• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/sched/autogroup.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/stat.h>
12 #include <linux/sched/task.h>
13 #include <linux/sched/task_stack.h>
14 #include <linux/sched/cputime.h>
15 #include <linux/interrupt.h>
16 #include <linux/module.h>
17 #include <linux/capability.h>
18 #include <linux/completion.h>
19 #include <linux/personality.h>
20 #include <linux/tty.h>
21 #include <linux/iocontext.h>
22 #include <linux/key.h>
23 #include <linux/cpu.h>
24 #include <linux/acct.h>
25 #include <linux/tsacct_kern.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/freezer.h>
29 #include <linux/binfmts.h>
30 #include <linux/nsproxy.h>
31 #include <linux/pid_namespace.h>
32 #include <linux/ptrace.h>
33 #include <linux/profile.h>
34 #include <linux/mount.h>
35 #include <linux/proc_fs.h>
36 #include <linux/kthread.h>
37 #include <linux/mempolicy.h>
38 #include <linux/taskstats_kern.h>
39 #include <linux/delayacct.h>
40 #include <linux/cgroup.h>
41 #include <linux/syscalls.h>
42 #include <linux/signal.h>
43 #include <linux/posix-timers.h>
44 #include <linux/cn_proc.h>
45 #include <linux/mutex.h>
46 #include <linux/futex.h>
47 #include <linux/pipe_fs_i.h>
48 #include <linux/audit.h> /* for audit_free() */
49 #include <linux/resource.h>
50 #include <linux/blkdev.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/tracehook.h>
53 #include <linux/fs_struct.h>
54 #include <linux/init_task.h>
55 #include <linux/perf_event.h>
56 #include <trace/events/sched.h>
57 #include <linux/hw_breakpoint.h>
58 #include <linux/oom.h>
59 #include <linux/writeback.h>
60 #include <linux/shm.h>
61 #include <linux/kcov.h>
62 #include <linux/random.h>
63 #include <linux/rcuwait.h>
64 #include <linux/compat.h>
65 
66 #include <linux/uaccess.h>
67 #include <asm/unistd.h>
68 #include <asm/pgtable.h>
69 #include <asm/mmu_context.h>
70 
__unhash_process(struct task_struct * p,bool group_dead)71 static void __unhash_process(struct task_struct *p, bool group_dead)
72 {
73 	nr_threads--;
74 	detach_pid(p, PIDTYPE_PID);
75 	if (group_dead) {
76 		detach_pid(p, PIDTYPE_PGID);
77 		detach_pid(p, PIDTYPE_SID);
78 
79 		list_del_rcu(&p->tasks);
80 		list_del_init(&p->sibling);
81 		__this_cpu_dec(process_counts);
82 	}
83 	list_del_rcu(&p->thread_group);
84 	list_del_rcu(&p->thread_node);
85 }
86 
87 /*
88  * This function expects the tasklist_lock write-locked.
89  */
__exit_signal(struct task_struct * tsk)90 static void __exit_signal(struct task_struct *tsk)
91 {
92 	struct signal_struct *sig = tsk->signal;
93 	bool group_dead = thread_group_leader(tsk);
94 	struct sighand_struct *sighand;
95 	struct tty_struct *uninitialized_var(tty);
96 	u64 utime, stime;
97 
98 	sighand = rcu_dereference_check(tsk->sighand,
99 					lockdep_tasklist_lock_is_held());
100 	spin_lock(&sighand->siglock);
101 
102 #ifdef CONFIG_POSIX_TIMERS
103 	posix_cpu_timers_exit(tsk);
104 	if (group_dead) {
105 		posix_cpu_timers_exit_group(tsk);
106 	} else {
107 		/*
108 		 * This can only happen if the caller is de_thread().
109 		 * FIXME: this is the temporary hack, we should teach
110 		 * posix-cpu-timers to handle this case correctly.
111 		 */
112 		if (unlikely(has_group_leader_pid(tsk)))
113 			posix_cpu_timers_exit_group(tsk);
114 	}
115 #endif
116 
117 	if (group_dead) {
118 		tty = sig->tty;
119 		sig->tty = NULL;
120 	} else {
121 		/*
122 		 * If there is any task waiting for the group exit
123 		 * then notify it:
124 		 */
125 		if (sig->notify_count > 0 && !--sig->notify_count)
126 			wake_up_process(sig->group_exit_task);
127 
128 		if (tsk == sig->curr_target)
129 			sig->curr_target = next_thread(tsk);
130 	}
131 
132 	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
133 			      sizeof(unsigned long long));
134 
135 	/*
136 	 * Accumulate here the counters for all threads as they die. We could
137 	 * skip the group leader because it is the last user of signal_struct,
138 	 * but we want to avoid the race with thread_group_cputime() which can
139 	 * see the empty ->thread_head list.
140 	 */
141 	task_cputime(tsk, &utime, &stime);
142 	write_seqlock(&sig->stats_lock);
143 	sig->utime += utime;
144 	sig->stime += stime;
145 	sig->gtime += task_gtime(tsk);
146 	sig->min_flt += tsk->min_flt;
147 	sig->maj_flt += tsk->maj_flt;
148 	sig->nvcsw += tsk->nvcsw;
149 	sig->nivcsw += tsk->nivcsw;
150 	sig->inblock += task_io_get_inblock(tsk);
151 	sig->oublock += task_io_get_oublock(tsk);
152 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
153 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
154 	sig->nr_threads--;
155 	__unhash_process(tsk, group_dead);
156 	write_sequnlock(&sig->stats_lock);
157 
158 	/*
159 	 * Do this under ->siglock, we can race with another thread
160 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
161 	 */
162 	flush_sigqueue(&tsk->pending);
163 	tsk->sighand = NULL;
164 	spin_unlock(&sighand->siglock);
165 
166 	__cleanup_sighand(sighand);
167 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
168 	if (group_dead) {
169 		flush_sigqueue(&sig->shared_pending);
170 		tty_kref_put(tty);
171 	}
172 }
173 
delayed_put_task_struct(struct rcu_head * rhp)174 static void delayed_put_task_struct(struct rcu_head *rhp)
175 {
176 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
177 
178 	perf_event_delayed_put(tsk);
179 	trace_sched_process_free(tsk);
180 	put_task_struct(tsk);
181 }
182 
183 
release_task(struct task_struct * p)184 void release_task(struct task_struct *p)
185 {
186 	struct task_struct *leader;
187 	int zap_leader;
188 repeat:
189 	/* don't need to get the RCU readlock here - the process is dead and
190 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
191 	rcu_read_lock();
192 	atomic_dec(&__task_cred(p)->user->processes);
193 	rcu_read_unlock();
194 
195 	proc_flush_task(p);
196 	cgroup_release(p);
197 
198 	write_lock_irq(&tasklist_lock);
199 	ptrace_release_task(p);
200 	__exit_signal(p);
201 
202 	/*
203 	 * If we are the last non-leader member of the thread
204 	 * group, and the leader is zombie, then notify the
205 	 * group leader's parent process. (if it wants notification.)
206 	 */
207 	zap_leader = 0;
208 	leader = p->group_leader;
209 	if (leader != p && thread_group_empty(leader)
210 			&& leader->exit_state == EXIT_ZOMBIE) {
211 		/*
212 		 * If we were the last child thread and the leader has
213 		 * exited already, and the leader's parent ignores SIGCHLD,
214 		 * then we are the one who should release the leader.
215 		 */
216 		zap_leader = do_notify_parent(leader, leader->exit_signal);
217 		if (zap_leader)
218 			leader->exit_state = EXIT_DEAD;
219 	}
220 
221 	write_unlock_irq(&tasklist_lock);
222 	release_thread(p);
223 	call_rcu(&p->rcu, delayed_put_task_struct);
224 
225 	p = leader;
226 	if (unlikely(zap_leader))
227 		goto repeat;
228 }
229 
230 /*
231  * Note that if this function returns a valid task_struct pointer (!NULL)
232  * task->usage must remain >0 for the duration of the RCU critical section.
233  */
task_rcu_dereference(struct task_struct ** ptask)234 struct task_struct *task_rcu_dereference(struct task_struct **ptask)
235 {
236 	struct sighand_struct *sighand;
237 	struct task_struct *task;
238 
239 	/*
240 	 * We need to verify that release_task() was not called and thus
241 	 * delayed_put_task_struct() can't run and drop the last reference
242 	 * before rcu_read_unlock(). We check task->sighand != NULL,
243 	 * but we can read the already freed and reused memory.
244 	 */
245 retry:
246 	task = rcu_dereference(*ptask);
247 	if (!task)
248 		return NULL;
249 
250 	probe_kernel_address(&task->sighand, sighand);
251 
252 	/*
253 	 * Pairs with atomic_dec_and_test() in put_task_struct(). If this task
254 	 * was already freed we can not miss the preceding update of this
255 	 * pointer.
256 	 */
257 	smp_rmb();
258 	if (unlikely(task != READ_ONCE(*ptask)))
259 		goto retry;
260 
261 	/*
262 	 * We've re-checked that "task == *ptask", now we have two different
263 	 * cases:
264 	 *
265 	 * 1. This is actually the same task/task_struct. In this case
266 	 *    sighand != NULL tells us it is still alive.
267 	 *
268 	 * 2. This is another task which got the same memory for task_struct.
269 	 *    We can't know this of course, and we can not trust
270 	 *    sighand != NULL.
271 	 *
272 	 *    In this case we actually return a random value, but this is
273 	 *    correct.
274 	 *
275 	 *    If we return NULL - we can pretend that we actually noticed that
276 	 *    *ptask was updated when the previous task has exited. Or pretend
277 	 *    that probe_slab_address(&sighand) reads NULL.
278 	 *
279 	 *    If we return the new task (because sighand is not NULL for any
280 	 *    reason) - this is fine too. This (new) task can't go away before
281 	 *    another gp pass.
282 	 *
283 	 *    And note: We could even eliminate the false positive if re-read
284 	 *    task->sighand once again to avoid the falsely NULL. But this case
285 	 *    is very unlikely so we don't care.
286 	 */
287 	if (!sighand)
288 		return NULL;
289 
290 	return task;
291 }
292 
rcuwait_wake_up(struct rcuwait * w)293 void rcuwait_wake_up(struct rcuwait *w)
294 {
295 	struct task_struct *task;
296 
297 	rcu_read_lock();
298 
299 	/*
300 	 * Order condition vs @task, such that everything prior to the load
301 	 * of @task is visible. This is the condition as to why the user called
302 	 * rcuwait_trywake() in the first place. Pairs with set_current_state()
303 	 * barrier (A) in rcuwait_wait_event().
304 	 *
305 	 *    WAIT                WAKE
306 	 *    [S] tsk = current	  [S] cond = true
307 	 *        MB (A)	      MB (B)
308 	 *    [L] cond		  [L] tsk
309 	 */
310 	smp_mb(); /* (B) */
311 
312 	/*
313 	 * Avoid using task_rcu_dereference() magic as long as we are careful,
314 	 * see comment in rcuwait_wait_event() regarding ->exit_state.
315 	 */
316 	task = rcu_dereference(w->task);
317 	if (task)
318 		wake_up_process(task);
319 	rcu_read_unlock();
320 }
321 
322 /*
323  * Determine if a process group is "orphaned", according to the POSIX
324  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
325  * by terminal-generated stop signals.  Newly orphaned process groups are
326  * to receive a SIGHUP and a SIGCONT.
327  *
328  * "I ask you, have you ever known what it is to be an orphan?"
329  */
will_become_orphaned_pgrp(struct pid * pgrp,struct task_struct * ignored_task)330 static int will_become_orphaned_pgrp(struct pid *pgrp,
331 					struct task_struct *ignored_task)
332 {
333 	struct task_struct *p;
334 
335 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
336 		if ((p == ignored_task) ||
337 		    (p->exit_state && thread_group_empty(p)) ||
338 		    is_global_init(p->real_parent))
339 			continue;
340 
341 		if (task_pgrp(p->real_parent) != pgrp &&
342 		    task_session(p->real_parent) == task_session(p))
343 			return 0;
344 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
345 
346 	return 1;
347 }
348 
is_current_pgrp_orphaned(void)349 int is_current_pgrp_orphaned(void)
350 {
351 	int retval;
352 
353 	read_lock(&tasklist_lock);
354 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
355 	read_unlock(&tasklist_lock);
356 
357 	return retval;
358 }
359 
has_stopped_jobs(struct pid * pgrp)360 static bool has_stopped_jobs(struct pid *pgrp)
361 {
362 	struct task_struct *p;
363 
364 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
365 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
366 			return true;
367 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
368 
369 	return false;
370 }
371 
372 /*
373  * Check to see if any process groups have become orphaned as
374  * a result of our exiting, and if they have any stopped jobs,
375  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
376  */
377 static void
kill_orphaned_pgrp(struct task_struct * tsk,struct task_struct * parent)378 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
379 {
380 	struct pid *pgrp = task_pgrp(tsk);
381 	struct task_struct *ignored_task = tsk;
382 
383 	if (!parent)
384 		/* exit: our father is in a different pgrp than
385 		 * we are and we were the only connection outside.
386 		 */
387 		parent = tsk->real_parent;
388 	else
389 		/* reparent: our child is in a different pgrp than
390 		 * we are, and it was the only connection outside.
391 		 */
392 		ignored_task = NULL;
393 
394 	if (task_pgrp(parent) != pgrp &&
395 	    task_session(parent) == task_session(tsk) &&
396 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
397 	    has_stopped_jobs(pgrp)) {
398 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
399 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
400 	}
401 }
402 
403 #ifdef CONFIG_MEMCG
404 /*
405  * A task is exiting.   If it owned this mm, find a new owner for the mm.
406  */
mm_update_next_owner(struct mm_struct * mm)407 void mm_update_next_owner(struct mm_struct *mm)
408 {
409 	struct task_struct *c, *g, *p = current;
410 
411 retry:
412 	/*
413 	 * If the exiting or execing task is not the owner, it's
414 	 * someone else's problem.
415 	 */
416 	if (mm->owner != p)
417 		return;
418 	/*
419 	 * The current owner is exiting/execing and there are no other
420 	 * candidates.  Do not leave the mm pointing to a possibly
421 	 * freed task structure.
422 	 */
423 	if (atomic_read(&mm->mm_users) <= 1) {
424 		mm->owner = NULL;
425 		return;
426 	}
427 
428 	read_lock(&tasklist_lock);
429 	/*
430 	 * Search in the children
431 	 */
432 	list_for_each_entry(c, &p->children, sibling) {
433 		if (c->mm == mm)
434 			goto assign_new_owner;
435 	}
436 
437 	/*
438 	 * Search in the siblings
439 	 */
440 	list_for_each_entry(c, &p->real_parent->children, sibling) {
441 		if (c->mm == mm)
442 			goto assign_new_owner;
443 	}
444 
445 	/*
446 	 * Search through everything else, we should not get here often.
447 	 */
448 	for_each_process(g) {
449 		if (g->flags & PF_KTHREAD)
450 			continue;
451 		for_each_thread(g, c) {
452 			if (c->mm == mm)
453 				goto assign_new_owner;
454 			if (c->mm)
455 				break;
456 		}
457 	}
458 	read_unlock(&tasklist_lock);
459 	/*
460 	 * We found no owner yet mm_users > 1: this implies that we are
461 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
462 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
463 	 */
464 	mm->owner = NULL;
465 	return;
466 
467 assign_new_owner:
468 	BUG_ON(c == p);
469 	get_task_struct(c);
470 	/*
471 	 * The task_lock protects c->mm from changing.
472 	 * We always want mm->owner->mm == mm
473 	 */
474 	task_lock(c);
475 	/*
476 	 * Delay read_unlock() till we have the task_lock()
477 	 * to ensure that c does not slip away underneath us
478 	 */
479 	read_unlock(&tasklist_lock);
480 	if (c->mm != mm) {
481 		task_unlock(c);
482 		put_task_struct(c);
483 		goto retry;
484 	}
485 	mm->owner = c;
486 	task_unlock(c);
487 	put_task_struct(c);
488 }
489 #endif /* CONFIG_MEMCG */
490 
491 /*
492  * Turn us into a lazy TLB process if we
493  * aren't already..
494  */
exit_mm(void)495 static void exit_mm(void)
496 {
497 	struct mm_struct *mm = current->mm;
498 	struct core_state *core_state;
499 
500 	exit_mm_release(current, mm);
501 	if (!mm)
502 		return;
503 	sync_mm_rss(mm);
504 	/*
505 	 * Serialize with any possible pending coredump.
506 	 * We must hold mmap_sem around checking core_state
507 	 * and clearing tsk->mm.  The core-inducing thread
508 	 * will increment ->nr_threads for each thread in the
509 	 * group with ->mm != NULL.
510 	 */
511 	down_read(&mm->mmap_sem);
512 	core_state = mm->core_state;
513 	if (core_state) {
514 		struct core_thread self;
515 
516 		up_read(&mm->mmap_sem);
517 
518 		self.task = current;
519 		self.next = xchg(&core_state->dumper.next, &self);
520 		/*
521 		 * Implies mb(), the result of xchg() must be visible
522 		 * to core_state->dumper.
523 		 */
524 		if (atomic_dec_and_test(&core_state->nr_threads))
525 			complete(&core_state->startup);
526 
527 		for (;;) {
528 			set_current_state(TASK_UNINTERRUPTIBLE);
529 			if (!self.task) /* see coredump_finish() */
530 				break;
531 			freezable_schedule();
532 		}
533 		__set_current_state(TASK_RUNNING);
534 		down_read(&mm->mmap_sem);
535 	}
536 	mmgrab(mm);
537 	BUG_ON(mm != current->active_mm);
538 	/* more a memory barrier than a real lock */
539 	task_lock(current);
540 	current->mm = NULL;
541 	up_read(&mm->mmap_sem);
542 	enter_lazy_tlb(mm, current);
543 	task_unlock(current);
544 	mm_update_next_owner(mm);
545 	mmput(mm);
546 	if (test_thread_flag(TIF_MEMDIE))
547 		exit_oom_victim();
548 }
549 
find_alive_thread(struct task_struct * p)550 static struct task_struct *find_alive_thread(struct task_struct *p)
551 {
552 	struct task_struct *t;
553 
554 	for_each_thread(p, t) {
555 		if (!(t->flags & PF_EXITING))
556 			return t;
557 	}
558 	return NULL;
559 }
560 
find_child_reaper(struct task_struct * father,struct list_head * dead)561 static struct task_struct *find_child_reaper(struct task_struct *father,
562 						struct list_head *dead)
563 	__releases(&tasklist_lock)
564 	__acquires(&tasklist_lock)
565 {
566 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
567 	struct task_struct *reaper = pid_ns->child_reaper;
568 	struct task_struct *p, *n;
569 
570 	if (likely(reaper != father))
571 		return reaper;
572 
573 	reaper = find_alive_thread(father);
574 	if (reaper) {
575 		pid_ns->child_reaper = reaper;
576 		return reaper;
577 	}
578 
579 	write_unlock_irq(&tasklist_lock);
580 
581 	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
582 		list_del_init(&p->ptrace_entry);
583 		release_task(p);
584 	}
585 
586 	zap_pid_ns_processes(pid_ns);
587 	write_lock_irq(&tasklist_lock);
588 
589 	return father;
590 }
591 
592 /*
593  * When we die, we re-parent all our children, and try to:
594  * 1. give them to another thread in our thread group, if such a member exists
595  * 2. give it to the first ancestor process which prctl'd itself as a
596  *    child_subreaper for its children (like a service manager)
597  * 3. give it to the init process (PID 1) in our pid namespace
598  */
find_new_reaper(struct task_struct * father,struct task_struct * child_reaper)599 static struct task_struct *find_new_reaper(struct task_struct *father,
600 					   struct task_struct *child_reaper)
601 {
602 	struct task_struct *thread, *reaper;
603 
604 	thread = find_alive_thread(father);
605 	if (thread)
606 		return thread;
607 
608 	if (father->signal->has_child_subreaper) {
609 		unsigned int ns_level = task_pid(father)->level;
610 		/*
611 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
612 		 * We can't check reaper != child_reaper to ensure we do not
613 		 * cross the namespaces, the exiting parent could be injected
614 		 * by setns() + fork().
615 		 * We check pid->level, this is slightly more efficient than
616 		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
617 		 */
618 		for (reaper = father->real_parent;
619 		     task_pid(reaper)->level == ns_level;
620 		     reaper = reaper->real_parent) {
621 			if (reaper == &init_task)
622 				break;
623 			if (!reaper->signal->is_child_subreaper)
624 				continue;
625 			thread = find_alive_thread(reaper);
626 			if (thread)
627 				return thread;
628 		}
629 	}
630 
631 	return child_reaper;
632 }
633 
634 /*
635 * Any that need to be release_task'd are put on the @dead list.
636  */
reparent_leader(struct task_struct * father,struct task_struct * p,struct list_head * dead)637 static void reparent_leader(struct task_struct *father, struct task_struct *p,
638 				struct list_head *dead)
639 {
640 	if (unlikely(p->exit_state == EXIT_DEAD))
641 		return;
642 
643 	/* We don't want people slaying init. */
644 	p->exit_signal = SIGCHLD;
645 
646 	/* If it has exited notify the new parent about this child's death. */
647 	if (!p->ptrace &&
648 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
649 		if (do_notify_parent(p, p->exit_signal)) {
650 			p->exit_state = EXIT_DEAD;
651 			list_add(&p->ptrace_entry, dead);
652 		}
653 	}
654 
655 	kill_orphaned_pgrp(p, father);
656 }
657 
658 /*
659  * This does two things:
660  *
661  * A.  Make init inherit all the child processes
662  * B.  Check to see if any process groups have become orphaned
663  *	as a result of our exiting, and if they have any stopped
664  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
665  */
forget_original_parent(struct task_struct * father,struct list_head * dead)666 static void forget_original_parent(struct task_struct *father,
667 					struct list_head *dead)
668 {
669 	struct task_struct *p, *t, *reaper;
670 
671 	if (unlikely(!list_empty(&father->ptraced)))
672 		exit_ptrace(father, dead);
673 
674 	/* Can drop and reacquire tasklist_lock */
675 	reaper = find_child_reaper(father, dead);
676 	if (list_empty(&father->children))
677 		return;
678 
679 	reaper = find_new_reaper(father, reaper);
680 	list_for_each_entry(p, &father->children, sibling) {
681 		for_each_thread(p, t) {
682 			t->real_parent = reaper;
683 			BUG_ON((!t->ptrace) != (t->parent == father));
684 			if (likely(!t->ptrace))
685 				t->parent = t->real_parent;
686 			if (t->pdeath_signal)
687 				group_send_sig_info(t->pdeath_signal,
688 						    SEND_SIG_NOINFO, t);
689 		}
690 		/*
691 		 * If this is a threaded reparent there is no need to
692 		 * notify anyone anything has happened.
693 		 */
694 		if (!same_thread_group(reaper, father))
695 			reparent_leader(father, p, dead);
696 	}
697 	list_splice_tail_init(&father->children, &reaper->children);
698 }
699 
700 /*
701  * Send signals to all our closest relatives so that they know
702  * to properly mourn us..
703  */
exit_notify(struct task_struct * tsk,int group_dead)704 static void exit_notify(struct task_struct *tsk, int group_dead)
705 {
706 	bool autoreap;
707 	struct task_struct *p, *n;
708 	LIST_HEAD(dead);
709 
710 	write_lock_irq(&tasklist_lock);
711 	forget_original_parent(tsk, &dead);
712 
713 	if (group_dead)
714 		kill_orphaned_pgrp(tsk->group_leader, NULL);
715 
716 	if (unlikely(tsk->ptrace)) {
717 		int sig = thread_group_leader(tsk) &&
718 				thread_group_empty(tsk) &&
719 				!ptrace_reparented(tsk) ?
720 			tsk->exit_signal : SIGCHLD;
721 		autoreap = do_notify_parent(tsk, sig);
722 	} else if (thread_group_leader(tsk)) {
723 		autoreap = thread_group_empty(tsk) &&
724 			do_notify_parent(tsk, tsk->exit_signal);
725 	} else {
726 		autoreap = true;
727 	}
728 
729 	tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
730 	if (tsk->exit_state == EXIT_DEAD)
731 		list_add(&tsk->ptrace_entry, &dead);
732 
733 	/* mt-exec, de_thread() is waiting for group leader */
734 	if (unlikely(tsk->signal->notify_count < 0))
735 		wake_up_process(tsk->signal->group_exit_task);
736 	write_unlock_irq(&tasklist_lock);
737 
738 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
739 		list_del_init(&p->ptrace_entry);
740 		release_task(p);
741 	}
742 }
743 
744 #ifdef CONFIG_DEBUG_STACK_USAGE
check_stack_usage(void)745 static void check_stack_usage(void)
746 {
747 	static DEFINE_SPINLOCK(low_water_lock);
748 	static int lowest_to_date = THREAD_SIZE;
749 	unsigned long free;
750 
751 	free = stack_not_used(current);
752 
753 	if (free >= lowest_to_date)
754 		return;
755 
756 	spin_lock(&low_water_lock);
757 	if (free < lowest_to_date) {
758 		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
759 			current->comm, task_pid_nr(current), free);
760 		lowest_to_date = free;
761 	}
762 	spin_unlock(&low_water_lock);
763 }
764 #else
check_stack_usage(void)765 static inline void check_stack_usage(void) {}
766 #endif
767 
do_exit(long code)768 void __noreturn do_exit(long code)
769 {
770 	struct task_struct *tsk = current;
771 	int group_dead;
772 
773 	profile_task_exit(tsk);
774 	kcov_task_exit(tsk);
775 
776 	WARN_ON(blk_needs_flush_plug(tsk));
777 
778 	if (unlikely(in_interrupt()))
779 		panic("Aiee, killing interrupt handler!");
780 	if (unlikely(!tsk->pid))
781 		panic("Attempted to kill the idle task!");
782 
783 	/*
784 	 * If do_exit is called because this processes oopsed, it's possible
785 	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
786 	 * continuing. Amongst other possible reasons, this is to prevent
787 	 * mm_release()->clear_child_tid() from writing to a user-controlled
788 	 * kernel address.
789 	 */
790 	set_fs(USER_DS);
791 
792 	ptrace_event(PTRACE_EVENT_EXIT, code);
793 
794 	validate_creds_for_do_exit(tsk);
795 
796 	/*
797 	 * We're taking recursive faults here in do_exit. Safest is to just
798 	 * leave this task alone and wait for reboot.
799 	 */
800 	if (unlikely(tsk->flags & PF_EXITING)) {
801 		pr_alert("Fixing recursive fault but reboot is needed!\n");
802 		futex_exit_recursive(tsk);
803 		set_current_state(TASK_UNINTERRUPTIBLE);
804 		schedule();
805 	}
806 
807 	exit_signals(tsk);  /* sets PF_EXITING */
808 
809 	if (unlikely(in_atomic())) {
810 		pr_info("note: %s[%d] exited with preempt_count %d\n",
811 			current->comm, task_pid_nr(current),
812 			preempt_count());
813 		preempt_count_set(PREEMPT_ENABLED);
814 	}
815 
816 	/* sync mm's RSS info before statistics gathering */
817 	if (tsk->mm)
818 		sync_mm_rss(tsk->mm);
819 	acct_update_integrals(tsk);
820 	group_dead = atomic_dec_and_test(&tsk->signal->live);
821 	if (group_dead) {
822 		/*
823 		 * If the last thread of global init has exited, panic
824 		 * immediately to get a useable coredump.
825 		 */
826 		if (unlikely(is_global_init(tsk)))
827 			panic("Attempted to kill init! exitcode=0x%08x\n",
828 				tsk->signal->group_exit_code ?: (int)code);
829 
830 #ifdef CONFIG_POSIX_TIMERS
831 		hrtimer_cancel(&tsk->signal->real_timer);
832 		exit_itimers(tsk->signal);
833 #endif
834 		if (tsk->mm)
835 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
836 	}
837 	acct_collect(code, group_dead);
838 	if (group_dead)
839 		tty_audit_exit();
840 	audit_free(tsk);
841 
842 	tsk->exit_code = code;
843 	taskstats_exit(tsk, group_dead);
844 
845 	exit_mm();
846 
847 	if (group_dead)
848 		acct_process();
849 	trace_sched_process_exit(tsk);
850 
851 	exit_sem(tsk);
852 	exit_shm(tsk);
853 	exit_files(tsk);
854 	exit_fs(tsk);
855 	if (group_dead)
856 		disassociate_ctty(1);
857 	exit_task_namespaces(tsk);
858 	exit_task_work(tsk);
859 	exit_thread(tsk);
860 
861 	/*
862 	 * Flush inherited counters to the parent - before the parent
863 	 * gets woken up by child-exit notifications.
864 	 *
865 	 * because of cgroup mode, must be called before cgroup_exit()
866 	 */
867 	perf_event_exit_task(tsk);
868 
869 	sched_autogroup_exit_task(tsk);
870 	cgroup_exit(tsk);
871 
872 	/*
873 	 * FIXME: do that only when needed, using sched_exit tracepoint
874 	 */
875 	flush_ptrace_hw_breakpoint(tsk);
876 
877 	exit_tasks_rcu_start();
878 	exit_notify(tsk, group_dead);
879 	proc_exit_connector(tsk);
880 	mpol_put_task_policy(tsk);
881 #ifdef CONFIG_FUTEX
882 	if (unlikely(current->pi_state_cache))
883 		kfree(current->pi_state_cache);
884 #endif
885 	/*
886 	 * Make sure we are holding no locks:
887 	 */
888 	debug_check_no_locks_held();
889 
890 	if (tsk->io_context)
891 		exit_io_context(tsk);
892 
893 	if (tsk->splice_pipe)
894 		free_pipe_info(tsk->splice_pipe);
895 
896 	if (tsk->task_frag.page)
897 		put_page(tsk->task_frag.page);
898 
899 	validate_creds_for_do_exit(tsk);
900 
901 	check_stack_usage();
902 	preempt_disable();
903 	if (tsk->nr_dirtied)
904 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
905 	exit_rcu();
906 	exit_tasks_rcu_finish();
907 
908 	lockdep_free_task(tsk);
909 	do_task_dead();
910 }
911 EXPORT_SYMBOL_GPL(do_exit);
912 
complete_and_exit(struct completion * comp,long code)913 void complete_and_exit(struct completion *comp, long code)
914 {
915 	if (comp)
916 		complete(comp);
917 
918 	do_exit(code);
919 }
920 EXPORT_SYMBOL(complete_and_exit);
921 
SYSCALL_DEFINE1(exit,int,error_code)922 SYSCALL_DEFINE1(exit, int, error_code)
923 {
924 	do_exit((error_code&0xff)<<8);
925 }
926 
927 /*
928  * Take down every thread in the group.  This is called by fatal signals
929  * as well as by sys_exit_group (below).
930  */
931 void
do_group_exit(int exit_code)932 do_group_exit(int exit_code)
933 {
934 	struct signal_struct *sig = current->signal;
935 
936 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
937 
938 	if (signal_group_exit(sig))
939 		exit_code = sig->group_exit_code;
940 	else if (!thread_group_empty(current)) {
941 		struct sighand_struct *const sighand = current->sighand;
942 
943 		spin_lock_irq(&sighand->siglock);
944 		if (signal_group_exit(sig))
945 			/* Another thread got here before we took the lock.  */
946 			exit_code = sig->group_exit_code;
947 		else {
948 			sig->group_exit_code = exit_code;
949 			sig->flags = SIGNAL_GROUP_EXIT;
950 			zap_other_threads(current);
951 		}
952 		spin_unlock_irq(&sighand->siglock);
953 	}
954 
955 	do_exit(exit_code);
956 	/* NOTREACHED */
957 }
958 
959 /*
960  * this kills every thread in the thread group. Note that any externally
961  * wait4()-ing process will get the correct exit code - even if this
962  * thread is not the thread group leader.
963  */
SYSCALL_DEFINE1(exit_group,int,error_code)964 SYSCALL_DEFINE1(exit_group, int, error_code)
965 {
966 	do_group_exit((error_code & 0xff) << 8);
967 	/* NOTREACHED */
968 	return 0;
969 }
970 
971 struct waitid_info {
972 	pid_t pid;
973 	uid_t uid;
974 	int status;
975 	int cause;
976 };
977 
978 struct wait_opts {
979 	enum pid_type		wo_type;
980 	int			wo_flags;
981 	struct pid		*wo_pid;
982 
983 	struct waitid_info	*wo_info;
984 	int			wo_stat;
985 	struct rusage		*wo_rusage;
986 
987 	wait_queue_entry_t		child_wait;
988 	int			notask_error;
989 };
990 
991 static inline
task_pid_type(struct task_struct * task,enum pid_type type)992 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
993 {
994 	if (type != PIDTYPE_PID)
995 		task = task->group_leader;
996 	return task->pids[type].pid;
997 }
998 
eligible_pid(struct wait_opts * wo,struct task_struct * p)999 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1000 {
1001 	return	wo->wo_type == PIDTYPE_MAX ||
1002 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
1003 }
1004 
1005 static int
eligible_child(struct wait_opts * wo,bool ptrace,struct task_struct * p)1006 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1007 {
1008 	if (!eligible_pid(wo, p))
1009 		return 0;
1010 
1011 	/*
1012 	 * Wait for all children (clone and not) if __WALL is set or
1013 	 * if it is traced by us.
1014 	 */
1015 	if (ptrace || (wo->wo_flags & __WALL))
1016 		return 1;
1017 
1018 	/*
1019 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
1020 	 * otherwise, wait for non-clone children *only*.
1021 	 *
1022 	 * Note: a "clone" child here is one that reports to its parent
1023 	 * using a signal other than SIGCHLD, or a non-leader thread which
1024 	 * we can only see if it is traced by us.
1025 	 */
1026 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1027 		return 0;
1028 
1029 	return 1;
1030 }
1031 
1032 /*
1033  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1034  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1035  * the lock and this task is uninteresting.  If we return nonzero, we have
1036  * released the lock and the system call should return.
1037  */
wait_task_zombie(struct wait_opts * wo,struct task_struct * p)1038 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1039 {
1040 	int state, status;
1041 	pid_t pid = task_pid_vnr(p);
1042 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1043 	struct waitid_info *infop;
1044 
1045 	if (!likely(wo->wo_flags & WEXITED))
1046 		return 0;
1047 
1048 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1049 		status = p->exit_code;
1050 		get_task_struct(p);
1051 		read_unlock(&tasklist_lock);
1052 		sched_annotate_sleep();
1053 		if (wo->wo_rusage)
1054 			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1055 		put_task_struct(p);
1056 		goto out_info;
1057 	}
1058 	/*
1059 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1060 	 */
1061 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1062 		EXIT_TRACE : EXIT_DEAD;
1063 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1064 		return 0;
1065 	/*
1066 	 * We own this thread, nobody else can reap it.
1067 	 */
1068 	read_unlock(&tasklist_lock);
1069 	sched_annotate_sleep();
1070 
1071 	/*
1072 	 * Check thread_group_leader() to exclude the traced sub-threads.
1073 	 */
1074 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1075 		struct signal_struct *sig = p->signal;
1076 		struct signal_struct *psig = current->signal;
1077 		unsigned long maxrss;
1078 		u64 tgutime, tgstime;
1079 
1080 		/*
1081 		 * The resource counters for the group leader are in its
1082 		 * own task_struct.  Those for dead threads in the group
1083 		 * are in its signal_struct, as are those for the child
1084 		 * processes it has previously reaped.  All these
1085 		 * accumulate in the parent's signal_struct c* fields.
1086 		 *
1087 		 * We don't bother to take a lock here to protect these
1088 		 * p->signal fields because the whole thread group is dead
1089 		 * and nobody can change them.
1090 		 *
1091 		 * psig->stats_lock also protects us from our sub-theads
1092 		 * which can reap other children at the same time. Until
1093 		 * we change k_getrusage()-like users to rely on this lock
1094 		 * we have to take ->siglock as well.
1095 		 *
1096 		 * We use thread_group_cputime_adjusted() to get times for
1097 		 * the thread group, which consolidates times for all threads
1098 		 * in the group including the group leader.
1099 		 */
1100 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1101 		spin_lock_irq(&current->sighand->siglock);
1102 		write_seqlock(&psig->stats_lock);
1103 		psig->cutime += tgutime + sig->cutime;
1104 		psig->cstime += tgstime + sig->cstime;
1105 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1106 		psig->cmin_flt +=
1107 			p->min_flt + sig->min_flt + sig->cmin_flt;
1108 		psig->cmaj_flt +=
1109 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1110 		psig->cnvcsw +=
1111 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1112 		psig->cnivcsw +=
1113 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1114 		psig->cinblock +=
1115 			task_io_get_inblock(p) +
1116 			sig->inblock + sig->cinblock;
1117 		psig->coublock +=
1118 			task_io_get_oublock(p) +
1119 			sig->oublock + sig->coublock;
1120 		maxrss = max(sig->maxrss, sig->cmaxrss);
1121 		if (psig->cmaxrss < maxrss)
1122 			psig->cmaxrss = maxrss;
1123 		task_io_accounting_add(&psig->ioac, &p->ioac);
1124 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1125 		write_sequnlock(&psig->stats_lock);
1126 		spin_unlock_irq(&current->sighand->siglock);
1127 	}
1128 
1129 	if (wo->wo_rusage)
1130 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1131 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1132 		? p->signal->group_exit_code : p->exit_code;
1133 	wo->wo_stat = status;
1134 
1135 	if (state == EXIT_TRACE) {
1136 		write_lock_irq(&tasklist_lock);
1137 		/* We dropped tasklist, ptracer could die and untrace */
1138 		ptrace_unlink(p);
1139 
1140 		/* If parent wants a zombie, don't release it now */
1141 		state = EXIT_ZOMBIE;
1142 		if (do_notify_parent(p, p->exit_signal))
1143 			state = EXIT_DEAD;
1144 		p->exit_state = state;
1145 		write_unlock_irq(&tasklist_lock);
1146 	}
1147 	if (state == EXIT_DEAD)
1148 		release_task(p);
1149 
1150 out_info:
1151 	infop = wo->wo_info;
1152 	if (infop) {
1153 		if ((status & 0x7f) == 0) {
1154 			infop->cause = CLD_EXITED;
1155 			infop->status = status >> 8;
1156 		} else {
1157 			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1158 			infop->status = status & 0x7f;
1159 		}
1160 		infop->pid = pid;
1161 		infop->uid = uid;
1162 	}
1163 
1164 	return pid;
1165 }
1166 
task_stopped_code(struct task_struct * p,bool ptrace)1167 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1168 {
1169 	if (ptrace) {
1170 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1171 			return &p->exit_code;
1172 	} else {
1173 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1174 			return &p->signal->group_exit_code;
1175 	}
1176 	return NULL;
1177 }
1178 
1179 /**
1180  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1181  * @wo: wait options
1182  * @ptrace: is the wait for ptrace
1183  * @p: task to wait for
1184  *
1185  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1186  *
1187  * CONTEXT:
1188  * read_lock(&tasklist_lock), which is released if return value is
1189  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1190  *
1191  * RETURNS:
1192  * 0 if wait condition didn't exist and search for other wait conditions
1193  * should continue.  Non-zero return, -errno on failure and @p's pid on
1194  * success, implies that tasklist_lock is released and wait condition
1195  * search should terminate.
1196  */
wait_task_stopped(struct wait_opts * wo,int ptrace,struct task_struct * p)1197 static int wait_task_stopped(struct wait_opts *wo,
1198 				int ptrace, struct task_struct *p)
1199 {
1200 	struct waitid_info *infop;
1201 	int exit_code, *p_code, why;
1202 	uid_t uid = 0; /* unneeded, required by compiler */
1203 	pid_t pid;
1204 
1205 	/*
1206 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1207 	 */
1208 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1209 		return 0;
1210 
1211 	if (!task_stopped_code(p, ptrace))
1212 		return 0;
1213 
1214 	exit_code = 0;
1215 	spin_lock_irq(&p->sighand->siglock);
1216 
1217 	p_code = task_stopped_code(p, ptrace);
1218 	if (unlikely(!p_code))
1219 		goto unlock_sig;
1220 
1221 	exit_code = *p_code;
1222 	if (!exit_code)
1223 		goto unlock_sig;
1224 
1225 	if (!unlikely(wo->wo_flags & WNOWAIT))
1226 		*p_code = 0;
1227 
1228 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1229 unlock_sig:
1230 	spin_unlock_irq(&p->sighand->siglock);
1231 	if (!exit_code)
1232 		return 0;
1233 
1234 	/*
1235 	 * Now we are pretty sure this task is interesting.
1236 	 * Make sure it doesn't get reaped out from under us while we
1237 	 * give up the lock and then examine it below.  We don't want to
1238 	 * keep holding onto the tasklist_lock while we call getrusage and
1239 	 * possibly take page faults for user memory.
1240 	 */
1241 	get_task_struct(p);
1242 	pid = task_pid_vnr(p);
1243 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1244 	read_unlock(&tasklist_lock);
1245 	sched_annotate_sleep();
1246 	if (wo->wo_rusage)
1247 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1248 	put_task_struct(p);
1249 
1250 	if (likely(!(wo->wo_flags & WNOWAIT)))
1251 		wo->wo_stat = (exit_code << 8) | 0x7f;
1252 
1253 	infop = wo->wo_info;
1254 	if (infop) {
1255 		infop->cause = why;
1256 		infop->status = exit_code;
1257 		infop->pid = pid;
1258 		infop->uid = uid;
1259 	}
1260 	return pid;
1261 }
1262 
1263 /*
1264  * Handle do_wait work for one task in a live, non-stopped state.
1265  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1266  * the lock and this task is uninteresting.  If we return nonzero, we have
1267  * released the lock and the system call should return.
1268  */
wait_task_continued(struct wait_opts * wo,struct task_struct * p)1269 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1270 {
1271 	struct waitid_info *infop;
1272 	pid_t pid;
1273 	uid_t uid;
1274 
1275 	if (!unlikely(wo->wo_flags & WCONTINUED))
1276 		return 0;
1277 
1278 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1279 		return 0;
1280 
1281 	spin_lock_irq(&p->sighand->siglock);
1282 	/* Re-check with the lock held.  */
1283 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1284 		spin_unlock_irq(&p->sighand->siglock);
1285 		return 0;
1286 	}
1287 	if (!unlikely(wo->wo_flags & WNOWAIT))
1288 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1289 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1290 	spin_unlock_irq(&p->sighand->siglock);
1291 
1292 	pid = task_pid_vnr(p);
1293 	get_task_struct(p);
1294 	read_unlock(&tasklist_lock);
1295 	sched_annotate_sleep();
1296 	if (wo->wo_rusage)
1297 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1298 	put_task_struct(p);
1299 
1300 	infop = wo->wo_info;
1301 	if (!infop) {
1302 		wo->wo_stat = 0xffff;
1303 	} else {
1304 		infop->cause = CLD_CONTINUED;
1305 		infop->pid = pid;
1306 		infop->uid = uid;
1307 		infop->status = SIGCONT;
1308 	}
1309 	return pid;
1310 }
1311 
1312 /*
1313  * Consider @p for a wait by @parent.
1314  *
1315  * -ECHILD should be in ->notask_error before the first call.
1316  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1317  * Returns zero if the search for a child should continue;
1318  * then ->notask_error is 0 if @p is an eligible child,
1319  * or still -ECHILD.
1320  */
wait_consider_task(struct wait_opts * wo,int ptrace,struct task_struct * p)1321 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1322 				struct task_struct *p)
1323 {
1324 	/*
1325 	 * We can race with wait_task_zombie() from another thread.
1326 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1327 	 * can't confuse the checks below.
1328 	 */
1329 	int exit_state = ACCESS_ONCE(p->exit_state);
1330 	int ret;
1331 
1332 	if (unlikely(exit_state == EXIT_DEAD))
1333 		return 0;
1334 
1335 	ret = eligible_child(wo, ptrace, p);
1336 	if (!ret)
1337 		return ret;
1338 
1339 	if (unlikely(exit_state == EXIT_TRACE)) {
1340 		/*
1341 		 * ptrace == 0 means we are the natural parent. In this case
1342 		 * we should clear notask_error, debugger will notify us.
1343 		 */
1344 		if (likely(!ptrace))
1345 			wo->notask_error = 0;
1346 		return 0;
1347 	}
1348 
1349 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1350 		/*
1351 		 * If it is traced by its real parent's group, just pretend
1352 		 * the caller is ptrace_do_wait() and reap this child if it
1353 		 * is zombie.
1354 		 *
1355 		 * This also hides group stop state from real parent; otherwise
1356 		 * a single stop can be reported twice as group and ptrace stop.
1357 		 * If a ptracer wants to distinguish these two events for its
1358 		 * own children it should create a separate process which takes
1359 		 * the role of real parent.
1360 		 */
1361 		if (!ptrace_reparented(p))
1362 			ptrace = 1;
1363 	}
1364 
1365 	/* slay zombie? */
1366 	if (exit_state == EXIT_ZOMBIE) {
1367 		/* we don't reap group leaders with subthreads */
1368 		if (!delay_group_leader(p)) {
1369 			/*
1370 			 * A zombie ptracee is only visible to its ptracer.
1371 			 * Notification and reaping will be cascaded to the
1372 			 * real parent when the ptracer detaches.
1373 			 */
1374 			if (unlikely(ptrace) || likely(!p->ptrace))
1375 				return wait_task_zombie(wo, p);
1376 		}
1377 
1378 		/*
1379 		 * Allow access to stopped/continued state via zombie by
1380 		 * falling through.  Clearing of notask_error is complex.
1381 		 *
1382 		 * When !@ptrace:
1383 		 *
1384 		 * If WEXITED is set, notask_error should naturally be
1385 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1386 		 * so, if there are live subthreads, there are events to
1387 		 * wait for.  If all subthreads are dead, it's still safe
1388 		 * to clear - this function will be called again in finite
1389 		 * amount time once all the subthreads are released and
1390 		 * will then return without clearing.
1391 		 *
1392 		 * When @ptrace:
1393 		 *
1394 		 * Stopped state is per-task and thus can't change once the
1395 		 * target task dies.  Only continued and exited can happen.
1396 		 * Clear notask_error if WCONTINUED | WEXITED.
1397 		 */
1398 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1399 			wo->notask_error = 0;
1400 	} else {
1401 		/*
1402 		 * @p is alive and it's gonna stop, continue or exit, so
1403 		 * there always is something to wait for.
1404 		 */
1405 		wo->notask_error = 0;
1406 	}
1407 
1408 	/*
1409 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1410 	 * is used and the two don't interact with each other.
1411 	 */
1412 	ret = wait_task_stopped(wo, ptrace, p);
1413 	if (ret)
1414 		return ret;
1415 
1416 	/*
1417 	 * Wait for continued.  There's only one continued state and the
1418 	 * ptracer can consume it which can confuse the real parent.  Don't
1419 	 * use WCONTINUED from ptracer.  You don't need or want it.
1420 	 */
1421 	return wait_task_continued(wo, p);
1422 }
1423 
1424 /*
1425  * Do the work of do_wait() for one thread in the group, @tsk.
1426  *
1427  * -ECHILD should be in ->notask_error before the first call.
1428  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1429  * Returns zero if the search for a child should continue; then
1430  * ->notask_error is 0 if there were any eligible children,
1431  * or still -ECHILD.
1432  */
do_wait_thread(struct wait_opts * wo,struct task_struct * tsk)1433 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1434 {
1435 	struct task_struct *p;
1436 
1437 	list_for_each_entry(p, &tsk->children, sibling) {
1438 		int ret = wait_consider_task(wo, 0, p);
1439 
1440 		if (ret)
1441 			return ret;
1442 	}
1443 
1444 	return 0;
1445 }
1446 
ptrace_do_wait(struct wait_opts * wo,struct task_struct * tsk)1447 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1448 {
1449 	struct task_struct *p;
1450 
1451 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1452 		int ret = wait_consider_task(wo, 1, p);
1453 
1454 		if (ret)
1455 			return ret;
1456 	}
1457 
1458 	return 0;
1459 }
1460 
child_wait_callback(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1461 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1462 				int sync, void *key)
1463 {
1464 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1465 						child_wait);
1466 	struct task_struct *p = key;
1467 
1468 	if (!eligible_pid(wo, p))
1469 		return 0;
1470 
1471 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1472 		return 0;
1473 
1474 	return default_wake_function(wait, mode, sync, key);
1475 }
1476 
__wake_up_parent(struct task_struct * p,struct task_struct * parent)1477 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1478 {
1479 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1480 				TASK_INTERRUPTIBLE, 1, p);
1481 }
1482 
do_wait(struct wait_opts * wo)1483 static long do_wait(struct wait_opts *wo)
1484 {
1485 	struct task_struct *tsk;
1486 	int retval;
1487 
1488 	trace_sched_process_wait(wo->wo_pid);
1489 
1490 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1491 	wo->child_wait.private = current;
1492 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1493 repeat:
1494 	/*
1495 	 * If there is nothing that can match our criteria, just get out.
1496 	 * We will clear ->notask_error to zero if we see any child that
1497 	 * might later match our criteria, even if we are not able to reap
1498 	 * it yet.
1499 	 */
1500 	wo->notask_error = -ECHILD;
1501 	if ((wo->wo_type < PIDTYPE_MAX) &&
1502 	   (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1503 		goto notask;
1504 
1505 	set_current_state(TASK_INTERRUPTIBLE);
1506 	read_lock(&tasklist_lock);
1507 	tsk = current;
1508 	do {
1509 		retval = do_wait_thread(wo, tsk);
1510 		if (retval)
1511 			goto end;
1512 
1513 		retval = ptrace_do_wait(wo, tsk);
1514 		if (retval)
1515 			goto end;
1516 
1517 		if (wo->wo_flags & __WNOTHREAD)
1518 			break;
1519 	} while_each_thread(current, tsk);
1520 	read_unlock(&tasklist_lock);
1521 
1522 notask:
1523 	retval = wo->notask_error;
1524 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1525 		retval = -ERESTARTSYS;
1526 		if (!signal_pending(current)) {
1527 			schedule();
1528 			goto repeat;
1529 		}
1530 	}
1531 end:
1532 	__set_current_state(TASK_RUNNING);
1533 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1534 	return retval;
1535 }
1536 
kernel_waitid(int which,pid_t upid,struct waitid_info * infop,int options,struct rusage * ru)1537 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1538 			  int options, struct rusage *ru)
1539 {
1540 	struct wait_opts wo;
1541 	struct pid *pid = NULL;
1542 	enum pid_type type;
1543 	long ret;
1544 
1545 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1546 			__WNOTHREAD|__WCLONE|__WALL))
1547 		return -EINVAL;
1548 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1549 		return -EINVAL;
1550 
1551 	switch (which) {
1552 	case P_ALL:
1553 		type = PIDTYPE_MAX;
1554 		break;
1555 	case P_PID:
1556 		type = PIDTYPE_PID;
1557 		if (upid <= 0)
1558 			return -EINVAL;
1559 		break;
1560 	case P_PGID:
1561 		type = PIDTYPE_PGID;
1562 		if (upid <= 0)
1563 			return -EINVAL;
1564 		break;
1565 	default:
1566 		return -EINVAL;
1567 	}
1568 
1569 	if (type < PIDTYPE_MAX)
1570 		pid = find_get_pid(upid);
1571 
1572 	wo.wo_type	= type;
1573 	wo.wo_pid	= pid;
1574 	wo.wo_flags	= options;
1575 	wo.wo_info	= infop;
1576 	wo.wo_rusage	= ru;
1577 	ret = do_wait(&wo);
1578 
1579 	put_pid(pid);
1580 	return ret;
1581 }
1582 
SYSCALL_DEFINE5(waitid,int,which,pid_t,upid,struct siginfo __user *,infop,int,options,struct rusage __user *,ru)1583 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1584 		infop, int, options, struct rusage __user *, ru)
1585 {
1586 	struct rusage r;
1587 	struct waitid_info info = {.status = 0};
1588 	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1589 	int signo = 0;
1590 
1591 	if (err > 0) {
1592 		signo = SIGCHLD;
1593 		err = 0;
1594 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1595 			return -EFAULT;
1596 	}
1597 	if (!infop)
1598 		return err;
1599 
1600 	if (!access_ok(VERIFY_WRITE, infop, sizeof(*infop)))
1601 		return -EFAULT;
1602 
1603 	user_access_begin();
1604 	unsafe_put_user(signo, &infop->si_signo, Efault);
1605 	unsafe_put_user(0, &infop->si_errno, Efault);
1606 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1607 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1608 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1609 	unsafe_put_user(info.status, &infop->si_status, Efault);
1610 	user_access_end();
1611 	return err;
1612 Efault:
1613 	user_access_end();
1614 	return -EFAULT;
1615 }
1616 
kernel_wait4(pid_t upid,int __user * stat_addr,int options,struct rusage * ru)1617 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1618 		  struct rusage *ru)
1619 {
1620 	struct wait_opts wo;
1621 	struct pid *pid = NULL;
1622 	enum pid_type type;
1623 	long ret;
1624 
1625 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1626 			__WNOTHREAD|__WCLONE|__WALL))
1627 		return -EINVAL;
1628 
1629 	/* -INT_MIN is not defined */
1630 	if (upid == INT_MIN)
1631 		return -ESRCH;
1632 
1633 	if (upid == -1)
1634 		type = PIDTYPE_MAX;
1635 	else if (upid < 0) {
1636 		type = PIDTYPE_PGID;
1637 		pid = find_get_pid(-upid);
1638 	} else if (upid == 0) {
1639 		type = PIDTYPE_PGID;
1640 		pid = get_task_pid(current, PIDTYPE_PGID);
1641 	} else /* upid > 0 */ {
1642 		type = PIDTYPE_PID;
1643 		pid = find_get_pid(upid);
1644 	}
1645 
1646 	wo.wo_type	= type;
1647 	wo.wo_pid	= pid;
1648 	wo.wo_flags	= options | WEXITED;
1649 	wo.wo_info	= NULL;
1650 	wo.wo_stat	= 0;
1651 	wo.wo_rusage	= ru;
1652 	ret = do_wait(&wo);
1653 	put_pid(pid);
1654 	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1655 		ret = -EFAULT;
1656 
1657 	return ret;
1658 }
1659 
SYSCALL_DEFINE4(wait4,pid_t,upid,int __user *,stat_addr,int,options,struct rusage __user *,ru)1660 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1661 		int, options, struct rusage __user *, ru)
1662 {
1663 	struct rusage r;
1664 	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1665 
1666 	if (err > 0) {
1667 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1668 			return -EFAULT;
1669 	}
1670 	return err;
1671 }
1672 
1673 #ifdef __ARCH_WANT_SYS_WAITPID
1674 
1675 /*
1676  * sys_waitpid() remains for compatibility. waitpid() should be
1677  * implemented by calling sys_wait4() from libc.a.
1678  */
SYSCALL_DEFINE3(waitpid,pid_t,pid,int __user *,stat_addr,int,options)1679 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1680 {
1681 	return sys_wait4(pid, stat_addr, options, NULL);
1682 }
1683 
1684 #endif
1685 
1686 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(wait4,compat_pid_t,pid,compat_uint_t __user *,stat_addr,int,options,struct compat_rusage __user *,ru)1687 COMPAT_SYSCALL_DEFINE4(wait4,
1688 	compat_pid_t, pid,
1689 	compat_uint_t __user *, stat_addr,
1690 	int, options,
1691 	struct compat_rusage __user *, ru)
1692 {
1693 	struct rusage r;
1694 	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1695 	if (err > 0) {
1696 		if (ru && put_compat_rusage(&r, ru))
1697 			return -EFAULT;
1698 	}
1699 	return err;
1700 }
1701 
COMPAT_SYSCALL_DEFINE5(waitid,int,which,compat_pid_t,pid,struct compat_siginfo __user *,infop,int,options,struct compat_rusage __user *,uru)1702 COMPAT_SYSCALL_DEFINE5(waitid,
1703 		int, which, compat_pid_t, pid,
1704 		struct compat_siginfo __user *, infop, int, options,
1705 		struct compat_rusage __user *, uru)
1706 {
1707 	struct rusage ru;
1708 	struct waitid_info info = {.status = 0};
1709 	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1710 	int signo = 0;
1711 	if (err > 0) {
1712 		signo = SIGCHLD;
1713 		err = 0;
1714 		if (uru) {
1715 			/* kernel_waitid() overwrites everything in ru */
1716 			if (COMPAT_USE_64BIT_TIME)
1717 				err = copy_to_user(uru, &ru, sizeof(ru));
1718 			else
1719 				err = put_compat_rusage(&ru, uru);
1720 			if (err)
1721 				return -EFAULT;
1722 		}
1723 	}
1724 
1725 	if (!infop)
1726 		return err;
1727 
1728 	if (!access_ok(VERIFY_WRITE, infop, sizeof(*infop)))
1729 		return -EFAULT;
1730 
1731 	user_access_begin();
1732 	unsafe_put_user(signo, &infop->si_signo, Efault);
1733 	unsafe_put_user(0, &infop->si_errno, Efault);
1734 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1735 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1736 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1737 	unsafe_put_user(info.status, &infop->si_status, Efault);
1738 	user_access_end();
1739 	return err;
1740 Efault:
1741 	user_access_end();
1742 	return -EFAULT;
1743 }
1744 #endif
1745 
abort(void)1746 __weak void abort(void)
1747 {
1748 	BUG();
1749 
1750 	/* if that doesn't kill us, halt */
1751 	panic("Oops failed to kill thread");
1752 }
1753 EXPORT_SYMBOL(abort);
1754