• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 #include <linux/nospec.h>
93 
94 #include <linux/uaccess.h>
95 #include <asm/unistd.h>
96 
97 #include <net/compat.h>
98 #include <net/wext.h>
99 #include <net/cls_cgroup.h>
100 
101 #include <net/sock.h>
102 #include <linux/netfilter.h>
103 
104 #include <linux/if_tun.h>
105 #include <linux/ipv6_route.h>
106 #include <linux/route.h>
107 #include <linux/sockios.h>
108 #include <linux/atalk.h>
109 #include <net/busy_poll.h>
110 #include <linux/errqueue.h>
111 
112 #ifdef CONFIG_NET_RX_BUSY_POLL
113 unsigned int sysctl_net_busy_read __read_mostly;
114 unsigned int sysctl_net_busy_poll __read_mostly;
115 #endif
116 
117 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
118 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
119 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
120 
121 static int sock_close(struct inode *inode, struct file *file);
122 static unsigned int sock_poll(struct file *file,
123 			      struct poll_table_struct *wait);
124 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
125 #ifdef CONFIG_COMPAT
126 static long compat_sock_ioctl(struct file *file,
127 			      unsigned int cmd, unsigned long arg);
128 #endif
129 static int sock_fasync(int fd, struct file *filp, int on);
130 static ssize_t sock_sendpage(struct file *file, struct page *page,
131 			     int offset, size_t size, loff_t *ppos, int more);
132 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
133 				struct pipe_inode_info *pipe, size_t len,
134 				unsigned int flags);
135 
136 /*
137  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
138  *	in the operation structures but are done directly via the socketcall() multiplexor.
139  */
140 
141 static const struct file_operations socket_file_ops = {
142 	.owner =	THIS_MODULE,
143 	.llseek =	no_llseek,
144 	.read_iter =	sock_read_iter,
145 	.write_iter =	sock_write_iter,
146 	.poll =		sock_poll,
147 	.unlocked_ioctl = sock_ioctl,
148 #ifdef CONFIG_COMPAT
149 	.compat_ioctl = compat_sock_ioctl,
150 #endif
151 	.mmap =		sock_mmap,
152 	.release =	sock_close,
153 	.fasync =	sock_fasync,
154 	.sendpage =	sock_sendpage,
155 	.splice_write = generic_splice_sendpage,
156 	.splice_read =	sock_splice_read,
157 };
158 
159 /*
160  *	The protocol list. Each protocol is registered in here.
161  */
162 
163 static DEFINE_SPINLOCK(net_family_lock);
164 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
165 
166 /*
167  *	Statistics counters of the socket lists
168  */
169 
170 static DEFINE_PER_CPU(int, sockets_in_use);
171 
172 /*
173  * Support routines.
174  * Move socket addresses back and forth across the kernel/user
175  * divide and look after the messy bits.
176  */
177 
178 /**
179  *	move_addr_to_kernel	-	copy a socket address into kernel space
180  *	@uaddr: Address in user space
181  *	@kaddr: Address in kernel space
182  *	@ulen: Length in user space
183  *
184  *	The address is copied into kernel space. If the provided address is
185  *	too long an error code of -EINVAL is returned. If the copy gives
186  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
187  */
188 
move_addr_to_kernel(void __user * uaddr,int ulen,struct sockaddr_storage * kaddr)189 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
190 {
191 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
192 		return -EINVAL;
193 	if (ulen == 0)
194 		return 0;
195 	if (copy_from_user(kaddr, uaddr, ulen))
196 		return -EFAULT;
197 	return audit_sockaddr(ulen, kaddr);
198 }
199 
200 /**
201  *	move_addr_to_user	-	copy an address to user space
202  *	@kaddr: kernel space address
203  *	@klen: length of address in kernel
204  *	@uaddr: user space address
205  *	@ulen: pointer to user length field
206  *
207  *	The value pointed to by ulen on entry is the buffer length available.
208  *	This is overwritten with the buffer space used. -EINVAL is returned
209  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
210  *	is returned if either the buffer or the length field are not
211  *	accessible.
212  *	After copying the data up to the limit the user specifies, the true
213  *	length of the data is written over the length limit the user
214  *	specified. Zero is returned for a success.
215  */
216 
move_addr_to_user(struct sockaddr_storage * kaddr,int klen,void __user * uaddr,int __user * ulen)217 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
218 			     void __user *uaddr, int __user *ulen)
219 {
220 	int err;
221 	int len;
222 
223 	BUG_ON(klen > sizeof(struct sockaddr_storage));
224 	err = get_user(len, ulen);
225 	if (err)
226 		return err;
227 	if (len > klen)
228 		len = klen;
229 	if (len < 0)
230 		return -EINVAL;
231 	if (len) {
232 		if (audit_sockaddr(klen, kaddr))
233 			return -ENOMEM;
234 		if (copy_to_user(uaddr, kaddr, len))
235 			return -EFAULT;
236 	}
237 	/*
238 	 *      "fromlen shall refer to the value before truncation.."
239 	 *                      1003.1g
240 	 */
241 	return __put_user(klen, ulen);
242 }
243 
244 static struct kmem_cache *sock_inode_cachep __read_mostly;
245 
sock_alloc_inode(struct super_block * sb)246 static struct inode *sock_alloc_inode(struct super_block *sb)
247 {
248 	struct socket_alloc *ei;
249 	struct socket_wq *wq;
250 
251 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
252 	if (!ei)
253 		return NULL;
254 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
255 	if (!wq) {
256 		kmem_cache_free(sock_inode_cachep, ei);
257 		return NULL;
258 	}
259 	init_waitqueue_head(&wq->wait);
260 	wq->fasync_list = NULL;
261 	wq->flags = 0;
262 	RCU_INIT_POINTER(ei->socket.wq, wq);
263 
264 	ei->socket.state = SS_UNCONNECTED;
265 	ei->socket.flags = 0;
266 	ei->socket.ops = NULL;
267 	ei->socket.sk = NULL;
268 	ei->socket.file = NULL;
269 
270 	return &ei->vfs_inode;
271 }
272 
sock_destroy_inode(struct inode * inode)273 static void sock_destroy_inode(struct inode *inode)
274 {
275 	struct socket_alloc *ei;
276 	struct socket_wq *wq;
277 
278 	ei = container_of(inode, struct socket_alloc, vfs_inode);
279 	wq = rcu_dereference_protected(ei->socket.wq, 1);
280 	kfree_rcu(wq, rcu);
281 	kmem_cache_free(sock_inode_cachep, ei);
282 }
283 
init_once(void * foo)284 static void init_once(void *foo)
285 {
286 	struct socket_alloc *ei = (struct socket_alloc *)foo;
287 
288 	inode_init_once(&ei->vfs_inode);
289 }
290 
init_inodecache(void)291 static void init_inodecache(void)
292 {
293 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
294 					      sizeof(struct socket_alloc),
295 					      0,
296 					      (SLAB_HWCACHE_ALIGN |
297 					       SLAB_RECLAIM_ACCOUNT |
298 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
299 					      init_once);
300 	BUG_ON(sock_inode_cachep == NULL);
301 }
302 
303 static const struct super_operations sockfs_ops = {
304 	.alloc_inode	= sock_alloc_inode,
305 	.destroy_inode	= sock_destroy_inode,
306 	.statfs		= simple_statfs,
307 };
308 
309 /*
310  * sockfs_dname() is called from d_path().
311  */
sockfs_dname(struct dentry * dentry,char * buffer,int buflen)312 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
313 {
314 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
315 				d_inode(dentry)->i_ino);
316 }
317 
318 static const struct dentry_operations sockfs_dentry_operations = {
319 	.d_dname  = sockfs_dname,
320 };
321 
sockfs_xattr_get(const struct xattr_handler * handler,struct dentry * dentry,struct inode * inode,const char * suffix,void * value,size_t size)322 static int sockfs_xattr_get(const struct xattr_handler *handler,
323 			    struct dentry *dentry, struct inode *inode,
324 			    const char *suffix, void *value, size_t size)
325 {
326 	if (value) {
327 		if (dentry->d_name.len + 1 > size)
328 			return -ERANGE;
329 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
330 	}
331 	return dentry->d_name.len + 1;
332 }
333 
334 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
335 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
336 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
337 
338 static const struct xattr_handler sockfs_xattr_handler = {
339 	.name = XATTR_NAME_SOCKPROTONAME,
340 	.get = sockfs_xattr_get,
341 };
342 
sockfs_security_xattr_set(const struct xattr_handler * handler,struct dentry * dentry,struct inode * inode,const char * suffix,const void * value,size_t size,int flags)343 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
344 				     struct dentry *dentry, struct inode *inode,
345 				     const char *suffix, const void *value,
346 				     size_t size, int flags)
347 {
348 	/* Handled by LSM. */
349 	return -EAGAIN;
350 }
351 
352 static const struct xattr_handler sockfs_security_xattr_handler = {
353 	.prefix = XATTR_SECURITY_PREFIX,
354 	.set = sockfs_security_xattr_set,
355 };
356 
357 static const struct xattr_handler *sockfs_xattr_handlers[] = {
358 	&sockfs_xattr_handler,
359 	&sockfs_security_xattr_handler,
360 	NULL
361 };
362 
sockfs_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)363 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
364 			 int flags, const char *dev_name, void *data)
365 {
366 	return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
367 				  sockfs_xattr_handlers,
368 				  &sockfs_dentry_operations, SOCKFS_MAGIC);
369 }
370 
371 static struct vfsmount *sock_mnt __read_mostly;
372 
373 static struct file_system_type sock_fs_type = {
374 	.name =		"sockfs",
375 	.mount =	sockfs_mount,
376 	.kill_sb =	kill_anon_super,
377 };
378 
379 /*
380  *	Obtains the first available file descriptor and sets it up for use.
381  *
382  *	These functions create file structures and maps them to fd space
383  *	of the current process. On success it returns file descriptor
384  *	and file struct implicitly stored in sock->file.
385  *	Note that another thread may close file descriptor before we return
386  *	from this function. We use the fact that now we do not refer
387  *	to socket after mapping. If one day we will need it, this
388  *	function will increment ref. count on file by 1.
389  *
390  *	In any case returned fd MAY BE not valid!
391  *	This race condition is unavoidable
392  *	with shared fd spaces, we cannot solve it inside kernel,
393  *	but we take care of internal coherence yet.
394  */
395 
sock_alloc_file(struct socket * sock,int flags,const char * dname)396 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
397 {
398 	struct qstr name = { .name = "" };
399 	struct path path;
400 	struct file *file;
401 
402 	if (dname) {
403 		name.name = dname;
404 		name.len = strlen(name.name);
405 	} else if (sock->sk) {
406 		name.name = sock->sk->sk_prot_creator->name;
407 		name.len = strlen(name.name);
408 	}
409 	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
410 	if (unlikely(!path.dentry))
411 		return ERR_PTR(-ENOMEM);
412 	path.mnt = mntget(sock_mnt);
413 
414 	d_instantiate(path.dentry, SOCK_INODE(sock));
415 
416 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
417 		  &socket_file_ops);
418 	if (IS_ERR(file)) {
419 		/* drop dentry, keep inode */
420 		ihold(d_inode(path.dentry));
421 		path_put(&path);
422 		return file;
423 	}
424 
425 	sock->file = file;
426 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
427 	file->private_data = sock;
428 	return file;
429 }
430 EXPORT_SYMBOL(sock_alloc_file);
431 
sock_map_fd(struct socket * sock,int flags)432 static int sock_map_fd(struct socket *sock, int flags)
433 {
434 	struct file *newfile;
435 	int fd = get_unused_fd_flags(flags);
436 	if (unlikely(fd < 0))
437 		return fd;
438 
439 	newfile = sock_alloc_file(sock, flags, NULL);
440 	if (likely(!IS_ERR(newfile))) {
441 		fd_install(fd, newfile);
442 		return fd;
443 	}
444 
445 	put_unused_fd(fd);
446 	return PTR_ERR(newfile);
447 }
448 
sock_from_file(struct file * file,int * err)449 struct socket *sock_from_file(struct file *file, int *err)
450 {
451 	if (file->f_op == &socket_file_ops)
452 		return file->private_data;	/* set in sock_map_fd */
453 
454 	*err = -ENOTSOCK;
455 	return NULL;
456 }
457 EXPORT_SYMBOL(sock_from_file);
458 
459 /**
460  *	sockfd_lookup - Go from a file number to its socket slot
461  *	@fd: file handle
462  *	@err: pointer to an error code return
463  *
464  *	The file handle passed in is locked and the socket it is bound
465  *	to is returned. If an error occurs the err pointer is overwritten
466  *	with a negative errno code and NULL is returned. The function checks
467  *	for both invalid handles and passing a handle which is not a socket.
468  *
469  *	On a success the socket object pointer is returned.
470  */
471 
sockfd_lookup(int fd,int * err)472 struct socket *sockfd_lookup(int fd, int *err)
473 {
474 	struct file *file;
475 	struct socket *sock;
476 
477 	file = fget(fd);
478 	if (!file) {
479 		*err = -EBADF;
480 		return NULL;
481 	}
482 
483 	sock = sock_from_file(file, err);
484 	if (!sock)
485 		fput(file);
486 	return sock;
487 }
488 EXPORT_SYMBOL(sockfd_lookup);
489 
sockfd_lookup_light(int fd,int * err,int * fput_needed)490 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
491 {
492 	struct fd f = fdget(fd);
493 	struct socket *sock;
494 
495 	*err = -EBADF;
496 	if (f.file) {
497 		sock = sock_from_file(f.file, err);
498 		if (likely(sock)) {
499 			*fput_needed = f.flags;
500 			return sock;
501 		}
502 		fdput(f);
503 	}
504 	return NULL;
505 }
506 
sockfs_listxattr(struct dentry * dentry,char * buffer,size_t size)507 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
508 				size_t size)
509 {
510 	ssize_t len;
511 	ssize_t used = 0;
512 
513 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
514 	if (len < 0)
515 		return len;
516 	used += len;
517 	if (buffer) {
518 		if (size < used)
519 			return -ERANGE;
520 		buffer += len;
521 	}
522 
523 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
524 	used += len;
525 	if (buffer) {
526 		if (size < used)
527 			return -ERANGE;
528 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
529 		buffer += len;
530 	}
531 
532 	return used;
533 }
534 
sockfs_setattr(struct dentry * dentry,struct iattr * iattr)535 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
536 {
537 	int err = simple_setattr(dentry, iattr);
538 
539 	if (!err && (iattr->ia_valid & ATTR_UID)) {
540 		struct socket *sock = SOCKET_I(d_inode(dentry));
541 
542 		if (sock->sk)
543 			sock->sk->sk_uid = iattr->ia_uid;
544 		else
545 			err = -ENOENT;
546 	}
547 
548 	return err;
549 }
550 
551 static const struct inode_operations sockfs_inode_ops = {
552 	.listxattr = sockfs_listxattr,
553 	.setattr = sockfs_setattr,
554 };
555 
556 /**
557  *	sock_alloc	-	allocate a socket
558  *
559  *	Allocate a new inode and socket object. The two are bound together
560  *	and initialised. The socket is then returned. If we are out of inodes
561  *	NULL is returned.
562  */
563 
sock_alloc(void)564 struct socket *sock_alloc(void)
565 {
566 	struct inode *inode;
567 	struct socket *sock;
568 
569 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
570 	if (!inode)
571 		return NULL;
572 
573 	sock = SOCKET_I(inode);
574 
575 	inode->i_ino = get_next_ino();
576 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
577 	inode->i_uid = current_fsuid();
578 	inode->i_gid = current_fsgid();
579 	inode->i_op = &sockfs_inode_ops;
580 
581 	this_cpu_add(sockets_in_use, 1);
582 	return sock;
583 }
584 EXPORT_SYMBOL(sock_alloc);
585 
586 /**
587  *	sock_release	-	close a socket
588  *	@sock: socket to close
589  *
590  *	The socket is released from the protocol stack if it has a release
591  *	callback, and the inode is then released if the socket is bound to
592  *	an inode not a file.
593  */
594 
__sock_release(struct socket * sock,struct inode * inode)595 static void __sock_release(struct socket *sock, struct inode *inode)
596 {
597 	if (sock->ops) {
598 		struct module *owner = sock->ops->owner;
599 
600 		if (inode)
601 			inode_lock(inode);
602 		sock->ops->release(sock);
603 		sock->sk = NULL;
604 		if (inode)
605 			inode_unlock(inode);
606 		sock->ops = NULL;
607 		module_put(owner);
608 	}
609 
610 	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
611 		pr_err("%s: fasync list not empty!\n", __func__);
612 
613 	this_cpu_sub(sockets_in_use, 1);
614 	if (!sock->file) {
615 		iput(SOCK_INODE(sock));
616 		return;
617 	}
618 	sock->file = NULL;
619 }
620 
sock_release(struct socket * sock)621 void sock_release(struct socket *sock)
622 {
623 	__sock_release(sock, NULL);
624 }
625 EXPORT_SYMBOL(sock_release);
626 
__sock_tx_timestamp(__u16 tsflags,__u8 * tx_flags)627 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
628 {
629 	u8 flags = *tx_flags;
630 
631 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
632 		flags |= SKBTX_HW_TSTAMP;
633 
634 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
635 		flags |= SKBTX_SW_TSTAMP;
636 
637 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
638 		flags |= SKBTX_SCHED_TSTAMP;
639 
640 	*tx_flags = flags;
641 }
642 EXPORT_SYMBOL(__sock_tx_timestamp);
643 
sock_sendmsg_nosec(struct socket * sock,struct msghdr * msg)644 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
645 {
646 	int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
647 	BUG_ON(ret == -EIOCBQUEUED);
648 	return ret;
649 }
650 
sock_sendmsg(struct socket * sock,struct msghdr * msg)651 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
652 {
653 	int err = security_socket_sendmsg(sock, msg,
654 					  msg_data_left(msg));
655 
656 	return err ?: sock_sendmsg_nosec(sock, msg);
657 }
658 EXPORT_SYMBOL(sock_sendmsg);
659 
kernel_sendmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)660 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
661 		   struct kvec *vec, size_t num, size_t size)
662 {
663 	iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
664 	return sock_sendmsg(sock, msg);
665 }
666 EXPORT_SYMBOL(kernel_sendmsg);
667 
kernel_sendmsg_locked(struct sock * sk,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)668 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
669 			  struct kvec *vec, size_t num, size_t size)
670 {
671 	struct socket *sock = sk->sk_socket;
672 
673 	if (!sock->ops->sendmsg_locked)
674 		return sock_no_sendmsg_locked(sk, msg, size);
675 
676 	iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
677 
678 	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
679 }
680 EXPORT_SYMBOL(kernel_sendmsg_locked);
681 
skb_is_err_queue(const struct sk_buff * skb)682 static bool skb_is_err_queue(const struct sk_buff *skb)
683 {
684 	/* pkt_type of skbs enqueued on the error queue are set to
685 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
686 	 * in recvmsg, since skbs received on a local socket will never
687 	 * have a pkt_type of PACKET_OUTGOING.
688 	 */
689 	return skb->pkt_type == PACKET_OUTGOING;
690 }
691 
692 /* On transmit, software and hardware timestamps are returned independently.
693  * As the two skb clones share the hardware timestamp, which may be updated
694  * before the software timestamp is received, a hardware TX timestamp may be
695  * returned only if there is no software TX timestamp. Ignore false software
696  * timestamps, which may be made in the __sock_recv_timestamp() call when the
697  * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a
698  * hardware timestamp.
699  */
skb_is_swtx_tstamp(const struct sk_buff * skb,int false_tstamp)700 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
701 {
702 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
703 }
704 
put_ts_pktinfo(struct msghdr * msg,struct sk_buff * skb)705 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
706 {
707 	struct scm_ts_pktinfo ts_pktinfo;
708 	struct net_device *orig_dev;
709 
710 	if (!skb_mac_header_was_set(skb))
711 		return;
712 
713 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
714 
715 	rcu_read_lock();
716 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
717 	if (orig_dev)
718 		ts_pktinfo.if_index = orig_dev->ifindex;
719 	rcu_read_unlock();
720 
721 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
722 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
723 		 sizeof(ts_pktinfo), &ts_pktinfo);
724 }
725 
726 /*
727  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
728  */
__sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)729 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
730 	struct sk_buff *skb)
731 {
732 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
733 	struct scm_timestamping tss;
734 	int empty = 1, false_tstamp = 0;
735 	struct skb_shared_hwtstamps *shhwtstamps =
736 		skb_hwtstamps(skb);
737 
738 	/* Race occurred between timestamp enabling and packet
739 	   receiving.  Fill in the current time for now. */
740 	if (need_software_tstamp && skb->tstamp == 0) {
741 		__net_timestamp(skb);
742 		false_tstamp = 1;
743 	}
744 
745 	if (need_software_tstamp) {
746 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
747 			struct timeval tv;
748 			skb_get_timestamp(skb, &tv);
749 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
750 				 sizeof(tv), &tv);
751 		} else {
752 			struct timespec ts;
753 			skb_get_timestampns(skb, &ts);
754 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
755 				 sizeof(ts), &ts);
756 		}
757 	}
758 
759 	memset(&tss, 0, sizeof(tss));
760 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
761 	    ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
762 		empty = 0;
763 	if (shhwtstamps &&
764 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
765 	    !skb_is_swtx_tstamp(skb, false_tstamp) &&
766 	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
767 		empty = 0;
768 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
769 		    !skb_is_err_queue(skb))
770 			put_ts_pktinfo(msg, skb);
771 	}
772 	if (!empty) {
773 		put_cmsg(msg, SOL_SOCKET,
774 			 SCM_TIMESTAMPING, sizeof(tss), &tss);
775 
776 		if (skb_is_err_queue(skb) && skb->len &&
777 		    SKB_EXT_ERR(skb)->opt_stats)
778 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
779 				 skb->len, skb->data);
780 	}
781 }
782 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
783 
__sock_recv_wifi_status(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)784 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
785 	struct sk_buff *skb)
786 {
787 	int ack;
788 
789 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
790 		return;
791 	if (!skb->wifi_acked_valid)
792 		return;
793 
794 	ack = skb->wifi_acked;
795 
796 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
797 }
798 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
799 
sock_recv_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)800 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
801 				   struct sk_buff *skb)
802 {
803 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
804 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
805 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
806 }
807 
__sock_recv_ts_and_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)808 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
809 	struct sk_buff *skb)
810 {
811 	sock_recv_timestamp(msg, sk, skb);
812 	sock_recv_drops(msg, sk, skb);
813 }
814 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
815 
sock_recvmsg_nosec(struct socket * sock,struct msghdr * msg,int flags)816 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
817 				     int flags)
818 {
819 	return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
820 }
821 
sock_recvmsg(struct socket * sock,struct msghdr * msg,int flags)822 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
823 {
824 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
825 
826 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
827 }
828 EXPORT_SYMBOL(sock_recvmsg);
829 
830 /**
831  * kernel_recvmsg - Receive a message from a socket (kernel space)
832  * @sock:       The socket to receive the message from
833  * @msg:        Received message
834  * @vec:        Input s/g array for message data
835  * @num:        Size of input s/g array
836  * @size:       Number of bytes to read
837  * @flags:      Message flags (MSG_DONTWAIT, etc...)
838  *
839  * On return the msg structure contains the scatter/gather array passed in the
840  * vec argument. The array is modified so that it consists of the unfilled
841  * portion of the original array.
842  *
843  * The returned value is the total number of bytes received, or an error.
844  */
kernel_recvmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size,int flags)845 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
846 		   struct kvec *vec, size_t num, size_t size, int flags)
847 {
848 	mm_segment_t oldfs = get_fs();
849 	int result;
850 
851 	iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
852 	set_fs(KERNEL_DS);
853 	result = sock_recvmsg(sock, msg, flags);
854 	set_fs(oldfs);
855 	return result;
856 }
857 EXPORT_SYMBOL(kernel_recvmsg);
858 
sock_sendpage(struct file * file,struct page * page,int offset,size_t size,loff_t * ppos,int more)859 static ssize_t sock_sendpage(struct file *file, struct page *page,
860 			     int offset, size_t size, loff_t *ppos, int more)
861 {
862 	struct socket *sock;
863 	int flags;
864 
865 	sock = file->private_data;
866 
867 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
868 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
869 	flags |= more;
870 
871 	return kernel_sendpage(sock, page, offset, size, flags);
872 }
873 
sock_splice_read(struct file * file,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)874 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
875 				struct pipe_inode_info *pipe, size_t len,
876 				unsigned int flags)
877 {
878 	struct socket *sock = file->private_data;
879 
880 	if (unlikely(!sock->ops->splice_read))
881 		return -EINVAL;
882 
883 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
884 }
885 
sock_read_iter(struct kiocb * iocb,struct iov_iter * to)886 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
887 {
888 	struct file *file = iocb->ki_filp;
889 	struct socket *sock = file->private_data;
890 	struct msghdr msg = {.msg_iter = *to,
891 			     .msg_iocb = iocb};
892 	ssize_t res;
893 
894 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
895 		msg.msg_flags = MSG_DONTWAIT;
896 
897 	if (iocb->ki_pos != 0)
898 		return -ESPIPE;
899 
900 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
901 		return 0;
902 
903 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
904 	*to = msg.msg_iter;
905 	return res;
906 }
907 
sock_write_iter(struct kiocb * iocb,struct iov_iter * from)908 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
909 {
910 	struct file *file = iocb->ki_filp;
911 	struct socket *sock = file->private_data;
912 	struct msghdr msg = {.msg_iter = *from,
913 			     .msg_iocb = iocb};
914 	ssize_t res;
915 
916 	if (iocb->ki_pos != 0)
917 		return -ESPIPE;
918 
919 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
920 		msg.msg_flags = MSG_DONTWAIT;
921 
922 	if (sock->type == SOCK_SEQPACKET)
923 		msg.msg_flags |= MSG_EOR;
924 
925 	res = sock_sendmsg(sock, &msg);
926 	*from = msg.msg_iter;
927 	return res;
928 }
929 
930 /*
931  * Atomic setting of ioctl hooks to avoid race
932  * with module unload.
933  */
934 
935 static DEFINE_MUTEX(br_ioctl_mutex);
936 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
937 
brioctl_set(int (* hook)(struct net *,unsigned int,void __user *))938 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
939 {
940 	mutex_lock(&br_ioctl_mutex);
941 	br_ioctl_hook = hook;
942 	mutex_unlock(&br_ioctl_mutex);
943 }
944 EXPORT_SYMBOL(brioctl_set);
945 
946 static DEFINE_MUTEX(vlan_ioctl_mutex);
947 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
948 
vlan_ioctl_set(int (* hook)(struct net *,void __user *))949 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
950 {
951 	mutex_lock(&vlan_ioctl_mutex);
952 	vlan_ioctl_hook = hook;
953 	mutex_unlock(&vlan_ioctl_mutex);
954 }
955 EXPORT_SYMBOL(vlan_ioctl_set);
956 
957 static DEFINE_MUTEX(dlci_ioctl_mutex);
958 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
959 
dlci_ioctl_set(int (* hook)(unsigned int,void __user *))960 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
961 {
962 	mutex_lock(&dlci_ioctl_mutex);
963 	dlci_ioctl_hook = hook;
964 	mutex_unlock(&dlci_ioctl_mutex);
965 }
966 EXPORT_SYMBOL(dlci_ioctl_set);
967 
sock_do_ioctl(struct net * net,struct socket * sock,unsigned int cmd,unsigned long arg)968 static long sock_do_ioctl(struct net *net, struct socket *sock,
969 				 unsigned int cmd, unsigned long arg)
970 {
971 	int err;
972 	void __user *argp = (void __user *)arg;
973 
974 	err = sock->ops->ioctl(sock, cmd, arg);
975 
976 	/*
977 	 * If this ioctl is unknown try to hand it down
978 	 * to the NIC driver.
979 	 */
980 	if (err == -ENOIOCTLCMD)
981 		err = dev_ioctl(net, cmd, argp);
982 
983 	return err;
984 }
985 
986 /*
987  *	With an ioctl, arg may well be a user mode pointer, but we don't know
988  *	what to do with it - that's up to the protocol still.
989  */
990 
get_net_ns(struct ns_common * ns)991 static struct ns_common *get_net_ns(struct ns_common *ns)
992 {
993 	return &get_net(container_of(ns, struct net, ns))->ns;
994 }
995 
sock_ioctl(struct file * file,unsigned cmd,unsigned long arg)996 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
997 {
998 	struct socket *sock;
999 	struct sock *sk;
1000 	void __user *argp = (void __user *)arg;
1001 	int pid, err;
1002 	struct net *net;
1003 
1004 	sock = file->private_data;
1005 	sk = sock->sk;
1006 	net = sock_net(sk);
1007 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1008 		err = dev_ioctl(net, cmd, argp);
1009 	} else
1010 #ifdef CONFIG_WEXT_CORE
1011 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1012 		err = dev_ioctl(net, cmd, argp);
1013 	} else
1014 #endif
1015 		switch (cmd) {
1016 		case FIOSETOWN:
1017 		case SIOCSPGRP:
1018 			err = -EFAULT;
1019 			if (get_user(pid, (int __user *)argp))
1020 				break;
1021 			err = f_setown(sock->file, pid, 1);
1022 			break;
1023 		case FIOGETOWN:
1024 		case SIOCGPGRP:
1025 			err = put_user(f_getown(sock->file),
1026 				       (int __user *)argp);
1027 			break;
1028 		case SIOCGIFBR:
1029 		case SIOCSIFBR:
1030 		case SIOCBRADDBR:
1031 		case SIOCBRDELBR:
1032 			err = -ENOPKG;
1033 			if (!br_ioctl_hook)
1034 				request_module("bridge");
1035 
1036 			mutex_lock(&br_ioctl_mutex);
1037 			if (br_ioctl_hook)
1038 				err = br_ioctl_hook(net, cmd, argp);
1039 			mutex_unlock(&br_ioctl_mutex);
1040 			break;
1041 		case SIOCGIFVLAN:
1042 		case SIOCSIFVLAN:
1043 			err = -ENOPKG;
1044 			if (!vlan_ioctl_hook)
1045 				request_module("8021q");
1046 
1047 			mutex_lock(&vlan_ioctl_mutex);
1048 			if (vlan_ioctl_hook)
1049 				err = vlan_ioctl_hook(net, argp);
1050 			mutex_unlock(&vlan_ioctl_mutex);
1051 			break;
1052 		case SIOCADDDLCI:
1053 		case SIOCDELDLCI:
1054 			err = -ENOPKG;
1055 			if (!dlci_ioctl_hook)
1056 				request_module("dlci");
1057 
1058 			mutex_lock(&dlci_ioctl_mutex);
1059 			if (dlci_ioctl_hook)
1060 				err = dlci_ioctl_hook(cmd, argp);
1061 			mutex_unlock(&dlci_ioctl_mutex);
1062 			break;
1063 		case SIOCGSKNS:
1064 			err = -EPERM;
1065 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1066 				break;
1067 
1068 			err = open_related_ns(&net->ns, get_net_ns);
1069 			break;
1070 		default:
1071 			err = sock_do_ioctl(net, sock, cmd, arg);
1072 			break;
1073 		}
1074 	return err;
1075 }
1076 
sock_create_lite(int family,int type,int protocol,struct socket ** res)1077 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1078 {
1079 	int err;
1080 	struct socket *sock = NULL;
1081 
1082 	err = security_socket_create(family, type, protocol, 1);
1083 	if (err)
1084 		goto out;
1085 
1086 	sock = sock_alloc();
1087 	if (!sock) {
1088 		err = -ENOMEM;
1089 		goto out;
1090 	}
1091 
1092 	sock->type = type;
1093 	err = security_socket_post_create(sock, family, type, protocol, 1);
1094 	if (err)
1095 		goto out_release;
1096 
1097 out:
1098 	*res = sock;
1099 	return err;
1100 out_release:
1101 	sock_release(sock);
1102 	sock = NULL;
1103 	goto out;
1104 }
1105 EXPORT_SYMBOL(sock_create_lite);
1106 
1107 /* No kernel lock held - perfect */
sock_poll(struct file * file,poll_table * wait)1108 static unsigned int sock_poll(struct file *file, poll_table *wait)
1109 {
1110 	unsigned int busy_flag = 0;
1111 	struct socket *sock;
1112 
1113 	/*
1114 	 *      We can't return errors to poll, so it's either yes or no.
1115 	 */
1116 	sock = file->private_data;
1117 
1118 	if (sk_can_busy_loop(sock->sk)) {
1119 		/* this socket can poll_ll so tell the system call */
1120 		busy_flag = POLL_BUSY_LOOP;
1121 
1122 		/* once, only if requested by syscall */
1123 		if (wait && (wait->_key & POLL_BUSY_LOOP))
1124 			sk_busy_loop(sock->sk, 1);
1125 	}
1126 
1127 	return busy_flag | sock->ops->poll(file, sock, wait);
1128 }
1129 
sock_mmap(struct file * file,struct vm_area_struct * vma)1130 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1131 {
1132 	struct socket *sock = file->private_data;
1133 
1134 	return sock->ops->mmap(file, sock, vma);
1135 }
1136 
sock_close(struct inode * inode,struct file * filp)1137 static int sock_close(struct inode *inode, struct file *filp)
1138 {
1139 	__sock_release(SOCKET_I(inode), inode);
1140 	return 0;
1141 }
1142 
1143 /*
1144  *	Update the socket async list
1145  *
1146  *	Fasync_list locking strategy.
1147  *
1148  *	1. fasync_list is modified only under process context socket lock
1149  *	   i.e. under semaphore.
1150  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1151  *	   or under socket lock
1152  */
1153 
sock_fasync(int fd,struct file * filp,int on)1154 static int sock_fasync(int fd, struct file *filp, int on)
1155 {
1156 	struct socket *sock = filp->private_data;
1157 	struct sock *sk = sock->sk;
1158 	struct socket_wq *wq;
1159 
1160 	if (sk == NULL)
1161 		return -EINVAL;
1162 
1163 	lock_sock(sk);
1164 	wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1165 	fasync_helper(fd, filp, on, &wq->fasync_list);
1166 
1167 	if (!wq->fasync_list)
1168 		sock_reset_flag(sk, SOCK_FASYNC);
1169 	else
1170 		sock_set_flag(sk, SOCK_FASYNC);
1171 
1172 	release_sock(sk);
1173 	return 0;
1174 }
1175 
1176 /* This function may be called only under rcu_lock */
1177 
sock_wake_async(struct socket_wq * wq,int how,int band)1178 int sock_wake_async(struct socket_wq *wq, int how, int band)
1179 {
1180 	if (!wq || !wq->fasync_list)
1181 		return -1;
1182 
1183 	switch (how) {
1184 	case SOCK_WAKE_WAITD:
1185 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1186 			break;
1187 		goto call_kill;
1188 	case SOCK_WAKE_SPACE:
1189 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1190 			break;
1191 		/* fall through */
1192 	case SOCK_WAKE_IO:
1193 call_kill:
1194 		kill_fasync(&wq->fasync_list, SIGIO, band);
1195 		break;
1196 	case SOCK_WAKE_URG:
1197 		kill_fasync(&wq->fasync_list, SIGURG, band);
1198 	}
1199 
1200 	return 0;
1201 }
1202 EXPORT_SYMBOL(sock_wake_async);
1203 
__sock_create(struct net * net,int family,int type,int protocol,struct socket ** res,int kern)1204 int __sock_create(struct net *net, int family, int type, int protocol,
1205 			 struct socket **res, int kern)
1206 {
1207 	int err;
1208 	struct socket *sock;
1209 	const struct net_proto_family *pf;
1210 
1211 	/*
1212 	 *      Check protocol is in range
1213 	 */
1214 	if (family < 0 || family >= NPROTO)
1215 		return -EAFNOSUPPORT;
1216 	if (type < 0 || type >= SOCK_MAX)
1217 		return -EINVAL;
1218 
1219 	/* Compatibility.
1220 
1221 	   This uglymoron is moved from INET layer to here to avoid
1222 	   deadlock in module load.
1223 	 */
1224 	if (family == PF_INET && type == SOCK_PACKET) {
1225 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1226 			     current->comm);
1227 		family = PF_PACKET;
1228 	}
1229 
1230 	err = security_socket_create(family, type, protocol, kern);
1231 	if (err)
1232 		return err;
1233 
1234 	/*
1235 	 *	Allocate the socket and allow the family to set things up. if
1236 	 *	the protocol is 0, the family is instructed to select an appropriate
1237 	 *	default.
1238 	 */
1239 	sock = sock_alloc();
1240 	if (!sock) {
1241 		net_warn_ratelimited("socket: no more sockets\n");
1242 		return -ENFILE;	/* Not exactly a match, but its the
1243 				   closest posix thing */
1244 	}
1245 
1246 	sock->type = type;
1247 
1248 #ifdef CONFIG_MODULES
1249 	/* Attempt to load a protocol module if the find failed.
1250 	 *
1251 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1252 	 * requested real, full-featured networking support upon configuration.
1253 	 * Otherwise module support will break!
1254 	 */
1255 	if (rcu_access_pointer(net_families[family]) == NULL)
1256 		request_module("net-pf-%d", family);
1257 #endif
1258 
1259 	rcu_read_lock();
1260 	pf = rcu_dereference(net_families[family]);
1261 	err = -EAFNOSUPPORT;
1262 	if (!pf)
1263 		goto out_release;
1264 
1265 	/*
1266 	 * We will call the ->create function, that possibly is in a loadable
1267 	 * module, so we have to bump that loadable module refcnt first.
1268 	 */
1269 	if (!try_module_get(pf->owner))
1270 		goto out_release;
1271 
1272 	/* Now protected by module ref count */
1273 	rcu_read_unlock();
1274 
1275 	err = pf->create(net, sock, protocol, kern);
1276 	if (err < 0)
1277 		goto out_module_put;
1278 
1279 	/*
1280 	 * Now to bump the refcnt of the [loadable] module that owns this
1281 	 * socket at sock_release time we decrement its refcnt.
1282 	 */
1283 	if (!try_module_get(sock->ops->owner))
1284 		goto out_module_busy;
1285 
1286 	/*
1287 	 * Now that we're done with the ->create function, the [loadable]
1288 	 * module can have its refcnt decremented
1289 	 */
1290 	module_put(pf->owner);
1291 	err = security_socket_post_create(sock, family, type, protocol, kern);
1292 	if (err)
1293 		goto out_sock_release;
1294 	*res = sock;
1295 
1296 	return 0;
1297 
1298 out_module_busy:
1299 	err = -EAFNOSUPPORT;
1300 out_module_put:
1301 	sock->ops = NULL;
1302 	module_put(pf->owner);
1303 out_sock_release:
1304 	sock_release(sock);
1305 	return err;
1306 
1307 out_release:
1308 	rcu_read_unlock();
1309 	goto out_sock_release;
1310 }
1311 EXPORT_SYMBOL(__sock_create);
1312 
sock_create(int family,int type,int protocol,struct socket ** res)1313 int sock_create(int family, int type, int protocol, struct socket **res)
1314 {
1315 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1316 }
1317 EXPORT_SYMBOL(sock_create);
1318 
sock_create_kern(struct net * net,int family,int type,int protocol,struct socket ** res)1319 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1320 {
1321 	return __sock_create(net, family, type, protocol, res, 1);
1322 }
1323 EXPORT_SYMBOL(sock_create_kern);
1324 
SYSCALL_DEFINE3(socket,int,family,int,type,int,protocol)1325 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1326 {
1327 	int retval;
1328 	struct socket *sock;
1329 	int flags;
1330 
1331 	/* Check the SOCK_* constants for consistency.  */
1332 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1333 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1334 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1335 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1336 
1337 	flags = type & ~SOCK_TYPE_MASK;
1338 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1339 		return -EINVAL;
1340 	type &= SOCK_TYPE_MASK;
1341 
1342 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1343 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1344 
1345 	retval = sock_create(family, type, protocol, &sock);
1346 	if (retval < 0)
1347 		goto out;
1348 
1349 	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1350 	if (retval < 0)
1351 		goto out_release;
1352 
1353 out:
1354 	/* It may be already another descriptor 8) Not kernel problem. */
1355 	return retval;
1356 
1357 out_release:
1358 	sock_release(sock);
1359 	return retval;
1360 }
1361 
1362 /*
1363  *	Create a pair of connected sockets.
1364  */
1365 
SYSCALL_DEFINE4(socketpair,int,family,int,type,int,protocol,int __user *,usockvec)1366 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1367 		int __user *, usockvec)
1368 {
1369 	struct socket *sock1, *sock2;
1370 	int fd1, fd2, err;
1371 	struct file *newfile1, *newfile2;
1372 	int flags;
1373 
1374 	flags = type & ~SOCK_TYPE_MASK;
1375 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1376 		return -EINVAL;
1377 	type &= SOCK_TYPE_MASK;
1378 
1379 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1380 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1381 
1382 	/*
1383 	 * Obtain the first socket and check if the underlying protocol
1384 	 * supports the socketpair call.
1385 	 */
1386 
1387 	err = sock_create(family, type, protocol, &sock1);
1388 	if (err < 0)
1389 		goto out;
1390 
1391 	err = sock_create(family, type, protocol, &sock2);
1392 	if (err < 0)
1393 		goto out_release_1;
1394 
1395 	err = sock1->ops->socketpair(sock1, sock2);
1396 	if (err < 0)
1397 		goto out_release_both;
1398 
1399 	fd1 = get_unused_fd_flags(flags);
1400 	if (unlikely(fd1 < 0)) {
1401 		err = fd1;
1402 		goto out_release_both;
1403 	}
1404 
1405 	fd2 = get_unused_fd_flags(flags);
1406 	if (unlikely(fd2 < 0)) {
1407 		err = fd2;
1408 		goto out_put_unused_1;
1409 	}
1410 
1411 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1412 	if (IS_ERR(newfile1)) {
1413 		err = PTR_ERR(newfile1);
1414 		goto out_put_unused_both;
1415 	}
1416 
1417 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1418 	if (IS_ERR(newfile2)) {
1419 		err = PTR_ERR(newfile2);
1420 		goto out_fput_1;
1421 	}
1422 
1423 	err = put_user(fd1, &usockvec[0]);
1424 	if (err)
1425 		goto out_fput_both;
1426 
1427 	err = put_user(fd2, &usockvec[1]);
1428 	if (err)
1429 		goto out_fput_both;
1430 
1431 	audit_fd_pair(fd1, fd2);
1432 
1433 	fd_install(fd1, newfile1);
1434 	fd_install(fd2, newfile2);
1435 	/* fd1 and fd2 may be already another descriptors.
1436 	 * Not kernel problem.
1437 	 */
1438 
1439 	return 0;
1440 
1441 out_fput_both:
1442 	fput(newfile2);
1443 	fput(newfile1);
1444 	put_unused_fd(fd2);
1445 	put_unused_fd(fd1);
1446 	goto out;
1447 
1448 out_fput_1:
1449 	fput(newfile1);
1450 	put_unused_fd(fd2);
1451 	put_unused_fd(fd1);
1452 	sock_release(sock2);
1453 	goto out;
1454 
1455 out_put_unused_both:
1456 	put_unused_fd(fd2);
1457 out_put_unused_1:
1458 	put_unused_fd(fd1);
1459 out_release_both:
1460 	sock_release(sock2);
1461 out_release_1:
1462 	sock_release(sock1);
1463 out:
1464 	return err;
1465 }
1466 
1467 /*
1468  *	Bind a name to a socket. Nothing much to do here since it's
1469  *	the protocol's responsibility to handle the local address.
1470  *
1471  *	We move the socket address to kernel space before we call
1472  *	the protocol layer (having also checked the address is ok).
1473  */
1474 
SYSCALL_DEFINE3(bind,int,fd,struct sockaddr __user *,umyaddr,int,addrlen)1475 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1476 {
1477 	struct socket *sock;
1478 	struct sockaddr_storage address;
1479 	int err, fput_needed;
1480 
1481 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1482 	if (sock) {
1483 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1484 		if (err >= 0) {
1485 			err = security_socket_bind(sock,
1486 						   (struct sockaddr *)&address,
1487 						   addrlen);
1488 			if (!err)
1489 				err = sock->ops->bind(sock,
1490 						      (struct sockaddr *)
1491 						      &address, addrlen);
1492 		}
1493 		fput_light(sock->file, fput_needed);
1494 	}
1495 	return err;
1496 }
1497 
1498 /*
1499  *	Perform a listen. Basically, we allow the protocol to do anything
1500  *	necessary for a listen, and if that works, we mark the socket as
1501  *	ready for listening.
1502  */
1503 
SYSCALL_DEFINE2(listen,int,fd,int,backlog)1504 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1505 {
1506 	struct socket *sock;
1507 	int err, fput_needed;
1508 	int somaxconn;
1509 
1510 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1511 	if (sock) {
1512 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1513 		if ((unsigned int)backlog > somaxconn)
1514 			backlog = somaxconn;
1515 
1516 		err = security_socket_listen(sock, backlog);
1517 		if (!err)
1518 			err = sock->ops->listen(sock, backlog);
1519 
1520 		fput_light(sock->file, fput_needed);
1521 	}
1522 	return err;
1523 }
1524 
1525 /*
1526  *	For accept, we attempt to create a new socket, set up the link
1527  *	with the client, wake up the client, then return the new
1528  *	connected fd. We collect the address of the connector in kernel
1529  *	space and move it to user at the very end. This is unclean because
1530  *	we open the socket then return an error.
1531  *
1532  *	1003.1g adds the ability to recvmsg() to query connection pending
1533  *	status to recvmsg. We need to add that support in a way thats
1534  *	clean when we restucture accept also.
1535  */
1536 
SYSCALL_DEFINE4(accept4,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen,int,flags)1537 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1538 		int __user *, upeer_addrlen, int, flags)
1539 {
1540 	struct socket *sock, *newsock;
1541 	struct file *newfile;
1542 	int err, len, newfd, fput_needed;
1543 	struct sockaddr_storage address;
1544 
1545 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1546 		return -EINVAL;
1547 
1548 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1549 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1550 
1551 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1552 	if (!sock)
1553 		goto out;
1554 
1555 	err = -ENFILE;
1556 	newsock = sock_alloc();
1557 	if (!newsock)
1558 		goto out_put;
1559 
1560 	newsock->type = sock->type;
1561 	newsock->ops = sock->ops;
1562 
1563 	/*
1564 	 * We don't need try_module_get here, as the listening socket (sock)
1565 	 * has the protocol module (sock->ops->owner) held.
1566 	 */
1567 	__module_get(newsock->ops->owner);
1568 
1569 	newfd = get_unused_fd_flags(flags);
1570 	if (unlikely(newfd < 0)) {
1571 		err = newfd;
1572 		sock_release(newsock);
1573 		goto out_put;
1574 	}
1575 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1576 	if (IS_ERR(newfile)) {
1577 		err = PTR_ERR(newfile);
1578 		put_unused_fd(newfd);
1579 		sock_release(newsock);
1580 		goto out_put;
1581 	}
1582 
1583 	err = security_socket_accept(sock, newsock);
1584 	if (err)
1585 		goto out_fd;
1586 
1587 	err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1588 	if (err < 0)
1589 		goto out_fd;
1590 
1591 	if (upeer_sockaddr) {
1592 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1593 					  &len, 2) < 0) {
1594 			err = -ECONNABORTED;
1595 			goto out_fd;
1596 		}
1597 		err = move_addr_to_user(&address,
1598 					len, upeer_sockaddr, upeer_addrlen);
1599 		if (err < 0)
1600 			goto out_fd;
1601 	}
1602 
1603 	/* File flags are not inherited via accept() unlike another OSes. */
1604 
1605 	fd_install(newfd, newfile);
1606 	err = newfd;
1607 
1608 out_put:
1609 	fput_light(sock->file, fput_needed);
1610 out:
1611 	return err;
1612 out_fd:
1613 	fput(newfile);
1614 	put_unused_fd(newfd);
1615 	goto out_put;
1616 }
1617 
SYSCALL_DEFINE3(accept,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen)1618 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1619 		int __user *, upeer_addrlen)
1620 {
1621 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1622 }
1623 
1624 /*
1625  *	Attempt to connect to a socket with the server address.  The address
1626  *	is in user space so we verify it is OK and move it to kernel space.
1627  *
1628  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1629  *	break bindings
1630  *
1631  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1632  *	other SEQPACKET protocols that take time to connect() as it doesn't
1633  *	include the -EINPROGRESS status for such sockets.
1634  */
1635 
SYSCALL_DEFINE3(connect,int,fd,struct sockaddr __user *,uservaddr,int,addrlen)1636 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1637 		int, addrlen)
1638 {
1639 	struct socket *sock;
1640 	struct sockaddr_storage address;
1641 	int err, fput_needed;
1642 
1643 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1644 	if (!sock)
1645 		goto out;
1646 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1647 	if (err < 0)
1648 		goto out_put;
1649 
1650 	err =
1651 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1652 	if (err)
1653 		goto out_put;
1654 
1655 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1656 				 sock->file->f_flags);
1657 out_put:
1658 	fput_light(sock->file, fput_needed);
1659 out:
1660 	return err;
1661 }
1662 
1663 /*
1664  *	Get the local address ('name') of a socket object. Move the obtained
1665  *	name to user space.
1666  */
1667 
SYSCALL_DEFINE3(getsockname,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)1668 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1669 		int __user *, usockaddr_len)
1670 {
1671 	struct socket *sock;
1672 	struct sockaddr_storage address;
1673 	int len, err, fput_needed;
1674 
1675 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1676 	if (!sock)
1677 		goto out;
1678 
1679 	err = security_socket_getsockname(sock);
1680 	if (err)
1681 		goto out_put;
1682 
1683 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1684 	if (err)
1685 		goto out_put;
1686 	err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1687 
1688 out_put:
1689 	fput_light(sock->file, fput_needed);
1690 out:
1691 	return err;
1692 }
1693 
1694 /*
1695  *	Get the remote address ('name') of a socket object. Move the obtained
1696  *	name to user space.
1697  */
1698 
SYSCALL_DEFINE3(getpeername,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)1699 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1700 		int __user *, usockaddr_len)
1701 {
1702 	struct socket *sock;
1703 	struct sockaddr_storage address;
1704 	int len, err, fput_needed;
1705 
1706 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1707 	if (sock != NULL) {
1708 		err = security_socket_getpeername(sock);
1709 		if (err) {
1710 			fput_light(sock->file, fput_needed);
1711 			return err;
1712 		}
1713 
1714 		err =
1715 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1716 				       1);
1717 		if (!err)
1718 			err = move_addr_to_user(&address, len, usockaddr,
1719 						usockaddr_len);
1720 		fput_light(sock->file, fput_needed);
1721 	}
1722 	return err;
1723 }
1724 
1725 /*
1726  *	Send a datagram to a given address. We move the address into kernel
1727  *	space and check the user space data area is readable before invoking
1728  *	the protocol.
1729  */
1730 
SYSCALL_DEFINE6(sendto,int,fd,void __user *,buff,size_t,len,unsigned int,flags,struct sockaddr __user *,addr,int,addr_len)1731 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1732 		unsigned int, flags, struct sockaddr __user *, addr,
1733 		int, addr_len)
1734 {
1735 	struct socket *sock;
1736 	struct sockaddr_storage address;
1737 	int err;
1738 	struct msghdr msg;
1739 	struct iovec iov;
1740 	int fput_needed;
1741 
1742 	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1743 	if (unlikely(err))
1744 		return err;
1745 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1746 	if (!sock)
1747 		goto out;
1748 
1749 	msg.msg_name = NULL;
1750 	msg.msg_control = NULL;
1751 	msg.msg_controllen = 0;
1752 	msg.msg_namelen = 0;
1753 	if (addr) {
1754 		err = move_addr_to_kernel(addr, addr_len, &address);
1755 		if (err < 0)
1756 			goto out_put;
1757 		msg.msg_name = (struct sockaddr *)&address;
1758 		msg.msg_namelen = addr_len;
1759 	}
1760 	if (sock->file->f_flags & O_NONBLOCK)
1761 		flags |= MSG_DONTWAIT;
1762 	msg.msg_flags = flags;
1763 	err = sock_sendmsg(sock, &msg);
1764 
1765 out_put:
1766 	fput_light(sock->file, fput_needed);
1767 out:
1768 	return err;
1769 }
1770 
1771 /*
1772  *	Send a datagram down a socket.
1773  */
1774 
SYSCALL_DEFINE4(send,int,fd,void __user *,buff,size_t,len,unsigned int,flags)1775 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1776 		unsigned int, flags)
1777 {
1778 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1779 }
1780 
1781 /*
1782  *	Receive a frame from the socket and optionally record the address of the
1783  *	sender. We verify the buffers are writable and if needed move the
1784  *	sender address from kernel to user space.
1785  */
1786 
SYSCALL_DEFINE6(recvfrom,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags,struct sockaddr __user *,addr,int __user *,addr_len)1787 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1788 		unsigned int, flags, struct sockaddr __user *, addr,
1789 		int __user *, addr_len)
1790 {
1791 	struct socket *sock;
1792 	struct iovec iov;
1793 	struct msghdr msg;
1794 	struct sockaddr_storage address;
1795 	int err, err2;
1796 	int fput_needed;
1797 
1798 	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1799 	if (unlikely(err))
1800 		return err;
1801 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1802 	if (!sock)
1803 		goto out;
1804 
1805 	msg.msg_control = NULL;
1806 	msg.msg_controllen = 0;
1807 	/* Save some cycles and don't copy the address if not needed */
1808 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1809 	/* We assume all kernel code knows the size of sockaddr_storage */
1810 	msg.msg_namelen = 0;
1811 	msg.msg_iocb = NULL;
1812 	msg.msg_flags = 0;
1813 	if (sock->file->f_flags & O_NONBLOCK)
1814 		flags |= MSG_DONTWAIT;
1815 	err = sock_recvmsg(sock, &msg, flags);
1816 
1817 	if (err >= 0 && addr != NULL) {
1818 		err2 = move_addr_to_user(&address,
1819 					 msg.msg_namelen, addr, addr_len);
1820 		if (err2 < 0)
1821 			err = err2;
1822 	}
1823 
1824 	fput_light(sock->file, fput_needed);
1825 out:
1826 	return err;
1827 }
1828 
1829 /*
1830  *	Receive a datagram from a socket.
1831  */
1832 
SYSCALL_DEFINE4(recv,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags)1833 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1834 		unsigned int, flags)
1835 {
1836 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1837 }
1838 
1839 /*
1840  *	Set a socket option. Because we don't know the option lengths we have
1841  *	to pass the user mode parameter for the protocols to sort out.
1842  */
1843 
SYSCALL_DEFINE5(setsockopt,int,fd,int,level,int,optname,char __user *,optval,int,optlen)1844 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1845 		char __user *, optval, int, optlen)
1846 {
1847 	int err, fput_needed;
1848 	struct socket *sock;
1849 
1850 	if (optlen < 0)
1851 		return -EINVAL;
1852 
1853 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1854 	if (sock != NULL) {
1855 		err = security_socket_setsockopt(sock, level, optname);
1856 		if (err)
1857 			goto out_put;
1858 
1859 		if (level == SOL_SOCKET)
1860 			err =
1861 			    sock_setsockopt(sock, level, optname, optval,
1862 					    optlen);
1863 		else
1864 			err =
1865 			    sock->ops->setsockopt(sock, level, optname, optval,
1866 						  optlen);
1867 out_put:
1868 		fput_light(sock->file, fput_needed);
1869 	}
1870 	return err;
1871 }
1872 
1873 /*
1874  *	Get a socket option. Because we don't know the option lengths we have
1875  *	to pass a user mode parameter for the protocols to sort out.
1876  */
1877 
SYSCALL_DEFINE5(getsockopt,int,fd,int,level,int,optname,char __user *,optval,int __user *,optlen)1878 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1879 		char __user *, optval, int __user *, optlen)
1880 {
1881 	int err, fput_needed;
1882 	struct socket *sock;
1883 
1884 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1885 	if (sock != NULL) {
1886 		err = security_socket_getsockopt(sock, level, optname);
1887 		if (err)
1888 			goto out_put;
1889 
1890 		if (level == SOL_SOCKET)
1891 			err =
1892 			    sock_getsockopt(sock, level, optname, optval,
1893 					    optlen);
1894 		else
1895 			err =
1896 			    sock->ops->getsockopt(sock, level, optname, optval,
1897 						  optlen);
1898 out_put:
1899 		fput_light(sock->file, fput_needed);
1900 	}
1901 	return err;
1902 }
1903 
1904 /*
1905  *	Shutdown a socket.
1906  */
1907 
SYSCALL_DEFINE2(shutdown,int,fd,int,how)1908 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1909 {
1910 	int err, fput_needed;
1911 	struct socket *sock;
1912 
1913 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1914 	if (sock != NULL) {
1915 		err = security_socket_shutdown(sock, how);
1916 		if (!err)
1917 			err = sock->ops->shutdown(sock, how);
1918 		fput_light(sock->file, fput_needed);
1919 	}
1920 	return err;
1921 }
1922 
1923 /* A couple of helpful macros for getting the address of the 32/64 bit
1924  * fields which are the same type (int / unsigned) on our platforms.
1925  */
1926 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1927 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1928 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1929 
1930 struct used_address {
1931 	struct sockaddr_storage name;
1932 	unsigned int name_len;
1933 };
1934 
copy_msghdr_from_user(struct msghdr * kmsg,struct user_msghdr __user * umsg,struct sockaddr __user ** save_addr,struct iovec ** iov)1935 static int copy_msghdr_from_user(struct msghdr *kmsg,
1936 				 struct user_msghdr __user *umsg,
1937 				 struct sockaddr __user **save_addr,
1938 				 struct iovec **iov)
1939 {
1940 	struct user_msghdr msg;
1941 	ssize_t err;
1942 
1943 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
1944 		return -EFAULT;
1945 
1946 	kmsg->msg_control = (void __force *)msg.msg_control;
1947 	kmsg->msg_controllen = msg.msg_controllen;
1948 	kmsg->msg_flags = msg.msg_flags;
1949 
1950 	kmsg->msg_namelen = msg.msg_namelen;
1951 	if (!msg.msg_name)
1952 		kmsg->msg_namelen = 0;
1953 
1954 	if (kmsg->msg_namelen < 0)
1955 		return -EINVAL;
1956 
1957 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1958 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1959 
1960 	if (save_addr)
1961 		*save_addr = msg.msg_name;
1962 
1963 	if (msg.msg_name && kmsg->msg_namelen) {
1964 		if (!save_addr) {
1965 			err = move_addr_to_kernel(msg.msg_name,
1966 						  kmsg->msg_namelen,
1967 						  kmsg->msg_name);
1968 			if (err < 0)
1969 				return err;
1970 		}
1971 	} else {
1972 		kmsg->msg_name = NULL;
1973 		kmsg->msg_namelen = 0;
1974 	}
1975 
1976 	if (msg.msg_iovlen > UIO_MAXIOV)
1977 		return -EMSGSIZE;
1978 
1979 	kmsg->msg_iocb = NULL;
1980 
1981 	return import_iovec(save_addr ? READ : WRITE,
1982 			    msg.msg_iov, msg.msg_iovlen,
1983 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
1984 }
1985 
___sys_sendmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)1986 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1987 			 struct msghdr *msg_sys, unsigned int flags,
1988 			 struct used_address *used_address,
1989 			 unsigned int allowed_msghdr_flags)
1990 {
1991 	struct compat_msghdr __user *msg_compat =
1992 	    (struct compat_msghdr __user *)msg;
1993 	struct sockaddr_storage address;
1994 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1995 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1996 				__aligned(sizeof(__kernel_size_t));
1997 	/* 20 is size of ipv6_pktinfo */
1998 	unsigned char *ctl_buf = ctl;
1999 	int ctl_len;
2000 	ssize_t err;
2001 
2002 	msg_sys->msg_name = &address;
2003 
2004 	if (MSG_CMSG_COMPAT & flags)
2005 		err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
2006 	else
2007 		err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
2008 	if (err < 0)
2009 		return err;
2010 
2011 	err = -ENOBUFS;
2012 
2013 	if (msg_sys->msg_controllen > INT_MAX)
2014 		goto out_freeiov;
2015 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2016 	ctl_len = msg_sys->msg_controllen;
2017 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2018 		err =
2019 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2020 						     sizeof(ctl));
2021 		if (err)
2022 			goto out_freeiov;
2023 		ctl_buf = msg_sys->msg_control;
2024 		ctl_len = msg_sys->msg_controllen;
2025 	} else if (ctl_len) {
2026 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2027 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2028 		if (ctl_len > sizeof(ctl)) {
2029 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2030 			if (ctl_buf == NULL)
2031 				goto out_freeiov;
2032 		}
2033 		err = -EFAULT;
2034 		/*
2035 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2036 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2037 		 * checking falls down on this.
2038 		 */
2039 		if (copy_from_user(ctl_buf,
2040 				   (void __user __force *)msg_sys->msg_control,
2041 				   ctl_len))
2042 			goto out_freectl;
2043 		msg_sys->msg_control = ctl_buf;
2044 	}
2045 	msg_sys->msg_flags = flags;
2046 
2047 	if (sock->file->f_flags & O_NONBLOCK)
2048 		msg_sys->msg_flags |= MSG_DONTWAIT;
2049 	/*
2050 	 * If this is sendmmsg() and current destination address is same as
2051 	 * previously succeeded address, omit asking LSM's decision.
2052 	 * used_address->name_len is initialized to UINT_MAX so that the first
2053 	 * destination address never matches.
2054 	 */
2055 	if (used_address && msg_sys->msg_name &&
2056 	    used_address->name_len == msg_sys->msg_namelen &&
2057 	    !memcmp(&used_address->name, msg_sys->msg_name,
2058 		    used_address->name_len)) {
2059 		err = sock_sendmsg_nosec(sock, msg_sys);
2060 		goto out_freectl;
2061 	}
2062 	err = sock_sendmsg(sock, msg_sys);
2063 	/*
2064 	 * If this is sendmmsg() and sending to current destination address was
2065 	 * successful, remember it.
2066 	 */
2067 	if (used_address && err >= 0) {
2068 		used_address->name_len = msg_sys->msg_namelen;
2069 		if (msg_sys->msg_name)
2070 			memcpy(&used_address->name, msg_sys->msg_name,
2071 			       used_address->name_len);
2072 	}
2073 
2074 out_freectl:
2075 	if (ctl_buf != ctl)
2076 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2077 out_freeiov:
2078 	kfree(iov);
2079 	return err;
2080 }
2081 
2082 /*
2083  *	BSD sendmsg interface
2084  */
2085 
__sys_sendmsg(int fd,struct user_msghdr __user * msg,unsigned flags)2086 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2087 {
2088 	int fput_needed, err;
2089 	struct msghdr msg_sys;
2090 	struct socket *sock;
2091 
2092 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2093 	if (!sock)
2094 		goto out;
2095 
2096 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2097 
2098 	fput_light(sock->file, fput_needed);
2099 out:
2100 	return err;
2101 }
2102 
SYSCALL_DEFINE3(sendmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2103 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2104 {
2105 	if (flags & MSG_CMSG_COMPAT)
2106 		return -EINVAL;
2107 	return __sys_sendmsg(fd, msg, flags);
2108 }
2109 
2110 /*
2111  *	Linux sendmmsg interface
2112  */
2113 
__sys_sendmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags)2114 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2115 		   unsigned int flags)
2116 {
2117 	int fput_needed, err, datagrams;
2118 	struct socket *sock;
2119 	struct mmsghdr __user *entry;
2120 	struct compat_mmsghdr __user *compat_entry;
2121 	struct msghdr msg_sys;
2122 	struct used_address used_address;
2123 	unsigned int oflags = flags;
2124 
2125 	if (vlen > UIO_MAXIOV)
2126 		vlen = UIO_MAXIOV;
2127 
2128 	datagrams = 0;
2129 
2130 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2131 	if (!sock)
2132 		return err;
2133 
2134 	used_address.name_len = UINT_MAX;
2135 	entry = mmsg;
2136 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2137 	err = 0;
2138 	flags |= MSG_BATCH;
2139 
2140 	while (datagrams < vlen) {
2141 		if (datagrams == vlen - 1)
2142 			flags = oflags;
2143 
2144 		if (MSG_CMSG_COMPAT & flags) {
2145 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2146 					     &msg_sys, flags, &used_address, MSG_EOR);
2147 			if (err < 0)
2148 				break;
2149 			err = __put_user(err, &compat_entry->msg_len);
2150 			++compat_entry;
2151 		} else {
2152 			err = ___sys_sendmsg(sock,
2153 					     (struct user_msghdr __user *)entry,
2154 					     &msg_sys, flags, &used_address, MSG_EOR);
2155 			if (err < 0)
2156 				break;
2157 			err = put_user(err, &entry->msg_len);
2158 			++entry;
2159 		}
2160 
2161 		if (err)
2162 			break;
2163 		++datagrams;
2164 		if (msg_data_left(&msg_sys))
2165 			break;
2166 		cond_resched();
2167 	}
2168 
2169 	fput_light(sock->file, fput_needed);
2170 
2171 	/* We only return an error if no datagrams were able to be sent */
2172 	if (datagrams != 0)
2173 		return datagrams;
2174 
2175 	return err;
2176 }
2177 
SYSCALL_DEFINE4(sendmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags)2178 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2179 		unsigned int, vlen, unsigned int, flags)
2180 {
2181 	if (flags & MSG_CMSG_COMPAT)
2182 		return -EINVAL;
2183 	return __sys_sendmmsg(fd, mmsg, vlen, flags);
2184 }
2185 
___sys_recvmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,int nosec)2186 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2187 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2188 {
2189 	struct compat_msghdr __user *msg_compat =
2190 	    (struct compat_msghdr __user *)msg;
2191 	struct iovec iovstack[UIO_FASTIOV];
2192 	struct iovec *iov = iovstack;
2193 	unsigned long cmsg_ptr;
2194 	int len;
2195 	ssize_t err;
2196 
2197 	/* kernel mode address */
2198 	struct sockaddr_storage addr;
2199 
2200 	/* user mode address pointers */
2201 	struct sockaddr __user *uaddr;
2202 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2203 
2204 	msg_sys->msg_name = &addr;
2205 
2206 	if (MSG_CMSG_COMPAT & flags)
2207 		err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2208 	else
2209 		err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2210 	if (err < 0)
2211 		return err;
2212 
2213 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2214 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2215 
2216 	/* We assume all kernel code knows the size of sockaddr_storage */
2217 	msg_sys->msg_namelen = 0;
2218 
2219 	if (sock->file->f_flags & O_NONBLOCK)
2220 		flags |= MSG_DONTWAIT;
2221 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2222 	if (err < 0)
2223 		goto out_freeiov;
2224 	len = err;
2225 
2226 	if (uaddr != NULL) {
2227 		err = move_addr_to_user(&addr,
2228 					msg_sys->msg_namelen, uaddr,
2229 					uaddr_len);
2230 		if (err < 0)
2231 			goto out_freeiov;
2232 	}
2233 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2234 			 COMPAT_FLAGS(msg));
2235 	if (err)
2236 		goto out_freeiov;
2237 	if (MSG_CMSG_COMPAT & flags)
2238 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2239 				 &msg_compat->msg_controllen);
2240 	else
2241 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2242 				 &msg->msg_controllen);
2243 	if (err)
2244 		goto out_freeiov;
2245 	err = len;
2246 
2247 out_freeiov:
2248 	kfree(iov);
2249 	return err;
2250 }
2251 
2252 /*
2253  *	BSD recvmsg interface
2254  */
2255 
__sys_recvmsg(int fd,struct user_msghdr __user * msg,unsigned flags)2256 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2257 {
2258 	int fput_needed, err;
2259 	struct msghdr msg_sys;
2260 	struct socket *sock;
2261 
2262 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2263 	if (!sock)
2264 		goto out;
2265 
2266 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2267 
2268 	fput_light(sock->file, fput_needed);
2269 out:
2270 	return err;
2271 }
2272 
SYSCALL_DEFINE3(recvmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2273 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2274 		unsigned int, flags)
2275 {
2276 	if (flags & MSG_CMSG_COMPAT)
2277 		return -EINVAL;
2278 	return __sys_recvmsg(fd, msg, flags);
2279 }
2280 
2281 /*
2282  *     Linux recvmmsg interface
2283  */
2284 
__sys_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct timespec * timeout)2285 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2286 		   unsigned int flags, struct timespec *timeout)
2287 {
2288 	int fput_needed, err, datagrams;
2289 	struct socket *sock;
2290 	struct mmsghdr __user *entry;
2291 	struct compat_mmsghdr __user *compat_entry;
2292 	struct msghdr msg_sys;
2293 	struct timespec64 end_time;
2294 	struct timespec64 timeout64;
2295 
2296 	if (timeout &&
2297 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2298 				    timeout->tv_nsec))
2299 		return -EINVAL;
2300 
2301 	datagrams = 0;
2302 
2303 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2304 	if (!sock)
2305 		return err;
2306 
2307 	err = sock_error(sock->sk);
2308 	if (err) {
2309 		datagrams = err;
2310 		goto out_put;
2311 	}
2312 
2313 	entry = mmsg;
2314 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2315 
2316 	while (datagrams < vlen) {
2317 		/*
2318 		 * No need to ask LSM for more than the first datagram.
2319 		 */
2320 		if (MSG_CMSG_COMPAT & flags) {
2321 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2322 					     &msg_sys, flags & ~MSG_WAITFORONE,
2323 					     datagrams);
2324 			if (err < 0)
2325 				break;
2326 			err = __put_user(err, &compat_entry->msg_len);
2327 			++compat_entry;
2328 		} else {
2329 			err = ___sys_recvmsg(sock,
2330 					     (struct user_msghdr __user *)entry,
2331 					     &msg_sys, flags & ~MSG_WAITFORONE,
2332 					     datagrams);
2333 			if (err < 0)
2334 				break;
2335 			err = put_user(err, &entry->msg_len);
2336 			++entry;
2337 		}
2338 
2339 		if (err)
2340 			break;
2341 		++datagrams;
2342 
2343 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2344 		if (flags & MSG_WAITFORONE)
2345 			flags |= MSG_DONTWAIT;
2346 
2347 		if (timeout) {
2348 			ktime_get_ts64(&timeout64);
2349 			*timeout = timespec64_to_timespec(
2350 					timespec64_sub(end_time, timeout64));
2351 			if (timeout->tv_sec < 0) {
2352 				timeout->tv_sec = timeout->tv_nsec = 0;
2353 				break;
2354 			}
2355 
2356 			/* Timeout, return less than vlen datagrams */
2357 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2358 				break;
2359 		}
2360 
2361 		/* Out of band data, return right away */
2362 		if (msg_sys.msg_flags & MSG_OOB)
2363 			break;
2364 		cond_resched();
2365 	}
2366 
2367 	if (err == 0)
2368 		goto out_put;
2369 
2370 	if (datagrams == 0) {
2371 		datagrams = err;
2372 		goto out_put;
2373 	}
2374 
2375 	/*
2376 	 * We may return less entries than requested (vlen) if the
2377 	 * sock is non block and there aren't enough datagrams...
2378 	 */
2379 	if (err != -EAGAIN) {
2380 		/*
2381 		 * ... or  if recvmsg returns an error after we
2382 		 * received some datagrams, where we record the
2383 		 * error to return on the next call or if the
2384 		 * app asks about it using getsockopt(SO_ERROR).
2385 		 */
2386 		sock->sk->sk_err = -err;
2387 	}
2388 out_put:
2389 	fput_light(sock->file, fput_needed);
2390 
2391 	return datagrams;
2392 }
2393 
SYSCALL_DEFINE5(recvmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct timespec __user *,timeout)2394 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2395 		unsigned int, vlen, unsigned int, flags,
2396 		struct timespec __user *, timeout)
2397 {
2398 	int datagrams;
2399 	struct timespec timeout_sys;
2400 
2401 	if (flags & MSG_CMSG_COMPAT)
2402 		return -EINVAL;
2403 
2404 	if (!timeout)
2405 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2406 
2407 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2408 		return -EFAULT;
2409 
2410 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2411 
2412 	if (datagrams > 0 &&
2413 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2414 		datagrams = -EFAULT;
2415 
2416 	return datagrams;
2417 }
2418 
2419 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2420 /* Argument list sizes for sys_socketcall */
2421 #define AL(x) ((x) * sizeof(unsigned long))
2422 static const unsigned char nargs[21] = {
2423 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2424 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2425 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2426 	AL(4), AL(5), AL(4)
2427 };
2428 
2429 #undef AL
2430 
2431 /*
2432  *	System call vectors.
2433  *
2434  *	Argument checking cleaned up. Saved 20% in size.
2435  *  This function doesn't need to set the kernel lock because
2436  *  it is set by the callees.
2437  */
2438 
SYSCALL_DEFINE2(socketcall,int,call,unsigned long __user *,args)2439 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2440 {
2441 	unsigned long a[AUDITSC_ARGS];
2442 	unsigned long a0, a1;
2443 	int err;
2444 	unsigned int len;
2445 
2446 	if (call < 1 || call > SYS_SENDMMSG)
2447 		return -EINVAL;
2448 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
2449 
2450 	len = nargs[call];
2451 	if (len > sizeof(a))
2452 		return -EINVAL;
2453 
2454 	/* copy_from_user should be SMP safe. */
2455 	if (copy_from_user(a, args, len))
2456 		return -EFAULT;
2457 
2458 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2459 	if (err)
2460 		return err;
2461 
2462 	a0 = a[0];
2463 	a1 = a[1];
2464 
2465 	switch (call) {
2466 	case SYS_SOCKET:
2467 		err = sys_socket(a0, a1, a[2]);
2468 		break;
2469 	case SYS_BIND:
2470 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2471 		break;
2472 	case SYS_CONNECT:
2473 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2474 		break;
2475 	case SYS_LISTEN:
2476 		err = sys_listen(a0, a1);
2477 		break;
2478 	case SYS_ACCEPT:
2479 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2480 				  (int __user *)a[2], 0);
2481 		break;
2482 	case SYS_GETSOCKNAME:
2483 		err =
2484 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2485 				    (int __user *)a[2]);
2486 		break;
2487 	case SYS_GETPEERNAME:
2488 		err =
2489 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2490 				    (int __user *)a[2]);
2491 		break;
2492 	case SYS_SOCKETPAIR:
2493 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2494 		break;
2495 	case SYS_SEND:
2496 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2497 		break;
2498 	case SYS_SENDTO:
2499 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2500 				 (struct sockaddr __user *)a[4], a[5]);
2501 		break;
2502 	case SYS_RECV:
2503 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2504 		break;
2505 	case SYS_RECVFROM:
2506 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2507 				   (struct sockaddr __user *)a[4],
2508 				   (int __user *)a[5]);
2509 		break;
2510 	case SYS_SHUTDOWN:
2511 		err = sys_shutdown(a0, a1);
2512 		break;
2513 	case SYS_SETSOCKOPT:
2514 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2515 		break;
2516 	case SYS_GETSOCKOPT:
2517 		err =
2518 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2519 				   (int __user *)a[4]);
2520 		break;
2521 	case SYS_SENDMSG:
2522 		err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2523 		break;
2524 	case SYS_SENDMMSG:
2525 		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2526 		break;
2527 	case SYS_RECVMSG:
2528 		err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2529 		break;
2530 	case SYS_RECVMMSG:
2531 		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2532 				   (struct timespec __user *)a[4]);
2533 		break;
2534 	case SYS_ACCEPT4:
2535 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2536 				  (int __user *)a[2], a[3]);
2537 		break;
2538 	default:
2539 		err = -EINVAL;
2540 		break;
2541 	}
2542 	return err;
2543 }
2544 
2545 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2546 
2547 /**
2548  *	sock_register - add a socket protocol handler
2549  *	@ops: description of protocol
2550  *
2551  *	This function is called by a protocol handler that wants to
2552  *	advertise its address family, and have it linked into the
2553  *	socket interface. The value ops->family corresponds to the
2554  *	socket system call protocol family.
2555  */
sock_register(const struct net_proto_family * ops)2556 int sock_register(const struct net_proto_family *ops)
2557 {
2558 	int err;
2559 
2560 	if (ops->family >= NPROTO) {
2561 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2562 		return -ENOBUFS;
2563 	}
2564 
2565 	spin_lock(&net_family_lock);
2566 	if (rcu_dereference_protected(net_families[ops->family],
2567 				      lockdep_is_held(&net_family_lock)))
2568 		err = -EEXIST;
2569 	else {
2570 		rcu_assign_pointer(net_families[ops->family], ops);
2571 		err = 0;
2572 	}
2573 	spin_unlock(&net_family_lock);
2574 
2575 	pr_info("NET: Registered protocol family %d\n", ops->family);
2576 	return err;
2577 }
2578 EXPORT_SYMBOL(sock_register);
2579 
2580 /**
2581  *	sock_unregister - remove a protocol handler
2582  *	@family: protocol family to remove
2583  *
2584  *	This function is called by a protocol handler that wants to
2585  *	remove its address family, and have it unlinked from the
2586  *	new socket creation.
2587  *
2588  *	If protocol handler is a module, then it can use module reference
2589  *	counts to protect against new references. If protocol handler is not
2590  *	a module then it needs to provide its own protection in
2591  *	the ops->create routine.
2592  */
sock_unregister(int family)2593 void sock_unregister(int family)
2594 {
2595 	BUG_ON(family < 0 || family >= NPROTO);
2596 
2597 	spin_lock(&net_family_lock);
2598 	RCU_INIT_POINTER(net_families[family], NULL);
2599 	spin_unlock(&net_family_lock);
2600 
2601 	synchronize_rcu();
2602 
2603 	pr_info("NET: Unregistered protocol family %d\n", family);
2604 }
2605 EXPORT_SYMBOL(sock_unregister);
2606 
sock_init(void)2607 static int __init sock_init(void)
2608 {
2609 	int err;
2610 	/*
2611 	 *      Initialize the network sysctl infrastructure.
2612 	 */
2613 	err = net_sysctl_init();
2614 	if (err)
2615 		goto out;
2616 
2617 	/*
2618 	 *      Initialize skbuff SLAB cache
2619 	 */
2620 	skb_init();
2621 
2622 	/*
2623 	 *      Initialize the protocols module.
2624 	 */
2625 
2626 	init_inodecache();
2627 
2628 	err = register_filesystem(&sock_fs_type);
2629 	if (err)
2630 		goto out_fs;
2631 	sock_mnt = kern_mount(&sock_fs_type);
2632 	if (IS_ERR(sock_mnt)) {
2633 		err = PTR_ERR(sock_mnt);
2634 		goto out_mount;
2635 	}
2636 
2637 	/* The real protocol initialization is performed in later initcalls.
2638 	 */
2639 
2640 #ifdef CONFIG_NETFILTER
2641 	err = netfilter_init();
2642 	if (err)
2643 		goto out;
2644 #endif
2645 
2646 	ptp_classifier_init();
2647 
2648 out:
2649 	return err;
2650 
2651 out_mount:
2652 	unregister_filesystem(&sock_fs_type);
2653 out_fs:
2654 	goto out;
2655 }
2656 
2657 core_initcall(sock_init);	/* early initcall */
2658 
2659 #ifdef CONFIG_PROC_FS
socket_seq_show(struct seq_file * seq)2660 void socket_seq_show(struct seq_file *seq)
2661 {
2662 	int cpu;
2663 	int counter = 0;
2664 
2665 	for_each_possible_cpu(cpu)
2666 	    counter += per_cpu(sockets_in_use, cpu);
2667 
2668 	/* It can be negative, by the way. 8) */
2669 	if (counter < 0)
2670 		counter = 0;
2671 
2672 	seq_printf(seq, "sockets: used %d\n", counter);
2673 }
2674 #endif				/* CONFIG_PROC_FS */
2675 
2676 #ifdef CONFIG_COMPAT
do_siocgstamp(struct net * net,struct socket * sock,unsigned int cmd,void __user * up)2677 static int do_siocgstamp(struct net *net, struct socket *sock,
2678 			 unsigned int cmd, void __user *up)
2679 {
2680 	mm_segment_t old_fs = get_fs();
2681 	struct timeval ktv;
2682 	int err;
2683 
2684 	set_fs(KERNEL_DS);
2685 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2686 	set_fs(old_fs);
2687 	if (!err)
2688 		err = compat_put_timeval(&ktv, up);
2689 
2690 	return err;
2691 }
2692 
do_siocgstampns(struct net * net,struct socket * sock,unsigned int cmd,void __user * up)2693 static int do_siocgstampns(struct net *net, struct socket *sock,
2694 			   unsigned int cmd, void __user *up)
2695 {
2696 	mm_segment_t old_fs = get_fs();
2697 	struct timespec kts;
2698 	int err;
2699 
2700 	set_fs(KERNEL_DS);
2701 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2702 	set_fs(old_fs);
2703 	if (!err)
2704 		err = compat_put_timespec(&kts, up);
2705 
2706 	return err;
2707 }
2708 
dev_ifname32(struct net * net,struct compat_ifreq __user * uifr32)2709 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2710 {
2711 	struct ifreq __user *uifr;
2712 	int err;
2713 
2714 	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2715 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2716 		return -EFAULT;
2717 
2718 	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2719 	if (err)
2720 		return err;
2721 
2722 	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2723 		return -EFAULT;
2724 
2725 	return 0;
2726 }
2727 
dev_ifconf(struct net * net,struct compat_ifconf __user * uifc32)2728 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2729 {
2730 	struct compat_ifconf ifc32;
2731 	struct ifconf ifc;
2732 	struct ifconf __user *uifc;
2733 	struct compat_ifreq __user *ifr32;
2734 	struct ifreq __user *ifr;
2735 	unsigned int i, j;
2736 	int err;
2737 
2738 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2739 		return -EFAULT;
2740 
2741 	memset(&ifc, 0, sizeof(ifc));
2742 	if (ifc32.ifcbuf == 0) {
2743 		ifc32.ifc_len = 0;
2744 		ifc.ifc_len = 0;
2745 		ifc.ifc_req = NULL;
2746 		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2747 	} else {
2748 		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2749 			sizeof(struct ifreq);
2750 		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2751 		ifc.ifc_len = len;
2752 		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2753 		ifr32 = compat_ptr(ifc32.ifcbuf);
2754 		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2755 			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2756 				return -EFAULT;
2757 			ifr++;
2758 			ifr32++;
2759 		}
2760 	}
2761 	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2762 		return -EFAULT;
2763 
2764 	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2765 	if (err)
2766 		return err;
2767 
2768 	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2769 		return -EFAULT;
2770 
2771 	ifr = ifc.ifc_req;
2772 	ifr32 = compat_ptr(ifc32.ifcbuf);
2773 	for (i = 0, j = 0;
2774 	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2775 	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2776 		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2777 			return -EFAULT;
2778 		ifr32++;
2779 		ifr++;
2780 	}
2781 
2782 	if (ifc32.ifcbuf == 0) {
2783 		/* Translate from 64-bit structure multiple to
2784 		 * a 32-bit one.
2785 		 */
2786 		i = ifc.ifc_len;
2787 		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2788 		ifc32.ifc_len = i;
2789 	} else {
2790 		ifc32.ifc_len = i;
2791 	}
2792 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2793 		return -EFAULT;
2794 
2795 	return 0;
2796 }
2797 
ethtool_ioctl(struct net * net,struct compat_ifreq __user * ifr32)2798 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2799 {
2800 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2801 	bool convert_in = false, convert_out = false;
2802 	size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2803 	struct ethtool_rxnfc __user *rxnfc;
2804 	struct ifreq __user *ifr;
2805 	u32 rule_cnt = 0, actual_rule_cnt;
2806 	u32 ethcmd;
2807 	u32 data;
2808 	int ret;
2809 
2810 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2811 		return -EFAULT;
2812 
2813 	compat_rxnfc = compat_ptr(data);
2814 
2815 	if (get_user(ethcmd, &compat_rxnfc->cmd))
2816 		return -EFAULT;
2817 
2818 	/* Most ethtool structures are defined without padding.
2819 	 * Unfortunately struct ethtool_rxnfc is an exception.
2820 	 */
2821 	switch (ethcmd) {
2822 	default:
2823 		break;
2824 	case ETHTOOL_GRXCLSRLALL:
2825 		/* Buffer size is variable */
2826 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2827 			return -EFAULT;
2828 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2829 			return -ENOMEM;
2830 		buf_size += rule_cnt * sizeof(u32);
2831 		/* fall through */
2832 	case ETHTOOL_GRXRINGS:
2833 	case ETHTOOL_GRXCLSRLCNT:
2834 	case ETHTOOL_GRXCLSRULE:
2835 	case ETHTOOL_SRXCLSRLINS:
2836 		convert_out = true;
2837 		/* fall through */
2838 	case ETHTOOL_SRXCLSRLDEL:
2839 		buf_size += sizeof(struct ethtool_rxnfc);
2840 		convert_in = true;
2841 		break;
2842 	}
2843 
2844 	ifr = compat_alloc_user_space(buf_size);
2845 	rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2846 
2847 	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2848 		return -EFAULT;
2849 
2850 	if (put_user(convert_in ? rxnfc : compat_ptr(data),
2851 		     &ifr->ifr_ifru.ifru_data))
2852 		return -EFAULT;
2853 
2854 	if (convert_in) {
2855 		/* We expect there to be holes between fs.m_ext and
2856 		 * fs.ring_cookie and at the end of fs, but nowhere else.
2857 		 */
2858 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2859 			     sizeof(compat_rxnfc->fs.m_ext) !=
2860 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2861 			     sizeof(rxnfc->fs.m_ext));
2862 		BUILD_BUG_ON(
2863 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2864 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2865 			offsetof(struct ethtool_rxnfc, fs.location) -
2866 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2867 
2868 		if (copy_in_user(rxnfc, compat_rxnfc,
2869 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2870 				 (void __user *)rxnfc) ||
2871 		    copy_in_user(&rxnfc->fs.ring_cookie,
2872 				 &compat_rxnfc->fs.ring_cookie,
2873 				 (void __user *)(&rxnfc->fs.location + 1) -
2874 				 (void __user *)&rxnfc->fs.ring_cookie))
2875 			return -EFAULT;
2876 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2877 			if (put_user(rule_cnt, &rxnfc->rule_cnt))
2878 				return -EFAULT;
2879 		} else if (copy_in_user(&rxnfc->rule_cnt,
2880 					&compat_rxnfc->rule_cnt,
2881 					sizeof(rxnfc->rule_cnt)))
2882 			return -EFAULT;
2883 	}
2884 
2885 	ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2886 	if (ret)
2887 		return ret;
2888 
2889 	if (convert_out) {
2890 		if (copy_in_user(compat_rxnfc, rxnfc,
2891 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2892 				 (const void __user *)rxnfc) ||
2893 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2894 				 &rxnfc->fs.ring_cookie,
2895 				 (const void __user *)(&rxnfc->fs.location + 1) -
2896 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2897 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2898 				 sizeof(rxnfc->rule_cnt)))
2899 			return -EFAULT;
2900 
2901 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2902 			/* As an optimisation, we only copy the actual
2903 			 * number of rules that the underlying
2904 			 * function returned.  Since Mallory might
2905 			 * change the rule count in user memory, we
2906 			 * check that it is less than the rule count
2907 			 * originally given (as the user buffer size),
2908 			 * which has been range-checked.
2909 			 */
2910 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2911 				return -EFAULT;
2912 			if (actual_rule_cnt < rule_cnt)
2913 				rule_cnt = actual_rule_cnt;
2914 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2915 					 &rxnfc->rule_locs[0],
2916 					 rule_cnt * sizeof(u32)))
2917 				return -EFAULT;
2918 		}
2919 	}
2920 
2921 	return 0;
2922 }
2923 
compat_siocwandev(struct net * net,struct compat_ifreq __user * uifr32)2924 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2925 {
2926 	void __user *uptr;
2927 	compat_uptr_t uptr32;
2928 	struct ifreq __user *uifr;
2929 
2930 	uifr = compat_alloc_user_space(sizeof(*uifr));
2931 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2932 		return -EFAULT;
2933 
2934 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2935 		return -EFAULT;
2936 
2937 	uptr = compat_ptr(uptr32);
2938 
2939 	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2940 		return -EFAULT;
2941 
2942 	return dev_ioctl(net, SIOCWANDEV, uifr);
2943 }
2944 
bond_ioctl(struct net * net,unsigned int cmd,struct compat_ifreq __user * ifr32)2945 static int bond_ioctl(struct net *net, unsigned int cmd,
2946 			 struct compat_ifreq __user *ifr32)
2947 {
2948 	struct ifreq kifr;
2949 	mm_segment_t old_fs;
2950 	int err;
2951 
2952 	switch (cmd) {
2953 	case SIOCBONDENSLAVE:
2954 	case SIOCBONDRELEASE:
2955 	case SIOCBONDSETHWADDR:
2956 	case SIOCBONDCHANGEACTIVE:
2957 		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2958 			return -EFAULT;
2959 
2960 		old_fs = get_fs();
2961 		set_fs(KERNEL_DS);
2962 		err = dev_ioctl(net, cmd,
2963 				(struct ifreq __user __force *) &kifr);
2964 		set_fs(old_fs);
2965 
2966 		return err;
2967 	default:
2968 		return -ENOIOCTLCMD;
2969 	}
2970 }
2971 
2972 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
compat_ifr_data_ioctl(struct net * net,unsigned int cmd,struct compat_ifreq __user * u_ifreq32)2973 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2974 				 struct compat_ifreq __user *u_ifreq32)
2975 {
2976 	struct ifreq __user *u_ifreq64;
2977 	char tmp_buf[IFNAMSIZ];
2978 	void __user *data64;
2979 	u32 data32;
2980 
2981 	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2982 			   IFNAMSIZ))
2983 		return -EFAULT;
2984 	if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2985 		return -EFAULT;
2986 	data64 = compat_ptr(data32);
2987 
2988 	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2989 
2990 	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2991 			 IFNAMSIZ))
2992 		return -EFAULT;
2993 	if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2994 		return -EFAULT;
2995 
2996 	return dev_ioctl(net, cmd, u_ifreq64);
2997 }
2998 
dev_ifsioc(struct net * net,struct socket * sock,unsigned int cmd,struct compat_ifreq __user * uifr32)2999 static int dev_ifsioc(struct net *net, struct socket *sock,
3000 			 unsigned int cmd, struct compat_ifreq __user *uifr32)
3001 {
3002 	struct ifreq __user *uifr;
3003 	int err;
3004 
3005 	uifr = compat_alloc_user_space(sizeof(*uifr));
3006 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3007 		return -EFAULT;
3008 
3009 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3010 
3011 	if (!err) {
3012 		switch (cmd) {
3013 		case SIOCGIFFLAGS:
3014 		case SIOCGIFMETRIC:
3015 		case SIOCGIFMTU:
3016 		case SIOCGIFMEM:
3017 		case SIOCGIFHWADDR:
3018 		case SIOCGIFINDEX:
3019 		case SIOCGIFADDR:
3020 		case SIOCGIFBRDADDR:
3021 		case SIOCGIFDSTADDR:
3022 		case SIOCGIFNETMASK:
3023 		case SIOCGIFPFLAGS:
3024 		case SIOCGIFTXQLEN:
3025 		case SIOCGMIIPHY:
3026 		case SIOCGMIIREG:
3027 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3028 				err = -EFAULT;
3029 			break;
3030 		}
3031 	}
3032 	return err;
3033 }
3034 
compat_sioc_ifmap(struct net * net,unsigned int cmd,struct compat_ifreq __user * uifr32)3035 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3036 			struct compat_ifreq __user *uifr32)
3037 {
3038 	struct ifreq ifr;
3039 	struct compat_ifmap __user *uifmap32;
3040 	mm_segment_t old_fs;
3041 	int err;
3042 
3043 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3044 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3045 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3046 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3047 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3048 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3049 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3050 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3051 	if (err)
3052 		return -EFAULT;
3053 
3054 	old_fs = get_fs();
3055 	set_fs(KERNEL_DS);
3056 	err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
3057 	set_fs(old_fs);
3058 
3059 	if (cmd == SIOCGIFMAP && !err) {
3060 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3061 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3062 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3063 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3064 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3065 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3066 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3067 		if (err)
3068 			err = -EFAULT;
3069 	}
3070 	return err;
3071 }
3072 
3073 struct rtentry32 {
3074 	u32		rt_pad1;
3075 	struct sockaddr rt_dst;         /* target address               */
3076 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3077 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
3078 	unsigned short	rt_flags;
3079 	short		rt_pad2;
3080 	u32		rt_pad3;
3081 	unsigned char	rt_tos;
3082 	unsigned char	rt_class;
3083 	short		rt_pad4;
3084 	short		rt_metric;      /* +1 for binary compatibility! */
3085 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3086 	u32		rt_mtu;         /* per route MTU/Window         */
3087 	u32		rt_window;      /* Window clamping              */
3088 	unsigned short  rt_irtt;        /* Initial RTT                  */
3089 };
3090 
3091 struct in6_rtmsg32 {
3092 	struct in6_addr		rtmsg_dst;
3093 	struct in6_addr		rtmsg_src;
3094 	struct in6_addr		rtmsg_gateway;
3095 	u32			rtmsg_type;
3096 	u16			rtmsg_dst_len;
3097 	u16			rtmsg_src_len;
3098 	u32			rtmsg_metric;
3099 	u32			rtmsg_info;
3100 	u32			rtmsg_flags;
3101 	s32			rtmsg_ifindex;
3102 };
3103 
routing_ioctl(struct net * net,struct socket * sock,unsigned int cmd,void __user * argp)3104 static int routing_ioctl(struct net *net, struct socket *sock,
3105 			 unsigned int cmd, void __user *argp)
3106 {
3107 	int ret;
3108 	void *r = NULL;
3109 	struct in6_rtmsg r6;
3110 	struct rtentry r4;
3111 	char devname[16];
3112 	u32 rtdev;
3113 	mm_segment_t old_fs = get_fs();
3114 
3115 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3116 		struct in6_rtmsg32 __user *ur6 = argp;
3117 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3118 			3 * sizeof(struct in6_addr));
3119 		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3120 		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3121 		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3122 		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3123 		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3124 		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3125 		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3126 
3127 		r = (void *) &r6;
3128 	} else { /* ipv4 */
3129 		struct rtentry32 __user *ur4 = argp;
3130 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3131 					3 * sizeof(struct sockaddr));
3132 		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3133 		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3134 		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3135 		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3136 		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3137 		ret |= get_user(rtdev, &(ur4->rt_dev));
3138 		if (rtdev) {
3139 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3140 			r4.rt_dev = (char __user __force *)devname;
3141 			devname[15] = 0;
3142 		} else
3143 			r4.rt_dev = NULL;
3144 
3145 		r = (void *) &r4;
3146 	}
3147 
3148 	if (ret) {
3149 		ret = -EFAULT;
3150 		goto out;
3151 	}
3152 
3153 	set_fs(KERNEL_DS);
3154 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3155 	set_fs(old_fs);
3156 
3157 out:
3158 	return ret;
3159 }
3160 
3161 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3162  * for some operations; this forces use of the newer bridge-utils that
3163  * use compatible ioctls
3164  */
old_bridge_ioctl(compat_ulong_t __user * argp)3165 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3166 {
3167 	compat_ulong_t tmp;
3168 
3169 	if (get_user(tmp, argp))
3170 		return -EFAULT;
3171 	if (tmp == BRCTL_GET_VERSION)
3172 		return BRCTL_VERSION + 1;
3173 	return -EINVAL;
3174 }
3175 
compat_sock_ioctl_trans(struct file * file,struct socket * sock,unsigned int cmd,unsigned long arg)3176 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3177 			 unsigned int cmd, unsigned long arg)
3178 {
3179 	void __user *argp = compat_ptr(arg);
3180 	struct sock *sk = sock->sk;
3181 	struct net *net = sock_net(sk);
3182 
3183 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3184 		return compat_ifr_data_ioctl(net, cmd, argp);
3185 
3186 	switch (cmd) {
3187 	case SIOCSIFBR:
3188 	case SIOCGIFBR:
3189 		return old_bridge_ioctl(argp);
3190 	case SIOCGIFNAME:
3191 		return dev_ifname32(net, argp);
3192 	case SIOCGIFCONF:
3193 		return dev_ifconf(net, argp);
3194 	case SIOCETHTOOL:
3195 		return ethtool_ioctl(net, argp);
3196 	case SIOCWANDEV:
3197 		return compat_siocwandev(net, argp);
3198 	case SIOCGIFMAP:
3199 	case SIOCSIFMAP:
3200 		return compat_sioc_ifmap(net, cmd, argp);
3201 	case SIOCBONDENSLAVE:
3202 	case SIOCBONDRELEASE:
3203 	case SIOCBONDSETHWADDR:
3204 	case SIOCBONDCHANGEACTIVE:
3205 		return bond_ioctl(net, cmd, argp);
3206 	case SIOCADDRT:
3207 	case SIOCDELRT:
3208 		return routing_ioctl(net, sock, cmd, argp);
3209 	case SIOCGSTAMP:
3210 		return do_siocgstamp(net, sock, cmd, argp);
3211 	case SIOCGSTAMPNS:
3212 		return do_siocgstampns(net, sock, cmd, argp);
3213 	case SIOCBONDSLAVEINFOQUERY:
3214 	case SIOCBONDINFOQUERY:
3215 	case SIOCSHWTSTAMP:
3216 	case SIOCGHWTSTAMP:
3217 		return compat_ifr_data_ioctl(net, cmd, argp);
3218 
3219 	case FIOSETOWN:
3220 	case SIOCSPGRP:
3221 	case FIOGETOWN:
3222 	case SIOCGPGRP:
3223 	case SIOCBRADDBR:
3224 	case SIOCBRDELBR:
3225 	case SIOCGIFVLAN:
3226 	case SIOCSIFVLAN:
3227 	case SIOCADDDLCI:
3228 	case SIOCDELDLCI:
3229 	case SIOCGSKNS:
3230 		return sock_ioctl(file, cmd, arg);
3231 
3232 	case SIOCGIFFLAGS:
3233 	case SIOCSIFFLAGS:
3234 	case SIOCGIFMETRIC:
3235 	case SIOCSIFMETRIC:
3236 	case SIOCGIFMTU:
3237 	case SIOCSIFMTU:
3238 	case SIOCGIFMEM:
3239 	case SIOCSIFMEM:
3240 	case SIOCGIFHWADDR:
3241 	case SIOCSIFHWADDR:
3242 	case SIOCADDMULTI:
3243 	case SIOCDELMULTI:
3244 	case SIOCGIFINDEX:
3245 	case SIOCGIFADDR:
3246 	case SIOCSIFADDR:
3247 	case SIOCSIFHWBROADCAST:
3248 	case SIOCDIFADDR:
3249 	case SIOCGIFBRDADDR:
3250 	case SIOCSIFBRDADDR:
3251 	case SIOCGIFDSTADDR:
3252 	case SIOCSIFDSTADDR:
3253 	case SIOCGIFNETMASK:
3254 	case SIOCSIFNETMASK:
3255 	case SIOCSIFPFLAGS:
3256 	case SIOCGIFPFLAGS:
3257 	case SIOCGIFTXQLEN:
3258 	case SIOCSIFTXQLEN:
3259 	case SIOCBRADDIF:
3260 	case SIOCBRDELIF:
3261 	case SIOCSIFNAME:
3262 	case SIOCGMIIPHY:
3263 	case SIOCGMIIREG:
3264 	case SIOCSMIIREG:
3265 		return dev_ifsioc(net, sock, cmd, argp);
3266 
3267 	case SIOCSARP:
3268 	case SIOCGARP:
3269 	case SIOCDARP:
3270 	case SIOCOUTQNSD:
3271 	case SIOCATMARK:
3272 		return sock_do_ioctl(net, sock, cmd, arg);
3273 	}
3274 
3275 	return -ENOIOCTLCMD;
3276 }
3277 
compat_sock_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3278 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3279 			      unsigned long arg)
3280 {
3281 	struct socket *sock = file->private_data;
3282 	int ret = -ENOIOCTLCMD;
3283 	struct sock *sk;
3284 	struct net *net;
3285 
3286 	sk = sock->sk;
3287 	net = sock_net(sk);
3288 
3289 	if (sock->ops->compat_ioctl)
3290 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3291 
3292 	if (ret == -ENOIOCTLCMD &&
3293 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3294 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3295 
3296 	if (ret == -ENOIOCTLCMD)
3297 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3298 
3299 	return ret;
3300 }
3301 #endif
3302 
kernel_bind(struct socket * sock,struct sockaddr * addr,int addrlen)3303 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3304 {
3305 	return sock->ops->bind(sock, addr, addrlen);
3306 }
3307 EXPORT_SYMBOL(kernel_bind);
3308 
kernel_listen(struct socket * sock,int backlog)3309 int kernel_listen(struct socket *sock, int backlog)
3310 {
3311 	return sock->ops->listen(sock, backlog);
3312 }
3313 EXPORT_SYMBOL(kernel_listen);
3314 
kernel_accept(struct socket * sock,struct socket ** newsock,int flags)3315 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3316 {
3317 	struct sock *sk = sock->sk;
3318 	int err;
3319 
3320 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3321 			       newsock);
3322 	if (err < 0)
3323 		goto done;
3324 
3325 	err = sock->ops->accept(sock, *newsock, flags, true);
3326 	if (err < 0) {
3327 		sock_release(*newsock);
3328 		*newsock = NULL;
3329 		goto done;
3330 	}
3331 
3332 	(*newsock)->ops = sock->ops;
3333 	__module_get((*newsock)->ops->owner);
3334 
3335 done:
3336 	return err;
3337 }
3338 EXPORT_SYMBOL(kernel_accept);
3339 
kernel_connect(struct socket * sock,struct sockaddr * addr,int addrlen,int flags)3340 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3341 		   int flags)
3342 {
3343 	return sock->ops->connect(sock, addr, addrlen, flags);
3344 }
3345 EXPORT_SYMBOL(kernel_connect);
3346 
kernel_getsockname(struct socket * sock,struct sockaddr * addr,int * addrlen)3347 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3348 			 int *addrlen)
3349 {
3350 	return sock->ops->getname(sock, addr, addrlen, 0);
3351 }
3352 EXPORT_SYMBOL(kernel_getsockname);
3353 
kernel_getpeername(struct socket * sock,struct sockaddr * addr,int * addrlen)3354 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3355 			 int *addrlen)
3356 {
3357 	return sock->ops->getname(sock, addr, addrlen, 1);
3358 }
3359 EXPORT_SYMBOL(kernel_getpeername);
3360 
kernel_getsockopt(struct socket * sock,int level,int optname,char * optval,int * optlen)3361 int kernel_getsockopt(struct socket *sock, int level, int optname,
3362 			char *optval, int *optlen)
3363 {
3364 	mm_segment_t oldfs = get_fs();
3365 	char __user *uoptval;
3366 	int __user *uoptlen;
3367 	int err;
3368 
3369 	uoptval = (char __user __force *) optval;
3370 	uoptlen = (int __user __force *) optlen;
3371 
3372 	set_fs(KERNEL_DS);
3373 	if (level == SOL_SOCKET)
3374 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3375 	else
3376 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3377 					    uoptlen);
3378 	set_fs(oldfs);
3379 	return err;
3380 }
3381 EXPORT_SYMBOL(kernel_getsockopt);
3382 
kernel_setsockopt(struct socket * sock,int level,int optname,char * optval,unsigned int optlen)3383 int kernel_setsockopt(struct socket *sock, int level, int optname,
3384 			char *optval, unsigned int optlen)
3385 {
3386 	mm_segment_t oldfs = get_fs();
3387 	char __user *uoptval;
3388 	int err;
3389 
3390 	uoptval = (char __user __force *) optval;
3391 
3392 	set_fs(KERNEL_DS);
3393 	if (level == SOL_SOCKET)
3394 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3395 	else
3396 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3397 					    optlen);
3398 	set_fs(oldfs);
3399 	return err;
3400 }
3401 EXPORT_SYMBOL(kernel_setsockopt);
3402 
kernel_sendpage(struct socket * sock,struct page * page,int offset,size_t size,int flags)3403 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3404 		    size_t size, int flags)
3405 {
3406 	if (sock->ops->sendpage)
3407 		return sock->ops->sendpage(sock, page, offset, size, flags);
3408 
3409 	return sock_no_sendpage(sock, page, offset, size, flags);
3410 }
3411 EXPORT_SYMBOL(kernel_sendpage);
3412 
kernel_sendpage_locked(struct sock * sk,struct page * page,int offset,size_t size,int flags)3413 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3414 			   size_t size, int flags)
3415 {
3416 	struct socket *sock = sk->sk_socket;
3417 
3418 	if (sock->ops->sendpage_locked)
3419 		return sock->ops->sendpage_locked(sk, page, offset, size,
3420 						  flags);
3421 
3422 	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3423 }
3424 EXPORT_SYMBOL(kernel_sendpage_locked);
3425 
kernel_sock_ioctl(struct socket * sock,int cmd,unsigned long arg)3426 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3427 {
3428 	mm_segment_t oldfs = get_fs();
3429 	int err;
3430 
3431 	set_fs(KERNEL_DS);
3432 	err = sock->ops->ioctl(sock, cmd, arg);
3433 	set_fs(oldfs);
3434 
3435 	return err;
3436 }
3437 EXPORT_SYMBOL(kernel_sock_ioctl);
3438 
kernel_sock_shutdown(struct socket * sock,enum sock_shutdown_cmd how)3439 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3440 {
3441 	return sock->ops->shutdown(sock, how);
3442 }
3443 EXPORT_SYMBOL(kernel_sock_shutdown);
3444 
3445 /* This routine returns the IP overhead imposed by a socket i.e.
3446  * the length of the underlying IP header, depending on whether
3447  * this is an IPv4 or IPv6 socket and the length from IP options turned
3448  * on at the socket. Assumes that the caller has a lock on the socket.
3449  */
kernel_sock_ip_overhead(struct sock * sk)3450 u32 kernel_sock_ip_overhead(struct sock *sk)
3451 {
3452 	struct inet_sock *inet;
3453 	struct ip_options_rcu *opt;
3454 	u32 overhead = 0;
3455 #if IS_ENABLED(CONFIG_IPV6)
3456 	struct ipv6_pinfo *np;
3457 	struct ipv6_txoptions *optv6 = NULL;
3458 #endif /* IS_ENABLED(CONFIG_IPV6) */
3459 
3460 	if (!sk)
3461 		return overhead;
3462 
3463 	switch (sk->sk_family) {
3464 	case AF_INET:
3465 		inet = inet_sk(sk);
3466 		overhead += sizeof(struct iphdr);
3467 		opt = rcu_dereference_protected(inet->inet_opt,
3468 						sock_owned_by_user(sk));
3469 		if (opt)
3470 			overhead += opt->opt.optlen;
3471 		return overhead;
3472 #if IS_ENABLED(CONFIG_IPV6)
3473 	case AF_INET6:
3474 		np = inet6_sk(sk);
3475 		overhead += sizeof(struct ipv6hdr);
3476 		if (np)
3477 			optv6 = rcu_dereference_protected(np->opt,
3478 							  sock_owned_by_user(sk));
3479 		if (optv6)
3480 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3481 		return overhead;
3482 #endif /* IS_ENABLED(CONFIG_IPV6) */
3483 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3484 		return overhead;
3485 	}
3486 }
3487 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3488