_cnt),
4504 [C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0,
4505 CNTR_NORMAL,
4506 access_rx_rbuf_desc_part1_cor_err_cnt),
4507 [C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0,
4508 CNTR_NORMAL,
4509 access_rx_rbuf_desc_part1_unc_err_cnt),
4510 [C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0,
4511 CNTR_NORMAL,
4512 access_rx_hq_intr_fsm_err_cnt),
4513 [C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0,
4514 CNTR_NORMAL,
4515 access_rx_hq_intr_csr_parity_err_cnt),
4516 [C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0,
4517 CNTR_NORMAL,
4518 access_rx_lookup_csr_parity_err_cnt),
4519 [C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0,
4520 CNTR_NORMAL,
4521 access_rx_lookup_rcv_array_cor_err_cnt),
4522 [C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0,
4523 CNTR_NORMAL,
4524 access_rx_lookup_rcv_array_unc_err_cnt),
4525 [C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0,
4526 0, CNTR_NORMAL,
4527 access_rx_lookup_des_part2_parity_err_cnt),
4528 [C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0,
4529 0, CNTR_NORMAL,
4530 access_rx_lookup_des_part1_unc_cor_err_cnt),
4531 [C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0,
4532 CNTR_NORMAL,
4533 access_rx_lookup_des_part1_unc_err_cnt),
4534 [C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0,
4535 CNTR_NORMAL,
4536 access_rx_rbuf_next_free_buf_cor_err_cnt),
4537 [C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0,
4538 CNTR_NORMAL,
4539 access_rx_rbuf_next_free_buf_unc_err_cnt),
4540 [C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM(
4541 "RxRbufFlInitWrAddrParityErr", 0, 0,
4542 CNTR_NORMAL,
4543 access_rbuf_fl_init_wr_addr_parity_err_cnt),
4544 [C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0,
4545 0, CNTR_NORMAL,
4546 access_rx_rbuf_fl_initdone_parity_err_cnt),
4547 [C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0,
4548 0, CNTR_NORMAL,
4549 access_rx_rbuf_fl_write_addr_parity_err_cnt),
4550 [C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0,
4551 CNTR_NORMAL,
4552 access_rx_rbuf_fl_rd_addr_parity_err_cnt),
4553 [C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0,
4554 CNTR_NORMAL,
4555 access_rx_rbuf_empty_err_cnt),
4556 [C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0,
4557 CNTR_NORMAL,
4558 access_rx_rbuf_full_err_cnt),
4559 [C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0,
4560 CNTR_NORMAL,
4561 access_rbuf_bad_lookup_err_cnt),
4562 [C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0,
4563 CNTR_NORMAL,
4564 access_rbuf_ctx_id_parity_err_cnt),
4565 [C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0,
4566 CNTR_NORMAL,
4567 access_rbuf_csr_qeopdw_parity_err_cnt),
4568 [C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM(
4569 "RxRbufCsrQNumOfPktParityErr", 0, 0,
4570 CNTR_NORMAL,
4571 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt),
4572 [C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM(
4573 "RxRbufCsrQTlPtrParityErr", 0, 0,
4574 CNTR_NORMAL,
4575 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt),
4576 [C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0,
4577 0, CNTR_NORMAL,
4578 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt),
4579 [C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0,
4580 0, CNTR_NORMAL,
4581 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt),
4582 [C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr",
4583 0, 0, CNTR_NORMAL,
4584 access_rx_rbuf_csr_q_next_buf_parity_err_cnt),
4585 [C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0,
4586 0, CNTR_NORMAL,
4587 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt),
4588 [C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM(
4589 "RxRbufCsrQHeadBufNumParityErr", 0, 0,
4590 CNTR_NORMAL,
4591 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt),
4592 [C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0,
4593 0, CNTR_NORMAL,
4594 access_rx_rbuf_block_list_read_cor_err_cnt),
4595 [C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0,
4596 0, CNTR_NORMAL,
4597 access_rx_rbuf_block_list_read_unc_err_cnt),
4598 [C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0,
4599 CNTR_NORMAL,
4600 access_rx_rbuf_lookup_des_cor_err_cnt),
4601 [C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0,
4602 CNTR_NORMAL,
4603 access_rx_rbuf_lookup_des_unc_err_cnt),
4604 [C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM(
4605 "RxRbufLookupDesRegUncCorErr", 0, 0,
4606 CNTR_NORMAL,
4607 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt),
4608 [C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0,
4609 CNTR_NORMAL,
4610 access_rx_rbuf_lookup_des_reg_unc_err_cnt),
4611 [C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0,
4612 CNTR_NORMAL,
4613 access_rx_rbuf_free_list_cor_err_cnt),
4614 [C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0,
4615 CNTR_NORMAL,
4616 access_rx_rbuf_free_list_unc_err_cnt),
4617 [C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0,
4618 CNTR_NORMAL,
4619 access_rx_rcv_fsm_encoding_err_cnt),
4620 [C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0,
4621 CNTR_NORMAL,
4622 access_rx_dma_flag_cor_err_cnt),
4623 [C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0,
4624 CNTR_NORMAL,
4625 access_rx_dma_flag_unc_err_cnt),
4626 [C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0,
4627 CNTR_NORMAL,
4628 access_rx_dc_sop_eop_parity_err_cnt),
4629 [C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0,
4630 CNTR_NORMAL,
4631 access_rx_rcv_csr_parity_err_cnt),
4632 [C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0,
4633 CNTR_NORMAL,
4634 access_rx_rcv_qp_map_table_cor_err_cnt),
4635 [C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0,
4636 CNTR_NORMAL,
4637 access_rx_rcv_qp_map_table_unc_err_cnt),
4638 [C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0,
4639 CNTR_NORMAL,
4640 access_rx_rcv_data_cor_err_cnt),
4641 [C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0,
4642 CNTR_NORMAL,
4643 access_rx_rcv_data_unc_err_cnt),
4644 [C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0,
4645 CNTR_NORMAL,
4646 access_rx_rcv_hdr_cor_err_cnt),
4647 [C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0,
4648 CNTR_NORMAL,
4649 access_rx_rcv_hdr_unc_err_cnt),
4650 [C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0,
4651 CNTR_NORMAL,
4652 access_rx_dc_intf_parity_err_cnt),
4653 [C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0,
4654 CNTR_NORMAL,
4655 access_rx_dma_csr_cor_err_cnt),
4656 /* SendPioErrStatus */
4657 [C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0,
4658 CNTR_NORMAL,
4659 access_pio_pec_sop_head_parity_err_cnt),
4660 [C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0,
4661 CNTR_NORMAL,
4662 access_pio_pcc_sop_head_parity_err_cnt),
4663 [C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr",
4664 0, 0, CNTR_NORMAL,
4665 access_pio_last_returned_cnt_parity_err_cnt),
4666 [C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0,
4667 0, CNTR_NORMAL,
4668 access_pio_current_free_cnt_parity_err_cnt),
4669 [C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0,
4670 CNTR_NORMAL,
4671 access_pio_reserved_31_err_cnt),
4672 [C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0,
4673 CNTR_NORMAL,
4674 access_pio_reserved_30_err_cnt),
4675 [C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0,
4676 CNTR_NORMAL,
4677 access_pio_ppmc_sop_len_err_cnt),
4678 [C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0,
4679 CNTR_NORMAL,
4680 access_pio_ppmc_bqc_mem_parity_err_cnt),
4681 [C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0,
4682 CNTR_NORMAL,
4683 access_pio_vl_fifo_parity_err_cnt),
4684 [C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0,
4685 CNTR_NORMAL,
4686 access_pio_vlf_sop_parity_err_cnt),
4687 [C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0,
4688 CNTR_NORMAL,
4689 access_pio_vlf_v1_len_parity_err_cnt),
4690 [C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0,
4691 CNTR_NORMAL,
4692 access_pio_block_qw_count_parity_err_cnt),
4693 [C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0,
4694 CNTR_NORMAL,
4695 access_pio_write_qw_valid_parity_err_cnt),
4696 [C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0,
4697 CNTR_NORMAL,
4698 access_pio_state_machine_err_cnt),
4699 [C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0,
4700 CNTR_NORMAL,
4701 access_pio_write_data_parity_err_cnt),
4702 [C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0,
4703 CNTR_NORMAL,
4704 access_pio_host_addr_mem_cor_err_cnt),
4705 [C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0,
4706 CNTR_NORMAL,
4707 access_pio_host_addr_mem_unc_err_cnt),
4708 [C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0,
4709 CNTR_NORMAL,
4710 access_pio_pkt_evict_sm_or_arb_sm_err_cnt),
4711 [C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0,
4712 CNTR_NORMAL,
4713 access_pio_init_sm_in_err_cnt),
4714 [C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0,
4715 CNTR_NORMAL,
4716 access_pio_ppmc_pbl_fifo_err_cnt),
4717 [C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0,
4718 0, CNTR_NORMAL,
4719 access_pio_credit_ret_fifo_parity_err_cnt),
4720 [C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0,
4721 CNTR_NORMAL,
4722 access_pio_v1_len_mem_bank1_cor_err_cnt),
4723 [C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0,
4724 CNTR_NORMAL,
4725 access_pio_v1_len_mem_bank0_cor_err_cnt),
4726 [C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0,
4727 CNTR_NORMAL,
4728 access_pio_v1_len_mem_bank1_unc_err_cnt),
4729 [C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0,
4730 CNTR_NORMAL,
4731 access_pio_v1_len_mem_bank0_unc_err_cnt),
4732 [C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0,
4733 CNTR_NORMAL,
4734 access_pio_sm_pkt_reset_parity_err_cnt),
4735 [C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0,
4736 CNTR_NORMAL,
4737 access_pio_pkt_evict_fifo_parity_err_cnt),
4738 [C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM(
4739 "PioSbrdctrlCrrelFifoParityErr", 0, 0,
4740 CNTR_NORMAL,
4741 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt),
4742 [C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0,
4743 CNTR_NORMAL,
4744 access_pio_sbrdctl_crrel_parity_err_cnt),
4745 [C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0,
4746 CNTR_NORMAL,
4747 access_pio_pec_fifo_parity_err_cnt),
4748 [C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0,
4749 CNTR_NORMAL,
4750 access_pio_pcc_fifo_parity_err_cnt),
4751 [C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0,
4752 CNTR_NORMAL,
4753 access_pio_sb_mem_fifo1_err_cnt),
4754 [C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0,
4755 CNTR_NORMAL,
4756 access_pio_sb_mem_fifo0_err_cnt),
4757 [C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0,
4758 CNTR_NORMAL,
4759 access_pio_csr_parity_err_cnt),
4760 [C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0,
4761 CNTR_NORMAL,
4762 access_pio_write_addr_parity_err_cnt),
4763 [C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0,
4764 CNTR_NORMAL,
4765 access_pio_write_bad_ctxt_err_cnt),
4766 /* SendDmaErrStatus */
4767 [C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0,
4768 0, CNTR_NORMAL,
4769 access_sdma_pcie_req_tracking_cor_err_cnt),
4770 [C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0,
4771 0, CNTR_NORMAL,
4772 access_sdma_pcie_req_tracking_unc_err_cnt),
4773 [C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0,
4774 CNTR_NORMAL,
4775 access_sdma_csr_parity_err_cnt),
4776 [C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0,
4777 CNTR_NORMAL,
4778 access_sdma_rpy_tag_err_cnt),
4779 /* SendEgressErrStatus */
4780 [C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0,
4781 CNTR_NORMAL,
4782 access_tx_read_pio_memory_csr_unc_err_cnt),
4783 [C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0,
4784 0, CNTR_NORMAL,
4785 access_tx_read_sdma_memory_csr_err_cnt),
4786 [C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0,
4787 CNTR_NORMAL,
4788 access_tx_egress_fifo_cor_err_cnt),
4789 [C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0,
4790 CNTR_NORMAL,
4791 access_tx_read_pio_memory_cor_err_cnt),
4792 [C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0,
4793 CNTR_NORMAL,
4794 access_tx_read_sdma_memory_cor_err_cnt),
4795 [C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0,
4796 CNTR_NORMAL,
4797 access_tx_sb_hdr_cor_err_cnt),
4798 [C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0,
4799 CNTR_NORMAL,
4800 access_tx_credit_overrun_err_cnt),
4801 [C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0,
4802 CNTR_NORMAL,
4803 access_tx_launch_fifo8_cor_err_cnt),
4804 [C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0,
4805 CNTR_NORMAL,
4806 access_tx_launch_fifo7_cor_err_cnt),
4807 [C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0,
4808 CNTR_NORMAL,
4809 access_tx_launch_fifo6_cor_err_cnt),
4810 [C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0,
4811 CNTR_NORMAL,
4812 access_tx_launch_fifo5_cor_err_cnt),
4813 [C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0,
4814 CNTR_NORMAL,
4815 access_tx_launch_fifo4_cor_err_cnt),
4816 [C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0,
4817 CNTR_NORMAL,
4818 access_tx_launch_fifo3_cor_err_cnt),
4819 [C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0,
4820 CNTR_NORMAL,
4821 access_tx_launch_fifo2_cor_err_cnt),
4822 [C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0,
4823 CNTR_NORMAL,
4824 access_tx_launch_fifo1_cor_err_cnt),
4825 [C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0,
4826 CNTR_NORMAL,
4827 access_tx_launch_fifo0_cor_err_cnt),
4828 [C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0,
4829 CNTR_NORMAL,
4830 access_tx_credit_return_vl_err_cnt),
4831 [C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0,
4832 CNTR_NORMAL,
4833 access_tx_hcrc_insertion_err_cnt),
4834 [C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0,
4835 CNTR_NORMAL,
4836 access_tx_egress_fifo_unc_err_cnt),
4837 [C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0,
4838 CNTR_NORMAL,
4839 access_tx_read_pio_memory_unc_err_cnt),
4840 [C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0,
4841 CNTR_NORMAL,
4842 access_tx_read_sdma_memory_unc_err_cnt),
4843 [C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0,
4844 CNTR_NORMAL,
4845 access_tx_sb_hdr_unc_err_cnt),
4846 [C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0,
4847 CNTR_NORMAL,
4848 access_tx_credit_return_partiy_err_cnt),
4849 [C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr",
4850 0, 0, CNTR_NORMAL,
4851 access_tx_launch_fifo8_unc_or_parity_err_cnt),
4852 [C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr",
4853 0, 0, CNTR_NORMAL,
4854 access_tx_launch_fifo7_unc_or_parity_err_cnt),
4855 [C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr",
4856 0, 0, CNTR_NORMAL,
4857 access_tx_launch_fifo6_unc_or_parity_err_cnt),
4858 [C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr",
4859 0, 0, CNTR_NORMAL,
4860 access_tx_launch_fifo5_unc_or_parity_err_cnt),
4861 [C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr",
4862 0, 0, CNTR_NORMAL,
4863 access_tx_launch_fifo4_unc_or_parity_err_cnt),
4864 [C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr",
4865 0, 0, CNTR_NORMAL,
4866 access_tx_launch_fifo3_unc_or_parity_err_cnt),
4867 [C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr",
4868 0, 0, CNTR_NORMAL,
4869 access_tx_launch_fifo2_unc_or_parity_err_cnt),
4870 [C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr",
4871 0, 0, CNTR_NORMAL,
4872 access_tx_launch_fifo1_unc_or_parity_err_cnt),
4873 [C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr",
4874 0, 0, CNTR_NORMAL,
4875 access_tx_launch_fifo0_unc_or_parity_err_cnt),
4876 [C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr",
4877 0, 0, CNTR_NORMAL,
4878 access_tx_sdma15_disallowed_packet_err_cnt),
4879 [C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr",
4880 0, 0, CNTR_NORMAL,
4881 access_tx_sdma14_disallowed_packet_err_cnt),
4882 [C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr",
4883 0, 0, CNTR_NORMAL,
4884 access_tx_sdma13_disallowed_packet_err_cnt),
4885 [C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr",
4886 0, 0, CNTR_NORMAL,
4887 access_tx_sdma12_disallowed_packet_err_cnt),
4888 [C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr",
4889 0, 0, CNTR_NORMAL,
4890 access_tx_sdma11_disallowed_packet_err_cnt),
4891 [C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr",
4892 0, 0, CNTR_NORMAL,
4893 access_tx_sdma10_disallowed_packet_err_cnt),
4894 [C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr",
4895 0, 0, CNTR_NORMAL,
4896 access_tx_sdma9_disallowed_packet_err_cnt),
4897 [C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr",
4898 0, 0, CNTR_NORMAL,
4899 access_tx_sdma8_disallowed_packet_err_cnt),
4900 [C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr",
4901 0, 0, CNTR_NORMAL,
4902 access_tx_sdma7_disallowed_packet_err_cnt),
4903 [C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr",
4904 0, 0, CNTR_NORMAL,
4905 access_tx_sdma6_disallowed_packet_err_cnt),
4906 [C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr",
4907 0, 0, CNTR_NORMAL,
4908 access_tx_sdma5_disallowed_packet_err_cnt),
4909 [C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr",
4910 0, 0, CNTR_NORMAL,
4911 access_tx_sdma4_disallowed_packet_err_cnt),
4912 [C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr",
4913 0, 0, CNTR_NORMAL,
4914 access_tx_sdma3_disallowed_packet_err_cnt),
4915 [C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr",
4916 0, 0, CNTR_NORMAL,
4917 access_tx_sdma2_disallowed_packet_err_cnt),
4918 [C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr",
4919 0, 0, CNTR_NORMAL,
4920 access_tx_sdma1_disallowed_packet_err_cnt),
4921 [C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr",
4922 0, 0, CNTR_NORMAL,
4923 access_tx_sdma0_disallowed_packet_err_cnt),
4924 [C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0,
4925 CNTR_NORMAL,
4926 access_tx_config_parity_err_cnt),
4927 [C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0,
4928 CNTR_NORMAL,
4929 access_tx_sbrd_ctl_csr_parity_err_cnt),
4930 [C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0,
4931 CNTR_NORMAL,
4932 access_tx_launch_csr_parity_err_cnt),
4933 [C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0,
4934 CNTR_NORMAL,
4935 access_tx_illegal_vl_err_cnt),
4936 [C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM(
4937 "TxSbrdCtlStateMachineParityErr", 0, 0,
4938 CNTR_NORMAL,
4939 access_tx_sbrd_ctl_state_machine_parity_err_cnt),
4940 [C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0,
4941 CNTR_NORMAL,
4942 access_egress_reserved_10_err_cnt),
4943 [C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0,
4944 CNTR_NORMAL,
4945 access_egress_reserved_9_err_cnt),
4946 [C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr",
4947 0, 0, CNTR_NORMAL,
4948 access_tx_sdma_launch_intf_parity_err_cnt),
4949 [C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0,
4950 CNTR_NORMAL,
4951 access_tx_pio_launch_intf_parity_err_cnt),
4952 [C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0,
4953 CNTR_NORMAL,
4954 access_egress_reserved_6_err_cnt),
4955 [C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0,
4956 CNTR_NORMAL,
4957 access_tx_incorrect_link_state_err_cnt),
4958 [C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0,
4959 CNTR_NORMAL,
4960 access_tx_linkdown_err_cnt),
4961 [C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM(
4962 "EgressFifoUnderrunOrParityErr", 0, 0,
4963 CNTR_NORMAL,
4964 access_tx_egress_fifi_underrun_or_parity_err_cnt),
4965 [C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0,
4966 CNTR_NORMAL,
4967 access_egress_reserved_2_err_cnt),
4968 [C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0,
4969 CNTR_NORMAL,
4970 access_tx_pkt_integrity_mem_unc_err_cnt),
4971 [C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0,
4972 CNTR_NORMAL,
4973 access_tx_pkt_integrity_mem_cor_err_cnt),
4974 /* SendErrStatus */
4975 [C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0,
4976 CNTR_NORMAL,
4977 access_send_csr_write_bad_addr_err_cnt),
4978 [C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0,
4979 CNTR_NORMAL,
4980 access_send_csr_read_bad_addr_err_cnt),
4981 [C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0,
4982 CNTR_NORMAL,
4983 access_send_csr_parity_cnt),
4984 /* SendCtxtErrStatus */
4985 [C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0,
4986 CNTR_NORMAL,
4987 access_pio_write_out_of_bounds_err_cnt),
4988 [C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0,
4989 CNTR_NORMAL,
4990 access_pio_write_overflow_err_cnt),
4991 [C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr",
4992 0, 0, CNTR_NORMAL,
4993 access_pio_write_crosses_boundary_err_cnt),
4994 [C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0,
4995 CNTR_NORMAL,
4996 access_pio_disallowed_packet_err_cnt),
4997 [C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0,
4998 CNTR_NORMAL,
4999 access_pio_inconsistent_sop_err_cnt),
5000 /* SendDmaEngErrStatus */
5001 [C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr",
5002 0, 0, CNTR_NORMAL,
5003 access_sdma_header_request_fifo_cor_err_cnt),
5004 [C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0,
5005 CNTR_NORMAL,
5006 access_sdma_header_storage_cor_err_cnt),
5007 [C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0,
5008 CNTR_NORMAL,
5009 access_sdma_packet_tracking_cor_err_cnt),
5010 [C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0,
5011 CNTR_NORMAL,
5012 access_sdma_assembly_cor_err_cnt),
5013 [C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0,
5014 CNTR_NORMAL,
5015 access_sdma_desc_table_cor_err_cnt),
5016 [C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr",
5017 0, 0, CNTR_NORMAL,
5018 access_sdma_header_request_fifo_unc_err_cnt),
5019 [C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0,
5020 CNTR_NORMAL,
5021 access_sdma_header_storage_unc_err_cnt),
5022 [C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0,
5023 CNTR_NORMAL,
5024 access_sdma_packet_tracking_unc_err_cnt),
5025 [C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0,
5026 CNTR_NORMAL,
5027 access_sdma_assembly_unc_err_cnt),
5028 [C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0,
5029 CNTR_NORMAL,
5030 access_sdma_desc_table_unc_err_cnt),
5031 [C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0,
5032 CNTR_NORMAL,
5033 access_sdma_timeout_err_cnt),
5034 [C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0,
5035 CNTR_NORMAL,
5036 access_sdma_header_length_err_cnt),
5037 [C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0,
5038 CNTR_NORMAL,
5039 access_sdma_header_address_err_cnt),
5040 [C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0,
5041 CNTR_NORMAL,
5042 access_sdma_header_select_err_cnt),
5043 [C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0,
5044 CNTR_NORMAL,
5045 access_sdma_reserved_9_err_cnt),
5046 [C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0,
5047 CNTR_NORMAL,
5048 access_sdma_packet_desc_overflow_err_cnt),
5049 [C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0,
5050 CNTR_NORMAL,
5051 access_sdma_length_mismatch_err_cnt),
5052 [C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0,
5053 CNTR_NORMAL,
5054 access_sdma_halt_err_cnt),
5055 [C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0,
5056 CNTR_NORMAL,
5057 access_sdma_mem_read_err_cnt),
5058 [C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0,
5059 CNTR_NORMAL,
5060 access_sdma_first_desc_err_cnt),
5061 [C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0,
5062 CNTR_NORMAL,
5063 access_sdma_tail_out_of_bounds_err_cnt),
5064 [C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0,
5065 CNTR_NORMAL,
5066 access_sdma_too_long_err_cnt),
5067 [C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0,
5068 CNTR_NORMAL,
5069 access_sdma_gen_mismatch_err_cnt),
5070 [C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0,
5071 CNTR_NORMAL,
5072 access_sdma_wrong_dw_err_cnt),
5073 };
5074
5075 static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = {
5076 [C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT,
5077 CNTR_NORMAL),
5078 [C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT,
5079 CNTR_NORMAL),
5080 [C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT,
5081 CNTR_NORMAL),
5082 [C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT,
5083 CNTR_NORMAL),
5084 [C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT,
5085 CNTR_NORMAL),
5086 [C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT,
5087 CNTR_NORMAL),
5088 [C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT,
5089 CNTR_NORMAL),
5090 [C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL),
5091 [C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL),
5092 [C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH),
5093 [C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT,
5094 CNTR_SYNTH | CNTR_VL),
5095 [C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT,
5096 CNTR_SYNTH | CNTR_VL),
5097 [C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT,
5098 CNTR_SYNTH | CNTR_VL),
5099 [C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL),
5100 [C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL),
5101 [C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5102 access_sw_link_dn_cnt),
5103 [C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5104 access_sw_link_up_cnt),
5105 [C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL,
5106 access_sw_unknown_frame_cnt),
5107 [C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5108 access_sw_xmit_discards),
5109 [C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0,
5110 CNTR_SYNTH | CNTR_32BIT | CNTR_VL,
5111 access_sw_xmit_discards),
5112 [C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH,
5113 access_xmit_constraint_errs),
5114 [C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH,
5115 access_rcv_constraint_errs),
5116 [C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts),
5117 [C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends),
5118 [C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks),
5119 [C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks),
5120 [C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts),
5121 [C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops),
5122 [C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait),
5123 [C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak),
5124 [C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq),
5125 [C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq),
5126 [C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned),
5127 [C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks),
5128 [C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL,
5129 access_sw_cpu_rc_acks),
5130 [C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL,
5131 access_sw_cpu_rc_qacks),
5132 [C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL,
5133 access_sw_cpu_rc_delayed_comp),
5134 [OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1),
5135 [OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3),
5136 [OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5),
5137 [OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7),
5138 [OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9),
5139 [OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11),
5140 [OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13),
5141 [OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15),
5142 [OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17),
5143 [OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19),
5144 [OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21),
5145 [OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23),
5146 [OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25),
5147 [OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27),
5148 [OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29),
5149 [OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31),
5150 [OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33),
5151 [OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35),
5152 [OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37),
5153 [OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39),
5154 [OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41),
5155 [OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43),
5156 [OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45),
5157 [OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47),
5158 [OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49),
5159 [OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51),
5160 [OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53),
5161 [OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55),
5162 [OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57),
5163 [OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59),
5164 [OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61),
5165 [OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63),
5166 [OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65),
5167 [OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67),
5168 [OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69),
5169 [OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71),
5170 [OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73),
5171 [OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75),
5172 [OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77),
5173 [OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79),
5174 [OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81),
5175 [OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83),
5176 [OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85),
5177 [OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87),
5178 [OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89),
5179 [OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91),
5180 [OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93),
5181 [OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95),
5182 [OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97),
5183 [OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99),
5184 [OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101),
5185 [OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103),
5186 [OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105),
5187 [OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107),
5188 [OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109),
5189 [OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111),
5190 [OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113),
5191 [OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115),
5192 [OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117),
5193 [OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119),
5194 [OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121),
5195 [OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123),
5196 [OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125),
5197 [OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127),
5198 [OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129),
5199 [OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131),
5200 [OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133),
5201 [OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135),
5202 [OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137),
5203 [OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139),
5204 [OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141),
5205 [OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143),
5206 [OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145),
5207 [OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147),
5208 [OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149),
5209 [OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151),
5210 [OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153),
5211 [OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155),
5212 [OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157),
5213 [OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159),
5214 };
5215
5216 /* ======================================================================== */
5217
5218 /* return true if this is chip revision revision a */
is_ax(struct hfi1_devdata * dd)5219 int is_ax(struct hfi1_devdata *dd)
5220 {
5221 u8 chip_rev_minor =
5222 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5223 & CCE_REVISION_CHIP_REV_MINOR_MASK;
5224 return (chip_rev_minor & 0xf0) == 0;
5225 }
5226
5227 /* return true if this is chip revision revision b */
is_bx(struct hfi1_devdata * dd)5228 int is_bx(struct hfi1_devdata *dd)
5229 {
5230 u8 chip_rev_minor =
5231 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5232 & CCE_REVISION_CHIP_REV_MINOR_MASK;
5233 return (chip_rev_minor & 0xF0) == 0x10;
5234 }
5235
5236 /*
5237 * Append string s to buffer buf. Arguments curp and len are the current
5238 * position and remaining length, respectively.
5239 *
5240 * return 0 on success, 1 on out of room
5241 */
append_str(char * buf,char ** curp,int * lenp,const char * s)5242 static int append_str(char *buf, char **curp, int *lenp, const char *s)
5243 {
5244 char *p = *curp;
5245 int len = *lenp;
5246 int result = 0; /* success */
5247 char c;
5248
5249 /* add a comma, if first in the buffer */
5250 if (p != buf) {
5251 if (len == 0) {
5252 result = 1; /* out of room */
5253 goto done;
5254 }
5255 *p++ = ',';
5256 len--;
5257 }
5258
5259 /* copy the string */
5260 while ((c = *s++) != 0) {
5261 if (len == 0) {
5262 result = 1; /* out of room */
5263 goto done;
5264 }
5265 *p++ = c;
5266 len--;
5267 }
5268
5269 done:
5270 /* write return values */
5271 *curp = p;
5272 *lenp = len;
5273
5274 return result;
5275 }
5276
5277 /*
5278 * Using the given flag table, print a comma separated string into
5279 * the buffer. End in '*' if the buffer is too short.
5280 */
flag_string(char * buf,int buf_len,u64 flags,struct flag_table * table,int table_size)5281 static char *flag_string(char *buf, int buf_len, u64 flags,
5282 struct flag_table *table, int table_size)
5283 {
5284 char extra[32];
5285 char *p = buf;
5286 int len = buf_len;
5287 int no_room = 0;
5288 int i;
5289
5290 /* make sure there is at least 2 so we can form "*" */
5291 if (len < 2)
5292 return "";
5293
5294 len--; /* leave room for a nul */
5295 for (i = 0; i < table_size; i++) {
5296 if (flags & table[i].flag) {
5297 no_room = append_str(buf, &p, &len, table[i].str);
5298 if (no_room)
5299 break;
5300 flags &= ~table[i].flag;
5301 }
5302 }
5303
5304 /* any undocumented bits left? */
5305 if (!no_room && flags) {
5306 snprintf(extra, sizeof(extra), "bits 0x%llx", flags);
5307 no_room = append_str(buf, &p, &len, extra);
5308 }
5309
5310 /* add * if ran out of room */
5311 if (no_room) {
5312 /* may need to back up to add space for a '*' */
5313 if (len == 0)
5314 --p;
5315 *p++ = '*';
5316 }
5317
5318 /* add final nul - space already allocated above */
5319 *p = 0;
5320 return buf;
5321 }
5322
5323 /* first 8 CCE error interrupt source names */
5324 static const char * const cce_misc_names[] = {
5325 "CceErrInt", /* 0 */
5326 "RxeErrInt", /* 1 */
5327 "MiscErrInt", /* 2 */
5328 "Reserved3", /* 3 */
5329 "PioErrInt", /* 4 */
5330 "SDmaErrInt", /* 5 */
5331 "EgressErrInt", /* 6 */
5332 "TxeErrInt" /* 7 */
5333 };
5334
5335 /*
5336 * Return the miscellaneous error interrupt name.
5337 */
is_misc_err_name(char * buf,size_t bsize,unsigned int source)5338 static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source)
5339 {
5340 if (source < ARRAY_SIZE(cce_misc_names))
5341 strncpy(buf, cce_misc_names[source], bsize);
5342 else
5343 snprintf(buf, bsize, "Reserved%u",
5344 source + IS_GENERAL_ERR_START);
5345
5346 return buf;
5347 }
5348
5349 /*
5350 * Return the SDMA engine error interrupt name.
5351 */
is_sdma_eng_err_name(char * buf,size_t bsize,unsigned int source)5352 static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source)
5353 {
5354 snprintf(buf, bsize, "SDmaEngErrInt%u", source);
5355 return buf;
5356 }
5357
5358 /*
5359 * Return the send context error interrupt name.
5360 */
is_sendctxt_err_name(char * buf,size_t bsize,unsigned int source)5361 static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source)
5362 {
5363 snprintf(buf, bsize, "SendCtxtErrInt%u", source);
5364 return buf;
5365 }
5366
5367 static const char * const various_names[] = {
5368 "PbcInt",
5369 "GpioAssertInt",
5370 "Qsfp1Int",
5371 "Qsfp2Int",
5372 "TCritInt"
5373 };
5374
5375 /*
5376 * Return the various interrupt name.
5377 */
is_various_name(char * buf,size_t bsize,unsigned int source)5378 static char *is_various_name(char *buf, size_t bsize, unsigned int source)
5379 {
5380 if (source < ARRAY_SIZE(various_names))
5381 strncpy(buf, various_names[source], bsize);
5382 else
5383 snprintf(buf, bsize, "Reserved%u", source + IS_VARIOUS_START);
5384 return buf;
5385 }
5386
5387 /*
5388 * Return the DC interrupt name.
5389 */
is_dc_name(char * buf,size_t bsize,unsigned int source)5390 static char *is_dc_name(char *buf, size_t bsize, unsigned int source)
5391 {
5392 static const char * const dc_int_names[] = {
5393 "common",
5394 "lcb",
5395 "8051",
5396 "lbm" /* local block merge */
5397 };
5398
5399 if (source < ARRAY_SIZE(dc_int_names))
5400 snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]);
5401 else
5402 snprintf(buf, bsize, "DCInt%u", source);
5403 return buf;
5404 }
5405
5406 static const char * const sdma_int_names[] = {
5407 "SDmaInt",
5408 "SdmaIdleInt",
5409 "SdmaProgressInt",
5410 };
5411
5412 /*
5413 * Return the SDMA engine interrupt name.
5414 */
is_sdma_eng_name(char * buf,size_t bsize,unsigned int source)5415 static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source)
5416 {
5417 /* what interrupt */
5418 unsigned int what = source / TXE_NUM_SDMA_ENGINES;
5419 /* which engine */
5420 unsigned int which = source % TXE_NUM_SDMA_ENGINES;
5421
5422 if (likely(what < 3))
5423 snprintf(buf, bsize, "%s%u", sdma_int_names[what], which);
5424 else
5425 snprintf(buf, bsize, "Invalid SDMA interrupt %u", source);
5426 return buf;
5427 }
5428
5429 /*
5430 * Return the receive available interrupt name.
5431 */
is_rcv_avail_name(char * buf,size_t bsize,unsigned int source)5432 static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source)
5433 {
5434 snprintf(buf, bsize, "RcvAvailInt%u", source);
5435 return buf;
5436 }
5437
5438 /*
5439 * Return the receive urgent interrupt name.
5440 */
is_rcv_urgent_name(char * buf,size_t bsize,unsigned int source)5441 static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source)
5442 {
5443 snprintf(buf, bsize, "RcvUrgentInt%u", source);
5444 return buf;
5445 }
5446
5447 /*
5448 * Return the send credit interrupt name.
5449 */
is_send_credit_name(char * buf,size_t bsize,unsigned int source)5450 static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source)
5451 {
5452 snprintf(buf, bsize, "SendCreditInt%u", source);
5453 return buf;
5454 }
5455
5456 /*
5457 * Return the reserved interrupt name.
5458 */
is_reserved_name(char * buf,size_t bsize,unsigned int source)5459 static char *is_reserved_name(char *buf, size_t bsize, unsigned int source)
5460 {
5461 snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START);
5462 return buf;
5463 }
5464
cce_err_status_string(char * buf,int buf_len,u64 flags)5465 static char *cce_err_status_string(char *buf, int buf_len, u64 flags)
5466 {
5467 return flag_string(buf, buf_len, flags,
5468 cce_err_status_flags,
5469 ARRAY_SIZE(cce_err_status_flags));
5470 }
5471
rxe_err_status_string(char * buf,int buf_len,u64 flags)5472 static char *rxe_err_status_string(char *buf, int buf_len, u64 flags)
5473 {
5474 return flag_string(buf, buf_len, flags,
5475 rxe_err_status_flags,
5476 ARRAY_SIZE(rxe_err_status_flags));
5477 }
5478
misc_err_status_string(char * buf,int buf_len,u64 flags)5479 static char *misc_err_status_string(char *buf, int buf_len, u64 flags)
5480 {
5481 return flag_string(buf, buf_len, flags, misc_err_status_flags,
5482 ARRAY_SIZE(misc_err_status_flags));
5483 }
5484
pio_err_status_string(char * buf,int buf_len,u64 flags)5485 static char *pio_err_status_string(char *buf, int buf_len, u64 flags)
5486 {
5487 return flag_string(buf, buf_len, flags,
5488 pio_err_status_flags,
5489 ARRAY_SIZE(pio_err_status_flags));
5490 }
5491
sdma_err_status_string(char * buf,int buf_len,u64 flags)5492 static char *sdma_err_status_string(char *buf, int buf_len, u64 flags)
5493 {
5494 return flag_string(buf, buf_len, flags,
5495 sdma_err_status_flags,
5496 ARRAY_SIZE(sdma_err_status_flags));
5497 }
5498
egress_err_status_string(char * buf,int buf_len,u64 flags)5499 static char *egress_err_status_string(char *buf, int buf_len, u64 flags)
5500 {
5501 return flag_string(buf, buf_len, flags,
5502 egress_err_status_flags,
5503 ARRAY_SIZE(egress_err_status_flags));
5504 }
5505
egress_err_info_string(char * buf,int buf_len,u64 flags)5506 static char *egress_err_info_string(char *buf, int buf_len, u64 flags)
5507 {
5508 return flag_string(buf, buf_len, flags,
5509 egress_err_info_flags,
5510 ARRAY_SIZE(egress_err_info_flags));
5511 }
5512
send_err_status_string(char * buf,int buf_len,u64 flags)5513 static char *send_err_status_string(char *buf, int buf_len, u64 flags)
5514 {
5515 return flag_string(buf, buf_len, flags,
5516 send_err_status_flags,
5517 ARRAY_SIZE(send_err_status_flags));
5518 }
5519
handle_cce_err(struct hfi1_devdata * dd,u32 unused,u64 reg)5520 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5521 {
5522 char buf[96];
5523 int i = 0;
5524
5525 /*
5526 * For most these errors, there is nothing that can be done except
5527 * report or record it.
5528 */
5529 dd_dev_info(dd, "CCE Error: %s\n",
5530 cce_err_status_string(buf, sizeof(buf), reg));
5531
5532 if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) &&
5533 is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) {
5534 /* this error requires a manual drop into SPC freeze mode */
5535 /* then a fix up */
5536 start_freeze_handling(dd->pport, FREEZE_SELF);
5537 }
5538
5539 for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) {
5540 if (reg & (1ull << i)) {
5541 incr_cntr64(&dd->cce_err_status_cnt[i]);
5542 /* maintain a counter over all cce_err_status errors */
5543 incr_cntr64(&dd->sw_cce_err_status_aggregate);
5544 }
5545 }
5546 }
5547
5548 /*
5549 * Check counters for receive errors that do not have an interrupt
5550 * associated with them.
5551 */
5552 #define RCVERR_CHECK_TIME 10
update_rcverr_timer(unsigned long opaque)5553 static void update_rcverr_timer(unsigned long opaque)
5554 {
5555 struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
5556 struct hfi1_pportdata *ppd = dd->pport;
5557 u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
5558
5559 if (dd->rcv_ovfl_cnt < cur_ovfl_cnt &&
5560 ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) {
5561 dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
5562 set_link_down_reason(
5563 ppd, OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0,
5564 OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN);
5565 queue_work(ppd->link_wq, &ppd->link_bounce_work);
5566 }
5567 dd->rcv_ovfl_cnt = (u32)cur_ovfl_cnt;
5568
5569 mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5570 }
5571
init_rcverr(struct hfi1_devdata * dd)5572 static int init_rcverr(struct hfi1_devdata *dd)
5573 {
5574 setup_timer(&dd->rcverr_timer, update_rcverr_timer, (unsigned long)dd);
5575 /* Assume the hardware counter has been reset */
5576 dd->rcv_ovfl_cnt = 0;
5577 return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5578 }
5579
free_rcverr(struct hfi1_devdata * dd)5580 static void free_rcverr(struct hfi1_devdata *dd)
5581 {
5582 if (dd->rcverr_timer.data)
5583 del_timer_sync(&dd->rcverr_timer);
5584 dd->rcverr_timer.data = 0;
5585 }
5586
handle_rxe_err(struct hfi1_devdata * dd,u32 unused,u64 reg)5587 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5588 {
5589 char buf[96];
5590 int i = 0;
5591
5592 dd_dev_info(dd, "Receive Error: %s\n",
5593 rxe_err_status_string(buf, sizeof(buf), reg));
5594
5595 if (reg & ALL_RXE_FREEZE_ERR) {
5596 int flags = 0;
5597
5598 /*
5599 * Freeze mode recovery is disabled for the errors
5600 * in RXE_FREEZE_ABORT_MASK
5601 */
5602 if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK))
5603 flags = FREEZE_ABORT;
5604
5605 start_freeze_handling(dd->pport, flags);
5606 }
5607
5608 for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) {
5609 if (reg & (1ull << i))
5610 incr_cntr64(&dd->rcv_err_status_cnt[i]);
5611 }
5612 }
5613
handle_misc_err(struct hfi1_devdata * dd,u32 unused,u64 reg)5614 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5615 {
5616 char buf[96];
5617 int i = 0;
5618
5619 dd_dev_info(dd, "Misc Error: %s",
5620 misc_err_status_string(buf, sizeof(buf), reg));
5621 for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) {
5622 if (reg & (1ull << i))
5623 incr_cntr64(&dd->misc_err_status_cnt[i]);
5624 }
5625 }
5626
handle_pio_err(struct hfi1_devdata * dd,u32 unused,u64 reg)5627 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5628 {
5629 char buf[96];
5630 int i = 0;
5631
5632 dd_dev_info(dd, "PIO Error: %s\n",
5633 pio_err_status_string(buf, sizeof(buf), reg));
5634
5635 if (reg & ALL_PIO_FREEZE_ERR)
5636 start_freeze_handling(dd->pport, 0);
5637
5638 for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) {
5639 if (reg & (1ull << i))
5640 incr_cntr64(&dd->send_pio_err_status_cnt[i]);
5641 }
5642 }
5643
handle_sdma_err(struct hfi1_devdata * dd,u32 unused,u64 reg)5644 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5645 {
5646 char buf[96];
5647 int i = 0;
5648
5649 dd_dev_info(dd, "SDMA Error: %s\n",
5650 sdma_err_status_string(buf, sizeof(buf), reg));
5651
5652 if (reg & ALL_SDMA_FREEZE_ERR)
5653 start_freeze_handling(dd->pport, 0);
5654
5655 for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) {
5656 if (reg & (1ull << i))
5657 incr_cntr64(&dd->send_dma_err_status_cnt[i]);
5658 }
5659 }
5660
__count_port_discards(struct hfi1_pportdata * ppd)5661 static inline void __count_port_discards(struct hfi1_pportdata *ppd)
5662 {
5663 incr_cntr64(&ppd->port_xmit_discards);
5664 }
5665
count_port_inactive(struct hfi1_devdata * dd)5666 static void count_port_inactive(struct hfi1_devdata *dd)
5667 {
5668 __count_port_discards(dd->pport);
5669 }
5670
5671 /*
5672 * We have had a "disallowed packet" error during egress. Determine the
5673 * integrity check which failed, and update relevant error counter, etc.
5674 *
5675 * Note that the SEND_EGRESS_ERR_INFO register has only a single
5676 * bit of state per integrity check, and so we can miss the reason for an
5677 * egress error if more than one packet fails the same integrity check
5678 * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO.
5679 */
handle_send_egress_err_info(struct hfi1_devdata * dd,int vl)5680 static void handle_send_egress_err_info(struct hfi1_devdata *dd,
5681 int vl)
5682 {
5683 struct hfi1_pportdata *ppd = dd->pport;
5684 u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */
5685 u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO);
5686 char buf[96];
5687
5688 /* clear down all observed info as quickly as possible after read */
5689 write_csr(dd, SEND_EGRESS_ERR_INFO, info);
5690
5691 dd_dev_info(dd,
5692 "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n",
5693 info, egress_err_info_string(buf, sizeof(buf), info), src);
5694
5695 /* Eventually add other counters for each bit */
5696 if (info & PORT_DISCARD_EGRESS_ERRS) {
5697 int weight, i;
5698
5699 /*
5700 * Count all applicable bits as individual errors and
5701 * attribute them to the packet that triggered this handler.
5702 * This may not be completely accurate due to limitations
5703 * on the available hardware error information. There is
5704 * a single information register and any number of error
5705 * packets may have occurred and contributed to it before
5706 * this routine is called. This means that:
5707 * a) If multiple packets with the same error occur before
5708 * this routine is called, earlier packets are missed.
5709 * There is only a single bit for each error type.
5710 * b) Errors may not be attributed to the correct VL.
5711 * The driver is attributing all bits in the info register
5712 * to the packet that triggered this call, but bits
5713 * could be an accumulation of different packets with
5714 * different VLs.
5715 * c) A single error packet may have multiple counts attached
5716 * to it. There is no way for the driver to know if
5717 * multiple bits set in the info register are due to a
5718 * single packet or multiple packets. The driver assumes
5719 * multiple packets.
5720 */
5721 weight = hweight64(info & PORT_DISCARD_EGRESS_ERRS);
5722 for (i = 0; i < weight; i++) {
5723 __count_port_discards(ppd);
5724 if (vl >= 0 && vl < TXE_NUM_DATA_VL)
5725 incr_cntr64(&ppd->port_xmit_discards_vl[vl]);
5726 else if (vl == 15)
5727 incr_cntr64(&ppd->port_xmit_discards_vl
5728 [C_VL_15]);
5729 }
5730 }
5731 }
5732
5733 /*
5734 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5735 * register. Does it represent a 'port inactive' error?
5736 */
port_inactive_err(u64 posn)5737 static inline int port_inactive_err(u64 posn)
5738 {
5739 return (posn >= SEES(TX_LINKDOWN) &&
5740 posn <= SEES(TX_INCORRECT_LINK_STATE));
5741 }
5742
5743 /*
5744 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5745 * register. Does it represent a 'disallowed packet' error?
5746 */
disallowed_pkt_err(int posn)5747 static inline int disallowed_pkt_err(int posn)
5748 {
5749 return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) &&
5750 posn <= SEES(TX_SDMA15_DISALLOWED_PACKET));
5751 }
5752
5753 /*
5754 * Input value is a bit position of one of the SDMA engine disallowed
5755 * packet errors. Return which engine. Use of this must be guarded by
5756 * disallowed_pkt_err().
5757 */
disallowed_pkt_engine(int posn)5758 static inline int disallowed_pkt_engine(int posn)
5759 {
5760 return posn - SEES(TX_SDMA0_DISALLOWED_PACKET);
5761 }
5762
5763 /*
5764 * Translate an SDMA engine to a VL. Return -1 if the tranlation cannot
5765 * be done.
5766 */
engine_to_vl(struct hfi1_devdata * dd,int engine)5767 static int engine_to_vl(struct hfi1_devdata *dd, int engine)
5768 {
5769 struct sdma_vl_map *m;
5770 int vl;
5771
5772 /* range check */
5773 if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES)
5774 return -1;
5775
5776 rcu_read_lock();
5777 m = rcu_dereference(dd->sdma_map);
5778 vl = m->engine_to_vl[engine];
5779 rcu_read_unlock();
5780
5781 return vl;
5782 }
5783
5784 /*
5785 * Translate the send context (sofware index) into a VL. Return -1 if the
5786 * translation cannot be done.
5787 */
sc_to_vl(struct hfi1_devdata * dd,int sw_index)5788 static int sc_to_vl(struct hfi1_devdata *dd, int sw_index)
5789 {
5790 struct send_context_info *sci;
5791 struct send_context *sc;
5792 int i;
5793
5794 sci = &dd->send_contexts[sw_index];
5795
5796 /* there is no information for user (PSM) and ack contexts */
5797 if ((sci->type != SC_KERNEL) && (sci->type != SC_VL15))
5798 return -1;
5799
5800 sc = sci->sc;
5801 if (!sc)
5802 return -1;
5803 if (dd->vld[15].sc == sc)
5804 return 15;
5805 for (i = 0; i < num_vls; i++)
5806 if (dd->vld[i].sc == sc)
5807 return i;
5808
5809 return -1;
5810 }
5811
handle_egress_err(struct hfi1_devdata * dd,u32 unused,u64 reg)5812 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5813 {
5814 u64 reg_copy = reg, handled = 0;
5815 char buf[96];
5816 int i = 0;
5817
5818 if (reg & ALL_TXE_EGRESS_FREEZE_ERR)
5819 start_freeze_handling(dd->pport, 0);
5820 else if (is_ax(dd) &&
5821 (reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) &&
5822 (dd->icode != ICODE_FUNCTIONAL_SIMULATOR))
5823 start_freeze_handling(dd->pport, 0);
5824
5825 while (reg_copy) {
5826 int posn = fls64(reg_copy);
5827 /* fls64() returns a 1-based offset, we want it zero based */
5828 int shift = posn - 1;
5829 u64 mask = 1ULL << shift;
5830
5831 if (port_inactive_err(shift)) {
5832 count_port_inactive(dd);
5833 handled |= mask;
5834 } else if (disallowed_pkt_err(shift)) {
5835 int vl = engine_to_vl(dd, disallowed_pkt_engine(shift));
5836
5837 handle_send_egress_err_info(dd, vl);
5838 handled |= mask;
5839 }
5840 reg_copy &= ~mask;
5841 }
5842
5843 reg &= ~handled;
5844
5845 if (reg)
5846 dd_dev_info(dd, "Egress Error: %s\n",
5847 egress_err_status_string(buf, sizeof(buf), reg));
5848
5849 for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) {
5850 if (reg & (1ull << i))
5851 incr_cntr64(&dd->send_egress_err_status_cnt[i]);
5852 }
5853 }
5854
handle_txe_err(struct hfi1_devdata * dd,u32 unused,u64 reg)5855 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5856 {
5857 char buf[96];
5858 int i = 0;
5859
5860 dd_dev_info(dd, "Send Error: %s\n",
5861 send_err_status_string(buf, sizeof(buf), reg));
5862
5863 for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) {
5864 if (reg & (1ull << i))
5865 incr_cntr64(&dd->send_err_status_cnt[i]);
5866 }
5867 }
5868
5869 /*
5870 * The maximum number of times the error clear down will loop before
5871 * blocking a repeating error. This value is arbitrary.
5872 */
5873 #define MAX_CLEAR_COUNT 20
5874
5875 /*
5876 * Clear and handle an error register. All error interrupts are funneled
5877 * through here to have a central location to correctly handle single-
5878 * or multi-shot errors.
5879 *
5880 * For non per-context registers, call this routine with a context value
5881 * of 0 so the per-context offset is zero.
5882 *
5883 * If the handler loops too many times, assume that something is wrong
5884 * and can't be fixed, so mask the error bits.
5885 */
interrupt_clear_down(struct hfi1_devdata * dd,u32 context,const struct err_reg_info * eri)5886 static void interrupt_clear_down(struct hfi1_devdata *dd,
5887 u32 context,
5888 const struct err_reg_info *eri)
5889 {
5890 u64 reg;
5891 u32 count;
5892
5893 /* read in a loop until no more errors are seen */
5894 count = 0;
5895 while (1) {
5896 reg = read_kctxt_csr(dd, context, eri->status);
5897 if (reg == 0)
5898 break;
5899 write_kctxt_csr(dd, context, eri->clear, reg);
5900 if (likely(eri->handler))
5901 eri->handler(dd, context, reg);
5902 count++;
5903 if (count > MAX_CLEAR_COUNT) {
5904 u64 mask;
5905
5906 dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n",
5907 eri->desc, reg);
5908 /*
5909 * Read-modify-write so any other masked bits
5910 * remain masked.
5911 */
5912 mask = read_kctxt_csr(dd, context, eri->mask);
5913 mask &= ~reg;
5914 write_kctxt_csr(dd, context, eri->mask, mask);
5915 break;
5916 }
5917 }
5918 }
5919
5920 /*
5921 * CCE block "misc" interrupt. Source is < 16.
5922 */
is_misc_err_int(struct hfi1_devdata * dd,unsigned int source)5923 static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source)
5924 {
5925 const struct err_reg_info *eri = &misc_errs[source];
5926
5927 if (eri->handler) {
5928 interrupt_clear_down(dd, 0, eri);
5929 } else {
5930 dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n",
5931 source);
5932 }
5933 }
5934
send_context_err_status_string(char * buf,int buf_len,u64 flags)5935 static char *send_context_err_status_string(char *buf, int buf_len, u64 flags)
5936 {
5937 return flag_string(buf, buf_len, flags,
5938 sc_err_status_flags,
5939 ARRAY_SIZE(sc_err_status_flags));
5940 }
5941
5942 /*
5943 * Send context error interrupt. Source (hw_context) is < 160.
5944 *
5945 * All send context errors cause the send context to halt. The normal
5946 * clear-down mechanism cannot be used because we cannot clear the
5947 * error bits until several other long-running items are done first.
5948 * This is OK because with the context halted, nothing else is going
5949 * to happen on it anyway.
5950 */
is_sendctxt_err_int(struct hfi1_devdata * dd,unsigned int hw_context)5951 static void is_sendctxt_err_int(struct hfi1_devdata *dd,
5952 unsigned int hw_context)
5953 {
5954 struct send_context_info *sci;
5955 struct send_context *sc;
5956 char flags[96];
5957 u64 status;
5958 u32 sw_index;
5959 int i = 0;
5960 unsigned long irq_flags;
5961
5962 sw_index = dd->hw_to_sw[hw_context];
5963 if (sw_index >= dd->num_send_contexts) {
5964 dd_dev_err(dd,
5965 "out of range sw index %u for send context %u\n",
5966 sw_index, hw_context);
5967 return;
5968 }
5969 sci = &dd->send_contexts[sw_index];
5970 spin_lock_irqsave(&dd->sc_lock, irq_flags);
5971 sc = sci->sc;
5972 if (!sc) {
5973 dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__,
5974 sw_index, hw_context);
5975 spin_unlock_irqrestore(&dd->sc_lock, irq_flags);
5976 return;
5977 }
5978
5979 /* tell the software that a halt has begun */
5980 sc_stop(sc, SCF_HALTED);
5981
5982 status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS);
5983
5984 dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context,
5985 send_context_err_status_string(flags, sizeof(flags),
5986 status));
5987
5988 if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK)
5989 handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index));
5990
5991 /*
5992 * Automatically restart halted kernel contexts out of interrupt
5993 * context. User contexts must ask the driver to restart the context.
5994 */
5995 if (sc->type != SC_USER)
5996 queue_work(dd->pport->hfi1_wq, &sc->halt_work);
5997 spin_unlock_irqrestore(&dd->sc_lock, irq_flags);
5998
5999 /*
6000 * Update the counters for the corresponding status bits.
6001 * Note that these particular counters are aggregated over all
6002 * 160 contexts.
6003 */
6004 for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) {
6005 if (status & (1ull << i))
6006 incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]);
6007 }
6008 }
6009
handle_sdma_eng_err(struct hfi1_devdata * dd,unsigned int source,u64 status)6010 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
6011 unsigned int source, u64 status)
6012 {
6013 struct sdma_engine *sde;
6014 int i = 0;
6015
6016 sde = &dd->per_sdma[source];
6017 #ifdef CONFIG_SDMA_VERBOSITY
6018 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6019 slashstrip(__FILE__), __LINE__, __func__);
6020 dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n",
6021 sde->this_idx, source, (unsigned long long)status);
6022 #endif
6023 sde->err_cnt++;
6024 sdma_engine_error(sde, status);
6025
6026 /*
6027 * Update the counters for the corresponding status bits.
6028 * Note that these particular counters are aggregated over
6029 * all 16 DMA engines.
6030 */
6031 for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) {
6032 if (status & (1ull << i))
6033 incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]);
6034 }
6035 }
6036
6037 /*
6038 * CCE block SDMA error interrupt. Source is < 16.
6039 */
is_sdma_eng_err_int(struct hfi1_devdata * dd,unsigned int source)6040 static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source)
6041 {
6042 #ifdef CONFIG_SDMA_VERBOSITY
6043 struct sdma_engine *sde = &dd->per_sdma[source];
6044
6045 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6046 slashstrip(__FILE__), __LINE__, __func__);
6047 dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx,
6048 source);
6049 sdma_dumpstate(sde);
6050 #endif
6051 interrupt_clear_down(dd, source, &sdma_eng_err);
6052 }
6053
6054 /*
6055 * CCE block "various" interrupt. Source is < 8.
6056 */
is_various_int(struct hfi1_devdata * dd,unsigned int source)6057 static void is_various_int(struct hfi1_devdata *dd, unsigned int source)
6058 {
6059 const struct err_reg_info *eri = &various_err[source];
6060
6061 /*
6062 * TCritInt cannot go through interrupt_clear_down()
6063 * because it is not a second tier interrupt. The handler
6064 * should be called directly.
6065 */
6066 if (source == TCRIT_INT_SOURCE)
6067 handle_temp_err(dd);
6068 else if (eri->handler)
6069 interrupt_clear_down(dd, 0, eri);
6070 else
6071 dd_dev_info(dd,
6072 "%s: Unimplemented/reserved interrupt %d\n",
6073 __func__, source);
6074 }
6075
handle_qsfp_int(struct hfi1_devdata * dd,u32 src_ctx,u64 reg)6076 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg)
6077 {
6078 /* src_ctx is always zero */
6079 struct hfi1_pportdata *ppd = dd->pport;
6080 unsigned long flags;
6081 u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
6082
6083 if (reg & QSFP_HFI0_MODPRST_N) {
6084 if (!qsfp_mod_present(ppd)) {
6085 dd_dev_info(dd, "%s: QSFP module removed\n",
6086 __func__);
6087
6088 ppd->driver_link_ready = 0;
6089 /*
6090 * Cable removed, reset all our information about the
6091 * cache and cable capabilities
6092 */
6093
6094 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6095 /*
6096 * We don't set cache_refresh_required here as we expect
6097 * an interrupt when a cable is inserted
6098 */
6099 ppd->qsfp_info.cache_valid = 0;
6100 ppd->qsfp_info.reset_needed = 0;
6101 ppd->qsfp_info.limiting_active = 0;
6102 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6103 flags);
6104 /* Invert the ModPresent pin now to detect plug-in */
6105 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6106 ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6107
6108 if ((ppd->offline_disabled_reason >
6109 HFI1_ODR_MASK(
6110 OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED)) ||
6111 (ppd->offline_disabled_reason ==
6112 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)))
6113 ppd->offline_disabled_reason =
6114 HFI1_ODR_MASK(
6115 OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED);
6116
6117 if (ppd->host_link_state == HLS_DN_POLL) {
6118 /*
6119 * The link is still in POLL. This means
6120 * that the normal link down processing
6121 * will not happen. We have to do it here
6122 * before turning the DC off.
6123 */
6124 queue_work(ppd->link_wq, &ppd->link_down_work);
6125 }
6126 } else {
6127 dd_dev_info(dd, "%s: QSFP module inserted\n",
6128 __func__);
6129
6130 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6131 ppd->qsfp_info.cache_valid = 0;
6132 ppd->qsfp_info.cache_refresh_required = 1;
6133 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6134 flags);
6135
6136 /*
6137 * Stop inversion of ModPresent pin to detect
6138 * removal of the cable
6139 */
6140 qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N;
6141 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6142 ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6143
6144 ppd->offline_disabled_reason =
6145 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
6146 }
6147 }
6148
6149 if (reg & QSFP_HFI0_INT_N) {
6150 dd_dev_info(dd, "%s: Interrupt received from QSFP module\n",
6151 __func__);
6152 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6153 ppd->qsfp_info.check_interrupt_flags = 1;
6154 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
6155 }
6156
6157 /* Schedule the QSFP work only if there is a cable attached. */
6158 if (qsfp_mod_present(ppd))
6159 queue_work(ppd->link_wq, &ppd->qsfp_info.qsfp_work);
6160 }
6161
request_host_lcb_access(struct hfi1_devdata * dd)6162 static int request_host_lcb_access(struct hfi1_devdata *dd)
6163 {
6164 int ret;
6165
6166 ret = do_8051_command(dd, HCMD_MISC,
6167 (u64)HCMD_MISC_REQUEST_LCB_ACCESS <<
6168 LOAD_DATA_FIELD_ID_SHIFT, NULL);
6169 if (ret != HCMD_SUCCESS) {
6170 dd_dev_err(dd, "%s: command failed with error %d\n",
6171 __func__, ret);
6172 }
6173 return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6174 }
6175
request_8051_lcb_access(struct hfi1_devdata * dd)6176 static int request_8051_lcb_access(struct hfi1_devdata *dd)
6177 {
6178 int ret;
6179
6180 ret = do_8051_command(dd, HCMD_MISC,
6181 (u64)HCMD_MISC_GRANT_LCB_ACCESS <<
6182 LOAD_DATA_FIELD_ID_SHIFT, NULL);
6183 if (ret != HCMD_SUCCESS) {
6184 dd_dev_err(dd, "%s: command failed with error %d\n",
6185 __func__, ret);
6186 }
6187 return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6188 }
6189
6190 /*
6191 * Set the LCB selector - allow host access. The DCC selector always
6192 * points to the host.
6193 */
set_host_lcb_access(struct hfi1_devdata * dd)6194 static inline void set_host_lcb_access(struct hfi1_devdata *dd)
6195 {
6196 write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6197 DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK |
6198 DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK);
6199 }
6200
6201 /*
6202 * Clear the LCB selector - allow 8051 access. The DCC selector always
6203 * points to the host.
6204 */
set_8051_lcb_access(struct hfi1_devdata * dd)6205 static inline void set_8051_lcb_access(struct hfi1_devdata *dd)
6206 {
6207 write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6208 DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK);
6209 }
6210
6211 /*
6212 * Acquire LCB access from the 8051. If the host already has access,
6213 * just increment a counter. Otherwise, inform the 8051 that the
6214 * host is taking access.
6215 *
6216 * Returns:
6217 * 0 on success
6218 * -EBUSY if the 8051 has control and cannot be disturbed
6219 * -errno if unable to acquire access from the 8051
6220 */
acquire_lcb_access(struct hfi1_devdata * dd,int sleep_ok)6221 int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6222 {
6223 struct hfi1_pportdata *ppd = dd->pport;
6224 int ret = 0;
6225
6226 /*
6227 * Use the host link state lock so the operation of this routine
6228 * { link state check, selector change, count increment } can occur
6229 * as a unit against a link state change. Otherwise there is a
6230 * race between the state change and the count increment.
6231 */
6232 if (sleep_ok) {
6233 mutex_lock(&ppd->hls_lock);
6234 } else {
6235 while (!mutex_trylock(&ppd->hls_lock))
6236 udelay(1);
6237 }
6238
6239 /* this access is valid only when the link is up */
6240 if (ppd->host_link_state & HLS_DOWN) {
6241 dd_dev_info(dd, "%s: link state %s not up\n",
6242 __func__, link_state_name(ppd->host_link_state));
6243 ret = -EBUSY;
6244 goto done;
6245 }
6246
6247 if (dd->lcb_access_count == 0) {
6248 ret = request_host_lcb_access(dd);
6249 if (ret) {
6250 dd_dev_err(dd,
6251 "%s: unable to acquire LCB access, err %d\n",
6252 __func__, ret);
6253 goto done;
6254 }
6255 set_host_lcb_access(dd);
6256 }
6257 dd->lcb_access_count++;
6258 done:
6259 mutex_unlock(&ppd->hls_lock);
6260 return ret;
6261 }
6262
6263 /*
6264 * Release LCB access by decrementing the use count. If the count is moving
6265 * from 1 to 0, inform 8051 that it has control back.
6266 *
6267 * Returns:
6268 * 0 on success
6269 * -errno if unable to release access to the 8051
6270 */
release_lcb_access(struct hfi1_devdata * dd,int sleep_ok)6271 int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6272 {
6273 int ret = 0;
6274
6275 /*
6276 * Use the host link state lock because the acquire needed it.
6277 * Here, we only need to keep { selector change, count decrement }
6278 * as a unit.
6279 */
6280 if (sleep_ok) {
6281 mutex_lock(&dd->pport->hls_lock);
6282 } else {
6283 while (!mutex_trylock(&dd->pport->hls_lock))
6284 udelay(1);
6285 }
6286
6287 if (dd->lcb_access_count == 0) {
6288 dd_dev_err(dd, "%s: LCB access count is zero. Skipping.\n",
6289 __func__);
6290 goto done;
6291 }
6292
6293 if (dd->lcb_access_count == 1) {
6294 set_8051_lcb_access(dd);
6295 ret = request_8051_lcb_access(dd);
6296 if (ret) {
6297 dd_dev_err(dd,
6298 "%s: unable to release LCB access, err %d\n",
6299 __func__, ret);
6300 /* restore host access if the grant didn't work */
6301 set_host_lcb_access(dd);
6302 goto done;
6303 }
6304 }
6305 dd->lcb_access_count--;
6306 done:
6307 mutex_unlock(&dd->pport->hls_lock);
6308 return ret;
6309 }
6310
6311 /*
6312 * Initialize LCB access variables and state. Called during driver load,
6313 * after most of the initialization is finished.
6314 *
6315 * The DC default is LCB access on for the host. The driver defaults to
6316 * leaving access to the 8051. Assign access now - this constrains the call
6317 * to this routine to be after all LCB set-up is done. In particular, after
6318 * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts()
6319 */
init_lcb_access(struct hfi1_devdata * dd)6320 static void init_lcb_access(struct hfi1_devdata *dd)
6321 {
6322 dd->lcb_access_count = 0;
6323 }
6324
6325 /*
6326 * Write a response back to a 8051 request.
6327 */
hreq_response(struct hfi1_devdata * dd,u8 return_code,u16 rsp_data)6328 static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data)
6329 {
6330 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0,
6331 DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK |
6332 (u64)return_code <<
6333 DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT |
6334 (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
6335 }
6336
6337 /*
6338 * Handle host requests from the 8051.
6339 */
handle_8051_request(struct hfi1_pportdata * ppd)6340 static void handle_8051_request(struct hfi1_pportdata *ppd)
6341 {
6342 struct hfi1_devdata *dd = ppd->dd;
6343 u64 reg;
6344 u16 data = 0;
6345 u8 type;
6346
6347 reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1);
6348 if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0)
6349 return; /* no request */
6350
6351 /* zero out COMPLETED so the response is seen */
6352 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0);
6353
6354 /* extract request details */
6355 type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT)
6356 & DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK;
6357 data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT)
6358 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK;
6359
6360 switch (type) {
6361 case HREQ_LOAD_CONFIG:
6362 case HREQ_SAVE_CONFIG:
6363 case HREQ_READ_CONFIG:
6364 case HREQ_SET_TX_EQ_ABS:
6365 case HREQ_SET_TX_EQ_REL:
6366 case HREQ_ENABLE:
6367 dd_dev_info(dd, "8051 request: request 0x%x not supported\n",
6368 type);
6369 hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6370 break;
6371 case HREQ_CONFIG_DONE:
6372 hreq_response(dd, HREQ_SUCCESS, 0);
6373 break;
6374
6375 case HREQ_INTERFACE_TEST:
6376 hreq_response(dd, HREQ_SUCCESS, data);
6377 break;
6378 default:
6379 dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type);
6380 hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6381 break;
6382 }
6383 }
6384
6385 /*
6386 * Set up allocation unit vaulue.
6387 */
set_up_vau(struct hfi1_devdata * dd,u8 vau)6388 void set_up_vau(struct hfi1_devdata *dd, u8 vau)
6389 {
6390 u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6391
6392 /* do not modify other values in the register */
6393 reg &= ~SEND_CM_GLOBAL_CREDIT_AU_SMASK;
6394 reg |= (u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT;
6395 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6396 }
6397
6398 /*
6399 * Set up initial VL15 credits of the remote. Assumes the rest of
6400 * the CM credit registers are zero from a previous global or credit reset.
6401 * Shared limit for VL15 will always be 0.
6402 */
set_up_vl15(struct hfi1_devdata * dd,u16 vl15buf)6403 void set_up_vl15(struct hfi1_devdata *dd, u16 vl15buf)
6404 {
6405 u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6406
6407 /* set initial values for total and shared credit limit */
6408 reg &= ~(SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK |
6409 SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK);
6410
6411 /*
6412 * Set total limit to be equal to VL15 credits.
6413 * Leave shared limit at 0.
6414 */
6415 reg |= (u64)vl15buf << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
6416 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6417
6418 write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf
6419 << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
6420 }
6421
6422 /*
6423 * Zero all credit details from the previous connection and
6424 * reset the CM manager's internal counters.
6425 */
reset_link_credits(struct hfi1_devdata * dd)6426 void reset_link_credits(struct hfi1_devdata *dd)
6427 {
6428 int i;
6429
6430 /* remove all previous VL credit limits */
6431 for (i = 0; i < TXE_NUM_DATA_VL; i++)
6432 write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
6433 write_csr(dd, SEND_CM_CREDIT_VL15, 0);
6434 write_csr(dd, SEND_CM_GLOBAL_CREDIT, 0);
6435 /* reset the CM block */
6436 pio_send_control(dd, PSC_CM_RESET);
6437 /* reset cached value */
6438 dd->vl15buf_cached = 0;
6439 }
6440
6441 /* convert a vCU to a CU */
vcu_to_cu(u8 vcu)6442 static u32 vcu_to_cu(u8 vcu)
6443 {
6444 return 1 << vcu;
6445 }
6446
6447 /* convert a CU to a vCU */
cu_to_vcu(u32 cu)6448 static u8 cu_to_vcu(u32 cu)
6449 {
6450 return ilog2(cu);
6451 }
6452
6453 /* convert a vAU to an AU */
vau_to_au(u8 vau)6454 static u32 vau_to_au(u8 vau)
6455 {
6456 return 8 * (1 << vau);
6457 }
6458
set_linkup_defaults(struct hfi1_pportdata * ppd)6459 static void set_linkup_defaults(struct hfi1_pportdata *ppd)
6460 {
6461 ppd->sm_trap_qp = 0x0;
6462 ppd->sa_qp = 0x1;
6463 }
6464
6465 /*
6466 * Graceful LCB shutdown. This leaves the LCB FIFOs in reset.
6467 */
lcb_shutdown(struct hfi1_devdata * dd,int abort)6468 static void lcb_shutdown(struct hfi1_devdata *dd, int abort)
6469 {
6470 u64 reg;
6471
6472 /* clear lcb run: LCB_CFG_RUN.EN = 0 */
6473 write_csr(dd, DC_LCB_CFG_RUN, 0);
6474 /* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */
6475 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET,
6476 1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT);
6477 /* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */
6478 dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN);
6479 reg = read_csr(dd, DCC_CFG_RESET);
6480 write_csr(dd, DCC_CFG_RESET, reg |
6481 (1ull << DCC_CFG_RESET_RESET_LCB_SHIFT) |
6482 (1ull << DCC_CFG_RESET_RESET_RX_FPE_SHIFT));
6483 (void)read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */
6484 if (!abort) {
6485 udelay(1); /* must hold for the longer of 16cclks or 20ns */
6486 write_csr(dd, DCC_CFG_RESET, reg);
6487 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6488 }
6489 }
6490
6491 /*
6492 * This routine should be called after the link has been transitioned to
6493 * OFFLINE (OFFLINE state has the side effect of putting the SerDes into
6494 * reset).
6495 *
6496 * The expectation is that the caller of this routine would have taken
6497 * care of properly transitioning the link into the correct state.
6498 * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6499 * before calling this function.
6500 */
_dc_shutdown(struct hfi1_devdata * dd)6501 static void _dc_shutdown(struct hfi1_devdata *dd)
6502 {
6503 lockdep_assert_held(&dd->dc8051_lock);
6504
6505 if (dd->dc_shutdown)
6506 return;
6507
6508 dd->dc_shutdown = 1;
6509 /* Shutdown the LCB */
6510 lcb_shutdown(dd, 1);
6511 /*
6512 * Going to OFFLINE would have causes the 8051 to put the
6513 * SerDes into reset already. Just need to shut down the 8051,
6514 * itself.
6515 */
6516 write_csr(dd, DC_DC8051_CFG_RST, 0x1);
6517 }
6518
dc_shutdown(struct hfi1_devdata * dd)6519 static void dc_shutdown(struct hfi1_devdata *dd)
6520 {
6521 mutex_lock(&dd->dc8051_lock);
6522 _dc_shutdown(dd);
6523 mutex_unlock(&dd->dc8051_lock);
6524 }
6525
6526 /*
6527 * Calling this after the DC has been brought out of reset should not
6528 * do any damage.
6529 * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6530 * before calling this function.
6531 */
_dc_start(struct hfi1_devdata * dd)6532 static void _dc_start(struct hfi1_devdata *dd)
6533 {
6534 lockdep_assert_held(&dd->dc8051_lock);
6535
6536 if (!dd->dc_shutdown)
6537 return;
6538
6539 /* Take the 8051 out of reset */
6540 write_csr(dd, DC_DC8051_CFG_RST, 0ull);
6541 /* Wait until 8051 is ready */
6542 if (wait_fm_ready(dd, TIMEOUT_8051_START))
6543 dd_dev_err(dd, "%s: timeout starting 8051 firmware\n",
6544 __func__);
6545
6546 /* Take away reset for LCB and RX FPE (set in lcb_shutdown). */
6547 write_csr(dd, DCC_CFG_RESET, 0x10);
6548 /* lcb_shutdown() with abort=1 does not restore these */
6549 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6550 dd->dc_shutdown = 0;
6551 }
6552
dc_start(struct hfi1_devdata * dd)6553 static void dc_start(struct hfi1_devdata *dd)
6554 {
6555 mutex_lock(&dd->dc8051_lock);
6556 _dc_start(dd);
6557 mutex_unlock(&dd->dc8051_lock);
6558 }
6559
6560 /*
6561 * These LCB adjustments are for the Aurora SerDes core in the FPGA.
6562 */
adjust_lcb_for_fpga_serdes(struct hfi1_devdata * dd)6563 static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd)
6564 {
6565 u64 rx_radr, tx_radr;
6566 u32 version;
6567
6568 if (dd->icode != ICODE_FPGA_EMULATION)
6569 return;
6570
6571 /*
6572 * These LCB defaults on emulator _s are good, nothing to do here:
6573 * LCB_CFG_TX_FIFOS_RADR
6574 * LCB_CFG_RX_FIFOS_RADR
6575 * LCB_CFG_LN_DCLK
6576 * LCB_CFG_IGNORE_LOST_RCLK
6577 */
6578 if (is_emulator_s(dd))
6579 return;
6580 /* else this is _p */
6581
6582 version = emulator_rev(dd);
6583 if (!is_ax(dd))
6584 version = 0x2d; /* all B0 use 0x2d or higher settings */
6585
6586 if (version <= 0x12) {
6587 /* release 0x12 and below */
6588
6589 /*
6590 * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9
6591 * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9
6592 * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa
6593 */
6594 rx_radr =
6595 0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6596 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6597 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6598 /*
6599 * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default)
6600 * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6
6601 */
6602 tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6603 } else if (version <= 0x18) {
6604 /* release 0x13 up to 0x18 */
6605 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6606 rx_radr =
6607 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6608 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6609 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6610 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6611 } else if (version == 0x19) {
6612 /* release 0x19 */
6613 /* LCB_CFG_RX_FIFOS_RADR = 0xa99 */
6614 rx_radr =
6615 0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6616 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6617 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6618 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6619 } else if (version == 0x1a) {
6620 /* release 0x1a */
6621 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6622 rx_radr =
6623 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6624 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6625 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6626 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6627 write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull);
6628 } else {
6629 /* release 0x1b and higher */
6630 /* LCB_CFG_RX_FIFOS_RADR = 0x877 */
6631 rx_radr =
6632 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6633 | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6634 | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6635 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6636 }
6637
6638 write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr);
6639 /* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */
6640 write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
6641 DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
6642 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr);
6643 }
6644
6645 /*
6646 * Handle a SMA idle message
6647 *
6648 * This is a work-queue function outside of the interrupt.
6649 */
handle_sma_message(struct work_struct * work)6650 void handle_sma_message(struct work_struct *work)
6651 {
6652 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6653 sma_message_work);
6654 struct hfi1_devdata *dd = ppd->dd;
6655 u64 msg;
6656 int ret;
6657
6658 /*
6659 * msg is bytes 1-4 of the 40-bit idle message - the command code
6660 * is stripped off
6661 */
6662 ret = read_idle_sma(dd, &msg);
6663 if (ret)
6664 return;
6665 dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg);
6666 /*
6667 * React to the SMA message. Byte[1] (0 for us) is the command.
6668 */
6669 switch (msg & 0xff) {
6670 case SMA_IDLE_ARM:
6671 /*
6672 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6673 * State Transitions
6674 *
6675 * Only expected in INIT or ARMED, discard otherwise.
6676 */
6677 if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED))
6678 ppd->neighbor_normal = 1;
6679 break;
6680 case SMA_IDLE_ACTIVE:
6681 /*
6682 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6683 * State Transitions
6684 *
6685 * Can activate the node. Discard otherwise.
6686 */
6687 if (ppd->host_link_state == HLS_UP_ARMED &&
6688 ppd->is_active_optimize_enabled) {
6689 ppd->neighbor_normal = 1;
6690 ret = set_link_state(ppd, HLS_UP_ACTIVE);
6691 if (ret)
6692 dd_dev_err(
6693 dd,
6694 "%s: received Active SMA idle message, couldn't set link to Active\n",
6695 __func__);
6696 }
6697 break;
6698 default:
6699 dd_dev_err(dd,
6700 "%s: received unexpected SMA idle message 0x%llx\n",
6701 __func__, msg);
6702 break;
6703 }
6704 }
6705
adjust_rcvctrl(struct hfi1_devdata * dd,u64 add,u64 clear)6706 static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear)
6707 {
6708 u64 rcvctrl;
6709 unsigned long flags;
6710
6711 spin_lock_irqsave(&dd->rcvctrl_lock, flags);
6712 rcvctrl = read_csr(dd, RCV_CTRL);
6713 rcvctrl |= add;
6714 rcvctrl &= ~clear;
6715 write_csr(dd, RCV_CTRL, rcvctrl);
6716 spin_unlock_irqrestore(&dd->rcvctrl_lock, flags);
6717 }
6718
add_rcvctrl(struct hfi1_devdata * dd,u64 add)6719 static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add)
6720 {
6721 adjust_rcvctrl(dd, add, 0);
6722 }
6723
clear_rcvctrl(struct hfi1_devdata * dd,u64 clear)6724 static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear)
6725 {
6726 adjust_rcvctrl(dd, 0, clear);
6727 }
6728
6729 /*
6730 * Called from all interrupt handlers to start handling an SPC freeze.
6731 */
start_freeze_handling(struct hfi1_pportdata * ppd,int flags)6732 void start_freeze_handling(struct hfi1_pportdata *ppd, int flags)
6733 {
6734 struct hfi1_devdata *dd = ppd->dd;
6735 struct send_context *sc;
6736 int i;
6737 int sc_flags;
6738
6739 if (flags & FREEZE_SELF)
6740 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6741
6742 /* enter frozen mode */
6743 dd->flags |= HFI1_FROZEN;
6744
6745 /* notify all SDMA engines that they are going into a freeze */
6746 sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN));
6747
6748 sc_flags = SCF_FROZEN | SCF_HALTED | (flags & FREEZE_LINK_DOWN ?
6749 SCF_LINK_DOWN : 0);
6750 /* do halt pre-handling on all enabled send contexts */
6751 for (i = 0; i < dd->num_send_contexts; i++) {
6752 sc = dd->send_contexts[i].sc;
6753 if (sc && (sc->flags & SCF_ENABLED))
6754 sc_stop(sc, sc_flags);
6755 }
6756
6757 /* Send context are frozen. Notify user space */
6758 hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT);
6759
6760 if (flags & FREEZE_ABORT) {
6761 dd_dev_err(dd,
6762 "Aborted freeze recovery. Please REBOOT system\n");
6763 return;
6764 }
6765 /* queue non-interrupt handler */
6766 queue_work(ppd->hfi1_wq, &ppd->freeze_work);
6767 }
6768
6769 /*
6770 * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen,
6771 * depending on the "freeze" parameter.
6772 *
6773 * No need to return an error if it times out, our only option
6774 * is to proceed anyway.
6775 */
wait_for_freeze_status(struct hfi1_devdata * dd,int freeze)6776 static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze)
6777 {
6778 unsigned long timeout;
6779 u64 reg;
6780
6781 timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT);
6782 while (1) {
6783 reg = read_csr(dd, CCE_STATUS);
6784 if (freeze) {
6785 /* waiting until all indicators are set */
6786 if ((reg & ALL_FROZE) == ALL_FROZE)
6787 return; /* all done */
6788 } else {
6789 /* waiting until all indicators are clear */
6790 if ((reg & ALL_FROZE) == 0)
6791 return; /* all done */
6792 }
6793
6794 if (time_after(jiffies, timeout)) {
6795 dd_dev_err(dd,
6796 "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing",
6797 freeze ? "" : "un", reg & ALL_FROZE,
6798 freeze ? ALL_FROZE : 0ull);
6799 return;
6800 }
6801 usleep_range(80, 120);
6802 }
6803 }
6804
6805 /*
6806 * Do all freeze handling for the RXE block.
6807 */
rxe_freeze(struct hfi1_devdata * dd)6808 static void rxe_freeze(struct hfi1_devdata *dd)
6809 {
6810 int i;
6811 struct hfi1_ctxtdata *rcd;
6812
6813 /* disable port */
6814 clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6815
6816 /* disable all receive contexts */
6817 for (i = 0; i < dd->num_rcv_contexts; i++) {
6818 rcd = hfi1_rcd_get_by_index(dd, i);
6819 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, rcd);
6820 hfi1_rcd_put(rcd);
6821 }
6822 }
6823
6824 /*
6825 * Unfreeze handling for the RXE block - kernel contexts only.
6826 * This will also enable the port. User contexts will do unfreeze
6827 * handling on a per-context basis as they call into the driver.
6828 *
6829 */
rxe_kernel_unfreeze(struct hfi1_devdata * dd)6830 static void rxe_kernel_unfreeze(struct hfi1_devdata *dd)
6831 {
6832 u32 rcvmask;
6833 u16 i;
6834 struct hfi1_ctxtdata *rcd;
6835
6836 /* enable all kernel contexts */
6837 for (i = 0; i < dd->num_rcv_contexts; i++) {
6838 rcd = hfi1_rcd_get_by_index(dd, i);
6839
6840 /* Ensure all non-user contexts(including vnic) are enabled */
6841 if (!rcd || !rcd->sc || (rcd->sc->type == SC_USER)) {
6842 hfi1_rcd_put(rcd);
6843 continue;
6844 }
6845 rcvmask = HFI1_RCVCTRL_CTXT_ENB;
6846 /* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */
6847 rcvmask |= rcd->rcvhdrtail_kvaddr ?
6848 HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
6849 hfi1_rcvctrl(dd, rcvmask, rcd);
6850 hfi1_rcd_put(rcd);
6851 }
6852
6853 /* enable port */
6854 add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6855 }
6856
6857 /*
6858 * Non-interrupt SPC freeze handling.
6859 *
6860 * This is a work-queue function outside of the triggering interrupt.
6861 */
handle_freeze(struct work_struct * work)6862 void handle_freeze(struct work_struct *work)
6863 {
6864 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6865 freeze_work);
6866 struct hfi1_devdata *dd = ppd->dd;
6867
6868 /* wait for freeze indicators on all affected blocks */
6869 wait_for_freeze_status(dd, 1);
6870
6871 /* SPC is now frozen */
6872
6873 /* do send PIO freeze steps */
6874 pio_freeze(dd);
6875
6876 /* do send DMA freeze steps */
6877 sdma_freeze(dd);
6878
6879 /* do send egress freeze steps - nothing to do */
6880
6881 /* do receive freeze steps */
6882 rxe_freeze(dd);
6883
6884 /*
6885 * Unfreeze the hardware - clear the freeze, wait for each
6886 * block's frozen bit to clear, then clear the frozen flag.
6887 */
6888 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6889 wait_for_freeze_status(dd, 0);
6890
6891 if (is_ax(dd)) {
6892 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6893 wait_for_freeze_status(dd, 1);
6894 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6895 wait_for_freeze_status(dd, 0);
6896 }
6897
6898 /* do send PIO unfreeze steps for kernel contexts */
6899 pio_kernel_unfreeze(dd);
6900
6901 /* do send DMA unfreeze steps */
6902 sdma_unfreeze(dd);
6903
6904 /* do send egress unfreeze steps - nothing to do */
6905
6906 /* do receive unfreeze steps for kernel contexts */
6907 rxe_kernel_unfreeze(dd);
6908
6909 /*
6910 * The unfreeze procedure touches global device registers when
6911 * it disables and re-enables RXE. Mark the device unfrozen
6912 * after all that is done so other parts of the driver waiting
6913 * for the device to unfreeze don't do things out of order.
6914 *
6915 * The above implies that the meaning of HFI1_FROZEN flag is
6916 * "Device has gone into freeze mode and freeze mode handling
6917 * is still in progress."
6918 *
6919 * The flag will be removed when freeze mode processing has
6920 * completed.
6921 */
6922 dd->flags &= ~HFI1_FROZEN;
6923 wake_up(&dd->event_queue);
6924
6925 /* no longer frozen */
6926 }
6927
6928 /*
6929 * Handle a link up interrupt from the 8051.
6930 *
6931 * This is a work-queue function outside of the interrupt.
6932 */
handle_link_up(struct work_struct * work)6933 void handle_link_up(struct work_struct *work)
6934 {
6935 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6936 link_up_work);
6937 struct hfi1_devdata *dd = ppd->dd;
6938
6939 set_link_state(ppd, HLS_UP_INIT);
6940
6941 /* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
6942 read_ltp_rtt(dd);
6943 /*
6944 * OPA specifies that certain counters are cleared on a transition
6945 * to link up, so do that.
6946 */
6947 clear_linkup_counters(dd);
6948 /*
6949 * And (re)set link up default values.
6950 */
6951 set_linkup_defaults(ppd);
6952
6953 /*
6954 * Set VL15 credits. Use cached value from verify cap interrupt.
6955 * In case of quick linkup or simulator, vl15 value will be set by
6956 * handle_linkup_change. VerifyCap interrupt handler will not be
6957 * called in those scenarios.
6958 */
6959 if (!(quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR))
6960 set_up_vl15(dd, dd->vl15buf_cached);
6961
6962 /* enforce link speed enabled */
6963 if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) {
6964 /* oops - current speed is not enabled, bounce */
6965 dd_dev_err(dd,
6966 "Link speed active 0x%x is outside enabled 0x%x, downing link\n",
6967 ppd->link_speed_active, ppd->link_speed_enabled);
6968 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0,
6969 OPA_LINKDOWN_REASON_SPEED_POLICY);
6970 set_link_state(ppd, HLS_DN_OFFLINE);
6971 start_link(ppd);
6972 }
6973 }
6974
6975 /*
6976 * Several pieces of LNI information were cached for SMA in ppd.
6977 * Reset these on link down
6978 */
reset_neighbor_info(struct hfi1_pportdata * ppd)6979 static void reset_neighbor_info(struct hfi1_pportdata *ppd)
6980 {
6981 ppd->neighbor_guid = 0;
6982 ppd->neighbor_port_number = 0;
6983 ppd->neighbor_type = 0;
6984 ppd->neighbor_fm_security = 0;
6985 }
6986
6987 static const char * const link_down_reason_strs[] = {
6988 [OPA_LINKDOWN_REASON_NONE] = "None",
6989 [OPA_LINKDOWN_REASON_RCV_ERROR_0] = "Receive error 0",
6990 [OPA_LINKDOWN_REASON_BAD_PKT_LEN] = "Bad packet length",
6991 [OPA_LINKDOWN_REASON_PKT_TOO_LONG] = "Packet too long",
6992 [OPA_LINKDOWN_REASON_PKT_TOO_SHORT] = "Packet too short",
6993 [OPA_LINKDOWN_REASON_BAD_SLID] = "Bad SLID",
6994 [OPA_LINKDOWN_REASON_BAD_DLID] = "Bad DLID",
6995 [OPA_LINKDOWN_REASON_BAD_L2] = "Bad L2",
6996 [OPA_LINKDOWN_REASON_BAD_SC] = "Bad SC",
6997 [OPA_LINKDOWN_REASON_RCV_ERROR_8] = "Receive error 8",
6998 [OPA_LINKDOWN_REASON_BAD_MID_TAIL] = "Bad mid tail",
6999 [OPA_LINKDOWN_REASON_RCV_ERROR_10] = "Receive error 10",
7000 [OPA_LINKDOWN_REASON_PREEMPT_ERROR] = "Preempt error",
7001 [OPA_LINKDOWN_REASON_PREEMPT_VL15] = "Preempt vl15",
7002 [OPA_LINKDOWN_REASON_BAD_VL_MARKER] = "Bad VL marker",
7003 [OPA_LINKDOWN_REASON_RCV_ERROR_14] = "Receive error 14",
7004 [OPA_LINKDOWN_REASON_RCV_ERROR_15] = "Receive error 15",
7005 [OPA_LINKDOWN_REASON_BAD_HEAD_DIST] = "Bad head distance",
7006 [OPA_LINKDOWN_REASON_BAD_TAIL_DIST] = "Bad tail distance",
7007 [OPA_LINKDOWN_REASON_BAD_CTRL_DIST] = "Bad control distance",
7008 [OPA_LINKDOWN_REASON_BAD_CREDIT_ACK] = "Bad credit ack",
7009 [OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER] = "Unsupported VL marker",
7010 [OPA_LINKDOWN_REASON_BAD_PREEMPT] = "Bad preempt",
7011 [OPA_LINKDOWN_REASON_BAD_CONTROL_FLIT] = "Bad control flit",
7012 [OPA_LINKDOWN_REASON_EXCEED_MULTICAST_LIMIT] = "Exceed multicast limit",
7013 [OPA_LINKDOWN_REASON_RCV_ERROR_24] = "Receive error 24",
7014 [OPA_LINKDOWN_REASON_RCV_ERROR_25] = "Receive error 25",
7015 [OPA_LINKDOWN_REASON_RCV_ERROR_26] = "Receive error 26",
7016 [OPA_LINKDOWN_REASON_RCV_ERROR_27] = "Receive error 27",
7017 [OPA_LINKDOWN_REASON_RCV_ERROR_28] = "Receive error 28",
7018 [OPA_LINKDOWN_REASON_RCV_ERROR_29] = "Receive error 29",
7019 [OPA_LINKDOWN_REASON_RCV_ERROR_30] = "Receive error 30",
7020 [OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN] =
7021 "Excessive buffer overrun",
7022 [OPA_LINKDOWN_REASON_UNKNOWN] = "Unknown",
7023 [OPA_LINKDOWN_REASON_REBOOT] = "Reboot",
7024 [OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN] = "Neighbor unknown",
7025 [OPA_LINKDOWN_REASON_FM_BOUNCE] = "FM bounce",
7026 [OPA_LINKDOWN_REASON_SPEED_POLICY] = "Speed policy",
7027 [OPA_LINKDOWN_REASON_WIDTH_POLICY] = "Width policy",
7028 [OPA_LINKDOWN_REASON_DISCONNECTED] = "Disconnected",
7029 [OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED] =
7030 "Local media not installed",
7031 [OPA_LINKDOWN_REASON_NOT_INSTALLED] = "Not installed",
7032 [OPA_LINKDOWN_REASON_CHASSIS_CONFIG] = "Chassis config",
7033 [OPA_LINKDOWN_REASON_END_TO_END_NOT_INSTALLED] =
7034 "End to end not installed",
7035 [OPA_LINKDOWN_REASON_POWER_POLICY] = "Power policy",
7036 [OPA_LINKDOWN_REASON_LINKSPEED_POLICY] = "Link speed policy",
7037 [OPA_LINKDOWN_REASON_LINKWIDTH_POLICY] = "Link width policy",
7038 [OPA_LINKDOWN_REASON_SWITCH_MGMT] = "Switch management",
7039 [OPA_LINKDOWN_REASON_SMA_DISABLED] = "SMA disabled",
7040 [OPA_LINKDOWN_REASON_TRANSIENT] = "Transient"
7041 };
7042
7043 /* return the neighbor link down reason string */
link_down_reason_str(u8 reason)7044 static const char *link_down_reason_str(u8 reason)
7045 {
7046 const char *str = NULL;
7047
7048 if (reason < ARRAY_SIZE(link_down_reason_strs))
7049 str = link_down_reason_strs[reason];
7050 if (!str)
7051 str = "(invalid)";
7052
7053 return str;
7054 }
7055
7056 /*
7057 * Handle a link down interrupt from the 8051.
7058 *
7059 * This is a work-queue function outside of the interrupt.
7060 */
handle_link_down(struct work_struct * work)7061 void handle_link_down(struct work_struct *work)
7062 {
7063 u8 lcl_reason, neigh_reason = 0;
7064 u8 link_down_reason;
7065 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7066 link_down_work);
7067 int was_up;
7068 static const char ldr_str[] = "Link down reason: ";
7069
7070 if ((ppd->host_link_state &
7071 (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) &&
7072 ppd->port_type == PORT_TYPE_FIXED)
7073 ppd->offline_disabled_reason =
7074 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED);
7075
7076 /* Go offline first, then deal with reading/writing through 8051 */
7077 was_up = !!(ppd->host_link_state & HLS_UP);
7078 set_link_state(ppd, HLS_DN_OFFLINE);
7079 xchg(&ppd->is_link_down_queued, 0);
7080
7081 if (was_up) {
7082 lcl_reason = 0;
7083 /* link down reason is only valid if the link was up */
7084 read_link_down_reason(ppd->dd, &link_down_reason);
7085 switch (link_down_reason) {
7086 case LDR_LINK_TRANSFER_ACTIVE_LOW:
7087 /* the link went down, no idle message reason */
7088 dd_dev_info(ppd->dd, "%sUnexpected link down\n",
7089 ldr_str);
7090 break;
7091 case LDR_RECEIVED_LINKDOWN_IDLE_MSG:
7092 /*
7093 * The neighbor reason is only valid if an idle message
7094 * was received for it.
7095 */
7096 read_planned_down_reason_code(ppd->dd, &neigh_reason);
7097 dd_dev_info(ppd->dd,
7098 "%sNeighbor link down message %d, %s\n",
7099 ldr_str, neigh_reason,
7100 link_down_reason_str(neigh_reason));
7101 break;
7102 case LDR_RECEIVED_HOST_OFFLINE_REQ:
7103 dd_dev_info(ppd->dd,
7104 "%sHost requested link to go offline\n",
7105 ldr_str);
7106 break;
7107 default:
7108 dd_dev_info(ppd->dd, "%sUnknown reason 0x%x\n",
7109 ldr_str, link_down_reason);
7110 break;
7111 }
7112
7113 /*
7114 * If no reason, assume peer-initiated but missed
7115 * LinkGoingDown idle flits.
7116 */
7117 if (neigh_reason == 0)
7118 lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN;
7119 } else {
7120 /* went down while polling or going up */
7121 lcl_reason = OPA_LINKDOWN_REASON_TRANSIENT;
7122 }
7123
7124 set_link_down_reason(ppd, lcl_reason, neigh_reason, 0);
7125
7126 /* inform the SMA when the link transitions from up to down */
7127 if (was_up && ppd->local_link_down_reason.sma == 0 &&
7128 ppd->neigh_link_down_reason.sma == 0) {
7129 ppd->local_link_down_reason.sma =
7130 ppd->local_link_down_reason.latest;
7131 ppd->neigh_link_down_reason.sma =
7132 ppd->neigh_link_down_reason.latest;
7133 }
7134
7135 reset_neighbor_info(ppd);
7136
7137 /* disable the port */
7138 clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
7139
7140 /*
7141 * If there is no cable attached, turn the DC off. Otherwise,
7142 * start the link bring up.
7143 */
7144 if (ppd->port_type == PORT_TYPE_QSFP && !qsfp_mod_present(ppd))
7145 dc_shutdown(ppd->dd);
7146 else
7147 start_link(ppd);
7148 }
7149
handle_link_bounce(struct work_struct * work)7150 void handle_link_bounce(struct work_struct *work)
7151 {
7152 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7153 link_bounce_work);
7154
7155 /*
7156 * Only do something if the link is currently up.
7157 */
7158 if (ppd->host_link_state & HLS_UP) {
7159 set_link_state(ppd, HLS_DN_OFFLINE);
7160 start_link(ppd);
7161 } else {
7162 dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n",
7163 __func__, link_state_name(ppd->host_link_state));
7164 }
7165 }
7166
7167 /*
7168 * Mask conversion: Capability exchange to Port LTP. The capability
7169 * exchange has an implicit 16b CRC that is mandatory.
7170 */
cap_to_port_ltp(int cap)7171 static int cap_to_port_ltp(int cap)
7172 {
7173 int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */
7174
7175 if (cap & CAP_CRC_14B)
7176 port_ltp |= PORT_LTP_CRC_MODE_14;
7177 if (cap & CAP_CRC_48B)
7178 port_ltp |= PORT_LTP_CRC_MODE_48;
7179 if (cap & CAP_CRC_12B_16B_PER_LANE)
7180 port_ltp |= PORT_LTP_CRC_MODE_PER_LANE;
7181
7182 return port_ltp;
7183 }
7184
7185 /*
7186 * Convert an OPA Port LTP mask to capability mask
7187 */
port_ltp_to_cap(int port_ltp)7188 int port_ltp_to_cap(int port_ltp)
7189 {
7190 int cap_mask = 0;
7191
7192 if (port_ltp & PORT_LTP_CRC_MODE_14)
7193 cap_mask |= CAP_CRC_14B;
7194 if (port_ltp & PORT_LTP_CRC_MODE_48)
7195 cap_mask |= CAP_CRC_48B;
7196 if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE)
7197 cap_mask |= CAP_CRC_12B_16B_PER_LANE;
7198
7199 return cap_mask;
7200 }
7201
7202 /*
7203 * Convert a single DC LCB CRC mode to an OPA Port LTP mask.
7204 */
lcb_to_port_ltp(int lcb_crc)7205 static int lcb_to_port_ltp(int lcb_crc)
7206 {
7207 int port_ltp = 0;
7208
7209 if (lcb_crc == LCB_CRC_12B_16B_PER_LANE)
7210 port_ltp = PORT_LTP_CRC_MODE_PER_LANE;
7211 else if (lcb_crc == LCB_CRC_48B)
7212 port_ltp = PORT_LTP_CRC_MODE_48;
7213 else if (lcb_crc == LCB_CRC_14B)
7214 port_ltp = PORT_LTP_CRC_MODE_14;
7215 else
7216 port_ltp = PORT_LTP_CRC_MODE_16;
7217
7218 return port_ltp;
7219 }
7220
7221 /*
7222 * Our neighbor has indicated that we are allowed to act as a fabric
7223 * manager, so place the full management partition key in the second
7224 * (0-based) pkey array position (see OPAv1, section 20.2.2.6.8). Note
7225 * that we should already have the limited management partition key in
7226 * array element 1, and also that the port is not yet up when
7227 * add_full_mgmt_pkey() is invoked.
7228 */
add_full_mgmt_pkey(struct hfi1_pportdata * ppd)7229 static void add_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7230 {
7231 struct hfi1_devdata *dd = ppd->dd;
7232
7233 /* Sanity check - ppd->pkeys[2] should be 0, or already initialized */
7234 if (!((ppd->pkeys[2] == 0) || (ppd->pkeys[2] == FULL_MGMT_P_KEY)))
7235 dd_dev_warn(dd, "%s pkey[2] already set to 0x%x, resetting it to 0x%x\n",
7236 __func__, ppd->pkeys[2], FULL_MGMT_P_KEY);
7237 ppd->pkeys[2] = FULL_MGMT_P_KEY;
7238 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7239 hfi1_event_pkey_change(ppd->dd, ppd->port);
7240 }
7241
clear_full_mgmt_pkey(struct hfi1_pportdata * ppd)7242 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7243 {
7244 if (ppd->pkeys[2] != 0) {
7245 ppd->pkeys[2] = 0;
7246 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7247 hfi1_event_pkey_change(ppd->dd, ppd->port);
7248 }
7249 }
7250
7251 /*
7252 * Convert the given link width to the OPA link width bitmask.
7253 */
link_width_to_bits(struct hfi1_devdata * dd,u16 width)7254 static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width)
7255 {
7256 switch (width) {
7257 case 0:
7258 /*
7259 * Simulator and quick linkup do not set the width.
7260 * Just set it to 4x without complaint.
7261 */
7262 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup)
7263 return OPA_LINK_WIDTH_4X;
7264 return 0; /* no lanes up */
7265 case 1: return OPA_LINK_WIDTH_1X;
7266 case 2: return OPA_LINK_WIDTH_2X;
7267 case 3: return OPA_LINK_WIDTH_3X;
7268 default:
7269 dd_dev_info(dd, "%s: invalid width %d, using 4\n",
7270 __func__, width);
7271 /* fall through */
7272 case 4: return OPA_LINK_WIDTH_4X;
7273 }
7274 }
7275
7276 /*
7277 * Do a population count on the bottom nibble.
7278 */
7279 static const u8 bit_counts[16] = {
7280 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
7281 };
7282
nibble_to_count(u8 nibble)7283 static inline u8 nibble_to_count(u8 nibble)
7284 {
7285 return bit_counts[nibble & 0xf];
7286 }
7287
7288 /*
7289 * Read the active lane information from the 8051 registers and return
7290 * their widths.
7291 *
7292 * Active lane information is found in these 8051 registers:
7293 * enable_lane_tx
7294 * enable_lane_rx
7295 */
get_link_widths(struct hfi1_devdata * dd,u16 * tx_width,u16 * rx_width)7296 static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width,
7297 u16 *rx_width)
7298 {
7299 u16 tx, rx;
7300 u8 enable_lane_rx;
7301 u8 enable_lane_tx;
7302 u8 tx_polarity_inversion;
7303 u8 rx_polarity_inversion;
7304 u8 max_rate;
7305
7306 /* read the active lanes */
7307 read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
7308 &rx_polarity_inversion, &max_rate);
7309 read_local_lni(dd, &enable_lane_rx);
7310
7311 /* convert to counts */
7312 tx = nibble_to_count(enable_lane_tx);
7313 rx = nibble_to_count(enable_lane_rx);
7314
7315 /*
7316 * Set link_speed_active here, overriding what was set in
7317 * handle_verify_cap(). The ASIC 8051 firmware does not correctly
7318 * set the max_rate field in handle_verify_cap until v0.19.
7319 */
7320 if ((dd->icode == ICODE_RTL_SILICON) &&
7321 (dd->dc8051_ver < dc8051_ver(0, 19, 0))) {
7322 /* max_rate: 0 = 12.5G, 1 = 25G */
7323 switch (max_rate) {
7324 case 0:
7325 dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G;
7326 break;
7327 default:
7328 dd_dev_err(dd,
7329 "%s: unexpected max rate %d, using 25Gb\n",
7330 __func__, (int)max_rate);
7331 /* fall through */
7332 case 1:
7333 dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7334 break;
7335 }
7336 }
7337
7338 dd_dev_info(dd,
7339 "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n",
7340 enable_lane_tx, tx, enable_lane_rx, rx);
7341 *tx_width = link_width_to_bits(dd, tx);
7342 *rx_width = link_width_to_bits(dd, rx);
7343 }
7344
7345 /*
7346 * Read verify_cap_local_fm_link_width[1] to obtain the link widths.
7347 * Valid after the end of VerifyCap and during LinkUp. Does not change
7348 * after link up. I.e. look elsewhere for downgrade information.
7349 *
7350 * Bits are:
7351 * + bits [7:4] contain the number of active transmitters
7352 * + bits [3:0] contain the number of active receivers
7353 * These are numbers 1 through 4 and can be different values if the
7354 * link is asymmetric.
7355 *
7356 * verify_cap_local_fm_link_width[0] retains its original value.
7357 */
get_linkup_widths(struct hfi1_devdata * dd,u16 * tx_width,u16 * rx_width)7358 static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width,
7359 u16 *rx_width)
7360 {
7361 u16 widths, tx, rx;
7362 u8 misc_bits, local_flags;
7363 u16 active_tx, active_rx;
7364
7365 read_vc_local_link_width(dd, &misc_bits, &local_flags, &widths);
7366 tx = widths >> 12;
7367 rx = (widths >> 8) & 0xf;
7368
7369 *tx_width = link_width_to_bits(dd, tx);
7370 *rx_width = link_width_to_bits(dd, rx);
7371
7372 /* print the active widths */
7373 get_link_widths(dd, &active_tx, &active_rx);
7374 }
7375
7376 /*
7377 * Set ppd->link_width_active and ppd->link_width_downgrade_active using
7378 * hardware information when the link first comes up.
7379 *
7380 * The link width is not available until after VerifyCap.AllFramesReceived
7381 * (the trigger for handle_verify_cap), so this is outside that routine
7382 * and should be called when the 8051 signals linkup.
7383 */
get_linkup_link_widths(struct hfi1_pportdata * ppd)7384 void get_linkup_link_widths(struct hfi1_pportdata *ppd)
7385 {
7386 u16 tx_width, rx_width;
7387
7388 /* get end-of-LNI link widths */
7389 get_linkup_widths(ppd->dd, &tx_width, &rx_width);
7390
7391 /* use tx_width as the link is supposed to be symmetric on link up */
7392 ppd->link_width_active = tx_width;
7393 /* link width downgrade active (LWD.A) starts out matching LW.A */
7394 ppd->link_width_downgrade_tx_active = ppd->link_width_active;
7395 ppd->link_width_downgrade_rx_active = ppd->link_width_active;
7396 /* per OPA spec, on link up LWD.E resets to LWD.S */
7397 ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported;
7398 /* cache the active egress rate (units {10^6 bits/sec]) */
7399 ppd->current_egress_rate = active_egress_rate(ppd);
7400 }
7401
7402 /*
7403 * Handle a verify capabilities interrupt from the 8051.
7404 *
7405 * This is a work-queue function outside of the interrupt.
7406 */
handle_verify_cap(struct work_struct * work)7407 void handle_verify_cap(struct work_struct *work)
7408 {
7409 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7410 link_vc_work);
7411 struct hfi1_devdata *dd = ppd->dd;
7412 u64 reg;
7413 u8 power_management;
7414 u8 continuous;
7415 u8 vcu;
7416 u8 vau;
7417 u8 z;
7418 u16 vl15buf;
7419 u16 link_widths;
7420 u16 crc_mask;
7421 u16 crc_val;
7422 u16 device_id;
7423 u16 active_tx, active_rx;
7424 u8 partner_supported_crc;
7425 u8 remote_tx_rate;
7426 u8 device_rev;
7427
7428 set_link_state(ppd, HLS_VERIFY_CAP);
7429
7430 lcb_shutdown(dd, 0);
7431 adjust_lcb_for_fpga_serdes(dd);
7432
7433 read_vc_remote_phy(dd, &power_management, &continuous);
7434 read_vc_remote_fabric(dd, &vau, &z, &vcu, &vl15buf,
7435 &partner_supported_crc);
7436 read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths);
7437 read_remote_device_id(dd, &device_id, &device_rev);
7438 /*
7439 * And the 'MgmtAllowed' information, which is exchanged during
7440 * LNI, is also be available at this point.
7441 */
7442 read_mgmt_allowed(dd, &ppd->mgmt_allowed);
7443 /* print the active widths */
7444 get_link_widths(dd, &active_tx, &active_rx);
7445 dd_dev_info(dd,
7446 "Peer PHY: power management 0x%x, continuous updates 0x%x\n",
7447 (int)power_management, (int)continuous);
7448 dd_dev_info(dd,
7449 "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n",
7450 (int)vau, (int)z, (int)vcu, (int)vl15buf,
7451 (int)partner_supported_crc);
7452 dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n",
7453 (u32)remote_tx_rate, (u32)link_widths);
7454 dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n",
7455 (u32)device_id, (u32)device_rev);
7456 /*
7457 * The peer vAU value just read is the peer receiver value. HFI does
7458 * not support a transmit vAU of 0 (AU == 8). We advertised that
7459 * with Z=1 in the fabric capabilities sent to the peer. The peer
7460 * will see our Z=1, and, if it advertised a vAU of 0, will move its
7461 * receive to vAU of 1 (AU == 16). Do the same here. We do not care
7462 * about the peer Z value - our sent vAU is 3 (hardwired) and is not
7463 * subject to the Z value exception.
7464 */
7465 if (vau == 0)
7466 vau = 1;
7467 set_up_vau(dd, vau);
7468
7469 /*
7470 * Set VL15 credits to 0 in global credit register. Cache remote VL15
7471 * credits value and wait for link-up interrupt ot set it.
7472 */
7473 set_up_vl15(dd, 0);
7474 dd->vl15buf_cached = vl15buf;
7475
7476 /* set up the LCB CRC mode */
7477 crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc;
7478
7479 /* order is important: use the lowest bit in common */
7480 if (crc_mask & CAP_CRC_14B)
7481 crc_val = LCB_CRC_14B;
7482 else if (crc_mask & CAP_CRC_48B)
7483 crc_val = LCB_CRC_48B;
7484 else if (crc_mask & CAP_CRC_12B_16B_PER_LANE)
7485 crc_val = LCB_CRC_12B_16B_PER_LANE;
7486 else
7487 crc_val = LCB_CRC_16B;
7488
7489 dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val);
7490 write_csr(dd, DC_LCB_CFG_CRC_MODE,
7491 (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT);
7492
7493 /* set (14b only) or clear sideband credit */
7494 reg = read_csr(dd, SEND_CM_CTRL);
7495 if (crc_val == LCB_CRC_14B && crc_14b_sideband) {
7496 write_csr(dd, SEND_CM_CTRL,
7497 reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7498 } else {
7499 write_csr(dd, SEND_CM_CTRL,
7500 reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7501 }
7502
7503 ppd->link_speed_active = 0; /* invalid value */
7504 if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
7505 /* remote_tx_rate: 0 = 12.5G, 1 = 25G */
7506 switch (remote_tx_rate) {
7507 case 0:
7508 ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7509 break;
7510 case 1:
7511 ppd->link_speed_active = OPA_LINK_SPEED_25G;
7512 break;
7513 }
7514 } else {
7515 /* actual rate is highest bit of the ANDed rates */
7516 u8 rate = remote_tx_rate & ppd->local_tx_rate;
7517
7518 if (rate & 2)
7519 ppd->link_speed_active = OPA_LINK_SPEED_25G;
7520 else if (rate & 1)
7521 ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7522 }
7523 if (ppd->link_speed_active == 0) {
7524 dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n",
7525 __func__, (int)remote_tx_rate);
7526 ppd->link_speed_active = OPA_LINK_SPEED_25G;
7527 }
7528
7529 /*
7530 * Cache the values of the supported, enabled, and active
7531 * LTP CRC modes to return in 'portinfo' queries. But the bit
7532 * flags that are returned in the portinfo query differ from
7533 * what's in the link_crc_mask, crc_sizes, and crc_val
7534 * variables. Convert these here.
7535 */
7536 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
7537 /* supported crc modes */
7538 ppd->port_ltp_crc_mode |=
7539 cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4;
7540 /* enabled crc modes */
7541 ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val);
7542 /* active crc mode */
7543
7544 /* set up the remote credit return table */
7545 assign_remote_cm_au_table(dd, vcu);
7546
7547 /*
7548 * The LCB is reset on entry to handle_verify_cap(), so this must
7549 * be applied on every link up.
7550 *
7551 * Adjust LCB error kill enable to kill the link if
7552 * these RBUF errors are seen:
7553 * REPLAY_BUF_MBE_SMASK
7554 * FLIT_INPUT_BUF_MBE_SMASK
7555 */
7556 if (is_ax(dd)) { /* fixed in B0 */
7557 reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN);
7558 reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK
7559 | DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK;
7560 write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg);
7561 }
7562
7563 /* pull LCB fifos out of reset - all fifo clocks must be stable */
7564 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
7565
7566 /* give 8051 access to the LCB CSRs */
7567 write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
7568 set_8051_lcb_access(dd);
7569
7570 if (ppd->mgmt_allowed)
7571 add_full_mgmt_pkey(ppd);
7572
7573 /* tell the 8051 to go to LinkUp */
7574 set_link_state(ppd, HLS_GOING_UP);
7575 }
7576
7577 /*
7578 * Apply the link width downgrade enabled policy against the current active
7579 * link widths.
7580 *
7581 * Called when the enabled policy changes or the active link widths change.
7582 */
apply_link_downgrade_policy(struct hfi1_pportdata * ppd,int refresh_widths)7583 void apply_link_downgrade_policy(struct hfi1_pportdata *ppd, int refresh_widths)
7584 {
7585 int do_bounce = 0;
7586 int tries;
7587 u16 lwde;
7588 u16 tx, rx;
7589
7590 /* use the hls lock to avoid a race with actual link up */
7591 tries = 0;
7592 retry:
7593 mutex_lock(&ppd->hls_lock);
7594 /* only apply if the link is up */
7595 if (ppd->host_link_state & HLS_DOWN) {
7596 /* still going up..wait and retry */
7597 if (ppd->host_link_state & HLS_GOING_UP) {
7598 if (++tries < 1000) {
7599 mutex_unlock(&ppd->hls_lock);
7600 usleep_range(100, 120); /* arbitrary */
7601 goto retry;
7602 }
7603 dd_dev_err(ppd->dd,
7604 "%s: giving up waiting for link state change\n",
7605 __func__);
7606 }
7607 goto done;
7608 }
7609
7610 lwde = ppd->link_width_downgrade_enabled;
7611
7612 if (refresh_widths) {
7613 get_link_widths(ppd->dd, &tx, &rx);
7614 ppd->link_width_downgrade_tx_active = tx;
7615 ppd->link_width_downgrade_rx_active = rx;
7616 }
7617
7618 if (ppd->link_width_downgrade_tx_active == 0 ||
7619 ppd->link_width_downgrade_rx_active == 0) {
7620 /* the 8051 reported a dead link as a downgrade */
7621 dd_dev_err(ppd->dd, "Link downgrade is really a link down, ignoring\n");
7622 } else if (lwde == 0) {
7623 /* downgrade is disabled */
7624
7625 /* bounce if not at starting active width */
7626 if ((ppd->link_width_active !=
7627 ppd->link_width_downgrade_tx_active) ||
7628 (ppd->link_width_active !=
7629 ppd->link_width_downgrade_rx_active)) {
7630 dd_dev_err(ppd->dd,
7631 "Link downgrade is disabled and link has downgraded, downing link\n");
7632 dd_dev_err(ppd->dd,
7633 " original 0x%x, tx active 0x%x, rx active 0x%x\n",
7634 ppd->link_width_active,
7635 ppd->link_width_downgrade_tx_active,
7636 ppd->link_width_downgrade_rx_active);
7637 do_bounce = 1;
7638 }
7639 } else if ((lwde & ppd->link_width_downgrade_tx_active) == 0 ||
7640 (lwde & ppd->link_width_downgrade_rx_active) == 0) {
7641 /* Tx or Rx is outside the enabled policy */
7642 dd_dev_err(ppd->dd,
7643 "Link is outside of downgrade allowed, downing link\n");
7644 dd_dev_err(ppd->dd,
7645 " enabled 0x%x, tx active 0x%x, rx active 0x%x\n",
7646 lwde, ppd->link_width_downgrade_tx_active,
7647 ppd->link_width_downgrade_rx_active);
7648 do_bounce = 1;
7649 }
7650
7651 done:
7652 mutex_unlock(&ppd->hls_lock);
7653
7654 if (do_bounce) {
7655 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0,
7656 OPA_LINKDOWN_REASON_WIDTH_POLICY);
7657 set_link_state(ppd, HLS_DN_OFFLINE);
7658 start_link(ppd);
7659 }
7660 }
7661
7662 /*
7663 * Handle a link downgrade interrupt from the 8051.
7664 *
7665 * This is a work-queue function outside of the interrupt.
7666 */
handle_link_downgrade(struct work_struct * work)7667 void handle_link_downgrade(struct work_struct *work)
7668 {
7669 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7670 link_downgrade_work);
7671
7672 dd_dev_info(ppd->dd, "8051: Link width downgrade\n");
7673 apply_link_downgrade_policy(ppd, 1);
7674 }
7675
dcc_err_string(char * buf,int buf_len,u64 flags)7676 static char *dcc_err_string(char *buf, int buf_len, u64 flags)
7677 {
7678 return flag_string(buf, buf_len, flags, dcc_err_flags,
7679 ARRAY_SIZE(dcc_err_flags));
7680 }
7681
lcb_err_string(char * buf,int buf_len,u64 flags)7682 static char *lcb_err_string(char *buf, int buf_len, u64 flags)
7683 {
7684 return flag_string(buf, buf_len, flags, lcb_err_flags,
7685 ARRAY_SIZE(lcb_err_flags));
7686 }
7687
dc8051_err_string(char * buf,int buf_len,u64 flags)7688 static char *dc8051_err_string(char *buf, int buf_len, u64 flags)
7689 {
7690 return flag_string(buf, buf_len, flags, dc8051_err_flags,
7691 ARRAY_SIZE(dc8051_err_flags));
7692 }
7693
dc8051_info_err_string(char * buf,int buf_len,u64 flags)7694 static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags)
7695 {
7696 return flag_string(buf, buf_len, flags, dc8051_info_err_flags,
7697 ARRAY_SIZE(dc8051_info_err_flags));
7698 }
7699
dc8051_info_host_msg_string(char * buf,int buf_len,u64 flags)7700 static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags)
7701 {
7702 return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags,
7703 ARRAY_SIZE(dc8051_info_host_msg_flags));
7704 }
7705
handle_8051_interrupt(struct hfi1_devdata * dd,u32 unused,u64 reg)7706 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg)
7707 {
7708 struct hfi1_pportdata *ppd = dd->pport;
7709 u64 info, err, host_msg;
7710 int queue_link_down = 0;
7711 char buf[96];
7712
7713 /* look at the flags */
7714 if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) {
7715 /* 8051 information set by firmware */
7716 /* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */
7717 info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051);
7718 err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT)
7719 & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK;
7720 host_msg = (info >>
7721 DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT)
7722 & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK;
7723
7724 /*
7725 * Handle error flags.
7726 */
7727 if (err & FAILED_LNI) {
7728 /*
7729 * LNI error indications are cleared by the 8051
7730 * only when starting polling. Only pay attention
7731 * to them when in the states that occur during
7732 * LNI.
7733 */
7734 if (ppd->host_link_state
7735 & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
7736 queue_link_down = 1;
7737 dd_dev_info(dd, "Link error: %s\n",
7738 dc8051_info_err_string(buf,
7739 sizeof(buf),
7740 err &
7741 FAILED_LNI));
7742 }
7743 err &= ~(u64)FAILED_LNI;
7744 }
7745 /* unknown frames can happen durning LNI, just count */
7746 if (err & UNKNOWN_FRAME) {
7747 ppd->unknown_frame_count++;
7748 err &= ~(u64)UNKNOWN_FRAME;
7749 }
7750 if (err) {
7751 /* report remaining errors, but do not do anything */
7752 dd_dev_err(dd, "8051 info error: %s\n",
7753 dc8051_info_err_string(buf, sizeof(buf),
7754 err));
7755 }
7756
7757 /*
7758 * Handle host message flags.
7759 */
7760 if (host_msg & HOST_REQ_DONE) {
7761 /*
7762 * Presently, the driver does a busy wait for
7763 * host requests to complete. This is only an
7764 * informational message.
7765 * NOTE: The 8051 clears the host message
7766 * information *on the next 8051 command*.
7767 * Therefore, when linkup is achieved,
7768 * this flag will still be set.
7769 */
7770 host_msg &= ~(u64)HOST_REQ_DONE;
7771 }
7772 if (host_msg & BC_SMA_MSG) {
7773 queue_work(ppd->link_wq, &ppd->sma_message_work);
7774 host_msg &= ~(u64)BC_SMA_MSG;
7775 }
7776 if (host_msg & LINKUP_ACHIEVED) {
7777 dd_dev_info(dd, "8051: Link up\n");
7778 queue_work(ppd->link_wq, &ppd->link_up_work);
7779 host_msg &= ~(u64)LINKUP_ACHIEVED;
7780 }
7781 if (host_msg & EXT_DEVICE_CFG_REQ) {
7782 handle_8051_request(ppd);
7783 host_msg &= ~(u64)EXT_DEVICE_CFG_REQ;
7784 }
7785 if (host_msg & VERIFY_CAP_FRAME) {
7786 queue_work(ppd->link_wq, &ppd->link_vc_work);
7787 host_msg &= ~(u64)VERIFY_CAP_FRAME;
7788 }
7789 if (host_msg & LINK_GOING_DOWN) {
7790 const char *extra = "";
7791 /* no downgrade action needed if going down */
7792 if (host_msg & LINK_WIDTH_DOWNGRADED) {
7793 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7794 extra = " (ignoring downgrade)";
7795 }
7796 dd_dev_info(dd, "8051: Link down%s\n", extra);
7797 queue_link_down = 1;
7798 host_msg &= ~(u64)LINK_GOING_DOWN;
7799 }
7800 if (host_msg & LINK_WIDTH_DOWNGRADED) {
7801 queue_work(ppd->link_wq, &ppd->link_downgrade_work);
7802 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7803 }
7804 if (host_msg) {
7805 /* report remaining messages, but do not do anything */
7806 dd_dev_info(dd, "8051 info host message: %s\n",
7807 dc8051_info_host_msg_string(buf,
7808 sizeof(buf),
7809 host_msg));
7810 }
7811
7812 reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK;
7813 }
7814 if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) {
7815 /*
7816 * Lost the 8051 heartbeat. If this happens, we
7817 * receive constant interrupts about it. Disable
7818 * the interrupt after the first.
7819 */
7820 dd_dev_err(dd, "Lost 8051 heartbeat\n");
7821 write_csr(dd, DC_DC8051_ERR_EN,
7822 read_csr(dd, DC_DC8051_ERR_EN) &
7823 ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK);
7824
7825 reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK;
7826 }
7827 if (reg) {
7828 /* report the error, but do not do anything */
7829 dd_dev_err(dd, "8051 error: %s\n",
7830 dc8051_err_string(buf, sizeof(buf), reg));
7831 }
7832
7833 if (queue_link_down) {
7834 /*
7835 * if the link is already going down or disabled, do not
7836 * queue another. If there's a link down entry already
7837 * queued, don't queue another one.
7838 */
7839 if ((ppd->host_link_state &
7840 (HLS_GOING_OFFLINE | HLS_LINK_COOLDOWN)) ||
7841 ppd->link_enabled == 0) {
7842 dd_dev_info(dd, "%s: not queuing link down. host_link_state %x, link_enabled %x\n",
7843 __func__, ppd->host_link_state,
7844 ppd->link_enabled);
7845 } else {
7846 if (xchg(&ppd->is_link_down_queued, 1) == 1)
7847 dd_dev_info(dd,
7848 "%s: link down request already queued\n",
7849 __func__);
7850 else
7851 queue_work(ppd->link_wq, &ppd->link_down_work);
7852 }
7853 }
7854 }
7855
7856 static const char * const fm_config_txt[] = {
7857 [0] =
7858 "BadHeadDist: Distance violation between two head flits",
7859 [1] =
7860 "BadTailDist: Distance violation between two tail flits",
7861 [2] =
7862 "BadCtrlDist: Distance violation between two credit control flits",
7863 [3] =
7864 "BadCrdAck: Credits return for unsupported VL",
7865 [4] =
7866 "UnsupportedVLMarker: Received VL Marker",
7867 [5] =
7868 "BadPreempt: Exceeded the preemption nesting level",
7869 [6] =
7870 "BadControlFlit: Received unsupported control flit",
7871 /* no 7 */
7872 [8] =
7873 "UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL",
7874 };
7875
7876 static const char * const port_rcv_txt[] = {
7877 [1] =
7878 "BadPktLen: Illegal PktLen",
7879 [2] =
7880 "PktLenTooLong: Packet longer than PktLen",
7881 [3] =
7882 "PktLenTooShort: Packet shorter than PktLen",
7883 [4] =
7884 "BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)",
7885 [5] =
7886 "BadDLID: Illegal DLID (0, doesn't match HFI)",
7887 [6] =
7888 "BadL2: Illegal L2 opcode",
7889 [7] =
7890 "BadSC: Unsupported SC",
7891 [9] =
7892 "BadRC: Illegal RC",
7893 [11] =
7894 "PreemptError: Preempting with same VL",
7895 [12] =
7896 "PreemptVL15: Preempting a VL15 packet",
7897 };
7898
7899 #define OPA_LDR_FMCONFIG_OFFSET 16
7900 #define OPA_LDR_PORTRCV_OFFSET 0
handle_dcc_err(struct hfi1_devdata * dd,u32 unused,u64 reg)7901 static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7902 {
7903 u64 info, hdr0, hdr1;
7904 const char *extra;
7905 char buf[96];
7906 struct hfi1_pportdata *ppd = dd->pport;
7907 u8 lcl_reason = 0;
7908 int do_bounce = 0;
7909
7910 if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) {
7911 if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) {
7912 info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE);
7913 dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK;
7914 /* set status bit */
7915 dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK;
7916 }
7917 reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK;
7918 }
7919
7920 if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) {
7921 struct hfi1_pportdata *ppd = dd->pport;
7922 /* this counter saturates at (2^32) - 1 */
7923 if (ppd->link_downed < (u32)UINT_MAX)
7924 ppd->link_downed++;
7925 reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK;
7926 }
7927
7928 if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) {
7929 u8 reason_valid = 1;
7930
7931 info = read_csr(dd, DCC_ERR_INFO_FMCONFIG);
7932 if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) {
7933 dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK;
7934 /* set status bit */
7935 dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK;
7936 }
7937 switch (info) {
7938 case 0:
7939 case 1:
7940 case 2:
7941 case 3:
7942 case 4:
7943 case 5:
7944 case 6:
7945 extra = fm_config_txt[info];
7946 break;
7947 case 8:
7948 extra = fm_config_txt[info];
7949 if (ppd->port_error_action &
7950 OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) {
7951 do_bounce = 1;
7952 /*
7953 * lcl_reason cannot be derived from info
7954 * for this error
7955 */
7956 lcl_reason =
7957 OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER;
7958 }
7959 break;
7960 default:
7961 reason_valid = 0;
7962 snprintf(buf, sizeof(buf), "reserved%lld", info);
7963 extra = buf;
7964 break;
7965 }
7966
7967 if (reason_valid && !do_bounce) {
7968 do_bounce = ppd->port_error_action &
7969 (1 << (OPA_LDR_FMCONFIG_OFFSET + info));
7970 lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST;
7971 }
7972
7973 /* just report this */
7974 dd_dev_info_ratelimited(dd, "DCC Error: fmconfig error: %s\n",
7975 extra);
7976 reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK;
7977 }
7978
7979 if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) {
7980 u8 reason_valid = 1;
7981
7982 info = read_csr(dd, DCC_ERR_INFO_PORTRCV);
7983 hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0);
7984 hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1);
7985 if (!(dd->err_info_rcvport.status_and_code &
7986 OPA_EI_STATUS_SMASK)) {
7987 dd->err_info_rcvport.status_and_code =
7988 info & OPA_EI_CODE_SMASK;
7989 /* set status bit */
7990 dd->err_info_rcvport.status_and_code |=
7991 OPA_EI_STATUS_SMASK;
7992 /*
7993 * save first 2 flits in the packet that caused
7994 * the error
7995 */
7996 dd->err_info_rcvport.packet_flit1 = hdr0;
7997 dd->err_info_rcvport.packet_flit2 = hdr1;
7998 }
7999 switch (info) {
8000 case 1:
8001 case 2:
8002 case 3:
8003 case 4:
8004 case 5:
8005 case 6:
8006 case 7:
8007 case 9:
8008 case 11:
8009 case 12:
8010 extra = port_rcv_txt[info];
8011 break;
8012 default:
8013 reason_valid = 0;
8014 snprintf(buf, sizeof(buf), "reserved%lld", info);
8015 extra = buf;
8016 break;
8017 }
8018
8019 if (reason_valid && !do_bounce) {
8020 do_bounce = ppd->port_error_action &
8021 (1 << (OPA_LDR_PORTRCV_OFFSET + info));
8022 lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0;
8023 }
8024
8025 /* just report this */
8026 dd_dev_info_ratelimited(dd, "DCC Error: PortRcv error: %s\n"
8027 " hdr0 0x%llx, hdr1 0x%llx\n",
8028 extra, hdr0, hdr1);
8029
8030 reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK;
8031 }
8032
8033 if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) {
8034 /* informative only */
8035 dd_dev_info_ratelimited(dd, "8051 access to LCB blocked\n");
8036 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK;
8037 }
8038 if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) {
8039 /* informative only */
8040 dd_dev_info_ratelimited(dd, "host access to LCB blocked\n");
8041 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK;
8042 }
8043
8044 if (unlikely(hfi1_dbg_fault_suppress_err(&dd->verbs_dev)))
8045 reg &= ~DCC_ERR_FLG_LATE_EBP_ERR_SMASK;
8046
8047 /* report any remaining errors */
8048 if (reg)
8049 dd_dev_info_ratelimited(dd, "DCC Error: %s\n",
8050 dcc_err_string(buf, sizeof(buf), reg));
8051
8052 if (lcl_reason == 0)
8053 lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN;
8054
8055 if (do_bounce) {
8056 dd_dev_info_ratelimited(dd, "%s: PortErrorAction bounce\n",
8057 __func__);
8058 set_link_down_reason(ppd, lcl_reason, 0, lcl_reason);
8059 queue_work(ppd->link_wq, &ppd->link_bounce_work);
8060 }
8061 }
8062
handle_lcb_err(struct hfi1_devdata * dd,u32 unused,u64 reg)8063 static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
8064 {
8065 char buf[96];
8066
8067 dd_dev_info(dd, "LCB Error: %s\n",
8068 lcb_err_string(buf, sizeof(buf), reg));
8069 }
8070
8071 /*
8072 * CCE block DC interrupt. Source is < 8.
8073 */
is_dc_int(struct hfi1_devdata * dd,unsigned int source)8074 static void is_dc_int(struct hfi1_devdata *dd, unsigned int source)
8075 {
8076 const struct err_reg_info *eri = &dc_errs[source];
8077
8078 if (eri->handler) {
8079 interrupt_clear_down(dd, 0, eri);
8080 } else if (source == 3 /* dc_lbm_int */) {
8081 /*
8082 * This indicates that a parity error has occurred on the
8083 * address/control lines presented to the LBM. The error
8084 * is a single pulse, there is no associated error flag,
8085 * and it is non-maskable. This is because if a parity
8086 * error occurs on the request the request is dropped.
8087 * This should never occur, but it is nice to know if it
8088 * ever does.
8089 */
8090 dd_dev_err(dd, "Parity error in DC LBM block\n");
8091 } else {
8092 dd_dev_err(dd, "Invalid DC interrupt %u\n", source);
8093 }
8094 }
8095
8096 /*
8097 * TX block send credit interrupt. Source is < 160.
8098 */
is_send_credit_int(struct hfi1_devdata * dd,unsigned int source)8099 static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source)
8100 {
8101 sc_group_release_update(dd, source);
8102 }
8103
8104 /*
8105 * TX block SDMA interrupt. Source is < 48.
8106 *
8107 * SDMA interrupts are grouped by type:
8108 *
8109 * 0 - N-1 = SDma
8110 * N - 2N-1 = SDmaProgress
8111 * 2N - 3N-1 = SDmaIdle
8112 */
is_sdma_eng_int(struct hfi1_devdata * dd,unsigned int source)8113 static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source)
8114 {
8115 /* what interrupt */
8116 unsigned int what = source / TXE_NUM_SDMA_ENGINES;
8117 /* which engine */
8118 unsigned int which = source % TXE_NUM_SDMA_ENGINES;
8119
8120 #ifdef CONFIG_SDMA_VERBOSITY
8121 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which,
8122 slashstrip(__FILE__), __LINE__, __func__);
8123 sdma_dumpstate(&dd->per_sdma[which]);
8124 #endif
8125
8126 if (likely(what < 3 && which < dd->num_sdma)) {
8127 sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source);
8128 } else {
8129 /* should not happen */
8130 dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source);
8131 }
8132 }
8133
8134 /*
8135 * RX block receive available interrupt. Source is < 160.
8136 */
is_rcv_avail_int(struct hfi1_devdata * dd,unsigned int source)8137 static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source)
8138 {
8139 struct hfi1_ctxtdata *rcd;
8140 char *err_detail;
8141
8142 if (likely(source < dd->num_rcv_contexts)) {
8143 rcd = hfi1_rcd_get_by_index(dd, source);
8144 if (rcd) {
8145 /* Check for non-user contexts, including vnic */
8146 if ((source < dd->first_dyn_alloc_ctxt) ||
8147 (rcd->sc && (rcd->sc->type == SC_KERNEL)))
8148 rcd->do_interrupt(rcd, 0);
8149 else
8150 handle_user_interrupt(rcd);
8151
8152 hfi1_rcd_put(rcd);
8153 return; /* OK */
8154 }
8155 /* received an interrupt, but no rcd */
8156 err_detail = "dataless";
8157 } else {
8158 /* received an interrupt, but are not using that context */
8159 err_detail = "out of range";
8160 }
8161 dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n",
8162 err_detail, source);
8163 }
8164
8165 /*
8166 * RX block receive urgent interrupt. Source is < 160.
8167 */
is_rcv_urgent_int(struct hfi1_devdata * dd,unsigned int source)8168 static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source)
8169 {
8170 struct hfi1_ctxtdata *rcd;
8171 char *err_detail;
8172
8173 if (likely(source < dd->num_rcv_contexts)) {
8174 rcd = hfi1_rcd_get_by_index(dd, source);
8175 if (rcd) {
8176 /* only pay attention to user urgent interrupts */
8177 if ((source >= dd->first_dyn_alloc_ctxt) &&
8178 (!rcd->sc || (rcd->sc->type == SC_USER)))
8179 handle_user_interrupt(rcd);
8180
8181 hfi1_rcd_put(rcd);
8182 return; /* OK */
8183 }
8184 /* received an interrupt, but no rcd */
8185 err_detail = "dataless";
8186 } else {
8187 /* received an interrupt, but are not using that context */
8188 err_detail = "out of range";
8189 }
8190 dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n",
8191 err_detail, source);
8192 }
8193
8194 /*
8195 * Reserved range interrupt. Should not be called in normal operation.
8196 */
is_reserved_int(struct hfi1_devdata * dd,unsigned int source)8197 static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source)
8198 {
8199 char name[64];
8200
8201 dd_dev_err(dd, "unexpected %s interrupt\n",
8202 is_reserved_name(name, sizeof(name), source));
8203 }
8204
8205 static const struct is_table is_table[] = {
8206 /*
8207 * start end
8208 * name func interrupt func
8209 */
8210 { IS_GENERAL_ERR_START, IS_GENERAL_ERR_END,
8211 is_misc_err_name, is_misc_err_int },
8212 { IS_SDMAENG_ERR_START, IS_SDMAENG_ERR_END,
8213 is_sdma_eng_err_name, is_sdma_eng_err_int },
8214 { IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END,
8215 is_sendctxt_err_name, is_sendctxt_err_int },
8216 { IS_SDMA_START, IS_SDMA_END,
8217 is_sdma_eng_name, is_sdma_eng_int },
8218 { IS_VARIOUS_START, IS_VARIOUS_END,
8219 is_various_name, is_various_int },
8220 { IS_DC_START, IS_DC_END,
8221 is_dc_name, is_dc_int },
8222 { IS_RCVAVAIL_START, IS_RCVAVAIL_END,
8223 is_rcv_avail_name, is_rcv_avail_int },
8224 { IS_RCVURGENT_START, IS_RCVURGENT_END,
8225 is_rcv_urgent_name, is_rcv_urgent_int },
8226 { IS_SENDCREDIT_START, IS_SENDCREDIT_END,
8227 is_send_credit_name, is_send_credit_int},
8228 { IS_RESERVED_START, IS_RESERVED_END,
8229 is_reserved_name, is_reserved_int},
8230 };
8231
8232 /*
8233 * Interrupt source interrupt - called when the given source has an interrupt.
8234 * Source is a bit index into an array of 64-bit integers.
8235 */
is_interrupt(struct hfi1_devdata * dd,unsigned int source)8236 static void is_interrupt(struct hfi1_devdata *dd, unsigned int source)
8237 {
8238 const struct is_table *entry;
8239
8240 /* avoids a double compare by walking the table in-order */
8241 for (entry = &is_table[0]; entry->is_name; entry++) {
8242 if (source < entry->end) {
8243 trace_hfi1_interrupt(dd, entry, source);
8244 entry->is_int(dd, source - entry->start);
8245 return;
8246 }
8247 }
8248 /* fell off the end */
8249 dd_dev_err(dd, "invalid interrupt source %u\n", source);
8250 }
8251
8252 /*
8253 * General interrupt handler. This is able to correctly handle
8254 * all interrupts in case INTx is used.
8255 */
general_interrupt(int irq,void * data)8256 static irqreturn_t general_interrupt(int irq, void *data)
8257 {
8258 struct hfi1_devdata *dd = data;
8259 u64 regs[CCE_NUM_INT_CSRS];
8260 u32 bit;
8261 int i;
8262 irqreturn_t handled = IRQ_NONE;
8263
8264 this_cpu_inc(*dd->int_counter);
8265
8266 /* phase 1: scan and clear all handled interrupts */
8267 for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
8268 if (dd->gi_mask[i] == 0) {
8269 regs[i] = 0; /* used later */
8270 continue;
8271 }
8272 regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) &
8273 dd->gi_mask[i];
8274 /* only clear if anything is set */
8275 if (regs[i])
8276 write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]);
8277 }
8278
8279 /* phase 2: call the appropriate handler */
8280 for_each_set_bit(bit, (unsigned long *)®s[0],
8281 CCE_NUM_INT_CSRS * 64) {
8282 is_interrupt(dd, bit);
8283 handled = IRQ_HANDLED;
8284 }
8285
8286 return handled;
8287 }
8288
sdma_interrupt(int irq,void * data)8289 static irqreturn_t sdma_interrupt(int irq, void *data)
8290 {
8291 struct sdma_engine *sde = data;
8292 struct hfi1_devdata *dd = sde->dd;
8293 u64 status;
8294
8295 #ifdef CONFIG_SDMA_VERBOSITY
8296 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
8297 slashstrip(__FILE__), __LINE__, __func__);
8298 sdma_dumpstate(sde);
8299 #endif
8300
8301 this_cpu_inc(*dd->int_counter);
8302
8303 /* This read_csr is really bad in the hot path */
8304 status = read_csr(dd,
8305 CCE_INT_STATUS + (8 * (IS_SDMA_START / 64)))
8306 & sde->imask;
8307 if (likely(status)) {
8308 /* clear the interrupt(s) */
8309 write_csr(dd,
8310 CCE_INT_CLEAR + (8 * (IS_SDMA_START / 64)),
8311 status);
8312
8313 /* handle the interrupt(s) */
8314 sdma_engine_interrupt(sde, status);
8315 } else {
8316 dd_dev_info_ratelimited(dd, "SDMA engine %u interrupt, but no status bits set\n",
8317 sde->this_idx);
8318 }
8319 return IRQ_HANDLED;
8320 }
8321
8322 /*
8323 * Clear the receive interrupt. Use a read of the interrupt clear CSR
8324 * to insure that the write completed. This does NOT guarantee that
8325 * queued DMA writes to memory from the chip are pushed.
8326 */
clear_recv_intr(struct hfi1_ctxtdata * rcd)8327 static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd)
8328 {
8329 struct hfi1_devdata *dd = rcd->dd;
8330 u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg);
8331
8332 mmiowb(); /* make sure everything before is written */
8333 write_csr(dd, addr, rcd->imask);
8334 /* force the above write on the chip and get a value back */
8335 (void)read_csr(dd, addr);
8336 }
8337
8338 /* force the receive interrupt */
force_recv_intr(struct hfi1_ctxtdata * rcd)8339 void force_recv_intr(struct hfi1_ctxtdata *rcd)
8340 {
8341 write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask);
8342 }
8343
8344 /*
8345 * Return non-zero if a packet is present.
8346 *
8347 * This routine is called when rechecking for packets after the RcvAvail
8348 * interrupt has been cleared down. First, do a quick check of memory for
8349 * a packet present. If not found, use an expensive CSR read of the context
8350 * tail to determine the actual tail. The CSR read is necessary because there
8351 * is no method to push pending DMAs to memory other than an interrupt and we
8352 * are trying to determine if we need to force an interrupt.
8353 */
check_packet_present(struct hfi1_ctxtdata * rcd)8354 static inline int check_packet_present(struct hfi1_ctxtdata *rcd)
8355 {
8356 u32 tail;
8357 int present;
8358
8359 if (!rcd->rcvhdrtail_kvaddr)
8360 present = (rcd->seq_cnt ==
8361 rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd))));
8362 else /* is RDMA rtail */
8363 present = (rcd->head != get_rcvhdrtail(rcd));
8364
8365 if (present)
8366 return 1;
8367
8368 /* fall back to a CSR read, correct indpendent of DMA_RTAIL */
8369 tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
8370 return rcd->head != tail;
8371 }
8372
8373 /*
8374 * Receive packet IRQ handler. This routine expects to be on its own IRQ.
8375 * This routine will try to handle packets immediately (latency), but if
8376 * it finds too many, it will invoke the thread handler (bandwitdh). The
8377 * chip receive interrupt is *not* cleared down until this or the thread (if
8378 * invoked) is finished. The intent is to avoid extra interrupts while we
8379 * are processing packets anyway.
8380 */
receive_context_interrupt(int irq,void * data)8381 static irqreturn_t receive_context_interrupt(int irq, void *data)
8382 {
8383 struct hfi1_ctxtdata *rcd = data;
8384 struct hfi1_devdata *dd = rcd->dd;
8385 int disposition;
8386 int present;
8387
8388 trace_hfi1_receive_interrupt(dd, rcd);
8389 this_cpu_inc(*dd->int_counter);
8390 aspm_ctx_disable(rcd);
8391
8392 /* receive interrupt remains blocked while processing packets */
8393 disposition = rcd->do_interrupt(rcd, 0);
8394
8395 /*
8396 * Too many packets were seen while processing packets in this
8397 * IRQ handler. Invoke the handler thread. The receive interrupt
8398 * remains blocked.
8399 */
8400 if (disposition == RCV_PKT_LIMIT)
8401 return IRQ_WAKE_THREAD;
8402
8403 /*
8404 * The packet processor detected no more packets. Clear the receive
8405 * interrupt and recheck for a packet packet that may have arrived
8406 * after the previous check and interrupt clear. If a packet arrived,
8407 * force another interrupt.
8408 */
8409 clear_recv_intr(rcd);
8410 present = check_packet_present(rcd);
8411 if (present)
8412 force_recv_intr(rcd);
8413
8414 return IRQ_HANDLED;
8415 }
8416
8417 /*
8418 * Receive packet thread handler. This expects to be invoked with the
8419 * receive interrupt still blocked.
8420 */
receive_context_thread(int irq,void * data)8421 static irqreturn_t receive_context_thread(int irq, void *data)
8422 {
8423 struct hfi1_ctxtdata *rcd = data;
8424 int present;
8425
8426 /* receive interrupt is still blocked from the IRQ handler */
8427 (void)rcd->do_interrupt(rcd, 1);
8428
8429 /*
8430 * The packet processor will only return if it detected no more
8431 * packets. Hold IRQs here so we can safely clear the interrupt and
8432 * recheck for a packet that may have arrived after the previous
8433 * check and the interrupt clear. If a packet arrived, force another
8434 * interrupt.
8435 */
8436 local_irq_disable();
8437 clear_recv_intr(rcd);
8438 present = check_packet_present(rcd);
8439 if (present)
8440 force_recv_intr(rcd);
8441 local_irq_enable();
8442
8443 return IRQ_HANDLED;
8444 }
8445
8446 /* ========================================================================= */
8447
read_physical_state(struct hfi1_devdata * dd)8448 u32 read_physical_state(struct hfi1_devdata *dd)
8449 {
8450 u64 reg;
8451
8452 reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
8453 return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT)
8454 & DC_DC8051_STS_CUR_STATE_PORT_MASK;
8455 }
8456
read_logical_state(struct hfi1_devdata * dd)8457 u32 read_logical_state(struct hfi1_devdata *dd)
8458 {
8459 u64 reg;
8460
8461 reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8462 return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT)
8463 & DCC_CFG_PORT_CONFIG_LINK_STATE_MASK;
8464 }
8465
set_logical_state(struct hfi1_devdata * dd,u32 chip_lstate)8466 static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate)
8467 {
8468 u64 reg;
8469
8470 reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8471 /* clear current state, set new state */
8472 reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK;
8473 reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT;
8474 write_csr(dd, DCC_CFG_PORT_CONFIG, reg);
8475 }
8476
8477 /*
8478 * Use the 8051 to read a LCB CSR.
8479 */
read_lcb_via_8051(struct hfi1_devdata * dd,u32 addr,u64 * data)8480 static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data)
8481 {
8482 u32 regno;
8483 int ret;
8484
8485 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8486 if (acquire_lcb_access(dd, 0) == 0) {
8487 *data = read_csr(dd, addr);
8488 release_lcb_access(dd, 0);
8489 return 0;
8490 }
8491 return -EBUSY;
8492 }
8493
8494 /* register is an index of LCB registers: (offset - base) / 8 */
8495 regno = (addr - DC_LCB_CFG_RUN) >> 3;
8496 ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data);
8497 if (ret != HCMD_SUCCESS)
8498 return -EBUSY;
8499 return 0;
8500 }
8501
8502 /*
8503 * Provide a cache for some of the LCB registers in case the LCB is
8504 * unavailable.
8505 * (The LCB is unavailable in certain link states, for example.)
8506 */
8507 struct lcb_datum {
8508 u32 off;
8509 u64 val;
8510 };
8511
8512 static struct lcb_datum lcb_cache[] = {
8513 { DC_LCB_ERR_INFO_RX_REPLAY_CNT, 0},
8514 { DC_LCB_ERR_INFO_SEQ_CRC_CNT, 0 },
8515 { DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT, 0 },
8516 };
8517
update_lcb_cache(struct hfi1_devdata * dd)8518 static void update_lcb_cache(struct hfi1_devdata *dd)
8519 {
8520 int i;
8521 int ret;
8522 u64 val;
8523
8524 for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8525 ret = read_lcb_csr(dd, lcb_cache[i].off, &val);
8526
8527 /* Update if we get good data */
8528 if (likely(ret != -EBUSY))
8529 lcb_cache[i].val = val;
8530 }
8531 }
8532
read_lcb_cache(u32 off,u64 * val)8533 static int read_lcb_cache(u32 off, u64 *val)
8534 {
8535 int i;
8536
8537 for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8538 if (lcb_cache[i].off == off) {
8539 *val = lcb_cache[i].val;
8540 return 0;
8541 }
8542 }
8543
8544 pr_warn("%s bad offset 0x%x\n", __func__, off);
8545 return -1;
8546 }
8547
8548 /*
8549 * Read an LCB CSR. Access may not be in host control, so check.
8550 * Return 0 on success, -EBUSY on failure.
8551 */
read_lcb_csr(struct hfi1_devdata * dd,u32 addr,u64 * data)8552 int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data)
8553 {
8554 struct hfi1_pportdata *ppd = dd->pport;
8555
8556 /* if up, go through the 8051 for the value */
8557 if (ppd->host_link_state & HLS_UP)
8558 return read_lcb_via_8051(dd, addr, data);
8559 /* if going up or down, check the cache, otherwise, no access */
8560 if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE)) {
8561 if (read_lcb_cache(addr, data))
8562 return -EBUSY;
8563 return 0;
8564 }
8565
8566 /* otherwise, host has access */
8567 *data = read_csr(dd, addr);
8568 return 0;
8569 }
8570
8571 /*
8572 * Use the 8051 to write a LCB CSR.
8573 */
write_lcb_via_8051(struct hfi1_devdata * dd,u32 addr,u64 data)8574 static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data)
8575 {
8576 u32 regno;
8577 int ret;
8578
8579 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR ||
8580 (dd->dc8051_ver < dc8051_ver(0, 20, 0))) {
8581 if (acquire_lcb_access(dd, 0) == 0) {
8582 write_csr(dd, addr, data);
8583 release_lcb_access(dd, 0);
8584 return 0;
8585 }
8586 return -EBUSY;
8587 }
8588
8589 /* register is an index of LCB registers: (offset - base) / 8 */
8590 regno = (addr - DC_LCB_CFG_RUN) >> 3;
8591 ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data);
8592 if (ret != HCMD_SUCCESS)
8593 return -EBUSY;
8594 return 0;
8595 }
8596
8597 /*
8598 * Write an LCB CSR. Access may not be in host control, so check.
8599 * Return 0 on success, -EBUSY on failure.
8600 */
write_lcb_csr(struct hfi1_devdata * dd,u32 addr,u64 data)8601 int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data)
8602 {
8603 struct hfi1_pportdata *ppd = dd->pport;
8604
8605 /* if up, go through the 8051 for the value */
8606 if (ppd->host_link_state & HLS_UP)
8607 return write_lcb_via_8051(dd, addr, data);
8608 /* if going up or down, no access */
8609 if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8610 return -EBUSY;
8611 /* otherwise, host has access */
8612 write_csr(dd, addr, data);
8613 return 0;
8614 }
8615
8616 /*
8617 * Returns:
8618 * < 0 = Linux error, not able to get access
8619 * > 0 = 8051 command RETURN_CODE
8620 */
do_8051_command(struct hfi1_devdata * dd,u32 type,u64 in_data,u64 * out_data)8621 static int do_8051_command(
8622 struct hfi1_devdata *dd,
8623 u32 type,
8624 u64 in_data,
8625 u64 *out_data)
8626 {
8627 u64 reg, completed;
8628 int return_code;
8629 unsigned long timeout;
8630
8631 hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data);
8632
8633 mutex_lock(&dd->dc8051_lock);
8634
8635 /* We can't send any commands to the 8051 if it's in reset */
8636 if (dd->dc_shutdown) {
8637 return_code = -ENODEV;
8638 goto fail;
8639 }
8640
8641 /*
8642 * If an 8051 host command timed out previously, then the 8051 is
8643 * stuck.
8644 *
8645 * On first timeout, attempt to reset and restart the entire DC
8646 * block (including 8051). (Is this too big of a hammer?)
8647 *
8648 * If the 8051 times out a second time, the reset did not bring it
8649 * back to healthy life. In that case, fail any subsequent commands.
8650 */
8651 if (dd->dc8051_timed_out) {
8652 if (dd->dc8051_timed_out > 1) {
8653 dd_dev_err(dd,
8654 "Previous 8051 host command timed out, skipping command %u\n",
8655 type);
8656 return_code = -ENXIO;
8657 goto fail;
8658 }
8659 _dc_shutdown(dd);
8660 _dc_start(dd);
8661 }
8662
8663 /*
8664 * If there is no timeout, then the 8051 command interface is
8665 * waiting for a command.
8666 */
8667
8668 /*
8669 * When writing a LCB CSR, out_data contains the full value to
8670 * to be written, while in_data contains the relative LCB
8671 * address in 7:0. Do the work here, rather than the caller,
8672 * of distrubting the write data to where it needs to go:
8673 *
8674 * Write data
8675 * 39:00 -> in_data[47:8]
8676 * 47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE
8677 * 63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA
8678 */
8679 if (type == HCMD_WRITE_LCB_CSR) {
8680 in_data |= ((*out_data) & 0xffffffffffull) << 8;
8681 /* must preserve COMPLETED - it is tied to hardware */
8682 reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_0);
8683 reg &= DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK;
8684 reg |= ((((*out_data) >> 40) & 0xff) <<
8685 DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT)
8686 | ((((*out_data) >> 48) & 0xffff) <<
8687 DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
8688 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg);
8689 }
8690
8691 /*
8692 * Do two writes: the first to stabilize the type and req_data, the
8693 * second to activate.
8694 */
8695 reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK)
8696 << DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT
8697 | (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK)
8698 << DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT;
8699 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8700 reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK;
8701 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8702
8703 /* wait for completion, alternate: interrupt */
8704 timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT);
8705 while (1) {
8706 reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1);
8707 completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK;
8708 if (completed)
8709 break;
8710 if (time_after(jiffies, timeout)) {
8711 dd->dc8051_timed_out++;
8712 dd_dev_err(dd, "8051 host command %u timeout\n", type);
8713 if (out_data)
8714 *out_data = 0;
8715 return_code = -ETIMEDOUT;
8716 goto fail;
8717 }
8718 udelay(2);
8719 }
8720
8721 if (out_data) {
8722 *out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT)
8723 & DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK;
8724 if (type == HCMD_READ_LCB_CSR) {
8725 /* top 16 bits are in a different register */
8726 *out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1)
8727 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK)
8728 << (48
8729 - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT);
8730 }
8731 }
8732 return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT)
8733 & DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK;
8734 dd->dc8051_timed_out = 0;
8735 /*
8736 * Clear command for next user.
8737 */
8738 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0);
8739
8740 fail:
8741 mutex_unlock(&dd->dc8051_lock);
8742 return return_code;
8743 }
8744
set_physical_link_state(struct hfi1_devdata * dd,u64 state)8745 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state)
8746 {
8747 return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL);
8748 }
8749
load_8051_config(struct hfi1_devdata * dd,u8 field_id,u8 lane_id,u32 config_data)8750 int load_8051_config(struct hfi1_devdata *dd, u8 field_id,
8751 u8 lane_id, u32 config_data)
8752 {
8753 u64 data;
8754 int ret;
8755
8756 data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT
8757 | (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT
8758 | (u64)config_data << LOAD_DATA_DATA_SHIFT;
8759 ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL);
8760 if (ret != HCMD_SUCCESS) {
8761 dd_dev_err(dd,
8762 "load 8051 config: field id %d, lane %d, err %d\n",
8763 (int)field_id, (int)lane_id, ret);
8764 }
8765 return ret;
8766 }
8767
8768 /*
8769 * Read the 8051 firmware "registers". Use the RAM directly. Always
8770 * set the result, even on error.
8771 * Return 0 on success, -errno on failure
8772 */
read_8051_config(struct hfi1_devdata * dd,u8 field_id,u8 lane_id,u32 * result)8773 int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id,
8774 u32 *result)
8775 {
8776 u64 big_data;
8777 u32 addr;
8778 int ret;
8779
8780 /* address start depends on the lane_id */
8781 if (lane_id < 4)
8782 addr = (4 * NUM_GENERAL_FIELDS)
8783 + (lane_id * 4 * NUM_LANE_FIELDS);
8784 else
8785 addr = 0;
8786 addr += field_id * 4;
8787
8788 /* read is in 8-byte chunks, hardware will truncate the address down */
8789 ret = read_8051_data(dd, addr, 8, &big_data);
8790
8791 if (ret == 0) {
8792 /* extract the 4 bytes we want */
8793 if (addr & 0x4)
8794 *result = (u32)(big_data >> 32);
8795 else
8796 *result = (u32)big_data;
8797 } else {
8798 *result = 0;
8799 dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n",
8800 __func__, lane_id, field_id);
8801 }
8802
8803 return ret;
8804 }
8805
write_vc_local_phy(struct hfi1_devdata * dd,u8 power_management,u8 continuous)8806 static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management,
8807 u8 continuous)
8808 {
8809 u32 frame;
8810
8811 frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
8812 | power_management << POWER_MANAGEMENT_SHIFT;
8813 return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY,
8814 GENERAL_CONFIG, frame);
8815 }
8816
write_vc_local_fabric(struct hfi1_devdata * dd,u8 vau,u8 z,u8 vcu,u16 vl15buf,u8 crc_sizes)8817 static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu,
8818 u16 vl15buf, u8 crc_sizes)
8819 {
8820 u32 frame;
8821
8822 frame = (u32)vau << VAU_SHIFT
8823 | (u32)z << Z_SHIFT
8824 | (u32)vcu << VCU_SHIFT
8825 | (u32)vl15buf << VL15BUF_SHIFT
8826 | (u32)crc_sizes << CRC_SIZES_SHIFT;
8827 return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC,
8828 GENERAL_CONFIG, frame);
8829 }
8830
read_vc_local_link_width(struct hfi1_devdata * dd,u8 * misc_bits,u8 * flag_bits,u16 * link_widths)8831 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
8832 u8 *flag_bits, u16 *link_widths)
8833 {
8834 u32 frame;
8835
8836 read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
8837 &frame);
8838 *misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK;
8839 *flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK;
8840 *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8841 }
8842
write_vc_local_link_width(struct hfi1_devdata * dd,u8 misc_bits,u8 flag_bits,u16 link_widths)8843 static int write_vc_local_link_width(struct hfi1_devdata *dd,
8844 u8 misc_bits,
8845 u8 flag_bits,
8846 u16 link_widths)
8847 {
8848 u32 frame;
8849
8850 frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT
8851 | (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT
8852 | (u32)link_widths << LINK_WIDTH_SHIFT;
8853 return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
8854 frame);
8855 }
8856
write_local_device_id(struct hfi1_devdata * dd,u16 device_id,u8 device_rev)8857 static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id,
8858 u8 device_rev)
8859 {
8860 u32 frame;
8861
8862 frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT)
8863 | ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT);
8864 return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame);
8865 }
8866
read_remote_device_id(struct hfi1_devdata * dd,u16 * device_id,u8 * device_rev)8867 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
8868 u8 *device_rev)
8869 {
8870 u32 frame;
8871
8872 read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame);
8873 *device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK;
8874 *device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT)
8875 & REMOTE_DEVICE_REV_MASK;
8876 }
8877
write_host_interface_version(struct hfi1_devdata * dd,u8 version)8878 int write_host_interface_version(struct hfi1_devdata *dd, u8 version)
8879 {
8880 u32 frame;
8881 u32 mask;
8882
8883 mask = (HOST_INTERFACE_VERSION_MASK << HOST_INTERFACE_VERSION_SHIFT);
8884 read_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG, &frame);
8885 /* Clear, then set field */
8886 frame &= ~mask;
8887 frame |= ((u32)version << HOST_INTERFACE_VERSION_SHIFT);
8888 return load_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG,
8889 frame);
8890 }
8891
read_misc_status(struct hfi1_devdata * dd,u8 * ver_major,u8 * ver_minor,u8 * ver_patch)8892 void read_misc_status(struct hfi1_devdata *dd, u8 *ver_major, u8 *ver_minor,
8893 u8 *ver_patch)
8894 {
8895 u32 frame;
8896
8897 read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame);
8898 *ver_major = (frame >> STS_FM_VERSION_MAJOR_SHIFT) &
8899 STS_FM_VERSION_MAJOR_MASK;
8900 *ver_minor = (frame >> STS_FM_VERSION_MINOR_SHIFT) &
8901 STS_FM_VERSION_MINOR_MASK;
8902
8903 read_8051_config(dd, VERSION_PATCH, GENERAL_CONFIG, &frame);
8904 *ver_patch = (frame >> STS_FM_VERSION_PATCH_SHIFT) &
8905 STS_FM_VERSION_PATCH_MASK;
8906 }
8907
read_vc_remote_phy(struct hfi1_devdata * dd,u8 * power_management,u8 * continuous)8908 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
8909 u8 *continuous)
8910 {
8911 u32 frame;
8912
8913 read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame);
8914 *power_management = (frame >> POWER_MANAGEMENT_SHIFT)
8915 & POWER_MANAGEMENT_MASK;
8916 *continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT)
8917 & CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK;
8918 }
8919
read_vc_remote_fabric(struct hfi1_devdata * dd,u8 * vau,u8 * z,u8 * vcu,u16 * vl15buf,u8 * crc_sizes)8920 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
8921 u8 *vcu, u16 *vl15buf, u8 *crc_sizes)
8922 {
8923 u32 frame;
8924
8925 read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame);
8926 *vau = (frame >> VAU_SHIFT) & VAU_MASK;
8927 *z = (frame >> Z_SHIFT) & Z_MASK;
8928 *vcu = (frame >> VCU_SHIFT) & VCU_MASK;
8929 *vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK;
8930 *crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK;
8931 }
8932
read_vc_remote_link_width(struct hfi1_devdata * dd,u8 * remote_tx_rate,u16 * link_widths)8933 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
8934 u8 *remote_tx_rate,
8935 u16 *link_widths)
8936 {
8937 u32 frame;
8938
8939 read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG,
8940 &frame);
8941 *remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT)
8942 & REMOTE_TX_RATE_MASK;
8943 *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8944 }
8945
read_local_lni(struct hfi1_devdata * dd,u8 * enable_lane_rx)8946 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx)
8947 {
8948 u32 frame;
8949
8950 read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame);
8951 *enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK;
8952 }
8953
read_mgmt_allowed(struct hfi1_devdata * dd,u8 * mgmt_allowed)8954 static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed)
8955 {
8956 u32 frame;
8957
8958 read_8051_config(dd, REMOTE_LNI_INFO, GENERAL_CONFIG, &frame);
8959 *mgmt_allowed = (frame >> MGMT_ALLOWED_SHIFT) & MGMT_ALLOWED_MASK;
8960 }
8961
read_last_local_state(struct hfi1_devdata * dd,u32 * lls)8962 static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls)
8963 {
8964 read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls);
8965 }
8966
read_last_remote_state(struct hfi1_devdata * dd,u32 * lrs)8967 static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs)
8968 {
8969 read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs);
8970 }
8971
hfi1_read_link_quality(struct hfi1_devdata * dd,u8 * link_quality)8972 void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality)
8973 {
8974 u32 frame;
8975 int ret;
8976
8977 *link_quality = 0;
8978 if (dd->pport->host_link_state & HLS_UP) {
8979 ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG,
8980 &frame);
8981 if (ret == 0)
8982 *link_quality = (frame >> LINK_QUALITY_SHIFT)
8983 & LINK_QUALITY_MASK;
8984 }
8985 }
8986
read_planned_down_reason_code(struct hfi1_devdata * dd,u8 * pdrrc)8987 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc)
8988 {
8989 u32 frame;
8990
8991 read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame);
8992 *pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK;
8993 }
8994
read_link_down_reason(struct hfi1_devdata * dd,u8 * ldr)8995 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr)
8996 {
8997 u32 frame;
8998
8999 read_8051_config(dd, LINK_DOWN_REASON, GENERAL_CONFIG, &frame);
9000 *ldr = (frame & 0xff);
9001 }
9002
read_tx_settings(struct hfi1_devdata * dd,u8 * enable_lane_tx,u8 * tx_polarity_inversion,u8 * rx_polarity_inversion,u8 * max_rate)9003 static int read_tx_settings(struct hfi1_devdata *dd,
9004 u8 *enable_lane_tx,
9005 u8 *tx_polarity_inversion,
9006 u8 *rx_polarity_inversion,
9007 u8 *max_rate)
9008 {
9009 u32 frame;
9010 int ret;
9011
9012 ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame);
9013 *enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT)
9014 & ENABLE_LANE_TX_MASK;
9015 *tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT)
9016 & TX_POLARITY_INVERSION_MASK;
9017 *rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT)
9018 & RX_POLARITY_INVERSION_MASK;
9019 *max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK;
9020 return ret;
9021 }
9022
write_tx_settings(struct hfi1_devdata * dd,u8 enable_lane_tx,u8 tx_polarity_inversion,u8 rx_polarity_inversion,u8 max_rate)9023 static int write_tx_settings(struct hfi1_devdata *dd,
9024 u8 enable_lane_tx,
9025 u8 tx_polarity_inversion,
9026 u8 rx_polarity_inversion,
9027 u8 max_rate)
9028 {
9029 u32 frame;
9030
9031 /* no need to mask, all variable sizes match field widths */
9032 frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT
9033 | tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT
9034 | rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT
9035 | max_rate << MAX_RATE_SHIFT;
9036 return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame);
9037 }
9038
9039 /*
9040 * Read an idle LCB message.
9041 *
9042 * Returns 0 on success, -EINVAL on error
9043 */
read_idle_message(struct hfi1_devdata * dd,u64 type,u64 * data_out)9044 static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out)
9045 {
9046 int ret;
9047
9048 ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG, type, data_out);
9049 if (ret != HCMD_SUCCESS) {
9050 dd_dev_err(dd, "read idle message: type %d, err %d\n",
9051 (u32)type, ret);
9052 return -EINVAL;
9053 }
9054 dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out);
9055 /* return only the payload as we already know the type */
9056 *data_out >>= IDLE_PAYLOAD_SHIFT;
9057 return 0;
9058 }
9059
9060 /*
9061 * Read an idle SMA message. To be done in response to a notification from
9062 * the 8051.
9063 *
9064 * Returns 0 on success, -EINVAL on error
9065 */
read_idle_sma(struct hfi1_devdata * dd,u64 * data)9066 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data)
9067 {
9068 return read_idle_message(dd, (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT,
9069 data);
9070 }
9071
9072 /*
9073 * Send an idle LCB message.
9074 *
9075 * Returns 0 on success, -EINVAL on error
9076 */
send_idle_message(struct hfi1_devdata * dd,u64 data)9077 static int send_idle_message(struct hfi1_devdata *dd, u64 data)
9078 {
9079 int ret;
9080
9081 dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data);
9082 ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL);
9083 if (ret != HCMD_SUCCESS) {
9084 dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n",
9085 data, ret);
9086 return -EINVAL;
9087 }
9088 return 0;
9089 }
9090
9091 /*
9092 * Send an idle SMA message.
9093 *
9094 * Returns 0 on success, -EINVAL on error
9095 */
send_idle_sma(struct hfi1_devdata * dd,u64 message)9096 int send_idle_sma(struct hfi1_devdata *dd, u64 message)
9097 {
9098 u64 data;
9099
9100 data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT) |
9101 ((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT);
9102 return send_idle_message(dd, data);
9103 }
9104
9105 /*
9106 * Initialize the LCB then do a quick link up. This may or may not be
9107 * in loopback.
9108 *
9109 * return 0 on success, -errno on error
9110 */
do_quick_linkup(struct hfi1_devdata * dd)9111 static int do_quick_linkup(struct hfi1_devdata *dd)
9112 {
9113 int ret;
9114
9115 lcb_shutdown(dd, 0);
9116
9117 if (loopback) {
9118 /* LCB_CFG_LOOPBACK.VAL = 2 */
9119 /* LCB_CFG_LANE_WIDTH.VAL = 0 */
9120 write_csr(dd, DC_LCB_CFG_LOOPBACK,
9121 IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT);
9122 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
9123 }
9124
9125 /* start the LCBs */
9126 /* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */
9127 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
9128
9129 /* simulator only loopback steps */
9130 if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
9131 /* LCB_CFG_RUN.EN = 1 */
9132 write_csr(dd, DC_LCB_CFG_RUN,
9133 1ull << DC_LCB_CFG_RUN_EN_SHIFT);
9134
9135 ret = wait_link_transfer_active(dd, 10);
9136 if (ret)
9137 return ret;
9138
9139 write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP,
9140 1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT);
9141 }
9142
9143 if (!loopback) {
9144 /*
9145 * When doing quick linkup and not in loopback, both
9146 * sides must be done with LCB set-up before either
9147 * starts the quick linkup. Put a delay here so that
9148 * both sides can be started and have a chance to be
9149 * done with LCB set up before resuming.
9150 */
9151 dd_dev_err(dd,
9152 "Pausing for peer to be finished with LCB set up\n");
9153 msleep(5000);
9154 dd_dev_err(dd, "Continuing with quick linkup\n");
9155 }
9156
9157 write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
9158 set_8051_lcb_access(dd);
9159
9160 /*
9161 * State "quick" LinkUp request sets the physical link state to
9162 * LinkUp without a verify capability sequence.
9163 * This state is in simulator v37 and later.
9164 */
9165 ret = set_physical_link_state(dd, PLS_QUICK_LINKUP);
9166 if (ret != HCMD_SUCCESS) {
9167 dd_dev_err(dd,
9168 "%s: set physical link state to quick LinkUp failed with return %d\n",
9169 __func__, ret);
9170
9171 set_host_lcb_access(dd);
9172 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
9173
9174 if (ret >= 0)
9175 ret = -EINVAL;
9176 return ret;
9177 }
9178
9179 return 0; /* success */
9180 }
9181
9182 /*
9183 * Set the SerDes to internal loopback mode.
9184 * Returns 0 on success, -errno on error.
9185 */
set_serdes_loopback_mode(struct hfi1_devdata * dd)9186 static int set_serdes_loopback_mode(struct hfi1_devdata *dd)
9187 {
9188 int ret;
9189
9190 ret = set_physical_link_state(dd, PLS_INTERNAL_SERDES_LOOPBACK);
9191 if (ret == HCMD_SUCCESS)
9192 return 0;
9193 dd_dev_err(dd,
9194 "Set physical link state to SerDes Loopback failed with return %d\n",
9195 ret);
9196 if (ret >= 0)
9197 ret = -EINVAL;
9198 return ret;
9199 }
9200
9201 /*
9202 * Do all special steps to set up loopback.
9203 */
init_loopback(struct hfi1_devdata * dd)9204 static int init_loopback(struct hfi1_devdata *dd)
9205 {
9206 dd_dev_info(dd, "Entering loopback mode\n");
9207
9208 /* all loopbacks should disable self GUID check */
9209 write_csr(dd, DC_DC8051_CFG_MODE,
9210 (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK));
9211
9212 /*
9213 * The simulator has only one loopback option - LCB. Switch
9214 * to that option, which includes quick link up.
9215 *
9216 * Accept all valid loopback values.
9217 */
9218 if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR) &&
9219 (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB ||
9220 loopback == LOOPBACK_CABLE)) {
9221 loopback = LOOPBACK_LCB;
9222 quick_linkup = 1;
9223 return 0;
9224 }
9225
9226 /* handle serdes loopback */
9227 if (loopback == LOOPBACK_SERDES) {
9228 /* internal serdes loopack needs quick linkup on RTL */
9229 if (dd->icode == ICODE_RTL_SILICON)
9230 quick_linkup = 1;
9231 return set_serdes_loopback_mode(dd);
9232 }
9233
9234 /* LCB loopback - handled at poll time */
9235 if (loopback == LOOPBACK_LCB) {
9236 quick_linkup = 1; /* LCB is always quick linkup */
9237
9238 /* not supported in emulation due to emulation RTL changes */
9239 if (dd->icode == ICODE_FPGA_EMULATION) {
9240 dd_dev_err(dd,
9241 "LCB loopback not supported in emulation\n");
9242 return -EINVAL;
9243 }
9244 return 0;
9245 }
9246
9247 /* external cable loopback requires no extra steps */
9248 if (loopback == LOOPBACK_CABLE)
9249 return 0;
9250
9251 dd_dev_err(dd, "Invalid loopback mode %d\n", loopback);
9252 return -EINVAL;
9253 }
9254
9255 /*
9256 * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits
9257 * used in the Verify Capability link width attribute.
9258 */
opa_to_vc_link_widths(u16 opa_widths)9259 static u16 opa_to_vc_link_widths(u16 opa_widths)
9260 {
9261 int i;
9262 u16 result = 0;
9263
9264 static const struct link_bits {
9265 u16 from;
9266 u16 to;
9267 } opa_link_xlate[] = {
9268 { OPA_LINK_WIDTH_1X, 1 << (1 - 1) },
9269 { OPA_LINK_WIDTH_2X, 1 << (2 - 1) },
9270 { OPA_LINK_WIDTH_3X, 1 << (3 - 1) },
9271 { OPA_LINK_WIDTH_4X, 1 << (4 - 1) },
9272 };
9273
9274 for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) {
9275 if (opa_widths & opa_link_xlate[i].from)
9276 result |= opa_link_xlate[i].to;
9277 }
9278 return result;
9279 }
9280
9281 /*
9282 * Set link attributes before moving to polling.
9283 */
set_local_link_attributes(struct hfi1_pportdata * ppd)9284 static int set_local_link_attributes(struct hfi1_pportdata *ppd)
9285 {
9286 struct hfi1_devdata *dd = ppd->dd;
9287 u8 enable_lane_tx;
9288 u8 tx_polarity_inversion;
9289 u8 rx_polarity_inversion;
9290 int ret;
9291
9292 /* reset our fabric serdes to clear any lingering problems */
9293 fabric_serdes_reset(dd);
9294
9295 /* set the local tx rate - need to read-modify-write */
9296 ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
9297 &rx_polarity_inversion, &ppd->local_tx_rate);
9298 if (ret)
9299 goto set_local_link_attributes_fail;
9300
9301 if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
9302 /* set the tx rate to the fastest enabled */
9303 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9304 ppd->local_tx_rate = 1;
9305 else
9306 ppd->local_tx_rate = 0;
9307 } else {
9308 /* set the tx rate to all enabled */
9309 ppd->local_tx_rate = 0;
9310 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9311 ppd->local_tx_rate |= 2;
9312 if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G)
9313 ppd->local_tx_rate |= 1;
9314 }
9315
9316 enable_lane_tx = 0xF; /* enable all four lanes */
9317 ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion,
9318 rx_polarity_inversion, ppd->local_tx_rate);
9319 if (ret != HCMD_SUCCESS)
9320 goto set_local_link_attributes_fail;
9321
9322 /*
9323 * DC supports continuous updates.
9324 */
9325 ret = write_vc_local_phy(dd,
9326 0 /* no power management */,
9327 1 /* continuous updates */);
9328 if (ret != HCMD_SUCCESS)
9329 goto set_local_link_attributes_fail;
9330
9331 /* z=1 in the next call: AU of 0 is not supported by the hardware */
9332 ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init,
9333 ppd->port_crc_mode_enabled);
9334 if (ret != HCMD_SUCCESS)
9335 goto set_local_link_attributes_fail;
9336
9337 ret = write_vc_local_link_width(dd, 0, 0,
9338 opa_to_vc_link_widths(
9339 ppd->link_width_enabled));
9340 if (ret != HCMD_SUCCESS)
9341 goto set_local_link_attributes_fail;
9342
9343 /* let peer know who we are */
9344 ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev);
9345 if (ret == HCMD_SUCCESS)
9346 return 0;
9347
9348 set_local_link_attributes_fail:
9349 dd_dev_err(dd,
9350 "Failed to set local link attributes, return 0x%x\n",
9351 ret);
9352 return ret;
9353 }
9354
9355 /*
9356 * Call this to start the link.
9357 * Do not do anything if the link is disabled.
9358 * Returns 0 if link is disabled, moved to polling, or the driver is not ready.
9359 */
start_link(struct hfi1_pportdata * ppd)9360 int start_link(struct hfi1_pportdata *ppd)
9361 {
9362 /*
9363 * Tune the SerDes to a ballpark setting for optimal signal and bit
9364 * error rate. Needs to be done before starting the link.
9365 */
9366 tune_serdes(ppd);
9367
9368 if (!ppd->driver_link_ready) {
9369 dd_dev_info(ppd->dd,
9370 "%s: stopping link start because driver is not ready\n",
9371 __func__);
9372 return 0;
9373 }
9374
9375 /*
9376 * FULL_MGMT_P_KEY is cleared from the pkey table, so that the
9377 * pkey table can be configured properly if the HFI unit is connected
9378 * to switch port with MgmtAllowed=NO
9379 */
9380 clear_full_mgmt_pkey(ppd);
9381
9382 return set_link_state(ppd, HLS_DN_POLL);
9383 }
9384
wait_for_qsfp_init(struct hfi1_pportdata * ppd)9385 static void wait_for_qsfp_init(struct hfi1_pportdata *ppd)
9386 {
9387 struct hfi1_devdata *dd = ppd->dd;
9388 u64 mask;
9389 unsigned long timeout;
9390
9391 /*
9392 * Some QSFP cables have a quirk that asserts the IntN line as a side
9393 * effect of power up on plug-in. We ignore this false positive
9394 * interrupt until the module has finished powering up by waiting for
9395 * a minimum timeout of the module inrush initialization time of
9396 * 500 ms (SFF 8679 Table 5-6) to ensure the voltage rails in the
9397 * module have stabilized.
9398 */
9399 msleep(500);
9400
9401 /*
9402 * Check for QSFP interrupt for t_init (SFF 8679 Table 8-1)
9403 */
9404 timeout = jiffies + msecs_to_jiffies(2000);
9405 while (1) {
9406 mask = read_csr(dd, dd->hfi1_id ?
9407 ASIC_QSFP2_IN : ASIC_QSFP1_IN);
9408 if (!(mask & QSFP_HFI0_INT_N))
9409 break;
9410 if (time_after(jiffies, timeout)) {
9411 dd_dev_info(dd, "%s: No IntN detected, reset complete\n",
9412 __func__);
9413 break;
9414 }
9415 udelay(2);
9416 }
9417 }
9418
set_qsfp_int_n(struct hfi1_pportdata * ppd,u8 enable)9419 static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable)
9420 {
9421 struct hfi1_devdata *dd = ppd->dd;
9422 u64 mask;
9423
9424 mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK);
9425 if (enable) {
9426 /*
9427 * Clear the status register to avoid an immediate interrupt
9428 * when we re-enable the IntN pin
9429 */
9430 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9431 QSFP_HFI0_INT_N);
9432 mask |= (u64)QSFP_HFI0_INT_N;
9433 } else {
9434 mask &= ~(u64)QSFP_HFI0_INT_N;
9435 }
9436 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask);
9437 }
9438
reset_qsfp(struct hfi1_pportdata * ppd)9439 int reset_qsfp(struct hfi1_pportdata *ppd)
9440 {
9441 struct hfi1_devdata *dd = ppd->dd;
9442 u64 mask, qsfp_mask;
9443
9444 /* Disable INT_N from triggering QSFP interrupts */
9445 set_qsfp_int_n(ppd, 0);
9446
9447 /* Reset the QSFP */
9448 mask = (u64)QSFP_HFI0_RESET_N;
9449
9450 qsfp_mask = read_csr(dd,
9451 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT);
9452 qsfp_mask &= ~mask;
9453 write_csr(dd,
9454 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9455
9456 udelay(10);
9457
9458 qsfp_mask |= mask;
9459 write_csr(dd,
9460 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9461
9462 wait_for_qsfp_init(ppd);
9463
9464 /*
9465 * Allow INT_N to trigger the QSFP interrupt to watch
9466 * for alarms and warnings
9467 */
9468 set_qsfp_int_n(ppd, 1);
9469
9470 /*
9471 * After the reset, AOC transmitters are enabled by default. They need
9472 * to be turned off to complete the QSFP setup before they can be
9473 * enabled again.
9474 */
9475 return set_qsfp_tx(ppd, 0);
9476 }
9477
handle_qsfp_error_conditions(struct hfi1_pportdata * ppd,u8 * qsfp_interrupt_status)9478 static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd,
9479 u8 *qsfp_interrupt_status)
9480 {
9481 struct hfi1_devdata *dd = ppd->dd;
9482
9483 if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) ||
9484 (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING))
9485 dd_dev_err(dd, "%s: QSFP cable temperature too high\n",
9486 __func__);
9487
9488 if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) ||
9489 (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING))
9490 dd_dev_err(dd, "%s: QSFP cable temperature too low\n",
9491 __func__);
9492
9493 /*
9494 * The remaining alarms/warnings don't matter if the link is down.
9495 */
9496 if (ppd->host_link_state & HLS_DOWN)
9497 return 0;
9498
9499 if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) ||
9500 (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING))
9501 dd_dev_err(dd, "%s: QSFP supply voltage too high\n",
9502 __func__);
9503
9504 if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) ||
9505 (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING))
9506 dd_dev_err(dd, "%s: QSFP supply voltage too low\n",
9507 __func__);
9508
9509 /* Byte 2 is vendor specific */
9510
9511 if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) ||
9512 (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING))
9513 dd_dev_err(dd, "%s: Cable RX channel 1/2 power too high\n",
9514 __func__);
9515
9516 if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) ||
9517 (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING))
9518 dd_dev_err(dd, "%s: Cable RX channel 1/2 power too low\n",
9519 __func__);
9520
9521 if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) ||
9522 (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING))
9523 dd_dev_err(dd, "%s: Cable RX channel 3/4 power too high\n",
9524 __func__);
9525
9526 if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) ||
9527 (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING))
9528 dd_dev_err(dd, "%s: Cable RX channel 3/4 power too low\n",
9529 __func__);
9530
9531 if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) ||
9532 (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING))
9533 dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too high\n",
9534 __func__);
9535
9536 if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) ||
9537 (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING))
9538 dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too low\n",
9539 __func__);
9540
9541 if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) ||
9542 (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING))
9543 dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too high\n",
9544 __func__);
9545
9546 if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) ||
9547 (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING))
9548 dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too low\n",
9549 __func__);
9550
9551 if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) ||
9552 (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING))
9553 dd_dev_err(dd, "%s: Cable TX channel 1/2 power too high\n",
9554 __func__);
9555
9556 if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) ||
9557 (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING))
9558 dd_dev_err(dd, "%s: Cable TX channel 1/2 power too low\n",
9559 __func__);
9560
9561 if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) ||
9562 (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING))
9563 dd_dev_err(dd, "%s: Cable TX channel 3/4 power too high\n",
9564 __func__);
9565
9566 if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) ||
9567 (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING))
9568 dd_dev_err(dd, "%s: Cable TX channel 3/4 power too low\n",
9569 __func__);
9570
9571 /* Bytes 9-10 and 11-12 are reserved */
9572 /* Bytes 13-15 are vendor specific */
9573
9574 return 0;
9575 }
9576
9577 /* This routine will only be scheduled if the QSFP module present is asserted */
qsfp_event(struct work_struct * work)9578 void qsfp_event(struct work_struct *work)
9579 {
9580 struct qsfp_data *qd;
9581 struct hfi1_pportdata *ppd;
9582 struct hfi1_devdata *dd;
9583
9584 qd = container_of(work, struct qsfp_data, qsfp_work);
9585 ppd = qd->ppd;
9586 dd = ppd->dd;
9587
9588 /* Sanity check */
9589 if (!qsfp_mod_present(ppd))
9590 return;
9591
9592 if (ppd->host_link_state == HLS_DN_DISABLE) {
9593 dd_dev_info(ppd->dd,
9594 "%s: stopping link start because link is disabled\n",
9595 __func__);
9596 return;
9597 }
9598
9599 /*
9600 * Turn DC back on after cable has been re-inserted. Up until
9601 * now, the DC has been in reset to save power.
9602 */
9603 dc_start(dd);
9604
9605 if (qd->cache_refresh_required) {
9606 set_qsfp_int_n(ppd, 0);
9607
9608 wait_for_qsfp_init(ppd);
9609
9610 /*
9611 * Allow INT_N to trigger the QSFP interrupt to watch
9612 * for alarms and warnings
9613 */
9614 set_qsfp_int_n(ppd, 1);
9615
9616 start_link(ppd);
9617 }
9618
9619 if (qd->check_interrupt_flags) {
9620 u8 qsfp_interrupt_status[16] = {0,};
9621
9622 if (one_qsfp_read(ppd, dd->hfi1_id, 6,
9623 &qsfp_interrupt_status[0], 16) != 16) {
9624 dd_dev_info(dd,
9625 "%s: Failed to read status of QSFP module\n",
9626 __func__);
9627 } else {
9628 unsigned long flags;
9629
9630 handle_qsfp_error_conditions(
9631 ppd, qsfp_interrupt_status);
9632 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
9633 ppd->qsfp_info.check_interrupt_flags = 0;
9634 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
9635 flags);
9636 }
9637 }
9638 }
9639
init_qsfp_int(struct hfi1_devdata * dd)9640 static void init_qsfp_int(struct hfi1_devdata *dd)
9641 {
9642 struct hfi1_pportdata *ppd = dd->pport;
9643 u64 qsfp_mask, cce_int_mask;
9644 const int qsfp1_int_smask = QSFP1_INT % 64;
9645 const int qsfp2_int_smask = QSFP2_INT % 64;
9646
9647 /*
9648 * disable QSFP1 interrupts for HFI1, QSFP2 interrupts for HFI0
9649 * Qsfp1Int and Qsfp2Int are adjacent bits in the same CSR,
9650 * therefore just one of QSFP1_INT/QSFP2_INT can be used to find
9651 * the index of the appropriate CSR in the CCEIntMask CSR array
9652 */
9653 cce_int_mask = read_csr(dd, CCE_INT_MASK +
9654 (8 * (QSFP1_INT / 64)));
9655 if (dd->hfi1_id) {
9656 cce_int_mask &= ~((u64)1 << qsfp1_int_smask);
9657 write_csr(dd, CCE_INT_MASK + (8 * (QSFP1_INT / 64)),
9658 cce_int_mask);
9659 } else {
9660 cce_int_mask &= ~((u64)1 << qsfp2_int_smask);
9661 write_csr(dd, CCE_INT_MASK + (8 * (QSFP2_INT / 64)),
9662 cce_int_mask);
9663 }
9664
9665 qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
9666 /* Clear current status to avoid spurious interrupts */
9667 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9668 qsfp_mask);
9669 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK,
9670 qsfp_mask);
9671
9672 set_qsfp_int_n(ppd, 0);
9673
9674 /* Handle active low nature of INT_N and MODPRST_N pins */
9675 if (qsfp_mod_present(ppd))
9676 qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N;
9677 write_csr(dd,
9678 dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT,
9679 qsfp_mask);
9680 }
9681
9682 /*
9683 * Do a one-time initialize of the LCB block.
9684 */
init_lcb(struct hfi1_devdata * dd)9685 static void init_lcb(struct hfi1_devdata *dd)
9686 {
9687 /* simulator does not correctly handle LCB cclk loopback, skip */
9688 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
9689 return;
9690
9691 /* the DC has been reset earlier in the driver load */
9692
9693 /* set LCB for cclk loopback on the port */
9694 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01);
9695 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00);
9696 write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00);
9697 write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
9698 write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08);
9699 write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02);
9700 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00);
9701 }
9702
9703 /*
9704 * Perform a test read on the QSFP. Return 0 on success, -ERRNO
9705 * on error.
9706 */
test_qsfp_read(struct hfi1_pportdata * ppd)9707 static int test_qsfp_read(struct hfi1_pportdata *ppd)
9708 {
9709 int ret;
9710 u8 status;
9711
9712 /*
9713 * Report success if not a QSFP or, if it is a QSFP, but the cable is
9714 * not present
9715 */
9716 if (ppd->port_type != PORT_TYPE_QSFP || !qsfp_mod_present(ppd))
9717 return 0;
9718
9719 /* read byte 2, the status byte */
9720 ret = one_qsfp_read(ppd, ppd->dd->hfi1_id, 2, &status, 1);
9721 if (ret < 0)
9722 return ret;
9723 if (ret != 1)
9724 return -EIO;
9725
9726 return 0; /* success */
9727 }
9728
9729 /*
9730 * Values for QSFP retry.
9731 *
9732 * Give up after 10s (20 x 500ms). The overall timeout was empirically
9733 * arrived at from experience on a large cluster.
9734 */
9735 #define MAX_QSFP_RETRIES 20
9736 #define QSFP_RETRY_WAIT 500 /* msec */
9737
9738 /*
9739 * Try a QSFP read. If it fails, schedule a retry for later.
9740 * Called on first link activation after driver load.
9741 */
try_start_link(struct hfi1_pportdata * ppd)9742 static void try_start_link(struct hfi1_pportdata *ppd)
9743 {
9744 if (test_qsfp_read(ppd)) {
9745 /* read failed */
9746 if (ppd->qsfp_retry_count >= MAX_QSFP_RETRIES) {
9747 dd_dev_err(ppd->dd, "QSFP not responding, giving up\n");
9748 return;
9749 }
9750 dd_dev_info(ppd->dd,
9751 "QSFP not responding, waiting and retrying %d\n",
9752 (int)ppd->qsfp_retry_count);
9753 ppd->qsfp_retry_count++;
9754 queue_delayed_work(ppd->link_wq, &ppd->start_link_work,
9755 msecs_to_jiffies(QSFP_RETRY_WAIT));
9756 return;
9757 }
9758 ppd->qsfp_retry_count = 0;
9759
9760 start_link(ppd);
9761 }
9762
9763 /*
9764 * Workqueue function to start the link after a delay.
9765 */
handle_start_link(struct work_struct * work)9766 void handle_start_link(struct work_struct *work)
9767 {
9768 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
9769 start_link_work.work);
9770 try_start_link(ppd);
9771 }
9772
bringup_serdes(struct hfi1_pportdata * ppd)9773 int bringup_serdes(struct hfi1_pportdata *ppd)
9774 {
9775 struct hfi1_devdata *dd = ppd->dd;
9776 u64 guid;
9777 int ret;
9778
9779 if (HFI1_CAP_IS_KSET(EXTENDED_PSN))
9780 add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK);
9781
9782 guid = ppd->guids[HFI1_PORT_GUID_INDEX];
9783 if (!guid) {
9784 if (dd->base_guid)
9785 guid = dd->base_guid + ppd->port - 1;
9786 ppd->guids[HFI1_PORT_GUID_INDEX] = guid;
9787 }
9788
9789 /* Set linkinit_reason on power up per OPA spec */
9790 ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP;
9791
9792 /* one-time init of the LCB */
9793 init_lcb(dd);
9794
9795 if (loopback) {
9796 ret = init_loopback(dd);
9797 if (ret < 0)
9798 return ret;
9799 }
9800
9801 get_port_type(ppd);
9802 if (ppd->port_type == PORT_TYPE_QSFP) {
9803 set_qsfp_int_n(ppd, 0);
9804 wait_for_qsfp_init(ppd);
9805 set_qsfp_int_n(ppd, 1);
9806 }
9807
9808 try_start_link(ppd);
9809 return 0;
9810 }
9811
hfi1_quiet_serdes(struct hfi1_pportdata * ppd)9812 void hfi1_quiet_serdes(struct hfi1_pportdata *ppd)
9813 {
9814 struct hfi1_devdata *dd = ppd->dd;
9815
9816 /*
9817 * Shut down the link and keep it down. First turn off that the
9818 * driver wants to allow the link to be up (driver_link_ready).
9819 * Then make sure the link is not automatically restarted
9820 * (link_enabled). Cancel any pending restart. And finally
9821 * go offline.
9822 */
9823 ppd->driver_link_ready = 0;
9824 ppd->link_enabled = 0;
9825
9826 ppd->qsfp_retry_count = MAX_QSFP_RETRIES; /* prevent more retries */
9827 flush_delayed_work(&ppd->start_link_work);
9828 cancel_delayed_work_sync(&ppd->start_link_work);
9829
9830 ppd->offline_disabled_reason =
9831 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_SMA_DISABLED);
9832 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SMA_DISABLED, 0,
9833 OPA_LINKDOWN_REASON_SMA_DISABLED);
9834 set_link_state(ppd, HLS_DN_OFFLINE);
9835
9836 /* disable the port */
9837 clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
9838 cancel_work_sync(&ppd->freeze_work);
9839 }
9840
init_cpu_counters(struct hfi1_devdata * dd)9841 static inline int init_cpu_counters(struct hfi1_devdata *dd)
9842 {
9843 struct hfi1_pportdata *ppd;
9844 int i;
9845
9846 ppd = (struct hfi1_pportdata *)(dd + 1);
9847 for (i = 0; i < dd->num_pports; i++, ppd++) {
9848 ppd->ibport_data.rvp.rc_acks = NULL;
9849 ppd->ibport_data.rvp.rc_qacks = NULL;
9850 ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64);
9851 ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64);
9852 ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64);
9853 if (!ppd->ibport_data.rvp.rc_acks ||
9854 !ppd->ibport_data.rvp.rc_delayed_comp ||
9855 !ppd->ibport_data.rvp.rc_qacks)
9856 return -ENOMEM;
9857 }
9858
9859 return 0;
9860 }
9861
9862 /*
9863 * index is the index into the receive array
9864 */
hfi1_put_tid(struct hfi1_devdata * dd,u32 index,u32 type,unsigned long pa,u16 order)9865 void hfi1_put_tid(struct hfi1_devdata *dd, u32 index,
9866 u32 type, unsigned long pa, u16 order)
9867 {
9868 u64 reg;
9869
9870 if (!(dd->flags & HFI1_PRESENT))
9871 goto done;
9872
9873 if (type == PT_INVALID || type == PT_INVALID_FLUSH) {
9874 pa = 0;
9875 order = 0;
9876 } else if (type > PT_INVALID) {
9877 dd_dev_err(dd,
9878 "unexpected receive array type %u for index %u, not handled\n",
9879 type, index);
9880 goto done;
9881 }
9882 trace_hfi1_put_tid(dd, index, type, pa, order);
9883
9884 #define RT_ADDR_SHIFT 12 /* 4KB kernel address boundary */
9885 reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK
9886 | (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT
9887 | ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK)
9888 << RCV_ARRAY_RT_ADDR_SHIFT;
9889 trace_hfi1_write_rcvarray(dd->rcvarray_wc + (index * 8), reg);
9890 writeq(reg, dd->rcvarray_wc + (index * 8));
9891
9892 if (type == PT_EAGER || type == PT_INVALID_FLUSH || (index & 3) == 3)
9893 /*
9894 * Eager entries are written and flushed
9895 *
9896 * Expected entries are flushed every 4 writes
9897 */
9898 flush_wc();
9899 done:
9900 return;
9901 }
9902
hfi1_clear_tids(struct hfi1_ctxtdata * rcd)9903 void hfi1_clear_tids(struct hfi1_ctxtdata *rcd)
9904 {
9905 struct hfi1_devdata *dd = rcd->dd;
9906 u32 i;
9907
9908 /* this could be optimized */
9909 for (i = rcd->eager_base; i < rcd->eager_base +
9910 rcd->egrbufs.alloced; i++)
9911 hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9912
9913 for (i = rcd->expected_base;
9914 i < rcd->expected_base + rcd->expected_count; i++)
9915 hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9916 }
9917
9918 static const char * const ib_cfg_name_strings[] = {
9919 "HFI1_IB_CFG_LIDLMC",
9920 "HFI1_IB_CFG_LWID_DG_ENB",
9921 "HFI1_IB_CFG_LWID_ENB",
9922 "HFI1_IB_CFG_LWID",
9923 "HFI1_IB_CFG_SPD_ENB",
9924 "HFI1_IB_CFG_SPD",
9925 "HFI1_IB_CFG_RXPOL_ENB",
9926 "HFI1_IB_CFG_LREV_ENB",
9927 "HFI1_IB_CFG_LINKLATENCY",
9928 "HFI1_IB_CFG_HRTBT",
9929 "HFI1_IB_CFG_OP_VLS",
9930 "HFI1_IB_CFG_VL_HIGH_CAP",
9931 "HFI1_IB_CFG_VL_LOW_CAP",
9932 "HFI1_IB_CFG_OVERRUN_THRESH",
9933 "HFI1_IB_CFG_PHYERR_THRESH",
9934 "HFI1_IB_CFG_LINKDEFAULT",
9935 "HFI1_IB_CFG_PKEYS",
9936 "HFI1_IB_CFG_MTU",
9937 "HFI1_IB_CFG_LSTATE",
9938 "HFI1_IB_CFG_VL_HIGH_LIMIT",
9939 "HFI1_IB_CFG_PMA_TICKS",
9940 "HFI1_IB_CFG_PORT"
9941 };
9942
ib_cfg_name(int which)9943 static const char *ib_cfg_name(int which)
9944 {
9945 if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings))
9946 return "invalid";
9947 return ib_cfg_name_strings[which];
9948 }
9949
hfi1_get_ib_cfg(struct hfi1_pportdata * ppd,int which)9950 int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which)
9951 {
9952 struct hfi1_devdata *dd = ppd->dd;
9953 int val = 0;
9954
9955 switch (which) {
9956 case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */
9957 val = ppd->link_width_enabled;
9958 break;
9959 case HFI1_IB_CFG_LWID: /* currently active Link-width */
9960 val = ppd->link_width_active;
9961 break;
9962 case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
9963 val = ppd->link_speed_enabled;
9964 break;
9965 case HFI1_IB_CFG_SPD: /* current Link speed */
9966 val = ppd->link_speed_active;
9967 break;
9968
9969 case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */
9970 case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */
9971 case HFI1_IB_CFG_LINKLATENCY:
9972 goto unimplemented;
9973
9974 case HFI1_IB_CFG_OP_VLS:
9975 val = ppd->actual_vls_operational;
9976 break;
9977 case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */
9978 val = VL_ARB_HIGH_PRIO_TABLE_SIZE;
9979 break;
9980 case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */
9981 val = VL_ARB_LOW_PRIO_TABLE_SIZE;
9982 break;
9983 case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
9984 val = ppd->overrun_threshold;
9985 break;
9986 case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
9987 val = ppd->phy_error_threshold;
9988 break;
9989 case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
9990 val = dd->link_default;
9991 break;
9992
9993 case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */
9994 case HFI1_IB_CFG_PMA_TICKS:
9995 default:
9996 unimplemented:
9997 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
9998 dd_dev_info(
9999 dd,
10000 "%s: which %s: not implemented\n",
10001 __func__,
10002 ib_cfg_name(which));
10003 break;
10004 }
10005
10006 return val;
10007 }
10008
10009 /*
10010 * The largest MAD packet size.
10011 */
10012 #define MAX_MAD_PACKET 2048
10013
10014 /*
10015 * Return the maximum header bytes that can go on the _wire_
10016 * for this device. This count includes the ICRC which is
10017 * not part of the packet held in memory but it is appended
10018 * by the HW.
10019 * This is dependent on the device's receive header entry size.
10020 * HFI allows this to be set per-receive context, but the
10021 * driver presently enforces a global value.
10022 */
lrh_max_header_bytes(struct hfi1_devdata * dd)10023 u32 lrh_max_header_bytes(struct hfi1_devdata *dd)
10024 {
10025 /*
10026 * The maximum non-payload (MTU) bytes in LRH.PktLen are
10027 * the Receive Header Entry Size minus the PBC (or RHF) size
10028 * plus one DW for the ICRC appended by HW.
10029 *
10030 * dd->rcd[0].rcvhdrqentsize is in DW.
10031 * We use rcd[0] as all context will have the same value. Also,
10032 * the first kernel context would have been allocated by now so
10033 * we are guaranteed a valid value.
10034 */
10035 return (dd->rcd[0]->rcvhdrqentsize - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2;
10036 }
10037
10038 /*
10039 * Set Send Length
10040 * @ppd - per port data
10041 *
10042 * Set the MTU by limiting how many DWs may be sent. The SendLenCheck*
10043 * registers compare against LRH.PktLen, so use the max bytes included
10044 * in the LRH.
10045 *
10046 * This routine changes all VL values except VL15, which it maintains at
10047 * the same value.
10048 */
set_send_length(struct hfi1_pportdata * ppd)10049 static void set_send_length(struct hfi1_pportdata *ppd)
10050 {
10051 struct hfi1_devdata *dd = ppd->dd;
10052 u32 max_hb = lrh_max_header_bytes(dd), dcmtu;
10053 u32 maxvlmtu = dd->vld[15].mtu;
10054 u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2)
10055 & SEND_LEN_CHECK1_LEN_VL15_MASK) <<
10056 SEND_LEN_CHECK1_LEN_VL15_SHIFT;
10057 int i, j;
10058 u32 thres;
10059
10060 for (i = 0; i < ppd->vls_supported; i++) {
10061 if (dd->vld[i].mtu > maxvlmtu)
10062 maxvlmtu = dd->vld[i].mtu;
10063 if (i <= 3)
10064 len1 |= (((dd->vld[i].mtu + max_hb) >> 2)
10065 & SEND_LEN_CHECK0_LEN_VL0_MASK) <<
10066 ((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT);
10067 else
10068 len2 |= (((dd->vld[i].mtu + max_hb) >> 2)
10069 & SEND_LEN_CHECK1_LEN_VL4_MASK) <<
10070 ((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT);
10071 }
10072 write_csr(dd, SEND_LEN_CHECK0, len1);
10073 write_csr(dd, SEND_LEN_CHECK1, len2);
10074 /* adjust kernel credit return thresholds based on new MTUs */
10075 /* all kernel receive contexts have the same hdrqentsize */
10076 for (i = 0; i < ppd->vls_supported; i++) {
10077 thres = min(sc_percent_to_threshold(dd->vld[i].sc, 50),
10078 sc_mtu_to_threshold(dd->vld[i].sc,
10079 dd->vld[i].mtu,
10080 dd->rcd[0]->rcvhdrqentsize));
10081 for (j = 0; j < INIT_SC_PER_VL; j++)
10082 sc_set_cr_threshold(
10083 pio_select_send_context_vl(dd, j, i),
10084 thres);
10085 }
10086 thres = min(sc_percent_to_threshold(dd->vld[15].sc, 50),
10087 sc_mtu_to_threshold(dd->vld[15].sc,
10088 dd->vld[15].mtu,
10089 dd->rcd[0]->rcvhdrqentsize));
10090 sc_set_cr_threshold(dd->vld[15].sc, thres);
10091
10092 /* Adjust maximum MTU for the port in DC */
10093 dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 :
10094 (ilog2(maxvlmtu >> 8) + 1);
10095 len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG);
10096 len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK;
10097 len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) <<
10098 DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT;
10099 write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1);
10100 }
10101
set_lidlmc(struct hfi1_pportdata * ppd)10102 static void set_lidlmc(struct hfi1_pportdata *ppd)
10103 {
10104 int i;
10105 u64 sreg = 0;
10106 struct hfi1_devdata *dd = ppd->dd;
10107 u32 mask = ~((1U << ppd->lmc) - 1);
10108 u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1);
10109 u32 lid;
10110
10111 /*
10112 * Program 0 in CSR if port lid is extended. This prevents
10113 * 9B packets being sent out for large lids.
10114 */
10115 lid = (ppd->lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) ? 0 : ppd->lid;
10116 c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK
10117 | DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK);
10118 c1 |= ((lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK)
10119 << DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT) |
10120 ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK)
10121 << DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT);
10122 write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1);
10123
10124 /*
10125 * Iterate over all the send contexts and set their SLID check
10126 */
10127 sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) <<
10128 SEND_CTXT_CHECK_SLID_MASK_SHIFT) |
10129 (((lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) <<
10130 SEND_CTXT_CHECK_SLID_VALUE_SHIFT);
10131
10132 for (i = 0; i < dd->chip_send_contexts; i++) {
10133 hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x",
10134 i, (u32)sreg);
10135 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg);
10136 }
10137
10138 /* Now we have to do the same thing for the sdma engines */
10139 sdma_update_lmc(dd, mask, lid);
10140 }
10141
state_completed_string(u32 completed)10142 static const char *state_completed_string(u32 completed)
10143 {
10144 static const char * const state_completed[] = {
10145 "EstablishComm",
10146 "OptimizeEQ",
10147 "VerifyCap"
10148 };
10149
10150 if (completed < ARRAY_SIZE(state_completed))
10151 return state_completed[completed];
10152
10153 return "unknown";
10154 }
10155
10156 static const char all_lanes_dead_timeout_expired[] =
10157 "All lanes were inactive – was the interconnect media removed?";
10158 static const char tx_out_of_policy[] =
10159 "Passing lanes on local port do not meet the local link width policy";
10160 static const char no_state_complete[] =
10161 "State timeout occurred before link partner completed the state";
10162 static const char * const state_complete_reasons[] = {
10163 [0x00] = "Reason unknown",
10164 [0x01] = "Link was halted by driver, refer to LinkDownReason",
10165 [0x02] = "Link partner reported failure",
10166 [0x10] = "Unable to achieve frame sync on any lane",
10167 [0x11] =
10168 "Unable to find a common bit rate with the link partner",
10169 [0x12] =
10170 "Unable to achieve frame sync on sufficient lanes to meet the local link width policy",
10171 [0x13] =
10172 "Unable to identify preset equalization on sufficient lanes to meet the local link width policy",
10173 [0x14] = no_state_complete,
10174 [0x15] =
10175 "State timeout occurred before link partner identified equalization presets",
10176 [0x16] =
10177 "Link partner completed the EstablishComm state, but the passing lanes do not meet the local link width policy",
10178 [0x17] = tx_out_of_policy,
10179 [0x20] = all_lanes_dead_timeout_expired,
10180 [0x21] =
10181 "Unable to achieve acceptable BER on sufficient lanes to meet the local link width policy",
10182 [0x22] = no_state_complete,
10183 [0x23] =
10184 "Link partner completed the OptimizeEq state, but the passing lanes do not meet the local link width policy",
10185 [0x24] = tx_out_of_policy,
10186 [0x30] = all_lanes_dead_timeout_expired,
10187 [0x31] =
10188 "State timeout occurred waiting for host to process received frames",
10189 [0x32] = no_state_complete,
10190 [0x33] =
10191 "Link partner completed the VerifyCap state, but the passing lanes do not meet the local link width policy",
10192 [0x34] = tx_out_of_policy,
10193 };
10194
state_complete_reason_code_string(struct hfi1_pportdata * ppd,u32 code)10195 static const char *state_complete_reason_code_string(struct hfi1_pportdata *ppd,
10196 u32 code)
10197 {
10198 const char *str = NULL;
10199
10200 if (code < ARRAY_SIZE(state_complete_reasons))
10201 str = state_complete_reasons[code];
10202
10203 if (str)
10204 return str;
10205 return "Reserved";
10206 }
10207
10208 /* describe the given last state complete frame */
decode_state_complete(struct hfi1_pportdata * ppd,u32 frame,const char * prefix)10209 static void decode_state_complete(struct hfi1_pportdata *ppd, u32 frame,
10210 const char *prefix)
10211 {
10212 struct hfi1_devdata *dd = ppd->dd;
10213 u32 success;
10214 u32 state;
10215 u32 reason;
10216 u32 lanes;
10217
10218 /*
10219 * Decode frame:
10220 * [ 0: 0] - success
10221 * [ 3: 1] - state
10222 * [ 7: 4] - next state timeout
10223 * [15: 8] - reason code
10224 * [31:16] - lanes
10225 */
10226 success = frame & 0x1;
10227 state = (frame >> 1) & 0x7;
10228 reason = (frame >> 8) & 0xff;
10229 lanes = (frame >> 16) & 0xffff;
10230
10231 dd_dev_err(dd, "Last %s LNI state complete frame 0x%08x:\n",
10232 prefix, frame);
10233 dd_dev_err(dd, " last reported state state: %s (0x%x)\n",
10234 state_completed_string(state), state);
10235 dd_dev_err(dd, " state successfully completed: %s\n",
10236 success ? "yes" : "no");
10237 dd_dev_err(dd, " fail reason 0x%x: %s\n",
10238 reason, state_complete_reason_code_string(ppd, reason));
10239 dd_dev_err(dd, " passing lane mask: 0x%x", lanes);
10240 }
10241
10242 /*
10243 * Read the last state complete frames and explain them. This routine
10244 * expects to be called if the link went down during link negotiation
10245 * and initialization (LNI). That is, anywhere between polling and link up.
10246 */
check_lni_states(struct hfi1_pportdata * ppd)10247 static void check_lni_states(struct hfi1_pportdata *ppd)
10248 {
10249 u32 last_local_state;
10250 u32 last_remote_state;
10251
10252 read_last_local_state(ppd->dd, &last_local_state);
10253 read_last_remote_state(ppd->dd, &last_remote_state);
10254
10255 /*
10256 * Don't report anything if there is nothing to report. A value of
10257 * 0 means the link was taken down while polling and there was no
10258 * training in-process.
10259 */
10260 if (last_local_state == 0 && last_remote_state == 0)
10261 return;
10262
10263 decode_state_complete(ppd, last_local_state, "transmitted");
10264 decode_state_complete(ppd, last_remote_state, "received");
10265 }
10266
10267 /* wait for wait_ms for LINK_TRANSFER_ACTIVE to go to 1 */
wait_link_transfer_active(struct hfi1_devdata * dd,int wait_ms)10268 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms)
10269 {
10270 u64 reg;
10271 unsigned long timeout;
10272
10273 /* watch LCB_STS_LINK_TRANSFER_ACTIVE */
10274 timeout = jiffies + msecs_to_jiffies(wait_ms);
10275 while (1) {
10276 reg = read_csr(dd, DC_LCB_STS_LINK_TRANSFER_ACTIVE);
10277 if (reg)
10278 break;
10279 if (time_after(jiffies, timeout)) {
10280 dd_dev_err(dd,
10281 "timeout waiting for LINK_TRANSFER_ACTIVE\n");
10282 return -ETIMEDOUT;
10283 }
10284 udelay(2);
10285 }
10286 return 0;
10287 }
10288
10289 /* called when the logical link state is not down as it should be */
force_logical_link_state_down(struct hfi1_pportdata * ppd)10290 static void force_logical_link_state_down(struct hfi1_pportdata *ppd)
10291 {
10292 struct hfi1_devdata *dd = ppd->dd;
10293
10294 /*
10295 * Bring link up in LCB loopback
10296 */
10297 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10298 write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
10299 DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
10300
10301 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
10302 write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0);
10303 write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
10304 write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x2);
10305
10306 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
10307 (void)read_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET);
10308 udelay(3);
10309 write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 1);
10310 write_csr(dd, DC_LCB_CFG_RUN, 1ull << DC_LCB_CFG_RUN_EN_SHIFT);
10311
10312 wait_link_transfer_active(dd, 100);
10313
10314 /*
10315 * Bring the link down again.
10316 */
10317 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10318 write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 0);
10319 write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK, 0);
10320
10321 /* adjust ppd->statusp, if needed */
10322 update_statusp(ppd, IB_PORT_DOWN);
10323
10324 dd_dev_info(ppd->dd, "logical state forced to LINK_DOWN\n");
10325 }
10326
10327 /*
10328 * Helper for set_link_state(). Do not call except from that routine.
10329 * Expects ppd->hls_mutex to be held.
10330 *
10331 * @rem_reason value to be sent to the neighbor
10332 *
10333 * LinkDownReasons only set if transition succeeds.
10334 */
goto_offline(struct hfi1_pportdata * ppd,u8 rem_reason)10335 static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
10336 {
10337 struct hfi1_devdata *dd = ppd->dd;
10338 u32 previous_state;
10339 int offline_state_ret;
10340 int ret;
10341
10342 update_lcb_cache(dd);
10343
10344 previous_state = ppd->host_link_state;
10345 ppd->host_link_state = HLS_GOING_OFFLINE;
10346
10347 /* start offline transition */
10348 ret = set_physical_link_state(dd, (rem_reason << 8) | PLS_OFFLINE);
10349
10350 if (ret != HCMD_SUCCESS) {
10351 dd_dev_err(dd,
10352 "Failed to transition to Offline link state, return %d\n",
10353 ret);
10354 return -EINVAL;
10355 }
10356 if (ppd->offline_disabled_reason ==
10357 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))
10358 ppd->offline_disabled_reason =
10359 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
10360
10361 offline_state_ret = wait_phys_link_offline_substates(ppd, 10000);
10362 if (offline_state_ret < 0)
10363 return offline_state_ret;
10364
10365 /* Disabling AOC transmitters */
10366 if (ppd->port_type == PORT_TYPE_QSFP &&
10367 ppd->qsfp_info.limiting_active &&
10368 qsfp_mod_present(ppd)) {
10369 int ret;
10370
10371 ret = acquire_chip_resource(dd, qsfp_resource(dd), QSFP_WAIT);
10372 if (ret == 0) {
10373 set_qsfp_tx(ppd, 0);
10374 release_chip_resource(dd, qsfp_resource(dd));
10375 } else {
10376 /* not fatal, but should warn */
10377 dd_dev_err(dd,
10378 "Unable to acquire lock to turn off QSFP TX\n");
10379 }
10380 }
10381
10382 /*
10383 * Wait for the offline.Quiet transition if it hasn't happened yet. It
10384 * can take a while for the link to go down.
10385 */
10386 if (offline_state_ret != PLS_OFFLINE_QUIET) {
10387 ret = wait_physical_linkstate(ppd, PLS_OFFLINE, 30000);
10388 if (ret < 0)
10389 return ret;
10390 }
10391
10392 /*
10393 * Now in charge of LCB - must be after the physical state is
10394 * offline.quiet and before host_link_state is changed.
10395 */
10396 set_host_lcb_access(dd);
10397 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
10398
10399 /* make sure the logical state is also down */
10400 ret = wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
10401 if (ret)
10402 force_logical_link_state_down(ppd);
10403
10404 ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
10405
10406 /*
10407 * The LNI has a mandatory wait time after the physical state
10408 * moves to Offline.Quiet. The wait time may be different
10409 * depending on how the link went down. The 8051 firmware
10410 * will observe the needed wait time and only move to ready
10411 * when that is completed. The largest of the quiet timeouts
10412 * is 6s, so wait that long and then at least 0.5s more for
10413 * other transitions, and another 0.5s for a buffer.
10414 */
10415 ret = wait_fm_ready(dd, 7000);
10416 if (ret) {
10417 dd_dev_err(dd,
10418 "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n");
10419 /* state is really offline, so make it so */
10420 ppd->host_link_state = HLS_DN_OFFLINE;
10421 return ret;
10422 }
10423
10424 /*
10425 * The state is now offline and the 8051 is ready to accept host
10426 * requests.
10427 * - change our state
10428 * - notify others if we were previously in a linkup state
10429 */
10430 ppd->host_link_state = HLS_DN_OFFLINE;
10431 if (previous_state & HLS_UP) {
10432 /* went down while link was up */
10433 handle_linkup_change(dd, 0);
10434 } else if (previous_state
10435 & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
10436 /* went down while attempting link up */
10437 check_lni_states(ppd);
10438
10439 /* The QSFP doesn't need to be reset on LNI failure */
10440 ppd->qsfp_info.reset_needed = 0;
10441 }
10442
10443 /* the active link width (downgrade) is 0 on link down */
10444 ppd->link_width_active = 0;
10445 ppd->link_width_downgrade_tx_active = 0;
10446 ppd->link_width_downgrade_rx_active = 0;
10447 ppd->current_egress_rate = 0;
10448 return 0;
10449 }
10450
10451 /* return the link state name */
link_state_name(u32 state)10452 static const char *link_state_name(u32 state)
10453 {
10454 const char *name;
10455 int n = ilog2(state);
10456 static const char * const names[] = {
10457 [__HLS_UP_INIT_BP] = "INIT",
10458 [__HLS_UP_ARMED_BP] = "ARMED",
10459 [__HLS_UP_ACTIVE_BP] = "ACTIVE",
10460 [__HLS_DN_DOWNDEF_BP] = "DOWNDEF",
10461 [__HLS_DN_POLL_BP] = "POLL",
10462 [__HLS_DN_DISABLE_BP] = "DISABLE",
10463 [__HLS_DN_OFFLINE_BP] = "OFFLINE",
10464 [__HLS_VERIFY_CAP_BP] = "VERIFY_CAP",
10465 [__HLS_GOING_UP_BP] = "GOING_UP",
10466 [__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE",
10467 [__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN"
10468 };
10469
10470 name = n < ARRAY_SIZE(names) ? names[n] : NULL;
10471 return name ? name : "unknown";
10472 }
10473
10474 /* return the link state reason name */
link_state_reason_name(struct hfi1_pportdata * ppd,u32 state)10475 static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state)
10476 {
10477 if (state == HLS_UP_INIT) {
10478 switch (ppd->linkinit_reason) {
10479 case OPA_LINKINIT_REASON_LINKUP:
10480 return "(LINKUP)";
10481 case OPA_LINKINIT_REASON_FLAPPING:
10482 return "(FLAPPING)";
10483 case OPA_LINKINIT_OUTSIDE_POLICY:
10484 return "(OUTSIDE_POLICY)";
10485 case OPA_LINKINIT_QUARANTINED:
10486 return "(QUARANTINED)";
10487 case OPA_LINKINIT_INSUFIC_CAPABILITY:
10488 return "(INSUFIC_CAPABILITY)";
10489 default:
10490 break;
10491 }
10492 }
10493 return "";
10494 }
10495
10496 /*
10497 * driver_pstate - convert the driver's notion of a port's
10498 * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*).
10499 * Return -1 (converted to a u32) to indicate error.
10500 */
driver_pstate(struct hfi1_pportdata * ppd)10501 u32 driver_pstate(struct hfi1_pportdata *ppd)
10502 {
10503 switch (ppd->host_link_state) {
10504 case HLS_UP_INIT:
10505 case HLS_UP_ARMED:
10506 case HLS_UP_ACTIVE:
10507 return IB_PORTPHYSSTATE_LINKUP;
10508 case HLS_DN_POLL:
10509 return IB_PORTPHYSSTATE_POLLING;
10510 case HLS_DN_DISABLE:
10511 return IB_PORTPHYSSTATE_DISABLED;
10512 case HLS_DN_OFFLINE:
10513 return OPA_PORTPHYSSTATE_OFFLINE;
10514 case HLS_VERIFY_CAP:
10515 return IB_PORTPHYSSTATE_POLLING;
10516 case HLS_GOING_UP:
10517 return IB_PORTPHYSSTATE_POLLING;
10518 case HLS_GOING_OFFLINE:
10519 return OPA_PORTPHYSSTATE_OFFLINE;
10520 case HLS_LINK_COOLDOWN:
10521 return OPA_PORTPHYSSTATE_OFFLINE;
10522 case HLS_DN_DOWNDEF:
10523 default:
10524 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10525 ppd->host_link_state);
10526 return -1;
10527 }
10528 }
10529
10530 /*
10531 * driver_lstate - convert the driver's notion of a port's
10532 * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1
10533 * (converted to a u32) to indicate error.
10534 */
driver_lstate(struct hfi1_pportdata * ppd)10535 u32 driver_lstate(struct hfi1_pportdata *ppd)
10536 {
10537 if (ppd->host_link_state && (ppd->host_link_state & HLS_DOWN))
10538 return IB_PORT_DOWN;
10539
10540 switch (ppd->host_link_state & HLS_UP) {
10541 case HLS_UP_INIT:
10542 return IB_PORT_INIT;
10543 case HLS_UP_ARMED:
10544 return IB_PORT_ARMED;
10545 case HLS_UP_ACTIVE:
10546 return IB_PORT_ACTIVE;
10547 default:
10548 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10549 ppd->host_link_state);
10550 return -1;
10551 }
10552 }
10553
set_link_down_reason(struct hfi1_pportdata * ppd,u8 lcl_reason,u8 neigh_reason,u8 rem_reason)10554 void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason,
10555 u8 neigh_reason, u8 rem_reason)
10556 {
10557 if (ppd->local_link_down_reason.latest == 0 &&
10558 ppd->neigh_link_down_reason.latest == 0) {
10559 ppd->local_link_down_reason.latest = lcl_reason;
10560 ppd->neigh_link_down_reason.latest = neigh_reason;
10561 ppd->remote_link_down_reason = rem_reason;
10562 }
10563 }
10564
10565 /**
10566 * data_vls_operational() - Verify if data VL BCT credits and MTU
10567 * are both set.
10568 * @ppd: pointer to hfi1_pportdata structure
10569 *
10570 * Return: true - Ok, false -otherwise.
10571 */
data_vls_operational(struct hfi1_pportdata * ppd)10572 static inline bool data_vls_operational(struct hfi1_pportdata *ppd)
10573 {
10574 int i;
10575 u64 reg;
10576
10577 if (!ppd->actual_vls_operational)
10578 return false;
10579
10580 for (i = 0; i < ppd->vls_supported; i++) {
10581 reg = read_csr(ppd->dd, SEND_CM_CREDIT_VL + (8 * i));
10582 if ((reg && !ppd->dd->vld[i].mtu) ||
10583 (!reg && ppd->dd->vld[i].mtu))
10584 return false;
10585 }
10586
10587 return true;
10588 }
10589
10590 /*
10591 * Change the physical and/or logical link state.
10592 *
10593 * Do not call this routine while inside an interrupt. It contains
10594 * calls to routines that can take multiple seconds to finish.
10595 *
10596 * Returns 0 on success, -errno on failure.
10597 */
set_link_state(struct hfi1_pportdata * ppd,u32 state)10598 int set_link_state(struct hfi1_pportdata *ppd, u32 state)
10599 {
10600 struct hfi1_devdata *dd = ppd->dd;
10601 struct ib_event event = {.device = NULL};
10602 int ret1, ret = 0;
10603 int orig_new_state, poll_bounce;
10604
10605 mutex_lock(&ppd->hls_lock);
10606
10607 orig_new_state = state;
10608 if (state == HLS_DN_DOWNDEF)
10609 state = dd->link_default;
10610
10611 /* interpret poll -> poll as a link bounce */
10612 poll_bounce = ppd->host_link_state == HLS_DN_POLL &&
10613 state == HLS_DN_POLL;
10614
10615 dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__,
10616 link_state_name(ppd->host_link_state),
10617 link_state_name(orig_new_state),
10618 poll_bounce ? "(bounce) " : "",
10619 link_state_reason_name(ppd, state));
10620
10621 /*
10622 * If we're going to a (HLS_*) link state that implies the logical
10623 * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then
10624 * reset is_sm_config_started to 0.
10625 */
10626 if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE)))
10627 ppd->is_sm_config_started = 0;
10628
10629 /*
10630 * Do nothing if the states match. Let a poll to poll link bounce
10631 * go through.
10632 */
10633 if (ppd->host_link_state == state && !poll_bounce)
10634 goto done;
10635
10636 switch (state) {
10637 case HLS_UP_INIT:
10638 if (ppd->host_link_state == HLS_DN_POLL &&
10639 (quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) {
10640 /*
10641 * Quick link up jumps from polling to here.
10642 *
10643 * Whether in normal or loopback mode, the
10644 * simulator jumps from polling to link up.
10645 * Accept that here.
10646 */
10647 /* OK */
10648 } else if (ppd->host_link_state != HLS_GOING_UP) {
10649 goto unexpected;
10650 }
10651
10652 /*
10653 * Wait for Link_Up physical state.
10654 * Physical and Logical states should already be
10655 * be transitioned to LinkUp and LinkInit respectively.
10656 */
10657 ret = wait_physical_linkstate(ppd, PLS_LINKUP, 1000);
10658 if (ret) {
10659 dd_dev_err(dd,
10660 "%s: physical state did not change to LINK-UP\n",
10661 __func__);
10662 break;
10663 }
10664
10665 ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000);
10666 if (ret) {
10667 dd_dev_err(dd,
10668 "%s: logical state did not change to INIT\n",
10669 __func__);
10670 break;
10671 }
10672
10673 /* clear old transient LINKINIT_REASON code */
10674 if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR)
10675 ppd->linkinit_reason =
10676 OPA_LINKINIT_REASON_LINKUP;
10677
10678 /* enable the port */
10679 add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
10680
10681 handle_linkup_change(dd, 1);
10682 pio_kernel_linkup(dd);
10683
10684 ppd->host_link_state = HLS_UP_INIT;
10685 break;
10686 case HLS_UP_ARMED:
10687 if (ppd->host_link_state != HLS_UP_INIT)
10688 goto unexpected;
10689
10690 if (!data_vls_operational(ppd)) {
10691 dd_dev_err(dd,
10692 "%s: Invalid data VL credits or mtu\n",
10693 __func__);
10694 ret = -EINVAL;
10695 break;
10696 }
10697
10698 set_logical_state(dd, LSTATE_ARMED);
10699 ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000);
10700 if (ret) {
10701 dd_dev_err(dd,
10702 "%s: logical state did not change to ARMED\n",
10703 __func__);
10704 break;
10705 }
10706 ppd->host_link_state = HLS_UP_ARMED;
10707 /*
10708 * The simulator does not currently implement SMA messages,
10709 * so neighbor_normal is not set. Set it here when we first
10710 * move to Armed.
10711 */
10712 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
10713 ppd->neighbor_normal = 1;
10714 break;
10715 case HLS_UP_ACTIVE:
10716 if (ppd->host_link_state != HLS_UP_ARMED)
10717 goto unexpected;
10718
10719 set_logical_state(dd, LSTATE_ACTIVE);
10720 ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000);
10721 if (ret) {
10722 dd_dev_err(dd,
10723 "%s: logical state did not change to ACTIVE\n",
10724 __func__);
10725 } else {
10726 /* tell all engines to go running */
10727 sdma_all_running(dd);
10728 ppd->host_link_state = HLS_UP_ACTIVE;
10729
10730 /* Signal the IB layer that the port has went active */
10731 event.device = &dd->verbs_dev.rdi.ibdev;
10732 event.element.port_num = ppd->port;
10733 event.event = IB_EVENT_PORT_ACTIVE;
10734 }
10735 break;
10736 case HLS_DN_POLL:
10737 if ((ppd->host_link_state == HLS_DN_DISABLE ||
10738 ppd->host_link_state == HLS_DN_OFFLINE) &&
10739 dd->dc_shutdown)
10740 dc_start(dd);
10741 /* Hand LED control to the DC */
10742 write_csr(dd, DCC_CFG_LED_CNTRL, 0);
10743
10744 if (ppd->host_link_state != HLS_DN_OFFLINE) {
10745 u8 tmp = ppd->link_enabled;
10746
10747 ret = goto_offline(ppd, ppd->remote_link_down_reason);
10748 if (ret) {
10749 ppd->link_enabled = tmp;
10750 break;
10751 }
10752 ppd->remote_link_down_reason = 0;
10753
10754 if (ppd->driver_link_ready)
10755 ppd->link_enabled = 1;
10756 }
10757
10758 set_all_slowpath(ppd->dd);
10759 ret = set_local_link_attributes(ppd);
10760 if (ret)
10761 break;
10762
10763 ppd->port_error_action = 0;
10764
10765 if (quick_linkup) {
10766 /* quick linkup does not go into polling */
10767 ret = do_quick_linkup(dd);
10768 } else {
10769 ret1 = set_physical_link_state(dd, PLS_POLLING);
10770 if (!ret1)
10771 ret1 = wait_phys_link_out_of_offline(ppd,
10772 3000);
10773 if (ret1 != HCMD_SUCCESS) {
10774 dd_dev_err(dd,
10775 "Failed to transition to Polling link state, return 0x%x\n",
10776 ret1);
10777 ret = -EINVAL;
10778 }
10779 }
10780
10781 /*
10782 * Change the host link state after requesting DC8051 to
10783 * change its physical state so that we can ignore any
10784 * interrupt with stale LNI(XX) error, which will not be
10785 * cleared until DC8051 transitions to Polling state.
10786 */
10787 ppd->host_link_state = HLS_DN_POLL;
10788 ppd->offline_disabled_reason =
10789 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE);
10790 /*
10791 * If an error occurred above, go back to offline. The
10792 * caller may reschedule another attempt.
10793 */
10794 if (ret)
10795 goto_offline(ppd, 0);
10796 else
10797 log_physical_state(ppd, PLS_POLLING);
10798 break;
10799 case HLS_DN_DISABLE:
10800 /* link is disabled */
10801 ppd->link_enabled = 0;
10802
10803 /* allow any state to transition to disabled */
10804
10805 /* must transition to offline first */
10806 if (ppd->host_link_state != HLS_DN_OFFLINE) {
10807 ret = goto_offline(ppd, ppd->remote_link_down_reason);
10808 if (ret)
10809 break;
10810 ppd->remote_link_down_reason = 0;
10811 }
10812
10813 if (!dd->dc_shutdown) {
10814 ret1 = set_physical_link_state(dd, PLS_DISABLED);
10815 if (ret1 != HCMD_SUCCESS) {
10816 dd_dev_err(dd,
10817 "Failed to transition to Disabled link state, return 0x%x\n",
10818 ret1);
10819 ret = -EINVAL;
10820 break;
10821 }
10822 ret = wait_physical_linkstate(ppd, PLS_DISABLED, 10000);
10823 if (ret) {
10824 dd_dev_err(dd,
10825 "%s: physical state did not change to DISABLED\n",
10826 __func__);
10827 break;
10828 }
10829 dc_shutdown(dd);
10830 }
10831 ppd->host_link_state = HLS_DN_DISABLE;
10832 break;
10833 case HLS_DN_OFFLINE:
10834 if (ppd->host_link_state == HLS_DN_DISABLE)
10835 dc_start(dd);
10836
10837 /* allow any state to transition to offline */
10838 ret = goto_offline(ppd, ppd->remote_link_down_reason);
10839 if (!ret)
10840 ppd->remote_link_down_reason = 0;
10841 break;
10842 case HLS_VERIFY_CAP:
10843 if (ppd->host_link_state != HLS_DN_POLL)
10844 goto unexpected;
10845 ppd->host_link_state = HLS_VERIFY_CAP;
10846 log_physical_state(ppd, PLS_CONFIGPHY_VERIFYCAP);
10847 break;
10848 case HLS_GOING_UP:
10849 if (ppd->host_link_state != HLS_VERIFY_CAP)
10850 goto unexpected;
10851
10852 ret1 = set_physical_link_state(dd, PLS_LINKUP);
10853 if (ret1 != HCMD_SUCCESS) {
10854 dd_dev_err(dd,
10855 "Failed to transition to link up state, return 0x%x\n",
10856 ret1);
10857 ret = -EINVAL;
10858 break;
10859 }
10860 ppd->host_link_state = HLS_GOING_UP;
10861 break;
10862
10863 case HLS_GOING_OFFLINE: /* transient within goto_offline() */
10864 case HLS_LINK_COOLDOWN: /* transient within goto_offline() */
10865 default:
10866 dd_dev_info(dd, "%s: state 0x%x: not supported\n",
10867 __func__, state);
10868 ret = -EINVAL;
10869 break;
10870 }
10871
10872 goto done;
10873
10874 unexpected:
10875 dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n",
10876 __func__, link_state_name(ppd->host_link_state),
10877 link_state_name(state));
10878 ret = -EINVAL;
10879
10880 done:
10881 mutex_unlock(&ppd->hls_lock);
10882
10883 if (event.device)
10884 ib_dispatch_event(&event);
10885
10886 return ret;
10887 }
10888
hfi1_set_ib_cfg(struct hfi1_pportdata * ppd,int which,u32 val)10889 int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val)
10890 {
10891 u64 reg;
10892 int ret = 0;
10893
10894 switch (which) {
10895 case HFI1_IB_CFG_LIDLMC:
10896 set_lidlmc(ppd);
10897 break;
10898 case HFI1_IB_CFG_VL_HIGH_LIMIT:
10899 /*
10900 * The VL Arbitrator high limit is sent in units of 4k
10901 * bytes, while HFI stores it in units of 64 bytes.
10902 */
10903 val *= 4096 / 64;
10904 reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK)
10905 << SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT;
10906 write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg);
10907 break;
10908 case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10909 /* HFI only supports POLL as the default link down state */
10910 if (val != HLS_DN_POLL)
10911 ret = -EINVAL;
10912 break;
10913 case HFI1_IB_CFG_OP_VLS:
10914 if (ppd->vls_operational != val) {
10915 ppd->vls_operational = val;
10916 if (!ppd->port)
10917 ret = -EINVAL;
10918 }
10919 break;
10920 /*
10921 * For link width, link width downgrade, and speed enable, always AND
10922 * the setting with what is actually supported. This has two benefits.
10923 * First, enabled can't have unsupported values, no matter what the
10924 * SM or FM might want. Second, the ALL_SUPPORTED wildcards that mean
10925 * "fill in with your supported value" have all the bits in the
10926 * field set, so simply ANDing with supported has the desired result.
10927 */
10928 case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */
10929 ppd->link_width_enabled = val & ppd->link_width_supported;
10930 break;
10931 case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */
10932 ppd->link_width_downgrade_enabled =
10933 val & ppd->link_width_downgrade_supported;
10934 break;
10935 case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
10936 ppd->link_speed_enabled = val & ppd->link_speed_supported;
10937 break;
10938 case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
10939 /*
10940 * HFI does not follow IB specs, save this value
10941 * so we can report it, if asked.
10942 */
10943 ppd->overrun_threshold = val;
10944 break;
10945 case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
10946 /*
10947 * HFI does not follow IB specs, save this value
10948 * so we can report it, if asked.
10949 */
10950 ppd->phy_error_threshold = val;
10951 break;
10952
10953 case HFI1_IB_CFG_MTU:
10954 set_send_length(ppd);
10955 break;
10956
10957 case HFI1_IB_CFG_PKEYS:
10958 if (HFI1_CAP_IS_KSET(PKEY_CHECK))
10959 set_partition_keys(ppd);
10960 break;
10961
10962 default:
10963 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
10964 dd_dev_info(ppd->dd,
10965 "%s: which %s, val 0x%x: not implemented\n",
10966 __func__, ib_cfg_name(which), val);
10967 break;
10968 }
10969 return ret;
10970 }
10971
10972 /* begin functions related to vl arbitration table caching */
init_vl_arb_caches(struct hfi1_pportdata * ppd)10973 static void init_vl_arb_caches(struct hfi1_pportdata *ppd)
10974 {
10975 int i;
10976
10977 BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10978 VL_ARB_LOW_PRIO_TABLE_SIZE);
10979 BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10980 VL_ARB_HIGH_PRIO_TABLE_SIZE);
10981
10982 /*
10983 * Note that we always return values directly from the
10984 * 'vl_arb_cache' (and do no CSR reads) in response to a
10985 * 'Get(VLArbTable)'. This is obviously correct after a
10986 * 'Set(VLArbTable)', since the cache will then be up to
10987 * date. But it's also correct prior to any 'Set(VLArbTable)'
10988 * since then both the cache, and the relevant h/w registers
10989 * will be zeroed.
10990 */
10991
10992 for (i = 0; i < MAX_PRIO_TABLE; i++)
10993 spin_lock_init(&ppd->vl_arb_cache[i].lock);
10994 }
10995
10996 /*
10997 * vl_arb_lock_cache
10998 *
10999 * All other vl_arb_* functions should be called only after locking
11000 * the cache.
11001 */
11002 static inline struct vl_arb_cache *
vl_arb_lock_cache(struct hfi1_pportdata * ppd,int idx)11003 vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx)
11004 {
11005 if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE)
11006 return NULL;
11007 spin_lock(&ppd->vl_arb_cache[idx].lock);
11008 return &ppd->vl_arb_cache[idx];
11009 }
11010
vl_arb_unlock_cache(struct hfi1_pportdata * ppd,int idx)11011 static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx)
11012 {
11013 spin_unlock(&ppd->vl_arb_cache[idx].lock);
11014 }
11015
vl_arb_get_cache(struct vl_arb_cache * cache,struct ib_vl_weight_elem * vl)11016 static void vl_arb_get_cache(struct vl_arb_cache *cache,
11017 struct ib_vl_weight_elem *vl)
11018 {
11019 memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl));
11020 }
11021
vl_arb_set_cache(struct vl_arb_cache * cache,struct ib_vl_weight_elem * vl)11022 static void vl_arb_set_cache(struct vl_arb_cache *cache,
11023 struct ib_vl_weight_elem *vl)
11024 {
11025 memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
11026 }
11027
vl_arb_match_cache(struct vl_arb_cache * cache,struct ib_vl_weight_elem * vl)11028 static int vl_arb_match_cache(struct vl_arb_cache *cache,
11029 struct ib_vl_weight_elem *vl)
11030 {
11031 return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
11032 }
11033
11034 /* end functions related to vl arbitration table caching */
11035
set_vl_weights(struct hfi1_pportdata * ppd,u32 target,u32 size,struct ib_vl_weight_elem * vl)11036 static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target,
11037 u32 size, struct ib_vl_weight_elem *vl)
11038 {
11039 struct hfi1_devdata *dd = ppd->dd;
11040 u64 reg;
11041 unsigned int i, is_up = 0;
11042 int drain, ret = 0;
11043
11044 mutex_lock(&ppd->hls_lock);
11045
11046 if (ppd->host_link_state & HLS_UP)
11047 is_up = 1;
11048
11049 drain = !is_ax(dd) && is_up;
11050
11051 if (drain)
11052 /*
11053 * Before adjusting VL arbitration weights, empty per-VL
11054 * FIFOs, otherwise a packet whose VL weight is being
11055 * set to 0 could get stuck in a FIFO with no chance to
11056 * egress.
11057 */
11058 ret = stop_drain_data_vls(dd);
11059
11060 if (ret) {
11061 dd_dev_err(
11062 dd,
11063 "%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n",
11064 __func__);
11065 goto err;
11066 }
11067
11068 for (i = 0; i < size; i++, vl++) {
11069 /*
11070 * NOTE: The low priority shift and mask are used here, but
11071 * they are the same for both the low and high registers.
11072 */
11073 reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK)
11074 << SEND_LOW_PRIORITY_LIST_VL_SHIFT)
11075 | (((u64)vl->weight
11076 & SEND_LOW_PRIORITY_LIST_WEIGHT_MASK)
11077 << SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT);
11078 write_csr(dd, target + (i * 8), reg);
11079 }
11080 pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE);
11081
11082 if (drain)
11083 open_fill_data_vls(dd); /* reopen all VLs */
11084
11085 err:
11086 mutex_unlock(&ppd->hls_lock);
11087
11088 return ret;
11089 }
11090
11091 /*
11092 * Read one credit merge VL register.
11093 */
read_one_cm_vl(struct hfi1_devdata * dd,u32 csr,struct vl_limit * vll)11094 static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr,
11095 struct vl_limit *vll)
11096 {
11097 u64 reg = read_csr(dd, csr);
11098
11099 vll->dedicated = cpu_to_be16(
11100 (reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT)
11101 & SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK);
11102 vll->shared = cpu_to_be16(
11103 (reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT)
11104 & SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK);
11105 }
11106
11107 /*
11108 * Read the current credit merge limits.
11109 */
get_buffer_control(struct hfi1_devdata * dd,struct buffer_control * bc,u16 * overall_limit)11110 static int get_buffer_control(struct hfi1_devdata *dd,
11111 struct buffer_control *bc, u16 *overall_limit)
11112 {
11113 u64 reg;
11114 int i;
11115
11116 /* not all entries are filled in */
11117 memset(bc, 0, sizeof(*bc));
11118
11119 /* OPA and HFI have a 1-1 mapping */
11120 for (i = 0; i < TXE_NUM_DATA_VL; i++)
11121 read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8 * i), &bc->vl[i]);
11122
11123 /* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */
11124 read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]);
11125
11126 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11127 bc->overall_shared_limit = cpu_to_be16(
11128 (reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
11129 & SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK);
11130 if (overall_limit)
11131 *overall_limit = (reg
11132 >> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
11133 & SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK;
11134 return sizeof(struct buffer_control);
11135 }
11136
get_sc2vlnt(struct hfi1_devdata * dd,struct sc2vlnt * dp)11137 static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11138 {
11139 u64 reg;
11140 int i;
11141
11142 /* each register contains 16 SC->VLnt mappings, 4 bits each */
11143 reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0);
11144 for (i = 0; i < sizeof(u64); i++) {
11145 u8 byte = *(((u8 *)®) + i);
11146
11147 dp->vlnt[2 * i] = byte & 0xf;
11148 dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4;
11149 }
11150
11151 reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16);
11152 for (i = 0; i < sizeof(u64); i++) {
11153 u8 byte = *(((u8 *)®) + i);
11154
11155 dp->vlnt[16 + (2 * i)] = byte & 0xf;
11156 dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4;
11157 }
11158 return sizeof(struct sc2vlnt);
11159 }
11160
get_vlarb_preempt(struct hfi1_devdata * dd,u32 nelems,struct ib_vl_weight_elem * vl)11161 static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems,
11162 struct ib_vl_weight_elem *vl)
11163 {
11164 unsigned int i;
11165
11166 for (i = 0; i < nelems; i++, vl++) {
11167 vl->vl = 0xf;
11168 vl->weight = 0;
11169 }
11170 }
11171
set_sc2vlnt(struct hfi1_devdata * dd,struct sc2vlnt * dp)11172 static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11173 {
11174 write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0,
11175 DC_SC_VL_VAL(15_0,
11176 0, dp->vlnt[0] & 0xf,
11177 1, dp->vlnt[1] & 0xf,
11178 2, dp->vlnt[2] & 0xf,
11179 3, dp->vlnt[3] & 0xf,
11180 4, dp->vlnt[4] & 0xf,
11181 5, dp->vlnt[5] & 0xf,
11182 6, dp->vlnt[6] & 0xf,
11183 7, dp->vlnt[7] & 0xf,
11184 8, dp->vlnt[8] & 0xf,
11185 9, dp->vlnt[9] & 0xf,
11186 10, dp->vlnt[10] & 0xf,
11187 11, dp->vlnt[11] & 0xf,
11188 12, dp->vlnt[12] & 0xf,
11189 13, dp->vlnt[13] & 0xf,
11190 14, dp->vlnt[14] & 0xf,
11191 15, dp->vlnt[15] & 0xf));
11192 write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16,
11193 DC_SC_VL_VAL(31_16,
11194 16, dp->vlnt[16] & 0xf,
11195 17, dp->vlnt[17] & 0xf,
11196 18, dp->vlnt[18] & 0xf,
11197 19, dp->vlnt[19] & 0xf,
11198 20, dp->vlnt[20] & 0xf,
11199 21, dp->vlnt[21] & 0xf,
11200 22, dp->vlnt[22] & 0xf,
11201 23, dp->vlnt[23] & 0xf,
11202 24, dp->vlnt[24] & 0xf,
11203 25, dp->vlnt[25] & 0xf,
11204 26, dp->vlnt[26] & 0xf,
11205 27, dp->vlnt[27] & 0xf,
11206 28, dp->vlnt[28] & 0xf,
11207 29, dp->vlnt[29] & 0xf,
11208 30, dp->vlnt[30] & 0xf,
11209 31, dp->vlnt[31] & 0xf));
11210 }
11211
nonzero_msg(struct hfi1_devdata * dd,int idx,const char * what,u16 limit)11212 static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what,
11213 u16 limit)
11214 {
11215 if (limit != 0)
11216 dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n",
11217 what, (int)limit, idx);
11218 }
11219
11220 /* change only the shared limit portion of SendCmGLobalCredit */
set_global_shared(struct hfi1_devdata * dd,u16 limit)11221 static void set_global_shared(struct hfi1_devdata *dd, u16 limit)
11222 {
11223 u64 reg;
11224
11225 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11226 reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK;
11227 reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT;
11228 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11229 }
11230
11231 /* change only the total credit limit portion of SendCmGLobalCredit */
set_global_limit(struct hfi1_devdata * dd,u16 limit)11232 static void set_global_limit(struct hfi1_devdata *dd, u16 limit)
11233 {
11234 u64 reg;
11235
11236 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11237 reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK;
11238 reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
11239 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11240 }
11241
11242 /* set the given per-VL shared limit */
set_vl_shared(struct hfi1_devdata * dd,int vl,u16 limit)11243 static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit)
11244 {
11245 u64 reg;
11246 u32 addr;
11247
11248 if (vl < TXE_NUM_DATA_VL)
11249 addr = SEND_CM_CREDIT_VL + (8 * vl);
11250 else
11251 addr = SEND_CM_CREDIT_VL15;
11252
11253 reg = read_csr(dd, addr);
11254 reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK;
11255 reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT;
11256 write_csr(dd, addr, reg);
11257 }
11258
11259 /* set the given per-VL dedicated limit */
set_vl_dedicated(struct hfi1_devdata * dd,int vl,u16 limit)11260 static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit)
11261 {
11262 u64 reg;
11263 u32 addr;
11264
11265 if (vl < TXE_NUM_DATA_VL)
11266 addr = SEND_CM_CREDIT_VL + (8 * vl);
11267 else
11268 addr = SEND_CM_CREDIT_VL15;
11269
11270 reg = read_csr(dd, addr);
11271 reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK;
11272 reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT;
11273 write_csr(dd, addr, reg);
11274 }
11275
11276 /* spin until the given per-VL status mask bits clear */
wait_for_vl_status_clear(struct hfi1_devdata * dd,u64 mask,const char * which)11277 static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask,
11278 const char *which)
11279 {
11280 unsigned long timeout;
11281 u64 reg;
11282
11283 timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT);
11284 while (1) {
11285 reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask;
11286
11287 if (reg == 0)
11288 return; /* success */
11289 if (time_after(jiffies, timeout))
11290 break; /* timed out */
11291 udelay(1);
11292 }
11293
11294 dd_dev_err(dd,
11295 "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n",
11296 which, VL_STATUS_CLEAR_TIMEOUT, mask, reg);
11297 /*
11298 * If this occurs, it is likely there was a credit loss on the link.
11299 * The only recovery from that is a link bounce.
11300 */
11301 dd_dev_err(dd,
11302 "Continuing anyway. A credit loss may occur. Suggest a link bounce\n");
11303 }
11304
11305 /*
11306 * The number of credits on the VLs may be changed while everything
11307 * is "live", but the following algorithm must be followed due to
11308 * how the hardware is actually implemented. In particular,
11309 * Return_Credit_Status[] is the only correct status check.
11310 *
11311 * if (reducing Global_Shared_Credit_Limit or any shared limit changing)
11312 * set Global_Shared_Credit_Limit = 0
11313 * use_all_vl = 1
11314 * mask0 = all VLs that are changing either dedicated or shared limits
11315 * set Shared_Limit[mask0] = 0
11316 * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0
11317 * if (changing any dedicated limit)
11318 * mask1 = all VLs that are lowering dedicated limits
11319 * lower Dedicated_Limit[mask1]
11320 * spin until Return_Credit_Status[mask1] == 0
11321 * raise Dedicated_Limits
11322 * raise Shared_Limits
11323 * raise Global_Shared_Credit_Limit
11324 *
11325 * lower = if the new limit is lower, set the limit to the new value
11326 * raise = if the new limit is higher than the current value (may be changed
11327 * earlier in the algorithm), set the new limit to the new value
11328 */
set_buffer_control(struct hfi1_pportdata * ppd,struct buffer_control * new_bc)11329 int set_buffer_control(struct hfi1_pportdata *ppd,
11330 struct buffer_control *new_bc)
11331 {
11332 struct hfi1_devdata *dd = ppd->dd;
11333 u64 changing_mask, ld_mask, stat_mask;
11334 int change_count;
11335 int i, use_all_mask;
11336 int this_shared_changing;
11337 int vl_count = 0, ret;
11338 /*
11339 * A0: add the variable any_shared_limit_changing below and in the
11340 * algorithm above. If removing A0 support, it can be removed.
11341 */
11342 int any_shared_limit_changing;
11343 struct buffer_control cur_bc;
11344 u8 changing[OPA_MAX_VLS];
11345 u8 lowering_dedicated[OPA_MAX_VLS];
11346 u16 cur_total;
11347 u32 new_total = 0;
11348 const u64 all_mask =
11349 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
11350 | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK
11351 | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK
11352 | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK
11353 | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK
11354 | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK
11355 | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK
11356 | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK
11357 | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK;
11358
11359 #define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15)
11360 #define NUM_USABLE_VLS 16 /* look at VL15 and less */
11361
11362 /* find the new total credits, do sanity check on unused VLs */
11363 for (i = 0; i < OPA_MAX_VLS; i++) {
11364 if (valid_vl(i)) {
11365 new_total += be16_to_cpu(new_bc->vl[i].dedicated);
11366 continue;
11367 }
11368 nonzero_msg(dd, i, "dedicated",
11369 be16_to_cpu(new_bc->vl[i].dedicated));
11370 nonzero_msg(dd, i, "shared",
11371 be16_to_cpu(new_bc->vl[i].shared));
11372 new_bc->vl[i].dedicated = 0;
11373 new_bc->vl[i].shared = 0;
11374 }
11375 new_total += be16_to_cpu(new_bc->overall_shared_limit);
11376
11377 /* fetch the current values */
11378 get_buffer_control(dd, &cur_bc, &cur_total);
11379
11380 /*
11381 * Create the masks we will use.
11382 */
11383 memset(changing, 0, sizeof(changing));
11384 memset(lowering_dedicated, 0, sizeof(lowering_dedicated));
11385 /*
11386 * NOTE: Assumes that the individual VL bits are adjacent and in
11387 * increasing order
11388 */
11389 stat_mask =
11390 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK;
11391 changing_mask = 0;
11392 ld_mask = 0;
11393 change_count = 0;
11394 any_shared_limit_changing = 0;
11395 for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) {
11396 if (!valid_vl(i))
11397 continue;
11398 this_shared_changing = new_bc->vl[i].shared
11399 != cur_bc.vl[i].shared;
11400 if (this_shared_changing)
11401 any_shared_limit_changing = 1;
11402 if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated ||
11403 this_shared_changing) {
11404 changing[i] = 1;
11405 changing_mask |= stat_mask;
11406 change_count++;
11407 }
11408 if (be16_to_cpu(new_bc->vl[i].dedicated) <
11409 be16_to_cpu(cur_bc.vl[i].dedicated)) {
11410 lowering_dedicated[i] = 1;
11411 ld_mask |= stat_mask;
11412 }
11413 }
11414
11415 /* bracket the credit change with a total adjustment */
11416 if (new_total > cur_total)
11417 set_global_limit(dd, new_total);
11418
11419 /*
11420 * Start the credit change algorithm.
11421 */
11422 use_all_mask = 0;
11423 if ((be16_to_cpu(new_bc->overall_shared_limit) <
11424 be16_to_cpu(cur_bc.overall_shared_limit)) ||
11425 (is_ax(dd) && any_shared_limit_changing)) {
11426 set_global_shared(dd, 0);
11427 cur_bc.overall_shared_limit = 0;
11428 use_all_mask = 1;
11429 }
11430
11431 for (i = 0; i < NUM_USABLE_VLS; i++) {
11432 if (!valid_vl(i))
11433 continue;
11434
11435 if (changing[i]) {
11436 set_vl_shared(dd, i, 0);
11437 cur_bc.vl[i].shared = 0;
11438 }
11439 }
11440
11441 wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask,
11442 "shared");
11443
11444 if (change_count > 0) {
11445 for (i = 0; i < NUM_USABLE_VLS; i++) {
11446 if (!valid_vl(i))
11447 continue;
11448
11449 if (lowering_dedicated[i]) {
11450 set_vl_dedicated(dd, i,
11451 be16_to_cpu(new_bc->
11452 vl[i].dedicated));
11453 cur_bc.vl[i].dedicated =
11454 new_bc->vl[i].dedicated;
11455 }
11456 }
11457
11458 wait_for_vl_status_clear(dd, ld_mask, "dedicated");
11459
11460 /* now raise all dedicated that are going up */
11461 for (i = 0; i < NUM_USABLE_VLS; i++) {
11462 if (!valid_vl(i))
11463 continue;
11464
11465 if (be16_to_cpu(new_bc->vl[i].dedicated) >
11466 be16_to_cpu(cur_bc.vl[i].dedicated))
11467 set_vl_dedicated(dd, i,
11468 be16_to_cpu(new_bc->
11469 vl[i].dedicated));
11470 }
11471 }
11472
11473 /* next raise all shared that are going up */
11474 for (i = 0; i < NUM_USABLE_VLS; i++) {
11475 if (!valid_vl(i))
11476 continue;
11477
11478 if (be16_to_cpu(new_bc->vl[i].shared) >
11479 be16_to_cpu(cur_bc.vl[i].shared))
11480 set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared));
11481 }
11482
11483 /* finally raise the global shared */
11484 if (be16_to_cpu(new_bc->overall_shared_limit) >
11485 be16_to_cpu(cur_bc.overall_shared_limit))
11486 set_global_shared(dd,
11487 be16_to_cpu(new_bc->overall_shared_limit));
11488
11489 /* bracket the credit change with a total adjustment */
11490 if (new_total < cur_total)
11491 set_global_limit(dd, new_total);
11492
11493 /*
11494 * Determine the actual number of operational VLS using the number of
11495 * dedicated and shared credits for each VL.
11496 */
11497 if (change_count > 0) {
11498 for (i = 0; i < TXE_NUM_DATA_VL; i++)
11499 if (be16_to_cpu(new_bc->vl[i].dedicated) > 0 ||
11500 be16_to_cpu(new_bc->vl[i].shared) > 0)
11501 vl_count++;
11502 ppd->actual_vls_operational = vl_count;
11503 ret = sdma_map_init(dd, ppd->port - 1, vl_count ?
11504 ppd->actual_vls_operational :
11505 ppd->vls_operational,
11506 NULL);
11507 if (ret == 0)
11508 ret = pio_map_init(dd, ppd->port - 1, vl_count ?
11509 ppd->actual_vls_operational :
11510 ppd->vls_operational, NULL);
11511 if (ret)
11512 return ret;
11513 }
11514 return 0;
11515 }
11516
11517 /*
11518 * Read the given fabric manager table. Return the size of the
11519 * table (in bytes) on success, and a negative error code on
11520 * failure.
11521 */
fm_get_table(struct hfi1_pportdata * ppd,int which,void * t)11522 int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t)
11523
11524 {
11525 int size;
11526 struct vl_arb_cache *vlc;
11527
11528 switch (which) {
11529 case FM_TBL_VL_HIGH_ARB:
11530 size = 256;
11531 /*
11532 * OPA specifies 128 elements (of 2 bytes each), though
11533 * HFI supports only 16 elements in h/w.
11534 */
11535 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11536 vl_arb_get_cache(vlc, t);
11537 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11538 break;
11539 case FM_TBL_VL_LOW_ARB:
11540 size = 256;
11541 /*
11542 * OPA specifies 128 elements (of 2 bytes each), though
11543 * HFI supports only 16 elements in h/w.
11544 */
11545 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11546 vl_arb_get_cache(vlc, t);
11547 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11548 break;
11549 case FM_TBL_BUFFER_CONTROL:
11550 size = get_buffer_control(ppd->dd, t, NULL);
11551 break;
11552 case FM_TBL_SC2VLNT:
11553 size = get_sc2vlnt(ppd->dd, t);
11554 break;
11555 case FM_TBL_VL_PREEMPT_ELEMS:
11556 size = 256;
11557 /* OPA specifies 128 elements, of 2 bytes each */
11558 get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t);
11559 break;
11560 case FM_TBL_VL_PREEMPT_MATRIX:
11561 size = 256;
11562 /*
11563 * OPA specifies that this is the same size as the VL
11564 * arbitration tables (i.e., 256 bytes).
11565 */
11566 break;
11567 default:
11568 return -EINVAL;
11569 }
11570 return size;
11571 }
11572
11573 /*
11574 * Write the given fabric manager table.
11575 */
fm_set_table(struct hfi1_pportdata * ppd,int which,void * t)11576 int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t)
11577 {
11578 int ret = 0;
11579 struct vl_arb_cache *vlc;
11580
11581 switch (which) {
11582 case FM_TBL_VL_HIGH_ARB:
11583 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11584 if (vl_arb_match_cache(vlc, t)) {
11585 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11586 break;
11587 }
11588 vl_arb_set_cache(vlc, t);
11589 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11590 ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST,
11591 VL_ARB_HIGH_PRIO_TABLE_SIZE, t);
11592 break;
11593 case FM_TBL_VL_LOW_ARB:
11594 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11595 if (vl_arb_match_cache(vlc, t)) {
11596 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11597 break;
11598 }
11599 vl_arb_set_cache(vlc, t);
11600 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11601 ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST,
11602 VL_ARB_LOW_PRIO_TABLE_SIZE, t);
11603 break;
11604 case FM_TBL_BUFFER_CONTROL:
11605 ret = set_buffer_control(ppd, t);
11606 break;
11607 case FM_TBL_SC2VLNT:
11608 set_sc2vlnt(ppd->dd, t);
11609 break;
11610 default:
11611 ret = -EINVAL;
11612 }
11613 return ret;
11614 }
11615
11616 /*
11617 * Disable all data VLs.
11618 *
11619 * Return 0 if disabled, non-zero if the VLs cannot be disabled.
11620 */
disable_data_vls(struct hfi1_devdata * dd)11621 static int disable_data_vls(struct hfi1_devdata *dd)
11622 {
11623 if (is_ax(dd))
11624 return 1;
11625
11626 pio_send_control(dd, PSC_DATA_VL_DISABLE);
11627
11628 return 0;
11629 }
11630
11631 /*
11632 * open_fill_data_vls() - the counterpart to stop_drain_data_vls().
11633 * Just re-enables all data VLs (the "fill" part happens
11634 * automatically - the name was chosen for symmetry with
11635 * stop_drain_data_vls()).
11636 *
11637 * Return 0 if successful, non-zero if the VLs cannot be enabled.
11638 */
open_fill_data_vls(struct hfi1_devdata * dd)11639 int open_fill_data_vls(struct hfi1_devdata *dd)
11640 {
11641 if (is_ax(dd))
11642 return 1;
11643
11644 pio_send_control(dd, PSC_DATA_VL_ENABLE);
11645
11646 return 0;
11647 }
11648
11649 /*
11650 * drain_data_vls() - assumes that disable_data_vls() has been called,
11651 * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA
11652 * engines to drop to 0.
11653 */
drain_data_vls(struct hfi1_devdata * dd)11654 static void drain_data_vls(struct hfi1_devdata *dd)
11655 {
11656 sc_wait(dd);
11657 sdma_wait(dd);
11658 pause_for_credit_return(dd);
11659 }
11660
11661 /*
11662 * stop_drain_data_vls() - disable, then drain all per-VL fifos.
11663 *
11664 * Use open_fill_data_vls() to resume using data VLs. This pair is
11665 * meant to be used like this:
11666 *
11667 * stop_drain_data_vls(dd);
11668 * // do things with per-VL resources
11669 * open_fill_data_vls(dd);
11670 */
stop_drain_data_vls(struct hfi1_devdata * dd)11671 int stop_drain_data_vls(struct hfi1_devdata *dd)
11672 {
11673 int ret;
11674
11675 ret = disable_data_vls(dd);
11676 if (ret == 0)
11677 drain_data_vls(dd);
11678
11679 return ret;
11680 }
11681
11682 /*
11683 * Convert a nanosecond time to a cclock count. No matter how slow
11684 * the cclock, a non-zero ns will always have a non-zero result.
11685 */
ns_to_cclock(struct hfi1_devdata * dd,u32 ns)11686 u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns)
11687 {
11688 u32 cclocks;
11689
11690 if (dd->icode == ICODE_FPGA_EMULATION)
11691 cclocks = (ns * 1000) / FPGA_CCLOCK_PS;
11692 else /* simulation pretends to be ASIC */
11693 cclocks = (ns * 1000) / ASIC_CCLOCK_PS;
11694 if (ns && !cclocks) /* if ns nonzero, must be at least 1 */
11695 cclocks = 1;
11696 return cclocks;
11697 }
11698
11699 /*
11700 * Convert a cclock count to nanoseconds. Not matter how slow
11701 * the cclock, a non-zero cclocks will always have a non-zero result.
11702 */
cclock_to_ns(struct hfi1_devdata * dd,u32 cclocks)11703 u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks)
11704 {
11705 u32 ns;
11706
11707 if (dd->icode == ICODE_FPGA_EMULATION)
11708 ns = (cclocks * FPGA_CCLOCK_PS) / 1000;
11709 else /* simulation pretends to be ASIC */
11710 ns = (cclocks * ASIC_CCLOCK_PS) / 1000;
11711 if (cclocks && !ns)
11712 ns = 1;
11713 return ns;
11714 }
11715
11716 /*
11717 * Dynamically adjust the receive interrupt timeout for a context based on
11718 * incoming packet rate.
11719 *
11720 * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero.
11721 */
adjust_rcv_timeout(struct hfi1_ctxtdata * rcd,u32 npkts)11722 static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts)
11723 {
11724 struct hfi1_devdata *dd = rcd->dd;
11725 u32 timeout = rcd->rcvavail_timeout;
11726
11727 /*
11728 * This algorithm doubles or halves the timeout depending on whether
11729 * the number of packets received in this interrupt were less than or
11730 * greater equal the interrupt count.
11731 *
11732 * The calculations below do not allow a steady state to be achieved.
11733 * Only at the endpoints it is possible to have an unchanging
11734 * timeout.
11735 */
11736 if (npkts < rcv_intr_count) {
11737 /*
11738 * Not enough packets arrived before the timeout, adjust
11739 * timeout downward.
11740 */
11741 if (timeout < 2) /* already at minimum? */
11742 return;
11743 timeout >>= 1;
11744 } else {
11745 /*
11746 * More than enough packets arrived before the timeout, adjust
11747 * timeout upward.
11748 */
11749 if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */
11750 return;
11751 timeout = min(timeout << 1, dd->rcv_intr_timeout_csr);
11752 }
11753
11754 rcd->rcvavail_timeout = timeout;
11755 /*
11756 * timeout cannot be larger than rcv_intr_timeout_csr which has already
11757 * been verified to be in range
11758 */
11759 write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT,
11760 (u64)timeout <<
11761 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11762 }
11763
update_usrhead(struct hfi1_ctxtdata * rcd,u32 hd,u32 updegr,u32 egrhd,u32 intr_adjust,u32 npkts)11764 void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd,
11765 u32 intr_adjust, u32 npkts)
11766 {
11767 struct hfi1_devdata *dd = rcd->dd;
11768 u64 reg;
11769 u32 ctxt = rcd->ctxt;
11770
11771 /*
11772 * Need to write timeout register before updating RcvHdrHead to ensure
11773 * that a new value is used when the HW decides to restart counting.
11774 */
11775 if (intr_adjust)
11776 adjust_rcv_timeout(rcd, npkts);
11777 if (updegr) {
11778 reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK)
11779 << RCV_EGR_INDEX_HEAD_HEAD_SHIFT;
11780 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg);
11781 }
11782 mmiowb();
11783 reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) |
11784 (((u64)hd & RCV_HDR_HEAD_HEAD_MASK)
11785 << RCV_HDR_HEAD_HEAD_SHIFT);
11786 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11787 mmiowb();
11788 }
11789
hdrqempty(struct hfi1_ctxtdata * rcd)11790 u32 hdrqempty(struct hfi1_ctxtdata *rcd)
11791 {
11792 u32 head, tail;
11793
11794 head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD)
11795 & RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT;
11796
11797 if (rcd->rcvhdrtail_kvaddr)
11798 tail = get_rcvhdrtail(rcd);
11799 else
11800 tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
11801
11802 return head == tail;
11803 }
11804
11805 /*
11806 * Context Control and Receive Array encoding for buffer size:
11807 * 0x0 invalid
11808 * 0x1 4 KB
11809 * 0x2 8 KB
11810 * 0x3 16 KB
11811 * 0x4 32 KB
11812 * 0x5 64 KB
11813 * 0x6 128 KB
11814 * 0x7 256 KB
11815 * 0x8 512 KB (Receive Array only)
11816 * 0x9 1 MB (Receive Array only)
11817 * 0xa 2 MB (Receive Array only)
11818 *
11819 * 0xB-0xF - reserved (Receive Array only)
11820 *
11821 *
11822 * This routine assumes that the value has already been sanity checked.
11823 */
encoded_size(u32 size)11824 static u32 encoded_size(u32 size)
11825 {
11826 switch (size) {
11827 case 4 * 1024: return 0x1;
11828 case 8 * 1024: return 0x2;
11829 case 16 * 1024: return 0x3;
11830 case 32 * 1024: return 0x4;
11831 case 64 * 1024: return 0x5;
11832 case 128 * 1024: return 0x6;
11833 case 256 * 1024: return 0x7;
11834 case 512 * 1024: return 0x8;
11835 case 1 * 1024 * 1024: return 0x9;
11836 case 2 * 1024 * 1024: return 0xa;
11837 }
11838 return 0x1; /* if invalid, go with the minimum size */
11839 }
11840
hfi1_rcvctrl(struct hfi1_devdata * dd,unsigned int op,struct hfi1_ctxtdata * rcd)11841 void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op,
11842 struct hfi1_ctxtdata *rcd)
11843 {
11844 u64 rcvctrl, reg;
11845 int did_enable = 0;
11846 u16 ctxt;
11847
11848 if (!rcd)
11849 return;
11850
11851 ctxt = rcd->ctxt;
11852
11853 hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op);
11854
11855 rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL);
11856 /* if the context already enabled, don't do the extra steps */
11857 if ((op & HFI1_RCVCTRL_CTXT_ENB) &&
11858 !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) {
11859 /* reset the tail and hdr addresses, and sequence count */
11860 write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR,
11861 rcd->rcvhdrq_dma);
11862 if (rcd->rcvhdrtail_kvaddr)
11863 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11864 rcd->rcvhdrqtailaddr_dma);
11865 rcd->seq_cnt = 1;
11866
11867 /* reset the cached receive header queue head value */
11868 rcd->head = 0;
11869
11870 /*
11871 * Zero the receive header queue so we don't get false
11872 * positives when checking the sequence number. The
11873 * sequence numbers could land exactly on the same spot.
11874 * E.g. a rcd restart before the receive header wrapped.
11875 */
11876 memset(rcd->rcvhdrq, 0, rcd->rcvhdrq_size);
11877
11878 /* starting timeout */
11879 rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr;
11880
11881 /* enable the context */
11882 rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK;
11883
11884 /* clean the egr buffer size first */
11885 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11886 rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size)
11887 & RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK)
11888 << RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT;
11889
11890 /* zero RcvHdrHead - set RcvHdrHead.Counter after enable */
11891 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0);
11892 did_enable = 1;
11893
11894 /* zero RcvEgrIndexHead */
11895 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0);
11896
11897 /* set eager count and base index */
11898 reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT)
11899 & RCV_EGR_CTRL_EGR_CNT_MASK)
11900 << RCV_EGR_CTRL_EGR_CNT_SHIFT) |
11901 (((rcd->eager_base >> RCV_SHIFT)
11902 & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK)
11903 << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT);
11904 write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg);
11905
11906 /*
11907 * Set TID (expected) count and base index.
11908 * rcd->expected_count is set to individual RcvArray entries,
11909 * not pairs, and the CSR takes a pair-count in groups of
11910 * four, so divide by 8.
11911 */
11912 reg = (((rcd->expected_count >> RCV_SHIFT)
11913 & RCV_TID_CTRL_TID_PAIR_CNT_MASK)
11914 << RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) |
11915 (((rcd->expected_base >> RCV_SHIFT)
11916 & RCV_TID_CTRL_TID_BASE_INDEX_MASK)
11917 << RCV_TID_CTRL_TID_BASE_INDEX_SHIFT);
11918 write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg);
11919 if (ctxt == HFI1_CTRL_CTXT)
11920 write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT);
11921 }
11922 if (op & HFI1_RCVCTRL_CTXT_DIS) {
11923 write_csr(dd, RCV_VL15, 0);
11924 /*
11925 * When receive context is being disabled turn on tail
11926 * update with a dummy tail address and then disable
11927 * receive context.
11928 */
11929 if (dd->rcvhdrtail_dummy_dma) {
11930 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11931 dd->rcvhdrtail_dummy_dma);
11932 /* Enabling RcvCtxtCtrl.TailUpd is intentional. */
11933 rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11934 }
11935
11936 rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK;
11937 }
11938 if (op & HFI1_RCVCTRL_INTRAVAIL_ENB)
11939 rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11940 if (op & HFI1_RCVCTRL_INTRAVAIL_DIS)
11941 rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11942 if ((op & HFI1_RCVCTRL_TAILUPD_ENB) && rcd->rcvhdrtail_kvaddr)
11943 rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11944 if (op & HFI1_RCVCTRL_TAILUPD_DIS) {
11945 /* See comment on RcvCtxtCtrl.TailUpd above */
11946 if (!(op & HFI1_RCVCTRL_CTXT_DIS))
11947 rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11948 }
11949 if (op & HFI1_RCVCTRL_TIDFLOW_ENB)
11950 rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11951 if (op & HFI1_RCVCTRL_TIDFLOW_DIS)
11952 rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11953 if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) {
11954 /*
11955 * In one-packet-per-eager mode, the size comes from
11956 * the RcvArray entry.
11957 */
11958 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11959 rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11960 }
11961 if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS)
11962 rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11963 if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB)
11964 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11965 if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS)
11966 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11967 if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB)
11968 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11969 if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS)
11970 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11971 rcd->rcvctrl = rcvctrl;
11972 hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl);
11973 write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcd->rcvctrl);
11974
11975 /* work around sticky RcvCtxtStatus.BlockedRHQFull */
11976 if (did_enable &&
11977 (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) {
11978 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11979 if (reg != 0) {
11980 dd_dev_info(dd, "ctxt %d status %lld (blocked)\n",
11981 ctxt, reg);
11982 read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11983 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10);
11984 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00);
11985 read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11986 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11987 dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n",
11988 ctxt, reg, reg == 0 ? "not" : "still");
11989 }
11990 }
11991
11992 if (did_enable) {
11993 /*
11994 * The interrupt timeout and count must be set after
11995 * the context is enabled to take effect.
11996 */
11997 /* set interrupt timeout */
11998 write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT,
11999 (u64)rcd->rcvavail_timeout <<
12000 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
12001
12002 /* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */
12003 reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT;
12004 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
12005 }
12006
12007 if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS))
12008 /*
12009 * If the context has been disabled and the Tail Update has
12010 * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address
12011 * so it doesn't contain an address that is invalid.
12012 */
12013 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
12014 dd->rcvhdrtail_dummy_dma);
12015 }
12016
hfi1_read_cntrs(struct hfi1_devdata * dd,char ** namep,u64 ** cntrp)12017 u32 hfi1_read_cntrs(struct hfi1_devdata *dd, char **namep, u64 **cntrp)
12018 {
12019 int ret;
12020 u64 val = 0;
12021
12022 if (namep) {
12023 ret = dd->cntrnameslen;
12024 *namep = dd->cntrnames;
12025 } else {
12026 const struct cntr_entry *entry;
12027 int i, j;
12028
12029 ret = (dd->ndevcntrs) * sizeof(u64);
12030
12031 /* Get the start of the block of counters */
12032 *cntrp = dd->cntrs;
12033
12034 /*
12035 * Now go and fill in each counter in the block.
12036 */
12037 for (i = 0; i < DEV_CNTR_LAST; i++) {
12038 entry = &dev_cntrs[i];
12039 hfi1_cdbg(CNTR, "reading %s", entry->name);
12040 if (entry->flags & CNTR_DISABLED) {
12041 /* Nothing */
12042 hfi1_cdbg(CNTR, "\tDisabled\n");
12043 } else {
12044 if (entry->flags & CNTR_VL) {
12045 hfi1_cdbg(CNTR, "\tPer VL\n");
12046 for (j = 0; j < C_VL_COUNT; j++) {
12047 val = entry->rw_cntr(entry,
12048 dd, j,
12049 CNTR_MODE_R,
12050 0);
12051 hfi1_cdbg(
12052 CNTR,
12053 "\t\tRead 0x%llx for %d\n",
12054 val, j);
12055 dd->cntrs[entry->offset + j] =
12056 val;
12057 }
12058 } else if (entry->flags & CNTR_SDMA) {
12059 hfi1_cdbg(CNTR,
12060 "\t Per SDMA Engine\n");
12061 for (j = 0; j < dd->chip_sdma_engines;
12062 j++) {
12063 val =
12064 entry->rw_cntr(entry, dd, j,
12065 CNTR_MODE_R, 0);
12066 hfi1_cdbg(CNTR,
12067 "\t\tRead 0x%llx for %d\n",
12068 val, j);
12069 dd->cntrs[entry->offset + j] =
12070 val;
12071 }
12072 } else {
12073 val = entry->rw_cntr(entry, dd,
12074 CNTR_INVALID_VL,
12075 CNTR_MODE_R, 0);
12076 dd->cntrs[entry->offset] = val;
12077 hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12078 }
12079 }
12080 }
12081 }
12082 return ret;
12083 }
12084
12085 /*
12086 * Used by sysfs to create files for hfi stats to read
12087 */
hfi1_read_portcntrs(struct hfi1_pportdata * ppd,char ** namep,u64 ** cntrp)12088 u32 hfi1_read_portcntrs(struct hfi1_pportdata *ppd, char **namep, u64 **cntrp)
12089 {
12090 int ret;
12091 u64 val = 0;
12092
12093 if (namep) {
12094 ret = ppd->dd->portcntrnameslen;
12095 *namep = ppd->dd->portcntrnames;
12096 } else {
12097 const struct cntr_entry *entry;
12098 int i, j;
12099
12100 ret = ppd->dd->nportcntrs * sizeof(u64);
12101 *cntrp = ppd->cntrs;
12102
12103 for (i = 0; i < PORT_CNTR_LAST; i++) {
12104 entry = &port_cntrs[i];
12105 hfi1_cdbg(CNTR, "reading %s", entry->name);
12106 if (entry->flags & CNTR_DISABLED) {
12107 /* Nothing */
12108 hfi1_cdbg(CNTR, "\tDisabled\n");
12109 continue;
12110 }
12111
12112 if (entry->flags & CNTR_VL) {
12113 hfi1_cdbg(CNTR, "\tPer VL");
12114 for (j = 0; j < C_VL_COUNT; j++) {
12115 val = entry->rw_cntr(entry, ppd, j,
12116 CNTR_MODE_R,
12117 0);
12118 hfi1_cdbg(
12119 CNTR,
12120 "\t\tRead 0x%llx for %d",
12121 val, j);
12122 ppd->cntrs[entry->offset + j] = val;
12123 }
12124 } else {
12125 val = entry->rw_cntr(entry, ppd,
12126 CNTR_INVALID_VL,
12127 CNTR_MODE_R,
12128 0);
12129 ppd->cntrs[entry->offset] = val;
12130 hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12131 }
12132 }
12133 }
12134 return ret;
12135 }
12136
free_cntrs(struct hfi1_devdata * dd)12137 static void free_cntrs(struct hfi1_devdata *dd)
12138 {
12139 struct hfi1_pportdata *ppd;
12140 int i;
12141
12142 if (dd->synth_stats_timer.data)
12143 del_timer_sync(&dd->synth_stats_timer);
12144 dd->synth_stats_timer.data = 0;
12145 ppd = (struct hfi1_pportdata *)(dd + 1);
12146 for (i = 0; i < dd->num_pports; i++, ppd++) {
12147 kfree(ppd->cntrs);
12148 kfree(ppd->scntrs);
12149 free_percpu(ppd->ibport_data.rvp.rc_acks);
12150 free_percpu(ppd->ibport_data.rvp.rc_qacks);
12151 free_percpu(ppd->ibport_data.rvp.rc_delayed_comp);
12152 ppd->cntrs = NULL;
12153 ppd->scntrs = NULL;
12154 ppd->ibport_data.rvp.rc_acks = NULL;
12155 ppd->ibport_data.rvp.rc_qacks = NULL;
12156 ppd->ibport_data.rvp.rc_delayed_comp = NULL;
12157 }
12158 kfree(dd->portcntrnames);
12159 dd->portcntrnames = NULL;
12160 kfree(dd->cntrs);
12161 dd->cntrs = NULL;
12162 kfree(dd->scntrs);
12163 dd->scntrs = NULL;
12164 kfree(dd->cntrnames);
12165 dd->cntrnames = NULL;
12166 if (dd->update_cntr_wq) {
12167 destroy_workqueue(dd->update_cntr_wq);
12168 dd->update_cntr_wq = NULL;
12169 }
12170 }
12171
read_dev_port_cntr(struct hfi1_devdata * dd,struct cntr_entry * entry,u64 * psval,void * context,int vl)12172 static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry,
12173 u64 *psval, void *context, int vl)
12174 {
12175 u64 val;
12176 u64 sval = *psval;
12177
12178 if (entry->flags & CNTR_DISABLED) {
12179 dd_dev_err(dd, "Counter %s not enabled", entry->name);
12180 return 0;
12181 }
12182
12183 hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12184
12185 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0);
12186
12187 /* If its a synthetic counter there is more work we need to do */
12188 if (entry->flags & CNTR_SYNTH) {
12189 if (sval == CNTR_MAX) {
12190 /* No need to read already saturated */
12191 return CNTR_MAX;
12192 }
12193
12194 if (entry->flags & CNTR_32BIT) {
12195 /* 32bit counters can wrap multiple times */
12196 u64 upper = sval >> 32;
12197 u64 lower = (sval << 32) >> 32;
12198
12199 if (lower > val) { /* hw wrapped */
12200 if (upper == CNTR_32BIT_MAX)
12201 val = CNTR_MAX;
12202 else
12203 upper++;
12204 }
12205
12206 if (val != CNTR_MAX)
12207 val = (upper << 32) | val;
12208
12209 } else {
12210 /* If we rolled we are saturated */
12211 if ((val < sval) || (val > CNTR_MAX))
12212 val = CNTR_MAX;
12213 }
12214 }
12215
12216 *psval = val;
12217
12218 hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12219
12220 return val;
12221 }
12222
write_dev_port_cntr(struct hfi1_devdata * dd,struct cntr_entry * entry,u64 * psval,void * context,int vl,u64 data)12223 static u64 write_dev_port_cntr(struct hfi1_devdata *dd,
12224 struct cntr_entry *entry,
12225 u64 *psval, void *context, int vl, u64 data)
12226 {
12227 u64 val;
12228
12229 if (entry->flags & CNTR_DISABLED) {
12230 dd_dev_err(dd, "Counter %s not enabled", entry->name);
12231 return 0;
12232 }
12233
12234 hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12235
12236 if (entry->flags & CNTR_SYNTH) {
12237 *psval = data;
12238 if (entry->flags & CNTR_32BIT) {
12239 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12240 (data << 32) >> 32);
12241 val = data; /* return the full 64bit value */
12242 } else {
12243 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12244 data);
12245 }
12246 } else {
12247 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data);
12248 }
12249
12250 *psval = val;
12251
12252 hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12253
12254 return val;
12255 }
12256
read_dev_cntr(struct hfi1_devdata * dd,int index,int vl)12257 u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl)
12258 {
12259 struct cntr_entry *entry;
12260 u64 *sval;
12261
12262 entry = &dev_cntrs[index];
12263 sval = dd->scntrs + entry->offset;
12264
12265 if (vl != CNTR_INVALID_VL)
12266 sval += vl;
12267
12268 return read_dev_port_cntr(dd, entry, sval, dd, vl);
12269 }
12270
write_dev_cntr(struct hfi1_devdata * dd,int index,int vl,u64 data)12271 u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data)
12272 {
12273 struct cntr_entry *entry;
12274 u64 *sval;
12275
12276 entry = &dev_cntrs[index];
12277 sval = dd->scntrs + entry->offset;
12278
12279 if (vl != CNTR_INVALID_VL)
12280 sval += vl;
12281
12282 return write_dev_port_cntr(dd, entry, sval, dd, vl, data);
12283 }
12284
read_port_cntr(struct hfi1_pportdata * ppd,int index,int vl)12285 u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl)
12286 {
12287 struct cntr_entry *entry;
12288 u64 *sval;
12289
12290 entry = &port_cntrs[index];
12291 sval = ppd->scntrs + entry->offset;
12292
12293 if (vl != CNTR_INVALID_VL)
12294 sval += vl;
12295
12296 if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12297 (index <= C_RCV_HDR_OVF_LAST)) {
12298 /* We do not want to bother for disabled contexts */
12299 return 0;
12300 }
12301
12302 return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl);
12303 }
12304
write_port_cntr(struct hfi1_pportdata * ppd,int index,int vl,u64 data)12305 u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data)
12306 {
12307 struct cntr_entry *entry;
12308 u64 *sval;
12309
12310 entry = &port_cntrs[index];
12311 sval = ppd->scntrs + entry->offset;
12312
12313 if (vl != CNTR_INVALID_VL)
12314 sval += vl;
12315
12316 if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12317 (index <= C_RCV_HDR_OVF_LAST)) {
12318 /* We do not want to bother for disabled contexts */
12319 return 0;
12320 }
12321
12322 return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data);
12323 }
12324
do_update_synth_timer(struct work_struct * work)12325 static void do_update_synth_timer(struct work_struct *work)
12326 {
12327 u64 cur_tx;
12328 u64 cur_rx;
12329 u64 total_flits;
12330 u8 update = 0;
12331 int i, j, vl;
12332 struct hfi1_pportdata *ppd;
12333 struct cntr_entry *entry;
12334 struct hfi1_devdata *dd = container_of(work, struct hfi1_devdata,
12335 update_cntr_work);
12336
12337 /*
12338 * Rather than keep beating on the CSRs pick a minimal set that we can
12339 * check to watch for potential roll over. We can do this by looking at
12340 * the number of flits sent/recv. If the total flits exceeds 32bits then
12341 * we have to iterate all the counters and update.
12342 */
12343 entry = &dev_cntrs[C_DC_RCV_FLITS];
12344 cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12345
12346 entry = &dev_cntrs[C_DC_XMIT_FLITS];
12347 cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12348
12349 hfi1_cdbg(
12350 CNTR,
12351 "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n",
12352 dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx);
12353
12354 if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) {
12355 /*
12356 * May not be strictly necessary to update but it won't hurt and
12357 * simplifies the logic here.
12358 */
12359 update = 1;
12360 hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating",
12361 dd->unit);
12362 } else {
12363 total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx);
12364 hfi1_cdbg(CNTR,
12365 "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit,
12366 total_flits, (u64)CNTR_32BIT_MAX);
12367 if (total_flits >= CNTR_32BIT_MAX) {
12368 hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating",
12369 dd->unit);
12370 update = 1;
12371 }
12372 }
12373
12374 if (update) {
12375 hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit);
12376 for (i = 0; i < DEV_CNTR_LAST; i++) {
12377 entry = &dev_cntrs[i];
12378 if (entry->flags & CNTR_VL) {
12379 for (vl = 0; vl < C_VL_COUNT; vl++)
12380 read_dev_cntr(dd, i, vl);
12381 } else {
12382 read_dev_cntr(dd, i, CNTR_INVALID_VL);
12383 }
12384 }
12385 ppd = (struct hfi1_pportdata *)(dd + 1);
12386 for (i = 0; i < dd->num_pports; i++, ppd++) {
12387 for (j = 0; j < PORT_CNTR_LAST; j++) {
12388 entry = &port_cntrs[j];
12389 if (entry->flags & CNTR_VL) {
12390 for (vl = 0; vl < C_VL_COUNT; vl++)
12391 read_port_cntr(ppd, j, vl);
12392 } else {
12393 read_port_cntr(ppd, j, CNTR_INVALID_VL);
12394 }
12395 }
12396 }
12397
12398 /*
12399 * We want the value in the register. The goal is to keep track
12400 * of the number of "ticks" not the counter value. In other
12401 * words if the register rolls we want to notice it and go ahead
12402 * and force an update.
12403 */
12404 entry = &dev_cntrs[C_DC_XMIT_FLITS];
12405 dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12406 CNTR_MODE_R, 0);
12407
12408 entry = &dev_cntrs[C_DC_RCV_FLITS];
12409 dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12410 CNTR_MODE_R, 0);
12411
12412 hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx",
12413 dd->unit, dd->last_tx, dd->last_rx);
12414
12415 } else {
12416 hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit);
12417 }
12418 }
12419
update_synth_timer(unsigned long opaque)12420 static void update_synth_timer(unsigned long opaque)
12421 {
12422 struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
12423
12424 queue_work(dd->update_cntr_wq, &dd->update_cntr_work);
12425 mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12426 }
12427
12428 #define C_MAX_NAME 16 /* 15 chars + one for /0 */
init_cntrs(struct hfi1_devdata * dd)12429 static int init_cntrs(struct hfi1_devdata *dd)
12430 {
12431 int i, rcv_ctxts, j;
12432 size_t sz;
12433 char *p;
12434 char name[C_MAX_NAME];
12435 struct hfi1_pportdata *ppd;
12436 const char *bit_type_32 = ",32";
12437 const int bit_type_32_sz = strlen(bit_type_32);
12438
12439 /* set up the stats timer; the add_timer is done at the end */
12440 setup_timer(&dd->synth_stats_timer, update_synth_timer,
12441 (unsigned long)dd);
12442
12443 /***********************/
12444 /* per device counters */
12445 /***********************/
12446
12447 /* size names and determine how many we have*/
12448 dd->ndevcntrs = 0;
12449 sz = 0;
12450
12451 for (i = 0; i < DEV_CNTR_LAST; i++) {
12452 if (dev_cntrs[i].flags & CNTR_DISABLED) {
12453 hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name);
12454 continue;
12455 }
12456
12457 if (dev_cntrs[i].flags & CNTR_VL) {
12458 dev_cntrs[i].offset = dd->ndevcntrs;
12459 for (j = 0; j < C_VL_COUNT; j++) {
12460 snprintf(name, C_MAX_NAME, "%s%d",
12461 dev_cntrs[i].name, vl_from_idx(j));
12462 sz += strlen(name);
12463 /* Add ",32" for 32-bit counters */
12464 if (dev_cntrs[i].flags & CNTR_32BIT)
12465 sz += bit_type_32_sz;
12466 sz++;
12467 dd->ndevcntrs++;
12468 }
12469 } else if (dev_cntrs[i].flags & CNTR_SDMA) {
12470 dev_cntrs[i].offset = dd->ndevcntrs;
12471 for (j = 0; j < dd->chip_sdma_engines; j++) {
12472 snprintf(name, C_MAX_NAME, "%s%d",
12473 dev_cntrs[i].name, j);
12474 sz += strlen(name);
12475 /* Add ",32" for 32-bit counters */
12476 if (dev_cntrs[i].flags & CNTR_32BIT)
12477 sz += bit_type_32_sz;
12478 sz++;
12479 dd->ndevcntrs++;
12480 }
12481 } else {
12482 /* +1 for newline. */
12483 sz += strlen(dev_cntrs[i].name) + 1;
12484 /* Add ",32" for 32-bit counters */
12485 if (dev_cntrs[i].flags & CNTR_32BIT)
12486 sz += bit_type_32_sz;
12487 dev_cntrs[i].offset = dd->ndevcntrs;
12488 dd->ndevcntrs++;
12489 }
12490 }
12491
12492 /* allocate space for the counter values */
12493 dd->cntrs = kcalloc(dd->ndevcntrs + num_driver_cntrs, sizeof(u64),
12494 GFP_KERNEL);
12495 if (!dd->cntrs)
12496 goto bail;
12497
12498 dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12499 if (!dd->scntrs)
12500 goto bail;
12501
12502 /* allocate space for the counter names */
12503 dd->cntrnameslen = sz;
12504 dd->cntrnames = kmalloc(sz, GFP_KERNEL);
12505 if (!dd->cntrnames)
12506 goto bail;
12507
12508 /* fill in the names */
12509 for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) {
12510 if (dev_cntrs[i].flags & CNTR_DISABLED) {
12511 /* Nothing */
12512 } else if (dev_cntrs[i].flags & CNTR_VL) {
12513 for (j = 0; j < C_VL_COUNT; j++) {
12514 snprintf(name, C_MAX_NAME, "%s%d",
12515 dev_cntrs[i].name,
12516 vl_from_idx(j));
12517 memcpy(p, name, strlen(name));
12518 p += strlen(name);
12519
12520 /* Counter is 32 bits */
12521 if (dev_cntrs[i].flags & CNTR_32BIT) {
12522 memcpy(p, bit_type_32, bit_type_32_sz);
12523 p += bit_type_32_sz;
12524 }
12525
12526 *p++ = '\n';
12527 }
12528 } else if (dev_cntrs[i].flags & CNTR_SDMA) {
12529 for (j = 0; j < dd->chip_sdma_engines; j++) {
12530 snprintf(name, C_MAX_NAME, "%s%d",
12531 dev_cntrs[i].name, j);
12532 memcpy(p, name, strlen(name));
12533 p += strlen(name);
12534
12535 /* Counter is 32 bits */
12536 if (dev_cntrs[i].flags & CNTR_32BIT) {
12537 memcpy(p, bit_type_32, bit_type_32_sz);
12538 p += bit_type_32_sz;
12539 }
12540
12541 *p++ = '\n';
12542 }
12543 } else {
12544 memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name));
12545 p += strlen(dev_cntrs[i].name);
12546
12547 /* Counter is 32 bits */
12548 if (dev_cntrs[i].flags & CNTR_32BIT) {
12549 memcpy(p, bit_type_32, bit_type_32_sz);
12550 p += bit_type_32_sz;
12551 }
12552
12553 *p++ = '\n';
12554 }
12555 }
12556
12557 /*********************/
12558 /* per port counters */
12559 /*********************/
12560
12561 /*
12562 * Go through the counters for the overflows and disable the ones we
12563 * don't need. This varies based on platform so we need to do it
12564 * dynamically here.
12565 */
12566 rcv_ctxts = dd->num_rcv_contexts;
12567 for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts;
12568 i <= C_RCV_HDR_OVF_LAST; i++) {
12569 port_cntrs[i].flags |= CNTR_DISABLED;
12570 }
12571
12572 /* size port counter names and determine how many we have*/
12573 sz = 0;
12574 dd->nportcntrs = 0;
12575 for (i = 0; i < PORT_CNTR_LAST; i++) {
12576 if (port_cntrs[i].flags & CNTR_DISABLED) {
12577 hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name);
12578 continue;
12579 }
12580
12581 if (port_cntrs[i].flags & CNTR_VL) {
12582 port_cntrs[i].offset = dd->nportcntrs;
12583 for (j = 0; j < C_VL_COUNT; j++) {
12584 snprintf(name, C_MAX_NAME, "%s%d",
12585 port_cntrs[i].name, vl_from_idx(j));
12586 sz += strlen(name);
12587 /* Add ",32" for 32-bit counters */
12588 if (port_cntrs[i].flags & CNTR_32BIT)
12589 sz += bit_type_32_sz;
12590 sz++;
12591 dd->nportcntrs++;
12592 }
12593 } else {
12594 /* +1 for newline */
12595 sz += strlen(port_cntrs[i].name) + 1;
12596 /* Add ",32" for 32-bit counters */
12597 if (port_cntrs[i].flags & CNTR_32BIT)
12598 sz += bit_type_32_sz;
12599 port_cntrs[i].offset = dd->nportcntrs;
12600 dd->nportcntrs++;
12601 }
12602 }
12603
12604 /* allocate space for the counter names */
12605 dd->portcntrnameslen = sz;
12606 dd->portcntrnames = kmalloc(sz, GFP_KERNEL);
12607 if (!dd->portcntrnames)
12608 goto bail;
12609
12610 /* fill in port cntr names */
12611 for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) {
12612 if (port_cntrs[i].flags & CNTR_DISABLED)
12613 continue;
12614
12615 if (port_cntrs[i].flags & CNTR_VL) {
12616 for (j = 0; j < C_VL_COUNT; j++) {
12617 snprintf(name, C_MAX_NAME, "%s%d",
12618 port_cntrs[i].name, vl_from_idx(j));
12619 memcpy(p, name, strlen(name));
12620 p += strlen(name);
12621
12622 /* Counter is 32 bits */
12623 if (port_cntrs[i].flags & CNTR_32BIT) {
12624 memcpy(p, bit_type_32, bit_type_32_sz);
12625 p += bit_type_32_sz;
12626 }
12627
12628 *p++ = '\n';
12629 }
12630 } else {
12631 memcpy(p, port_cntrs[i].name,
12632 strlen(port_cntrs[i].name));
12633 p += strlen(port_cntrs[i].name);
12634
12635 /* Counter is 32 bits */
12636 if (port_cntrs[i].flags & CNTR_32BIT) {
12637 memcpy(p, bit_type_32, bit_type_32_sz);
12638 p += bit_type_32_sz;
12639 }
12640
12641 *p++ = '\n';
12642 }
12643 }
12644
12645 /* allocate per port storage for counter values */
12646 ppd = (struct hfi1_pportdata *)(dd + 1);
12647 for (i = 0; i < dd->num_pports; i++, ppd++) {
12648 ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12649 if (!ppd->cntrs)
12650 goto bail;
12651
12652 ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12653 if (!ppd->scntrs)
12654 goto bail;
12655 }
12656
12657 /* CPU counters need to be allocated and zeroed */
12658 if (init_cpu_counters(dd))
12659 goto bail;
12660
12661 dd->update_cntr_wq = alloc_ordered_workqueue("hfi1_update_cntr_%d",
12662 WQ_MEM_RECLAIM, dd->unit);
12663 if (!dd->update_cntr_wq)
12664 goto bail;
12665
12666 INIT_WORK(&dd->update_cntr_work, do_update_synth_timer);
12667
12668 mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12669 return 0;
12670 bail:
12671 free_cntrs(dd);
12672 return -ENOMEM;
12673 }
12674
chip_to_opa_lstate(struct hfi1_devdata * dd,u32 chip_lstate)12675 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate)
12676 {
12677 switch (chip_lstate) {
12678 default:
12679 dd_dev_err(dd,
12680 "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n",
12681 chip_lstate);
12682 /* fall through */
12683 case LSTATE_DOWN:
12684 return IB_PORT_DOWN;
12685 case LSTATE_INIT:
12686 return IB_PORT_INIT;
12687 case LSTATE_ARMED:
12688 return IB_PORT_ARMED;
12689 case LSTATE_ACTIVE:
12690 return IB_PORT_ACTIVE;
12691 }
12692 }
12693
chip_to_opa_pstate(struct hfi1_devdata * dd,u32 chip_pstate)12694 u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate)
12695 {
12696 /* look at the HFI meta-states only */
12697 switch (chip_pstate & 0xf0) {
12698 default:
12699 dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n",
12700 chip_pstate);
12701 /* fall through */
12702 case PLS_DISABLED:
12703 return IB_PORTPHYSSTATE_DISABLED;
12704 case PLS_OFFLINE:
12705 return OPA_PORTPHYSSTATE_OFFLINE;
12706 case PLS_POLLING:
12707 return IB_PORTPHYSSTATE_POLLING;
12708 case PLS_CONFIGPHY:
12709 return IB_PORTPHYSSTATE_TRAINING;
12710 case PLS_LINKUP:
12711 return IB_PORTPHYSSTATE_LINKUP;
12712 case PLS_PHYTEST:
12713 return IB_PORTPHYSSTATE_PHY_TEST;
12714 }
12715 }
12716
12717 /* return the OPA port logical state name */
opa_lstate_name(u32 lstate)12718 const char *opa_lstate_name(u32 lstate)
12719 {
12720 static const char * const port_logical_names[] = {
12721 "PORT_NOP",
12722 "PORT_DOWN",
12723 "PORT_INIT",
12724 "PORT_ARMED",
12725 "PORT_ACTIVE",
12726 "PORT_ACTIVE_DEFER",
12727 };
12728 if (lstate < ARRAY_SIZE(port_logical_names))
12729 return port_logical_names[lstate];
12730 return "unknown";
12731 }
12732
12733 /* return the OPA port physical state name */
opa_pstate_name(u32 pstate)12734 const char *opa_pstate_name(u32 pstate)
12735 {
12736 static const char * const port_physical_names[] = {
12737 "PHYS_NOP",
12738 "reserved1",
12739 "PHYS_POLL",
12740 "PHYS_DISABLED",
12741 "PHYS_TRAINING",
12742 "PHYS_LINKUP",
12743 "PHYS_LINK_ERR_RECOVER",
12744 "PHYS_PHY_TEST",
12745 "reserved8",
12746 "PHYS_OFFLINE",
12747 "PHYS_GANGED",
12748 "PHYS_TEST",
12749 };
12750 if (pstate < ARRAY_SIZE(port_physical_names))
12751 return port_physical_names[pstate];
12752 return "unknown";
12753 }
12754
update_statusp(struct hfi1_pportdata * ppd,u32 state)12755 static void update_statusp(struct hfi1_pportdata *ppd, u32 state)
12756 {
12757 /*
12758 * Set port status flags in the page mapped into userspace
12759 * memory. Do it here to ensure a reliable state - this is
12760 * the only function called by all state handling code.
12761 * Always set the flags due to the fact that the cache value
12762 * might have been changed explicitly outside of this
12763 * function.
12764 */
12765 if (ppd->statusp) {
12766 switch (state) {
12767 case IB_PORT_DOWN:
12768 case IB_PORT_INIT:
12769 *ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
12770 HFI1_STATUS_IB_READY);
12771 break;
12772 case IB_PORT_ARMED:
12773 *ppd->statusp |= HFI1_STATUS_IB_CONF;
12774 break;
12775 case IB_PORT_ACTIVE:
12776 *ppd->statusp |= HFI1_STATUS_IB_READY;
12777 break;
12778 }
12779 }
12780 }
12781
12782 /*
12783 * wait_logical_linkstate - wait for an IB link state change to occur
12784 * @ppd: port device
12785 * @state: the state to wait for
12786 * @msecs: the number of milliseconds to wait
12787 *
12788 * Wait up to msecs milliseconds for IB link state change to occur.
12789 * For now, take the easy polling route.
12790 * Returns 0 if state reached, otherwise -ETIMEDOUT.
12791 */
wait_logical_linkstate(struct hfi1_pportdata * ppd,u32 state,int msecs)12792 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12793 int msecs)
12794 {
12795 unsigned long timeout;
12796 u32 new_state;
12797
12798 timeout = jiffies + msecs_to_jiffies(msecs);
12799 while (1) {
12800 new_state = chip_to_opa_lstate(ppd->dd,
12801 read_logical_state(ppd->dd));
12802 if (new_state == state)
12803 break;
12804 if (time_after(jiffies, timeout)) {
12805 dd_dev_err(ppd->dd,
12806 "timeout waiting for link state 0x%x\n",
12807 state);
12808 return -ETIMEDOUT;
12809 }
12810 msleep(20);
12811 }
12812
12813 update_statusp(ppd, state);
12814 dd_dev_info(ppd->dd,
12815 "logical state changed to %s (0x%x)\n",
12816 opa_lstate_name(state),
12817 state);
12818 return 0;
12819 }
12820
log_state_transition(struct hfi1_pportdata * ppd,u32 state)12821 static void log_state_transition(struct hfi1_pportdata *ppd, u32 state)
12822 {
12823 u32 ib_pstate = chip_to_opa_pstate(ppd->dd, state);
12824
12825 dd_dev_info(ppd->dd,
12826 "physical state changed to %s (0x%x), phy 0x%x\n",
12827 opa_pstate_name(ib_pstate), ib_pstate, state);
12828 }
12829
12830 /*
12831 * Read the physical hardware link state and check if it matches host
12832 * drivers anticipated state.
12833 */
log_physical_state(struct hfi1_pportdata * ppd,u32 state)12834 static void log_physical_state(struct hfi1_pportdata *ppd, u32 state)
12835 {
12836 u32 read_state = read_physical_state(ppd->dd);
12837
12838 if (read_state == state) {
12839 log_state_transition(ppd, state);
12840 } else {
12841 dd_dev_err(ppd->dd,
12842 "anticipated phy link state 0x%x, read 0x%x\n",
12843 state, read_state);
12844 }
12845 }
12846
12847 /*
12848 * wait_physical_linkstate - wait for an physical link state change to occur
12849 * @ppd: port device
12850 * @state: the state to wait for
12851 * @msecs: the number of milliseconds to wait
12852 *
12853 * Wait up to msecs milliseconds for physical link state change to occur.
12854 * Returns 0 if state reached, otherwise -ETIMEDOUT.
12855 */
wait_physical_linkstate(struct hfi1_pportdata * ppd,u32 state,int msecs)12856 static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12857 int msecs)
12858 {
12859 u32 read_state;
12860 unsigned long timeout;
12861
12862 timeout = jiffies + msecs_to_jiffies(msecs);
12863 while (1) {
12864 read_state = read_physical_state(ppd->dd);
12865 if (read_state == state)
12866 break;
12867 if (time_after(jiffies, timeout)) {
12868 dd_dev_err(ppd->dd,
12869 "timeout waiting for phy link state 0x%x\n",
12870 state);
12871 return -ETIMEDOUT;
12872 }
12873 usleep_range(1950, 2050); /* sleep 2ms-ish */
12874 }
12875
12876 log_state_transition(ppd, state);
12877 return 0;
12878 }
12879
12880 /*
12881 * wait_phys_link_offline_quiet_substates - wait for any offline substate
12882 * @ppd: port device
12883 * @msecs: the number of milliseconds to wait
12884 *
12885 * Wait up to msecs milliseconds for any offline physical link
12886 * state change to occur.
12887 * Returns 0 if at least one state is reached, otherwise -ETIMEDOUT.
12888 */
wait_phys_link_offline_substates(struct hfi1_pportdata * ppd,int msecs)12889 static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
12890 int msecs)
12891 {
12892 u32 read_state;
12893 unsigned long timeout;
12894
12895 timeout = jiffies + msecs_to_jiffies(msecs);
12896 while (1) {
12897 read_state = read_physical_state(ppd->dd);
12898 if ((read_state & 0xF0) == PLS_OFFLINE)
12899 break;
12900 if (time_after(jiffies, timeout)) {
12901 dd_dev_err(ppd->dd,
12902 "timeout waiting for phy link offline.quiet substates. Read state 0x%x, %dms\n",
12903 read_state, msecs);
12904 return -ETIMEDOUT;
12905 }
12906 usleep_range(1950, 2050); /* sleep 2ms-ish */
12907 }
12908
12909 log_state_transition(ppd, read_state);
12910 return read_state;
12911 }
12912
12913 /*
12914 * wait_phys_link_out_of_offline - wait for any out of offline state
12915 * @ppd: port device
12916 * @msecs: the number of milliseconds to wait
12917 *
12918 * Wait up to msecs milliseconds for any out of offline physical link
12919 * state change to occur.
12920 * Returns 0 if at least one state is reached, otherwise -ETIMEDOUT.
12921 */
wait_phys_link_out_of_offline(struct hfi1_pportdata * ppd,int msecs)12922 static int wait_phys_link_out_of_offline(struct hfi1_pportdata *ppd,
12923 int msecs)
12924 {
12925 u32 read_state;
12926 unsigned long timeout;
12927
12928 timeout = jiffies + msecs_to_jiffies(msecs);
12929 while (1) {
12930 read_state = read_physical_state(ppd->dd);
12931 if ((read_state & 0xF0) != PLS_OFFLINE)
12932 break;
12933 if (time_after(jiffies, timeout)) {
12934 dd_dev_err(ppd->dd,
12935 "timeout waiting for phy link out of offline. Read state 0x%x, %dms\n",
12936 read_state, msecs);
12937 return -ETIMEDOUT;
12938 }
12939 usleep_range(1950, 2050); /* sleep 2ms-ish */
12940 }
12941
12942 log_state_transition(ppd, read_state);
12943 return read_state;
12944 }
12945
12946 #define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
12947 (r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12948
12949 #define SET_STATIC_RATE_CONTROL_SMASK(r) \
12950 (r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12951
hfi1_init_ctxt(struct send_context * sc)12952 void hfi1_init_ctxt(struct send_context *sc)
12953 {
12954 if (sc) {
12955 struct hfi1_devdata *dd = sc->dd;
12956 u64 reg;
12957 u8 set = (sc->type == SC_USER ?
12958 HFI1_CAP_IS_USET(STATIC_RATE_CTRL) :
12959 HFI1_CAP_IS_KSET(STATIC_RATE_CTRL));
12960 reg = read_kctxt_csr(dd, sc->hw_context,
12961 SEND_CTXT_CHECK_ENABLE);
12962 if (set)
12963 CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
12964 else
12965 SET_STATIC_RATE_CONTROL_SMASK(reg);
12966 write_kctxt_csr(dd, sc->hw_context,
12967 SEND_CTXT_CHECK_ENABLE, reg);
12968 }
12969 }
12970
hfi1_tempsense_rd(struct hfi1_devdata * dd,struct hfi1_temp * temp)12971 int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp)
12972 {
12973 int ret = 0;
12974 u64 reg;
12975
12976 if (dd->icode != ICODE_RTL_SILICON) {
12977 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
12978 dd_dev_info(dd, "%s: tempsense not supported by HW\n",
12979 __func__);
12980 return -EINVAL;
12981 }
12982 reg = read_csr(dd, ASIC_STS_THERM);
12983 temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) &
12984 ASIC_STS_THERM_CURR_TEMP_MASK);
12985 temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) &
12986 ASIC_STS_THERM_LO_TEMP_MASK);
12987 temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) &
12988 ASIC_STS_THERM_HI_TEMP_MASK);
12989 temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) &
12990 ASIC_STS_THERM_CRIT_TEMP_MASK);
12991 /* triggers is a 3-bit value - 1 bit per trigger. */
12992 temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7);
12993
12994 return ret;
12995 }
12996
12997 /* ========================================================================= */
12998
12999 /*
13000 * Enable/disable chip from delivering interrupts.
13001 */
set_intr_state(struct hfi1_devdata * dd,u32 enable)13002 void set_intr_state(struct hfi1_devdata *dd, u32 enable)
13003 {
13004 int i;
13005
13006 /*
13007 * In HFI, the mask needs to be 1 to allow interrupts.
13008 */
13009 if (enable) {
13010 /* enable all interrupts */
13011 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13012 write_csr(dd, CCE_INT_MASK + (8 * i), ~(u64)0);
13013
13014 init_qsfp_int(dd);
13015 } else {
13016 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13017 write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
13018 }
13019 }
13020
13021 /*
13022 * Clear all interrupt sources on the chip.
13023 */
clear_all_interrupts(struct hfi1_devdata * dd)13024 static void clear_all_interrupts(struct hfi1_devdata *dd)
13025 {
13026 int i;
13027
13028 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13029 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~(u64)0);
13030
13031 write_csr(dd, CCE_ERR_CLEAR, ~(u64)0);
13032 write_csr(dd, MISC_ERR_CLEAR, ~(u64)0);
13033 write_csr(dd, RCV_ERR_CLEAR, ~(u64)0);
13034 write_csr(dd, SEND_ERR_CLEAR, ~(u64)0);
13035 write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0);
13036 write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0);
13037 write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0);
13038 for (i = 0; i < dd->chip_send_contexts; i++)
13039 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0);
13040 for (i = 0; i < dd->chip_sdma_engines; i++)
13041 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0);
13042
13043 write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0);
13044 write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0);
13045 write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0);
13046 }
13047
13048 /* Move to pcie.c? */
disable_intx(struct pci_dev * pdev)13049 static void disable_intx(struct pci_dev *pdev)
13050 {
13051 pci_intx(pdev, 0);
13052 }
13053
13054 /**
13055 * hfi1_clean_up_interrupts() - Free all IRQ resources
13056 * @dd: valid device data data structure
13057 *
13058 * Free the MSI or INTx IRQs and assoicated PCI resources,
13059 * if they have been allocated.
13060 */
hfi1_clean_up_interrupts(struct hfi1_devdata * dd)13061 void hfi1_clean_up_interrupts(struct hfi1_devdata *dd)
13062 {
13063 int i;
13064
13065 /* remove irqs - must happen before disabling/turning off */
13066 if (dd->num_msix_entries) {
13067 /* MSI-X */
13068 struct hfi1_msix_entry *me = dd->msix_entries;
13069
13070 for (i = 0; i < dd->num_msix_entries; i++, me++) {
13071 if (!me->arg) /* => no irq, no affinity */
13072 continue;
13073 hfi1_put_irq_affinity(dd, me);
13074 free_irq(me->irq, me->arg);
13075 }
13076
13077 /* clean structures */
13078 kfree(dd->msix_entries);
13079 dd->msix_entries = NULL;
13080 dd->num_msix_entries = 0;
13081 } else {
13082 /* INTx */
13083 if (dd->requested_intx_irq) {
13084 free_irq(dd->pcidev->irq, dd);
13085 dd->requested_intx_irq = 0;
13086 }
13087 disable_intx(dd->pcidev);
13088 }
13089
13090 pci_free_irq_vectors(dd->pcidev);
13091 }
13092
13093 /*
13094 * Remap the interrupt source from the general handler to the given MSI-X
13095 * interrupt.
13096 */
remap_intr(struct hfi1_devdata * dd,int isrc,int msix_intr)13097 static void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr)
13098 {
13099 u64 reg;
13100 int m, n;
13101
13102 /* clear from the handled mask of the general interrupt */
13103 m = isrc / 64;
13104 n = isrc % 64;
13105 if (likely(m < CCE_NUM_INT_CSRS)) {
13106 dd->gi_mask[m] &= ~((u64)1 << n);
13107 } else {
13108 dd_dev_err(dd, "remap interrupt err\n");
13109 return;
13110 }
13111
13112 /* direct the chip source to the given MSI-X interrupt */
13113 m = isrc / 8;
13114 n = isrc % 8;
13115 reg = read_csr(dd, CCE_INT_MAP + (8 * m));
13116 reg &= ~((u64)0xff << (8 * n));
13117 reg |= ((u64)msix_intr & 0xff) << (8 * n);
13118 write_csr(dd, CCE_INT_MAP + (8 * m), reg);
13119 }
13120
remap_sdma_interrupts(struct hfi1_devdata * dd,int engine,int msix_intr)13121 static void remap_sdma_interrupts(struct hfi1_devdata *dd,
13122 int engine, int msix_intr)
13123 {
13124 /*
13125 * SDMA engine interrupt sources grouped by type, rather than
13126 * engine. Per-engine interrupts are as follows:
13127 * SDMA
13128 * SDMAProgress
13129 * SDMAIdle
13130 */
13131 remap_intr(dd, IS_SDMA_START + 0 * TXE_NUM_SDMA_ENGINES + engine,
13132 msix_intr);
13133 remap_intr(dd, IS_SDMA_START + 1 * TXE_NUM_SDMA_ENGINES + engine,
13134 msix_intr);
13135 remap_intr(dd, IS_SDMA_START + 2 * TXE_NUM_SDMA_ENGINES + engine,
13136 msix_intr);
13137 }
13138
request_intx_irq(struct hfi1_devdata * dd)13139 static int request_intx_irq(struct hfi1_devdata *dd)
13140 {
13141 int ret;
13142
13143 snprintf(dd->intx_name, sizeof(dd->intx_name), DRIVER_NAME "_%d",
13144 dd->unit);
13145 ret = request_irq(dd->pcidev->irq, general_interrupt,
13146 IRQF_SHARED, dd->intx_name, dd);
13147 if (ret)
13148 dd_dev_err(dd, "unable to request INTx interrupt, err %d\n",
13149 ret);
13150 else
13151 dd->requested_intx_irq = 1;
13152 return ret;
13153 }
13154
request_msix_irqs(struct hfi1_devdata * dd)13155 static int request_msix_irqs(struct hfi1_devdata *dd)
13156 {
13157 int first_general, last_general;
13158 int first_sdma, last_sdma;
13159 int first_rx, last_rx;
13160 int i, ret = 0;
13161
13162 /* calculate the ranges we are going to use */
13163 first_general = 0;
13164 last_general = first_general + 1;
13165 first_sdma = last_general;
13166 last_sdma = first_sdma + dd->num_sdma;
13167 first_rx = last_sdma;
13168 last_rx = first_rx + dd->n_krcv_queues + dd->num_vnic_contexts;
13169
13170 /* VNIC MSIx interrupts get mapped when VNIC contexts are created */
13171 dd->first_dyn_msix_idx = first_rx + dd->n_krcv_queues;
13172
13173 /*
13174 * Sanity check - the code expects all SDMA chip source
13175 * interrupts to be in the same CSR, starting at bit 0. Verify
13176 * that this is true by checking the bit location of the start.
13177 */
13178 BUILD_BUG_ON(IS_SDMA_START % 64);
13179
13180 for (i = 0; i < dd->num_msix_entries; i++) {
13181 struct hfi1_msix_entry *me = &dd->msix_entries[i];
13182 const char *err_info;
13183 irq_handler_t handler;
13184 irq_handler_t thread = NULL;
13185 void *arg = NULL;
13186 int idx;
13187 struct hfi1_ctxtdata *rcd = NULL;
13188 struct sdma_engine *sde = NULL;
13189
13190 /* obtain the arguments to request_irq */
13191 if (first_general <= i && i < last_general) {
13192 idx = i - first_general;
13193 handler = general_interrupt;
13194 arg = dd;
13195 snprintf(me->name, sizeof(me->name),
13196 DRIVER_NAME "_%d", dd->unit);
13197 err_info = "general";
13198 me->type = IRQ_GENERAL;
13199 } else if (first_sdma <= i && i < last_sdma) {
13200 idx = i - first_sdma;
13201 sde = &dd->per_sdma[idx];
13202 handler = sdma_interrupt;
13203 arg = sde;
13204 snprintf(me->name, sizeof(me->name),
13205 DRIVER_NAME "_%d sdma%d", dd->unit, idx);
13206 err_info = "sdma";
13207 remap_sdma_interrupts(dd, idx, i);
13208 me->type = IRQ_SDMA;
13209 } else if (first_rx <= i && i < last_rx) {
13210 idx = i - first_rx;
13211 rcd = hfi1_rcd_get_by_index(dd, idx);
13212 if (rcd) {
13213 /*
13214 * Set the interrupt register and mask for this
13215 * context's interrupt.
13216 */
13217 rcd->ireg = (IS_RCVAVAIL_START + idx) / 64;
13218 rcd->imask = ((u64)1) <<
13219 ((IS_RCVAVAIL_START + idx) % 64);
13220 handler = receive_context_interrupt;
13221 thread = receive_context_thread;
13222 arg = rcd;
13223 snprintf(me->name, sizeof(me->name),
13224 DRIVER_NAME "_%d kctxt%d",
13225 dd->unit, idx);
13226 err_info = "receive context";
13227 remap_intr(dd, IS_RCVAVAIL_START + idx, i);
13228 me->type = IRQ_RCVCTXT;
13229 rcd->msix_intr = i;
13230 hfi1_rcd_put(rcd);
13231 }
13232 } else {
13233 /* not in our expected range - complain, then
13234 * ignore it
13235 */
13236 dd_dev_err(dd,
13237 "Unexpected extra MSI-X interrupt %d\n", i);
13238 continue;
13239 }
13240 /* no argument, no interrupt */
13241 if (!arg)
13242 continue;
13243 /* make sure the name is terminated */
13244 me->name[sizeof(me->name) - 1] = 0;
13245 me->irq = pci_irq_vector(dd->pcidev, i);
13246 /*
13247 * On err return me->irq. Don't need to clear this
13248 * because 'arg' has not been set, and cleanup will
13249 * do the right thing.
13250 */
13251 if (me->irq < 0)
13252 return me->irq;
13253
13254 ret = request_threaded_irq(me->irq, handler, thread, 0,
13255 me->name, arg);
13256 if (ret) {
13257 dd_dev_err(dd,
13258 "unable to allocate %s interrupt, irq %d, index %d, err %d\n",
13259 err_info, me->irq, idx, ret);
13260 return ret;
13261 }
13262 /*
13263 * assign arg after request_irq call, so it will be
13264 * cleaned up
13265 */
13266 me->arg = arg;
13267
13268 ret = hfi1_get_irq_affinity(dd, me);
13269 if (ret)
13270 dd_dev_err(dd, "unable to pin IRQ %d\n", ret);
13271 }
13272
13273 return ret;
13274 }
13275
hfi1_vnic_synchronize_irq(struct hfi1_devdata * dd)13276 void hfi1_vnic_synchronize_irq(struct hfi1_devdata *dd)
13277 {
13278 int i;
13279
13280 if (!dd->num_msix_entries) {
13281 synchronize_irq(dd->pcidev->irq);
13282 return;
13283 }
13284
13285 for (i = 0; i < dd->vnic.num_ctxt; i++) {
13286 struct hfi1_ctxtdata *rcd = dd->vnic.ctxt[i];
13287 struct hfi1_msix_entry *me = &dd->msix_entries[rcd->msix_intr];
13288
13289 synchronize_irq(me->irq);
13290 }
13291 }
13292
hfi1_reset_vnic_msix_info(struct hfi1_ctxtdata * rcd)13293 void hfi1_reset_vnic_msix_info(struct hfi1_ctxtdata *rcd)
13294 {
13295 struct hfi1_devdata *dd = rcd->dd;
13296 struct hfi1_msix_entry *me = &dd->msix_entries[rcd->msix_intr];
13297
13298 if (!me->arg) /* => no irq, no affinity */
13299 return;
13300
13301 hfi1_put_irq_affinity(dd, me);
13302 free_irq(me->irq, me->arg);
13303
13304 me->arg = NULL;
13305 }
13306
hfi1_set_vnic_msix_info(struct hfi1_ctxtdata * rcd)13307 void hfi1_set_vnic_msix_info(struct hfi1_ctxtdata *rcd)
13308 {
13309 struct hfi1_devdata *dd = rcd->dd;
13310 struct hfi1_msix_entry *me;
13311 int idx = rcd->ctxt;
13312 void *arg = rcd;
13313 int ret;
13314
13315 rcd->msix_intr = dd->vnic.msix_idx++;
13316 me = &dd->msix_entries[rcd->msix_intr];
13317
13318 /*
13319 * Set the interrupt register and mask for this
13320 * context's interrupt.
13321 */
13322 rcd->ireg = (IS_RCVAVAIL_START + idx) / 64;
13323 rcd->imask = ((u64)1) <<
13324 ((IS_RCVAVAIL_START + idx) % 64);
13325
13326 snprintf(me->name, sizeof(me->name),
13327 DRIVER_NAME "_%d kctxt%d", dd->unit, idx);
13328 me->name[sizeof(me->name) - 1] = 0;
13329 me->type = IRQ_RCVCTXT;
13330 me->irq = pci_irq_vector(dd->pcidev, rcd->msix_intr);
13331 if (me->irq < 0) {
13332 dd_dev_err(dd, "vnic irq vector request (idx %d) fail %d\n",
13333 idx, me->irq);
13334 return;
13335 }
13336 remap_intr(dd, IS_RCVAVAIL_START + idx, rcd->msix_intr);
13337
13338 ret = request_threaded_irq(me->irq, receive_context_interrupt,
13339 receive_context_thread, 0, me->name, arg);
13340 if (ret) {
13341 dd_dev_err(dd, "vnic irq request (irq %d, idx %d) fail %d\n",
13342 me->irq, idx, ret);
13343 return;
13344 }
13345 /*
13346 * assign arg after request_irq call, so it will be
13347 * cleaned up
13348 */
13349 me->arg = arg;
13350
13351 ret = hfi1_get_irq_affinity(dd, me);
13352 if (ret) {
13353 dd_dev_err(dd,
13354 "unable to pin IRQ %d\n", ret);
13355 free_irq(me->irq, me->arg);
13356 }
13357 }
13358
13359 /*
13360 * Set the general handler to accept all interrupts, remap all
13361 * chip interrupts back to MSI-X 0.
13362 */
reset_interrupts(struct hfi1_devdata * dd)13363 static void reset_interrupts(struct hfi1_devdata *dd)
13364 {
13365 int i;
13366
13367 /* all interrupts handled by the general handler */
13368 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13369 dd->gi_mask[i] = ~(u64)0;
13370
13371 /* all chip interrupts map to MSI-X 0 */
13372 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13373 write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13374 }
13375
set_up_interrupts(struct hfi1_devdata * dd)13376 static int set_up_interrupts(struct hfi1_devdata *dd)
13377 {
13378 u32 total;
13379 int ret, request;
13380 int single_interrupt = 0; /* we expect to have all the interrupts */
13381
13382 /*
13383 * Interrupt count:
13384 * 1 general, "slow path" interrupt (includes the SDMA engines
13385 * slow source, SDMACleanupDone)
13386 * N interrupts - one per used SDMA engine
13387 * M interrupt - one per kernel receive context
13388 * V interrupt - one for each VNIC context
13389 */
13390 total = 1 + dd->num_sdma + dd->n_krcv_queues + dd->num_vnic_contexts;
13391
13392 /* ask for MSI-X interrupts */
13393 request = request_msix(dd, total);
13394 if (request < 0) {
13395 ret = request;
13396 goto fail;
13397 } else if (request == 0) {
13398 /* using INTx */
13399 /* dd->num_msix_entries already zero */
13400 single_interrupt = 1;
13401 dd_dev_err(dd, "MSI-X failed, using INTx interrupts\n");
13402 } else if (request < total) {
13403 /* using MSI-X, with reduced interrupts */
13404 dd_dev_err(dd, "reduced interrupt found, wanted %u, got %u\n",
13405 total, request);
13406 ret = -EINVAL;
13407 goto fail;
13408 } else {
13409 dd->msix_entries = kcalloc(total, sizeof(*dd->msix_entries),
13410 GFP_KERNEL);
13411 if (!dd->msix_entries) {
13412 ret = -ENOMEM;
13413 goto fail;
13414 }
13415 /* using MSI-X */
13416 dd->num_msix_entries = total;
13417 dd_dev_info(dd, "%u MSI-X interrupts allocated\n", total);
13418 }
13419
13420 /* mask all interrupts */
13421 set_intr_state(dd, 0);
13422 /* clear all pending interrupts */
13423 clear_all_interrupts(dd);
13424
13425 /* reset general handler mask, chip MSI-X mappings */
13426 reset_interrupts(dd);
13427
13428 if (single_interrupt)
13429 ret = request_intx_irq(dd);
13430 else
13431 ret = request_msix_irqs(dd);
13432 if (ret)
13433 goto fail;
13434
13435 return 0;
13436
13437 fail:
13438 hfi1_clean_up_interrupts(dd);
13439 return ret;
13440 }
13441
13442 /*
13443 * Set up context values in dd. Sets:
13444 *
13445 * num_rcv_contexts - number of contexts being used
13446 * n_krcv_queues - number of kernel contexts
13447 * first_dyn_alloc_ctxt - first dynamically allocated context
13448 * in array of contexts
13449 * freectxts - number of free user contexts
13450 * num_send_contexts - number of PIO send contexts being used
13451 * num_vnic_contexts - number of contexts reserved for VNIC
13452 */
set_up_context_variables(struct hfi1_devdata * dd)13453 static int set_up_context_variables(struct hfi1_devdata *dd)
13454 {
13455 unsigned long num_kernel_contexts;
13456 u16 num_vnic_contexts = HFI1_NUM_VNIC_CTXT;
13457 int total_contexts;
13458 int ret;
13459 unsigned ngroups;
13460 int qos_rmt_count;
13461 int user_rmt_reduced;
13462
13463 /*
13464 * Kernel receive contexts:
13465 * - Context 0 - control context (VL15/multicast/error)
13466 * - Context 1 - first kernel context
13467 * - Context 2 - second kernel context
13468 * ...
13469 */
13470 if (n_krcvqs)
13471 /*
13472 * n_krcvqs is the sum of module parameter kernel receive
13473 * contexts, krcvqs[]. It does not include the control
13474 * context, so add that.
13475 */
13476 num_kernel_contexts = n_krcvqs + 1;
13477 else
13478 num_kernel_contexts = DEFAULT_KRCVQS + 1;
13479 /*
13480 * Every kernel receive context needs an ACK send context.
13481 * one send context is allocated for each VL{0-7} and VL15
13482 */
13483 if (num_kernel_contexts > (dd->chip_send_contexts - num_vls - 1)) {
13484 dd_dev_err(dd,
13485 "Reducing # kernel rcv contexts to: %d, from %lu\n",
13486 (int)(dd->chip_send_contexts - num_vls - 1),
13487 num_kernel_contexts);
13488 num_kernel_contexts = dd->chip_send_contexts - num_vls - 1;
13489 }
13490
13491 /* Accommodate VNIC contexts if possible */
13492 if ((num_kernel_contexts + num_vnic_contexts) > dd->chip_rcv_contexts) {
13493 dd_dev_err(dd, "No receive contexts available for VNIC\n");
13494 num_vnic_contexts = 0;
13495 }
13496 total_contexts = num_kernel_contexts + num_vnic_contexts;
13497
13498 /*
13499 * User contexts:
13500 * - default to 1 user context per real (non-HT) CPU core if
13501 * num_user_contexts is negative
13502 */
13503 if (num_user_contexts < 0)
13504 num_user_contexts =
13505 cpumask_weight(&node_affinity.real_cpu_mask);
13506
13507 /*
13508 * Adjust the counts given a global max.
13509 */
13510 if (total_contexts + num_user_contexts > dd->chip_rcv_contexts) {
13511 dd_dev_err(dd,
13512 "Reducing # user receive contexts to: %d, from %d\n",
13513 (int)(dd->chip_rcv_contexts - total_contexts),
13514 (int)num_user_contexts);
13515 /* recalculate */
13516 num_user_contexts = dd->chip_rcv_contexts - total_contexts;
13517 }
13518
13519 /* each user context requires an entry in the RMT */
13520 qos_rmt_count = qos_rmt_entries(dd, NULL, NULL);
13521 if (qos_rmt_count + num_user_contexts > NUM_MAP_ENTRIES) {
13522 user_rmt_reduced = NUM_MAP_ENTRIES - qos_rmt_count;
13523 dd_dev_err(dd,
13524 "RMT size is reducing the number of user receive contexts from %d to %d\n",
13525 (int)num_user_contexts,
13526 user_rmt_reduced);
13527 /* recalculate */
13528 num_user_contexts = user_rmt_reduced;
13529 }
13530
13531 total_contexts += num_user_contexts;
13532
13533 /* the first N are kernel contexts, the rest are user/vnic contexts */
13534 dd->num_rcv_contexts = total_contexts;
13535 dd->n_krcv_queues = num_kernel_contexts;
13536 dd->first_dyn_alloc_ctxt = num_kernel_contexts;
13537 dd->num_vnic_contexts = num_vnic_contexts;
13538 dd->num_user_contexts = num_user_contexts;
13539 dd->freectxts = num_user_contexts;
13540 dd_dev_info(dd,
13541 "rcv contexts: chip %d, used %d (kernel %d, vnic %u, user %u)\n",
13542 (int)dd->chip_rcv_contexts,
13543 (int)dd->num_rcv_contexts,
13544 (int)dd->n_krcv_queues,
13545 dd->num_vnic_contexts,
13546 dd->num_user_contexts);
13547
13548 /*
13549 * Receive array allocation:
13550 * All RcvArray entries are divided into groups of 8. This
13551 * is required by the hardware and will speed up writes to
13552 * consecutive entries by using write-combining of the entire
13553 * cacheline.
13554 *
13555 * The number of groups are evenly divided among all contexts.
13556 * any left over groups will be given to the first N user
13557 * contexts.
13558 */
13559 dd->rcv_entries.group_size = RCV_INCREMENT;
13560 ngroups = dd->chip_rcv_array_count / dd->rcv_entries.group_size;
13561 dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts;
13562 dd->rcv_entries.nctxt_extra = ngroups -
13563 (dd->num_rcv_contexts * dd->rcv_entries.ngroups);
13564 dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n",
13565 dd->rcv_entries.ngroups,
13566 dd->rcv_entries.nctxt_extra);
13567 if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size >
13568 MAX_EAGER_ENTRIES * 2) {
13569 dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) /
13570 dd->rcv_entries.group_size;
13571 dd_dev_info(dd,
13572 "RcvArray group count too high, change to %u\n",
13573 dd->rcv_entries.ngroups);
13574 dd->rcv_entries.nctxt_extra = 0;
13575 }
13576 /*
13577 * PIO send contexts
13578 */
13579 ret = init_sc_pools_and_sizes(dd);
13580 if (ret >= 0) { /* success */
13581 dd->num_send_contexts = ret;
13582 dd_dev_info(
13583 dd,
13584 "send contexts: chip %d, used %d (kernel %d, ack %d, user %d, vl15 %d)\n",
13585 dd->chip_send_contexts,
13586 dd->num_send_contexts,
13587 dd->sc_sizes[SC_KERNEL].count,
13588 dd->sc_sizes[SC_ACK].count,
13589 dd->sc_sizes[SC_USER].count,
13590 dd->sc_sizes[SC_VL15].count);
13591 ret = 0; /* success */
13592 }
13593
13594 return ret;
13595 }
13596
13597 /*
13598 * Set the device/port partition key table. The MAD code
13599 * will ensure that, at least, the partial management
13600 * partition key is present in the table.
13601 */
set_partition_keys(struct hfi1_pportdata * ppd)13602 static void set_partition_keys(struct hfi1_pportdata *ppd)
13603 {
13604 struct hfi1_devdata *dd = ppd->dd;
13605 u64 reg = 0;
13606 int i;
13607
13608 dd_dev_info(dd, "Setting partition keys\n");
13609 for (i = 0; i < hfi1_get_npkeys(dd); i++) {
13610 reg |= (ppd->pkeys[i] &
13611 RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) <<
13612 ((i % 4) *
13613 RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT);
13614 /* Each register holds 4 PKey values. */
13615 if ((i % 4) == 3) {
13616 write_csr(dd, RCV_PARTITION_KEY +
13617 ((i - 3) * 2), reg);
13618 reg = 0;
13619 }
13620 }
13621
13622 /* Always enable HW pkeys check when pkeys table is set */
13623 add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK);
13624 }
13625
13626 /*
13627 * These CSRs and memories are uninitialized on reset and must be
13628 * written before reading to set the ECC/parity bits.
13629 *
13630 * NOTE: All user context CSRs that are not mmaped write-only
13631 * (e.g. the TID flows) must be initialized even if the driver never
13632 * reads them.
13633 */
write_uninitialized_csrs_and_memories(struct hfi1_devdata * dd)13634 static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd)
13635 {
13636 int i, j;
13637
13638 /* CceIntMap */
13639 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13640 write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13641
13642 /* SendCtxtCreditReturnAddr */
13643 for (i = 0; i < dd->chip_send_contexts; i++)
13644 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13645
13646 /* PIO Send buffers */
13647 /* SDMA Send buffers */
13648 /*
13649 * These are not normally read, and (presently) have no method
13650 * to be read, so are not pre-initialized
13651 */
13652
13653 /* RcvHdrAddr */
13654 /* RcvHdrTailAddr */
13655 /* RcvTidFlowTable */
13656 for (i = 0; i < dd->chip_rcv_contexts; i++) {
13657 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13658 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13659 for (j = 0; j < RXE_NUM_TID_FLOWS; j++)
13660 write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j), 0);
13661 }
13662
13663 /* RcvArray */
13664 for (i = 0; i < dd->chip_rcv_array_count; i++)
13665 hfi1_put_tid(dd, i, PT_INVALID_FLUSH, 0, 0);
13666
13667 /* RcvQPMapTable */
13668 for (i = 0; i < 32; i++)
13669 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13670 }
13671
13672 /*
13673 * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus.
13674 */
clear_cce_status(struct hfi1_devdata * dd,u64 status_bits,u64 ctrl_bits)13675 static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits,
13676 u64 ctrl_bits)
13677 {
13678 unsigned long timeout;
13679 u64 reg;
13680
13681 /* is the condition present? */
13682 reg = read_csr(dd, CCE_STATUS);
13683 if ((reg & status_bits) == 0)
13684 return;
13685
13686 /* clear the condition */
13687 write_csr(dd, CCE_CTRL, ctrl_bits);
13688
13689 /* wait for the condition to clear */
13690 timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT);
13691 while (1) {
13692 reg = read_csr(dd, CCE_STATUS);
13693 if ((reg & status_bits) == 0)
13694 return;
13695 if (time_after(jiffies, timeout)) {
13696 dd_dev_err(dd,
13697 "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n",
13698 status_bits, reg & status_bits);
13699 return;
13700 }
13701 udelay(1);
13702 }
13703 }
13704
13705 /* set CCE CSRs to chip reset defaults */
reset_cce_csrs(struct hfi1_devdata * dd)13706 static void reset_cce_csrs(struct hfi1_devdata *dd)
13707 {
13708 int i;
13709
13710 /* CCE_REVISION read-only */
13711 /* CCE_REVISION2 read-only */
13712 /* CCE_CTRL - bits clear automatically */
13713 /* CCE_STATUS read-only, use CceCtrl to clear */
13714 clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK);
13715 clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK);
13716 clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK);
13717 for (i = 0; i < CCE_NUM_SCRATCH; i++)
13718 write_csr(dd, CCE_SCRATCH + (8 * i), 0);
13719 /* CCE_ERR_STATUS read-only */
13720 write_csr(dd, CCE_ERR_MASK, 0);
13721 write_csr(dd, CCE_ERR_CLEAR, ~0ull);
13722 /* CCE_ERR_FORCE leave alone */
13723 for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++)
13724 write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0);
13725 write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR);
13726 /* CCE_PCIE_CTRL leave alone */
13727 for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) {
13728 write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0);
13729 write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i),
13730 CCE_MSIX_TABLE_UPPER_RESETCSR);
13731 }
13732 for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) {
13733 /* CCE_MSIX_PBA read-only */
13734 write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull);
13735 write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull);
13736 }
13737 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13738 write_csr(dd, CCE_INT_MAP, 0);
13739 for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
13740 /* CCE_INT_STATUS read-only */
13741 write_csr(dd, CCE_INT_MASK + (8 * i), 0);
13742 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull);
13743 /* CCE_INT_FORCE leave alone */
13744 /* CCE_INT_BLOCKED read-only */
13745 }
13746 for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++)
13747 write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0);
13748 }
13749
13750 /* set MISC CSRs to chip reset defaults */
reset_misc_csrs(struct hfi1_devdata * dd)13751 static void reset_misc_csrs(struct hfi1_devdata *dd)
13752 {
13753 int i;
13754
13755 for (i = 0; i < 32; i++) {
13756 write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0);
13757 write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0);
13758 write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0);
13759 }
13760 /*
13761 * MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can
13762 * only be written 128-byte chunks
13763 */
13764 /* init RSA engine to clear lingering errors */
13765 write_csr(dd, MISC_CFG_RSA_CMD, 1);
13766 write_csr(dd, MISC_CFG_RSA_MU, 0);
13767 write_csr(dd, MISC_CFG_FW_CTRL, 0);
13768 /* MISC_STS_8051_DIGEST read-only */
13769 /* MISC_STS_SBM_DIGEST read-only */
13770 /* MISC_STS_PCIE_DIGEST read-only */
13771 /* MISC_STS_FAB_DIGEST read-only */
13772 /* MISC_ERR_STATUS read-only */
13773 write_csr(dd, MISC_ERR_MASK, 0);
13774 write_csr(dd, MISC_ERR_CLEAR, ~0ull);
13775 /* MISC_ERR_FORCE leave alone */
13776 }
13777
13778 /* set TXE CSRs to chip reset defaults */
reset_txe_csrs(struct hfi1_devdata * dd)13779 static void reset_txe_csrs(struct hfi1_devdata *dd)
13780 {
13781 int i;
13782
13783 /*
13784 * TXE Kernel CSRs
13785 */
13786 write_csr(dd, SEND_CTRL, 0);
13787 __cm_reset(dd, 0); /* reset CM internal state */
13788 /* SEND_CONTEXTS read-only */
13789 /* SEND_DMA_ENGINES read-only */
13790 /* SEND_PIO_MEM_SIZE read-only */
13791 /* SEND_DMA_MEM_SIZE read-only */
13792 write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0);
13793 pio_reset_all(dd); /* SEND_PIO_INIT_CTXT */
13794 /* SEND_PIO_ERR_STATUS read-only */
13795 write_csr(dd, SEND_PIO_ERR_MASK, 0);
13796 write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull);
13797 /* SEND_PIO_ERR_FORCE leave alone */
13798 /* SEND_DMA_ERR_STATUS read-only */
13799 write_csr(dd, SEND_DMA_ERR_MASK, 0);
13800 write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull);
13801 /* SEND_DMA_ERR_FORCE leave alone */
13802 /* SEND_EGRESS_ERR_STATUS read-only */
13803 write_csr(dd, SEND_EGRESS_ERR_MASK, 0);
13804 write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull);
13805 /* SEND_EGRESS_ERR_FORCE leave alone */
13806 write_csr(dd, SEND_BTH_QP, 0);
13807 write_csr(dd, SEND_STATIC_RATE_CONTROL, 0);
13808 write_csr(dd, SEND_SC2VLT0, 0);
13809 write_csr(dd, SEND_SC2VLT1, 0);
13810 write_csr(dd, SEND_SC2VLT2, 0);
13811 write_csr(dd, SEND_SC2VLT3, 0);
13812 write_csr(dd, SEND_LEN_CHECK0, 0);
13813 write_csr(dd, SEND_LEN_CHECK1, 0);
13814 /* SEND_ERR_STATUS read-only */
13815 write_csr(dd, SEND_ERR_MASK, 0);
13816 write_csr(dd, SEND_ERR_CLEAR, ~0ull);
13817 /* SEND_ERR_FORCE read-only */
13818 for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++)
13819 write_csr(dd, SEND_LOW_PRIORITY_LIST + (8 * i), 0);
13820 for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++)
13821 write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8 * i), 0);
13822 for (i = 0; i < dd->chip_send_contexts / NUM_CONTEXTS_PER_SET; i++)
13823 write_csr(dd, SEND_CONTEXT_SET_CTRL + (8 * i), 0);
13824 for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++)
13825 write_csr(dd, SEND_COUNTER_ARRAY32 + (8 * i), 0);
13826 for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++)
13827 write_csr(dd, SEND_COUNTER_ARRAY64 + (8 * i), 0);
13828 write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR);
13829 write_csr(dd, SEND_CM_GLOBAL_CREDIT, SEND_CM_GLOBAL_CREDIT_RESETCSR);
13830 /* SEND_CM_CREDIT_USED_STATUS read-only */
13831 write_csr(dd, SEND_CM_TIMER_CTRL, 0);
13832 write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0);
13833 write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0);
13834 write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0);
13835 write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0);
13836 for (i = 0; i < TXE_NUM_DATA_VL; i++)
13837 write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
13838 write_csr(dd, SEND_CM_CREDIT_VL15, 0);
13839 /* SEND_CM_CREDIT_USED_VL read-only */
13840 /* SEND_CM_CREDIT_USED_VL15 read-only */
13841 /* SEND_EGRESS_CTXT_STATUS read-only */
13842 /* SEND_EGRESS_SEND_DMA_STATUS read-only */
13843 write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull);
13844 /* SEND_EGRESS_ERR_INFO read-only */
13845 /* SEND_EGRESS_ERR_SOURCE read-only */
13846
13847 /*
13848 * TXE Per-Context CSRs
13849 */
13850 for (i = 0; i < dd->chip_send_contexts; i++) {
13851 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13852 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0);
13853 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13854 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0);
13855 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0);
13856 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull);
13857 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0);
13858 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0);
13859 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0);
13860 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0);
13861 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0);
13862 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0);
13863 }
13864
13865 /*
13866 * TXE Per-SDMA CSRs
13867 */
13868 for (i = 0; i < dd->chip_sdma_engines; i++) {
13869 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13870 /* SEND_DMA_STATUS read-only */
13871 write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0);
13872 write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0);
13873 write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0);
13874 /* SEND_DMA_HEAD read-only */
13875 write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0);
13876 write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0);
13877 /* SEND_DMA_IDLE_CNT read-only */
13878 write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0);
13879 write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0);
13880 /* SEND_DMA_DESC_FETCHED_CNT read-only */
13881 /* SEND_DMA_ENG_ERR_STATUS read-only */
13882 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0);
13883 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull);
13884 /* SEND_DMA_ENG_ERR_FORCE leave alone */
13885 write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0);
13886 write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0);
13887 write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0);
13888 write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0);
13889 write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0);
13890 write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0);
13891 write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0);
13892 }
13893 }
13894
13895 /*
13896 * Expect on entry:
13897 * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0
13898 */
init_rbufs(struct hfi1_devdata * dd)13899 static void init_rbufs(struct hfi1_devdata *dd)
13900 {
13901 u64 reg;
13902 int count;
13903
13904 /*
13905 * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are
13906 * clear.
13907 */
13908 count = 0;
13909 while (1) {
13910 reg = read_csr(dd, RCV_STATUS);
13911 if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK
13912 | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0)
13913 break;
13914 /*
13915 * Give up after 1ms - maximum wait time.
13916 *
13917 * RBuf size is 136KiB. Slowest possible is PCIe Gen1 x1 at
13918 * 250MB/s bandwidth. Lower rate to 66% for overhead to get:
13919 * 136 KB / (66% * 250MB/s) = 844us
13920 */
13921 if (count++ > 500) {
13922 dd_dev_err(dd,
13923 "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n",
13924 __func__, reg);
13925 break;
13926 }
13927 udelay(2); /* do not busy-wait the CSR */
13928 }
13929
13930 /* start the init - expect RcvCtrl to be 0 */
13931 write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK);
13932
13933 /*
13934 * Read to force the write of Rcvtrl.RxRbufInit. There is a brief
13935 * period after the write before RcvStatus.RxRbufInitDone is valid.
13936 * The delay in the first run through the loop below is sufficient and
13937 * required before the first read of RcvStatus.RxRbufInintDone.
13938 */
13939 read_csr(dd, RCV_CTRL);
13940
13941 /* wait for the init to finish */
13942 count = 0;
13943 while (1) {
13944 /* delay is required first time through - see above */
13945 udelay(2); /* do not busy-wait the CSR */
13946 reg = read_csr(dd, RCV_STATUS);
13947 if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK))
13948 break;
13949
13950 /* give up after 100us - slowest possible at 33MHz is 73us */
13951 if (count++ > 50) {
13952 dd_dev_err(dd,
13953 "%s: RcvStatus.RxRbufInit not set, continuing\n",
13954 __func__);
13955 break;
13956 }
13957 }
13958 }
13959
13960 /* set RXE CSRs to chip reset defaults */
reset_rxe_csrs(struct hfi1_devdata * dd)13961 static void reset_rxe_csrs(struct hfi1_devdata *dd)
13962 {
13963 int i, j;
13964
13965 /*
13966 * RXE Kernel CSRs
13967 */
13968 write_csr(dd, RCV_CTRL, 0);
13969 init_rbufs(dd);
13970 /* RCV_STATUS read-only */
13971 /* RCV_CONTEXTS read-only */
13972 /* RCV_ARRAY_CNT read-only */
13973 /* RCV_BUF_SIZE read-only */
13974 write_csr(dd, RCV_BTH_QP, 0);
13975 write_csr(dd, RCV_MULTICAST, 0);
13976 write_csr(dd, RCV_BYPASS, 0);
13977 write_csr(dd, RCV_VL15, 0);
13978 /* this is a clear-down */
13979 write_csr(dd, RCV_ERR_INFO,
13980 RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
13981 /* RCV_ERR_STATUS read-only */
13982 write_csr(dd, RCV_ERR_MASK, 0);
13983 write_csr(dd, RCV_ERR_CLEAR, ~0ull);
13984 /* RCV_ERR_FORCE leave alone */
13985 for (i = 0; i < 32; i++)
13986 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13987 for (i = 0; i < 4; i++)
13988 write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0);
13989 for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++)
13990 write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0);
13991 for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++)
13992 write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0);
13993 for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++)
13994 clear_rsm_rule(dd, i);
13995 for (i = 0; i < 32; i++)
13996 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0);
13997
13998 /*
13999 * RXE Kernel and User Per-Context CSRs
14000 */
14001 for (i = 0; i < dd->chip_rcv_contexts; i++) {
14002 /* kernel */
14003 write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0);
14004 /* RCV_CTXT_STATUS read-only */
14005 write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0);
14006 write_kctxt_csr(dd, i, RCV_TID_CTRL, 0);
14007 write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0);
14008 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
14009 write_kctxt_csr(dd, i, RCV_HDR_CNT, 0);
14010 write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0);
14011 write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0);
14012 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
14013 write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0);
14014 write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0);
14015
14016 /* user */
14017 /* RCV_HDR_TAIL read-only */
14018 write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0);
14019 /* RCV_EGR_INDEX_TAIL read-only */
14020 write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0);
14021 /* RCV_EGR_OFFSET_TAIL read-only */
14022 for (j = 0; j < RXE_NUM_TID_FLOWS; j++) {
14023 write_uctxt_csr(dd, i,
14024 RCV_TID_FLOW_TABLE + (8 * j), 0);
14025 }
14026 }
14027 }
14028
14029 /*
14030 * Set sc2vl tables.
14031 *
14032 * They power on to zeros, so to avoid send context errors
14033 * they need to be set:
14034 *
14035 * SC 0-7 -> VL 0-7 (respectively)
14036 * SC 15 -> VL 15
14037 * otherwise
14038 * -> VL 0
14039 */
init_sc2vl_tables(struct hfi1_devdata * dd)14040 static void init_sc2vl_tables(struct hfi1_devdata *dd)
14041 {
14042 int i;
14043 /* init per architecture spec, constrained by hardware capability */
14044
14045 /* HFI maps sent packets */
14046 write_csr(dd, SEND_SC2VLT0, SC2VL_VAL(
14047 0,
14048 0, 0, 1, 1,
14049 2, 2, 3, 3,
14050 4, 4, 5, 5,
14051 6, 6, 7, 7));
14052 write_csr(dd, SEND_SC2VLT1, SC2VL_VAL(
14053 1,
14054 8, 0, 9, 0,
14055 10, 0, 11, 0,
14056 12, 0, 13, 0,
14057 14, 0, 15, 15));
14058 write_csr(dd, SEND_SC2VLT2, SC2VL_VAL(
14059 2,
14060 16, 0, 17, 0,
14061 18, 0, 19, 0,
14062 20, 0, 21, 0,
14063 22, 0, 23, 0));
14064 write_csr(dd, SEND_SC2VLT3, SC2VL_VAL(
14065 3,
14066 24, 0, 25, 0,
14067 26, 0, 27, 0,
14068 28, 0, 29, 0,
14069 30, 0, 31, 0));
14070
14071 /* DC maps received packets */
14072 write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL(
14073 15_0,
14074 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7,
14075 8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15));
14076 write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL(
14077 31_16,
14078 16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0,
14079 24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0));
14080
14081 /* initialize the cached sc2vl values consistently with h/w */
14082 for (i = 0; i < 32; i++) {
14083 if (i < 8 || i == 15)
14084 *((u8 *)(dd->sc2vl) + i) = (u8)i;
14085 else
14086 *((u8 *)(dd->sc2vl) + i) = 0;
14087 }
14088 }
14089
14090 /*
14091 * Read chip sizes and then reset parts to sane, disabled, values. We cannot
14092 * depend on the chip going through a power-on reset - a driver may be loaded
14093 * and unloaded many times.
14094 *
14095 * Do not write any CSR values to the chip in this routine - there may be
14096 * a reset following the (possible) FLR in this routine.
14097 *
14098 */
init_chip(struct hfi1_devdata * dd)14099 static int init_chip(struct hfi1_devdata *dd)
14100 {
14101 int i;
14102 int ret = 0;
14103
14104 /*
14105 * Put the HFI CSRs in a known state.
14106 * Combine this with a DC reset.
14107 *
14108 * Stop the device from doing anything while we do a
14109 * reset. We know there are no other active users of
14110 * the device since we are now in charge. Turn off
14111 * off all outbound and inbound traffic and make sure
14112 * the device does not generate any interrupts.
14113 */
14114
14115 /* disable send contexts and SDMA engines */
14116 write_csr(dd, SEND_CTRL, 0);
14117 for (i = 0; i < dd->chip_send_contexts; i++)
14118 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
14119 for (i = 0; i < dd->chip_sdma_engines; i++)
14120 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
14121 /* disable port (turn off RXE inbound traffic) and contexts */
14122 write_csr(dd, RCV_CTRL, 0);
14123 for (i = 0; i < dd->chip_rcv_contexts; i++)
14124 write_csr(dd, RCV_CTXT_CTRL, 0);
14125 /* mask all interrupt sources */
14126 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
14127 write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
14128
14129 /*
14130 * DC Reset: do a full DC reset before the register clear.
14131 * A recommended length of time to hold is one CSR read,
14132 * so reread the CceDcCtrl. Then, hold the DC in reset
14133 * across the clear.
14134 */
14135 write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK);
14136 (void)read_csr(dd, CCE_DC_CTRL);
14137
14138 if (use_flr) {
14139 /*
14140 * A FLR will reset the SPC core and part of the PCIe.
14141 * The parts that need to be restored have already been
14142 * saved.
14143 */
14144 dd_dev_info(dd, "Resetting CSRs with FLR\n");
14145
14146 /* do the FLR, the DC reset will remain */
14147 pcie_flr(dd->pcidev);
14148
14149 /* restore command and BARs */
14150 ret = restore_pci_variables(dd);
14151 if (ret) {
14152 dd_dev_err(dd, "%s: Could not restore PCI variables\n",
14153 __func__);
14154 return ret;
14155 }
14156
14157 if (is_ax(dd)) {
14158 dd_dev_info(dd, "Resetting CSRs with FLR\n");
14159 pcie_flr(dd->pcidev);
14160 ret = restore_pci_variables(dd);
14161 if (ret) {
14162 dd_dev_err(dd, "%s: Could not restore PCI variables\n",
14163 __func__);
14164 return ret;
14165 }
14166 }
14167 } else {
14168 dd_dev_info(dd, "Resetting CSRs with writes\n");
14169 reset_cce_csrs(dd);
14170 reset_txe_csrs(dd);
14171 reset_rxe_csrs(dd);
14172 reset_misc_csrs(dd);
14173 }
14174 /* clear the DC reset */
14175 write_csr(dd, CCE_DC_CTRL, 0);
14176
14177 /* Set the LED off */
14178 setextled(dd, 0);
14179
14180 /*
14181 * Clear the QSFP reset.
14182 * An FLR enforces a 0 on all out pins. The driver does not touch
14183 * ASIC_QSFPn_OUT otherwise. This leaves RESET_N low and
14184 * anything plugged constantly in reset, if it pays attention
14185 * to RESET_N.
14186 * Prime examples of this are optical cables. Set all pins high.
14187 * I2CCLK and I2CDAT will change per direction, and INT_N and
14188 * MODPRS_N are input only and their value is ignored.
14189 */
14190 write_csr(dd, ASIC_QSFP1_OUT, 0x1f);
14191 write_csr(dd, ASIC_QSFP2_OUT, 0x1f);
14192 init_chip_resources(dd);
14193 return ret;
14194 }
14195
init_early_variables(struct hfi1_devdata * dd)14196 static void init_early_variables(struct hfi1_devdata *dd)
14197 {
14198 int i;
14199
14200 /* assign link credit variables */
14201 dd->vau = CM_VAU;
14202 dd->link_credits = CM_GLOBAL_CREDITS;
14203 if (is_ax(dd))
14204 dd->link_credits--;
14205 dd->vcu = cu_to_vcu(hfi1_cu);
14206 /* enough room for 8 MAD packets plus header - 17K */
14207 dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau);
14208 if (dd->vl15_init > dd->link_credits)
14209 dd->vl15_init = dd->link_credits;
14210
14211 write_uninitialized_csrs_and_memories(dd);
14212
14213 if (HFI1_CAP_IS_KSET(PKEY_CHECK))
14214 for (i = 0; i < dd->num_pports; i++) {
14215 struct hfi1_pportdata *ppd = &dd->pport[i];
14216
14217 set_partition_keys(ppd);
14218 }
14219 init_sc2vl_tables(dd);
14220 }
14221
init_kdeth_qp(struct hfi1_devdata * dd)14222 static void init_kdeth_qp(struct hfi1_devdata *dd)
14223 {
14224 /* user changed the KDETH_QP */
14225 if (kdeth_qp != 0 && kdeth_qp >= 0xff) {
14226 /* out of range or illegal value */
14227 dd_dev_err(dd, "Invalid KDETH queue pair prefix, ignoring");
14228 kdeth_qp = 0;
14229 }
14230 if (kdeth_qp == 0) /* not set, or failed range check */
14231 kdeth_qp = DEFAULT_KDETH_QP;
14232
14233 write_csr(dd, SEND_BTH_QP,
14234 (kdeth_qp & SEND_BTH_QP_KDETH_QP_MASK) <<
14235 SEND_BTH_QP_KDETH_QP_SHIFT);
14236
14237 write_csr(dd, RCV_BTH_QP,
14238 (kdeth_qp & RCV_BTH_QP_KDETH_QP_MASK) <<
14239 RCV_BTH_QP_KDETH_QP_SHIFT);
14240 }
14241
14242 /**
14243 * init_qpmap_table
14244 * @dd - device data
14245 * @first_ctxt - first context
14246 * @last_ctxt - first context
14247 *
14248 * This return sets the qpn mapping table that
14249 * is indexed by qpn[8:1].
14250 *
14251 * The routine will round robin the 256 settings
14252 * from first_ctxt to last_ctxt.
14253 *
14254 * The first/last looks ahead to having specialized
14255 * receive contexts for mgmt and bypass. Normal
14256 * verbs traffic will assumed to be on a range
14257 * of receive contexts.
14258 */
init_qpmap_table(struct hfi1_devdata * dd,u32 first_ctxt,u32 last_ctxt)14259 static void init_qpmap_table(struct hfi1_devdata *dd,
14260 u32 first_ctxt,
14261 u32 last_ctxt)
14262 {
14263 u64 reg = 0;
14264 u64 regno = RCV_QP_MAP_TABLE;
14265 int i;
14266 u64 ctxt = first_ctxt;
14267
14268 for (i = 0; i < 256; i++) {
14269 reg |= ctxt << (8 * (i % 8));
14270 ctxt++;
14271 if (ctxt > last_ctxt)
14272 ctxt = first_ctxt;
14273 if (i % 8 == 7) {
14274 write_csr(dd, regno, reg);
14275 reg = 0;
14276 regno += 8;
14277 }
14278 }
14279
14280 add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK
14281 | RCV_CTRL_RCV_BYPASS_ENABLE_SMASK);
14282 }
14283
14284 struct rsm_map_table {
14285 u64 map[NUM_MAP_REGS];
14286 unsigned int used;
14287 };
14288
14289 struct rsm_rule_data {
14290 u8 offset;
14291 u8 pkt_type;
14292 u32 field1_off;
14293 u32 field2_off;
14294 u32 index1_off;
14295 u32 index1_width;
14296 u32 index2_off;
14297 u32 index2_width;
14298 u32 mask1;
14299 u32 value1;
14300 u32 mask2;
14301 u32 value2;
14302 };
14303
14304 /*
14305 * Return an initialized RMT map table for users to fill in. OK if it
14306 * returns NULL, indicating no table.
14307 */
alloc_rsm_map_table(struct hfi1_devdata * dd)14308 static struct rsm_map_table *alloc_rsm_map_table(struct hfi1_devdata *dd)
14309 {
14310 struct rsm_map_table *rmt;
14311 u8 rxcontext = is_ax(dd) ? 0 : 0xff; /* 0 is default if a0 ver. */
14312
14313 rmt = kmalloc(sizeof(*rmt), GFP_KERNEL);
14314 if (rmt) {
14315 memset(rmt->map, rxcontext, sizeof(rmt->map));
14316 rmt->used = 0;
14317 }
14318
14319 return rmt;
14320 }
14321
14322 /*
14323 * Write the final RMT map table to the chip and free the table. OK if
14324 * table is NULL.
14325 */
complete_rsm_map_table(struct hfi1_devdata * dd,struct rsm_map_table * rmt)14326 static void complete_rsm_map_table(struct hfi1_devdata *dd,
14327 struct rsm_map_table *rmt)
14328 {
14329 int i;
14330
14331 if (rmt) {
14332 /* write table to chip */
14333 for (i = 0; i < NUM_MAP_REGS; i++)
14334 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rmt->map[i]);
14335
14336 /* enable RSM */
14337 add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14338 }
14339 }
14340
14341 /*
14342 * Add a receive side mapping rule.
14343 */
add_rsm_rule(struct hfi1_devdata * dd,u8 rule_index,struct rsm_rule_data * rrd)14344 static void add_rsm_rule(struct hfi1_devdata *dd, u8 rule_index,
14345 struct rsm_rule_data *rrd)
14346 {
14347 write_csr(dd, RCV_RSM_CFG + (8 * rule_index),
14348 (u64)rrd->offset << RCV_RSM_CFG_OFFSET_SHIFT |
14349 1ull << rule_index | /* enable bit */
14350 (u64)rrd->pkt_type << RCV_RSM_CFG_PACKET_TYPE_SHIFT);
14351 write_csr(dd, RCV_RSM_SELECT + (8 * rule_index),
14352 (u64)rrd->field1_off << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT |
14353 (u64)rrd->field2_off << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT |
14354 (u64)rrd->index1_off << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT |
14355 (u64)rrd->index1_width << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT |
14356 (u64)rrd->index2_off << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT |
14357 (u64)rrd->index2_width << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT);
14358 write_csr(dd, RCV_RSM_MATCH + (8 * rule_index),
14359 (u64)rrd->mask1 << RCV_RSM_MATCH_MASK1_SHIFT |
14360 (u64)rrd->value1 << RCV_RSM_MATCH_VALUE1_SHIFT |
14361 (u64)rrd->mask2 << RCV_RSM_MATCH_MASK2_SHIFT |
14362 (u64)rrd->value2 << RCV_RSM_MATCH_VALUE2_SHIFT);
14363 }
14364
14365 /*
14366 * Clear a receive side mapping rule.
14367 */
clear_rsm_rule(struct hfi1_devdata * dd,u8 rule_index)14368 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index)
14369 {
14370 write_csr(dd, RCV_RSM_CFG + (8 * rule_index), 0);
14371 write_csr(dd, RCV_RSM_SELECT + (8 * rule_index), 0);
14372 write_csr(dd, RCV_RSM_MATCH + (8 * rule_index), 0);
14373 }
14374
14375 /* return the number of RSM map table entries that will be used for QOS */
qos_rmt_entries(struct hfi1_devdata * dd,unsigned int * mp,unsigned int * np)14376 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
14377 unsigned int *np)
14378 {
14379 int i;
14380 unsigned int m, n;
14381 u8 max_by_vl = 0;
14382
14383 /* is QOS active at all? */
14384 if (dd->n_krcv_queues <= MIN_KERNEL_KCTXTS ||
14385 num_vls == 1 ||
14386 krcvqsset <= 1)
14387 goto no_qos;
14388
14389 /* determine bits for qpn */
14390 for (i = 0; i < min_t(unsigned int, num_vls, krcvqsset); i++)
14391 if (krcvqs[i] > max_by_vl)
14392 max_by_vl = krcvqs[i];
14393 if (max_by_vl > 32)
14394 goto no_qos;
14395 m = ilog2(__roundup_pow_of_two(max_by_vl));
14396
14397 /* determine bits for vl */
14398 n = ilog2(__roundup_pow_of_two(num_vls));
14399
14400 /* reject if too much is used */
14401 if ((m + n) > 7)
14402 goto no_qos;
14403
14404 if (mp)
14405 *mp = m;
14406 if (np)
14407 *np = n;
14408
14409 return 1 << (m + n);
14410
14411 no_qos:
14412 if (mp)
14413 *mp = 0;
14414 if (np)
14415 *np = 0;
14416 return 0;
14417 }
14418
14419 /**
14420 * init_qos - init RX qos
14421 * @dd - device data
14422 * @rmt - RSM map table
14423 *
14424 * This routine initializes Rule 0 and the RSM map table to implement
14425 * quality of service (qos).
14426 *
14427 * If all of the limit tests succeed, qos is applied based on the array
14428 * interpretation of krcvqs where entry 0 is VL0.
14429 *
14430 * The number of vl bits (n) and the number of qpn bits (m) are computed to
14431 * feed both the RSM map table and the single rule.
14432 */
init_qos(struct hfi1_devdata * dd,struct rsm_map_table * rmt)14433 static void init_qos(struct hfi1_devdata *dd, struct rsm_map_table *rmt)
14434 {
14435 struct rsm_rule_data rrd;
14436 unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m;
14437 unsigned int rmt_entries;
14438 u64 reg;
14439
14440 if (!rmt)
14441 goto bail;
14442 rmt_entries = qos_rmt_entries(dd, &m, &n);
14443 if (rmt_entries == 0)
14444 goto bail;
14445 qpns_per_vl = 1 << m;
14446
14447 /* enough room in the map table? */
14448 rmt_entries = 1 << (m + n);
14449 if (rmt->used + rmt_entries >= NUM_MAP_ENTRIES)
14450 goto bail;
14451
14452 /* add qos entries to the the RSM map table */
14453 for (i = 0, ctxt = FIRST_KERNEL_KCTXT; i < num_vls; i++) {
14454 unsigned tctxt;
14455
14456 for (qpn = 0, tctxt = ctxt;
14457 krcvqs[i] && qpn < qpns_per_vl; qpn++) {
14458 unsigned idx, regoff, regidx;
14459
14460 /* generate the index the hardware will produce */
14461 idx = rmt->used + ((qpn << n) ^ i);
14462 regoff = (idx % 8) * 8;
14463 regidx = idx / 8;
14464 /* replace default with context number */
14465 reg = rmt->map[regidx];
14466 reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
14467 << regoff);
14468 reg |= (u64)(tctxt++) << regoff;
14469 rmt->map[regidx] = reg;
14470 if (tctxt == ctxt + krcvqs[i])
14471 tctxt = ctxt;
14472 }
14473 ctxt += krcvqs[i];
14474 }
14475
14476 rrd.offset = rmt->used;
14477 rrd.pkt_type = 2;
14478 rrd.field1_off = LRH_BTH_MATCH_OFFSET;
14479 rrd.field2_off = LRH_SC_MATCH_OFFSET;
14480 rrd.index1_off = LRH_SC_SELECT_OFFSET;
14481 rrd.index1_width = n;
14482 rrd.index2_off = QPN_SELECT_OFFSET;
14483 rrd.index2_width = m + n;
14484 rrd.mask1 = LRH_BTH_MASK;
14485 rrd.value1 = LRH_BTH_VALUE;
14486 rrd.mask2 = LRH_SC_MASK;
14487 rrd.value2 = LRH_SC_VALUE;
14488
14489 /* add rule 0 */
14490 add_rsm_rule(dd, RSM_INS_VERBS, &rrd);
14491
14492 /* mark RSM map entries as used */
14493 rmt->used += rmt_entries;
14494 /* map everything else to the mcast/err/vl15 context */
14495 init_qpmap_table(dd, HFI1_CTRL_CTXT, HFI1_CTRL_CTXT);
14496 dd->qos_shift = n + 1;
14497 return;
14498 bail:
14499 dd->qos_shift = 1;
14500 init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1);
14501 }
14502
init_user_fecn_handling(struct hfi1_devdata * dd,struct rsm_map_table * rmt)14503 static void init_user_fecn_handling(struct hfi1_devdata *dd,
14504 struct rsm_map_table *rmt)
14505 {
14506 struct rsm_rule_data rrd;
14507 u64 reg;
14508 int i, idx, regoff, regidx;
14509 u8 offset;
14510
14511 /* there needs to be enough room in the map table */
14512 if (rmt->used + dd->num_user_contexts >= NUM_MAP_ENTRIES) {
14513 dd_dev_err(dd, "User FECN handling disabled - too many user contexts allocated\n");
14514 return;
14515 }
14516
14517 /*
14518 * RSM will extract the destination context as an index into the
14519 * map table. The destination contexts are a sequential block
14520 * in the range first_dyn_alloc_ctxt...num_rcv_contexts-1 (inclusive).
14521 * Map entries are accessed as offset + extracted value. Adjust
14522 * the added offset so this sequence can be placed anywhere in
14523 * the table - as long as the entries themselves do not wrap.
14524 * There are only enough bits in offset for the table size, so
14525 * start with that to allow for a "negative" offset.
14526 */
14527 offset = (u8)(NUM_MAP_ENTRIES + (int)rmt->used -
14528 (int)dd->first_dyn_alloc_ctxt);
14529
14530 for (i = dd->first_dyn_alloc_ctxt, idx = rmt->used;
14531 i < dd->num_rcv_contexts; i++, idx++) {
14532 /* replace with identity mapping */
14533 regoff = (idx % 8) * 8;
14534 regidx = idx / 8;
14535 reg = rmt->map[regidx];
14536 reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK << regoff);
14537 reg |= (u64)i << regoff;
14538 rmt->map[regidx] = reg;
14539 }
14540
14541 /*
14542 * For RSM intercept of Expected FECN packets:
14543 * o packet type 0 - expected
14544 * o match on F (bit 95), using select/match 1, and
14545 * o match on SH (bit 133), using select/match 2.
14546 *
14547 * Use index 1 to extract the 8-bit receive context from DestQP
14548 * (start at bit 64). Use that as the RSM map table index.
14549 */
14550 rrd.offset = offset;
14551 rrd.pkt_type = 0;
14552 rrd.field1_off = 95;
14553 rrd.field2_off = 133;
14554 rrd.index1_off = 64;
14555 rrd.index1_width = 8;
14556 rrd.index2_off = 0;
14557 rrd.index2_width = 0;
14558 rrd.mask1 = 1;
14559 rrd.value1 = 1;
14560 rrd.mask2 = 1;
14561 rrd.value2 = 1;
14562
14563 /* add rule 1 */
14564 add_rsm_rule(dd, RSM_INS_FECN, &rrd);
14565
14566 rmt->used += dd->num_user_contexts;
14567 }
14568
14569 /* Initialize RSM for VNIC */
hfi1_init_vnic_rsm(struct hfi1_devdata * dd)14570 void hfi1_init_vnic_rsm(struct hfi1_devdata *dd)
14571 {
14572 u8 i, j;
14573 u8 ctx_id = 0;
14574 u64 reg;
14575 u32 regoff;
14576 struct rsm_rule_data rrd;
14577
14578 if (hfi1_vnic_is_rsm_full(dd, NUM_VNIC_MAP_ENTRIES)) {
14579 dd_dev_err(dd, "Vnic RSM disabled, rmt entries used = %d\n",
14580 dd->vnic.rmt_start);
14581 return;
14582 }
14583
14584 dev_dbg(&(dd)->pcidev->dev, "Vnic rsm start = %d, end %d\n",
14585 dd->vnic.rmt_start,
14586 dd->vnic.rmt_start + NUM_VNIC_MAP_ENTRIES);
14587
14588 /* Update RSM mapping table, 32 regs, 256 entries - 1 ctx per byte */
14589 regoff = RCV_RSM_MAP_TABLE + (dd->vnic.rmt_start / 8) * 8;
14590 reg = read_csr(dd, regoff);
14591 for (i = 0; i < NUM_VNIC_MAP_ENTRIES; i++) {
14592 /* Update map register with vnic context */
14593 j = (dd->vnic.rmt_start + i) % 8;
14594 reg &= ~(0xffllu << (j * 8));
14595 reg |= (u64)dd->vnic.ctxt[ctx_id++]->ctxt << (j * 8);
14596 /* Wrap up vnic ctx index */
14597 ctx_id %= dd->vnic.num_ctxt;
14598 /* Write back map register */
14599 if (j == 7 || ((i + 1) == NUM_VNIC_MAP_ENTRIES)) {
14600 dev_dbg(&(dd)->pcidev->dev,
14601 "Vnic rsm map reg[%d] =0x%llx\n",
14602 regoff - RCV_RSM_MAP_TABLE, reg);
14603
14604 write_csr(dd, regoff, reg);
14605 regoff += 8;
14606 if (i < (NUM_VNIC_MAP_ENTRIES - 1))
14607 reg = read_csr(dd, regoff);
14608 }
14609 }
14610
14611 /* Add rule for vnic */
14612 rrd.offset = dd->vnic.rmt_start;
14613 rrd.pkt_type = 4;
14614 /* Match 16B packets */
14615 rrd.field1_off = L2_TYPE_MATCH_OFFSET;
14616 rrd.mask1 = L2_TYPE_MASK;
14617 rrd.value1 = L2_16B_VALUE;
14618 /* Match ETH L4 packets */
14619 rrd.field2_off = L4_TYPE_MATCH_OFFSET;
14620 rrd.mask2 = L4_16B_TYPE_MASK;
14621 rrd.value2 = L4_16B_ETH_VALUE;
14622 /* Calc context from veswid and entropy */
14623 rrd.index1_off = L4_16B_HDR_VESWID_OFFSET;
14624 rrd.index1_width = ilog2(NUM_VNIC_MAP_ENTRIES);
14625 rrd.index2_off = L2_16B_ENTROPY_OFFSET;
14626 rrd.index2_width = ilog2(NUM_VNIC_MAP_ENTRIES);
14627 add_rsm_rule(dd, RSM_INS_VNIC, &rrd);
14628
14629 /* Enable RSM if not already enabled */
14630 add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14631 }
14632
hfi1_deinit_vnic_rsm(struct hfi1_devdata * dd)14633 void hfi1_deinit_vnic_rsm(struct hfi1_devdata *dd)
14634 {
14635 clear_rsm_rule(dd, RSM_INS_VNIC);
14636
14637 /* Disable RSM if used only by vnic */
14638 if (dd->vnic.rmt_start == 0)
14639 clear_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14640 }
14641
init_rxe(struct hfi1_devdata * dd)14642 static int init_rxe(struct hfi1_devdata *dd)
14643 {
14644 struct rsm_map_table *rmt;
14645 u64 val;
14646
14647 /* enable all receive errors */
14648 write_csr(dd, RCV_ERR_MASK, ~0ull);
14649
14650 rmt = alloc_rsm_map_table(dd);
14651 if (!rmt)
14652 return -ENOMEM;
14653
14654 /* set up QOS, including the QPN map table */
14655 init_qos(dd, rmt);
14656 init_user_fecn_handling(dd, rmt);
14657 complete_rsm_map_table(dd, rmt);
14658 /* record number of used rsm map entries for vnic */
14659 dd->vnic.rmt_start = rmt->used;
14660 kfree(rmt);
14661
14662 /*
14663 * make sure RcvCtrl.RcvWcb <= PCIe Device Control
14664 * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config
14665 * space, PciCfgCap2.MaxPayloadSize in HFI). There is only one
14666 * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and
14667 * Max_PayLoad_Size set to its minimum of 128.
14668 *
14669 * Presently, RcvCtrl.RcvWcb is not modified from its default of 0
14670 * (64 bytes). Max_Payload_Size is possibly modified upward in
14671 * tune_pcie_caps() which is called after this routine.
14672 */
14673
14674 /* Have 16 bytes (4DW) of bypass header available in header queue */
14675 val = read_csr(dd, RCV_BYPASS);
14676 val |= (4ull << 16);
14677 write_csr(dd, RCV_BYPASS, val);
14678 return 0;
14679 }
14680
init_other(struct hfi1_devdata * dd)14681 static void init_other(struct hfi1_devdata *dd)
14682 {
14683 /* enable all CCE errors */
14684 write_csr(dd, CCE_ERR_MASK, ~0ull);
14685 /* enable *some* Misc errors */
14686 write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK);
14687 /* enable all DC errors, except LCB */
14688 write_csr(dd, DCC_ERR_FLG_EN, ~0ull);
14689 write_csr(dd, DC_DC8051_ERR_EN, ~0ull);
14690 }
14691
14692 /*
14693 * Fill out the given AU table using the given CU. A CU is defined in terms
14694 * AUs. The table is a an encoding: given the index, how many AUs does that
14695 * represent?
14696 *
14697 * NOTE: Assumes that the register layout is the same for the
14698 * local and remote tables.
14699 */
assign_cm_au_table(struct hfi1_devdata * dd,u32 cu,u32 csr0to3,u32 csr4to7)14700 static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu,
14701 u32 csr0to3, u32 csr4to7)
14702 {
14703 write_csr(dd, csr0to3,
14704 0ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT |
14705 1ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT |
14706 2ull * cu <<
14707 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT |
14708 4ull * cu <<
14709 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT);
14710 write_csr(dd, csr4to7,
14711 8ull * cu <<
14712 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT |
14713 16ull * cu <<
14714 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT |
14715 32ull * cu <<
14716 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT |
14717 64ull * cu <<
14718 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT);
14719 }
14720
assign_local_cm_au_table(struct hfi1_devdata * dd,u8 vcu)14721 static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14722 {
14723 assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3,
14724 SEND_CM_LOCAL_AU_TABLE4_TO7);
14725 }
14726
assign_remote_cm_au_table(struct hfi1_devdata * dd,u8 vcu)14727 void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14728 {
14729 assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3,
14730 SEND_CM_REMOTE_AU_TABLE4_TO7);
14731 }
14732
init_txe(struct hfi1_devdata * dd)14733 static void init_txe(struct hfi1_devdata *dd)
14734 {
14735 int i;
14736
14737 /* enable all PIO, SDMA, general, and Egress errors */
14738 write_csr(dd, SEND_PIO_ERR_MASK, ~0ull);
14739 write_csr(dd, SEND_DMA_ERR_MASK, ~0ull);
14740 write_csr(dd, SEND_ERR_MASK, ~0ull);
14741 write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull);
14742
14743 /* enable all per-context and per-SDMA engine errors */
14744 for (i = 0; i < dd->chip_send_contexts; i++)
14745 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull);
14746 for (i = 0; i < dd->chip_sdma_engines; i++)
14747 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull);
14748
14749 /* set the local CU to AU mapping */
14750 assign_local_cm_au_table(dd, dd->vcu);
14751
14752 /*
14753 * Set reasonable default for Credit Return Timer
14754 * Don't set on Simulator - causes it to choke.
14755 */
14756 if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
14757 write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE);
14758 }
14759
hfi1_set_ctxt_jkey(struct hfi1_devdata * dd,struct hfi1_ctxtdata * rcd,u16 jkey)14760 int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14761 u16 jkey)
14762 {
14763 u8 hw_ctxt;
14764 u64 reg;
14765
14766 if (!rcd || !rcd->sc)
14767 return -EINVAL;
14768
14769 hw_ctxt = rcd->sc->hw_context;
14770 reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */
14771 ((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) <<
14772 SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT);
14773 /* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */
14774 if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY))
14775 reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK;
14776 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, reg);
14777 /*
14778 * Enable send-side J_KEY integrity check, unless this is A0 h/w
14779 */
14780 if (!is_ax(dd)) {
14781 reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14782 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14783 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14784 }
14785
14786 /* Enable J_KEY check on receive context. */
14787 reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK |
14788 ((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) <<
14789 RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT);
14790 write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, reg);
14791
14792 return 0;
14793 }
14794
hfi1_clear_ctxt_jkey(struct hfi1_devdata * dd,struct hfi1_ctxtdata * rcd)14795 int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
14796 {
14797 u8 hw_ctxt;
14798 u64 reg;
14799
14800 if (!rcd || !rcd->sc)
14801 return -EINVAL;
14802
14803 hw_ctxt = rcd->sc->hw_context;
14804 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, 0);
14805 /*
14806 * Disable send-side J_KEY integrity check, unless this is A0 h/w.
14807 * This check would not have been enabled for A0 h/w, see
14808 * set_ctxt_jkey().
14809 */
14810 if (!is_ax(dd)) {
14811 reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14812 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14813 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14814 }
14815 /* Turn off the J_KEY on the receive side */
14816 write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, 0);
14817
14818 return 0;
14819 }
14820
hfi1_set_ctxt_pkey(struct hfi1_devdata * dd,struct hfi1_ctxtdata * rcd,u16 pkey)14821 int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14822 u16 pkey)
14823 {
14824 u8 hw_ctxt;
14825 u64 reg;
14826
14827 if (!rcd || !rcd->sc)
14828 return -EINVAL;
14829
14830 hw_ctxt = rcd->sc->hw_context;
14831 reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) <<
14832 SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT;
14833 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg);
14834 reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14835 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14836 reg &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK;
14837 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14838
14839 return 0;
14840 }
14841
hfi1_clear_ctxt_pkey(struct hfi1_devdata * dd,struct hfi1_ctxtdata * ctxt)14842 int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *ctxt)
14843 {
14844 u8 hw_ctxt;
14845 u64 reg;
14846
14847 if (!ctxt || !ctxt->sc)
14848 return -EINVAL;
14849
14850 hw_ctxt = ctxt->sc->hw_context;
14851 reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14852 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14853 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14854 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0);
14855
14856 return 0;
14857 }
14858
14859 /*
14860 * Start doing the clean up the the chip. Our clean up happens in multiple
14861 * stages and this is just the first.
14862 */
hfi1_start_cleanup(struct hfi1_devdata * dd)14863 void hfi1_start_cleanup(struct hfi1_devdata *dd)
14864 {
14865 aspm_exit(dd);
14866 free_cntrs(dd);
14867 free_rcverr(dd);
14868 finish_chip_resources(dd);
14869 }
14870
14871 #define HFI_BASE_GUID(dev) \
14872 ((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT))
14873
14874 /*
14875 * Information can be shared between the two HFIs on the same ASIC
14876 * in the same OS. This function finds the peer device and sets
14877 * up a shared structure.
14878 */
init_asic_data(struct hfi1_devdata * dd)14879 static int init_asic_data(struct hfi1_devdata *dd)
14880 {
14881 unsigned long flags;
14882 struct hfi1_devdata *tmp, *peer = NULL;
14883 struct hfi1_asic_data *asic_data;
14884 int ret = 0;
14885
14886 /* pre-allocate the asic structure in case we are the first device */
14887 asic_data = kzalloc(sizeof(*dd->asic_data), GFP_KERNEL);
14888 if (!asic_data)
14889 return -ENOMEM;
14890
14891 spin_lock_irqsave(&hfi1_devs_lock, flags);
14892 /* Find our peer device */
14893 list_for_each_entry(tmp, &hfi1_dev_list, list) {
14894 if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(tmp)) &&
14895 dd->unit != tmp->unit) {
14896 peer = tmp;
14897 break;
14898 }
14899 }
14900
14901 if (peer) {
14902 /* use already allocated structure */
14903 dd->asic_data = peer->asic_data;
14904 kfree(asic_data);
14905 } else {
14906 dd->asic_data = asic_data;
14907 mutex_init(&dd->asic_data->asic_resource_mutex);
14908 }
14909 dd->asic_data->dds[dd->hfi1_id] = dd; /* self back-pointer */
14910 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
14911
14912 /* first one through - set up i2c devices */
14913 if (!peer)
14914 ret = set_up_i2c(dd, dd->asic_data);
14915
14916 return ret;
14917 }
14918
14919 /*
14920 * Set dd->boardname. Use a generic name if a name is not returned from
14921 * EFI variable space.
14922 *
14923 * Return 0 on success, -ENOMEM if space could not be allocated.
14924 */
obtain_boardname(struct hfi1_devdata * dd)14925 static int obtain_boardname(struct hfi1_devdata *dd)
14926 {
14927 /* generic board description */
14928 const char generic[] =
14929 "Intel Omni-Path Host Fabric Interface Adapter 100 Series";
14930 unsigned long size;
14931 int ret;
14932
14933 ret = read_hfi1_efi_var(dd, "description", &size,
14934 (void **)&dd->boardname);
14935 if (ret) {
14936 dd_dev_info(dd, "Board description not found\n");
14937 /* use generic description */
14938 dd->boardname = kstrdup(generic, GFP_KERNEL);
14939 if (!dd->boardname)
14940 return -ENOMEM;
14941 }
14942 return 0;
14943 }
14944
14945 /*
14946 * Check the interrupt registers to make sure that they are mapped correctly.
14947 * It is intended to help user identify any mismapping by VMM when the driver
14948 * is running in a VM. This function should only be called before interrupt
14949 * is set up properly.
14950 *
14951 * Return 0 on success, -EINVAL on failure.
14952 */
check_int_registers(struct hfi1_devdata * dd)14953 static int check_int_registers(struct hfi1_devdata *dd)
14954 {
14955 u64 reg;
14956 u64 all_bits = ~(u64)0;
14957 u64 mask;
14958
14959 /* Clear CceIntMask[0] to avoid raising any interrupts */
14960 mask = read_csr(dd, CCE_INT_MASK);
14961 write_csr(dd, CCE_INT_MASK, 0ull);
14962 reg = read_csr(dd, CCE_INT_MASK);
14963 if (reg)
14964 goto err_exit;
14965
14966 /* Clear all interrupt status bits */
14967 write_csr(dd, CCE_INT_CLEAR, all_bits);
14968 reg = read_csr(dd, CCE_INT_STATUS);
14969 if (reg)
14970 goto err_exit;
14971
14972 /* Set all interrupt status bits */
14973 write_csr(dd, CCE_INT_FORCE, all_bits);
14974 reg = read_csr(dd, CCE_INT_STATUS);
14975 if (reg != all_bits)
14976 goto err_exit;
14977
14978 /* Restore the interrupt mask */
14979 write_csr(dd, CCE_INT_CLEAR, all_bits);
14980 write_csr(dd, CCE_INT_MASK, mask);
14981
14982 return 0;
14983 err_exit:
14984 write_csr(dd, CCE_INT_MASK, mask);
14985 dd_dev_err(dd, "Interrupt registers not properly mapped by VMM\n");
14986 return -EINVAL;
14987 }
14988
14989 /**
14990 * Allocate and initialize the device structure for the hfi.
14991 * @dev: the pci_dev for hfi1_ib device
14992 * @ent: pci_device_id struct for this dev
14993 *
14994 * Also allocates, initializes, and returns the devdata struct for this
14995 * device instance
14996 *
14997 * This is global, and is called directly at init to set up the
14998 * chip-specific function pointers for later use.
14999 */
hfi1_init_dd(struct pci_dev * pdev,const struct pci_device_id * ent)15000 struct hfi1_devdata *hfi1_init_dd(struct pci_dev *pdev,
15001 const struct pci_device_id *ent)
15002 {
15003 struct hfi1_devdata *dd;
15004 struct hfi1_pportdata *ppd;
15005 u64 reg;
15006 int i, ret;
15007 static const char * const inames[] = { /* implementation names */
15008 "RTL silicon",
15009 "RTL VCS simulation",
15010 "RTL FPGA emulation",
15011 "Functional simulator"
15012 };
15013 struct pci_dev *parent = pdev->bus->self;
15014
15015 dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS *
15016 sizeof(struct hfi1_pportdata));
15017 if (IS_ERR(dd))
15018 goto bail;
15019 ppd = dd->pport;
15020 for (i = 0; i < dd->num_pports; i++, ppd++) {
15021 int vl;
15022 /* init common fields */
15023 hfi1_init_pportdata(pdev, ppd, dd, 0, 1);
15024 /* DC supports 4 link widths */
15025 ppd->link_width_supported =
15026 OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X |
15027 OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X;
15028 ppd->link_width_downgrade_supported =
15029 ppd->link_width_supported;
15030 /* start out enabling only 4X */
15031 ppd->link_width_enabled = OPA_LINK_WIDTH_4X;
15032 ppd->link_width_downgrade_enabled =
15033 ppd->link_width_downgrade_supported;
15034 /* link width active is 0 when link is down */
15035 /* link width downgrade active is 0 when link is down */
15036
15037 if (num_vls < HFI1_MIN_VLS_SUPPORTED ||
15038 num_vls > HFI1_MAX_VLS_SUPPORTED) {
15039 hfi1_early_err(&pdev->dev,
15040 "Invalid num_vls %u, using %u VLs\n",
15041 num_vls, HFI1_MAX_VLS_SUPPORTED);
15042 num_vls = HFI1_MAX_VLS_SUPPORTED;
15043 }
15044 ppd->vls_supported = num_vls;
15045 ppd->vls_operational = ppd->vls_supported;
15046 /* Set the default MTU. */
15047 for (vl = 0; vl < num_vls; vl++)
15048 dd->vld[vl].mtu = hfi1_max_mtu;
15049 dd->vld[15].mtu = MAX_MAD_PACKET;
15050 /*
15051 * Set the initial values to reasonable default, will be set
15052 * for real when link is up.
15053 */
15054 ppd->overrun_threshold = 0x4;
15055 ppd->phy_error_threshold = 0xf;
15056 ppd->port_crc_mode_enabled = link_crc_mask;
15057 /* initialize supported LTP CRC mode */
15058 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
15059 /* initialize enabled LTP CRC mode */
15060 ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4;
15061 /* start in offline */
15062 ppd->host_link_state = HLS_DN_OFFLINE;
15063 init_vl_arb_caches(ppd);
15064 }
15065
15066 dd->link_default = HLS_DN_POLL;
15067
15068 /*
15069 * Do remaining PCIe setup and save PCIe values in dd.
15070 * Any error printing is already done by the init code.
15071 * On return, we have the chip mapped.
15072 */
15073 ret = hfi1_pcie_ddinit(dd, pdev);
15074 if (ret < 0)
15075 goto bail_free;
15076
15077 /* Save PCI space registers to rewrite after device reset */
15078 ret = save_pci_variables(dd);
15079 if (ret < 0)
15080 goto bail_cleanup;
15081
15082 /* verify that reads actually work, save revision for reset check */
15083 dd->revision = read_csr(dd, CCE_REVISION);
15084 if (dd->revision == ~(u64)0) {
15085 dd_dev_err(dd, "cannot read chip CSRs\n");
15086 ret = -EINVAL;
15087 goto bail_cleanup;
15088 }
15089 dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT)
15090 & CCE_REVISION_CHIP_REV_MAJOR_MASK;
15091 dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
15092 & CCE_REVISION_CHIP_REV_MINOR_MASK;
15093
15094 /*
15095 * Check interrupt registers mapping if the driver has no access to
15096 * the upstream component. In this case, it is likely that the driver
15097 * is running in a VM.
15098 */
15099 if (!parent) {
15100 ret = check_int_registers(dd);
15101 if (ret)
15102 goto bail_cleanup;
15103 }
15104
15105 /*
15106 * obtain the hardware ID - NOT related to unit, which is a
15107 * software enumeration
15108 */
15109 reg = read_csr(dd, CCE_REVISION2);
15110 dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT)
15111 & CCE_REVISION2_HFI_ID_MASK;
15112 /* the variable size will remove unwanted bits */
15113 dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT;
15114 dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT;
15115 dd_dev_info(dd, "Implementation: %s, revision 0x%x\n",
15116 dd->icode < ARRAY_SIZE(inames) ?
15117 inames[dd->icode] : "unknown", (int)dd->irev);
15118
15119 /* speeds the hardware can support */
15120 dd->pport->link_speed_supported = OPA_LINK_SPEED_25G;
15121 /* speeds allowed to run at */
15122 dd->pport->link_speed_enabled = dd->pport->link_speed_supported;
15123 /* give a reasonable active value, will be set on link up */
15124 dd->pport->link_speed_active = OPA_LINK_SPEED_25G;
15125
15126 dd->chip_rcv_contexts = read_csr(dd, RCV_CONTEXTS);
15127 dd->chip_send_contexts = read_csr(dd, SEND_CONTEXTS);
15128 dd->chip_sdma_engines = read_csr(dd, SEND_DMA_ENGINES);
15129 dd->chip_pio_mem_size = read_csr(dd, SEND_PIO_MEM_SIZE);
15130 dd->chip_sdma_mem_size = read_csr(dd, SEND_DMA_MEM_SIZE);
15131 /* fix up link widths for emulation _p */
15132 ppd = dd->pport;
15133 if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) {
15134 ppd->link_width_supported =
15135 ppd->link_width_enabled =
15136 ppd->link_width_downgrade_supported =
15137 ppd->link_width_downgrade_enabled =
15138 OPA_LINK_WIDTH_1X;
15139 }
15140 /* insure num_vls isn't larger than number of sdma engines */
15141 if (HFI1_CAP_IS_KSET(SDMA) && num_vls > dd->chip_sdma_engines) {
15142 dd_dev_err(dd, "num_vls %u too large, using %u VLs\n",
15143 num_vls, dd->chip_sdma_engines);
15144 num_vls = dd->chip_sdma_engines;
15145 ppd->vls_supported = dd->chip_sdma_engines;
15146 ppd->vls_operational = ppd->vls_supported;
15147 }
15148
15149 /*
15150 * Convert the ns parameter to the 64 * cclocks used in the CSR.
15151 * Limit the max if larger than the field holds. If timeout is
15152 * non-zero, then the calculated field will be at least 1.
15153 *
15154 * Must be after icode is set up - the cclock rate depends
15155 * on knowing the hardware being used.
15156 */
15157 dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64;
15158 if (dd->rcv_intr_timeout_csr >
15159 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK)
15160 dd->rcv_intr_timeout_csr =
15161 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK;
15162 else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout)
15163 dd->rcv_intr_timeout_csr = 1;
15164
15165 /* needs to be done before we look for the peer device */
15166 read_guid(dd);
15167
15168 /* set up shared ASIC data with peer device */
15169 ret = init_asic_data(dd);
15170 if (ret)
15171 goto bail_cleanup;
15172
15173 /* obtain chip sizes, reset chip CSRs */
15174 ret = init_chip(dd);
15175 if (ret)
15176 goto bail_cleanup;
15177
15178 /* read in the PCIe link speed information */
15179 ret = pcie_speeds(dd);
15180 if (ret)
15181 goto bail_cleanup;
15182
15183 /* call before get_platform_config(), after init_chip_resources() */
15184 ret = eprom_init(dd);
15185 if (ret)
15186 goto bail_free_rcverr;
15187
15188 /* Needs to be called before hfi1_firmware_init */
15189 get_platform_config(dd);
15190
15191 /* read in firmware */
15192 ret = hfi1_firmware_init(dd);
15193 if (ret)
15194 goto bail_cleanup;
15195
15196 /*
15197 * In general, the PCIe Gen3 transition must occur after the
15198 * chip has been idled (so it won't initiate any PCIe transactions
15199 * e.g. an interrupt) and before the driver changes any registers
15200 * (the transition will reset the registers).
15201 *
15202 * In particular, place this call after:
15203 * - init_chip() - the chip will not initiate any PCIe transactions
15204 * - pcie_speeds() - reads the current link speed
15205 * - hfi1_firmware_init() - the needed firmware is ready to be
15206 * downloaded
15207 */
15208 ret = do_pcie_gen3_transition(dd);
15209 if (ret)
15210 goto bail_cleanup;
15211
15212 /* start setting dd values and adjusting CSRs */
15213 init_early_variables(dd);
15214
15215 parse_platform_config(dd);
15216
15217 ret = obtain_boardname(dd);
15218 if (ret)
15219 goto bail_cleanup;
15220
15221 snprintf(dd->boardversion, BOARD_VERS_MAX,
15222 "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n",
15223 HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN,
15224 (u32)dd->majrev,
15225 (u32)dd->minrev,
15226 (dd->revision >> CCE_REVISION_SW_SHIFT)
15227 & CCE_REVISION_SW_MASK);
15228
15229 ret = set_up_context_variables(dd);
15230 if (ret)
15231 goto bail_cleanup;
15232
15233 /* set initial RXE CSRs */
15234 ret = init_rxe(dd);
15235 if (ret)
15236 goto bail_cleanup;
15237
15238 /* set initial TXE CSRs */
15239 init_txe(dd);
15240 /* set initial non-RXE, non-TXE CSRs */
15241 init_other(dd);
15242 /* set up KDETH QP prefix in both RX and TX CSRs */
15243 init_kdeth_qp(dd);
15244
15245 ret = hfi1_dev_affinity_init(dd);
15246 if (ret)
15247 goto bail_cleanup;
15248
15249 /* send contexts must be set up before receive contexts */
15250 ret = init_send_contexts(dd);
15251 if (ret)
15252 goto bail_cleanup;
15253
15254 ret = hfi1_create_kctxts(dd);
15255 if (ret)
15256 goto bail_cleanup;
15257
15258 /*
15259 * Initialize aspm, to be done after gen3 transition and setting up
15260 * contexts and before enabling interrupts
15261 */
15262 aspm_init(dd);
15263
15264 dd->rcvhdrsize = DEFAULT_RCVHDRSIZE;
15265 /*
15266 * rcd[0] is guaranteed to be valid by this point. Also, all
15267 * context are using the same value, as per the module parameter.
15268 */
15269 dd->rhf_offset = dd->rcd[0]->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
15270
15271 ret = init_pervl_scs(dd);
15272 if (ret)
15273 goto bail_cleanup;
15274
15275 /* sdma init */
15276 for (i = 0; i < dd->num_pports; ++i) {
15277 ret = sdma_init(dd, i);
15278 if (ret)
15279 goto bail_cleanup;
15280 }
15281
15282 /* use contexts created by hfi1_create_kctxts */
15283 ret = set_up_interrupts(dd);
15284 if (ret)
15285 goto bail_cleanup;
15286
15287 /* set up LCB access - must be after set_up_interrupts() */
15288 init_lcb_access(dd);
15289
15290 /*
15291 * Serial number is created from the base guid:
15292 * [27:24] = base guid [38:35]
15293 * [23: 0] = base guid [23: 0]
15294 */
15295 snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n",
15296 (dd->base_guid & 0xFFFFFF) |
15297 ((dd->base_guid >> 11) & 0xF000000));
15298
15299 dd->oui1 = dd->base_guid >> 56 & 0xFF;
15300 dd->oui2 = dd->base_guid >> 48 & 0xFF;
15301 dd->oui3 = dd->base_guid >> 40 & 0xFF;
15302
15303 ret = load_firmware(dd); /* asymmetric with dispose_firmware() */
15304 if (ret)
15305 goto bail_clear_intr;
15306
15307 thermal_init(dd);
15308
15309 ret = init_cntrs(dd);
15310 if (ret)
15311 goto bail_clear_intr;
15312
15313 ret = init_rcverr(dd);
15314 if (ret)
15315 goto bail_free_cntrs;
15316
15317 init_completion(&dd->user_comp);
15318
15319 /* The user refcount starts with one to inidicate an active device */
15320 atomic_set(&dd->user_refcount, 1);
15321
15322 goto bail;
15323
15324 bail_free_rcverr:
15325 free_rcverr(dd);
15326 bail_free_cntrs:
15327 free_cntrs(dd);
15328 bail_clear_intr:
15329 hfi1_clean_up_interrupts(dd);
15330 bail_cleanup:
15331 hfi1_pcie_ddcleanup(dd);
15332 bail_free:
15333 hfi1_free_devdata(dd);
15334 dd = ERR_PTR(ret);
15335 bail:
15336 return dd;
15337 }
15338
delay_cycles(struct hfi1_pportdata * ppd,u32 desired_egress_rate,u32 dw_len)15339 static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate,
15340 u32 dw_len)
15341 {
15342 u32 delta_cycles;
15343 u32 current_egress_rate = ppd->current_egress_rate;
15344 /* rates here are in units of 10^6 bits/sec */
15345
15346 if (desired_egress_rate == -1)
15347 return 0; /* shouldn't happen */
15348
15349 if (desired_egress_rate >= current_egress_rate)
15350 return 0; /* we can't help go faster, only slower */
15351
15352 delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) -
15353 egress_cycles(dw_len * 4, current_egress_rate);
15354
15355 return (u16)delta_cycles;
15356 }
15357
15358 /**
15359 * create_pbc - build a pbc for transmission
15360 * @flags: special case flags or-ed in built pbc
15361 * @srate: static rate
15362 * @vl: vl
15363 * @dwlen: dword length (header words + data words + pbc words)
15364 *
15365 * Create a PBC with the given flags, rate, VL, and length.
15366 *
15367 * NOTE: The PBC created will not insert any HCRC - all callers but one are
15368 * for verbs, which does not use this PSM feature. The lone other caller
15369 * is for the diagnostic interface which calls this if the user does not
15370 * supply their own PBC.
15371 */
create_pbc(struct hfi1_pportdata * ppd,u64 flags,int srate_mbs,u32 vl,u32 dw_len)15372 u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl,
15373 u32 dw_len)
15374 {
15375 u64 pbc, delay = 0;
15376
15377 if (unlikely(srate_mbs))
15378 delay = delay_cycles(ppd, srate_mbs, dw_len);
15379
15380 pbc = flags
15381 | (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT)
15382 | ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT)
15383 | (vl & PBC_VL_MASK) << PBC_VL_SHIFT
15384 | (dw_len & PBC_LENGTH_DWS_MASK)
15385 << PBC_LENGTH_DWS_SHIFT;
15386
15387 return pbc;
15388 }
15389
15390 #define SBUS_THERMAL 0x4f
15391 #define SBUS_THERM_MONITOR_MODE 0x1
15392
15393 #define THERM_FAILURE(dev, ret, reason) \
15394 dd_dev_err((dd), \
15395 "Thermal sensor initialization failed: %s (%d)\n", \
15396 (reason), (ret))
15397
15398 /*
15399 * Initialize the thermal sensor.
15400 *
15401 * After initialization, enable polling of thermal sensor through
15402 * SBus interface. In order for this to work, the SBus Master
15403 * firmware has to be loaded due to the fact that the HW polling
15404 * logic uses SBus interrupts, which are not supported with
15405 * default firmware. Otherwise, no data will be returned through
15406 * the ASIC_STS_THERM CSR.
15407 */
thermal_init(struct hfi1_devdata * dd)15408 static int thermal_init(struct hfi1_devdata *dd)
15409 {
15410 int ret = 0;
15411
15412 if (dd->icode != ICODE_RTL_SILICON ||
15413 check_chip_resource(dd, CR_THERM_INIT, NULL))
15414 return ret;
15415
15416 ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
15417 if (ret) {
15418 THERM_FAILURE(dd, ret, "Acquire SBus");
15419 return ret;
15420 }
15421
15422 dd_dev_info(dd, "Initializing thermal sensor\n");
15423 /* Disable polling of thermal readings */
15424 write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0);
15425 msleep(100);
15426 /* Thermal Sensor Initialization */
15427 /* Step 1: Reset the Thermal SBus Receiver */
15428 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15429 RESET_SBUS_RECEIVER, 0);
15430 if (ret) {
15431 THERM_FAILURE(dd, ret, "Bus Reset");
15432 goto done;
15433 }
15434 /* Step 2: Set Reset bit in Thermal block */
15435 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15436 WRITE_SBUS_RECEIVER, 0x1);
15437 if (ret) {
15438 THERM_FAILURE(dd, ret, "Therm Block Reset");
15439 goto done;
15440 }
15441 /* Step 3: Write clock divider value (100MHz -> 2MHz) */
15442 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1,
15443 WRITE_SBUS_RECEIVER, 0x32);
15444 if (ret) {
15445 THERM_FAILURE(dd, ret, "Write Clock Div");
15446 goto done;
15447 }
15448 /* Step 4: Select temperature mode */
15449 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3,
15450 WRITE_SBUS_RECEIVER,
15451 SBUS_THERM_MONITOR_MODE);
15452 if (ret) {
15453 THERM_FAILURE(dd, ret, "Write Mode Sel");
15454 goto done;
15455 }
15456 /* Step 5: De-assert block reset and start conversion */
15457 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15458 WRITE_SBUS_RECEIVER, 0x2);
15459 if (ret) {
15460 THERM_FAILURE(dd, ret, "Write Reset Deassert");
15461 goto done;
15462 }
15463 /* Step 5.1: Wait for first conversion (21.5ms per spec) */
15464 msleep(22);
15465
15466 /* Enable polling of thermal readings */
15467 write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1);
15468
15469 /* Set initialized flag */
15470 ret = acquire_chip_resource(dd, CR_THERM_INIT, 0);
15471 if (ret)
15472 THERM_FAILURE(dd, ret, "Unable to set thermal init flag");
15473
15474 done:
15475 release_chip_resource(dd, CR_SBUS);
15476 return ret;
15477 }
15478
handle_temp_err(struct hfi1_devdata * dd)15479 static void handle_temp_err(struct hfi1_devdata *dd)
15480 {
15481 struct hfi1_pportdata *ppd = &dd->pport[0];
15482 /*
15483 * Thermal Critical Interrupt
15484 * Put the device into forced freeze mode, take link down to
15485 * offline, and put DC into reset.
15486 */
15487 dd_dev_emerg(dd,
15488 "Critical temperature reached! Forcing device into freeze mode!\n");
15489 dd->flags |= HFI1_FORCED_FREEZE;
15490 start_freeze_handling(ppd, FREEZE_SELF | FREEZE_ABORT);
15491 /*
15492 * Shut DC down as much and as quickly as possible.
15493 *
15494 * Step 1: Take the link down to OFFLINE. This will cause the
15495 * 8051 to put the Serdes in reset. However, we don't want to
15496 * go through the entire link state machine since we want to
15497 * shutdown ASAP. Furthermore, this is not a graceful shutdown
15498 * but rather an attempt to save the chip.
15499 * Code below is almost the same as quiet_serdes() but avoids
15500 * all the extra work and the sleeps.
15501 */
15502 ppd->driver_link_ready = 0;
15503 ppd->link_enabled = 0;
15504 set_physical_link_state(dd, (OPA_LINKDOWN_REASON_SMA_DISABLED << 8) |
15505 PLS_OFFLINE);
15506 /*
15507 * Step 2: Shutdown LCB and 8051
15508 * After shutdown, do not restore DC_CFG_RESET value.
15509 */
15510 dc_shutdown(dd);
15511 }
15512