• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kasan.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <linux/backing-dev.h>
50 #include <linux/fault-inject.h>
51 #include <linux/page-isolation.h>
52 #include <linux/page_ext.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
70 #include <linux/psi.h>
71 
72 #include <asm/sections.h>
73 #include <asm/tlbflush.h>
74 #include <asm/div64.h>
75 #include "internal.h"
76 
77 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
78 static DEFINE_MUTEX(pcp_batch_high_lock);
79 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
80 
81 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
82 DEFINE_PER_CPU(int, numa_node);
83 EXPORT_PER_CPU_SYMBOL(numa_node);
84 #endif
85 
86 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
87 /*
88  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
89  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
90  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
91  * defined in <linux/topology.h>.
92  */
93 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
94 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
95 int _node_numa_mem_[MAX_NUMNODES];
96 #endif
97 
98 /* work_structs for global per-cpu drains */
99 DEFINE_MUTEX(pcpu_drain_mutex);
100 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
101 
102 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
103 volatile unsigned long latent_entropy __latent_entropy;
104 EXPORT_SYMBOL(latent_entropy);
105 #endif
106 
107 /*
108  * Array of node states.
109  */
110 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
111 	[N_POSSIBLE] = NODE_MASK_ALL,
112 	[N_ONLINE] = { { [0] = 1UL } },
113 #ifndef CONFIG_NUMA
114 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
115 #ifdef CONFIG_HIGHMEM
116 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
117 #endif
118 	[N_MEMORY] = { { [0] = 1UL } },
119 	[N_CPU] = { { [0] = 1UL } },
120 #endif	/* NUMA */
121 };
122 EXPORT_SYMBOL(node_states);
123 
124 /* Protect totalram_pages and zone->managed_pages */
125 static DEFINE_SPINLOCK(managed_page_count_lock);
126 
127 unsigned long totalram_pages __read_mostly;
128 unsigned long totalreserve_pages __read_mostly;
129 unsigned long totalcma_pages __read_mostly;
130 
131 int percpu_pagelist_fraction;
132 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
133 
134 /*
135  * A cached value of the page's pageblock's migratetype, used when the page is
136  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
137  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
138  * Also the migratetype set in the page does not necessarily match the pcplist
139  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
140  * other index - this ensures that it will be put on the correct CMA freelist.
141  */
get_pcppage_migratetype(struct page * page)142 static inline int get_pcppage_migratetype(struct page *page)
143 {
144 	return page->index;
145 }
146 
set_pcppage_migratetype(struct page * page,int migratetype)147 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
148 {
149 	page->index = migratetype;
150 }
151 
152 #ifdef CONFIG_PM_SLEEP
153 /*
154  * The following functions are used by the suspend/hibernate code to temporarily
155  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
156  * while devices are suspended.  To avoid races with the suspend/hibernate code,
157  * they should always be called with pm_mutex held (gfp_allowed_mask also should
158  * only be modified with pm_mutex held, unless the suspend/hibernate code is
159  * guaranteed not to run in parallel with that modification).
160  */
161 
162 static gfp_t saved_gfp_mask;
163 
pm_restore_gfp_mask(void)164 void pm_restore_gfp_mask(void)
165 {
166 	WARN_ON(!mutex_is_locked(&pm_mutex));
167 	if (saved_gfp_mask) {
168 		gfp_allowed_mask = saved_gfp_mask;
169 		saved_gfp_mask = 0;
170 	}
171 }
172 
pm_restrict_gfp_mask(void)173 void pm_restrict_gfp_mask(void)
174 {
175 	WARN_ON(!mutex_is_locked(&pm_mutex));
176 	WARN_ON(saved_gfp_mask);
177 	saved_gfp_mask = gfp_allowed_mask;
178 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
179 }
180 
pm_suspended_storage(void)181 bool pm_suspended_storage(void)
182 {
183 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
184 		return false;
185 	return true;
186 }
187 #endif /* CONFIG_PM_SLEEP */
188 
189 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
190 unsigned int pageblock_order __read_mostly;
191 #endif
192 
193 static void __free_pages_ok(struct page *page, unsigned int order);
194 
195 /*
196  * results with 256, 32 in the lowmem_reserve sysctl:
197  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
198  *	1G machine -> (16M dma, 784M normal, 224M high)
199  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
200  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
201  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
202  *
203  * TBD: should special case ZONE_DMA32 machines here - in those we normally
204  * don't need any ZONE_NORMAL reservation
205  */
206 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
207 #ifdef CONFIG_ZONE_DMA
208 	 256,
209 #endif
210 #ifdef CONFIG_ZONE_DMA32
211 	 256,
212 #endif
213 #ifdef CONFIG_HIGHMEM
214 	 32,
215 #endif
216 	 32,
217 };
218 
219 EXPORT_SYMBOL(totalram_pages);
220 
221 static char * const zone_names[MAX_NR_ZONES] = {
222 #ifdef CONFIG_ZONE_DMA
223 	 "DMA",
224 #endif
225 #ifdef CONFIG_ZONE_DMA32
226 	 "DMA32",
227 #endif
228 	 "Normal",
229 #ifdef CONFIG_HIGHMEM
230 	 "HighMem",
231 #endif
232 	 "Movable",
233 #ifdef CONFIG_ZONE_DEVICE
234 	 "Device",
235 #endif
236 };
237 
238 char * const migratetype_names[MIGRATE_TYPES] = {
239 	"Unmovable",
240 	"Movable",
241 	"Reclaimable",
242 	"HighAtomic",
243 #ifdef CONFIG_CMA
244 	"CMA",
245 #endif
246 #ifdef CONFIG_MEMORY_ISOLATION
247 	"Isolate",
248 #endif
249 };
250 
251 compound_page_dtor * const compound_page_dtors[] = {
252 	NULL,
253 	free_compound_page,
254 #ifdef CONFIG_HUGETLB_PAGE
255 	free_huge_page,
256 #endif
257 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
258 	free_transhuge_page,
259 #endif
260 };
261 
262 /*
263  * Try to keep at least this much lowmem free.  Do not allow normal
264  * allocations below this point, only high priority ones. Automatically
265  * tuned according to the amount of memory in the system.
266  */
267 int min_free_kbytes = 1024;
268 int user_min_free_kbytes = -1;
269 int watermark_scale_factor = 10;
270 
271 /*
272  * Extra memory for the system to try freeing. Used to temporarily
273  * free memory, to make space for new workloads. Anyone can allocate
274  * down to the min watermarks controlled by min_free_kbytes above.
275  */
276 int extra_free_kbytes = 0;
277 
278 static unsigned long __meminitdata nr_kernel_pages;
279 static unsigned long __meminitdata nr_all_pages;
280 static unsigned long __meminitdata dma_reserve;
281 
282 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
283 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
284 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
285 static unsigned long __initdata required_kernelcore;
286 static unsigned long __initdata required_movablecore;
287 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
288 static bool mirrored_kernelcore;
289 
290 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
291 int movable_zone;
292 EXPORT_SYMBOL(movable_zone);
293 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
294 
295 #if MAX_NUMNODES > 1
296 int nr_node_ids __read_mostly = MAX_NUMNODES;
297 int nr_online_nodes __read_mostly = 1;
298 EXPORT_SYMBOL(nr_node_ids);
299 EXPORT_SYMBOL(nr_online_nodes);
300 #endif
301 
302 int page_group_by_mobility_disabled __read_mostly;
303 
304 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
305 
306 /*
307  * Determine how many pages need to be initialized durig early boot
308  * (non-deferred initialization).
309  * The value of first_deferred_pfn will be set later, once non-deferred pages
310  * are initialized, but for now set it ULONG_MAX.
311  */
reset_deferred_meminit(pg_data_t * pgdat)312 static inline void reset_deferred_meminit(pg_data_t *pgdat)
313 {
314 	phys_addr_t start_addr, end_addr;
315 	unsigned long max_pgcnt;
316 	unsigned long reserved;
317 
318 	/*
319 	 * Initialise at least 2G of a node but also take into account that
320 	 * two large system hashes that can take up 1GB for 0.25TB/node.
321 	 */
322 	max_pgcnt = max(2UL << (30 - PAGE_SHIFT),
323 			(pgdat->node_spanned_pages >> 8));
324 
325 	/*
326 	 * Compensate the all the memblock reservations (e.g. crash kernel)
327 	 * from the initial estimation to make sure we will initialize enough
328 	 * memory to boot.
329 	 */
330 	start_addr = PFN_PHYS(pgdat->node_start_pfn);
331 	end_addr = PFN_PHYS(pgdat->node_start_pfn + max_pgcnt);
332 	reserved = memblock_reserved_memory_within(start_addr, end_addr);
333 	max_pgcnt += PHYS_PFN(reserved);
334 
335 	pgdat->static_init_pgcnt = min(max_pgcnt, pgdat->node_spanned_pages);
336 	pgdat->first_deferred_pfn = ULONG_MAX;
337 }
338 
339 /* Returns true if the struct page for the pfn is uninitialised */
early_page_uninitialised(unsigned long pfn)340 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
341 {
342 	int nid = early_pfn_to_nid(pfn);
343 
344 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
345 		return true;
346 
347 	return false;
348 }
349 
350 /*
351  * Returns false when the remaining initialisation should be deferred until
352  * later in the boot cycle when it can be parallelised.
353  */
update_defer_init(pg_data_t * pgdat,unsigned long pfn,unsigned long zone_end,unsigned long * nr_initialised)354 static inline bool update_defer_init(pg_data_t *pgdat,
355 				unsigned long pfn, unsigned long zone_end,
356 				unsigned long *nr_initialised)
357 {
358 	/* Always populate low zones for address-contrained allocations */
359 	if (zone_end < pgdat_end_pfn(pgdat))
360 		return true;
361 	(*nr_initialised)++;
362 	if ((*nr_initialised > pgdat->static_init_pgcnt) &&
363 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
364 		pgdat->first_deferred_pfn = pfn;
365 		return false;
366 	}
367 
368 	return true;
369 }
370 #else
reset_deferred_meminit(pg_data_t * pgdat)371 static inline void reset_deferred_meminit(pg_data_t *pgdat)
372 {
373 }
374 
early_page_uninitialised(unsigned long pfn)375 static inline bool early_page_uninitialised(unsigned long pfn)
376 {
377 	return false;
378 }
379 
update_defer_init(pg_data_t * pgdat,unsigned long pfn,unsigned long zone_end,unsigned long * nr_initialised)380 static inline bool update_defer_init(pg_data_t *pgdat,
381 				unsigned long pfn, unsigned long zone_end,
382 				unsigned long *nr_initialised)
383 {
384 	return true;
385 }
386 #endif
387 
388 /* Return a pointer to the bitmap storing bits affecting a block of pages */
get_pageblock_bitmap(struct page * page,unsigned long pfn)389 static inline unsigned long *get_pageblock_bitmap(struct page *page,
390 							unsigned long pfn)
391 {
392 #ifdef CONFIG_SPARSEMEM
393 	return __pfn_to_section(pfn)->pageblock_flags;
394 #else
395 	return page_zone(page)->pageblock_flags;
396 #endif /* CONFIG_SPARSEMEM */
397 }
398 
pfn_to_bitidx(struct page * page,unsigned long pfn)399 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
400 {
401 #ifdef CONFIG_SPARSEMEM
402 	pfn &= (PAGES_PER_SECTION-1);
403 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
404 #else
405 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
406 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
407 #endif /* CONFIG_SPARSEMEM */
408 }
409 
410 /**
411  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
412  * @page: The page within the block of interest
413  * @pfn: The target page frame number
414  * @end_bitidx: The last bit of interest to retrieve
415  * @mask: mask of bits that the caller is interested in
416  *
417  * Return: pageblock_bits flags
418  */
__get_pfnblock_flags_mask(struct page * page,unsigned long pfn,unsigned long end_bitidx,unsigned long mask)419 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
420 					unsigned long pfn,
421 					unsigned long end_bitidx,
422 					unsigned long mask)
423 {
424 	unsigned long *bitmap;
425 	unsigned long bitidx, word_bitidx;
426 	unsigned long word;
427 
428 	bitmap = get_pageblock_bitmap(page, pfn);
429 	bitidx = pfn_to_bitidx(page, pfn);
430 	word_bitidx = bitidx / BITS_PER_LONG;
431 	bitidx &= (BITS_PER_LONG-1);
432 
433 	word = bitmap[word_bitidx];
434 	bitidx += end_bitidx;
435 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
436 }
437 
get_pfnblock_flags_mask(struct page * page,unsigned long pfn,unsigned long end_bitidx,unsigned long mask)438 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
439 					unsigned long end_bitidx,
440 					unsigned long mask)
441 {
442 	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
443 }
444 
get_pfnblock_migratetype(struct page * page,unsigned long pfn)445 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
446 {
447 	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
448 }
449 
450 /**
451  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
452  * @page: The page within the block of interest
453  * @flags: The flags to set
454  * @pfn: The target page frame number
455  * @end_bitidx: The last bit of interest
456  * @mask: mask of bits that the caller is interested in
457  */
set_pfnblock_flags_mask(struct page * page,unsigned long flags,unsigned long pfn,unsigned long end_bitidx,unsigned long mask)458 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
459 					unsigned long pfn,
460 					unsigned long end_bitidx,
461 					unsigned long mask)
462 {
463 	unsigned long *bitmap;
464 	unsigned long bitidx, word_bitidx;
465 	unsigned long old_word, word;
466 
467 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
468 
469 	bitmap = get_pageblock_bitmap(page, pfn);
470 	bitidx = pfn_to_bitidx(page, pfn);
471 	word_bitidx = bitidx / BITS_PER_LONG;
472 	bitidx &= (BITS_PER_LONG-1);
473 
474 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
475 
476 	bitidx += end_bitidx;
477 	mask <<= (BITS_PER_LONG - bitidx - 1);
478 	flags <<= (BITS_PER_LONG - bitidx - 1);
479 
480 	word = READ_ONCE(bitmap[word_bitidx]);
481 	for (;;) {
482 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
483 		if (word == old_word)
484 			break;
485 		word = old_word;
486 	}
487 }
488 
set_pageblock_migratetype(struct page * page,int migratetype)489 void set_pageblock_migratetype(struct page *page, int migratetype)
490 {
491 	if (unlikely(page_group_by_mobility_disabled &&
492 		     migratetype < MIGRATE_PCPTYPES))
493 		migratetype = MIGRATE_UNMOVABLE;
494 
495 	set_pageblock_flags_group(page, (unsigned long)migratetype,
496 					PB_migrate, PB_migrate_end);
497 }
498 
499 #ifdef CONFIG_DEBUG_VM
page_outside_zone_boundaries(struct zone * zone,struct page * page)500 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
501 {
502 	int ret = 0;
503 	unsigned seq;
504 	unsigned long pfn = page_to_pfn(page);
505 	unsigned long sp, start_pfn;
506 
507 	do {
508 		seq = zone_span_seqbegin(zone);
509 		start_pfn = zone->zone_start_pfn;
510 		sp = zone->spanned_pages;
511 		if (!zone_spans_pfn(zone, pfn))
512 			ret = 1;
513 	} while (zone_span_seqretry(zone, seq));
514 
515 	if (ret)
516 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
517 			pfn, zone_to_nid(zone), zone->name,
518 			start_pfn, start_pfn + sp);
519 
520 	return ret;
521 }
522 
page_is_consistent(struct zone * zone,struct page * page)523 static int page_is_consistent(struct zone *zone, struct page *page)
524 {
525 	if (!pfn_valid_within(page_to_pfn(page)))
526 		return 0;
527 	if (zone != page_zone(page))
528 		return 0;
529 
530 	return 1;
531 }
532 /*
533  * Temporary debugging check for pages not lying within a given zone.
534  */
bad_range(struct zone * zone,struct page * page)535 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
536 {
537 	if (page_outside_zone_boundaries(zone, page))
538 		return 1;
539 	if (!page_is_consistent(zone, page))
540 		return 1;
541 
542 	return 0;
543 }
544 #else
bad_range(struct zone * zone,struct page * page)545 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
546 {
547 	return 0;
548 }
549 #endif
550 
bad_page(struct page * page,const char * reason,unsigned long bad_flags)551 static void bad_page(struct page *page, const char *reason,
552 		unsigned long bad_flags)
553 {
554 	static unsigned long resume;
555 	static unsigned long nr_shown;
556 	static unsigned long nr_unshown;
557 
558 	/*
559 	 * Allow a burst of 60 reports, then keep quiet for that minute;
560 	 * or allow a steady drip of one report per second.
561 	 */
562 	if (nr_shown == 60) {
563 		if (time_before(jiffies, resume)) {
564 			nr_unshown++;
565 			goto out;
566 		}
567 		if (nr_unshown) {
568 			pr_alert(
569 			      "BUG: Bad page state: %lu messages suppressed\n",
570 				nr_unshown);
571 			nr_unshown = 0;
572 		}
573 		nr_shown = 0;
574 	}
575 	if (nr_shown++ == 0)
576 		resume = jiffies + 60 * HZ;
577 
578 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
579 		current->comm, page_to_pfn(page));
580 	__dump_page(page, reason);
581 	bad_flags &= page->flags;
582 	if (bad_flags)
583 		pr_alert("bad because of flags: %#lx(%pGp)\n",
584 						bad_flags, &bad_flags);
585 	dump_page_owner(page);
586 
587 	print_modules();
588 	dump_stack();
589 out:
590 	/* Leave bad fields for debug, except PageBuddy could make trouble */
591 	page_mapcount_reset(page); /* remove PageBuddy */
592 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
593 }
594 
595 /*
596  * Higher-order pages are called "compound pages".  They are structured thusly:
597  *
598  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
599  *
600  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
601  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
602  *
603  * The first tail page's ->compound_dtor holds the offset in array of compound
604  * page destructors. See compound_page_dtors.
605  *
606  * The first tail page's ->compound_order holds the order of allocation.
607  * This usage means that zero-order pages may not be compound.
608  */
609 
free_compound_page(struct page * page)610 void free_compound_page(struct page *page)
611 {
612 	__free_pages_ok(page, compound_order(page));
613 }
614 
prep_compound_page(struct page * page,unsigned int order)615 void prep_compound_page(struct page *page, unsigned int order)
616 {
617 	int i;
618 	int nr_pages = 1 << order;
619 
620 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
621 	set_compound_order(page, order);
622 	__SetPageHead(page);
623 	for (i = 1; i < nr_pages; i++) {
624 		struct page *p = page + i;
625 		set_page_count(p, 0);
626 		p->mapping = TAIL_MAPPING;
627 		set_compound_head(p, page);
628 	}
629 	atomic_set(compound_mapcount_ptr(page), -1);
630 }
631 
632 #ifdef CONFIG_DEBUG_PAGEALLOC
633 unsigned int _debug_guardpage_minorder;
634 bool _debug_pagealloc_enabled __read_mostly
635 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
636 EXPORT_SYMBOL(_debug_pagealloc_enabled);
637 bool _debug_guardpage_enabled __read_mostly;
638 
early_debug_pagealloc(char * buf)639 static int __init early_debug_pagealloc(char *buf)
640 {
641 	if (!buf)
642 		return -EINVAL;
643 	return kstrtobool(buf, &_debug_pagealloc_enabled);
644 }
645 early_param("debug_pagealloc", early_debug_pagealloc);
646 
need_debug_guardpage(void)647 static bool need_debug_guardpage(void)
648 {
649 	/* If we don't use debug_pagealloc, we don't need guard page */
650 	if (!debug_pagealloc_enabled())
651 		return false;
652 
653 	if (!debug_guardpage_minorder())
654 		return false;
655 
656 	return true;
657 }
658 
init_debug_guardpage(void)659 static void init_debug_guardpage(void)
660 {
661 	if (!debug_pagealloc_enabled())
662 		return;
663 
664 	if (!debug_guardpage_minorder())
665 		return;
666 
667 	_debug_guardpage_enabled = true;
668 }
669 
670 struct page_ext_operations debug_guardpage_ops = {
671 	.need = need_debug_guardpage,
672 	.init = init_debug_guardpage,
673 };
674 
debug_guardpage_minorder_setup(char * buf)675 static int __init debug_guardpage_minorder_setup(char *buf)
676 {
677 	unsigned long res;
678 
679 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
680 		pr_err("Bad debug_guardpage_minorder value\n");
681 		return 0;
682 	}
683 	_debug_guardpage_minorder = res;
684 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
685 	return 0;
686 }
687 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
688 
set_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)689 static inline bool set_page_guard(struct zone *zone, struct page *page,
690 				unsigned int order, int migratetype)
691 {
692 	struct page_ext *page_ext;
693 
694 	if (!debug_guardpage_enabled())
695 		return false;
696 
697 	if (order >= debug_guardpage_minorder())
698 		return false;
699 
700 	page_ext = lookup_page_ext(page);
701 	if (unlikely(!page_ext))
702 		return false;
703 
704 	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
705 
706 	INIT_LIST_HEAD(&page->lru);
707 	set_page_private(page, order);
708 	/* Guard pages are not available for any usage */
709 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
710 
711 	return true;
712 }
713 
clear_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)714 static inline void clear_page_guard(struct zone *zone, struct page *page,
715 				unsigned int order, int migratetype)
716 {
717 	struct page_ext *page_ext;
718 
719 	if (!debug_guardpage_enabled())
720 		return;
721 
722 	page_ext = lookup_page_ext(page);
723 	if (unlikely(!page_ext))
724 		return;
725 
726 	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
727 
728 	set_page_private(page, 0);
729 	if (!is_migrate_isolate(migratetype))
730 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
731 }
732 #else
733 struct page_ext_operations debug_guardpage_ops;
set_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)734 static inline bool set_page_guard(struct zone *zone, struct page *page,
735 			unsigned int order, int migratetype) { return false; }
clear_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)736 static inline void clear_page_guard(struct zone *zone, struct page *page,
737 				unsigned int order, int migratetype) {}
738 #endif
739 
set_page_order(struct page * page,unsigned int order)740 static inline void set_page_order(struct page *page, unsigned int order)
741 {
742 	set_page_private(page, order);
743 	__SetPageBuddy(page);
744 }
745 
rmv_page_order(struct page * page)746 static inline void rmv_page_order(struct page *page)
747 {
748 	__ClearPageBuddy(page);
749 	set_page_private(page, 0);
750 }
751 
752 /*
753  * This function checks whether a page is free && is the buddy
754  * we can do coalesce a page and its buddy if
755  * (a) the buddy is not in a hole (check before calling!) &&
756  * (b) the buddy is in the buddy system &&
757  * (c) a page and its buddy have the same order &&
758  * (d) a page and its buddy are in the same zone.
759  *
760  * For recording whether a page is in the buddy system, we set ->_mapcount
761  * PAGE_BUDDY_MAPCOUNT_VALUE.
762  * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
763  * serialized by zone->lock.
764  *
765  * For recording page's order, we use page_private(page).
766  */
page_is_buddy(struct page * page,struct page * buddy,unsigned int order)767 static inline int page_is_buddy(struct page *page, struct page *buddy,
768 							unsigned int order)
769 {
770 	if (page_is_guard(buddy) && page_order(buddy) == order) {
771 		if (page_zone_id(page) != page_zone_id(buddy))
772 			return 0;
773 
774 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
775 
776 		return 1;
777 	}
778 
779 	if (PageBuddy(buddy) && page_order(buddy) == order) {
780 		/*
781 		 * zone check is done late to avoid uselessly
782 		 * calculating zone/node ids for pages that could
783 		 * never merge.
784 		 */
785 		if (page_zone_id(page) != page_zone_id(buddy))
786 			return 0;
787 
788 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
789 
790 		return 1;
791 	}
792 	return 0;
793 }
794 
795 /*
796  * Freeing function for a buddy system allocator.
797  *
798  * The concept of a buddy system is to maintain direct-mapped table
799  * (containing bit values) for memory blocks of various "orders".
800  * The bottom level table contains the map for the smallest allocatable
801  * units of memory (here, pages), and each level above it describes
802  * pairs of units from the levels below, hence, "buddies".
803  * At a high level, all that happens here is marking the table entry
804  * at the bottom level available, and propagating the changes upward
805  * as necessary, plus some accounting needed to play nicely with other
806  * parts of the VM system.
807  * At each level, we keep a list of pages, which are heads of continuous
808  * free pages of length of (1 << order) and marked with _mapcount
809  * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
810  * field.
811  * So when we are allocating or freeing one, we can derive the state of the
812  * other.  That is, if we allocate a small block, and both were
813  * free, the remainder of the region must be split into blocks.
814  * If a block is freed, and its buddy is also free, then this
815  * triggers coalescing into a block of larger size.
816  *
817  * -- nyc
818  */
819 
__free_one_page(struct page * page,unsigned long pfn,struct zone * zone,unsigned int order,int migratetype)820 static inline void __free_one_page(struct page *page,
821 		unsigned long pfn,
822 		struct zone *zone, unsigned int order,
823 		int migratetype)
824 {
825 	unsigned long combined_pfn;
826 	unsigned long uninitialized_var(buddy_pfn);
827 	struct page *buddy;
828 	unsigned int max_order;
829 
830 	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
831 
832 	VM_BUG_ON(!zone_is_initialized(zone));
833 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
834 
835 	VM_BUG_ON(migratetype == -1);
836 	if (likely(!is_migrate_isolate(migratetype)))
837 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
838 
839 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
840 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
841 
842 continue_merging:
843 	while (order < max_order - 1) {
844 		buddy_pfn = __find_buddy_pfn(pfn, order);
845 		buddy = page + (buddy_pfn - pfn);
846 
847 		if (!pfn_valid_within(buddy_pfn))
848 			goto done_merging;
849 		if (!page_is_buddy(page, buddy, order))
850 			goto done_merging;
851 		/*
852 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
853 		 * merge with it and move up one order.
854 		 */
855 		if (page_is_guard(buddy)) {
856 			clear_page_guard(zone, buddy, order, migratetype);
857 		} else {
858 			list_del(&buddy->lru);
859 			zone->free_area[order].nr_free--;
860 			rmv_page_order(buddy);
861 		}
862 		combined_pfn = buddy_pfn & pfn;
863 		page = page + (combined_pfn - pfn);
864 		pfn = combined_pfn;
865 		order++;
866 	}
867 	if (max_order < MAX_ORDER) {
868 		/* If we are here, it means order is >= pageblock_order.
869 		 * We want to prevent merge between freepages on isolate
870 		 * pageblock and normal pageblock. Without this, pageblock
871 		 * isolation could cause incorrect freepage or CMA accounting.
872 		 *
873 		 * We don't want to hit this code for the more frequent
874 		 * low-order merging.
875 		 */
876 		if (unlikely(has_isolate_pageblock(zone))) {
877 			int buddy_mt;
878 
879 			buddy_pfn = __find_buddy_pfn(pfn, order);
880 			buddy = page + (buddy_pfn - pfn);
881 			buddy_mt = get_pageblock_migratetype(buddy);
882 
883 			if (migratetype != buddy_mt
884 					&& (is_migrate_isolate(migratetype) ||
885 						is_migrate_isolate(buddy_mt)))
886 				goto done_merging;
887 		}
888 		max_order++;
889 		goto continue_merging;
890 	}
891 
892 done_merging:
893 	set_page_order(page, order);
894 
895 	/*
896 	 * If this is not the largest possible page, check if the buddy
897 	 * of the next-highest order is free. If it is, it's possible
898 	 * that pages are being freed that will coalesce soon. In case,
899 	 * that is happening, add the free page to the tail of the list
900 	 * so it's less likely to be used soon and more likely to be merged
901 	 * as a higher order page
902 	 */
903 	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
904 		struct page *higher_page, *higher_buddy;
905 		combined_pfn = buddy_pfn & pfn;
906 		higher_page = page + (combined_pfn - pfn);
907 		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
908 		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
909 		if (pfn_valid_within(buddy_pfn) &&
910 		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
911 			list_add_tail(&page->lru,
912 				&zone->free_area[order].free_list[migratetype]);
913 			goto out;
914 		}
915 	}
916 
917 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
918 out:
919 	zone->free_area[order].nr_free++;
920 }
921 
922 /*
923  * A bad page could be due to a number of fields. Instead of multiple branches,
924  * try and check multiple fields with one check. The caller must do a detailed
925  * check if necessary.
926  */
page_expected_state(struct page * page,unsigned long check_flags)927 static inline bool page_expected_state(struct page *page,
928 					unsigned long check_flags)
929 {
930 	if (unlikely(atomic_read(&page->_mapcount) != -1))
931 		return false;
932 
933 	if (unlikely((unsigned long)page->mapping |
934 			page_ref_count(page) |
935 #ifdef CONFIG_MEMCG
936 			(unsigned long)page->mem_cgroup |
937 #endif
938 			(page->flags & check_flags)))
939 		return false;
940 
941 	return true;
942 }
943 
free_pages_check_bad(struct page * page)944 static void free_pages_check_bad(struct page *page)
945 {
946 	const char *bad_reason;
947 	unsigned long bad_flags;
948 
949 	bad_reason = NULL;
950 	bad_flags = 0;
951 
952 	if (unlikely(atomic_read(&page->_mapcount) != -1))
953 		bad_reason = "nonzero mapcount";
954 	if (unlikely(page->mapping != NULL))
955 		bad_reason = "non-NULL mapping";
956 	if (unlikely(page_ref_count(page) != 0))
957 		bad_reason = "nonzero _refcount";
958 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
959 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
960 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
961 	}
962 #ifdef CONFIG_MEMCG
963 	if (unlikely(page->mem_cgroup))
964 		bad_reason = "page still charged to cgroup";
965 #endif
966 	bad_page(page, bad_reason, bad_flags);
967 }
968 
free_pages_check(struct page * page)969 static inline int free_pages_check(struct page *page)
970 {
971 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
972 		return 0;
973 
974 	/* Something has gone sideways, find it */
975 	free_pages_check_bad(page);
976 	return 1;
977 }
978 
free_tail_pages_check(struct page * head_page,struct page * page)979 static int free_tail_pages_check(struct page *head_page, struct page *page)
980 {
981 	int ret = 1;
982 
983 	/*
984 	 * We rely page->lru.next never has bit 0 set, unless the page
985 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
986 	 */
987 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
988 
989 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
990 		ret = 0;
991 		goto out;
992 	}
993 	switch (page - head_page) {
994 	case 1:
995 		/* the first tail page: ->mapping is compound_mapcount() */
996 		if (unlikely(compound_mapcount(page))) {
997 			bad_page(page, "nonzero compound_mapcount", 0);
998 			goto out;
999 		}
1000 		break;
1001 	case 2:
1002 		/*
1003 		 * the second tail page: ->mapping is
1004 		 * page_deferred_list().next -- ignore value.
1005 		 */
1006 		break;
1007 	default:
1008 		if (page->mapping != TAIL_MAPPING) {
1009 			bad_page(page, "corrupted mapping in tail page", 0);
1010 			goto out;
1011 		}
1012 		break;
1013 	}
1014 	if (unlikely(!PageTail(page))) {
1015 		bad_page(page, "PageTail not set", 0);
1016 		goto out;
1017 	}
1018 	if (unlikely(compound_head(page) != head_page)) {
1019 		bad_page(page, "compound_head not consistent", 0);
1020 		goto out;
1021 	}
1022 	ret = 0;
1023 out:
1024 	page->mapping = NULL;
1025 	clear_compound_head(page);
1026 	return ret;
1027 }
1028 
free_pages_prepare(struct page * page,unsigned int order,bool check_free)1029 static __always_inline bool free_pages_prepare(struct page *page,
1030 					unsigned int order, bool check_free)
1031 {
1032 	int bad = 0;
1033 
1034 	VM_BUG_ON_PAGE(PageTail(page), page);
1035 
1036 	trace_mm_page_free(page, order);
1037 
1038 	/*
1039 	 * Check tail pages before head page information is cleared to
1040 	 * avoid checking PageCompound for order-0 pages.
1041 	 */
1042 	if (unlikely(order)) {
1043 		bool compound = PageCompound(page);
1044 		int i;
1045 
1046 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1047 
1048 		if (compound)
1049 			ClearPageDoubleMap(page);
1050 		for (i = 1; i < (1 << order); i++) {
1051 			if (compound)
1052 				bad += free_tail_pages_check(page, page + i);
1053 			if (unlikely(free_pages_check(page + i))) {
1054 				bad++;
1055 				continue;
1056 			}
1057 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1058 		}
1059 	}
1060 	if (PageMappingFlags(page))
1061 		page->mapping = NULL;
1062 	if (memcg_kmem_enabled() && PageKmemcg(page))
1063 		memcg_kmem_uncharge(page, order);
1064 	if (check_free)
1065 		bad += free_pages_check(page);
1066 	if (bad)
1067 		return false;
1068 
1069 	page_cpupid_reset_last(page);
1070 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1071 	reset_page_owner(page, order);
1072 
1073 	if (!PageHighMem(page)) {
1074 		debug_check_no_locks_freed(page_address(page),
1075 					   PAGE_SIZE << order);
1076 		debug_check_no_obj_freed(page_address(page),
1077 					   PAGE_SIZE << order);
1078 	}
1079 	arch_free_page(page, order);
1080 	kernel_poison_pages(page, 1 << order, 0);
1081 	kernel_map_pages(page, 1 << order, 0);
1082 	kasan_free_pages(page, order);
1083 
1084 	return true;
1085 }
1086 
1087 #ifdef CONFIG_DEBUG_VM
free_pcp_prepare(struct page * page)1088 static inline bool free_pcp_prepare(struct page *page)
1089 {
1090 	return free_pages_prepare(page, 0, true);
1091 }
1092 
bulkfree_pcp_prepare(struct page * page)1093 static inline bool bulkfree_pcp_prepare(struct page *page)
1094 {
1095 	return false;
1096 }
1097 #else
free_pcp_prepare(struct page * page)1098 static bool free_pcp_prepare(struct page *page)
1099 {
1100 	return free_pages_prepare(page, 0, false);
1101 }
1102 
bulkfree_pcp_prepare(struct page * page)1103 static bool bulkfree_pcp_prepare(struct page *page)
1104 {
1105 	return free_pages_check(page);
1106 }
1107 #endif /* CONFIG_DEBUG_VM */
1108 
1109 /*
1110  * Frees a number of pages from the PCP lists
1111  * Assumes all pages on list are in same zone, and of same order.
1112  * count is the number of pages to free.
1113  *
1114  * If the zone was previously in an "all pages pinned" state then look to
1115  * see if this freeing clears that state.
1116  *
1117  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1118  * pinned" detection logic.
1119  */
free_pcppages_bulk(struct zone * zone,int count,struct per_cpu_pages * pcp)1120 static void free_pcppages_bulk(struct zone *zone, int count,
1121 					struct per_cpu_pages *pcp)
1122 {
1123 	int migratetype = 0;
1124 	int batch_free = 0;
1125 	bool isolated_pageblocks;
1126 
1127 	spin_lock(&zone->lock);
1128 	isolated_pageblocks = has_isolate_pageblock(zone);
1129 
1130 	while (count) {
1131 		struct page *page;
1132 		struct list_head *list;
1133 
1134 		/*
1135 		 * Remove pages from lists in a round-robin fashion. A
1136 		 * batch_free count is maintained that is incremented when an
1137 		 * empty list is encountered.  This is so more pages are freed
1138 		 * off fuller lists instead of spinning excessively around empty
1139 		 * lists
1140 		 */
1141 		do {
1142 			batch_free++;
1143 			if (++migratetype == MIGRATE_PCPTYPES)
1144 				migratetype = 0;
1145 			list = &pcp->lists[migratetype];
1146 		} while (list_empty(list));
1147 
1148 		/* This is the only non-empty list. Free them all. */
1149 		if (batch_free == MIGRATE_PCPTYPES)
1150 			batch_free = count;
1151 
1152 		do {
1153 			int mt;	/* migratetype of the to-be-freed page */
1154 
1155 			page = list_last_entry(list, struct page, lru);
1156 			/* must delete as __free_one_page list manipulates */
1157 			list_del(&page->lru);
1158 
1159 			mt = get_pcppage_migratetype(page);
1160 			/* MIGRATE_ISOLATE page should not go to pcplists */
1161 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1162 			/* Pageblock could have been isolated meanwhile */
1163 			if (unlikely(isolated_pageblocks))
1164 				mt = get_pageblock_migratetype(page);
1165 
1166 			if (bulkfree_pcp_prepare(page))
1167 				continue;
1168 
1169 			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1170 			trace_mm_page_pcpu_drain(page, 0, mt);
1171 		} while (--count && --batch_free && !list_empty(list));
1172 	}
1173 	spin_unlock(&zone->lock);
1174 }
1175 
free_one_page(struct zone * zone,struct page * page,unsigned long pfn,unsigned int order,int migratetype)1176 static void free_one_page(struct zone *zone,
1177 				struct page *page, unsigned long pfn,
1178 				unsigned int order,
1179 				int migratetype)
1180 {
1181 	spin_lock(&zone->lock);
1182 	if (unlikely(has_isolate_pageblock(zone) ||
1183 		is_migrate_isolate(migratetype))) {
1184 		migratetype = get_pfnblock_migratetype(page, pfn);
1185 	}
1186 	__free_one_page(page, pfn, zone, order, migratetype);
1187 	spin_unlock(&zone->lock);
1188 }
1189 
__init_single_page(struct page * page,unsigned long pfn,unsigned long zone,int nid)1190 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1191 				unsigned long zone, int nid)
1192 {
1193 	set_page_links(page, zone, nid, pfn);
1194 	init_page_count(page);
1195 	page_mapcount_reset(page);
1196 	page_cpupid_reset_last(page);
1197 
1198 	INIT_LIST_HEAD(&page->lru);
1199 #ifdef WANT_PAGE_VIRTUAL
1200 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1201 	if (!is_highmem_idx(zone))
1202 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1203 #endif
1204 }
1205 
__init_single_pfn(unsigned long pfn,unsigned long zone,int nid)1206 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1207 					int nid)
1208 {
1209 	return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1210 }
1211 
1212 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
init_reserved_page(unsigned long pfn)1213 static void __meminit init_reserved_page(unsigned long pfn)
1214 {
1215 	pg_data_t *pgdat;
1216 	int nid, zid;
1217 
1218 	if (!early_page_uninitialised(pfn))
1219 		return;
1220 
1221 	nid = early_pfn_to_nid(pfn);
1222 	pgdat = NODE_DATA(nid);
1223 
1224 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1225 		struct zone *zone = &pgdat->node_zones[zid];
1226 
1227 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1228 			break;
1229 	}
1230 	__init_single_pfn(pfn, zid, nid);
1231 }
1232 #else
init_reserved_page(unsigned long pfn)1233 static inline void init_reserved_page(unsigned long pfn)
1234 {
1235 }
1236 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1237 
1238 /*
1239  * Initialised pages do not have PageReserved set. This function is
1240  * called for each range allocated by the bootmem allocator and
1241  * marks the pages PageReserved. The remaining valid pages are later
1242  * sent to the buddy page allocator.
1243  */
reserve_bootmem_region(phys_addr_t start,phys_addr_t end)1244 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1245 {
1246 	unsigned long start_pfn = PFN_DOWN(start);
1247 	unsigned long end_pfn = PFN_UP(end);
1248 
1249 	for (; start_pfn < end_pfn; start_pfn++) {
1250 		if (pfn_valid(start_pfn)) {
1251 			struct page *page = pfn_to_page(start_pfn);
1252 
1253 			init_reserved_page(start_pfn);
1254 
1255 			/* Avoid false-positive PageTail() */
1256 			INIT_LIST_HEAD(&page->lru);
1257 
1258 			SetPageReserved(page);
1259 		}
1260 	}
1261 }
1262 
__free_pages_ok(struct page * page,unsigned int order)1263 static void __free_pages_ok(struct page *page, unsigned int order)
1264 {
1265 	unsigned long flags;
1266 	int migratetype;
1267 	unsigned long pfn = page_to_pfn(page);
1268 
1269 	if (!free_pages_prepare(page, order, true))
1270 		return;
1271 
1272 	migratetype = get_pfnblock_migratetype(page, pfn);
1273 	local_irq_save(flags);
1274 	__count_vm_events(PGFREE, 1 << order);
1275 	free_one_page(page_zone(page), page, pfn, order, migratetype);
1276 	local_irq_restore(flags);
1277 }
1278 
__free_pages_boot_core(struct page * page,unsigned int order)1279 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1280 {
1281 	unsigned int nr_pages = 1 << order;
1282 	struct page *p = page;
1283 	unsigned int loop;
1284 
1285 	prefetchw(p);
1286 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1287 		prefetchw(p + 1);
1288 		__ClearPageReserved(p);
1289 		set_page_count(p, 0);
1290 	}
1291 	__ClearPageReserved(p);
1292 	set_page_count(p, 0);
1293 
1294 	page_zone(page)->managed_pages += nr_pages;
1295 	set_page_refcounted(page);
1296 	__free_pages(page, order);
1297 }
1298 
1299 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1300 	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1301 
1302 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1303 
early_pfn_to_nid(unsigned long pfn)1304 int __meminit early_pfn_to_nid(unsigned long pfn)
1305 {
1306 	static DEFINE_SPINLOCK(early_pfn_lock);
1307 	int nid;
1308 
1309 	spin_lock(&early_pfn_lock);
1310 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1311 	if (nid < 0)
1312 		nid = first_online_node;
1313 	spin_unlock(&early_pfn_lock);
1314 
1315 	return nid;
1316 }
1317 #endif
1318 
1319 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1320 static inline bool __meminit __maybe_unused
meminit_pfn_in_nid(unsigned long pfn,int node,struct mminit_pfnnid_cache * state)1321 meminit_pfn_in_nid(unsigned long pfn, int node,
1322 		   struct mminit_pfnnid_cache *state)
1323 {
1324 	int nid;
1325 
1326 	nid = __early_pfn_to_nid(pfn, state);
1327 	if (nid >= 0 && nid != node)
1328 		return false;
1329 	return true;
1330 }
1331 
1332 /* Only safe to use early in boot when initialisation is single-threaded */
early_pfn_in_nid(unsigned long pfn,int node)1333 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1334 {
1335 	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1336 }
1337 
1338 #else
1339 
early_pfn_in_nid(unsigned long pfn,int node)1340 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1341 {
1342 	return true;
1343 }
1344 static inline bool __meminit  __maybe_unused
meminit_pfn_in_nid(unsigned long pfn,int node,struct mminit_pfnnid_cache * state)1345 meminit_pfn_in_nid(unsigned long pfn, int node,
1346 		   struct mminit_pfnnid_cache *state)
1347 {
1348 	return true;
1349 }
1350 #endif
1351 
1352 
__free_pages_bootmem(struct page * page,unsigned long pfn,unsigned int order)1353 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1354 							unsigned int order)
1355 {
1356 	if (early_page_uninitialised(pfn))
1357 		return;
1358 	return __free_pages_boot_core(page, order);
1359 }
1360 
1361 /*
1362  * Check that the whole (or subset of) a pageblock given by the interval of
1363  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1364  * with the migration of free compaction scanner. The scanners then need to
1365  * use only pfn_valid_within() check for arches that allow holes within
1366  * pageblocks.
1367  *
1368  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1369  *
1370  * It's possible on some configurations to have a setup like node0 node1 node0
1371  * i.e. it's possible that all pages within a zones range of pages do not
1372  * belong to a single zone. We assume that a border between node0 and node1
1373  * can occur within a single pageblock, but not a node0 node1 node0
1374  * interleaving within a single pageblock. It is therefore sufficient to check
1375  * the first and last page of a pageblock and avoid checking each individual
1376  * page in a pageblock.
1377  */
__pageblock_pfn_to_page(unsigned long start_pfn,unsigned long end_pfn,struct zone * zone)1378 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1379 				     unsigned long end_pfn, struct zone *zone)
1380 {
1381 	struct page *start_page;
1382 	struct page *end_page;
1383 
1384 	/* end_pfn is one past the range we are checking */
1385 	end_pfn--;
1386 
1387 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1388 		return NULL;
1389 
1390 	start_page = pfn_to_online_page(start_pfn);
1391 	if (!start_page)
1392 		return NULL;
1393 
1394 	if (page_zone(start_page) != zone)
1395 		return NULL;
1396 
1397 	end_page = pfn_to_page(end_pfn);
1398 
1399 	/* This gives a shorter code than deriving page_zone(end_page) */
1400 	if (page_zone_id(start_page) != page_zone_id(end_page))
1401 		return NULL;
1402 
1403 	return start_page;
1404 }
1405 
set_zone_contiguous(struct zone * zone)1406 void set_zone_contiguous(struct zone *zone)
1407 {
1408 	unsigned long block_start_pfn = zone->zone_start_pfn;
1409 	unsigned long block_end_pfn;
1410 
1411 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1412 	for (; block_start_pfn < zone_end_pfn(zone);
1413 			block_start_pfn = block_end_pfn,
1414 			 block_end_pfn += pageblock_nr_pages) {
1415 
1416 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1417 
1418 		if (!__pageblock_pfn_to_page(block_start_pfn,
1419 					     block_end_pfn, zone))
1420 			return;
1421 	}
1422 
1423 	/* We confirm that there is no hole */
1424 	zone->contiguous = true;
1425 }
1426 
clear_zone_contiguous(struct zone * zone)1427 void clear_zone_contiguous(struct zone *zone)
1428 {
1429 	zone->contiguous = false;
1430 }
1431 
1432 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
deferred_free_range(struct page * page,unsigned long pfn,int nr_pages)1433 static void __init deferred_free_range(struct page *page,
1434 					unsigned long pfn, int nr_pages)
1435 {
1436 	int i;
1437 
1438 	if (!page)
1439 		return;
1440 
1441 	/* Free a large naturally-aligned chunk if possible */
1442 	if (nr_pages == pageblock_nr_pages &&
1443 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1444 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1445 		__free_pages_boot_core(page, pageblock_order);
1446 		return;
1447 	}
1448 
1449 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1450 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1451 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1452 		__free_pages_boot_core(page, 0);
1453 	}
1454 }
1455 
1456 /* Completion tracking for deferred_init_memmap() threads */
1457 static atomic_t pgdat_init_n_undone __initdata;
1458 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1459 
pgdat_init_report_one_done(void)1460 static inline void __init pgdat_init_report_one_done(void)
1461 {
1462 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1463 		complete(&pgdat_init_all_done_comp);
1464 }
1465 
1466 /* Initialise remaining memory on a node */
deferred_init_memmap(void * data)1467 static int __init deferred_init_memmap(void *data)
1468 {
1469 	pg_data_t *pgdat = data;
1470 	int nid = pgdat->node_id;
1471 	struct mminit_pfnnid_cache nid_init_state = { };
1472 	unsigned long start = jiffies;
1473 	unsigned long nr_pages = 0;
1474 	unsigned long walk_start, walk_end;
1475 	int i, zid;
1476 	struct zone *zone;
1477 	unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1478 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1479 
1480 	if (first_init_pfn == ULONG_MAX) {
1481 		pgdat_init_report_one_done();
1482 		return 0;
1483 	}
1484 
1485 	/* Bind memory initialisation thread to a local node if possible */
1486 	if (!cpumask_empty(cpumask))
1487 		set_cpus_allowed_ptr(current, cpumask);
1488 
1489 	/* Sanity check boundaries */
1490 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1491 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1492 	pgdat->first_deferred_pfn = ULONG_MAX;
1493 
1494 	/* Only the highest zone is deferred so find it */
1495 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1496 		zone = pgdat->node_zones + zid;
1497 		if (first_init_pfn < zone_end_pfn(zone))
1498 			break;
1499 	}
1500 
1501 	for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1502 		unsigned long pfn, end_pfn;
1503 		struct page *page = NULL;
1504 		struct page *free_base_page = NULL;
1505 		unsigned long free_base_pfn = 0;
1506 		int nr_to_free = 0;
1507 
1508 		end_pfn = min(walk_end, zone_end_pfn(zone));
1509 		pfn = first_init_pfn;
1510 		if (pfn < walk_start)
1511 			pfn = walk_start;
1512 		if (pfn < zone->zone_start_pfn)
1513 			pfn = zone->zone_start_pfn;
1514 
1515 		for (; pfn < end_pfn; pfn++) {
1516 			if (!pfn_valid_within(pfn))
1517 				goto free_range;
1518 
1519 			/*
1520 			 * Ensure pfn_valid is checked every
1521 			 * pageblock_nr_pages for memory holes
1522 			 */
1523 			if ((pfn & (pageblock_nr_pages - 1)) == 0) {
1524 				if (!pfn_valid(pfn)) {
1525 					page = NULL;
1526 					goto free_range;
1527 				}
1528 			}
1529 
1530 			if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1531 				page = NULL;
1532 				goto free_range;
1533 			}
1534 
1535 			/* Minimise pfn page lookups and scheduler checks */
1536 			if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
1537 				page++;
1538 			} else {
1539 				nr_pages += nr_to_free;
1540 				deferred_free_range(free_base_page,
1541 						free_base_pfn, nr_to_free);
1542 				free_base_page = NULL;
1543 				free_base_pfn = nr_to_free = 0;
1544 
1545 				page = pfn_to_page(pfn);
1546 				cond_resched();
1547 			}
1548 
1549 			if (page->flags) {
1550 				VM_BUG_ON(page_zone(page) != zone);
1551 				goto free_range;
1552 			}
1553 
1554 			__init_single_page(page, pfn, zid, nid);
1555 			if (!free_base_page) {
1556 				free_base_page = page;
1557 				free_base_pfn = pfn;
1558 				nr_to_free = 0;
1559 			}
1560 			nr_to_free++;
1561 
1562 			/* Where possible, batch up pages for a single free */
1563 			continue;
1564 free_range:
1565 			/* Free the current block of pages to allocator */
1566 			nr_pages += nr_to_free;
1567 			deferred_free_range(free_base_page, free_base_pfn,
1568 								nr_to_free);
1569 			free_base_page = NULL;
1570 			free_base_pfn = nr_to_free = 0;
1571 		}
1572 		/* Free the last block of pages to allocator */
1573 		nr_pages += nr_to_free;
1574 		deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
1575 
1576 		first_init_pfn = max(end_pfn, first_init_pfn);
1577 	}
1578 
1579 	/* Sanity check that the next zone really is unpopulated */
1580 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1581 
1582 	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1583 					jiffies_to_msecs(jiffies - start));
1584 
1585 	pgdat_init_report_one_done();
1586 	return 0;
1587 }
1588 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1589 
page_alloc_init_late(void)1590 void __init page_alloc_init_late(void)
1591 {
1592 	struct zone *zone;
1593 
1594 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1595 	int nid;
1596 
1597 	/* There will be num_node_state(N_MEMORY) threads */
1598 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1599 	for_each_node_state(nid, N_MEMORY) {
1600 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1601 	}
1602 
1603 	/* Block until all are initialised */
1604 	wait_for_completion(&pgdat_init_all_done_comp);
1605 
1606 	/* Reinit limits that are based on free pages after the kernel is up */
1607 	files_maxfiles_init();
1608 #endif
1609 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1610 	/* Discard memblock private memory */
1611 	memblock_discard();
1612 #endif
1613 
1614 	for_each_populated_zone(zone)
1615 		set_zone_contiguous(zone);
1616 }
1617 
1618 #ifdef CONFIG_CMA
1619 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
init_cma_reserved_pageblock(struct page * page)1620 void __init init_cma_reserved_pageblock(struct page *page)
1621 {
1622 	unsigned i = pageblock_nr_pages;
1623 	struct page *p = page;
1624 
1625 	do {
1626 		__ClearPageReserved(p);
1627 		set_page_count(p, 0);
1628 	} while (++p, --i);
1629 
1630 	set_pageblock_migratetype(page, MIGRATE_CMA);
1631 
1632 	if (pageblock_order >= MAX_ORDER) {
1633 		i = pageblock_nr_pages;
1634 		p = page;
1635 		do {
1636 			set_page_refcounted(p);
1637 			__free_pages(p, MAX_ORDER - 1);
1638 			p += MAX_ORDER_NR_PAGES;
1639 		} while (i -= MAX_ORDER_NR_PAGES);
1640 	} else {
1641 		set_page_refcounted(page);
1642 		__free_pages(page, pageblock_order);
1643 	}
1644 
1645 	adjust_managed_page_count(page, pageblock_nr_pages);
1646 }
1647 #endif
1648 
1649 /*
1650  * The order of subdivision here is critical for the IO subsystem.
1651  * Please do not alter this order without good reasons and regression
1652  * testing. Specifically, as large blocks of memory are subdivided,
1653  * the order in which smaller blocks are delivered depends on the order
1654  * they're subdivided in this function. This is the primary factor
1655  * influencing the order in which pages are delivered to the IO
1656  * subsystem according to empirical testing, and this is also justified
1657  * by considering the behavior of a buddy system containing a single
1658  * large block of memory acted on by a series of small allocations.
1659  * This behavior is a critical factor in sglist merging's success.
1660  *
1661  * -- nyc
1662  */
expand(struct zone * zone,struct page * page,int low,int high,struct free_area * area,int migratetype)1663 static inline void expand(struct zone *zone, struct page *page,
1664 	int low, int high, struct free_area *area,
1665 	int migratetype)
1666 {
1667 	unsigned long size = 1 << high;
1668 
1669 	while (high > low) {
1670 		area--;
1671 		high--;
1672 		size >>= 1;
1673 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1674 
1675 		/*
1676 		 * Mark as guard pages (or page), that will allow to
1677 		 * merge back to allocator when buddy will be freed.
1678 		 * Corresponding page table entries will not be touched,
1679 		 * pages will stay not present in virtual address space
1680 		 */
1681 		if (set_page_guard(zone, &page[size], high, migratetype))
1682 			continue;
1683 
1684 		list_add(&page[size].lru, &area->free_list[migratetype]);
1685 		area->nr_free++;
1686 		set_page_order(&page[size], high);
1687 	}
1688 }
1689 
check_new_page_bad(struct page * page)1690 static void check_new_page_bad(struct page *page)
1691 {
1692 	const char *bad_reason = NULL;
1693 	unsigned long bad_flags = 0;
1694 
1695 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1696 		bad_reason = "nonzero mapcount";
1697 	if (unlikely(page->mapping != NULL))
1698 		bad_reason = "non-NULL mapping";
1699 	if (unlikely(page_ref_count(page) != 0))
1700 		bad_reason = "nonzero _count";
1701 	if (unlikely(page->flags & __PG_HWPOISON)) {
1702 		bad_reason = "HWPoisoned (hardware-corrupted)";
1703 		bad_flags = __PG_HWPOISON;
1704 		/* Don't complain about hwpoisoned pages */
1705 		page_mapcount_reset(page); /* remove PageBuddy */
1706 		return;
1707 	}
1708 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1709 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1710 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1711 	}
1712 #ifdef CONFIG_MEMCG
1713 	if (unlikely(page->mem_cgroup))
1714 		bad_reason = "page still charged to cgroup";
1715 #endif
1716 	bad_page(page, bad_reason, bad_flags);
1717 }
1718 
1719 /*
1720  * This page is about to be returned from the page allocator
1721  */
check_new_page(struct page * page)1722 static inline int check_new_page(struct page *page)
1723 {
1724 	if (likely(page_expected_state(page,
1725 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1726 		return 0;
1727 
1728 	check_new_page_bad(page);
1729 	return 1;
1730 }
1731 
free_pages_prezeroed(void)1732 static inline bool free_pages_prezeroed(void)
1733 {
1734 	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1735 		page_poisoning_enabled();
1736 }
1737 
1738 #ifdef CONFIG_DEBUG_VM
check_pcp_refill(struct page * page)1739 static bool check_pcp_refill(struct page *page)
1740 {
1741 	return false;
1742 }
1743 
check_new_pcp(struct page * page)1744 static bool check_new_pcp(struct page *page)
1745 {
1746 	return check_new_page(page);
1747 }
1748 #else
check_pcp_refill(struct page * page)1749 static bool check_pcp_refill(struct page *page)
1750 {
1751 	return check_new_page(page);
1752 }
check_new_pcp(struct page * page)1753 static bool check_new_pcp(struct page *page)
1754 {
1755 	return false;
1756 }
1757 #endif /* CONFIG_DEBUG_VM */
1758 
check_new_pages(struct page * page,unsigned int order)1759 static bool check_new_pages(struct page *page, unsigned int order)
1760 {
1761 	int i;
1762 	for (i = 0; i < (1 << order); i++) {
1763 		struct page *p = page + i;
1764 
1765 		if (unlikely(check_new_page(p)))
1766 			return true;
1767 	}
1768 
1769 	return false;
1770 }
1771 
post_alloc_hook(struct page * page,unsigned int order,gfp_t gfp_flags)1772 inline void post_alloc_hook(struct page *page, unsigned int order,
1773 				gfp_t gfp_flags)
1774 {
1775 	set_page_private(page, 0);
1776 	set_page_refcounted(page);
1777 
1778 	arch_alloc_page(page, order);
1779 	kernel_map_pages(page, 1 << order, 1);
1780 	kasan_alloc_pages(page, order);
1781 	kernel_poison_pages(page, 1 << order, 1);
1782 	set_page_owner(page, order, gfp_flags);
1783 }
1784 
prep_new_page(struct page * page,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags)1785 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1786 							unsigned int alloc_flags)
1787 {
1788 	int i;
1789 
1790 	post_alloc_hook(page, order, gfp_flags);
1791 
1792 	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1793 		for (i = 0; i < (1 << order); i++)
1794 			clear_highpage(page + i);
1795 
1796 	if (order && (gfp_flags & __GFP_COMP))
1797 		prep_compound_page(page, order);
1798 
1799 	/*
1800 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1801 	 * allocate the page. The expectation is that the caller is taking
1802 	 * steps that will free more memory. The caller should avoid the page
1803 	 * being used for !PFMEMALLOC purposes.
1804 	 */
1805 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1806 		set_page_pfmemalloc(page);
1807 	else
1808 		clear_page_pfmemalloc(page);
1809 }
1810 
1811 /*
1812  * Go through the free lists for the given migratetype and remove
1813  * the smallest available page from the freelists
1814  */
1815 static inline
__rmqueue_smallest(struct zone * zone,unsigned int order,int migratetype)1816 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1817 						int migratetype)
1818 {
1819 	unsigned int current_order;
1820 	struct free_area *area;
1821 	struct page *page;
1822 
1823 	/* Find a page of the appropriate size in the preferred list */
1824 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1825 		area = &(zone->free_area[current_order]);
1826 		page = list_first_entry_or_null(&area->free_list[migratetype],
1827 							struct page, lru);
1828 		if (!page)
1829 			continue;
1830 		list_del(&page->lru);
1831 		rmv_page_order(page);
1832 		area->nr_free--;
1833 		expand(zone, page, order, current_order, area, migratetype);
1834 		set_pcppage_migratetype(page, migratetype);
1835 		return page;
1836 	}
1837 
1838 	return NULL;
1839 }
1840 
1841 
1842 /*
1843  * This array describes the order lists are fallen back to when
1844  * the free lists for the desirable migrate type are depleted
1845  */
1846 static int fallbacks[MIGRATE_TYPES][4] = {
1847 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
1848 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
1849 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1850 #ifdef CONFIG_CMA
1851 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1852 #endif
1853 #ifdef CONFIG_MEMORY_ISOLATION
1854 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1855 #endif
1856 };
1857 
1858 #ifdef CONFIG_CMA
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)1859 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1860 					unsigned int order)
1861 {
1862 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1863 }
1864 #else
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)1865 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1866 					unsigned int order) { return NULL; }
1867 #endif
1868 
1869 /*
1870  * Move the free pages in a range to the free lists of the requested type.
1871  * Note that start_page and end_pages are not aligned on a pageblock
1872  * boundary. If alignment is required, use move_freepages_block()
1873  */
move_freepages(struct zone * zone,struct page * start_page,struct page * end_page,int migratetype,int * num_movable)1874 static int move_freepages(struct zone *zone,
1875 			  struct page *start_page, struct page *end_page,
1876 			  int migratetype, int *num_movable)
1877 {
1878 	struct page *page;
1879 	unsigned int order;
1880 	int pages_moved = 0;
1881 
1882 #ifndef CONFIG_HOLES_IN_ZONE
1883 	/*
1884 	 * page_zone is not safe to call in this context when
1885 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1886 	 * anyway as we check zone boundaries in move_freepages_block().
1887 	 * Remove at a later date when no bug reports exist related to
1888 	 * grouping pages by mobility
1889 	 */
1890 	VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1891 #endif
1892 
1893 	if (num_movable)
1894 		*num_movable = 0;
1895 
1896 	for (page = start_page; page <= end_page;) {
1897 		if (!pfn_valid_within(page_to_pfn(page))) {
1898 			page++;
1899 			continue;
1900 		}
1901 
1902 		/* Make sure we are not inadvertently changing nodes */
1903 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1904 
1905 		if (!PageBuddy(page)) {
1906 			/*
1907 			 * We assume that pages that could be isolated for
1908 			 * migration are movable. But we don't actually try
1909 			 * isolating, as that would be expensive.
1910 			 */
1911 			if (num_movable &&
1912 					(PageLRU(page) || __PageMovable(page)))
1913 				(*num_movable)++;
1914 
1915 			page++;
1916 			continue;
1917 		}
1918 
1919 		order = page_order(page);
1920 		list_move(&page->lru,
1921 			  &zone->free_area[order].free_list[migratetype]);
1922 		page += 1 << order;
1923 		pages_moved += 1 << order;
1924 	}
1925 
1926 	return pages_moved;
1927 }
1928 
move_freepages_block(struct zone * zone,struct page * page,int migratetype,int * num_movable)1929 int move_freepages_block(struct zone *zone, struct page *page,
1930 				int migratetype, int *num_movable)
1931 {
1932 	unsigned long start_pfn, end_pfn;
1933 	struct page *start_page, *end_page;
1934 
1935 	start_pfn = page_to_pfn(page);
1936 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1937 	start_page = pfn_to_page(start_pfn);
1938 	end_page = start_page + pageblock_nr_pages - 1;
1939 	end_pfn = start_pfn + pageblock_nr_pages - 1;
1940 
1941 	/* Do not cross zone boundaries */
1942 	if (!zone_spans_pfn(zone, start_pfn))
1943 		start_page = page;
1944 	if (!zone_spans_pfn(zone, end_pfn))
1945 		return 0;
1946 
1947 	return move_freepages(zone, start_page, end_page, migratetype,
1948 								num_movable);
1949 }
1950 
change_pageblock_range(struct page * pageblock_page,int start_order,int migratetype)1951 static void change_pageblock_range(struct page *pageblock_page,
1952 					int start_order, int migratetype)
1953 {
1954 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1955 
1956 	while (nr_pageblocks--) {
1957 		set_pageblock_migratetype(pageblock_page, migratetype);
1958 		pageblock_page += pageblock_nr_pages;
1959 	}
1960 }
1961 
1962 /*
1963  * When we are falling back to another migratetype during allocation, try to
1964  * steal extra free pages from the same pageblocks to satisfy further
1965  * allocations, instead of polluting multiple pageblocks.
1966  *
1967  * If we are stealing a relatively large buddy page, it is likely there will
1968  * be more free pages in the pageblock, so try to steal them all. For
1969  * reclaimable and unmovable allocations, we steal regardless of page size,
1970  * as fragmentation caused by those allocations polluting movable pageblocks
1971  * is worse than movable allocations stealing from unmovable and reclaimable
1972  * pageblocks.
1973  */
can_steal_fallback(unsigned int order,int start_mt)1974 static bool can_steal_fallback(unsigned int order, int start_mt)
1975 {
1976 	/*
1977 	 * Leaving this order check is intended, although there is
1978 	 * relaxed order check in next check. The reason is that
1979 	 * we can actually steal whole pageblock if this condition met,
1980 	 * but, below check doesn't guarantee it and that is just heuristic
1981 	 * so could be changed anytime.
1982 	 */
1983 	if (order >= pageblock_order)
1984 		return true;
1985 
1986 	if (order >= pageblock_order / 2 ||
1987 		start_mt == MIGRATE_RECLAIMABLE ||
1988 		start_mt == MIGRATE_UNMOVABLE ||
1989 		page_group_by_mobility_disabled)
1990 		return true;
1991 
1992 	return false;
1993 }
1994 
1995 /*
1996  * This function implements actual steal behaviour. If order is large enough,
1997  * we can steal whole pageblock. If not, we first move freepages in this
1998  * pageblock to our migratetype and determine how many already-allocated pages
1999  * are there in the pageblock with a compatible migratetype. If at least half
2000  * of pages are free or compatible, we can change migratetype of the pageblock
2001  * itself, so pages freed in the future will be put on the correct free list.
2002  */
steal_suitable_fallback(struct zone * zone,struct page * page,int start_type,bool whole_block)2003 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2004 					int start_type, bool whole_block)
2005 {
2006 	unsigned int current_order = page_order(page);
2007 	struct free_area *area;
2008 	int free_pages, movable_pages, alike_pages;
2009 	int old_block_type;
2010 
2011 	old_block_type = get_pageblock_migratetype(page);
2012 
2013 	/*
2014 	 * This can happen due to races and we want to prevent broken
2015 	 * highatomic accounting.
2016 	 */
2017 	if (is_migrate_highatomic(old_block_type))
2018 		goto single_page;
2019 
2020 	/* Take ownership for orders >= pageblock_order */
2021 	if (current_order >= pageblock_order) {
2022 		change_pageblock_range(page, current_order, start_type);
2023 		goto single_page;
2024 	}
2025 
2026 	/* We are not allowed to try stealing from the whole block */
2027 	if (!whole_block)
2028 		goto single_page;
2029 
2030 	free_pages = move_freepages_block(zone, page, start_type,
2031 						&movable_pages);
2032 	/*
2033 	 * Determine how many pages are compatible with our allocation.
2034 	 * For movable allocation, it's the number of movable pages which
2035 	 * we just obtained. For other types it's a bit more tricky.
2036 	 */
2037 	if (start_type == MIGRATE_MOVABLE) {
2038 		alike_pages = movable_pages;
2039 	} else {
2040 		/*
2041 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2042 		 * to MOVABLE pageblock, consider all non-movable pages as
2043 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2044 		 * vice versa, be conservative since we can't distinguish the
2045 		 * exact migratetype of non-movable pages.
2046 		 */
2047 		if (old_block_type == MIGRATE_MOVABLE)
2048 			alike_pages = pageblock_nr_pages
2049 						- (free_pages + movable_pages);
2050 		else
2051 			alike_pages = 0;
2052 	}
2053 
2054 	/* moving whole block can fail due to zone boundary conditions */
2055 	if (!free_pages)
2056 		goto single_page;
2057 
2058 	/*
2059 	 * If a sufficient number of pages in the block are either free or of
2060 	 * comparable migratability as our allocation, claim the whole block.
2061 	 */
2062 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2063 			page_group_by_mobility_disabled)
2064 		set_pageblock_migratetype(page, start_type);
2065 
2066 	return;
2067 
2068 single_page:
2069 	area = &zone->free_area[current_order];
2070 	list_move(&page->lru, &area->free_list[start_type]);
2071 }
2072 
2073 /*
2074  * Check whether there is a suitable fallback freepage with requested order.
2075  * If only_stealable is true, this function returns fallback_mt only if
2076  * we can steal other freepages all together. This would help to reduce
2077  * fragmentation due to mixed migratetype pages in one pageblock.
2078  */
find_suitable_fallback(struct free_area * area,unsigned int order,int migratetype,bool only_stealable,bool * can_steal)2079 int find_suitable_fallback(struct free_area *area, unsigned int order,
2080 			int migratetype, bool only_stealable, bool *can_steal)
2081 {
2082 	int i;
2083 	int fallback_mt;
2084 
2085 	if (area->nr_free == 0)
2086 		return -1;
2087 
2088 	*can_steal = false;
2089 	for (i = 0;; i++) {
2090 		fallback_mt = fallbacks[migratetype][i];
2091 		if (fallback_mt == MIGRATE_TYPES)
2092 			break;
2093 
2094 		if (list_empty(&area->free_list[fallback_mt]))
2095 			continue;
2096 
2097 		if (can_steal_fallback(order, migratetype))
2098 			*can_steal = true;
2099 
2100 		if (!only_stealable)
2101 			return fallback_mt;
2102 
2103 		if (*can_steal)
2104 			return fallback_mt;
2105 	}
2106 
2107 	return -1;
2108 }
2109 
2110 /*
2111  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2112  * there are no empty page blocks that contain a page with a suitable order
2113  */
reserve_highatomic_pageblock(struct page * page,struct zone * zone,unsigned int alloc_order)2114 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2115 				unsigned int alloc_order)
2116 {
2117 	int mt;
2118 	unsigned long max_managed, flags;
2119 
2120 	/*
2121 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2122 	 * Check is race-prone but harmless.
2123 	 */
2124 	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2125 	if (zone->nr_reserved_highatomic >= max_managed)
2126 		return;
2127 
2128 	spin_lock_irqsave(&zone->lock, flags);
2129 
2130 	/* Recheck the nr_reserved_highatomic limit under the lock */
2131 	if (zone->nr_reserved_highatomic >= max_managed)
2132 		goto out_unlock;
2133 
2134 	/* Yoink! */
2135 	mt = get_pageblock_migratetype(page);
2136 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2137 	    && !is_migrate_cma(mt)) {
2138 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2139 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2140 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2141 	}
2142 
2143 out_unlock:
2144 	spin_unlock_irqrestore(&zone->lock, flags);
2145 }
2146 
2147 /*
2148  * Used when an allocation is about to fail under memory pressure. This
2149  * potentially hurts the reliability of high-order allocations when under
2150  * intense memory pressure but failed atomic allocations should be easier
2151  * to recover from than an OOM.
2152  *
2153  * If @force is true, try to unreserve a pageblock even though highatomic
2154  * pageblock is exhausted.
2155  */
unreserve_highatomic_pageblock(const struct alloc_context * ac,bool force)2156 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2157 						bool force)
2158 {
2159 	struct zonelist *zonelist = ac->zonelist;
2160 	unsigned long flags;
2161 	struct zoneref *z;
2162 	struct zone *zone;
2163 	struct page *page;
2164 	int order;
2165 	bool ret;
2166 
2167 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2168 								ac->nodemask) {
2169 		/*
2170 		 * Preserve at least one pageblock unless memory pressure
2171 		 * is really high.
2172 		 */
2173 		if (!force && zone->nr_reserved_highatomic <=
2174 					pageblock_nr_pages)
2175 			continue;
2176 
2177 		spin_lock_irqsave(&zone->lock, flags);
2178 		for (order = 0; order < MAX_ORDER; order++) {
2179 			struct free_area *area = &(zone->free_area[order]);
2180 
2181 			page = list_first_entry_or_null(
2182 					&area->free_list[MIGRATE_HIGHATOMIC],
2183 					struct page, lru);
2184 			if (!page)
2185 				continue;
2186 
2187 			/*
2188 			 * In page freeing path, migratetype change is racy so
2189 			 * we can counter several free pages in a pageblock
2190 			 * in this loop althoug we changed the pageblock type
2191 			 * from highatomic to ac->migratetype. So we should
2192 			 * adjust the count once.
2193 			 */
2194 			if (is_migrate_highatomic_page(page)) {
2195 				/*
2196 				 * It should never happen but changes to
2197 				 * locking could inadvertently allow a per-cpu
2198 				 * drain to add pages to MIGRATE_HIGHATOMIC
2199 				 * while unreserving so be safe and watch for
2200 				 * underflows.
2201 				 */
2202 				zone->nr_reserved_highatomic -= min(
2203 						pageblock_nr_pages,
2204 						zone->nr_reserved_highatomic);
2205 			}
2206 
2207 			/*
2208 			 * Convert to ac->migratetype and avoid the normal
2209 			 * pageblock stealing heuristics. Minimally, the caller
2210 			 * is doing the work and needs the pages. More
2211 			 * importantly, if the block was always converted to
2212 			 * MIGRATE_UNMOVABLE or another type then the number
2213 			 * of pageblocks that cannot be completely freed
2214 			 * may increase.
2215 			 */
2216 			set_pageblock_migratetype(page, ac->migratetype);
2217 			ret = move_freepages_block(zone, page, ac->migratetype,
2218 									NULL);
2219 			if (ret) {
2220 				spin_unlock_irqrestore(&zone->lock, flags);
2221 				return ret;
2222 			}
2223 		}
2224 		spin_unlock_irqrestore(&zone->lock, flags);
2225 	}
2226 
2227 	return false;
2228 }
2229 
2230 /*
2231  * Try finding a free buddy page on the fallback list and put it on the free
2232  * list of requested migratetype, possibly along with other pages from the same
2233  * block, depending on fragmentation avoidance heuristics. Returns true if
2234  * fallback was found so that __rmqueue_smallest() can grab it.
2235  *
2236  * The use of signed ints for order and current_order is a deliberate
2237  * deviation from the rest of this file, to make the for loop
2238  * condition simpler.
2239  */
2240 static inline bool
__rmqueue_fallback(struct zone * zone,int order,int start_migratetype)2241 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2242 {
2243 	struct free_area *area;
2244 	int current_order;
2245 	struct page *page;
2246 	int fallback_mt;
2247 	bool can_steal;
2248 
2249 	/*
2250 	 * Find the largest available free page in the other list. This roughly
2251 	 * approximates finding the pageblock with the most free pages, which
2252 	 * would be too costly to do exactly.
2253 	 */
2254 	for (current_order = MAX_ORDER - 1; current_order >= order;
2255 				--current_order) {
2256 		area = &(zone->free_area[current_order]);
2257 		fallback_mt = find_suitable_fallback(area, current_order,
2258 				start_migratetype, false, &can_steal);
2259 		if (fallback_mt == -1)
2260 			continue;
2261 
2262 		/*
2263 		 * We cannot steal all free pages from the pageblock and the
2264 		 * requested migratetype is movable. In that case it's better to
2265 		 * steal and split the smallest available page instead of the
2266 		 * largest available page, because even if the next movable
2267 		 * allocation falls back into a different pageblock than this
2268 		 * one, it won't cause permanent fragmentation.
2269 		 */
2270 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2271 					&& current_order > order)
2272 			goto find_smallest;
2273 
2274 		goto do_steal;
2275 	}
2276 
2277 	return false;
2278 
2279 find_smallest:
2280 	for (current_order = order; current_order < MAX_ORDER;
2281 							current_order++) {
2282 		area = &(zone->free_area[current_order]);
2283 		fallback_mt = find_suitable_fallback(area, current_order,
2284 				start_migratetype, false, &can_steal);
2285 		if (fallback_mt != -1)
2286 			break;
2287 	}
2288 
2289 	/*
2290 	 * This should not happen - we already found a suitable fallback
2291 	 * when looking for the largest page.
2292 	 */
2293 	VM_BUG_ON(current_order == MAX_ORDER);
2294 
2295 do_steal:
2296 	page = list_first_entry(&area->free_list[fallback_mt],
2297 							struct page, lru);
2298 
2299 	steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2300 
2301 	trace_mm_page_alloc_extfrag(page, order, current_order,
2302 		start_migratetype, fallback_mt);
2303 
2304 	return true;
2305 
2306 }
2307 
2308 /*
2309  * Do the hard work of removing an element from the buddy allocator.
2310  * Call me with the zone->lock already held.
2311  */
__rmqueue(struct zone * zone,unsigned int order,int migratetype)2312 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2313 				int migratetype)
2314 {
2315 	struct page *page;
2316 
2317 retry:
2318 	page = __rmqueue_smallest(zone, order, migratetype);
2319 	if (unlikely(!page)) {
2320 		if (migratetype == MIGRATE_MOVABLE)
2321 			page = __rmqueue_cma_fallback(zone, order);
2322 
2323 		if (!page && __rmqueue_fallback(zone, order, migratetype))
2324 			goto retry;
2325 	}
2326 
2327 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2328 	return page;
2329 }
2330 
2331 /*
2332  * Obtain a specified number of elements from the buddy allocator, all under
2333  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2334  * Returns the number of new pages which were placed at *list.
2335  */
rmqueue_bulk(struct zone * zone,unsigned int order,unsigned long count,struct list_head * list,int migratetype,bool cold)2336 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2337 			unsigned long count, struct list_head *list,
2338 			int migratetype, bool cold)
2339 {
2340 	int i, alloced = 0;
2341 
2342 	spin_lock(&zone->lock);
2343 	for (i = 0; i < count; ++i) {
2344 		struct page *page = __rmqueue(zone, order, migratetype);
2345 		if (unlikely(page == NULL))
2346 			break;
2347 
2348 		if (unlikely(check_pcp_refill(page)))
2349 			continue;
2350 
2351 		/*
2352 		 * Split buddy pages returned by expand() are received here
2353 		 * in physical page order. The page is added to the callers and
2354 		 * list and the list head then moves forward. From the callers
2355 		 * perspective, the linked list is ordered by page number in
2356 		 * some conditions. This is useful for IO devices that can
2357 		 * merge IO requests if the physical pages are ordered
2358 		 * properly.
2359 		 */
2360 		if (likely(!cold))
2361 			list_add(&page->lru, list);
2362 		else
2363 			list_add_tail(&page->lru, list);
2364 		list = &page->lru;
2365 		alloced++;
2366 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2367 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2368 					      -(1 << order));
2369 	}
2370 
2371 	/*
2372 	 * i pages were removed from the buddy list even if some leak due
2373 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2374 	 * on i. Do not confuse with 'alloced' which is the number of
2375 	 * pages added to the pcp list.
2376 	 */
2377 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2378 	spin_unlock(&zone->lock);
2379 	return alloced;
2380 }
2381 
2382 #ifdef CONFIG_NUMA
2383 /*
2384  * Called from the vmstat counter updater to drain pagesets of this
2385  * currently executing processor on remote nodes after they have
2386  * expired.
2387  *
2388  * Note that this function must be called with the thread pinned to
2389  * a single processor.
2390  */
drain_zone_pages(struct zone * zone,struct per_cpu_pages * pcp)2391 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2392 {
2393 	unsigned long flags;
2394 	int to_drain, batch;
2395 
2396 	local_irq_save(flags);
2397 	batch = READ_ONCE(pcp->batch);
2398 	to_drain = min(pcp->count, batch);
2399 	if (to_drain > 0) {
2400 		free_pcppages_bulk(zone, to_drain, pcp);
2401 		pcp->count -= to_drain;
2402 	}
2403 	local_irq_restore(flags);
2404 }
2405 #endif
2406 
2407 /*
2408  * Drain pcplists of the indicated processor and zone.
2409  *
2410  * The processor must either be the current processor and the
2411  * thread pinned to the current processor or a processor that
2412  * is not online.
2413  */
drain_pages_zone(unsigned int cpu,struct zone * zone)2414 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2415 {
2416 	unsigned long flags;
2417 	struct per_cpu_pageset *pset;
2418 	struct per_cpu_pages *pcp;
2419 
2420 	local_irq_save(flags);
2421 	pset = per_cpu_ptr(zone->pageset, cpu);
2422 
2423 	pcp = &pset->pcp;
2424 	if (pcp->count) {
2425 		free_pcppages_bulk(zone, pcp->count, pcp);
2426 		pcp->count = 0;
2427 	}
2428 	local_irq_restore(flags);
2429 }
2430 
2431 /*
2432  * Drain pcplists of all zones on the indicated processor.
2433  *
2434  * The processor must either be the current processor and the
2435  * thread pinned to the current processor or a processor that
2436  * is not online.
2437  */
drain_pages(unsigned int cpu)2438 static void drain_pages(unsigned int cpu)
2439 {
2440 	struct zone *zone;
2441 
2442 	for_each_populated_zone(zone) {
2443 		drain_pages_zone(cpu, zone);
2444 	}
2445 }
2446 
2447 /*
2448  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2449  *
2450  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2451  * the single zone's pages.
2452  */
drain_local_pages(struct zone * zone)2453 void drain_local_pages(struct zone *zone)
2454 {
2455 	int cpu = smp_processor_id();
2456 
2457 	if (zone)
2458 		drain_pages_zone(cpu, zone);
2459 	else
2460 		drain_pages(cpu);
2461 }
2462 
drain_local_pages_wq(struct work_struct * work)2463 static void drain_local_pages_wq(struct work_struct *work)
2464 {
2465 	/*
2466 	 * drain_all_pages doesn't use proper cpu hotplug protection so
2467 	 * we can race with cpu offline when the WQ can move this from
2468 	 * a cpu pinned worker to an unbound one. We can operate on a different
2469 	 * cpu which is allright but we also have to make sure to not move to
2470 	 * a different one.
2471 	 */
2472 	preempt_disable();
2473 	drain_local_pages(NULL);
2474 	preempt_enable();
2475 }
2476 
2477 /*
2478  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2479  *
2480  * When zone parameter is non-NULL, spill just the single zone's pages.
2481  *
2482  * Note that this can be extremely slow as the draining happens in a workqueue.
2483  */
drain_all_pages(struct zone * zone)2484 void drain_all_pages(struct zone *zone)
2485 {
2486 	int cpu;
2487 
2488 	/*
2489 	 * Allocate in the BSS so we wont require allocation in
2490 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2491 	 */
2492 	static cpumask_t cpus_with_pcps;
2493 
2494 	/*
2495 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
2496 	 * initialized.
2497 	 */
2498 	if (WARN_ON_ONCE(!mm_percpu_wq))
2499 		return;
2500 
2501 	/*
2502 	 * Do not drain if one is already in progress unless it's specific to
2503 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2504 	 * the drain to be complete when the call returns.
2505 	 */
2506 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2507 		if (!zone)
2508 			return;
2509 		mutex_lock(&pcpu_drain_mutex);
2510 	}
2511 
2512 	/*
2513 	 * We don't care about racing with CPU hotplug event
2514 	 * as offline notification will cause the notified
2515 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2516 	 * disables preemption as part of its processing
2517 	 */
2518 	for_each_online_cpu(cpu) {
2519 		struct per_cpu_pageset *pcp;
2520 		struct zone *z;
2521 		bool has_pcps = false;
2522 
2523 		if (zone) {
2524 			pcp = per_cpu_ptr(zone->pageset, cpu);
2525 			if (pcp->pcp.count)
2526 				has_pcps = true;
2527 		} else {
2528 			for_each_populated_zone(z) {
2529 				pcp = per_cpu_ptr(z->pageset, cpu);
2530 				if (pcp->pcp.count) {
2531 					has_pcps = true;
2532 					break;
2533 				}
2534 			}
2535 		}
2536 
2537 		if (has_pcps)
2538 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2539 		else
2540 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2541 	}
2542 
2543 	for_each_cpu(cpu, &cpus_with_pcps) {
2544 		struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2545 		INIT_WORK(work, drain_local_pages_wq);
2546 		queue_work_on(cpu, mm_percpu_wq, work);
2547 	}
2548 	for_each_cpu(cpu, &cpus_with_pcps)
2549 		flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2550 
2551 	mutex_unlock(&pcpu_drain_mutex);
2552 }
2553 
2554 #ifdef CONFIG_HIBERNATION
2555 
2556 /*
2557  * Touch the watchdog for every WD_PAGE_COUNT pages.
2558  */
2559 #define WD_PAGE_COUNT	(128*1024)
2560 
mark_free_pages(struct zone * zone)2561 void mark_free_pages(struct zone *zone)
2562 {
2563 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2564 	unsigned long flags;
2565 	unsigned int order, t;
2566 	struct page *page;
2567 
2568 	if (zone_is_empty(zone))
2569 		return;
2570 
2571 	spin_lock_irqsave(&zone->lock, flags);
2572 
2573 	max_zone_pfn = zone_end_pfn(zone);
2574 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2575 		if (pfn_valid(pfn)) {
2576 			page = pfn_to_page(pfn);
2577 
2578 			if (!--page_count) {
2579 				touch_nmi_watchdog();
2580 				page_count = WD_PAGE_COUNT;
2581 			}
2582 
2583 			if (page_zone(page) != zone)
2584 				continue;
2585 
2586 			if (!swsusp_page_is_forbidden(page))
2587 				swsusp_unset_page_free(page);
2588 		}
2589 
2590 	for_each_migratetype_order(order, t) {
2591 		list_for_each_entry(page,
2592 				&zone->free_area[order].free_list[t], lru) {
2593 			unsigned long i;
2594 
2595 			pfn = page_to_pfn(page);
2596 			for (i = 0; i < (1UL << order); i++) {
2597 				if (!--page_count) {
2598 					touch_nmi_watchdog();
2599 					page_count = WD_PAGE_COUNT;
2600 				}
2601 				swsusp_set_page_free(pfn_to_page(pfn + i));
2602 			}
2603 		}
2604 	}
2605 	spin_unlock_irqrestore(&zone->lock, flags);
2606 }
2607 #endif /* CONFIG_PM */
2608 
2609 /*
2610  * Free a 0-order page
2611  * cold == true ? free a cold page : free a hot page
2612  */
free_hot_cold_page(struct page * page,bool cold)2613 void free_hot_cold_page(struct page *page, bool cold)
2614 {
2615 	struct zone *zone = page_zone(page);
2616 	struct per_cpu_pages *pcp;
2617 	unsigned long flags;
2618 	unsigned long pfn = page_to_pfn(page);
2619 	int migratetype;
2620 
2621 	if (!free_pcp_prepare(page))
2622 		return;
2623 
2624 	migratetype = get_pfnblock_migratetype(page, pfn);
2625 	set_pcppage_migratetype(page, migratetype);
2626 	local_irq_save(flags);
2627 	__count_vm_event(PGFREE);
2628 
2629 	/*
2630 	 * We only track unmovable, reclaimable and movable on pcp lists.
2631 	 * Free ISOLATE pages back to the allocator because they are being
2632 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2633 	 * areas back if necessary. Otherwise, we may have to free
2634 	 * excessively into the page allocator
2635 	 */
2636 	if (migratetype >= MIGRATE_PCPTYPES) {
2637 		if (unlikely(is_migrate_isolate(migratetype))) {
2638 			free_one_page(zone, page, pfn, 0, migratetype);
2639 			goto out;
2640 		}
2641 		migratetype = MIGRATE_MOVABLE;
2642 	}
2643 
2644 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2645 	if (!cold)
2646 		list_add(&page->lru, &pcp->lists[migratetype]);
2647 	else
2648 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
2649 	pcp->count++;
2650 	if (pcp->count >= pcp->high) {
2651 		unsigned long batch = READ_ONCE(pcp->batch);
2652 		free_pcppages_bulk(zone, batch, pcp);
2653 		pcp->count -= batch;
2654 	}
2655 
2656 out:
2657 	local_irq_restore(flags);
2658 }
2659 
2660 /*
2661  * Free a list of 0-order pages
2662  */
free_hot_cold_page_list(struct list_head * list,bool cold)2663 void free_hot_cold_page_list(struct list_head *list, bool cold)
2664 {
2665 	struct page *page, *next;
2666 
2667 	list_for_each_entry_safe(page, next, list, lru) {
2668 		trace_mm_page_free_batched(page, cold);
2669 		free_hot_cold_page(page, cold);
2670 	}
2671 }
2672 
2673 /*
2674  * split_page takes a non-compound higher-order page, and splits it into
2675  * n (1<<order) sub-pages: page[0..n]
2676  * Each sub-page must be freed individually.
2677  *
2678  * Note: this is probably too low level an operation for use in drivers.
2679  * Please consult with lkml before using this in your driver.
2680  */
split_page(struct page * page,unsigned int order)2681 void split_page(struct page *page, unsigned int order)
2682 {
2683 	int i;
2684 
2685 	VM_BUG_ON_PAGE(PageCompound(page), page);
2686 	VM_BUG_ON_PAGE(!page_count(page), page);
2687 
2688 	for (i = 1; i < (1 << order); i++)
2689 		set_page_refcounted(page + i);
2690 	split_page_owner(page, order);
2691 }
2692 EXPORT_SYMBOL_GPL(split_page);
2693 
__isolate_free_page(struct page * page,unsigned int order)2694 int __isolate_free_page(struct page *page, unsigned int order)
2695 {
2696 	unsigned long watermark;
2697 	struct zone *zone;
2698 	int mt;
2699 
2700 	BUG_ON(!PageBuddy(page));
2701 
2702 	zone = page_zone(page);
2703 	mt = get_pageblock_migratetype(page);
2704 
2705 	if (!is_migrate_isolate(mt)) {
2706 		/*
2707 		 * Obey watermarks as if the page was being allocated. We can
2708 		 * emulate a high-order watermark check with a raised order-0
2709 		 * watermark, because we already know our high-order page
2710 		 * exists.
2711 		 */
2712 		watermark = min_wmark_pages(zone) + (1UL << order);
2713 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2714 			return 0;
2715 
2716 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2717 	}
2718 
2719 	/* Remove page from free list */
2720 	list_del(&page->lru);
2721 	zone->free_area[order].nr_free--;
2722 	rmv_page_order(page);
2723 
2724 	/*
2725 	 * Set the pageblock if the isolated page is at least half of a
2726 	 * pageblock
2727 	 */
2728 	if (order >= pageblock_order - 1) {
2729 		struct page *endpage = page + (1 << order) - 1;
2730 		for (; page < endpage; page += pageblock_nr_pages) {
2731 			int mt = get_pageblock_migratetype(page);
2732 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2733 			    && !is_migrate_highatomic(mt))
2734 				set_pageblock_migratetype(page,
2735 							  MIGRATE_MOVABLE);
2736 		}
2737 	}
2738 
2739 
2740 	return 1UL << order;
2741 }
2742 
2743 /*
2744  * Update NUMA hit/miss statistics
2745  *
2746  * Must be called with interrupts disabled.
2747  */
zone_statistics(struct zone * preferred_zone,struct zone * z)2748 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2749 {
2750 #ifdef CONFIG_NUMA
2751 	enum numa_stat_item local_stat = NUMA_LOCAL;
2752 
2753 	if (z->node != numa_node_id())
2754 		local_stat = NUMA_OTHER;
2755 
2756 	if (z->node == preferred_zone->node)
2757 		__inc_numa_state(z, NUMA_HIT);
2758 	else {
2759 		__inc_numa_state(z, NUMA_MISS);
2760 		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
2761 	}
2762 	__inc_numa_state(z, local_stat);
2763 #endif
2764 }
2765 
2766 /* Remove page from the per-cpu list, caller must protect the list */
__rmqueue_pcplist(struct zone * zone,int migratetype,bool cold,struct per_cpu_pages * pcp,struct list_head * list)2767 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2768 			bool cold, struct per_cpu_pages *pcp,
2769 			struct list_head *list)
2770 {
2771 	struct page *page;
2772 
2773 	do {
2774 		if (list_empty(list)) {
2775 			pcp->count += rmqueue_bulk(zone, 0,
2776 					pcp->batch, list,
2777 					migratetype, cold);
2778 			if (unlikely(list_empty(list)))
2779 				return NULL;
2780 		}
2781 
2782 		if (cold)
2783 			page = list_last_entry(list, struct page, lru);
2784 		else
2785 			page = list_first_entry(list, struct page, lru);
2786 
2787 		list_del(&page->lru);
2788 		pcp->count--;
2789 	} while (check_new_pcp(page));
2790 
2791 	return page;
2792 }
2793 
2794 /* Lock and remove page from the per-cpu list */
rmqueue_pcplist(struct zone * preferred_zone,struct zone * zone,unsigned int order,gfp_t gfp_flags,int migratetype)2795 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2796 			struct zone *zone, unsigned int order,
2797 			gfp_t gfp_flags, int migratetype)
2798 {
2799 	struct per_cpu_pages *pcp;
2800 	struct list_head *list;
2801 	bool cold = ((gfp_flags & __GFP_COLD) != 0);
2802 	struct page *page;
2803 	unsigned long flags;
2804 
2805 	local_irq_save(flags);
2806 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2807 	list = &pcp->lists[migratetype];
2808 	page = __rmqueue_pcplist(zone,  migratetype, cold, pcp, list);
2809 	if (page) {
2810 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2811 		zone_statistics(preferred_zone, zone);
2812 	}
2813 	local_irq_restore(flags);
2814 	return page;
2815 }
2816 
2817 /*
2818  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2819  */
2820 static inline
rmqueue(struct zone * preferred_zone,struct zone * zone,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags,int migratetype)2821 struct page *rmqueue(struct zone *preferred_zone,
2822 			struct zone *zone, unsigned int order,
2823 			gfp_t gfp_flags, unsigned int alloc_flags,
2824 			int migratetype)
2825 {
2826 	unsigned long flags;
2827 	struct page *page;
2828 
2829 	if (likely(order == 0)) {
2830 		page = rmqueue_pcplist(preferred_zone, zone, order,
2831 				gfp_flags, migratetype);
2832 		goto out;
2833 	}
2834 
2835 	/*
2836 	 * We most definitely don't want callers attempting to
2837 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
2838 	 */
2839 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2840 	spin_lock_irqsave(&zone->lock, flags);
2841 
2842 	do {
2843 		page = NULL;
2844 		if (alloc_flags & ALLOC_HARDER) {
2845 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2846 			if (page)
2847 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
2848 		}
2849 		if (!page)
2850 			page = __rmqueue(zone, order, migratetype);
2851 	} while (page && check_new_pages(page, order));
2852 	spin_unlock(&zone->lock);
2853 	if (!page)
2854 		goto failed;
2855 	__mod_zone_freepage_state(zone, -(1 << order),
2856 				  get_pcppage_migratetype(page));
2857 
2858 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2859 	zone_statistics(preferred_zone, zone);
2860 	local_irq_restore(flags);
2861 
2862 out:
2863 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2864 	return page;
2865 
2866 failed:
2867 	local_irq_restore(flags);
2868 	return NULL;
2869 }
2870 
2871 #ifdef CONFIG_FAIL_PAGE_ALLOC
2872 
2873 static struct {
2874 	struct fault_attr attr;
2875 
2876 	bool ignore_gfp_highmem;
2877 	bool ignore_gfp_reclaim;
2878 	u32 min_order;
2879 } fail_page_alloc = {
2880 	.attr = FAULT_ATTR_INITIALIZER,
2881 	.ignore_gfp_reclaim = true,
2882 	.ignore_gfp_highmem = true,
2883 	.min_order = 1,
2884 };
2885 
setup_fail_page_alloc(char * str)2886 static int __init setup_fail_page_alloc(char *str)
2887 {
2888 	return setup_fault_attr(&fail_page_alloc.attr, str);
2889 }
2890 __setup("fail_page_alloc=", setup_fail_page_alloc);
2891 
should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)2892 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2893 {
2894 	if (order < fail_page_alloc.min_order)
2895 		return false;
2896 	if (gfp_mask & __GFP_NOFAIL)
2897 		return false;
2898 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2899 		return false;
2900 	if (fail_page_alloc.ignore_gfp_reclaim &&
2901 			(gfp_mask & __GFP_DIRECT_RECLAIM))
2902 		return false;
2903 
2904 	return should_fail(&fail_page_alloc.attr, 1 << order);
2905 }
2906 
2907 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2908 
fail_page_alloc_debugfs(void)2909 static int __init fail_page_alloc_debugfs(void)
2910 {
2911 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2912 	struct dentry *dir;
2913 
2914 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2915 					&fail_page_alloc.attr);
2916 	if (IS_ERR(dir))
2917 		return PTR_ERR(dir);
2918 
2919 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2920 				&fail_page_alloc.ignore_gfp_reclaim))
2921 		goto fail;
2922 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2923 				&fail_page_alloc.ignore_gfp_highmem))
2924 		goto fail;
2925 	if (!debugfs_create_u32("min-order", mode, dir,
2926 				&fail_page_alloc.min_order))
2927 		goto fail;
2928 
2929 	return 0;
2930 fail:
2931 	debugfs_remove_recursive(dir);
2932 
2933 	return -ENOMEM;
2934 }
2935 
2936 late_initcall(fail_page_alloc_debugfs);
2937 
2938 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2939 
2940 #else /* CONFIG_FAIL_PAGE_ALLOC */
2941 
should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)2942 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2943 {
2944 	return false;
2945 }
2946 
2947 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2948 
2949 /*
2950  * Return true if free base pages are above 'mark'. For high-order checks it
2951  * will return true of the order-0 watermark is reached and there is at least
2952  * one free page of a suitable size. Checking now avoids taking the zone lock
2953  * to check in the allocation paths if no pages are free.
2954  */
__zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int classzone_idx,unsigned int alloc_flags,long free_pages)2955 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2956 			 int classzone_idx, unsigned int alloc_flags,
2957 			 long free_pages)
2958 {
2959 	long min = mark;
2960 	int o;
2961 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
2962 
2963 	/* free_pages may go negative - that's OK */
2964 	free_pages -= (1 << order) - 1;
2965 
2966 	if (alloc_flags & ALLOC_HIGH)
2967 		min -= min / 2;
2968 
2969 	/*
2970 	 * If the caller does not have rights to ALLOC_HARDER then subtract
2971 	 * the high-atomic reserves. This will over-estimate the size of the
2972 	 * atomic reserve but it avoids a search.
2973 	 */
2974 	if (likely(!alloc_harder)) {
2975 		free_pages -= z->nr_reserved_highatomic;
2976 	} else {
2977 		/*
2978 		 * OOM victims can try even harder than normal ALLOC_HARDER
2979 		 * users on the grounds that it's definitely going to be in
2980 		 * the exit path shortly and free memory. Any allocation it
2981 		 * makes during the free path will be small and short-lived.
2982 		 */
2983 		if (alloc_flags & ALLOC_OOM)
2984 			min -= min / 2;
2985 		else
2986 			min -= min / 4;
2987 	}
2988 
2989 
2990 #ifdef CONFIG_CMA
2991 	/* If allocation can't use CMA areas don't use free CMA pages */
2992 	if (!(alloc_flags & ALLOC_CMA))
2993 		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2994 #endif
2995 
2996 	/*
2997 	 * Check watermarks for an order-0 allocation request. If these
2998 	 * are not met, then a high-order request also cannot go ahead
2999 	 * even if a suitable page happened to be free.
3000 	 */
3001 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3002 		return false;
3003 
3004 	/* If this is an order-0 request then the watermark is fine */
3005 	if (!order)
3006 		return true;
3007 
3008 	/* For a high-order request, check at least one suitable page is free */
3009 	for (o = order; o < MAX_ORDER; o++) {
3010 		struct free_area *area = &z->free_area[o];
3011 		int mt;
3012 
3013 		if (!area->nr_free)
3014 			continue;
3015 
3016 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3017 			if (!list_empty(&area->free_list[mt]))
3018 				return true;
3019 		}
3020 
3021 #ifdef CONFIG_CMA
3022 		if ((alloc_flags & ALLOC_CMA) &&
3023 		    !list_empty(&area->free_list[MIGRATE_CMA])) {
3024 			return true;
3025 		}
3026 #endif
3027 		if (alloc_harder &&
3028 			!list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3029 			return true;
3030 	}
3031 	return false;
3032 }
3033 
zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int classzone_idx,unsigned int alloc_flags)3034 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3035 		      int classzone_idx, unsigned int alloc_flags)
3036 {
3037 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3038 					zone_page_state(z, NR_FREE_PAGES));
3039 }
3040 
zone_watermark_fast(struct zone * z,unsigned int order,unsigned long mark,int classzone_idx,unsigned int alloc_flags)3041 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3042 		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3043 {
3044 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3045 	long cma_pages = 0;
3046 
3047 #ifdef CONFIG_CMA
3048 	/* If allocation can't use CMA areas don't use free CMA pages */
3049 	if (!(alloc_flags & ALLOC_CMA))
3050 		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3051 #endif
3052 
3053 	/*
3054 	 * Fast check for order-0 only. If this fails then the reserves
3055 	 * need to be calculated. There is a corner case where the check
3056 	 * passes but only the high-order atomic reserve are free. If
3057 	 * the caller is !atomic then it'll uselessly search the free
3058 	 * list. That corner case is then slower but it is harmless.
3059 	 */
3060 	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3061 		return true;
3062 
3063 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3064 					free_pages);
3065 }
3066 
zone_watermark_ok_safe(struct zone * z,unsigned int order,unsigned long mark,int classzone_idx)3067 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3068 			unsigned long mark, int classzone_idx)
3069 {
3070 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3071 
3072 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3073 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3074 
3075 	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3076 								free_pages);
3077 }
3078 
3079 #ifdef CONFIG_NUMA
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3080 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3081 {
3082 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3083 				RECLAIM_DISTANCE;
3084 }
3085 #else	/* CONFIG_NUMA */
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3086 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3087 {
3088 	return true;
3089 }
3090 #endif	/* CONFIG_NUMA */
3091 
3092 /*
3093  * get_page_from_freelist goes through the zonelist trying to allocate
3094  * a page.
3095  */
3096 static struct page *
get_page_from_freelist(gfp_t gfp_mask,unsigned int order,int alloc_flags,const struct alloc_context * ac)3097 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3098 						const struct alloc_context *ac)
3099 {
3100 	struct zoneref *z = ac->preferred_zoneref;
3101 	struct zone *zone;
3102 	struct pglist_data *last_pgdat_dirty_limit = NULL;
3103 
3104 	/*
3105 	 * Scan zonelist, looking for a zone with enough free.
3106 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3107 	 */
3108 	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3109 								ac->nodemask) {
3110 		struct page *page;
3111 		unsigned long mark;
3112 
3113 		if (cpusets_enabled() &&
3114 			(alloc_flags & ALLOC_CPUSET) &&
3115 			!__cpuset_zone_allowed(zone, gfp_mask))
3116 				continue;
3117 		/*
3118 		 * When allocating a page cache page for writing, we
3119 		 * want to get it from a node that is within its dirty
3120 		 * limit, such that no single node holds more than its
3121 		 * proportional share of globally allowed dirty pages.
3122 		 * The dirty limits take into account the node's
3123 		 * lowmem reserves and high watermark so that kswapd
3124 		 * should be able to balance it without having to
3125 		 * write pages from its LRU list.
3126 		 *
3127 		 * XXX: For now, allow allocations to potentially
3128 		 * exceed the per-node dirty limit in the slowpath
3129 		 * (spread_dirty_pages unset) before going into reclaim,
3130 		 * which is important when on a NUMA setup the allowed
3131 		 * nodes are together not big enough to reach the
3132 		 * global limit.  The proper fix for these situations
3133 		 * will require awareness of nodes in the
3134 		 * dirty-throttling and the flusher threads.
3135 		 */
3136 		if (ac->spread_dirty_pages) {
3137 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3138 				continue;
3139 
3140 			if (!node_dirty_ok(zone->zone_pgdat)) {
3141 				last_pgdat_dirty_limit = zone->zone_pgdat;
3142 				continue;
3143 			}
3144 		}
3145 
3146 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3147 		if (!zone_watermark_fast(zone, order, mark,
3148 				       ac_classzone_idx(ac), alloc_flags)) {
3149 			int ret;
3150 
3151 			/* Checked here to keep the fast path fast */
3152 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3153 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3154 				goto try_this_zone;
3155 
3156 			if (node_reclaim_mode == 0 ||
3157 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3158 				continue;
3159 
3160 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3161 			switch (ret) {
3162 			case NODE_RECLAIM_NOSCAN:
3163 				/* did not scan */
3164 				continue;
3165 			case NODE_RECLAIM_FULL:
3166 				/* scanned but unreclaimable */
3167 				continue;
3168 			default:
3169 				/* did we reclaim enough */
3170 				if (zone_watermark_ok(zone, order, mark,
3171 						ac_classzone_idx(ac), alloc_flags))
3172 					goto try_this_zone;
3173 
3174 				continue;
3175 			}
3176 		}
3177 
3178 try_this_zone:
3179 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3180 				gfp_mask, alloc_flags, ac->migratetype);
3181 		if (page) {
3182 			prep_new_page(page, order, gfp_mask, alloc_flags);
3183 
3184 			/*
3185 			 * If this is a high-order atomic allocation then check
3186 			 * if the pageblock should be reserved for the future
3187 			 */
3188 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3189 				reserve_highatomic_pageblock(page, zone, order);
3190 
3191 			return page;
3192 		}
3193 	}
3194 
3195 	return NULL;
3196 }
3197 
3198 /*
3199  * Large machines with many possible nodes should not always dump per-node
3200  * meminfo in irq context.
3201  */
should_suppress_show_mem(void)3202 static inline bool should_suppress_show_mem(void)
3203 {
3204 	bool ret = false;
3205 
3206 #if NODES_SHIFT > 8
3207 	ret = in_interrupt();
3208 #endif
3209 	return ret;
3210 }
3211 
warn_alloc_show_mem(gfp_t gfp_mask,nodemask_t * nodemask)3212 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3213 {
3214 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3215 	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3216 
3217 	if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3218 		return;
3219 
3220 	/*
3221 	 * This documents exceptions given to allocations in certain
3222 	 * contexts that are allowed to allocate outside current's set
3223 	 * of allowed nodes.
3224 	 */
3225 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3226 		if (tsk_is_oom_victim(current) ||
3227 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3228 			filter &= ~SHOW_MEM_FILTER_NODES;
3229 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3230 		filter &= ~SHOW_MEM_FILTER_NODES;
3231 
3232 	show_mem(filter, nodemask);
3233 }
3234 
warn_alloc(gfp_t gfp_mask,nodemask_t * nodemask,const char * fmt,...)3235 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3236 {
3237 	struct va_format vaf;
3238 	va_list args;
3239 	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3240 				      DEFAULT_RATELIMIT_BURST);
3241 
3242 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3243 		return;
3244 
3245 	pr_warn("%s: ", current->comm);
3246 
3247 	va_start(args, fmt);
3248 	vaf.fmt = fmt;
3249 	vaf.va = &args;
3250 	pr_cont("%pV", &vaf);
3251 	va_end(args);
3252 
3253 	pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
3254 	if (nodemask)
3255 		pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
3256 	else
3257 		pr_cont("(null)\n");
3258 
3259 	cpuset_print_current_mems_allowed();
3260 
3261 	dump_stack();
3262 	warn_alloc_show_mem(gfp_mask, nodemask);
3263 }
3264 
3265 static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac)3266 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3267 			      unsigned int alloc_flags,
3268 			      const struct alloc_context *ac)
3269 {
3270 	struct page *page;
3271 
3272 	page = get_page_from_freelist(gfp_mask, order,
3273 			alloc_flags|ALLOC_CPUSET, ac);
3274 	/*
3275 	 * fallback to ignore cpuset restriction if our nodes
3276 	 * are depleted
3277 	 */
3278 	if (!page)
3279 		page = get_page_from_freelist(gfp_mask, order,
3280 				alloc_flags, ac);
3281 
3282 	return page;
3283 }
3284 
3285 static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac,unsigned long * did_some_progress)3286 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3287 	const struct alloc_context *ac, unsigned long *did_some_progress)
3288 {
3289 	struct oom_control oc = {
3290 		.zonelist = ac->zonelist,
3291 		.nodemask = ac->nodemask,
3292 		.memcg = NULL,
3293 		.gfp_mask = gfp_mask,
3294 		.order = order,
3295 	};
3296 	struct page *page;
3297 
3298 	*did_some_progress = 0;
3299 
3300 	/*
3301 	 * Acquire the oom lock.  If that fails, somebody else is
3302 	 * making progress for us.
3303 	 */
3304 	if (!mutex_trylock(&oom_lock)) {
3305 		*did_some_progress = 1;
3306 		schedule_timeout_uninterruptible(1);
3307 		return NULL;
3308 	}
3309 
3310 	/*
3311 	 * Go through the zonelist yet one more time, keep very high watermark
3312 	 * here, this is only to catch a parallel oom killing, we must fail if
3313 	 * we're still under heavy pressure. But make sure that this reclaim
3314 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3315 	 * allocation which will never fail due to oom_lock already held.
3316 	 */
3317 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3318 				      ~__GFP_DIRECT_RECLAIM, order,
3319 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3320 	if (page)
3321 		goto out;
3322 
3323 	/* Coredumps can quickly deplete all memory reserves */
3324 	if (current->flags & PF_DUMPCORE)
3325 		goto out;
3326 	/* The OOM killer will not help higher order allocs */
3327 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3328 		goto out;
3329 	/*
3330 	 * We have already exhausted all our reclaim opportunities without any
3331 	 * success so it is time to admit defeat. We will skip the OOM killer
3332 	 * because it is very likely that the caller has a more reasonable
3333 	 * fallback than shooting a random task.
3334 	 */
3335 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
3336 		goto out;
3337 	/* The OOM killer does not needlessly kill tasks for lowmem */
3338 	if (ac->high_zoneidx < ZONE_NORMAL)
3339 		goto out;
3340 	if (pm_suspended_storage())
3341 		goto out;
3342 	/*
3343 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3344 	 * other request to make a forward progress.
3345 	 * We are in an unfortunate situation where out_of_memory cannot
3346 	 * do much for this context but let's try it to at least get
3347 	 * access to memory reserved if the current task is killed (see
3348 	 * out_of_memory). Once filesystems are ready to handle allocation
3349 	 * failures more gracefully we should just bail out here.
3350 	 */
3351 
3352 	/* The OOM killer may not free memory on a specific node */
3353 	if (gfp_mask & __GFP_THISNODE)
3354 		goto out;
3355 
3356 	/* Exhausted what can be done so it's blamo time */
3357 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3358 		*did_some_progress = 1;
3359 
3360 		/*
3361 		 * Help non-failing allocations by giving them access to memory
3362 		 * reserves
3363 		 */
3364 		if (gfp_mask & __GFP_NOFAIL)
3365 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3366 					ALLOC_NO_WATERMARKS, ac);
3367 	}
3368 out:
3369 	mutex_unlock(&oom_lock);
3370 	return page;
3371 }
3372 
3373 /*
3374  * Maximum number of compaction retries wit a progress before OOM
3375  * killer is consider as the only way to move forward.
3376  */
3377 #define MAX_COMPACT_RETRIES 16
3378 
3379 #ifdef CONFIG_COMPACTION
3380 /* Try memory compaction for high-order allocations before reclaim */
3381 static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)3382 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3383 		unsigned int alloc_flags, const struct alloc_context *ac,
3384 		enum compact_priority prio, enum compact_result *compact_result)
3385 {
3386 	struct page *page;
3387 	unsigned long pflags;
3388 	unsigned int noreclaim_flag;
3389 
3390 	if (!order)
3391 		return NULL;
3392 
3393 	psi_memstall_enter(&pflags);
3394 	noreclaim_flag = memalloc_noreclaim_save();
3395 
3396 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3397 									prio);
3398 
3399 	memalloc_noreclaim_restore(noreclaim_flag);
3400 	psi_memstall_leave(&pflags);
3401 
3402 	if (*compact_result <= COMPACT_INACTIVE)
3403 		return NULL;
3404 
3405 	/*
3406 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3407 	 * count a compaction stall
3408 	 */
3409 	count_vm_event(COMPACTSTALL);
3410 
3411 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3412 
3413 	if (page) {
3414 		struct zone *zone = page_zone(page);
3415 
3416 		zone->compact_blockskip_flush = false;
3417 		compaction_defer_reset(zone, order, true);
3418 		count_vm_event(COMPACTSUCCESS);
3419 		return page;
3420 	}
3421 
3422 	/*
3423 	 * It's bad if compaction run occurs and fails. The most likely reason
3424 	 * is that pages exist, but not enough to satisfy watermarks.
3425 	 */
3426 	count_vm_event(COMPACTFAIL);
3427 
3428 	cond_resched();
3429 
3430 	return NULL;
3431 }
3432 
3433 static inline bool
should_compact_retry(struct alloc_context * ac,int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)3434 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3435 		     enum compact_result compact_result,
3436 		     enum compact_priority *compact_priority,
3437 		     int *compaction_retries)
3438 {
3439 	int max_retries = MAX_COMPACT_RETRIES;
3440 	int min_priority;
3441 	bool ret = false;
3442 	int retries = *compaction_retries;
3443 	enum compact_priority priority = *compact_priority;
3444 
3445 	if (!order)
3446 		return false;
3447 
3448 	if (compaction_made_progress(compact_result))
3449 		(*compaction_retries)++;
3450 
3451 	/*
3452 	 * compaction considers all the zone as desperately out of memory
3453 	 * so it doesn't really make much sense to retry except when the
3454 	 * failure could be caused by insufficient priority
3455 	 */
3456 	if (compaction_failed(compact_result))
3457 		goto check_priority;
3458 
3459 	/*
3460 	 * make sure the compaction wasn't deferred or didn't bail out early
3461 	 * due to locks contention before we declare that we should give up.
3462 	 * But do not retry if the given zonelist is not suitable for
3463 	 * compaction.
3464 	 */
3465 	if (compaction_withdrawn(compact_result)) {
3466 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3467 		goto out;
3468 	}
3469 
3470 	/*
3471 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3472 	 * costly ones because they are de facto nofail and invoke OOM
3473 	 * killer to move on while costly can fail and users are ready
3474 	 * to cope with that. 1/4 retries is rather arbitrary but we
3475 	 * would need much more detailed feedback from compaction to
3476 	 * make a better decision.
3477 	 */
3478 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3479 		max_retries /= 4;
3480 	if (*compaction_retries <= max_retries) {
3481 		ret = true;
3482 		goto out;
3483 	}
3484 
3485 	/*
3486 	 * Make sure there are attempts at the highest priority if we exhausted
3487 	 * all retries or failed at the lower priorities.
3488 	 */
3489 check_priority:
3490 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3491 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3492 
3493 	if (*compact_priority > min_priority) {
3494 		(*compact_priority)--;
3495 		*compaction_retries = 0;
3496 		ret = true;
3497 	}
3498 out:
3499 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3500 	return ret;
3501 }
3502 #else
3503 static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)3504 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3505 		unsigned int alloc_flags, const struct alloc_context *ac,
3506 		enum compact_priority prio, enum compact_result *compact_result)
3507 {
3508 	*compact_result = COMPACT_SKIPPED;
3509 	return NULL;
3510 }
3511 
3512 static inline bool
should_compact_retry(struct alloc_context * ac,unsigned int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)3513 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3514 		     enum compact_result compact_result,
3515 		     enum compact_priority *compact_priority,
3516 		     int *compaction_retries)
3517 {
3518 	struct zone *zone;
3519 	struct zoneref *z;
3520 
3521 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3522 		return false;
3523 
3524 	/*
3525 	 * There are setups with compaction disabled which would prefer to loop
3526 	 * inside the allocator rather than hit the oom killer prematurely.
3527 	 * Let's give them a good hope and keep retrying while the order-0
3528 	 * watermarks are OK.
3529 	 */
3530 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3531 					ac->nodemask) {
3532 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3533 					ac_classzone_idx(ac), alloc_flags))
3534 			return true;
3535 	}
3536 	return false;
3537 }
3538 #endif /* CONFIG_COMPACTION */
3539 
3540 #ifdef CONFIG_LOCKDEP
3541 struct lockdep_map __fs_reclaim_map =
3542 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3543 
__need_fs_reclaim(gfp_t gfp_mask)3544 static bool __need_fs_reclaim(gfp_t gfp_mask)
3545 {
3546 	gfp_mask = current_gfp_context(gfp_mask);
3547 
3548 	/* no reclaim without waiting on it */
3549 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3550 		return false;
3551 
3552 	/* this guy won't enter reclaim */
3553 	if (current->flags & PF_MEMALLOC)
3554 		return false;
3555 
3556 	/* We're only interested __GFP_FS allocations for now */
3557 	if (!(gfp_mask & __GFP_FS))
3558 		return false;
3559 
3560 	if (gfp_mask & __GFP_NOLOCKDEP)
3561 		return false;
3562 
3563 	return true;
3564 }
3565 
fs_reclaim_acquire(gfp_t gfp_mask)3566 void fs_reclaim_acquire(gfp_t gfp_mask)
3567 {
3568 	if (__need_fs_reclaim(gfp_mask))
3569 		lock_map_acquire(&__fs_reclaim_map);
3570 }
3571 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3572 
fs_reclaim_release(gfp_t gfp_mask)3573 void fs_reclaim_release(gfp_t gfp_mask)
3574 {
3575 	if (__need_fs_reclaim(gfp_mask))
3576 		lock_map_release(&__fs_reclaim_map);
3577 }
3578 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3579 #endif
3580 
3581 /* Perform direct synchronous page reclaim */
3582 static int
__perform_reclaim(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac)3583 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3584 					const struct alloc_context *ac)
3585 {
3586 	struct reclaim_state reclaim_state;
3587 	int progress;
3588 	unsigned int noreclaim_flag;
3589 	unsigned long pflags;
3590 
3591 	cond_resched();
3592 
3593 	/* We now go into synchronous reclaim */
3594 	cpuset_memory_pressure_bump();
3595 	psi_memstall_enter(&pflags);
3596 	noreclaim_flag = memalloc_noreclaim_save();
3597 	fs_reclaim_acquire(gfp_mask);
3598 	reclaim_state.reclaimed_slab = 0;
3599 	current->reclaim_state = &reclaim_state;
3600 
3601 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3602 								ac->nodemask);
3603 
3604 	current->reclaim_state = NULL;
3605 	fs_reclaim_release(gfp_mask);
3606 	memalloc_noreclaim_restore(noreclaim_flag);
3607 	psi_memstall_leave(&pflags);
3608 
3609 	cond_resched();
3610 
3611 	return progress;
3612 }
3613 
3614 /* The really slow allocator path where we enter direct reclaim */
3615 static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,unsigned long * did_some_progress)3616 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3617 		unsigned int alloc_flags, const struct alloc_context *ac,
3618 		unsigned long *did_some_progress)
3619 {
3620 	struct page *page = NULL;
3621 	bool drained = false;
3622 
3623 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3624 	if (unlikely(!(*did_some_progress)))
3625 		return NULL;
3626 
3627 retry:
3628 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3629 
3630 	/*
3631 	 * If an allocation failed after direct reclaim, it could be because
3632 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3633 	 * Shrink them them and try again
3634 	 */
3635 	if (!page && !drained) {
3636 		unreserve_highatomic_pageblock(ac, false);
3637 		drain_all_pages(NULL);
3638 		drained = true;
3639 		goto retry;
3640 	}
3641 
3642 	return page;
3643 }
3644 
wake_all_kswapds(unsigned int order,const struct alloc_context * ac)3645 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3646 {
3647 	struct zoneref *z;
3648 	struct zone *zone;
3649 	pg_data_t *last_pgdat = NULL;
3650 
3651 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3652 					ac->high_zoneidx, ac->nodemask) {
3653 		if (last_pgdat != zone->zone_pgdat)
3654 			wakeup_kswapd(zone, order, ac->high_zoneidx);
3655 		last_pgdat = zone->zone_pgdat;
3656 	}
3657 }
3658 
3659 static inline unsigned int
gfp_to_alloc_flags(gfp_t gfp_mask)3660 gfp_to_alloc_flags(gfp_t gfp_mask)
3661 {
3662 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3663 
3664 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3665 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3666 
3667 	/*
3668 	 * The caller may dip into page reserves a bit more if the caller
3669 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3670 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3671 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3672 	 */
3673 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3674 
3675 	if (gfp_mask & __GFP_ATOMIC) {
3676 		/*
3677 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3678 		 * if it can't schedule.
3679 		 */
3680 		if (!(gfp_mask & __GFP_NOMEMALLOC))
3681 			alloc_flags |= ALLOC_HARDER;
3682 		/*
3683 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3684 		 * comment for __cpuset_node_allowed().
3685 		 */
3686 		alloc_flags &= ~ALLOC_CPUSET;
3687 	} else if (unlikely(rt_task(current)) && !in_interrupt())
3688 		alloc_flags |= ALLOC_HARDER;
3689 
3690 #ifdef CONFIG_CMA
3691 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3692 		alloc_flags |= ALLOC_CMA;
3693 #endif
3694 	return alloc_flags;
3695 }
3696 
oom_reserves_allowed(struct task_struct * tsk)3697 static bool oom_reserves_allowed(struct task_struct *tsk)
3698 {
3699 	if (!tsk_is_oom_victim(tsk))
3700 		return false;
3701 
3702 	/*
3703 	 * !MMU doesn't have oom reaper so give access to memory reserves
3704 	 * only to the thread with TIF_MEMDIE set
3705 	 */
3706 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3707 		return false;
3708 
3709 	return true;
3710 }
3711 
3712 /*
3713  * Distinguish requests which really need access to full memory
3714  * reserves from oom victims which can live with a portion of it
3715  */
__gfp_pfmemalloc_flags(gfp_t gfp_mask)3716 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3717 {
3718 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3719 		return 0;
3720 	if (gfp_mask & __GFP_MEMALLOC)
3721 		return ALLOC_NO_WATERMARKS;
3722 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3723 		return ALLOC_NO_WATERMARKS;
3724 	if (!in_interrupt()) {
3725 		if (current->flags & PF_MEMALLOC)
3726 			return ALLOC_NO_WATERMARKS;
3727 		else if (oom_reserves_allowed(current))
3728 			return ALLOC_OOM;
3729 	}
3730 
3731 	return 0;
3732 }
3733 
gfp_pfmemalloc_allowed(gfp_t gfp_mask)3734 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3735 {
3736 	return !!__gfp_pfmemalloc_flags(gfp_mask);
3737 }
3738 
3739 /*
3740  * Checks whether it makes sense to retry the reclaim to make a forward progress
3741  * for the given allocation request.
3742  *
3743  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3744  * without success, or when we couldn't even meet the watermark if we
3745  * reclaimed all remaining pages on the LRU lists.
3746  *
3747  * Returns true if a retry is viable or false to enter the oom path.
3748  */
3749 static inline bool
should_reclaim_retry(gfp_t gfp_mask,unsigned order,struct alloc_context * ac,int alloc_flags,bool did_some_progress,int * no_progress_loops)3750 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3751 		     struct alloc_context *ac, int alloc_flags,
3752 		     bool did_some_progress, int *no_progress_loops)
3753 {
3754 	struct zone *zone;
3755 	struct zoneref *z;
3756 
3757 	/*
3758 	 * Costly allocations might have made a progress but this doesn't mean
3759 	 * their order will become available due to high fragmentation so
3760 	 * always increment the no progress counter for them
3761 	 */
3762 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3763 		*no_progress_loops = 0;
3764 	else
3765 		(*no_progress_loops)++;
3766 
3767 	/*
3768 	 * Make sure we converge to OOM if we cannot make any progress
3769 	 * several times in the row.
3770 	 */
3771 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3772 		/* Before OOM, exhaust highatomic_reserve */
3773 		return unreserve_highatomic_pageblock(ac, true);
3774 	}
3775 
3776 	/*
3777 	 * Keep reclaiming pages while there is a chance this will lead
3778 	 * somewhere.  If none of the target zones can satisfy our allocation
3779 	 * request even if all reclaimable pages are considered then we are
3780 	 * screwed and have to go OOM.
3781 	 */
3782 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3783 					ac->nodemask) {
3784 		unsigned long available;
3785 		unsigned long reclaimable;
3786 		unsigned long min_wmark = min_wmark_pages(zone);
3787 		bool wmark;
3788 
3789 		available = reclaimable = zone_reclaimable_pages(zone);
3790 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3791 
3792 		/*
3793 		 * Would the allocation succeed if we reclaimed all
3794 		 * reclaimable pages?
3795 		 */
3796 		wmark = __zone_watermark_ok(zone, order, min_wmark,
3797 				ac_classzone_idx(ac), alloc_flags, available);
3798 		trace_reclaim_retry_zone(z, order, reclaimable,
3799 				available, min_wmark, *no_progress_loops, wmark);
3800 		if (wmark) {
3801 			/*
3802 			 * If we didn't make any progress and have a lot of
3803 			 * dirty + writeback pages then we should wait for
3804 			 * an IO to complete to slow down the reclaim and
3805 			 * prevent from pre mature OOM
3806 			 */
3807 			if (!did_some_progress) {
3808 				unsigned long write_pending;
3809 
3810 				write_pending = zone_page_state_snapshot(zone,
3811 							NR_ZONE_WRITE_PENDING);
3812 
3813 				if (2 * write_pending > reclaimable) {
3814 					congestion_wait(BLK_RW_ASYNC, HZ/10);
3815 					return true;
3816 				}
3817 			}
3818 
3819 			/*
3820 			 * Memory allocation/reclaim might be called from a WQ
3821 			 * context and the current implementation of the WQ
3822 			 * concurrency control doesn't recognize that
3823 			 * a particular WQ is congested if the worker thread is
3824 			 * looping without ever sleeping. Therefore we have to
3825 			 * do a short sleep here rather than calling
3826 			 * cond_resched().
3827 			 */
3828 			if (current->flags & PF_WQ_WORKER)
3829 				schedule_timeout_uninterruptible(1);
3830 			else
3831 				cond_resched();
3832 
3833 			return true;
3834 		}
3835 	}
3836 
3837 	return false;
3838 }
3839 
3840 static inline bool
check_retry_cpuset(int cpuset_mems_cookie,struct alloc_context * ac)3841 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3842 {
3843 	/*
3844 	 * It's possible that cpuset's mems_allowed and the nodemask from
3845 	 * mempolicy don't intersect. This should be normally dealt with by
3846 	 * policy_nodemask(), but it's possible to race with cpuset update in
3847 	 * such a way the check therein was true, and then it became false
3848 	 * before we got our cpuset_mems_cookie here.
3849 	 * This assumes that for all allocations, ac->nodemask can come only
3850 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3851 	 * when it does not intersect with the cpuset restrictions) or the
3852 	 * caller can deal with a violated nodemask.
3853 	 */
3854 	if (cpusets_enabled() && ac->nodemask &&
3855 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3856 		ac->nodemask = NULL;
3857 		return true;
3858 	}
3859 
3860 	/*
3861 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
3862 	 * possible to race with parallel threads in such a way that our
3863 	 * allocation can fail while the mask is being updated. If we are about
3864 	 * to fail, check if the cpuset changed during allocation and if so,
3865 	 * retry.
3866 	 */
3867 	if (read_mems_allowed_retry(cpuset_mems_cookie))
3868 		return true;
3869 
3870 	return false;
3871 }
3872 
3873 static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask,unsigned int order,struct alloc_context * ac)3874 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3875 						struct alloc_context *ac)
3876 {
3877 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3878 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3879 	struct page *page = NULL;
3880 	unsigned int alloc_flags;
3881 	unsigned long did_some_progress;
3882 	enum compact_priority compact_priority;
3883 	enum compact_result compact_result;
3884 	int compaction_retries;
3885 	int no_progress_loops;
3886 	unsigned int cpuset_mems_cookie;
3887 	int reserve_flags;
3888 
3889 	/*
3890 	 * We also sanity check to catch abuse of atomic reserves being used by
3891 	 * callers that are not in atomic context.
3892 	 */
3893 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3894 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3895 		gfp_mask &= ~__GFP_ATOMIC;
3896 
3897 retry_cpuset:
3898 	compaction_retries = 0;
3899 	no_progress_loops = 0;
3900 	compact_priority = DEF_COMPACT_PRIORITY;
3901 	cpuset_mems_cookie = read_mems_allowed_begin();
3902 
3903 	/*
3904 	 * The fast path uses conservative alloc_flags to succeed only until
3905 	 * kswapd needs to be woken up, and to avoid the cost of setting up
3906 	 * alloc_flags precisely. So we do that now.
3907 	 */
3908 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
3909 
3910 	/*
3911 	 * We need to recalculate the starting point for the zonelist iterator
3912 	 * because we might have used different nodemask in the fast path, or
3913 	 * there was a cpuset modification and we are retrying - otherwise we
3914 	 * could end up iterating over non-eligible zones endlessly.
3915 	 */
3916 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3917 					ac->high_zoneidx, ac->nodemask);
3918 	if (!ac->preferred_zoneref->zone)
3919 		goto nopage;
3920 
3921 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3922 		wake_all_kswapds(order, ac);
3923 
3924 	/*
3925 	 * The adjusted alloc_flags might result in immediate success, so try
3926 	 * that first
3927 	 */
3928 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3929 	if (page)
3930 		goto got_pg;
3931 
3932 	/*
3933 	 * For costly allocations, try direct compaction first, as it's likely
3934 	 * that we have enough base pages and don't need to reclaim. For non-
3935 	 * movable high-order allocations, do that as well, as compaction will
3936 	 * try prevent permanent fragmentation by migrating from blocks of the
3937 	 * same migratetype.
3938 	 * Don't try this for allocations that are allowed to ignore
3939 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
3940 	 */
3941 	if (can_direct_reclaim &&
3942 			(costly_order ||
3943 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
3944 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
3945 		page = __alloc_pages_direct_compact(gfp_mask, order,
3946 						alloc_flags, ac,
3947 						INIT_COMPACT_PRIORITY,
3948 						&compact_result);
3949 		if (page)
3950 			goto got_pg;
3951 
3952 		/*
3953 		 * Checks for costly allocations with __GFP_NORETRY, which
3954 		 * includes THP page fault allocations
3955 		 */
3956 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
3957 			/*
3958 			 * If compaction is deferred for high-order allocations,
3959 			 * it is because sync compaction recently failed. If
3960 			 * this is the case and the caller requested a THP
3961 			 * allocation, we do not want to heavily disrupt the
3962 			 * system, so we fail the allocation instead of entering
3963 			 * direct reclaim.
3964 			 */
3965 			if (compact_result == COMPACT_DEFERRED)
3966 				goto nopage;
3967 
3968 			/*
3969 			 * Looks like reclaim/compaction is worth trying, but
3970 			 * sync compaction could be very expensive, so keep
3971 			 * using async compaction.
3972 			 */
3973 			compact_priority = INIT_COMPACT_PRIORITY;
3974 		}
3975 	}
3976 
3977 retry:
3978 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3979 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3980 		wake_all_kswapds(order, ac);
3981 
3982 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
3983 	if (reserve_flags)
3984 		alloc_flags = reserve_flags;
3985 
3986 	/*
3987 	 * Reset the zonelist iterators if memory policies can be ignored.
3988 	 * These allocations are high priority and system rather than user
3989 	 * orientated.
3990 	 */
3991 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
3992 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3993 					ac->high_zoneidx, ac->nodemask);
3994 	}
3995 
3996 	/* Attempt with potentially adjusted zonelist and alloc_flags */
3997 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3998 	if (page)
3999 		goto got_pg;
4000 
4001 	/* Caller is not willing to reclaim, we can't balance anything */
4002 	if (!can_direct_reclaim)
4003 		goto nopage;
4004 
4005 	/* Avoid recursion of direct reclaim */
4006 	if (current->flags & PF_MEMALLOC)
4007 		goto nopage;
4008 
4009 	/* Try direct reclaim and then allocating */
4010 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4011 							&did_some_progress);
4012 	if (page)
4013 		goto got_pg;
4014 
4015 	/* Try direct compaction and then allocating */
4016 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4017 					compact_priority, &compact_result);
4018 	if (page)
4019 		goto got_pg;
4020 
4021 	/* Do not loop if specifically requested */
4022 	if (gfp_mask & __GFP_NORETRY)
4023 		goto nopage;
4024 
4025 	/*
4026 	 * Do not retry costly high order allocations unless they are
4027 	 * __GFP_RETRY_MAYFAIL
4028 	 */
4029 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4030 		goto nopage;
4031 
4032 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4033 				 did_some_progress > 0, &no_progress_loops))
4034 		goto retry;
4035 
4036 	/*
4037 	 * It doesn't make any sense to retry for the compaction if the order-0
4038 	 * reclaim is not able to make any progress because the current
4039 	 * implementation of the compaction depends on the sufficient amount
4040 	 * of free memory (see __compaction_suitable)
4041 	 */
4042 	if (did_some_progress > 0 &&
4043 			should_compact_retry(ac, order, alloc_flags,
4044 				compact_result, &compact_priority,
4045 				&compaction_retries))
4046 		goto retry;
4047 
4048 
4049 	/* Deal with possible cpuset update races before we start OOM killing */
4050 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4051 		goto retry_cpuset;
4052 
4053 	/* Reclaim has failed us, start killing things */
4054 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4055 	if (page)
4056 		goto got_pg;
4057 
4058 	/* Avoid allocations with no watermarks from looping endlessly */
4059 	if (tsk_is_oom_victim(current) &&
4060 	    (alloc_flags == ALLOC_OOM ||
4061 	     (gfp_mask & __GFP_NOMEMALLOC)))
4062 		goto nopage;
4063 
4064 	/* Retry as long as the OOM killer is making progress */
4065 	if (did_some_progress) {
4066 		no_progress_loops = 0;
4067 		goto retry;
4068 	}
4069 
4070 nopage:
4071 	/* Deal with possible cpuset update races before we fail */
4072 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4073 		goto retry_cpuset;
4074 
4075 	/*
4076 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4077 	 * we always retry
4078 	 */
4079 	if (gfp_mask & __GFP_NOFAIL) {
4080 		/*
4081 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4082 		 * of any new users that actually require GFP_NOWAIT
4083 		 */
4084 		if (WARN_ON_ONCE(!can_direct_reclaim))
4085 			goto fail;
4086 
4087 		/*
4088 		 * PF_MEMALLOC request from this context is rather bizarre
4089 		 * because we cannot reclaim anything and only can loop waiting
4090 		 * for somebody to do a work for us
4091 		 */
4092 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4093 
4094 		/*
4095 		 * non failing costly orders are a hard requirement which we
4096 		 * are not prepared for much so let's warn about these users
4097 		 * so that we can identify them and convert them to something
4098 		 * else.
4099 		 */
4100 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4101 
4102 		/*
4103 		 * Help non-failing allocations by giving them access to memory
4104 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
4105 		 * could deplete whole memory reserves which would just make
4106 		 * the situation worse
4107 		 */
4108 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4109 		if (page)
4110 			goto got_pg;
4111 
4112 		cond_resched();
4113 		goto retry;
4114 	}
4115 fail:
4116 	warn_alloc(gfp_mask, ac->nodemask,
4117 			"page allocation failure: order:%u", order);
4118 got_pg:
4119 	return page;
4120 }
4121 
prepare_alloc_pages(gfp_t gfp_mask,unsigned int order,int preferred_nid,nodemask_t * nodemask,struct alloc_context * ac,gfp_t * alloc_mask,unsigned int * alloc_flags)4122 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4123 		int preferred_nid, nodemask_t *nodemask,
4124 		struct alloc_context *ac, gfp_t *alloc_mask,
4125 		unsigned int *alloc_flags)
4126 {
4127 	ac->high_zoneidx = gfp_zone(gfp_mask);
4128 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4129 	ac->nodemask = nodemask;
4130 	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4131 
4132 	if (cpusets_enabled()) {
4133 		*alloc_mask |= __GFP_HARDWALL;
4134 		if (!ac->nodemask)
4135 			ac->nodemask = &cpuset_current_mems_allowed;
4136 		else
4137 			*alloc_flags |= ALLOC_CPUSET;
4138 	}
4139 
4140 	fs_reclaim_acquire(gfp_mask);
4141 	fs_reclaim_release(gfp_mask);
4142 
4143 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4144 
4145 	if (should_fail_alloc_page(gfp_mask, order))
4146 		return false;
4147 
4148 	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4149 		*alloc_flags |= ALLOC_CMA;
4150 
4151 	return true;
4152 }
4153 
4154 /* Determine whether to spread dirty pages and what the first usable zone */
finalise_ac(gfp_t gfp_mask,unsigned int order,struct alloc_context * ac)4155 static inline void finalise_ac(gfp_t gfp_mask,
4156 		unsigned int order, struct alloc_context *ac)
4157 {
4158 	/* Dirty zone balancing only done in the fast path */
4159 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4160 
4161 	/*
4162 	 * The preferred zone is used for statistics but crucially it is
4163 	 * also used as the starting point for the zonelist iterator. It
4164 	 * may get reset for allocations that ignore memory policies.
4165 	 */
4166 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4167 					ac->high_zoneidx, ac->nodemask);
4168 }
4169 
4170 /*
4171  * This is the 'heart' of the zoned buddy allocator.
4172  */
4173 struct page *
__alloc_pages_nodemask(gfp_t gfp_mask,unsigned int order,int preferred_nid,nodemask_t * nodemask)4174 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4175 							nodemask_t *nodemask)
4176 {
4177 	struct page *page;
4178 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4179 	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4180 	struct alloc_context ac = { };
4181 
4182 	/*
4183 	 * There are several places where we assume that the order value is sane
4184 	 * so bail out early if the request is out of bound.
4185 	 */
4186 	if (unlikely(order >= MAX_ORDER)) {
4187 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4188 		return NULL;
4189 	}
4190 
4191 	gfp_mask &= gfp_allowed_mask;
4192 	alloc_mask = gfp_mask;
4193 	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4194 		return NULL;
4195 
4196 	finalise_ac(gfp_mask, order, &ac);
4197 
4198 	/* First allocation attempt */
4199 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4200 	if (likely(page))
4201 		goto out;
4202 
4203 	/*
4204 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4205 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4206 	 * from a particular context which has been marked by
4207 	 * memalloc_no{fs,io}_{save,restore}.
4208 	 */
4209 	alloc_mask = current_gfp_context(gfp_mask);
4210 	ac.spread_dirty_pages = false;
4211 
4212 	/*
4213 	 * Restore the original nodemask if it was potentially replaced with
4214 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4215 	 */
4216 	if (unlikely(ac.nodemask != nodemask))
4217 		ac.nodemask = nodemask;
4218 
4219 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4220 
4221 out:
4222 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4223 	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4224 		__free_pages(page, order);
4225 		page = NULL;
4226 	}
4227 
4228 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4229 
4230 	return page;
4231 }
4232 EXPORT_SYMBOL(__alloc_pages_nodemask);
4233 
4234 /*
4235  * Common helper functions.
4236  */
__get_free_pages(gfp_t gfp_mask,unsigned int order)4237 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4238 {
4239 	struct page *page;
4240 
4241 	/*
4242 	 * __get_free_pages() returns a 32-bit address, which cannot represent
4243 	 * a highmem page
4244 	 */
4245 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4246 
4247 	page = alloc_pages(gfp_mask, order);
4248 	if (!page)
4249 		return 0;
4250 	return (unsigned long) page_address(page);
4251 }
4252 EXPORT_SYMBOL(__get_free_pages);
4253 
get_zeroed_page(gfp_t gfp_mask)4254 unsigned long get_zeroed_page(gfp_t gfp_mask)
4255 {
4256 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4257 }
4258 EXPORT_SYMBOL(get_zeroed_page);
4259 
__free_pages(struct page * page,unsigned int order)4260 void __free_pages(struct page *page, unsigned int order)
4261 {
4262 	if (put_page_testzero(page)) {
4263 		if (order == 0)
4264 			free_hot_cold_page(page, false);
4265 		else
4266 			__free_pages_ok(page, order);
4267 	}
4268 }
4269 
4270 EXPORT_SYMBOL(__free_pages);
4271 
free_pages(unsigned long addr,unsigned int order)4272 void free_pages(unsigned long addr, unsigned int order)
4273 {
4274 	if (addr != 0) {
4275 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4276 		__free_pages(virt_to_page((void *)addr), order);
4277 	}
4278 }
4279 
4280 EXPORT_SYMBOL(free_pages);
4281 
4282 /*
4283  * Page Fragment:
4284  *  An arbitrary-length arbitrary-offset area of memory which resides
4285  *  within a 0 or higher order page.  Multiple fragments within that page
4286  *  are individually refcounted, in the page's reference counter.
4287  *
4288  * The page_frag functions below provide a simple allocation framework for
4289  * page fragments.  This is used by the network stack and network device
4290  * drivers to provide a backing region of memory for use as either an
4291  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4292  */
__page_frag_cache_refill(struct page_frag_cache * nc,gfp_t gfp_mask)4293 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4294 					     gfp_t gfp_mask)
4295 {
4296 	struct page *page = NULL;
4297 	gfp_t gfp = gfp_mask;
4298 
4299 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4300 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4301 		    __GFP_NOMEMALLOC;
4302 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4303 				PAGE_FRAG_CACHE_MAX_ORDER);
4304 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4305 #endif
4306 	if (unlikely(!page))
4307 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4308 
4309 	nc->va = page ? page_address(page) : NULL;
4310 
4311 	return page;
4312 }
4313 
__page_frag_cache_drain(struct page * page,unsigned int count)4314 void __page_frag_cache_drain(struct page *page, unsigned int count)
4315 {
4316 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4317 
4318 	if (page_ref_sub_and_test(page, count)) {
4319 		unsigned int order = compound_order(page);
4320 
4321 		if (order == 0)
4322 			free_hot_cold_page(page, false);
4323 		else
4324 			__free_pages_ok(page, order);
4325 	}
4326 }
4327 EXPORT_SYMBOL(__page_frag_cache_drain);
4328 
page_frag_alloc(struct page_frag_cache * nc,unsigned int fragsz,gfp_t gfp_mask)4329 void *page_frag_alloc(struct page_frag_cache *nc,
4330 		      unsigned int fragsz, gfp_t gfp_mask)
4331 {
4332 	unsigned int size = PAGE_SIZE;
4333 	struct page *page;
4334 	int offset;
4335 
4336 	if (unlikely(!nc->va)) {
4337 refill:
4338 		page = __page_frag_cache_refill(nc, gfp_mask);
4339 		if (!page)
4340 			return NULL;
4341 
4342 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4343 		/* if size can vary use size else just use PAGE_SIZE */
4344 		size = nc->size;
4345 #endif
4346 		/* Even if we own the page, we do not use atomic_set().
4347 		 * This would break get_page_unless_zero() users.
4348 		 */
4349 		page_ref_add(page, size);
4350 
4351 		/* reset page count bias and offset to start of new frag */
4352 		nc->pfmemalloc = page_is_pfmemalloc(page);
4353 		nc->pagecnt_bias = size + 1;
4354 		nc->offset = size;
4355 	}
4356 
4357 	offset = nc->offset - fragsz;
4358 	if (unlikely(offset < 0)) {
4359 		page = virt_to_page(nc->va);
4360 
4361 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4362 			goto refill;
4363 
4364 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4365 		/* if size can vary use size else just use PAGE_SIZE */
4366 		size = nc->size;
4367 #endif
4368 		/* OK, page count is 0, we can safely set it */
4369 		set_page_count(page, size + 1);
4370 
4371 		/* reset page count bias and offset to start of new frag */
4372 		nc->pagecnt_bias = size + 1;
4373 		offset = size - fragsz;
4374 	}
4375 
4376 	nc->pagecnt_bias--;
4377 	nc->offset = offset;
4378 
4379 	return nc->va + offset;
4380 }
4381 EXPORT_SYMBOL(page_frag_alloc);
4382 
4383 /*
4384  * Frees a page fragment allocated out of either a compound or order 0 page.
4385  */
page_frag_free(void * addr)4386 void page_frag_free(void *addr)
4387 {
4388 	struct page *page = virt_to_head_page(addr);
4389 
4390 	if (unlikely(put_page_testzero(page)))
4391 		__free_pages_ok(page, compound_order(page));
4392 }
4393 EXPORT_SYMBOL(page_frag_free);
4394 
make_alloc_exact(unsigned long addr,unsigned int order,size_t size)4395 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4396 		size_t size)
4397 {
4398 	if (addr) {
4399 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
4400 		unsigned long used = addr + PAGE_ALIGN(size);
4401 
4402 		split_page(virt_to_page((void *)addr), order);
4403 		while (used < alloc_end) {
4404 			free_page(used);
4405 			used += PAGE_SIZE;
4406 		}
4407 	}
4408 	return (void *)addr;
4409 }
4410 
4411 /**
4412  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4413  * @size: the number of bytes to allocate
4414  * @gfp_mask: GFP flags for the allocation
4415  *
4416  * This function is similar to alloc_pages(), except that it allocates the
4417  * minimum number of pages to satisfy the request.  alloc_pages() can only
4418  * allocate memory in power-of-two pages.
4419  *
4420  * This function is also limited by MAX_ORDER.
4421  *
4422  * Memory allocated by this function must be released by free_pages_exact().
4423  */
alloc_pages_exact(size_t size,gfp_t gfp_mask)4424 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4425 {
4426 	unsigned int order = get_order(size);
4427 	unsigned long addr;
4428 
4429 	addr = __get_free_pages(gfp_mask, order);
4430 	return make_alloc_exact(addr, order, size);
4431 }
4432 EXPORT_SYMBOL(alloc_pages_exact);
4433 
4434 /**
4435  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4436  *			   pages on a node.
4437  * @nid: the preferred node ID where memory should be allocated
4438  * @size: the number of bytes to allocate
4439  * @gfp_mask: GFP flags for the allocation
4440  *
4441  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4442  * back.
4443  */
alloc_pages_exact_nid(int nid,size_t size,gfp_t gfp_mask)4444 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4445 {
4446 	unsigned int order = get_order(size);
4447 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
4448 	if (!p)
4449 		return NULL;
4450 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4451 }
4452 
4453 /**
4454  * free_pages_exact - release memory allocated via alloc_pages_exact()
4455  * @virt: the value returned by alloc_pages_exact.
4456  * @size: size of allocation, same value as passed to alloc_pages_exact().
4457  *
4458  * Release the memory allocated by a previous call to alloc_pages_exact.
4459  */
free_pages_exact(void * virt,size_t size)4460 void free_pages_exact(void *virt, size_t size)
4461 {
4462 	unsigned long addr = (unsigned long)virt;
4463 	unsigned long end = addr + PAGE_ALIGN(size);
4464 
4465 	while (addr < end) {
4466 		free_page(addr);
4467 		addr += PAGE_SIZE;
4468 	}
4469 }
4470 EXPORT_SYMBOL(free_pages_exact);
4471 
4472 /**
4473  * nr_free_zone_pages - count number of pages beyond high watermark
4474  * @offset: The zone index of the highest zone
4475  *
4476  * nr_free_zone_pages() counts the number of counts pages which are beyond the
4477  * high watermark within all zones at or below a given zone index.  For each
4478  * zone, the number of pages is calculated as:
4479  *
4480  *     nr_free_zone_pages = managed_pages - high_pages
4481  */
nr_free_zone_pages(int offset)4482 static unsigned long nr_free_zone_pages(int offset)
4483 {
4484 	struct zoneref *z;
4485 	struct zone *zone;
4486 
4487 	/* Just pick one node, since fallback list is circular */
4488 	unsigned long sum = 0;
4489 
4490 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4491 
4492 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4493 		unsigned long size = zone->managed_pages;
4494 		unsigned long high = high_wmark_pages(zone);
4495 		if (size > high)
4496 			sum += size - high;
4497 	}
4498 
4499 	return sum;
4500 }
4501 
4502 /**
4503  * nr_free_buffer_pages - count number of pages beyond high watermark
4504  *
4505  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4506  * watermark within ZONE_DMA and ZONE_NORMAL.
4507  */
nr_free_buffer_pages(void)4508 unsigned long nr_free_buffer_pages(void)
4509 {
4510 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4511 }
4512 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4513 
4514 /**
4515  * nr_free_pagecache_pages - count number of pages beyond high watermark
4516  *
4517  * nr_free_pagecache_pages() counts the number of pages which are beyond the
4518  * high watermark within all zones.
4519  */
nr_free_pagecache_pages(void)4520 unsigned long nr_free_pagecache_pages(void)
4521 {
4522 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4523 }
4524 
show_node(struct zone * zone)4525 static inline void show_node(struct zone *zone)
4526 {
4527 	if (IS_ENABLED(CONFIG_NUMA))
4528 		printk("Node %d ", zone_to_nid(zone));
4529 }
4530 
si_mem_available(void)4531 long si_mem_available(void)
4532 {
4533 	long available;
4534 	unsigned long pagecache;
4535 	unsigned long wmark_low = 0;
4536 	unsigned long pages[NR_LRU_LISTS];
4537 	struct zone *zone;
4538 	int lru;
4539 
4540 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4541 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4542 
4543 	for_each_zone(zone)
4544 		wmark_low += zone->watermark[WMARK_LOW];
4545 
4546 	/*
4547 	 * Estimate the amount of memory available for userspace allocations,
4548 	 * without causing swapping.
4549 	 */
4550 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4551 
4552 	/*
4553 	 * Not all the page cache can be freed, otherwise the system will
4554 	 * start swapping. Assume at least half of the page cache, or the
4555 	 * low watermark worth of cache, needs to stay.
4556 	 */
4557 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4558 	pagecache -= min(pagecache / 2, wmark_low);
4559 	available += pagecache;
4560 
4561 	/*
4562 	 * Part of the reclaimable slab consists of items that are in use,
4563 	 * and cannot be freed. Cap this estimate at the low watermark.
4564 	 */
4565 	available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
4566 		     min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
4567 			 wmark_low);
4568 
4569 	/*
4570 	 * Part of the kernel memory, which can be released under memory
4571 	 * pressure.
4572 	 */
4573 	available += global_node_page_state(NR_INDIRECTLY_RECLAIMABLE_BYTES) >>
4574 		PAGE_SHIFT;
4575 
4576 	if (available < 0)
4577 		available = 0;
4578 	return available;
4579 }
4580 EXPORT_SYMBOL_GPL(si_mem_available);
4581 
si_meminfo(struct sysinfo * val)4582 void si_meminfo(struct sysinfo *val)
4583 {
4584 	val->totalram = totalram_pages;
4585 	val->sharedram = global_node_page_state(NR_SHMEM);
4586 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
4587 	val->bufferram = nr_blockdev_pages();
4588 	val->totalhigh = totalhigh_pages;
4589 	val->freehigh = nr_free_highpages();
4590 	val->mem_unit = PAGE_SIZE;
4591 }
4592 
4593 EXPORT_SYMBOL(si_meminfo);
4594 
4595 #ifdef CONFIG_NUMA
si_meminfo_node(struct sysinfo * val,int nid)4596 void si_meminfo_node(struct sysinfo *val, int nid)
4597 {
4598 	int zone_type;		/* needs to be signed */
4599 	unsigned long managed_pages = 0;
4600 	unsigned long managed_highpages = 0;
4601 	unsigned long free_highpages = 0;
4602 	pg_data_t *pgdat = NODE_DATA(nid);
4603 
4604 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4605 		managed_pages += pgdat->node_zones[zone_type].managed_pages;
4606 	val->totalram = managed_pages;
4607 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
4608 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4609 #ifdef CONFIG_HIGHMEM
4610 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4611 		struct zone *zone = &pgdat->node_zones[zone_type];
4612 
4613 		if (is_highmem(zone)) {
4614 			managed_highpages += zone->managed_pages;
4615 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4616 		}
4617 	}
4618 	val->totalhigh = managed_highpages;
4619 	val->freehigh = free_highpages;
4620 #else
4621 	val->totalhigh = managed_highpages;
4622 	val->freehigh = free_highpages;
4623 #endif
4624 	val->mem_unit = PAGE_SIZE;
4625 }
4626 #endif
4627 
4628 /*
4629  * Determine whether the node should be displayed or not, depending on whether
4630  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4631  */
show_mem_node_skip(unsigned int flags,int nid,nodemask_t * nodemask)4632 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4633 {
4634 	if (!(flags & SHOW_MEM_FILTER_NODES))
4635 		return false;
4636 
4637 	/*
4638 	 * no node mask - aka implicit memory numa policy. Do not bother with
4639 	 * the synchronization - read_mems_allowed_begin - because we do not
4640 	 * have to be precise here.
4641 	 */
4642 	if (!nodemask)
4643 		nodemask = &cpuset_current_mems_allowed;
4644 
4645 	return !node_isset(nid, *nodemask);
4646 }
4647 
4648 #define K(x) ((x) << (PAGE_SHIFT-10))
4649 
show_migration_types(unsigned char type)4650 static void show_migration_types(unsigned char type)
4651 {
4652 	static const char types[MIGRATE_TYPES] = {
4653 		[MIGRATE_UNMOVABLE]	= 'U',
4654 		[MIGRATE_MOVABLE]	= 'M',
4655 		[MIGRATE_RECLAIMABLE]	= 'E',
4656 		[MIGRATE_HIGHATOMIC]	= 'H',
4657 #ifdef CONFIG_CMA
4658 		[MIGRATE_CMA]		= 'C',
4659 #endif
4660 #ifdef CONFIG_MEMORY_ISOLATION
4661 		[MIGRATE_ISOLATE]	= 'I',
4662 #endif
4663 	};
4664 	char tmp[MIGRATE_TYPES + 1];
4665 	char *p = tmp;
4666 	int i;
4667 
4668 	for (i = 0; i < MIGRATE_TYPES; i++) {
4669 		if (type & (1 << i))
4670 			*p++ = types[i];
4671 	}
4672 
4673 	*p = '\0';
4674 	printk(KERN_CONT "(%s) ", tmp);
4675 }
4676 
4677 /*
4678  * Show free area list (used inside shift_scroll-lock stuff)
4679  * We also calculate the percentage fragmentation. We do this by counting the
4680  * memory on each free list with the exception of the first item on the list.
4681  *
4682  * Bits in @filter:
4683  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4684  *   cpuset.
4685  */
show_free_areas(unsigned int filter,nodemask_t * nodemask)4686 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4687 {
4688 	unsigned long free_pcp = 0;
4689 	int cpu;
4690 	struct zone *zone;
4691 	pg_data_t *pgdat;
4692 
4693 	for_each_populated_zone(zone) {
4694 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4695 			continue;
4696 
4697 		for_each_online_cpu(cpu)
4698 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4699 	}
4700 
4701 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4702 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4703 		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4704 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4705 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4706 		" free:%lu free_pcp:%lu free_cma:%lu\n",
4707 		global_node_page_state(NR_ACTIVE_ANON),
4708 		global_node_page_state(NR_INACTIVE_ANON),
4709 		global_node_page_state(NR_ISOLATED_ANON),
4710 		global_node_page_state(NR_ACTIVE_FILE),
4711 		global_node_page_state(NR_INACTIVE_FILE),
4712 		global_node_page_state(NR_ISOLATED_FILE),
4713 		global_node_page_state(NR_UNEVICTABLE),
4714 		global_node_page_state(NR_FILE_DIRTY),
4715 		global_node_page_state(NR_WRITEBACK),
4716 		global_node_page_state(NR_UNSTABLE_NFS),
4717 		global_node_page_state(NR_SLAB_RECLAIMABLE),
4718 		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4719 		global_node_page_state(NR_FILE_MAPPED),
4720 		global_node_page_state(NR_SHMEM),
4721 		global_zone_page_state(NR_PAGETABLE),
4722 		global_zone_page_state(NR_BOUNCE),
4723 		global_zone_page_state(NR_FREE_PAGES),
4724 		free_pcp,
4725 		global_zone_page_state(NR_FREE_CMA_PAGES));
4726 
4727 	for_each_online_pgdat(pgdat) {
4728 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4729 			continue;
4730 
4731 		printk("Node %d"
4732 			" active_anon:%lukB"
4733 			" inactive_anon:%lukB"
4734 			" active_file:%lukB"
4735 			" inactive_file:%lukB"
4736 			" unevictable:%lukB"
4737 			" isolated(anon):%lukB"
4738 			" isolated(file):%lukB"
4739 			" mapped:%lukB"
4740 			" dirty:%lukB"
4741 			" writeback:%lukB"
4742 			" shmem:%lukB"
4743 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4744 			" shmem_thp: %lukB"
4745 			" shmem_pmdmapped: %lukB"
4746 			" anon_thp: %lukB"
4747 #endif
4748 			" writeback_tmp:%lukB"
4749 			" unstable:%lukB"
4750 			" all_unreclaimable? %s"
4751 			"\n",
4752 			pgdat->node_id,
4753 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4754 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4755 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4756 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4757 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
4758 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4759 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4760 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
4761 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
4762 			K(node_page_state(pgdat, NR_WRITEBACK)),
4763 			K(node_page_state(pgdat, NR_SHMEM)),
4764 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4765 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4766 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4767 					* HPAGE_PMD_NR),
4768 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4769 #endif
4770 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4771 			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4772 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4773 				"yes" : "no");
4774 	}
4775 
4776 	for_each_populated_zone(zone) {
4777 		int i;
4778 
4779 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4780 			continue;
4781 
4782 		free_pcp = 0;
4783 		for_each_online_cpu(cpu)
4784 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4785 
4786 		show_node(zone);
4787 		printk(KERN_CONT
4788 			"%s"
4789 			" free:%lukB"
4790 			" min:%lukB"
4791 			" low:%lukB"
4792 			" high:%lukB"
4793 			" active_anon:%lukB"
4794 			" inactive_anon:%lukB"
4795 			" active_file:%lukB"
4796 			" inactive_file:%lukB"
4797 			" unevictable:%lukB"
4798 			" writepending:%lukB"
4799 			" present:%lukB"
4800 			" managed:%lukB"
4801 			" mlocked:%lukB"
4802 			" kernel_stack:%lukB"
4803 			" pagetables:%lukB"
4804 			" bounce:%lukB"
4805 			" free_pcp:%lukB"
4806 			" local_pcp:%ukB"
4807 			" free_cma:%lukB"
4808 			"\n",
4809 			zone->name,
4810 			K(zone_page_state(zone, NR_FREE_PAGES)),
4811 			K(min_wmark_pages(zone)),
4812 			K(low_wmark_pages(zone)),
4813 			K(high_wmark_pages(zone)),
4814 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4815 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4816 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4817 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4818 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4819 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4820 			K(zone->present_pages),
4821 			K(zone->managed_pages),
4822 			K(zone_page_state(zone, NR_MLOCK)),
4823 			zone_page_state(zone, NR_KERNEL_STACK_KB),
4824 			K(zone_page_state(zone, NR_PAGETABLE)),
4825 			K(zone_page_state(zone, NR_BOUNCE)),
4826 			K(free_pcp),
4827 			K(this_cpu_read(zone->pageset->pcp.count)),
4828 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4829 		printk("lowmem_reserve[]:");
4830 		for (i = 0; i < MAX_NR_ZONES; i++)
4831 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4832 		printk(KERN_CONT "\n");
4833 	}
4834 
4835 	for_each_populated_zone(zone) {
4836 		unsigned int order;
4837 		unsigned long nr[MAX_ORDER], flags, total = 0;
4838 		unsigned char types[MAX_ORDER];
4839 
4840 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4841 			continue;
4842 		show_node(zone);
4843 		printk(KERN_CONT "%s: ", zone->name);
4844 
4845 		spin_lock_irqsave(&zone->lock, flags);
4846 		for (order = 0; order < MAX_ORDER; order++) {
4847 			struct free_area *area = &zone->free_area[order];
4848 			int type;
4849 
4850 			nr[order] = area->nr_free;
4851 			total += nr[order] << order;
4852 
4853 			types[order] = 0;
4854 			for (type = 0; type < MIGRATE_TYPES; type++) {
4855 				if (!list_empty(&area->free_list[type]))
4856 					types[order] |= 1 << type;
4857 			}
4858 		}
4859 		spin_unlock_irqrestore(&zone->lock, flags);
4860 		for (order = 0; order < MAX_ORDER; order++) {
4861 			printk(KERN_CONT "%lu*%lukB ",
4862 			       nr[order], K(1UL) << order);
4863 			if (nr[order])
4864 				show_migration_types(types[order]);
4865 		}
4866 		printk(KERN_CONT "= %lukB\n", K(total));
4867 	}
4868 
4869 	hugetlb_show_meminfo();
4870 
4871 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4872 
4873 	show_swap_cache_info();
4874 }
4875 
zoneref_set_zone(struct zone * zone,struct zoneref * zoneref)4876 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4877 {
4878 	zoneref->zone = zone;
4879 	zoneref->zone_idx = zone_idx(zone);
4880 }
4881 
4882 /*
4883  * Builds allocation fallback zone lists.
4884  *
4885  * Add all populated zones of a node to the zonelist.
4886  */
build_zonerefs_node(pg_data_t * pgdat,struct zoneref * zonerefs)4887 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
4888 {
4889 	struct zone *zone;
4890 	enum zone_type zone_type = MAX_NR_ZONES;
4891 	int nr_zones = 0;
4892 
4893 	do {
4894 		zone_type--;
4895 		zone = pgdat->node_zones + zone_type;
4896 		if (managed_zone(zone)) {
4897 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
4898 			check_highest_zone(zone_type);
4899 		}
4900 	} while (zone_type);
4901 
4902 	return nr_zones;
4903 }
4904 
4905 #ifdef CONFIG_NUMA
4906 
__parse_numa_zonelist_order(char * s)4907 static int __parse_numa_zonelist_order(char *s)
4908 {
4909 	/*
4910 	 * We used to support different zonlists modes but they turned
4911 	 * out to be just not useful. Let's keep the warning in place
4912 	 * if somebody still use the cmd line parameter so that we do
4913 	 * not fail it silently
4914 	 */
4915 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4916 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
4917 		return -EINVAL;
4918 	}
4919 	return 0;
4920 }
4921 
setup_numa_zonelist_order(char * s)4922 static __init int setup_numa_zonelist_order(char *s)
4923 {
4924 	if (!s)
4925 		return 0;
4926 
4927 	return __parse_numa_zonelist_order(s);
4928 }
4929 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4930 
4931 char numa_zonelist_order[] = "Node";
4932 
4933 /*
4934  * sysctl handler for numa_zonelist_order
4935  */
numa_zonelist_order_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)4936 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4937 		void __user *buffer, size_t *length,
4938 		loff_t *ppos)
4939 {
4940 	char *str;
4941 	int ret;
4942 
4943 	if (!write)
4944 		return proc_dostring(table, write, buffer, length, ppos);
4945 	str = memdup_user_nul(buffer, 16);
4946 	if (IS_ERR(str))
4947 		return PTR_ERR(str);
4948 
4949 	ret = __parse_numa_zonelist_order(str);
4950 	kfree(str);
4951 	return ret;
4952 }
4953 
4954 
4955 #define MAX_NODE_LOAD (nr_online_nodes)
4956 static int node_load[MAX_NUMNODES];
4957 
4958 /**
4959  * find_next_best_node - find the next node that should appear in a given node's fallback list
4960  * @node: node whose fallback list we're appending
4961  * @used_node_mask: nodemask_t of already used nodes
4962  *
4963  * We use a number of factors to determine which is the next node that should
4964  * appear on a given node's fallback list.  The node should not have appeared
4965  * already in @node's fallback list, and it should be the next closest node
4966  * according to the distance array (which contains arbitrary distance values
4967  * from each node to each node in the system), and should also prefer nodes
4968  * with no CPUs, since presumably they'll have very little allocation pressure
4969  * on them otherwise.
4970  * It returns -1 if no node is found.
4971  */
find_next_best_node(int node,nodemask_t * used_node_mask)4972 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4973 {
4974 	int n, val;
4975 	int min_val = INT_MAX;
4976 	int best_node = NUMA_NO_NODE;
4977 	const struct cpumask *tmp = cpumask_of_node(0);
4978 
4979 	/* Use the local node if we haven't already */
4980 	if (!node_isset(node, *used_node_mask)) {
4981 		node_set(node, *used_node_mask);
4982 		return node;
4983 	}
4984 
4985 	for_each_node_state(n, N_MEMORY) {
4986 
4987 		/* Don't want a node to appear more than once */
4988 		if (node_isset(n, *used_node_mask))
4989 			continue;
4990 
4991 		/* Use the distance array to find the distance */
4992 		val = node_distance(node, n);
4993 
4994 		/* Penalize nodes under us ("prefer the next node") */
4995 		val += (n < node);
4996 
4997 		/* Give preference to headless and unused nodes */
4998 		tmp = cpumask_of_node(n);
4999 		if (!cpumask_empty(tmp))
5000 			val += PENALTY_FOR_NODE_WITH_CPUS;
5001 
5002 		/* Slight preference for less loaded node */
5003 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5004 		val += node_load[n];
5005 
5006 		if (val < min_val) {
5007 			min_val = val;
5008 			best_node = n;
5009 		}
5010 	}
5011 
5012 	if (best_node >= 0)
5013 		node_set(best_node, *used_node_mask);
5014 
5015 	return best_node;
5016 }
5017 
5018 
5019 /*
5020  * Build zonelists ordered by node and zones within node.
5021  * This results in maximum locality--normal zone overflows into local
5022  * DMA zone, if any--but risks exhausting DMA zone.
5023  */
build_zonelists_in_node_order(pg_data_t * pgdat,int * node_order,unsigned nr_nodes)5024 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5025 		unsigned nr_nodes)
5026 {
5027 	struct zoneref *zonerefs;
5028 	int i;
5029 
5030 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5031 
5032 	for (i = 0; i < nr_nodes; i++) {
5033 		int nr_zones;
5034 
5035 		pg_data_t *node = NODE_DATA(node_order[i]);
5036 
5037 		nr_zones = build_zonerefs_node(node, zonerefs);
5038 		zonerefs += nr_zones;
5039 	}
5040 	zonerefs->zone = NULL;
5041 	zonerefs->zone_idx = 0;
5042 }
5043 
5044 /*
5045  * Build gfp_thisnode zonelists
5046  */
build_thisnode_zonelists(pg_data_t * pgdat)5047 static void build_thisnode_zonelists(pg_data_t *pgdat)
5048 {
5049 	struct zoneref *zonerefs;
5050 	int nr_zones;
5051 
5052 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5053 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5054 	zonerefs += nr_zones;
5055 	zonerefs->zone = NULL;
5056 	zonerefs->zone_idx = 0;
5057 }
5058 
5059 /*
5060  * Build zonelists ordered by zone and nodes within zones.
5061  * This results in conserving DMA zone[s] until all Normal memory is
5062  * exhausted, but results in overflowing to remote node while memory
5063  * may still exist in local DMA zone.
5064  */
5065 
build_zonelists(pg_data_t * pgdat)5066 static void build_zonelists(pg_data_t *pgdat)
5067 {
5068 	static int node_order[MAX_NUMNODES];
5069 	int node, load, nr_nodes = 0;
5070 	nodemask_t used_mask;
5071 	int local_node, prev_node;
5072 
5073 	/* NUMA-aware ordering of nodes */
5074 	local_node = pgdat->node_id;
5075 	load = nr_online_nodes;
5076 	prev_node = local_node;
5077 	nodes_clear(used_mask);
5078 
5079 	memset(node_order, 0, sizeof(node_order));
5080 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5081 		/*
5082 		 * We don't want to pressure a particular node.
5083 		 * So adding penalty to the first node in same
5084 		 * distance group to make it round-robin.
5085 		 */
5086 		if (node_distance(local_node, node) !=
5087 		    node_distance(local_node, prev_node))
5088 			node_load[node] = load;
5089 
5090 		node_order[nr_nodes++] = node;
5091 		prev_node = node;
5092 		load--;
5093 	}
5094 
5095 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5096 	build_thisnode_zonelists(pgdat);
5097 }
5098 
5099 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5100 /*
5101  * Return node id of node used for "local" allocations.
5102  * I.e., first node id of first zone in arg node's generic zonelist.
5103  * Used for initializing percpu 'numa_mem', which is used primarily
5104  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5105  */
local_memory_node(int node)5106 int local_memory_node(int node)
5107 {
5108 	struct zoneref *z;
5109 
5110 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5111 				   gfp_zone(GFP_KERNEL),
5112 				   NULL);
5113 	return z->zone->node;
5114 }
5115 #endif
5116 
5117 static void setup_min_unmapped_ratio(void);
5118 static void setup_min_slab_ratio(void);
5119 #else	/* CONFIG_NUMA */
5120 
build_zonelists(pg_data_t * pgdat)5121 static void build_zonelists(pg_data_t *pgdat)
5122 {
5123 	int node, local_node;
5124 	struct zoneref *zonerefs;
5125 	int nr_zones;
5126 
5127 	local_node = pgdat->node_id;
5128 
5129 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5130 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5131 	zonerefs += nr_zones;
5132 
5133 	/*
5134 	 * Now we build the zonelist so that it contains the zones
5135 	 * of all the other nodes.
5136 	 * We don't want to pressure a particular node, so when
5137 	 * building the zones for node N, we make sure that the
5138 	 * zones coming right after the local ones are those from
5139 	 * node N+1 (modulo N)
5140 	 */
5141 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5142 		if (!node_online(node))
5143 			continue;
5144 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5145 		zonerefs += nr_zones;
5146 	}
5147 	for (node = 0; node < local_node; node++) {
5148 		if (!node_online(node))
5149 			continue;
5150 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5151 		zonerefs += nr_zones;
5152 	}
5153 
5154 	zonerefs->zone = NULL;
5155 	zonerefs->zone_idx = 0;
5156 }
5157 
5158 #endif	/* CONFIG_NUMA */
5159 
5160 /*
5161  * Boot pageset table. One per cpu which is going to be used for all
5162  * zones and all nodes. The parameters will be set in such a way
5163  * that an item put on a list will immediately be handed over to
5164  * the buddy list. This is safe since pageset manipulation is done
5165  * with interrupts disabled.
5166  *
5167  * The boot_pagesets must be kept even after bootup is complete for
5168  * unused processors and/or zones. They do play a role for bootstrapping
5169  * hotplugged processors.
5170  *
5171  * zoneinfo_show() and maybe other functions do
5172  * not check if the processor is online before following the pageset pointer.
5173  * Other parts of the kernel may not check if the zone is available.
5174  */
5175 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5176 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5177 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5178 
__build_all_zonelists(void * data)5179 static void __build_all_zonelists(void *data)
5180 {
5181 	int nid;
5182 	int __maybe_unused cpu;
5183 	pg_data_t *self = data;
5184 	static DEFINE_SPINLOCK(lock);
5185 
5186 	spin_lock(&lock);
5187 
5188 #ifdef CONFIG_NUMA
5189 	memset(node_load, 0, sizeof(node_load));
5190 #endif
5191 
5192 	/*
5193 	 * This node is hotadded and no memory is yet present.   So just
5194 	 * building zonelists is fine - no need to touch other nodes.
5195 	 */
5196 	if (self && !node_online(self->node_id)) {
5197 		build_zonelists(self);
5198 	} else {
5199 		for_each_online_node(nid) {
5200 			pg_data_t *pgdat = NODE_DATA(nid);
5201 
5202 			build_zonelists(pgdat);
5203 		}
5204 
5205 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5206 		/*
5207 		 * We now know the "local memory node" for each node--
5208 		 * i.e., the node of the first zone in the generic zonelist.
5209 		 * Set up numa_mem percpu variable for on-line cpus.  During
5210 		 * boot, only the boot cpu should be on-line;  we'll init the
5211 		 * secondary cpus' numa_mem as they come on-line.  During
5212 		 * node/memory hotplug, we'll fixup all on-line cpus.
5213 		 */
5214 		for_each_online_cpu(cpu)
5215 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5216 #endif
5217 	}
5218 
5219 	spin_unlock(&lock);
5220 }
5221 
5222 static noinline void __init
build_all_zonelists_init(void)5223 build_all_zonelists_init(void)
5224 {
5225 	int cpu;
5226 
5227 	__build_all_zonelists(NULL);
5228 
5229 	/*
5230 	 * Initialize the boot_pagesets that are going to be used
5231 	 * for bootstrapping processors. The real pagesets for
5232 	 * each zone will be allocated later when the per cpu
5233 	 * allocator is available.
5234 	 *
5235 	 * boot_pagesets are used also for bootstrapping offline
5236 	 * cpus if the system is already booted because the pagesets
5237 	 * are needed to initialize allocators on a specific cpu too.
5238 	 * F.e. the percpu allocator needs the page allocator which
5239 	 * needs the percpu allocator in order to allocate its pagesets
5240 	 * (a chicken-egg dilemma).
5241 	 */
5242 	for_each_possible_cpu(cpu)
5243 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5244 
5245 	mminit_verify_zonelist();
5246 	cpuset_init_current_mems_allowed();
5247 }
5248 
5249 /*
5250  * unless system_state == SYSTEM_BOOTING.
5251  *
5252  * __ref due to call of __init annotated helper build_all_zonelists_init
5253  * [protected by SYSTEM_BOOTING].
5254  */
build_all_zonelists(pg_data_t * pgdat)5255 void __ref build_all_zonelists(pg_data_t *pgdat)
5256 {
5257 	if (system_state == SYSTEM_BOOTING) {
5258 		build_all_zonelists_init();
5259 	} else {
5260 		__build_all_zonelists(pgdat);
5261 		/* cpuset refresh routine should be here */
5262 	}
5263 	vm_total_pages = nr_free_pagecache_pages();
5264 	/*
5265 	 * Disable grouping by mobility if the number of pages in the
5266 	 * system is too low to allow the mechanism to work. It would be
5267 	 * more accurate, but expensive to check per-zone. This check is
5268 	 * made on memory-hotadd so a system can start with mobility
5269 	 * disabled and enable it later
5270 	 */
5271 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5272 		page_group_by_mobility_disabled = 1;
5273 	else
5274 		page_group_by_mobility_disabled = 0;
5275 
5276 	pr_info("Built %i zonelists, mobility grouping %s.  Total pages: %ld\n",
5277 		nr_online_nodes,
5278 		page_group_by_mobility_disabled ? "off" : "on",
5279 		vm_total_pages);
5280 #ifdef CONFIG_NUMA
5281 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5282 #endif
5283 }
5284 
5285 /*
5286  * Initially all pages are reserved - free ones are freed
5287  * up by free_all_bootmem() once the early boot process is
5288  * done. Non-atomic initialization, single-pass.
5289  */
memmap_init_zone(unsigned long size,int nid,unsigned long zone,unsigned long start_pfn,enum memmap_context context)5290 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5291 		unsigned long start_pfn, enum memmap_context context)
5292 {
5293 	struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5294 	unsigned long end_pfn = start_pfn + size;
5295 	pg_data_t *pgdat = NODE_DATA(nid);
5296 	unsigned long pfn;
5297 	unsigned long nr_initialised = 0;
5298 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5299 	struct memblock_region *r = NULL, *tmp;
5300 #endif
5301 
5302 	if (highest_memmap_pfn < end_pfn - 1)
5303 		highest_memmap_pfn = end_pfn - 1;
5304 
5305 	/*
5306 	 * Honor reservation requested by the driver for this ZONE_DEVICE
5307 	 * memory
5308 	 */
5309 	if (altmap && start_pfn == altmap->base_pfn)
5310 		start_pfn += altmap->reserve;
5311 
5312 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5313 		/*
5314 		 * There can be holes in boot-time mem_map[]s handed to this
5315 		 * function.  They do not exist on hotplugged memory.
5316 		 */
5317 		if (context != MEMMAP_EARLY)
5318 			goto not_early;
5319 
5320 		if (!early_pfn_valid(pfn))
5321 			continue;
5322 		if (!early_pfn_in_nid(pfn, nid))
5323 			continue;
5324 		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5325 			break;
5326 
5327 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5328 		/*
5329 		 * Check given memblock attribute by firmware which can affect
5330 		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
5331 		 * mirrored, it's an overlapped memmap init. skip it.
5332 		 */
5333 		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5334 			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5335 				for_each_memblock(memory, tmp)
5336 					if (pfn < memblock_region_memory_end_pfn(tmp))
5337 						break;
5338 				r = tmp;
5339 			}
5340 			if (pfn >= memblock_region_memory_base_pfn(r) &&
5341 			    memblock_is_mirror(r)) {
5342 				/* already initialized as NORMAL */
5343 				pfn = memblock_region_memory_end_pfn(r);
5344 				continue;
5345 			}
5346 		}
5347 #endif
5348 
5349 not_early:
5350 		/*
5351 		 * Mark the block movable so that blocks are reserved for
5352 		 * movable at startup. This will force kernel allocations
5353 		 * to reserve their blocks rather than leaking throughout
5354 		 * the address space during boot when many long-lived
5355 		 * kernel allocations are made.
5356 		 *
5357 		 * bitmap is created for zone's valid pfn range. but memmap
5358 		 * can be created for invalid pages (for alignment)
5359 		 * check here not to call set_pageblock_migratetype() against
5360 		 * pfn out of zone.
5361 		 */
5362 		if (!(pfn & (pageblock_nr_pages - 1))) {
5363 			struct page *page = pfn_to_page(pfn);
5364 
5365 			__init_single_page(page, pfn, zone, nid);
5366 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5367 			cond_resched();
5368 		} else {
5369 			__init_single_pfn(pfn, zone, nid);
5370 		}
5371 	}
5372 }
5373 
zone_init_free_lists(struct zone * zone)5374 static void __meminit zone_init_free_lists(struct zone *zone)
5375 {
5376 	unsigned int order, t;
5377 	for_each_migratetype_order(order, t) {
5378 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5379 		zone->free_area[order].nr_free = 0;
5380 	}
5381 }
5382 
5383 #ifndef __HAVE_ARCH_MEMMAP_INIT
5384 #define memmap_init(size, nid, zone, start_pfn) \
5385 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5386 #endif
5387 
zone_batchsize(struct zone * zone)5388 static int zone_batchsize(struct zone *zone)
5389 {
5390 #ifdef CONFIG_MMU
5391 	int batch;
5392 
5393 	/*
5394 	 * The per-cpu-pages pools are set to around 1000th of the
5395 	 * size of the zone.  But no more than 1/2 of a meg.
5396 	 *
5397 	 * OK, so we don't know how big the cache is.  So guess.
5398 	 */
5399 	batch = zone->managed_pages / 1024;
5400 	if (batch * PAGE_SIZE > 512 * 1024)
5401 		batch = (512 * 1024) / PAGE_SIZE;
5402 	batch /= 4;		/* We effectively *= 4 below */
5403 	if (batch < 1)
5404 		batch = 1;
5405 
5406 	/*
5407 	 * Clamp the batch to a 2^n - 1 value. Having a power
5408 	 * of 2 value was found to be more likely to have
5409 	 * suboptimal cache aliasing properties in some cases.
5410 	 *
5411 	 * For example if 2 tasks are alternately allocating
5412 	 * batches of pages, one task can end up with a lot
5413 	 * of pages of one half of the possible page colors
5414 	 * and the other with pages of the other colors.
5415 	 */
5416 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5417 
5418 	return batch;
5419 
5420 #else
5421 	/* The deferral and batching of frees should be suppressed under NOMMU
5422 	 * conditions.
5423 	 *
5424 	 * The problem is that NOMMU needs to be able to allocate large chunks
5425 	 * of contiguous memory as there's no hardware page translation to
5426 	 * assemble apparent contiguous memory from discontiguous pages.
5427 	 *
5428 	 * Queueing large contiguous runs of pages for batching, however,
5429 	 * causes the pages to actually be freed in smaller chunks.  As there
5430 	 * can be a significant delay between the individual batches being
5431 	 * recycled, this leads to the once large chunks of space being
5432 	 * fragmented and becoming unavailable for high-order allocations.
5433 	 */
5434 	return 0;
5435 #endif
5436 }
5437 
5438 /*
5439  * pcp->high and pcp->batch values are related and dependent on one another:
5440  * ->batch must never be higher then ->high.
5441  * The following function updates them in a safe manner without read side
5442  * locking.
5443  *
5444  * Any new users of pcp->batch and pcp->high should ensure they can cope with
5445  * those fields changing asynchronously (acording the the above rule).
5446  *
5447  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5448  * outside of boot time (or some other assurance that no concurrent updaters
5449  * exist).
5450  */
pageset_update(struct per_cpu_pages * pcp,unsigned long high,unsigned long batch)5451 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5452 		unsigned long batch)
5453 {
5454        /* start with a fail safe value for batch */
5455 	pcp->batch = 1;
5456 	smp_wmb();
5457 
5458        /* Update high, then batch, in order */
5459 	pcp->high = high;
5460 	smp_wmb();
5461 
5462 	pcp->batch = batch;
5463 }
5464 
5465 /* a companion to pageset_set_high() */
pageset_set_batch(struct per_cpu_pageset * p,unsigned long batch)5466 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5467 {
5468 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5469 }
5470 
pageset_init(struct per_cpu_pageset * p)5471 static void pageset_init(struct per_cpu_pageset *p)
5472 {
5473 	struct per_cpu_pages *pcp;
5474 	int migratetype;
5475 
5476 	memset(p, 0, sizeof(*p));
5477 
5478 	pcp = &p->pcp;
5479 	pcp->count = 0;
5480 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5481 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5482 }
5483 
setup_pageset(struct per_cpu_pageset * p,unsigned long batch)5484 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5485 {
5486 	pageset_init(p);
5487 	pageset_set_batch(p, batch);
5488 }
5489 
5490 /*
5491  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5492  * to the value high for the pageset p.
5493  */
pageset_set_high(struct per_cpu_pageset * p,unsigned long high)5494 static void pageset_set_high(struct per_cpu_pageset *p,
5495 				unsigned long high)
5496 {
5497 	unsigned long batch = max(1UL, high / 4);
5498 	if ((high / 4) > (PAGE_SHIFT * 8))
5499 		batch = PAGE_SHIFT * 8;
5500 
5501 	pageset_update(&p->pcp, high, batch);
5502 }
5503 
pageset_set_high_and_batch(struct zone * zone,struct per_cpu_pageset * pcp)5504 static void pageset_set_high_and_batch(struct zone *zone,
5505 				       struct per_cpu_pageset *pcp)
5506 {
5507 	if (percpu_pagelist_fraction)
5508 		pageset_set_high(pcp,
5509 			(zone->managed_pages /
5510 				percpu_pagelist_fraction));
5511 	else
5512 		pageset_set_batch(pcp, zone_batchsize(zone));
5513 }
5514 
zone_pageset_init(struct zone * zone,int cpu)5515 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5516 {
5517 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5518 
5519 	pageset_init(pcp);
5520 	pageset_set_high_and_batch(zone, pcp);
5521 }
5522 
setup_zone_pageset(struct zone * zone)5523 void __meminit setup_zone_pageset(struct zone *zone)
5524 {
5525 	int cpu;
5526 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5527 	for_each_possible_cpu(cpu)
5528 		zone_pageset_init(zone, cpu);
5529 }
5530 
5531 /*
5532  * Allocate per cpu pagesets and initialize them.
5533  * Before this call only boot pagesets were available.
5534  */
setup_per_cpu_pageset(void)5535 void __init setup_per_cpu_pageset(void)
5536 {
5537 	struct pglist_data *pgdat;
5538 	struct zone *zone;
5539 
5540 	for_each_populated_zone(zone)
5541 		setup_zone_pageset(zone);
5542 
5543 	for_each_online_pgdat(pgdat)
5544 		pgdat->per_cpu_nodestats =
5545 			alloc_percpu(struct per_cpu_nodestat);
5546 }
5547 
zone_pcp_init(struct zone * zone)5548 static __meminit void zone_pcp_init(struct zone *zone)
5549 {
5550 	/*
5551 	 * per cpu subsystem is not up at this point. The following code
5552 	 * relies on the ability of the linker to provide the
5553 	 * offset of a (static) per cpu variable into the per cpu area.
5554 	 */
5555 	zone->pageset = &boot_pageset;
5556 
5557 	if (populated_zone(zone))
5558 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
5559 			zone->name, zone->present_pages,
5560 					 zone_batchsize(zone));
5561 }
5562 
init_currently_empty_zone(struct zone * zone,unsigned long zone_start_pfn,unsigned long size)5563 void __meminit init_currently_empty_zone(struct zone *zone,
5564 					unsigned long zone_start_pfn,
5565 					unsigned long size)
5566 {
5567 	struct pglist_data *pgdat = zone->zone_pgdat;
5568 	int zone_idx = zone_idx(zone) + 1;
5569 
5570 	if (zone_idx > pgdat->nr_zones)
5571 		pgdat->nr_zones = zone_idx;
5572 
5573 	zone->zone_start_pfn = zone_start_pfn;
5574 
5575 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
5576 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
5577 			pgdat->node_id,
5578 			(unsigned long)zone_idx(zone),
5579 			zone_start_pfn, (zone_start_pfn + size));
5580 
5581 	zone_init_free_lists(zone);
5582 	zone->initialized = 1;
5583 }
5584 
5585 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5586 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5587 
5588 /*
5589  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5590  */
__early_pfn_to_nid(unsigned long pfn,struct mminit_pfnnid_cache * state)5591 int __meminit __early_pfn_to_nid(unsigned long pfn,
5592 					struct mminit_pfnnid_cache *state)
5593 {
5594 	unsigned long start_pfn, end_pfn;
5595 	int nid;
5596 
5597 	if (state->last_start <= pfn && pfn < state->last_end)
5598 		return state->last_nid;
5599 
5600 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5601 	if (nid != -1) {
5602 		state->last_start = start_pfn;
5603 		state->last_end = end_pfn;
5604 		state->last_nid = nid;
5605 	}
5606 
5607 	return nid;
5608 }
5609 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5610 
5611 /**
5612  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5613  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5614  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5615  *
5616  * If an architecture guarantees that all ranges registered contain no holes
5617  * and may be freed, this this function may be used instead of calling
5618  * memblock_free_early_nid() manually.
5619  */
free_bootmem_with_active_regions(int nid,unsigned long max_low_pfn)5620 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5621 {
5622 	unsigned long start_pfn, end_pfn;
5623 	int i, this_nid;
5624 
5625 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5626 		start_pfn = min(start_pfn, max_low_pfn);
5627 		end_pfn = min(end_pfn, max_low_pfn);
5628 
5629 		if (start_pfn < end_pfn)
5630 			memblock_free_early_nid(PFN_PHYS(start_pfn),
5631 					(end_pfn - start_pfn) << PAGE_SHIFT,
5632 					this_nid);
5633 	}
5634 }
5635 
5636 /**
5637  * sparse_memory_present_with_active_regions - Call memory_present for each active range
5638  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5639  *
5640  * If an architecture guarantees that all ranges registered contain no holes and may
5641  * be freed, this function may be used instead of calling memory_present() manually.
5642  */
sparse_memory_present_with_active_regions(int nid)5643 void __init sparse_memory_present_with_active_regions(int nid)
5644 {
5645 	unsigned long start_pfn, end_pfn;
5646 	int i, this_nid;
5647 
5648 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5649 		memory_present(this_nid, start_pfn, end_pfn);
5650 }
5651 
5652 /**
5653  * get_pfn_range_for_nid - Return the start and end page frames for a node
5654  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5655  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5656  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5657  *
5658  * It returns the start and end page frame of a node based on information
5659  * provided by memblock_set_node(). If called for a node
5660  * with no available memory, a warning is printed and the start and end
5661  * PFNs will be 0.
5662  */
get_pfn_range_for_nid(unsigned int nid,unsigned long * start_pfn,unsigned long * end_pfn)5663 void __meminit get_pfn_range_for_nid(unsigned int nid,
5664 			unsigned long *start_pfn, unsigned long *end_pfn)
5665 {
5666 	unsigned long this_start_pfn, this_end_pfn;
5667 	int i;
5668 
5669 	*start_pfn = -1UL;
5670 	*end_pfn = 0;
5671 
5672 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5673 		*start_pfn = min(*start_pfn, this_start_pfn);
5674 		*end_pfn = max(*end_pfn, this_end_pfn);
5675 	}
5676 
5677 	if (*start_pfn == -1UL)
5678 		*start_pfn = 0;
5679 }
5680 
5681 /*
5682  * This finds a zone that can be used for ZONE_MOVABLE pages. The
5683  * assumption is made that zones within a node are ordered in monotonic
5684  * increasing memory addresses so that the "highest" populated zone is used
5685  */
find_usable_zone_for_movable(void)5686 static void __init find_usable_zone_for_movable(void)
5687 {
5688 	int zone_index;
5689 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5690 		if (zone_index == ZONE_MOVABLE)
5691 			continue;
5692 
5693 		if (arch_zone_highest_possible_pfn[zone_index] >
5694 				arch_zone_lowest_possible_pfn[zone_index])
5695 			break;
5696 	}
5697 
5698 	VM_BUG_ON(zone_index == -1);
5699 	movable_zone = zone_index;
5700 }
5701 
5702 /*
5703  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5704  * because it is sized independent of architecture. Unlike the other zones,
5705  * the starting point for ZONE_MOVABLE is not fixed. It may be different
5706  * in each node depending on the size of each node and how evenly kernelcore
5707  * is distributed. This helper function adjusts the zone ranges
5708  * provided by the architecture for a given node by using the end of the
5709  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5710  * zones within a node are in order of monotonic increases memory addresses
5711  */
adjust_zone_range_for_zone_movable(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zone_start_pfn,unsigned long * zone_end_pfn)5712 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5713 					unsigned long zone_type,
5714 					unsigned long node_start_pfn,
5715 					unsigned long node_end_pfn,
5716 					unsigned long *zone_start_pfn,
5717 					unsigned long *zone_end_pfn)
5718 {
5719 	/* Only adjust if ZONE_MOVABLE is on this node */
5720 	if (zone_movable_pfn[nid]) {
5721 		/* Size ZONE_MOVABLE */
5722 		if (zone_type == ZONE_MOVABLE) {
5723 			*zone_start_pfn = zone_movable_pfn[nid];
5724 			*zone_end_pfn = min(node_end_pfn,
5725 				arch_zone_highest_possible_pfn[movable_zone]);
5726 
5727 		/* Adjust for ZONE_MOVABLE starting within this range */
5728 		} else if (!mirrored_kernelcore &&
5729 			*zone_start_pfn < zone_movable_pfn[nid] &&
5730 			*zone_end_pfn > zone_movable_pfn[nid]) {
5731 			*zone_end_pfn = zone_movable_pfn[nid];
5732 
5733 		/* Check if this whole range is within ZONE_MOVABLE */
5734 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
5735 			*zone_start_pfn = *zone_end_pfn;
5736 	}
5737 }
5738 
5739 /*
5740  * Return the number of pages a zone spans in a node, including holes
5741  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5742  */
zone_spanned_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zone_start_pfn,unsigned long * zone_end_pfn,unsigned long * ignored)5743 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5744 					unsigned long zone_type,
5745 					unsigned long node_start_pfn,
5746 					unsigned long node_end_pfn,
5747 					unsigned long *zone_start_pfn,
5748 					unsigned long *zone_end_pfn,
5749 					unsigned long *ignored)
5750 {
5751 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5752 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5753 	/* When hotadd a new node from cpu_up(), the node should be empty */
5754 	if (!node_start_pfn && !node_end_pfn)
5755 		return 0;
5756 
5757 	/* Get the start and end of the zone */
5758 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5759 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5760 	adjust_zone_range_for_zone_movable(nid, zone_type,
5761 				node_start_pfn, node_end_pfn,
5762 				zone_start_pfn, zone_end_pfn);
5763 
5764 	/* Check that this node has pages within the zone's required range */
5765 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5766 		return 0;
5767 
5768 	/* Move the zone boundaries inside the node if necessary */
5769 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5770 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5771 
5772 	/* Return the spanned pages */
5773 	return *zone_end_pfn - *zone_start_pfn;
5774 }
5775 
5776 /*
5777  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5778  * then all holes in the requested range will be accounted for.
5779  */
__absent_pages_in_range(int nid,unsigned long range_start_pfn,unsigned long range_end_pfn)5780 unsigned long __meminit __absent_pages_in_range(int nid,
5781 				unsigned long range_start_pfn,
5782 				unsigned long range_end_pfn)
5783 {
5784 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
5785 	unsigned long start_pfn, end_pfn;
5786 	int i;
5787 
5788 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5789 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5790 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5791 		nr_absent -= end_pfn - start_pfn;
5792 	}
5793 	return nr_absent;
5794 }
5795 
5796 /**
5797  * absent_pages_in_range - Return number of page frames in holes within a range
5798  * @start_pfn: The start PFN to start searching for holes
5799  * @end_pfn: The end PFN to stop searching for holes
5800  *
5801  * It returns the number of pages frames in memory holes within a range.
5802  */
absent_pages_in_range(unsigned long start_pfn,unsigned long end_pfn)5803 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5804 							unsigned long end_pfn)
5805 {
5806 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5807 }
5808 
5809 /* Return the number of page frames in holes in a zone on a node */
zone_absent_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * ignored)5810 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5811 					unsigned long zone_type,
5812 					unsigned long node_start_pfn,
5813 					unsigned long node_end_pfn,
5814 					unsigned long *ignored)
5815 {
5816 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5817 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5818 	unsigned long zone_start_pfn, zone_end_pfn;
5819 	unsigned long nr_absent;
5820 
5821 	/* When hotadd a new node from cpu_up(), the node should be empty */
5822 	if (!node_start_pfn && !node_end_pfn)
5823 		return 0;
5824 
5825 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5826 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5827 
5828 	adjust_zone_range_for_zone_movable(nid, zone_type,
5829 			node_start_pfn, node_end_pfn,
5830 			&zone_start_pfn, &zone_end_pfn);
5831 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5832 
5833 	/*
5834 	 * ZONE_MOVABLE handling.
5835 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5836 	 * and vice versa.
5837 	 */
5838 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5839 		unsigned long start_pfn, end_pfn;
5840 		struct memblock_region *r;
5841 
5842 		for_each_memblock(memory, r) {
5843 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
5844 					  zone_start_pfn, zone_end_pfn);
5845 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
5846 					zone_start_pfn, zone_end_pfn);
5847 
5848 			if (zone_type == ZONE_MOVABLE &&
5849 			    memblock_is_mirror(r))
5850 				nr_absent += end_pfn - start_pfn;
5851 
5852 			if (zone_type == ZONE_NORMAL &&
5853 			    !memblock_is_mirror(r))
5854 				nr_absent += end_pfn - start_pfn;
5855 		}
5856 	}
5857 
5858 	return nr_absent;
5859 }
5860 
5861 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
zone_spanned_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zone_start_pfn,unsigned long * zone_end_pfn,unsigned long * zones_size)5862 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5863 					unsigned long zone_type,
5864 					unsigned long node_start_pfn,
5865 					unsigned long node_end_pfn,
5866 					unsigned long *zone_start_pfn,
5867 					unsigned long *zone_end_pfn,
5868 					unsigned long *zones_size)
5869 {
5870 	unsigned int zone;
5871 
5872 	*zone_start_pfn = node_start_pfn;
5873 	for (zone = 0; zone < zone_type; zone++)
5874 		*zone_start_pfn += zones_size[zone];
5875 
5876 	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5877 
5878 	return zones_size[zone_type];
5879 }
5880 
zone_absent_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zholes_size)5881 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5882 						unsigned long zone_type,
5883 						unsigned long node_start_pfn,
5884 						unsigned long node_end_pfn,
5885 						unsigned long *zholes_size)
5886 {
5887 	if (!zholes_size)
5888 		return 0;
5889 
5890 	return zholes_size[zone_type];
5891 }
5892 
5893 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5894 
calculate_node_totalpages(struct pglist_data * pgdat,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zones_size,unsigned long * zholes_size)5895 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5896 						unsigned long node_start_pfn,
5897 						unsigned long node_end_pfn,
5898 						unsigned long *zones_size,
5899 						unsigned long *zholes_size)
5900 {
5901 	unsigned long realtotalpages = 0, totalpages = 0;
5902 	enum zone_type i;
5903 
5904 	for (i = 0; i < MAX_NR_ZONES; i++) {
5905 		struct zone *zone = pgdat->node_zones + i;
5906 		unsigned long zone_start_pfn, zone_end_pfn;
5907 		unsigned long size, real_size;
5908 
5909 		size = zone_spanned_pages_in_node(pgdat->node_id, i,
5910 						  node_start_pfn,
5911 						  node_end_pfn,
5912 						  &zone_start_pfn,
5913 						  &zone_end_pfn,
5914 						  zones_size);
5915 		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5916 						  node_start_pfn, node_end_pfn,
5917 						  zholes_size);
5918 		if (size)
5919 			zone->zone_start_pfn = zone_start_pfn;
5920 		else
5921 			zone->zone_start_pfn = 0;
5922 		zone->spanned_pages = size;
5923 		zone->present_pages = real_size;
5924 
5925 		totalpages += size;
5926 		realtotalpages += real_size;
5927 	}
5928 
5929 	pgdat->node_spanned_pages = totalpages;
5930 	pgdat->node_present_pages = realtotalpages;
5931 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5932 							realtotalpages);
5933 }
5934 
5935 #ifndef CONFIG_SPARSEMEM
5936 /*
5937  * Calculate the size of the zone->blockflags rounded to an unsigned long
5938  * Start by making sure zonesize is a multiple of pageblock_order by rounding
5939  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5940  * round what is now in bits to nearest long in bits, then return it in
5941  * bytes.
5942  */
usemap_size(unsigned long zone_start_pfn,unsigned long zonesize)5943 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5944 {
5945 	unsigned long usemapsize;
5946 
5947 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5948 	usemapsize = roundup(zonesize, pageblock_nr_pages);
5949 	usemapsize = usemapsize >> pageblock_order;
5950 	usemapsize *= NR_PAGEBLOCK_BITS;
5951 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5952 
5953 	return usemapsize / 8;
5954 }
5955 
setup_usemap(struct pglist_data * pgdat,struct zone * zone,unsigned long zone_start_pfn,unsigned long zonesize)5956 static void __init setup_usemap(struct pglist_data *pgdat,
5957 				struct zone *zone,
5958 				unsigned long zone_start_pfn,
5959 				unsigned long zonesize)
5960 {
5961 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5962 	zone->pageblock_flags = NULL;
5963 	if (usemapsize)
5964 		zone->pageblock_flags =
5965 			memblock_virt_alloc_node_nopanic(usemapsize,
5966 							 pgdat->node_id);
5967 }
5968 #else
setup_usemap(struct pglist_data * pgdat,struct zone * zone,unsigned long zone_start_pfn,unsigned long zonesize)5969 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5970 				unsigned long zone_start_pfn, unsigned long zonesize) {}
5971 #endif /* CONFIG_SPARSEMEM */
5972 
5973 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5974 
5975 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
set_pageblock_order(void)5976 void __paginginit set_pageblock_order(void)
5977 {
5978 	unsigned int order;
5979 
5980 	/* Check that pageblock_nr_pages has not already been setup */
5981 	if (pageblock_order)
5982 		return;
5983 
5984 	if (HPAGE_SHIFT > PAGE_SHIFT)
5985 		order = HUGETLB_PAGE_ORDER;
5986 	else
5987 		order = MAX_ORDER - 1;
5988 
5989 	/*
5990 	 * Assume the largest contiguous order of interest is a huge page.
5991 	 * This value may be variable depending on boot parameters on IA64 and
5992 	 * powerpc.
5993 	 */
5994 	pageblock_order = order;
5995 }
5996 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5997 
5998 /*
5999  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6000  * is unused as pageblock_order is set at compile-time. See
6001  * include/linux/pageblock-flags.h for the values of pageblock_order based on
6002  * the kernel config
6003  */
set_pageblock_order(void)6004 void __paginginit set_pageblock_order(void)
6005 {
6006 }
6007 
6008 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6009 
calc_memmap_size(unsigned long spanned_pages,unsigned long present_pages)6010 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
6011 						   unsigned long present_pages)
6012 {
6013 	unsigned long pages = spanned_pages;
6014 
6015 	/*
6016 	 * Provide a more accurate estimation if there are holes within
6017 	 * the zone and SPARSEMEM is in use. If there are holes within the
6018 	 * zone, each populated memory region may cost us one or two extra
6019 	 * memmap pages due to alignment because memmap pages for each
6020 	 * populated regions may not be naturally aligned on page boundary.
6021 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6022 	 */
6023 	if (spanned_pages > present_pages + (present_pages >> 4) &&
6024 	    IS_ENABLED(CONFIG_SPARSEMEM))
6025 		pages = present_pages;
6026 
6027 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6028 }
6029 
6030 /*
6031  * Set up the zone data structures:
6032  *   - mark all pages reserved
6033  *   - mark all memory queues empty
6034  *   - clear the memory bitmaps
6035  *
6036  * NOTE: pgdat should get zeroed by caller.
6037  */
free_area_init_core(struct pglist_data * pgdat)6038 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
6039 {
6040 	enum zone_type j;
6041 	int nid = pgdat->node_id;
6042 
6043 	pgdat_resize_init(pgdat);
6044 #ifdef CONFIG_NUMA_BALANCING
6045 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
6046 	pgdat->numabalancing_migrate_nr_pages = 0;
6047 	pgdat->numabalancing_migrate_next_window = jiffies;
6048 #endif
6049 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6050 	spin_lock_init(&pgdat->split_queue_lock);
6051 	INIT_LIST_HEAD(&pgdat->split_queue);
6052 	pgdat->split_queue_len = 0;
6053 #endif
6054 	init_waitqueue_head(&pgdat->kswapd_wait);
6055 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6056 #ifdef CONFIG_COMPACTION
6057 	init_waitqueue_head(&pgdat->kcompactd_wait);
6058 #endif
6059 	pgdat_page_ext_init(pgdat);
6060 	spin_lock_init(&pgdat->lru_lock);
6061 	lruvec_init(node_lruvec(pgdat));
6062 
6063 	pgdat->per_cpu_nodestats = &boot_nodestats;
6064 
6065 	for (j = 0; j < MAX_NR_ZONES; j++) {
6066 		struct zone *zone = pgdat->node_zones + j;
6067 		unsigned long size, realsize, freesize, memmap_pages;
6068 		unsigned long zone_start_pfn = zone->zone_start_pfn;
6069 
6070 		size = zone->spanned_pages;
6071 		realsize = freesize = zone->present_pages;
6072 
6073 		/*
6074 		 * Adjust freesize so that it accounts for how much memory
6075 		 * is used by this zone for memmap. This affects the watermark
6076 		 * and per-cpu initialisations
6077 		 */
6078 		memmap_pages = calc_memmap_size(size, realsize);
6079 		if (!is_highmem_idx(j)) {
6080 			if (freesize >= memmap_pages) {
6081 				freesize -= memmap_pages;
6082 				if (memmap_pages)
6083 					printk(KERN_DEBUG
6084 					       "  %s zone: %lu pages used for memmap\n",
6085 					       zone_names[j], memmap_pages);
6086 			} else
6087 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6088 					zone_names[j], memmap_pages, freesize);
6089 		}
6090 
6091 		/* Account for reserved pages */
6092 		if (j == 0 && freesize > dma_reserve) {
6093 			freesize -= dma_reserve;
6094 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6095 					zone_names[0], dma_reserve);
6096 		}
6097 
6098 		if (!is_highmem_idx(j))
6099 			nr_kernel_pages += freesize;
6100 		/* Charge for highmem memmap if there are enough kernel pages */
6101 		else if (nr_kernel_pages > memmap_pages * 2)
6102 			nr_kernel_pages -= memmap_pages;
6103 		nr_all_pages += freesize;
6104 
6105 		/*
6106 		 * Set an approximate value for lowmem here, it will be adjusted
6107 		 * when the bootmem allocator frees pages into the buddy system.
6108 		 * And all highmem pages will be managed by the buddy system.
6109 		 */
6110 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6111 #ifdef CONFIG_NUMA
6112 		zone->node = nid;
6113 #endif
6114 		zone->name = zone_names[j];
6115 		zone->zone_pgdat = pgdat;
6116 		spin_lock_init(&zone->lock);
6117 		zone_seqlock_init(zone);
6118 		zone_pcp_init(zone);
6119 
6120 		if (!size)
6121 			continue;
6122 
6123 		set_pageblock_order();
6124 		setup_usemap(pgdat, zone, zone_start_pfn, size);
6125 		init_currently_empty_zone(zone, zone_start_pfn, size);
6126 		memmap_init(size, nid, j, zone_start_pfn);
6127 	}
6128 }
6129 
alloc_node_mem_map(struct pglist_data * pgdat)6130 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6131 {
6132 	unsigned long __maybe_unused start = 0;
6133 	unsigned long __maybe_unused offset = 0;
6134 
6135 	/* Skip empty nodes */
6136 	if (!pgdat->node_spanned_pages)
6137 		return;
6138 
6139 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6140 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6141 	offset = pgdat->node_start_pfn - start;
6142 	/* ia64 gets its own node_mem_map, before this, without bootmem */
6143 	if (!pgdat->node_mem_map) {
6144 		unsigned long size, end;
6145 		struct page *map;
6146 
6147 		/*
6148 		 * The zone's endpoints aren't required to be MAX_ORDER
6149 		 * aligned but the node_mem_map endpoints must be in order
6150 		 * for the buddy allocator to function correctly.
6151 		 */
6152 		end = pgdat_end_pfn(pgdat);
6153 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
6154 		size =  (end - start) * sizeof(struct page);
6155 		map = alloc_remap(pgdat->node_id, size);
6156 		if (!map)
6157 			map = memblock_virt_alloc_node_nopanic(size,
6158 							       pgdat->node_id);
6159 		pgdat->node_mem_map = map + offset;
6160 	}
6161 #ifndef CONFIG_NEED_MULTIPLE_NODES
6162 	/*
6163 	 * With no DISCONTIG, the global mem_map is just set as node 0's
6164 	 */
6165 	if (pgdat == NODE_DATA(0)) {
6166 		mem_map = NODE_DATA(0)->node_mem_map;
6167 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6168 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6169 			mem_map -= offset;
6170 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6171 	}
6172 #endif
6173 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6174 }
6175 
free_area_init_node(int nid,unsigned long * zones_size,unsigned long node_start_pfn,unsigned long * zholes_size)6176 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6177 		unsigned long node_start_pfn, unsigned long *zholes_size)
6178 {
6179 	pg_data_t *pgdat = NODE_DATA(nid);
6180 	unsigned long start_pfn = 0;
6181 	unsigned long end_pfn = 0;
6182 
6183 	/* pg_data_t should be reset to zero when it's allocated */
6184 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6185 
6186 	pgdat->node_id = nid;
6187 	pgdat->node_start_pfn = node_start_pfn;
6188 	pgdat->per_cpu_nodestats = NULL;
6189 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6190 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6191 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6192 		(u64)start_pfn << PAGE_SHIFT,
6193 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6194 #else
6195 	start_pfn = node_start_pfn;
6196 #endif
6197 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6198 				  zones_size, zholes_size);
6199 
6200 	alloc_node_mem_map(pgdat);
6201 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6202 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6203 		nid, (unsigned long)pgdat,
6204 		(unsigned long)pgdat->node_mem_map);
6205 #endif
6206 
6207 	reset_deferred_meminit(pgdat);
6208 	free_area_init_core(pgdat);
6209 }
6210 
6211 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6212 
6213 #if MAX_NUMNODES > 1
6214 /*
6215  * Figure out the number of possible node ids.
6216  */
setup_nr_node_ids(void)6217 void __init setup_nr_node_ids(void)
6218 {
6219 	unsigned int highest;
6220 
6221 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6222 	nr_node_ids = highest + 1;
6223 }
6224 #endif
6225 
6226 /**
6227  * node_map_pfn_alignment - determine the maximum internode alignment
6228  *
6229  * This function should be called after node map is populated and sorted.
6230  * It calculates the maximum power of two alignment which can distinguish
6231  * all the nodes.
6232  *
6233  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6234  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
6235  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
6236  * shifted, 1GiB is enough and this function will indicate so.
6237  *
6238  * This is used to test whether pfn -> nid mapping of the chosen memory
6239  * model has fine enough granularity to avoid incorrect mapping for the
6240  * populated node map.
6241  *
6242  * Returns the determined alignment in pfn's.  0 if there is no alignment
6243  * requirement (single node).
6244  */
node_map_pfn_alignment(void)6245 unsigned long __init node_map_pfn_alignment(void)
6246 {
6247 	unsigned long accl_mask = 0, last_end = 0;
6248 	unsigned long start, end, mask;
6249 	int last_nid = -1;
6250 	int i, nid;
6251 
6252 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6253 		if (!start || last_nid < 0 || last_nid == nid) {
6254 			last_nid = nid;
6255 			last_end = end;
6256 			continue;
6257 		}
6258 
6259 		/*
6260 		 * Start with a mask granular enough to pin-point to the
6261 		 * start pfn and tick off bits one-by-one until it becomes
6262 		 * too coarse to separate the current node from the last.
6263 		 */
6264 		mask = ~((1 << __ffs(start)) - 1);
6265 		while (mask && last_end <= (start & (mask << 1)))
6266 			mask <<= 1;
6267 
6268 		/* accumulate all internode masks */
6269 		accl_mask |= mask;
6270 	}
6271 
6272 	/* convert mask to number of pages */
6273 	return ~accl_mask + 1;
6274 }
6275 
6276 /* Find the lowest pfn for a node */
find_min_pfn_for_node(int nid)6277 static unsigned long __init find_min_pfn_for_node(int nid)
6278 {
6279 	unsigned long min_pfn = ULONG_MAX;
6280 	unsigned long start_pfn;
6281 	int i;
6282 
6283 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6284 		min_pfn = min(min_pfn, start_pfn);
6285 
6286 	if (min_pfn == ULONG_MAX) {
6287 		pr_warn("Could not find start_pfn for node %d\n", nid);
6288 		return 0;
6289 	}
6290 
6291 	return min_pfn;
6292 }
6293 
6294 /**
6295  * find_min_pfn_with_active_regions - Find the minimum PFN registered
6296  *
6297  * It returns the minimum PFN based on information provided via
6298  * memblock_set_node().
6299  */
find_min_pfn_with_active_regions(void)6300 unsigned long __init find_min_pfn_with_active_regions(void)
6301 {
6302 	return find_min_pfn_for_node(MAX_NUMNODES);
6303 }
6304 
6305 /*
6306  * early_calculate_totalpages()
6307  * Sum pages in active regions for movable zone.
6308  * Populate N_MEMORY for calculating usable_nodes.
6309  */
early_calculate_totalpages(void)6310 static unsigned long __init early_calculate_totalpages(void)
6311 {
6312 	unsigned long totalpages = 0;
6313 	unsigned long start_pfn, end_pfn;
6314 	int i, nid;
6315 
6316 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6317 		unsigned long pages = end_pfn - start_pfn;
6318 
6319 		totalpages += pages;
6320 		if (pages)
6321 			node_set_state(nid, N_MEMORY);
6322 	}
6323 	return totalpages;
6324 }
6325 
6326 /*
6327  * Find the PFN the Movable zone begins in each node. Kernel memory
6328  * is spread evenly between nodes as long as the nodes have enough
6329  * memory. When they don't, some nodes will have more kernelcore than
6330  * others
6331  */
find_zone_movable_pfns_for_nodes(void)6332 static void __init find_zone_movable_pfns_for_nodes(void)
6333 {
6334 	int i, nid;
6335 	unsigned long usable_startpfn;
6336 	unsigned long kernelcore_node, kernelcore_remaining;
6337 	/* save the state before borrow the nodemask */
6338 	nodemask_t saved_node_state = node_states[N_MEMORY];
6339 	unsigned long totalpages = early_calculate_totalpages();
6340 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6341 	struct memblock_region *r;
6342 
6343 	/* Need to find movable_zone earlier when movable_node is specified. */
6344 	find_usable_zone_for_movable();
6345 
6346 	/*
6347 	 * If movable_node is specified, ignore kernelcore and movablecore
6348 	 * options.
6349 	 */
6350 	if (movable_node_is_enabled()) {
6351 		for_each_memblock(memory, r) {
6352 			if (!memblock_is_hotpluggable(r))
6353 				continue;
6354 
6355 			nid = r->nid;
6356 
6357 			usable_startpfn = PFN_DOWN(r->base);
6358 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6359 				min(usable_startpfn, zone_movable_pfn[nid]) :
6360 				usable_startpfn;
6361 		}
6362 
6363 		goto out2;
6364 	}
6365 
6366 	/*
6367 	 * If kernelcore=mirror is specified, ignore movablecore option
6368 	 */
6369 	if (mirrored_kernelcore) {
6370 		bool mem_below_4gb_not_mirrored = false;
6371 
6372 		for_each_memblock(memory, r) {
6373 			if (memblock_is_mirror(r))
6374 				continue;
6375 
6376 			nid = r->nid;
6377 
6378 			usable_startpfn = memblock_region_memory_base_pfn(r);
6379 
6380 			if (usable_startpfn < 0x100000) {
6381 				mem_below_4gb_not_mirrored = true;
6382 				continue;
6383 			}
6384 
6385 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6386 				min(usable_startpfn, zone_movable_pfn[nid]) :
6387 				usable_startpfn;
6388 		}
6389 
6390 		if (mem_below_4gb_not_mirrored)
6391 			pr_warn("This configuration results in unmirrored kernel memory.");
6392 
6393 		goto out2;
6394 	}
6395 
6396 	/*
6397 	 * If movablecore=nn[KMG] was specified, calculate what size of
6398 	 * kernelcore that corresponds so that memory usable for
6399 	 * any allocation type is evenly spread. If both kernelcore
6400 	 * and movablecore are specified, then the value of kernelcore
6401 	 * will be used for required_kernelcore if it's greater than
6402 	 * what movablecore would have allowed.
6403 	 */
6404 	if (required_movablecore) {
6405 		unsigned long corepages;
6406 
6407 		/*
6408 		 * Round-up so that ZONE_MOVABLE is at least as large as what
6409 		 * was requested by the user
6410 		 */
6411 		required_movablecore =
6412 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6413 		required_movablecore = min(totalpages, required_movablecore);
6414 		corepages = totalpages - required_movablecore;
6415 
6416 		required_kernelcore = max(required_kernelcore, corepages);
6417 	}
6418 
6419 	/*
6420 	 * If kernelcore was not specified or kernelcore size is larger
6421 	 * than totalpages, there is no ZONE_MOVABLE.
6422 	 */
6423 	if (!required_kernelcore || required_kernelcore >= totalpages)
6424 		goto out;
6425 
6426 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6427 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6428 
6429 restart:
6430 	/* Spread kernelcore memory as evenly as possible throughout nodes */
6431 	kernelcore_node = required_kernelcore / usable_nodes;
6432 	for_each_node_state(nid, N_MEMORY) {
6433 		unsigned long start_pfn, end_pfn;
6434 
6435 		/*
6436 		 * Recalculate kernelcore_node if the division per node
6437 		 * now exceeds what is necessary to satisfy the requested
6438 		 * amount of memory for the kernel
6439 		 */
6440 		if (required_kernelcore < kernelcore_node)
6441 			kernelcore_node = required_kernelcore / usable_nodes;
6442 
6443 		/*
6444 		 * As the map is walked, we track how much memory is usable
6445 		 * by the kernel using kernelcore_remaining. When it is
6446 		 * 0, the rest of the node is usable by ZONE_MOVABLE
6447 		 */
6448 		kernelcore_remaining = kernelcore_node;
6449 
6450 		/* Go through each range of PFNs within this node */
6451 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6452 			unsigned long size_pages;
6453 
6454 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6455 			if (start_pfn >= end_pfn)
6456 				continue;
6457 
6458 			/* Account for what is only usable for kernelcore */
6459 			if (start_pfn < usable_startpfn) {
6460 				unsigned long kernel_pages;
6461 				kernel_pages = min(end_pfn, usable_startpfn)
6462 								- start_pfn;
6463 
6464 				kernelcore_remaining -= min(kernel_pages,
6465 							kernelcore_remaining);
6466 				required_kernelcore -= min(kernel_pages,
6467 							required_kernelcore);
6468 
6469 				/* Continue if range is now fully accounted */
6470 				if (end_pfn <= usable_startpfn) {
6471 
6472 					/*
6473 					 * Push zone_movable_pfn to the end so
6474 					 * that if we have to rebalance
6475 					 * kernelcore across nodes, we will
6476 					 * not double account here
6477 					 */
6478 					zone_movable_pfn[nid] = end_pfn;
6479 					continue;
6480 				}
6481 				start_pfn = usable_startpfn;
6482 			}
6483 
6484 			/*
6485 			 * The usable PFN range for ZONE_MOVABLE is from
6486 			 * start_pfn->end_pfn. Calculate size_pages as the
6487 			 * number of pages used as kernelcore
6488 			 */
6489 			size_pages = end_pfn - start_pfn;
6490 			if (size_pages > kernelcore_remaining)
6491 				size_pages = kernelcore_remaining;
6492 			zone_movable_pfn[nid] = start_pfn + size_pages;
6493 
6494 			/*
6495 			 * Some kernelcore has been met, update counts and
6496 			 * break if the kernelcore for this node has been
6497 			 * satisfied
6498 			 */
6499 			required_kernelcore -= min(required_kernelcore,
6500 								size_pages);
6501 			kernelcore_remaining -= size_pages;
6502 			if (!kernelcore_remaining)
6503 				break;
6504 		}
6505 	}
6506 
6507 	/*
6508 	 * If there is still required_kernelcore, we do another pass with one
6509 	 * less node in the count. This will push zone_movable_pfn[nid] further
6510 	 * along on the nodes that still have memory until kernelcore is
6511 	 * satisfied
6512 	 */
6513 	usable_nodes--;
6514 	if (usable_nodes && required_kernelcore > usable_nodes)
6515 		goto restart;
6516 
6517 out2:
6518 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6519 	for (nid = 0; nid < MAX_NUMNODES; nid++)
6520 		zone_movable_pfn[nid] =
6521 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6522 
6523 out:
6524 	/* restore the node_state */
6525 	node_states[N_MEMORY] = saved_node_state;
6526 }
6527 
6528 /* Any regular or high memory on that node ? */
check_for_memory(pg_data_t * pgdat,int nid)6529 static void check_for_memory(pg_data_t *pgdat, int nid)
6530 {
6531 	enum zone_type zone_type;
6532 
6533 	if (N_MEMORY == N_NORMAL_MEMORY)
6534 		return;
6535 
6536 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6537 		struct zone *zone = &pgdat->node_zones[zone_type];
6538 		if (populated_zone(zone)) {
6539 			node_set_state(nid, N_HIGH_MEMORY);
6540 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6541 			    zone_type <= ZONE_NORMAL)
6542 				node_set_state(nid, N_NORMAL_MEMORY);
6543 			break;
6544 		}
6545 	}
6546 }
6547 
6548 /**
6549  * free_area_init_nodes - Initialise all pg_data_t and zone data
6550  * @max_zone_pfn: an array of max PFNs for each zone
6551  *
6552  * This will call free_area_init_node() for each active node in the system.
6553  * Using the page ranges provided by memblock_set_node(), the size of each
6554  * zone in each node and their holes is calculated. If the maximum PFN
6555  * between two adjacent zones match, it is assumed that the zone is empty.
6556  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6557  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6558  * starts where the previous one ended. For example, ZONE_DMA32 starts
6559  * at arch_max_dma_pfn.
6560  */
free_area_init_nodes(unsigned long * max_zone_pfn)6561 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6562 {
6563 	unsigned long start_pfn, end_pfn;
6564 	int i, nid;
6565 
6566 	/* Record where the zone boundaries are */
6567 	memset(arch_zone_lowest_possible_pfn, 0,
6568 				sizeof(arch_zone_lowest_possible_pfn));
6569 	memset(arch_zone_highest_possible_pfn, 0,
6570 				sizeof(arch_zone_highest_possible_pfn));
6571 
6572 	start_pfn = find_min_pfn_with_active_regions();
6573 
6574 	for (i = 0; i < MAX_NR_ZONES; i++) {
6575 		if (i == ZONE_MOVABLE)
6576 			continue;
6577 
6578 		end_pfn = max(max_zone_pfn[i], start_pfn);
6579 		arch_zone_lowest_possible_pfn[i] = start_pfn;
6580 		arch_zone_highest_possible_pfn[i] = end_pfn;
6581 
6582 		start_pfn = end_pfn;
6583 	}
6584 
6585 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
6586 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6587 	find_zone_movable_pfns_for_nodes();
6588 
6589 	/* Print out the zone ranges */
6590 	pr_info("Zone ranges:\n");
6591 	for (i = 0; i < MAX_NR_ZONES; i++) {
6592 		if (i == ZONE_MOVABLE)
6593 			continue;
6594 		pr_info("  %-8s ", zone_names[i]);
6595 		if (arch_zone_lowest_possible_pfn[i] ==
6596 				arch_zone_highest_possible_pfn[i])
6597 			pr_cont("empty\n");
6598 		else
6599 			pr_cont("[mem %#018Lx-%#018Lx]\n",
6600 				(u64)arch_zone_lowest_possible_pfn[i]
6601 					<< PAGE_SHIFT,
6602 				((u64)arch_zone_highest_possible_pfn[i]
6603 					<< PAGE_SHIFT) - 1);
6604 	}
6605 
6606 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6607 	pr_info("Movable zone start for each node\n");
6608 	for (i = 0; i < MAX_NUMNODES; i++) {
6609 		if (zone_movable_pfn[i])
6610 			pr_info("  Node %d: %#018Lx\n", i,
6611 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6612 	}
6613 
6614 	/* Print out the early node map */
6615 	pr_info("Early memory node ranges\n");
6616 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6617 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6618 			(u64)start_pfn << PAGE_SHIFT,
6619 			((u64)end_pfn << PAGE_SHIFT) - 1);
6620 
6621 	/* Initialise every node */
6622 	mminit_verify_pageflags_layout();
6623 	setup_nr_node_ids();
6624 	for_each_online_node(nid) {
6625 		pg_data_t *pgdat = NODE_DATA(nid);
6626 		free_area_init_node(nid, NULL,
6627 				find_min_pfn_for_node(nid), NULL);
6628 
6629 		/* Any memory on that node */
6630 		if (pgdat->node_present_pages)
6631 			node_set_state(nid, N_MEMORY);
6632 		check_for_memory(pgdat, nid);
6633 	}
6634 }
6635 
cmdline_parse_core(char * p,unsigned long * core)6636 static int __init cmdline_parse_core(char *p, unsigned long *core)
6637 {
6638 	unsigned long long coremem;
6639 	if (!p)
6640 		return -EINVAL;
6641 
6642 	coremem = memparse(p, &p);
6643 	*core = coremem >> PAGE_SHIFT;
6644 
6645 	/* Paranoid check that UL is enough for the coremem value */
6646 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6647 
6648 	return 0;
6649 }
6650 
6651 /*
6652  * kernelcore=size sets the amount of memory for use for allocations that
6653  * cannot be reclaimed or migrated.
6654  */
cmdline_parse_kernelcore(char * p)6655 static int __init cmdline_parse_kernelcore(char *p)
6656 {
6657 	/* parse kernelcore=mirror */
6658 	if (parse_option_str(p, "mirror")) {
6659 		mirrored_kernelcore = true;
6660 		return 0;
6661 	}
6662 
6663 	return cmdline_parse_core(p, &required_kernelcore);
6664 }
6665 
6666 /*
6667  * movablecore=size sets the amount of memory for use for allocations that
6668  * can be reclaimed or migrated.
6669  */
cmdline_parse_movablecore(char * p)6670 static int __init cmdline_parse_movablecore(char *p)
6671 {
6672 	return cmdline_parse_core(p, &required_movablecore);
6673 }
6674 
6675 early_param("kernelcore", cmdline_parse_kernelcore);
6676 early_param("movablecore", cmdline_parse_movablecore);
6677 
6678 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6679 
adjust_managed_page_count(struct page * page,long count)6680 void adjust_managed_page_count(struct page *page, long count)
6681 {
6682 	spin_lock(&managed_page_count_lock);
6683 	page_zone(page)->managed_pages += count;
6684 	totalram_pages += count;
6685 #ifdef CONFIG_HIGHMEM
6686 	if (PageHighMem(page))
6687 		totalhigh_pages += count;
6688 #endif
6689 	spin_unlock(&managed_page_count_lock);
6690 }
6691 EXPORT_SYMBOL(adjust_managed_page_count);
6692 
free_reserved_area(void * start,void * end,int poison,char * s)6693 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6694 {
6695 	void *pos;
6696 	unsigned long pages = 0;
6697 
6698 	start = (void *)PAGE_ALIGN((unsigned long)start);
6699 	end = (void *)((unsigned long)end & PAGE_MASK);
6700 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6701 		if ((unsigned int)poison <= 0xFF)
6702 			memset(pos, poison, PAGE_SIZE);
6703 		free_reserved_page(virt_to_page(pos));
6704 	}
6705 
6706 	if (pages && s)
6707 		pr_info("Freeing %s memory: %ldK\n",
6708 			s, pages << (PAGE_SHIFT - 10));
6709 
6710 	return pages;
6711 }
6712 EXPORT_SYMBOL(free_reserved_area);
6713 
6714 #ifdef	CONFIG_HIGHMEM
free_highmem_page(struct page * page)6715 void free_highmem_page(struct page *page)
6716 {
6717 	__free_reserved_page(page);
6718 	totalram_pages++;
6719 	page_zone(page)->managed_pages++;
6720 	totalhigh_pages++;
6721 }
6722 #endif
6723 
6724 
mem_init_print_info(const char * str)6725 void __init mem_init_print_info(const char *str)
6726 {
6727 	unsigned long physpages, codesize, datasize, rosize, bss_size;
6728 	unsigned long init_code_size, init_data_size;
6729 
6730 	physpages = get_num_physpages();
6731 	codesize = _etext - _stext;
6732 	datasize = _edata - _sdata;
6733 	rosize = __end_rodata - __start_rodata;
6734 	bss_size = __bss_stop - __bss_start;
6735 	init_data_size = __init_end - __init_begin;
6736 	init_code_size = _einittext - _sinittext;
6737 
6738 	/*
6739 	 * Detect special cases and adjust section sizes accordingly:
6740 	 * 1) .init.* may be embedded into .data sections
6741 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
6742 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
6743 	 * 3) .rodata.* may be embedded into .text or .data sections.
6744 	 */
6745 #define adj_init_size(start, end, size, pos, adj) \
6746 	do { \
6747 		if (start <= pos && pos < end && size > adj) \
6748 			size -= adj; \
6749 	} while (0)
6750 
6751 	adj_init_size(__init_begin, __init_end, init_data_size,
6752 		     _sinittext, init_code_size);
6753 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6754 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6755 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6756 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6757 
6758 #undef	adj_init_size
6759 
6760 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6761 #ifdef	CONFIG_HIGHMEM
6762 		", %luK highmem"
6763 #endif
6764 		"%s%s)\n",
6765 		nr_free_pages() << (PAGE_SHIFT - 10),
6766 		physpages << (PAGE_SHIFT - 10),
6767 		codesize >> 10, datasize >> 10, rosize >> 10,
6768 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
6769 		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6770 		totalcma_pages << (PAGE_SHIFT - 10),
6771 #ifdef	CONFIG_HIGHMEM
6772 		totalhigh_pages << (PAGE_SHIFT - 10),
6773 #endif
6774 		str ? ", " : "", str ? str : "");
6775 }
6776 
6777 /**
6778  * set_dma_reserve - set the specified number of pages reserved in the first zone
6779  * @new_dma_reserve: The number of pages to mark reserved
6780  *
6781  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6782  * In the DMA zone, a significant percentage may be consumed by kernel image
6783  * and other unfreeable allocations which can skew the watermarks badly. This
6784  * function may optionally be used to account for unfreeable pages in the
6785  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6786  * smaller per-cpu batchsize.
6787  */
set_dma_reserve(unsigned long new_dma_reserve)6788 void __init set_dma_reserve(unsigned long new_dma_reserve)
6789 {
6790 	dma_reserve = new_dma_reserve;
6791 }
6792 
free_area_init(unsigned long * zones_size)6793 void __init free_area_init(unsigned long *zones_size)
6794 {
6795 	free_area_init_node(0, zones_size,
6796 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6797 }
6798 
page_alloc_cpu_dead(unsigned int cpu)6799 static int page_alloc_cpu_dead(unsigned int cpu)
6800 {
6801 
6802 	lru_add_drain_cpu(cpu);
6803 	drain_pages(cpu);
6804 
6805 	/*
6806 	 * Spill the event counters of the dead processor
6807 	 * into the current processors event counters.
6808 	 * This artificially elevates the count of the current
6809 	 * processor.
6810 	 */
6811 	vm_events_fold_cpu(cpu);
6812 
6813 	/*
6814 	 * Zero the differential counters of the dead processor
6815 	 * so that the vm statistics are consistent.
6816 	 *
6817 	 * This is only okay since the processor is dead and cannot
6818 	 * race with what we are doing.
6819 	 */
6820 	cpu_vm_stats_fold(cpu);
6821 	return 0;
6822 }
6823 
page_alloc_init(void)6824 void __init page_alloc_init(void)
6825 {
6826 	int ret;
6827 
6828 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6829 					"mm/page_alloc:dead", NULL,
6830 					page_alloc_cpu_dead);
6831 	WARN_ON(ret < 0);
6832 }
6833 
6834 /*
6835  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6836  *	or min_free_kbytes changes.
6837  */
calculate_totalreserve_pages(void)6838 static void calculate_totalreserve_pages(void)
6839 {
6840 	struct pglist_data *pgdat;
6841 	unsigned long reserve_pages = 0;
6842 	enum zone_type i, j;
6843 
6844 	for_each_online_pgdat(pgdat) {
6845 
6846 		pgdat->totalreserve_pages = 0;
6847 
6848 		for (i = 0; i < MAX_NR_ZONES; i++) {
6849 			struct zone *zone = pgdat->node_zones + i;
6850 			long max = 0;
6851 
6852 			/* Find valid and maximum lowmem_reserve in the zone */
6853 			for (j = i; j < MAX_NR_ZONES; j++) {
6854 				if (zone->lowmem_reserve[j] > max)
6855 					max = zone->lowmem_reserve[j];
6856 			}
6857 
6858 			/* we treat the high watermark as reserved pages. */
6859 			max += high_wmark_pages(zone);
6860 
6861 			if (max > zone->managed_pages)
6862 				max = zone->managed_pages;
6863 
6864 			pgdat->totalreserve_pages += max;
6865 
6866 			reserve_pages += max;
6867 		}
6868 	}
6869 	totalreserve_pages = reserve_pages;
6870 }
6871 
6872 /*
6873  * setup_per_zone_lowmem_reserve - called whenever
6874  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
6875  *	has a correct pages reserved value, so an adequate number of
6876  *	pages are left in the zone after a successful __alloc_pages().
6877  */
setup_per_zone_lowmem_reserve(void)6878 static void setup_per_zone_lowmem_reserve(void)
6879 {
6880 	struct pglist_data *pgdat;
6881 	enum zone_type j, idx;
6882 
6883 	for_each_online_pgdat(pgdat) {
6884 		for (j = 0; j < MAX_NR_ZONES; j++) {
6885 			struct zone *zone = pgdat->node_zones + j;
6886 			unsigned long managed_pages = zone->managed_pages;
6887 
6888 			zone->lowmem_reserve[j] = 0;
6889 
6890 			idx = j;
6891 			while (idx) {
6892 				struct zone *lower_zone;
6893 
6894 				idx--;
6895 
6896 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
6897 					sysctl_lowmem_reserve_ratio[idx] = 1;
6898 
6899 				lower_zone = pgdat->node_zones + idx;
6900 				lower_zone->lowmem_reserve[j] = managed_pages /
6901 					sysctl_lowmem_reserve_ratio[idx];
6902 				managed_pages += lower_zone->managed_pages;
6903 			}
6904 		}
6905 	}
6906 
6907 	/* update totalreserve_pages */
6908 	calculate_totalreserve_pages();
6909 }
6910 
__setup_per_zone_wmarks(void)6911 static void __setup_per_zone_wmarks(void)
6912 {
6913 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6914 	unsigned long pages_low = extra_free_kbytes >> (PAGE_SHIFT - 10);
6915 	unsigned long lowmem_pages = 0;
6916 	struct zone *zone;
6917 	unsigned long flags;
6918 
6919 	/* Calculate total number of !ZONE_HIGHMEM pages */
6920 	for_each_zone(zone) {
6921 		if (!is_highmem(zone))
6922 			lowmem_pages += zone->managed_pages;
6923 	}
6924 
6925 	for_each_zone(zone) {
6926 		u64 min, low;
6927 
6928 		spin_lock_irqsave(&zone->lock, flags);
6929 		min = (u64)pages_min * zone->managed_pages;
6930 		do_div(min, lowmem_pages);
6931 		low = (u64)pages_low * zone->managed_pages;
6932 		do_div(low, vm_total_pages);
6933 
6934 		if (is_highmem(zone)) {
6935 			/*
6936 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6937 			 * need highmem pages, so cap pages_min to a small
6938 			 * value here.
6939 			 *
6940 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6941 			 * deltas control asynch page reclaim, and so should
6942 			 * not be capped for highmem.
6943 			 */
6944 			unsigned long min_pages;
6945 
6946 			min_pages = zone->managed_pages / 1024;
6947 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6948 			zone->watermark[WMARK_MIN] = min_pages;
6949 		} else {
6950 			/*
6951 			 * If it's a lowmem zone, reserve a number of pages
6952 			 * proportionate to the zone's size.
6953 			 */
6954 			zone->watermark[WMARK_MIN] = min;
6955 		}
6956 
6957 		/*
6958 		 * Set the kswapd watermarks distance according to the
6959 		 * scale factor in proportion to available memory, but
6960 		 * ensure a minimum size on small systems.
6961 		 */
6962 		min = max_t(u64, min >> 2,
6963 			    mult_frac(zone->managed_pages,
6964 				      watermark_scale_factor, 10000));
6965 
6966 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) +
6967 					low + min;
6968 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) +
6969 					low + min * 2;
6970 
6971 		spin_unlock_irqrestore(&zone->lock, flags);
6972 	}
6973 
6974 	/* update totalreserve_pages */
6975 	calculate_totalreserve_pages();
6976 }
6977 
6978 /**
6979  * setup_per_zone_wmarks - called when min_free_kbytes changes
6980  * or when memory is hot-{added|removed}
6981  *
6982  * Ensures that the watermark[min,low,high] values for each zone are set
6983  * correctly with respect to min_free_kbytes.
6984  */
setup_per_zone_wmarks(void)6985 void setup_per_zone_wmarks(void)
6986 {
6987 	static DEFINE_SPINLOCK(lock);
6988 
6989 	spin_lock(&lock);
6990 	__setup_per_zone_wmarks();
6991 	spin_unlock(&lock);
6992 }
6993 
6994 /*
6995  * Initialise min_free_kbytes.
6996  *
6997  * For small machines we want it small (128k min).  For large machines
6998  * we want it large (64MB max).  But it is not linear, because network
6999  * bandwidth does not increase linearly with machine size.  We use
7000  *
7001  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7002  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
7003  *
7004  * which yields
7005  *
7006  * 16MB:	512k
7007  * 32MB:	724k
7008  * 64MB:	1024k
7009  * 128MB:	1448k
7010  * 256MB:	2048k
7011  * 512MB:	2896k
7012  * 1024MB:	4096k
7013  * 2048MB:	5792k
7014  * 4096MB:	8192k
7015  * 8192MB:	11584k
7016  * 16384MB:	16384k
7017  */
init_per_zone_wmark_min(void)7018 int __meminit init_per_zone_wmark_min(void)
7019 {
7020 	unsigned long lowmem_kbytes;
7021 	int new_min_free_kbytes;
7022 
7023 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7024 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7025 
7026 	if (new_min_free_kbytes > user_min_free_kbytes) {
7027 		min_free_kbytes = new_min_free_kbytes;
7028 		if (min_free_kbytes < 128)
7029 			min_free_kbytes = 128;
7030 		if (min_free_kbytes > 65536)
7031 			min_free_kbytes = 65536;
7032 	} else {
7033 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7034 				new_min_free_kbytes, user_min_free_kbytes);
7035 	}
7036 	setup_per_zone_wmarks();
7037 	refresh_zone_stat_thresholds();
7038 	setup_per_zone_lowmem_reserve();
7039 
7040 #ifdef CONFIG_NUMA
7041 	setup_min_unmapped_ratio();
7042 	setup_min_slab_ratio();
7043 #endif
7044 
7045 	return 0;
7046 }
core_initcall(init_per_zone_wmark_min)7047 core_initcall(init_per_zone_wmark_min)
7048 
7049 /*
7050  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7051  *	that we can call two helper functions whenever min_free_kbytes
7052  *	or extra_free_kbytes changes.
7053  */
7054 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7055 	void __user *buffer, size_t *length, loff_t *ppos)
7056 {
7057 	int rc;
7058 
7059 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7060 	if (rc)
7061 		return rc;
7062 
7063 	if (write) {
7064 		user_min_free_kbytes = min_free_kbytes;
7065 		setup_per_zone_wmarks();
7066 	}
7067 	return 0;
7068 }
7069 
watermark_scale_factor_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)7070 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7071 	void __user *buffer, size_t *length, loff_t *ppos)
7072 {
7073 	int rc;
7074 
7075 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7076 	if (rc)
7077 		return rc;
7078 
7079 	if (write)
7080 		setup_per_zone_wmarks();
7081 
7082 	return 0;
7083 }
7084 
7085 #ifdef CONFIG_NUMA
setup_min_unmapped_ratio(void)7086 static void setup_min_unmapped_ratio(void)
7087 {
7088 	pg_data_t *pgdat;
7089 	struct zone *zone;
7090 
7091 	for_each_online_pgdat(pgdat)
7092 		pgdat->min_unmapped_pages = 0;
7093 
7094 	for_each_zone(zone)
7095 		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7096 				sysctl_min_unmapped_ratio) / 100;
7097 }
7098 
7099 
sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)7100 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7101 	void __user *buffer, size_t *length, loff_t *ppos)
7102 {
7103 	int rc;
7104 
7105 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7106 	if (rc)
7107 		return rc;
7108 
7109 	setup_min_unmapped_ratio();
7110 
7111 	return 0;
7112 }
7113 
setup_min_slab_ratio(void)7114 static void setup_min_slab_ratio(void)
7115 {
7116 	pg_data_t *pgdat;
7117 	struct zone *zone;
7118 
7119 	for_each_online_pgdat(pgdat)
7120 		pgdat->min_slab_pages = 0;
7121 
7122 	for_each_zone(zone)
7123 		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7124 				sysctl_min_slab_ratio) / 100;
7125 }
7126 
sysctl_min_slab_ratio_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)7127 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7128 	void __user *buffer, size_t *length, loff_t *ppos)
7129 {
7130 	int rc;
7131 
7132 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7133 	if (rc)
7134 		return rc;
7135 
7136 	setup_min_slab_ratio();
7137 
7138 	return 0;
7139 }
7140 #endif
7141 
7142 /*
7143  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7144  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7145  *	whenever sysctl_lowmem_reserve_ratio changes.
7146  *
7147  * The reserve ratio obviously has absolutely no relation with the
7148  * minimum watermarks. The lowmem reserve ratio can only make sense
7149  * if in function of the boot time zone sizes.
7150  */
lowmem_reserve_ratio_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)7151 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7152 	void __user *buffer, size_t *length, loff_t *ppos)
7153 {
7154 	proc_dointvec_minmax(table, write, buffer, length, ppos);
7155 	setup_per_zone_lowmem_reserve();
7156 	return 0;
7157 }
7158 
7159 /*
7160  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7161  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
7162  * pagelist can have before it gets flushed back to buddy allocator.
7163  */
percpu_pagelist_fraction_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)7164 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7165 	void __user *buffer, size_t *length, loff_t *ppos)
7166 {
7167 	struct zone *zone;
7168 	int old_percpu_pagelist_fraction;
7169 	int ret;
7170 
7171 	mutex_lock(&pcp_batch_high_lock);
7172 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7173 
7174 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7175 	if (!write || ret < 0)
7176 		goto out;
7177 
7178 	/* Sanity checking to avoid pcp imbalance */
7179 	if (percpu_pagelist_fraction &&
7180 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7181 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7182 		ret = -EINVAL;
7183 		goto out;
7184 	}
7185 
7186 	/* No change? */
7187 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7188 		goto out;
7189 
7190 	for_each_populated_zone(zone) {
7191 		unsigned int cpu;
7192 
7193 		for_each_possible_cpu(cpu)
7194 			pageset_set_high_and_batch(zone,
7195 					per_cpu_ptr(zone->pageset, cpu));
7196 	}
7197 out:
7198 	mutex_unlock(&pcp_batch_high_lock);
7199 	return ret;
7200 }
7201 
7202 #ifdef CONFIG_NUMA
7203 int hashdist = HASHDIST_DEFAULT;
7204 
set_hashdist(char * str)7205 static int __init set_hashdist(char *str)
7206 {
7207 	if (!str)
7208 		return 0;
7209 	hashdist = simple_strtoul(str, &str, 0);
7210 	return 1;
7211 }
7212 __setup("hashdist=", set_hashdist);
7213 #endif
7214 
7215 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7216 /*
7217  * Returns the number of pages that arch has reserved but
7218  * is not known to alloc_large_system_hash().
7219  */
arch_reserved_kernel_pages(void)7220 static unsigned long __init arch_reserved_kernel_pages(void)
7221 {
7222 	return 0;
7223 }
7224 #endif
7225 
7226 /*
7227  * Adaptive scale is meant to reduce sizes of hash tables on large memory
7228  * machines. As memory size is increased the scale is also increased but at
7229  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
7230  * quadruples the scale is increased by one, which means the size of hash table
7231  * only doubles, instead of quadrupling as well.
7232  * Because 32-bit systems cannot have large physical memory, where this scaling
7233  * makes sense, it is disabled on such platforms.
7234  */
7235 #if __BITS_PER_LONG > 32
7236 #define ADAPT_SCALE_BASE	(64ul << 30)
7237 #define ADAPT_SCALE_SHIFT	2
7238 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
7239 #endif
7240 
7241 /*
7242  * allocate a large system hash table from bootmem
7243  * - it is assumed that the hash table must contain an exact power-of-2
7244  *   quantity of entries
7245  * - limit is the number of hash buckets, not the total allocation size
7246  */
alloc_large_system_hash(const char * tablename,unsigned long bucketsize,unsigned long numentries,int scale,int flags,unsigned int * _hash_shift,unsigned int * _hash_mask,unsigned long low_limit,unsigned long high_limit)7247 void *__init alloc_large_system_hash(const char *tablename,
7248 				     unsigned long bucketsize,
7249 				     unsigned long numentries,
7250 				     int scale,
7251 				     int flags,
7252 				     unsigned int *_hash_shift,
7253 				     unsigned int *_hash_mask,
7254 				     unsigned long low_limit,
7255 				     unsigned long high_limit)
7256 {
7257 	unsigned long long max = high_limit;
7258 	unsigned long log2qty, size;
7259 	void *table = NULL;
7260 	gfp_t gfp_flags;
7261 
7262 	/* allow the kernel cmdline to have a say */
7263 	if (!numentries) {
7264 		/* round applicable memory size up to nearest megabyte */
7265 		numentries = nr_kernel_pages;
7266 		numentries -= arch_reserved_kernel_pages();
7267 
7268 		/* It isn't necessary when PAGE_SIZE >= 1MB */
7269 		if (PAGE_SHIFT < 20)
7270 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7271 
7272 #if __BITS_PER_LONG > 32
7273 		if (!high_limit) {
7274 			unsigned long adapt;
7275 
7276 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7277 			     adapt <<= ADAPT_SCALE_SHIFT)
7278 				scale++;
7279 		}
7280 #endif
7281 
7282 		/* limit to 1 bucket per 2^scale bytes of low memory */
7283 		if (scale > PAGE_SHIFT)
7284 			numentries >>= (scale - PAGE_SHIFT);
7285 		else
7286 			numentries <<= (PAGE_SHIFT - scale);
7287 
7288 		/* Make sure we've got at least a 0-order allocation.. */
7289 		if (unlikely(flags & HASH_SMALL)) {
7290 			/* Makes no sense without HASH_EARLY */
7291 			WARN_ON(!(flags & HASH_EARLY));
7292 			if (!(numentries >> *_hash_shift)) {
7293 				numentries = 1UL << *_hash_shift;
7294 				BUG_ON(!numentries);
7295 			}
7296 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7297 			numentries = PAGE_SIZE / bucketsize;
7298 	}
7299 	numentries = roundup_pow_of_two(numentries);
7300 
7301 	/* limit allocation size to 1/16 total memory by default */
7302 	if (max == 0) {
7303 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7304 		do_div(max, bucketsize);
7305 	}
7306 	max = min(max, 0x80000000ULL);
7307 
7308 	if (numentries < low_limit)
7309 		numentries = low_limit;
7310 	if (numentries > max)
7311 		numentries = max;
7312 
7313 	log2qty = ilog2(numentries);
7314 
7315 	/*
7316 	 * memblock allocator returns zeroed memory already, so HASH_ZERO is
7317 	 * currently not used when HASH_EARLY is specified.
7318 	 */
7319 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
7320 	do {
7321 		size = bucketsize << log2qty;
7322 		if (flags & HASH_EARLY)
7323 			table = memblock_virt_alloc_nopanic(size, 0);
7324 		else if (hashdist)
7325 			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7326 		else {
7327 			/*
7328 			 * If bucketsize is not a power-of-two, we may free
7329 			 * some pages at the end of hash table which
7330 			 * alloc_pages_exact() automatically does
7331 			 */
7332 			if (get_order(size) < MAX_ORDER) {
7333 				table = alloc_pages_exact(size, gfp_flags);
7334 				kmemleak_alloc(table, size, 1, gfp_flags);
7335 			}
7336 		}
7337 	} while (!table && size > PAGE_SIZE && --log2qty);
7338 
7339 	if (!table)
7340 		panic("Failed to allocate %s hash table\n", tablename);
7341 
7342 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7343 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7344 
7345 	if (_hash_shift)
7346 		*_hash_shift = log2qty;
7347 	if (_hash_mask)
7348 		*_hash_mask = (1 << log2qty) - 1;
7349 
7350 	return table;
7351 }
7352 
7353 /*
7354  * This function checks whether pageblock includes unmovable pages or not.
7355  * If @count is not zero, it is okay to include less @count unmovable pages
7356  *
7357  * PageLRU check without isolation or lru_lock could race so that
7358  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7359  * check without lock_page also may miss some movable non-lru pages at
7360  * race condition. So you can't expect this function should be exact.
7361  */
has_unmovable_pages(struct zone * zone,struct page * page,int count,bool skip_hwpoisoned_pages)7362 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7363 			 bool skip_hwpoisoned_pages)
7364 {
7365 	unsigned long pfn, iter, found;
7366 	int mt;
7367 
7368 	/*
7369 	 * For avoiding noise data, lru_add_drain_all() should be called
7370 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
7371 	 */
7372 	if (zone_idx(zone) == ZONE_MOVABLE)
7373 		return false;
7374 	mt = get_pageblock_migratetype(page);
7375 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7376 		return false;
7377 
7378 	pfn = page_to_pfn(page);
7379 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7380 		unsigned long check = pfn + iter;
7381 
7382 		if (!pfn_valid_within(check))
7383 			continue;
7384 
7385 		page = pfn_to_page(check);
7386 
7387 		/*
7388 		 * Hugepages are not in LRU lists, but they're movable.
7389 		 * We need not scan over tail pages bacause we don't
7390 		 * handle each tail page individually in migration.
7391 		 */
7392 		if (PageHuge(page)) {
7393 			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7394 			continue;
7395 		}
7396 
7397 		/*
7398 		 * We can't use page_count without pin a page
7399 		 * because another CPU can free compound page.
7400 		 * This check already skips compound tails of THP
7401 		 * because their page->_refcount is zero at all time.
7402 		 */
7403 		if (!page_ref_count(page)) {
7404 			if (PageBuddy(page))
7405 				iter += (1 << page_order(page)) - 1;
7406 			continue;
7407 		}
7408 
7409 		/*
7410 		 * The HWPoisoned page may be not in buddy system, and
7411 		 * page_count() is not 0.
7412 		 */
7413 		if (skip_hwpoisoned_pages && PageHWPoison(page))
7414 			continue;
7415 
7416 		if (__PageMovable(page))
7417 			continue;
7418 
7419 		if (!PageLRU(page))
7420 			found++;
7421 		/*
7422 		 * If there are RECLAIMABLE pages, we need to check
7423 		 * it.  But now, memory offline itself doesn't call
7424 		 * shrink_node_slabs() and it still to be fixed.
7425 		 */
7426 		/*
7427 		 * If the page is not RAM, page_count()should be 0.
7428 		 * we don't need more check. This is an _used_ not-movable page.
7429 		 *
7430 		 * The problematic thing here is PG_reserved pages. PG_reserved
7431 		 * is set to both of a memory hole page and a _used_ kernel
7432 		 * page at boot.
7433 		 */
7434 		if (found > count)
7435 			return true;
7436 	}
7437 	return false;
7438 }
7439 
is_pageblock_removable_nolock(struct page * page)7440 bool is_pageblock_removable_nolock(struct page *page)
7441 {
7442 	struct zone *zone;
7443 	unsigned long pfn;
7444 
7445 	/*
7446 	 * We have to be careful here because we are iterating over memory
7447 	 * sections which are not zone aware so we might end up outside of
7448 	 * the zone but still within the section.
7449 	 * We have to take care about the node as well. If the node is offline
7450 	 * its NODE_DATA will be NULL - see page_zone.
7451 	 */
7452 	if (!node_online(page_to_nid(page)))
7453 		return false;
7454 
7455 	zone = page_zone(page);
7456 	pfn = page_to_pfn(page);
7457 	if (!zone_spans_pfn(zone, pfn))
7458 		return false;
7459 
7460 	return !has_unmovable_pages(zone, page, 0, true);
7461 }
7462 
7463 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7464 
pfn_max_align_down(unsigned long pfn)7465 static unsigned long pfn_max_align_down(unsigned long pfn)
7466 {
7467 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7468 			     pageblock_nr_pages) - 1);
7469 }
7470 
pfn_max_align_up(unsigned long pfn)7471 static unsigned long pfn_max_align_up(unsigned long pfn)
7472 {
7473 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7474 				pageblock_nr_pages));
7475 }
7476 
7477 /* [start, end) must belong to a single zone. */
__alloc_contig_migrate_range(struct compact_control * cc,unsigned long start,unsigned long end)7478 static int __alloc_contig_migrate_range(struct compact_control *cc,
7479 					unsigned long start, unsigned long end)
7480 {
7481 	/* This function is based on compact_zone() from compaction.c. */
7482 	unsigned long nr_reclaimed;
7483 	unsigned long pfn = start;
7484 	unsigned int tries = 0;
7485 	int ret = 0;
7486 
7487 	migrate_prep();
7488 
7489 	while (pfn < end || !list_empty(&cc->migratepages)) {
7490 		if (fatal_signal_pending(current)) {
7491 			ret = -EINTR;
7492 			break;
7493 		}
7494 
7495 		if (list_empty(&cc->migratepages)) {
7496 			cc->nr_migratepages = 0;
7497 			pfn = isolate_migratepages_range(cc, pfn, end);
7498 			if (!pfn) {
7499 				ret = -EINTR;
7500 				break;
7501 			}
7502 			tries = 0;
7503 		} else if (++tries == 5) {
7504 			ret = ret < 0 ? ret : -EBUSY;
7505 			break;
7506 		}
7507 
7508 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7509 							&cc->migratepages);
7510 		cc->nr_migratepages -= nr_reclaimed;
7511 
7512 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7513 				    NULL, 0, cc->mode, MR_CMA);
7514 	}
7515 	if (ret < 0) {
7516 		putback_movable_pages(&cc->migratepages);
7517 		return ret;
7518 	}
7519 	return 0;
7520 }
7521 
7522 /**
7523  * alloc_contig_range() -- tries to allocate given range of pages
7524  * @start:	start PFN to allocate
7525  * @end:	one-past-the-last PFN to allocate
7526  * @migratetype:	migratetype of the underlaying pageblocks (either
7527  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
7528  *			in range must have the same migratetype and it must
7529  *			be either of the two.
7530  * @gfp_mask:	GFP mask to use during compaction
7531  *
7532  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7533  * aligned, however it's the caller's responsibility to guarantee that
7534  * we are the only thread that changes migrate type of pageblocks the
7535  * pages fall in.
7536  *
7537  * The PFN range must belong to a single zone.
7538  *
7539  * Returns zero on success or negative error code.  On success all
7540  * pages which PFN is in [start, end) are allocated for the caller and
7541  * need to be freed with free_contig_range().
7542  */
alloc_contig_range(unsigned long start,unsigned long end,unsigned migratetype,gfp_t gfp_mask)7543 int alloc_contig_range(unsigned long start, unsigned long end,
7544 		       unsigned migratetype, gfp_t gfp_mask)
7545 {
7546 	unsigned long outer_start, outer_end;
7547 	unsigned int order;
7548 	int ret = 0;
7549 
7550 	struct compact_control cc = {
7551 		.nr_migratepages = 0,
7552 		.order = -1,
7553 		.zone = page_zone(pfn_to_page(start)),
7554 		.mode = MIGRATE_SYNC,
7555 		.ignore_skip_hint = true,
7556 		.gfp_mask = current_gfp_context(gfp_mask),
7557 	};
7558 	INIT_LIST_HEAD(&cc.migratepages);
7559 
7560 	/*
7561 	 * What we do here is we mark all pageblocks in range as
7562 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
7563 	 * have different sizes, and due to the way page allocator
7564 	 * work, we align the range to biggest of the two pages so
7565 	 * that page allocator won't try to merge buddies from
7566 	 * different pageblocks and change MIGRATE_ISOLATE to some
7567 	 * other migration type.
7568 	 *
7569 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7570 	 * migrate the pages from an unaligned range (ie. pages that
7571 	 * we are interested in).  This will put all the pages in
7572 	 * range back to page allocator as MIGRATE_ISOLATE.
7573 	 *
7574 	 * When this is done, we take the pages in range from page
7575 	 * allocator removing them from the buddy system.  This way
7576 	 * page allocator will never consider using them.
7577 	 *
7578 	 * This lets us mark the pageblocks back as
7579 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7580 	 * aligned range but not in the unaligned, original range are
7581 	 * put back to page allocator so that buddy can use them.
7582 	 */
7583 
7584 	ret = start_isolate_page_range(pfn_max_align_down(start),
7585 				       pfn_max_align_up(end), migratetype,
7586 				       false);
7587 	if (ret)
7588 		return ret;
7589 
7590 	/*
7591 	 * In case of -EBUSY, we'd like to know which page causes problem.
7592 	 * So, just fall through. test_pages_isolated() has a tracepoint
7593 	 * which will report the busy page.
7594 	 *
7595 	 * It is possible that busy pages could become available before
7596 	 * the call to test_pages_isolated, and the range will actually be
7597 	 * allocated.  So, if we fall through be sure to clear ret so that
7598 	 * -EBUSY is not accidentally used or returned to caller.
7599 	 */
7600 	ret = __alloc_contig_migrate_range(&cc, start, end);
7601 	if (ret && ret != -EBUSY)
7602 		goto done;
7603 	ret =0;
7604 
7605 	/*
7606 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7607 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
7608 	 * more, all pages in [start, end) are free in page allocator.
7609 	 * What we are going to do is to allocate all pages from
7610 	 * [start, end) (that is remove them from page allocator).
7611 	 *
7612 	 * The only problem is that pages at the beginning and at the
7613 	 * end of interesting range may be not aligned with pages that
7614 	 * page allocator holds, ie. they can be part of higher order
7615 	 * pages.  Because of this, we reserve the bigger range and
7616 	 * once this is done free the pages we are not interested in.
7617 	 *
7618 	 * We don't have to hold zone->lock here because the pages are
7619 	 * isolated thus they won't get removed from buddy.
7620 	 */
7621 
7622 	lru_add_drain_all();
7623 	drain_all_pages(cc.zone);
7624 
7625 	order = 0;
7626 	outer_start = start;
7627 	while (!PageBuddy(pfn_to_page(outer_start))) {
7628 		if (++order >= MAX_ORDER) {
7629 			outer_start = start;
7630 			break;
7631 		}
7632 		outer_start &= ~0UL << order;
7633 	}
7634 
7635 	if (outer_start != start) {
7636 		order = page_order(pfn_to_page(outer_start));
7637 
7638 		/*
7639 		 * outer_start page could be small order buddy page and
7640 		 * it doesn't include start page. Adjust outer_start
7641 		 * in this case to report failed page properly
7642 		 * on tracepoint in test_pages_isolated()
7643 		 */
7644 		if (outer_start + (1UL << order) <= start)
7645 			outer_start = start;
7646 	}
7647 
7648 	/* Make sure the range is really isolated. */
7649 	if (test_pages_isolated(outer_start, end, false)) {
7650 		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7651 			__func__, outer_start, end);
7652 		ret = -EBUSY;
7653 		goto done;
7654 	}
7655 
7656 	/* Grab isolated pages from freelists. */
7657 	outer_end = isolate_freepages_range(&cc, outer_start, end);
7658 	if (!outer_end) {
7659 		ret = -EBUSY;
7660 		goto done;
7661 	}
7662 
7663 	/* Free head and tail (if any) */
7664 	if (start != outer_start)
7665 		free_contig_range(outer_start, start - outer_start);
7666 	if (end != outer_end)
7667 		free_contig_range(end, outer_end - end);
7668 
7669 done:
7670 	undo_isolate_page_range(pfn_max_align_down(start),
7671 				pfn_max_align_up(end), migratetype);
7672 	return ret;
7673 }
7674 
free_contig_range(unsigned long pfn,unsigned nr_pages)7675 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7676 {
7677 	unsigned int count = 0;
7678 
7679 	for (; nr_pages--; pfn++) {
7680 		struct page *page = pfn_to_page(pfn);
7681 
7682 		count += page_count(page) != 1;
7683 		__free_page(page);
7684 	}
7685 	WARN(count != 0, "%d pages are still in use!\n", count);
7686 }
7687 #endif
7688 
7689 #ifdef CONFIG_MEMORY_HOTPLUG
7690 /*
7691  * The zone indicated has a new number of managed_pages; batch sizes and percpu
7692  * page high values need to be recalulated.
7693  */
zone_pcp_update(struct zone * zone)7694 void __meminit zone_pcp_update(struct zone *zone)
7695 {
7696 	unsigned cpu;
7697 	mutex_lock(&pcp_batch_high_lock);
7698 	for_each_possible_cpu(cpu)
7699 		pageset_set_high_and_batch(zone,
7700 				per_cpu_ptr(zone->pageset, cpu));
7701 	mutex_unlock(&pcp_batch_high_lock);
7702 }
7703 #endif
7704 
zone_pcp_reset(struct zone * zone)7705 void zone_pcp_reset(struct zone *zone)
7706 {
7707 	unsigned long flags;
7708 	int cpu;
7709 	struct per_cpu_pageset *pset;
7710 
7711 	/* avoid races with drain_pages()  */
7712 	local_irq_save(flags);
7713 	if (zone->pageset != &boot_pageset) {
7714 		for_each_online_cpu(cpu) {
7715 			pset = per_cpu_ptr(zone->pageset, cpu);
7716 			drain_zonestat(zone, pset);
7717 		}
7718 		free_percpu(zone->pageset);
7719 		zone->pageset = &boot_pageset;
7720 	}
7721 	local_irq_restore(flags);
7722 }
7723 
7724 #ifdef CONFIG_MEMORY_HOTREMOVE
7725 /*
7726  * All pages in the range must be in a single zone and isolated
7727  * before calling this.
7728  */
7729 void
__offline_isolated_pages(unsigned long start_pfn,unsigned long end_pfn)7730 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7731 {
7732 	struct page *page;
7733 	struct zone *zone;
7734 	unsigned int order, i;
7735 	unsigned long pfn;
7736 	unsigned long flags;
7737 	/* find the first valid pfn */
7738 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
7739 		if (pfn_valid(pfn))
7740 			break;
7741 	if (pfn == end_pfn)
7742 		return;
7743 	offline_mem_sections(pfn, end_pfn);
7744 	zone = page_zone(pfn_to_page(pfn));
7745 	spin_lock_irqsave(&zone->lock, flags);
7746 	pfn = start_pfn;
7747 	while (pfn < end_pfn) {
7748 		if (!pfn_valid(pfn)) {
7749 			pfn++;
7750 			continue;
7751 		}
7752 		page = pfn_to_page(pfn);
7753 		/*
7754 		 * The HWPoisoned page may be not in buddy system, and
7755 		 * page_count() is not 0.
7756 		 */
7757 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7758 			pfn++;
7759 			SetPageReserved(page);
7760 			continue;
7761 		}
7762 
7763 		BUG_ON(page_count(page));
7764 		BUG_ON(!PageBuddy(page));
7765 		order = page_order(page);
7766 #ifdef CONFIG_DEBUG_VM
7767 		pr_info("remove from free list %lx %d %lx\n",
7768 			pfn, 1 << order, end_pfn);
7769 #endif
7770 		list_del(&page->lru);
7771 		rmv_page_order(page);
7772 		zone->free_area[order].nr_free--;
7773 		for (i = 0; i < (1 << order); i++)
7774 			SetPageReserved((page+i));
7775 		pfn += (1 << order);
7776 	}
7777 	spin_unlock_irqrestore(&zone->lock, flags);
7778 }
7779 #endif
7780 
is_free_buddy_page(struct page * page)7781 bool is_free_buddy_page(struct page *page)
7782 {
7783 	struct zone *zone = page_zone(page);
7784 	unsigned long pfn = page_to_pfn(page);
7785 	unsigned long flags;
7786 	unsigned int order;
7787 
7788 	spin_lock_irqsave(&zone->lock, flags);
7789 	for (order = 0; order < MAX_ORDER; order++) {
7790 		struct page *page_head = page - (pfn & ((1 << order) - 1));
7791 
7792 		if (PageBuddy(page_head) && page_order(page_head) >= order)
7793 			break;
7794 	}
7795 	spin_unlock_irqrestore(&zone->lock, flags);
7796 
7797 	return order < MAX_ORDER;
7798 }
7799