• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * fs/kernfs/dir.c - kernfs directory implementation
3  *
4  * Copyright (c) 2001-3 Patrick Mochel
5  * Copyright (c) 2007 SUSE Linux Products GmbH
6  * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
7  *
8  * This file is released under the GPLv2.
9  */
10 
11 #include <linux/sched.h>
12 #include <linux/fs.h>
13 #include <linux/namei.h>
14 #include <linux/idr.h>
15 #include <linux/slab.h>
16 #include <linux/security.h>
17 #include <linux/hash.h>
18 
19 #include "kernfs-internal.h"
20 
21 DEFINE_MUTEX(kernfs_mutex);
22 static DEFINE_SPINLOCK(kernfs_rename_lock);	/* kn->parent and ->name */
23 static char kernfs_pr_cont_buf[PATH_MAX];	/* protected by rename_lock */
24 static DEFINE_SPINLOCK(kernfs_idr_lock);	/* root->ino_idr */
25 
26 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
27 
kernfs_active(struct kernfs_node * kn)28 static bool kernfs_active(struct kernfs_node *kn)
29 {
30 	lockdep_assert_held(&kernfs_mutex);
31 	return atomic_read(&kn->active) >= 0;
32 }
33 
kernfs_lockdep(struct kernfs_node * kn)34 static bool kernfs_lockdep(struct kernfs_node *kn)
35 {
36 #ifdef CONFIG_DEBUG_LOCK_ALLOC
37 	return kn->flags & KERNFS_LOCKDEP;
38 #else
39 	return false;
40 #endif
41 }
42 
kernfs_name_locked(struct kernfs_node * kn,char * buf,size_t buflen)43 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
44 {
45 	if (!kn)
46 		return strlcpy(buf, "(null)", buflen);
47 
48 	return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
49 }
50 
51 /* kernfs_node_depth - compute depth from @from to @to */
kernfs_depth(struct kernfs_node * from,struct kernfs_node * to)52 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
53 {
54 	size_t depth = 0;
55 
56 	while (to->parent && to != from) {
57 		depth++;
58 		to = to->parent;
59 	}
60 	return depth;
61 }
62 
kernfs_common_ancestor(struct kernfs_node * a,struct kernfs_node * b)63 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
64 						  struct kernfs_node *b)
65 {
66 	size_t da, db;
67 	struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
68 
69 	if (ra != rb)
70 		return NULL;
71 
72 	da = kernfs_depth(ra->kn, a);
73 	db = kernfs_depth(rb->kn, b);
74 
75 	while (da > db) {
76 		a = a->parent;
77 		da--;
78 	}
79 	while (db > da) {
80 		b = b->parent;
81 		db--;
82 	}
83 
84 	/* worst case b and a will be the same at root */
85 	while (b != a) {
86 		b = b->parent;
87 		a = a->parent;
88 	}
89 
90 	return a;
91 }
92 
93 /**
94  * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
95  * where kn_from is treated as root of the path.
96  * @kn_from: kernfs node which should be treated as root for the path
97  * @kn_to: kernfs node to which path is needed
98  * @buf: buffer to copy the path into
99  * @buflen: size of @buf
100  *
101  * We need to handle couple of scenarios here:
102  * [1] when @kn_from is an ancestor of @kn_to at some level
103  * kn_from: /n1/n2/n3
104  * kn_to:   /n1/n2/n3/n4/n5
105  * result:  /n4/n5
106  *
107  * [2] when @kn_from is on a different hierarchy and we need to find common
108  * ancestor between @kn_from and @kn_to.
109  * kn_from: /n1/n2/n3/n4
110  * kn_to:   /n1/n2/n5
111  * result:  /../../n5
112  * OR
113  * kn_from: /n1/n2/n3/n4/n5   [depth=5]
114  * kn_to:   /n1/n2/n3         [depth=3]
115  * result:  /../..
116  *
117  * [3] when @kn_to is NULL result will be "(null)"
118  *
119  * Returns the length of the full path.  If the full length is equal to or
120  * greater than @buflen, @buf contains the truncated path with the trailing
121  * '\0'.  On error, -errno is returned.
122  */
kernfs_path_from_node_locked(struct kernfs_node * kn_to,struct kernfs_node * kn_from,char * buf,size_t buflen)123 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
124 					struct kernfs_node *kn_from,
125 					char *buf, size_t buflen)
126 {
127 	struct kernfs_node *kn, *common;
128 	const char parent_str[] = "/..";
129 	size_t depth_from, depth_to, len = 0;
130 	int i, j;
131 
132 	if (!kn_to)
133 		return strlcpy(buf, "(null)", buflen);
134 
135 	if (!kn_from)
136 		kn_from = kernfs_root(kn_to)->kn;
137 
138 	if (kn_from == kn_to)
139 		return strlcpy(buf, "/", buflen);
140 
141 	common = kernfs_common_ancestor(kn_from, kn_to);
142 	if (WARN_ON(!common))
143 		return -EINVAL;
144 
145 	depth_to = kernfs_depth(common, kn_to);
146 	depth_from = kernfs_depth(common, kn_from);
147 
148 	if (buf)
149 		buf[0] = '\0';
150 
151 	for (i = 0; i < depth_from; i++)
152 		len += strlcpy(buf + len, parent_str,
153 			       len < buflen ? buflen - len : 0);
154 
155 	/* Calculate how many bytes we need for the rest */
156 	for (i = depth_to - 1; i >= 0; i--) {
157 		for (kn = kn_to, j = 0; j < i; j++)
158 			kn = kn->parent;
159 		len += strlcpy(buf + len, "/",
160 			       len < buflen ? buflen - len : 0);
161 		len += strlcpy(buf + len, kn->name,
162 			       len < buflen ? buflen - len : 0);
163 	}
164 
165 	return len;
166 }
167 
168 /**
169  * kernfs_name - obtain the name of a given node
170  * @kn: kernfs_node of interest
171  * @buf: buffer to copy @kn's name into
172  * @buflen: size of @buf
173  *
174  * Copies the name of @kn into @buf of @buflen bytes.  The behavior is
175  * similar to strlcpy().  It returns the length of @kn's name and if @buf
176  * isn't long enough, it's filled upto @buflen-1 and nul terminated.
177  *
178  * Fills buffer with "(null)" if @kn is NULL.
179  *
180  * This function can be called from any context.
181  */
kernfs_name(struct kernfs_node * kn,char * buf,size_t buflen)182 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
183 {
184 	unsigned long flags;
185 	int ret;
186 
187 	spin_lock_irqsave(&kernfs_rename_lock, flags);
188 	ret = kernfs_name_locked(kn, buf, buflen);
189 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
190 	return ret;
191 }
192 
193 /**
194  * kernfs_path_from_node - build path of node @to relative to @from.
195  * @from: parent kernfs_node relative to which we need to build the path
196  * @to: kernfs_node of interest
197  * @buf: buffer to copy @to's path into
198  * @buflen: size of @buf
199  *
200  * Builds @to's path relative to @from in @buf. @from and @to must
201  * be on the same kernfs-root. If @from is not parent of @to, then a relative
202  * path (which includes '..'s) as needed to reach from @from to @to is
203  * returned.
204  *
205  * Returns the length of the full path.  If the full length is equal to or
206  * greater than @buflen, @buf contains the truncated path with the trailing
207  * '\0'.  On error, -errno is returned.
208  */
kernfs_path_from_node(struct kernfs_node * to,struct kernfs_node * from,char * buf,size_t buflen)209 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
210 			  char *buf, size_t buflen)
211 {
212 	unsigned long flags;
213 	int ret;
214 
215 	spin_lock_irqsave(&kernfs_rename_lock, flags);
216 	ret = kernfs_path_from_node_locked(to, from, buf, buflen);
217 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
218 	return ret;
219 }
220 EXPORT_SYMBOL_GPL(kernfs_path_from_node);
221 
222 /**
223  * pr_cont_kernfs_name - pr_cont name of a kernfs_node
224  * @kn: kernfs_node of interest
225  *
226  * This function can be called from any context.
227  */
pr_cont_kernfs_name(struct kernfs_node * kn)228 void pr_cont_kernfs_name(struct kernfs_node *kn)
229 {
230 	unsigned long flags;
231 
232 	spin_lock_irqsave(&kernfs_rename_lock, flags);
233 
234 	kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
235 	pr_cont("%s", kernfs_pr_cont_buf);
236 
237 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
238 }
239 
240 /**
241  * pr_cont_kernfs_path - pr_cont path of a kernfs_node
242  * @kn: kernfs_node of interest
243  *
244  * This function can be called from any context.
245  */
pr_cont_kernfs_path(struct kernfs_node * kn)246 void pr_cont_kernfs_path(struct kernfs_node *kn)
247 {
248 	unsigned long flags;
249 	int sz;
250 
251 	spin_lock_irqsave(&kernfs_rename_lock, flags);
252 
253 	sz = kernfs_path_from_node_locked(kn, NULL, kernfs_pr_cont_buf,
254 					  sizeof(kernfs_pr_cont_buf));
255 	if (sz < 0) {
256 		pr_cont("(error)");
257 		goto out;
258 	}
259 
260 	if (sz >= sizeof(kernfs_pr_cont_buf)) {
261 		pr_cont("(name too long)");
262 		goto out;
263 	}
264 
265 	pr_cont("%s", kernfs_pr_cont_buf);
266 
267 out:
268 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
269 }
270 
271 /**
272  * kernfs_get_parent - determine the parent node and pin it
273  * @kn: kernfs_node of interest
274  *
275  * Determines @kn's parent, pins and returns it.  This function can be
276  * called from any context.
277  */
kernfs_get_parent(struct kernfs_node * kn)278 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
279 {
280 	struct kernfs_node *parent;
281 	unsigned long flags;
282 
283 	spin_lock_irqsave(&kernfs_rename_lock, flags);
284 	parent = kn->parent;
285 	kernfs_get(parent);
286 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
287 
288 	return parent;
289 }
290 
291 /**
292  *	kernfs_name_hash
293  *	@name: Null terminated string to hash
294  *	@ns:   Namespace tag to hash
295  *
296  *	Returns 31 bit hash of ns + name (so it fits in an off_t )
297  */
kernfs_name_hash(const char * name,const void * ns)298 static unsigned int kernfs_name_hash(const char *name, const void *ns)
299 {
300 	unsigned long hash = init_name_hash(ns);
301 	unsigned int len = strlen(name);
302 	while (len--)
303 		hash = partial_name_hash(*name++, hash);
304 	hash = end_name_hash(hash);
305 	hash &= 0x7fffffffU;
306 	/* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
307 	if (hash < 2)
308 		hash += 2;
309 	if (hash >= INT_MAX)
310 		hash = INT_MAX - 1;
311 	return hash;
312 }
313 
kernfs_name_compare(unsigned int hash,const char * name,const void * ns,const struct kernfs_node * kn)314 static int kernfs_name_compare(unsigned int hash, const char *name,
315 			       const void *ns, const struct kernfs_node *kn)
316 {
317 	if (hash < kn->hash)
318 		return -1;
319 	if (hash > kn->hash)
320 		return 1;
321 	if (ns < kn->ns)
322 		return -1;
323 	if (ns > kn->ns)
324 		return 1;
325 	return strcmp(name, kn->name);
326 }
327 
kernfs_sd_compare(const struct kernfs_node * left,const struct kernfs_node * right)328 static int kernfs_sd_compare(const struct kernfs_node *left,
329 			     const struct kernfs_node *right)
330 {
331 	return kernfs_name_compare(left->hash, left->name, left->ns, right);
332 }
333 
334 /**
335  *	kernfs_link_sibling - link kernfs_node into sibling rbtree
336  *	@kn: kernfs_node of interest
337  *
338  *	Link @kn into its sibling rbtree which starts from
339  *	@kn->parent->dir.children.
340  *
341  *	Locking:
342  *	mutex_lock(kernfs_mutex)
343  *
344  *	RETURNS:
345  *	0 on susccess -EEXIST on failure.
346  */
kernfs_link_sibling(struct kernfs_node * kn)347 static int kernfs_link_sibling(struct kernfs_node *kn)
348 {
349 	struct rb_node **node = &kn->parent->dir.children.rb_node;
350 	struct rb_node *parent = NULL;
351 
352 	while (*node) {
353 		struct kernfs_node *pos;
354 		int result;
355 
356 		pos = rb_to_kn(*node);
357 		parent = *node;
358 		result = kernfs_sd_compare(kn, pos);
359 		if (result < 0)
360 			node = &pos->rb.rb_left;
361 		else if (result > 0)
362 			node = &pos->rb.rb_right;
363 		else
364 			return -EEXIST;
365 	}
366 
367 	/* add new node and rebalance the tree */
368 	rb_link_node(&kn->rb, parent, node);
369 	rb_insert_color(&kn->rb, &kn->parent->dir.children);
370 
371 	/* successfully added, account subdir number */
372 	if (kernfs_type(kn) == KERNFS_DIR)
373 		kn->parent->dir.subdirs++;
374 
375 	return 0;
376 }
377 
378 /**
379  *	kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
380  *	@kn: kernfs_node of interest
381  *
382  *	Try to unlink @kn from its sibling rbtree which starts from
383  *	kn->parent->dir.children.  Returns %true if @kn was actually
384  *	removed, %false if @kn wasn't on the rbtree.
385  *
386  *	Locking:
387  *	mutex_lock(kernfs_mutex)
388  */
kernfs_unlink_sibling(struct kernfs_node * kn)389 static bool kernfs_unlink_sibling(struct kernfs_node *kn)
390 {
391 	if (RB_EMPTY_NODE(&kn->rb))
392 		return false;
393 
394 	if (kernfs_type(kn) == KERNFS_DIR)
395 		kn->parent->dir.subdirs--;
396 
397 	rb_erase(&kn->rb, &kn->parent->dir.children);
398 	RB_CLEAR_NODE(&kn->rb);
399 	return true;
400 }
401 
402 /**
403  *	kernfs_get_active - get an active reference to kernfs_node
404  *	@kn: kernfs_node to get an active reference to
405  *
406  *	Get an active reference of @kn.  This function is noop if @kn
407  *	is NULL.
408  *
409  *	RETURNS:
410  *	Pointer to @kn on success, NULL on failure.
411  */
kernfs_get_active(struct kernfs_node * kn)412 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
413 {
414 	if (unlikely(!kn))
415 		return NULL;
416 
417 	if (!atomic_inc_unless_negative(&kn->active))
418 		return NULL;
419 
420 	if (kernfs_lockdep(kn))
421 		rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
422 	return kn;
423 }
424 
425 /**
426  *	kernfs_put_active - put an active reference to kernfs_node
427  *	@kn: kernfs_node to put an active reference to
428  *
429  *	Put an active reference to @kn.  This function is noop if @kn
430  *	is NULL.
431  */
kernfs_put_active(struct kernfs_node * kn)432 void kernfs_put_active(struct kernfs_node *kn)
433 {
434 	struct kernfs_root *root = kernfs_root(kn);
435 	int v;
436 
437 	if (unlikely(!kn))
438 		return;
439 
440 	if (kernfs_lockdep(kn))
441 		rwsem_release(&kn->dep_map, 1, _RET_IP_);
442 	v = atomic_dec_return(&kn->active);
443 	if (likely(v != KN_DEACTIVATED_BIAS))
444 		return;
445 
446 	wake_up_all(&root->deactivate_waitq);
447 }
448 
449 /**
450  * kernfs_drain - drain kernfs_node
451  * @kn: kernfs_node to drain
452  *
453  * Drain existing usages and nuke all existing mmaps of @kn.  Mutiple
454  * removers may invoke this function concurrently on @kn and all will
455  * return after draining is complete.
456  */
kernfs_drain(struct kernfs_node * kn)457 static void kernfs_drain(struct kernfs_node *kn)
458 	__releases(&kernfs_mutex) __acquires(&kernfs_mutex)
459 {
460 	struct kernfs_root *root = kernfs_root(kn);
461 
462 	lockdep_assert_held(&kernfs_mutex);
463 	WARN_ON_ONCE(kernfs_active(kn));
464 
465 	mutex_unlock(&kernfs_mutex);
466 
467 	if (kernfs_lockdep(kn)) {
468 		rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
469 		if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
470 			lock_contended(&kn->dep_map, _RET_IP_);
471 	}
472 
473 	/* but everyone should wait for draining */
474 	wait_event(root->deactivate_waitq,
475 		   atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
476 
477 	if (kernfs_lockdep(kn)) {
478 		lock_acquired(&kn->dep_map, _RET_IP_);
479 		rwsem_release(&kn->dep_map, 1, _RET_IP_);
480 	}
481 
482 	kernfs_drain_open_files(kn);
483 
484 	mutex_lock(&kernfs_mutex);
485 }
486 
487 /**
488  * kernfs_get - get a reference count on a kernfs_node
489  * @kn: the target kernfs_node
490  */
kernfs_get(struct kernfs_node * kn)491 void kernfs_get(struct kernfs_node *kn)
492 {
493 	if (kn) {
494 		WARN_ON(!atomic_read(&kn->count));
495 		atomic_inc(&kn->count);
496 	}
497 }
498 EXPORT_SYMBOL_GPL(kernfs_get);
499 
500 /**
501  * kernfs_put - put a reference count on a kernfs_node
502  * @kn: the target kernfs_node
503  *
504  * Put a reference count of @kn and destroy it if it reached zero.
505  */
kernfs_put(struct kernfs_node * kn)506 void kernfs_put(struct kernfs_node *kn)
507 {
508 	struct kernfs_node *parent;
509 	struct kernfs_root *root;
510 
511 	/*
512 	 * kernfs_node is freed with ->count 0, kernfs_find_and_get_node_by_ino
513 	 * depends on this to filter reused stale node
514 	 */
515 	if (!kn || !atomic_dec_and_test(&kn->count))
516 		return;
517 	root = kernfs_root(kn);
518  repeat:
519 	/*
520 	 * Moving/renaming is always done while holding reference.
521 	 * kn->parent won't change beneath us.
522 	 */
523 	parent = kn->parent;
524 
525 	WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
526 		  "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
527 		  parent ? parent->name : "", kn->name, atomic_read(&kn->active));
528 
529 	if (kernfs_type(kn) == KERNFS_LINK)
530 		kernfs_put(kn->symlink.target_kn);
531 
532 	kfree_const(kn->name);
533 
534 	if (kn->iattr) {
535 		if (kn->iattr->ia_secdata)
536 			security_release_secctx(kn->iattr->ia_secdata,
537 						kn->iattr->ia_secdata_len);
538 		simple_xattrs_free(&kn->iattr->xattrs);
539 	}
540 	kfree(kn->iattr);
541 	spin_lock(&kernfs_idr_lock);
542 	idr_remove(&root->ino_idr, kn->id.ino);
543 	spin_unlock(&kernfs_idr_lock);
544 	kmem_cache_free(kernfs_node_cache, kn);
545 
546 	kn = parent;
547 	if (kn) {
548 		if (atomic_dec_and_test(&kn->count))
549 			goto repeat;
550 	} else {
551 		/* just released the root kn, free @root too */
552 		idr_destroy(&root->ino_idr);
553 		kfree(root);
554 	}
555 }
556 EXPORT_SYMBOL_GPL(kernfs_put);
557 
kernfs_dop_revalidate(struct dentry * dentry,unsigned int flags)558 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
559 {
560 	struct kernfs_node *kn;
561 
562 	if (flags & LOOKUP_RCU)
563 		return -ECHILD;
564 
565 	/* Always perform fresh lookup for negatives */
566 	if (d_really_is_negative(dentry))
567 		goto out_bad_unlocked;
568 
569 	kn = kernfs_dentry_node(dentry);
570 	mutex_lock(&kernfs_mutex);
571 
572 	/* The kernfs node has been deactivated */
573 	if (!kernfs_active(kn))
574 		goto out_bad;
575 
576 	/* The kernfs node has been moved? */
577 	if (kernfs_dentry_node(dentry->d_parent) != kn->parent)
578 		goto out_bad;
579 
580 	/* The kernfs node has been renamed */
581 	if (strcmp(dentry->d_name.name, kn->name) != 0)
582 		goto out_bad;
583 
584 	/* The kernfs node has been moved to a different namespace */
585 	if (kn->parent && kernfs_ns_enabled(kn->parent) &&
586 	    kernfs_info(dentry->d_sb)->ns != kn->ns)
587 		goto out_bad;
588 
589 	mutex_unlock(&kernfs_mutex);
590 	return 1;
591 out_bad:
592 	mutex_unlock(&kernfs_mutex);
593 out_bad_unlocked:
594 	return 0;
595 }
596 
597 const struct dentry_operations kernfs_dops = {
598 	.d_revalidate	= kernfs_dop_revalidate,
599 };
600 
601 /**
602  * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
603  * @dentry: the dentry in question
604  *
605  * Return the kernfs_node associated with @dentry.  If @dentry is not a
606  * kernfs one, %NULL is returned.
607  *
608  * While the returned kernfs_node will stay accessible as long as @dentry
609  * is accessible, the returned node can be in any state and the caller is
610  * fully responsible for determining what's accessible.
611  */
kernfs_node_from_dentry(struct dentry * dentry)612 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
613 {
614 	if (dentry->d_sb->s_op == &kernfs_sops &&
615 	    !d_really_is_negative(dentry))
616 		return kernfs_dentry_node(dentry);
617 	return NULL;
618 }
619 
__kernfs_new_node(struct kernfs_root * root,const char * name,umode_t mode,unsigned flags)620 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
621 					     const char *name, umode_t mode,
622 					     unsigned flags)
623 {
624 	struct kernfs_node *kn;
625 	u32 gen;
626 	int ret;
627 
628 	name = kstrdup_const(name, GFP_KERNEL);
629 	if (!name)
630 		return NULL;
631 
632 	kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
633 	if (!kn)
634 		goto err_out1;
635 
636 	idr_preload(GFP_KERNEL);
637 	spin_lock(&kernfs_idr_lock);
638 	ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC);
639 	if (ret >= 0 && ret < root->last_ino)
640 		root->next_generation++;
641 	gen = root->next_generation;
642 	root->last_ino = ret;
643 	spin_unlock(&kernfs_idr_lock);
644 	idr_preload_end();
645 	if (ret < 0)
646 		goto err_out2;
647 	kn->id.ino = ret;
648 	kn->id.generation = gen;
649 
650 	/*
651 	 * set ino first. This RELEASE is paired with atomic_inc_not_zero in
652 	 * kernfs_find_and_get_node_by_ino
653 	 */
654 	atomic_set_release(&kn->count, 1);
655 	atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
656 	RB_CLEAR_NODE(&kn->rb);
657 
658 	kn->name = name;
659 	kn->mode = mode;
660 	kn->flags = flags;
661 
662 	return kn;
663 
664  err_out2:
665 	kmem_cache_free(kernfs_node_cache, kn);
666  err_out1:
667 	kfree_const(name);
668 	return NULL;
669 }
670 
kernfs_new_node(struct kernfs_node * parent,const char * name,umode_t mode,unsigned flags)671 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
672 				    const char *name, umode_t mode,
673 				    unsigned flags)
674 {
675 	struct kernfs_node *kn;
676 
677 	kn = __kernfs_new_node(kernfs_root(parent), name, mode, flags);
678 	if (kn) {
679 		kernfs_get(parent);
680 		kn->parent = parent;
681 	}
682 	return kn;
683 }
684 
685 /*
686  * kernfs_find_and_get_node_by_ino - get kernfs_node from inode number
687  * @root: the kernfs root
688  * @ino: inode number
689  *
690  * RETURNS:
691  * NULL on failure. Return a kernfs node with reference counter incremented
692  */
kernfs_find_and_get_node_by_ino(struct kernfs_root * root,unsigned int ino)693 struct kernfs_node *kernfs_find_and_get_node_by_ino(struct kernfs_root *root,
694 						    unsigned int ino)
695 {
696 	struct kernfs_node *kn;
697 
698 	rcu_read_lock();
699 	kn = idr_find(&root->ino_idr, ino);
700 	if (!kn)
701 		goto out;
702 
703 	/*
704 	 * Since kernfs_node is freed in RCU, it's possible an old node for ino
705 	 * is freed, but reused before RCU grace period. But a freed node (see
706 	 * kernfs_put) or an incompletedly initialized node (see
707 	 * __kernfs_new_node) should have 'count' 0. We can use this fact to
708 	 * filter out such node.
709 	 */
710 	if (!atomic_inc_not_zero(&kn->count)) {
711 		kn = NULL;
712 		goto out;
713 	}
714 
715 	/*
716 	 * The node could be a new node or a reused node. If it's a new node,
717 	 * we are ok. If it's reused because of RCU (because of
718 	 * SLAB_TYPESAFE_BY_RCU), the __kernfs_new_node always sets its 'ino'
719 	 * before 'count'. So if 'count' is uptodate, 'ino' should be uptodate,
720 	 * hence we can use 'ino' to filter stale node.
721 	 */
722 	if (kn->id.ino != ino)
723 		goto out;
724 	rcu_read_unlock();
725 
726 	return kn;
727 out:
728 	rcu_read_unlock();
729 	kernfs_put(kn);
730 	return NULL;
731 }
732 
733 /**
734  *	kernfs_add_one - add kernfs_node to parent without warning
735  *	@kn: kernfs_node to be added
736  *
737  *	The caller must already have initialized @kn->parent.  This
738  *	function increments nlink of the parent's inode if @kn is a
739  *	directory and link into the children list of the parent.
740  *
741  *	RETURNS:
742  *	0 on success, -EEXIST if entry with the given name already
743  *	exists.
744  */
kernfs_add_one(struct kernfs_node * kn)745 int kernfs_add_one(struct kernfs_node *kn)
746 {
747 	struct kernfs_node *parent = kn->parent;
748 	struct kernfs_iattrs *ps_iattr;
749 	bool has_ns;
750 	int ret;
751 
752 	mutex_lock(&kernfs_mutex);
753 
754 	ret = -EINVAL;
755 	has_ns = kernfs_ns_enabled(parent);
756 	if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
757 		 has_ns ? "required" : "invalid", parent->name, kn->name))
758 		goto out_unlock;
759 
760 	if (kernfs_type(parent) != KERNFS_DIR)
761 		goto out_unlock;
762 
763 	ret = -ENOENT;
764 	if (parent->flags & KERNFS_EMPTY_DIR)
765 		goto out_unlock;
766 
767 	if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
768 		goto out_unlock;
769 
770 	kn->hash = kernfs_name_hash(kn->name, kn->ns);
771 
772 	ret = kernfs_link_sibling(kn);
773 	if (ret)
774 		goto out_unlock;
775 
776 	/* Update timestamps on the parent */
777 	ps_iattr = parent->iattr;
778 	if (ps_iattr) {
779 		struct iattr *ps_iattrs = &ps_iattr->ia_iattr;
780 		ktime_get_real_ts(&ps_iattrs->ia_ctime);
781 		ps_iattrs->ia_mtime = ps_iattrs->ia_ctime;
782 	}
783 
784 	mutex_unlock(&kernfs_mutex);
785 
786 	/*
787 	 * Activate the new node unless CREATE_DEACTIVATED is requested.
788 	 * If not activated here, the kernfs user is responsible for
789 	 * activating the node with kernfs_activate().  A node which hasn't
790 	 * been activated is not visible to userland and its removal won't
791 	 * trigger deactivation.
792 	 */
793 	if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
794 		kernfs_activate(kn);
795 	return 0;
796 
797 out_unlock:
798 	mutex_unlock(&kernfs_mutex);
799 	return ret;
800 }
801 
802 /**
803  * kernfs_find_ns - find kernfs_node with the given name
804  * @parent: kernfs_node to search under
805  * @name: name to look for
806  * @ns: the namespace tag to use
807  *
808  * Look for kernfs_node with name @name under @parent.  Returns pointer to
809  * the found kernfs_node on success, %NULL on failure.
810  */
kernfs_find_ns(struct kernfs_node * parent,const unsigned char * name,const void * ns)811 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
812 					  const unsigned char *name,
813 					  const void *ns)
814 {
815 	struct rb_node *node = parent->dir.children.rb_node;
816 	bool has_ns = kernfs_ns_enabled(parent);
817 	unsigned int hash;
818 
819 	lockdep_assert_held(&kernfs_mutex);
820 
821 	if (has_ns != (bool)ns) {
822 		WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
823 		     has_ns ? "required" : "invalid", parent->name, name);
824 		return NULL;
825 	}
826 
827 	hash = kernfs_name_hash(name, ns);
828 	while (node) {
829 		struct kernfs_node *kn;
830 		int result;
831 
832 		kn = rb_to_kn(node);
833 		result = kernfs_name_compare(hash, name, ns, kn);
834 		if (result < 0)
835 			node = node->rb_left;
836 		else if (result > 0)
837 			node = node->rb_right;
838 		else
839 			return kn;
840 	}
841 	return NULL;
842 }
843 
kernfs_walk_ns(struct kernfs_node * parent,const unsigned char * path,const void * ns)844 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
845 					  const unsigned char *path,
846 					  const void *ns)
847 {
848 	size_t len;
849 	char *p, *name;
850 
851 	lockdep_assert_held(&kernfs_mutex);
852 
853 	/* grab kernfs_rename_lock to piggy back on kernfs_pr_cont_buf */
854 	spin_lock_irq(&kernfs_rename_lock);
855 
856 	len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
857 
858 	if (len >= sizeof(kernfs_pr_cont_buf)) {
859 		spin_unlock_irq(&kernfs_rename_lock);
860 		return NULL;
861 	}
862 
863 	p = kernfs_pr_cont_buf;
864 
865 	while ((name = strsep(&p, "/")) && parent) {
866 		if (*name == '\0')
867 			continue;
868 		parent = kernfs_find_ns(parent, name, ns);
869 	}
870 
871 	spin_unlock_irq(&kernfs_rename_lock);
872 
873 	return parent;
874 }
875 
876 /**
877  * kernfs_find_and_get_ns - find and get kernfs_node with the given name
878  * @parent: kernfs_node to search under
879  * @name: name to look for
880  * @ns: the namespace tag to use
881  *
882  * Look for kernfs_node with name @name under @parent and get a reference
883  * if found.  This function may sleep and returns pointer to the found
884  * kernfs_node on success, %NULL on failure.
885  */
kernfs_find_and_get_ns(struct kernfs_node * parent,const char * name,const void * ns)886 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
887 					   const char *name, const void *ns)
888 {
889 	struct kernfs_node *kn;
890 
891 	mutex_lock(&kernfs_mutex);
892 	kn = kernfs_find_ns(parent, name, ns);
893 	kernfs_get(kn);
894 	mutex_unlock(&kernfs_mutex);
895 
896 	return kn;
897 }
898 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
899 
900 /**
901  * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
902  * @parent: kernfs_node to search under
903  * @path: path to look for
904  * @ns: the namespace tag to use
905  *
906  * Look for kernfs_node with path @path under @parent and get a reference
907  * if found.  This function may sleep and returns pointer to the found
908  * kernfs_node on success, %NULL on failure.
909  */
kernfs_walk_and_get_ns(struct kernfs_node * parent,const char * path,const void * ns)910 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
911 					   const char *path, const void *ns)
912 {
913 	struct kernfs_node *kn;
914 
915 	mutex_lock(&kernfs_mutex);
916 	kn = kernfs_walk_ns(parent, path, ns);
917 	kernfs_get(kn);
918 	mutex_unlock(&kernfs_mutex);
919 
920 	return kn;
921 }
922 
923 /**
924  * kernfs_create_root - create a new kernfs hierarchy
925  * @scops: optional syscall operations for the hierarchy
926  * @flags: KERNFS_ROOT_* flags
927  * @priv: opaque data associated with the new directory
928  *
929  * Returns the root of the new hierarchy on success, ERR_PTR() value on
930  * failure.
931  */
kernfs_create_root(struct kernfs_syscall_ops * scops,unsigned int flags,void * priv)932 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
933 				       unsigned int flags, void *priv)
934 {
935 	struct kernfs_root *root;
936 	struct kernfs_node *kn;
937 
938 	root = kzalloc(sizeof(*root), GFP_KERNEL);
939 	if (!root)
940 		return ERR_PTR(-ENOMEM);
941 
942 	idr_init(&root->ino_idr);
943 	INIT_LIST_HEAD(&root->supers);
944 	root->next_generation = 1;
945 
946 	kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO,
947 			       KERNFS_DIR);
948 	if (!kn) {
949 		idr_destroy(&root->ino_idr);
950 		kfree(root);
951 		return ERR_PTR(-ENOMEM);
952 	}
953 
954 	kn->priv = priv;
955 	kn->dir.root = root;
956 
957 	root->syscall_ops = scops;
958 	root->flags = flags;
959 	root->kn = kn;
960 	init_waitqueue_head(&root->deactivate_waitq);
961 
962 	if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
963 		kernfs_activate(kn);
964 
965 	return root;
966 }
967 
968 /**
969  * kernfs_destroy_root - destroy a kernfs hierarchy
970  * @root: root of the hierarchy to destroy
971  *
972  * Destroy the hierarchy anchored at @root by removing all existing
973  * directories and destroying @root.
974  */
kernfs_destroy_root(struct kernfs_root * root)975 void kernfs_destroy_root(struct kernfs_root *root)
976 {
977 	kernfs_remove(root->kn);	/* will also free @root */
978 }
979 
980 /**
981  * kernfs_create_dir_ns - create a directory
982  * @parent: parent in which to create a new directory
983  * @name: name of the new directory
984  * @mode: mode of the new directory
985  * @priv: opaque data associated with the new directory
986  * @ns: optional namespace tag of the directory
987  *
988  * Returns the created node on success, ERR_PTR() value on failure.
989  */
kernfs_create_dir_ns(struct kernfs_node * parent,const char * name,umode_t mode,void * priv,const void * ns)990 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
991 					 const char *name, umode_t mode,
992 					 void *priv, const void *ns)
993 {
994 	struct kernfs_node *kn;
995 	int rc;
996 
997 	/* allocate */
998 	kn = kernfs_new_node(parent, name, mode | S_IFDIR, KERNFS_DIR);
999 	if (!kn)
1000 		return ERR_PTR(-ENOMEM);
1001 
1002 	kn->dir.root = parent->dir.root;
1003 	kn->ns = ns;
1004 	kn->priv = priv;
1005 
1006 	/* link in */
1007 	rc = kernfs_add_one(kn);
1008 	if (!rc)
1009 		return kn;
1010 
1011 	kernfs_put(kn);
1012 	return ERR_PTR(rc);
1013 }
1014 
1015 /**
1016  * kernfs_create_empty_dir - create an always empty directory
1017  * @parent: parent in which to create a new directory
1018  * @name: name of the new directory
1019  *
1020  * Returns the created node on success, ERR_PTR() value on failure.
1021  */
kernfs_create_empty_dir(struct kernfs_node * parent,const char * name)1022 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
1023 					    const char *name)
1024 {
1025 	struct kernfs_node *kn;
1026 	int rc;
1027 
1028 	/* allocate */
1029 	kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR, KERNFS_DIR);
1030 	if (!kn)
1031 		return ERR_PTR(-ENOMEM);
1032 
1033 	kn->flags |= KERNFS_EMPTY_DIR;
1034 	kn->dir.root = parent->dir.root;
1035 	kn->ns = NULL;
1036 	kn->priv = NULL;
1037 
1038 	/* link in */
1039 	rc = kernfs_add_one(kn);
1040 	if (!rc)
1041 		return kn;
1042 
1043 	kernfs_put(kn);
1044 	return ERR_PTR(rc);
1045 }
1046 
kernfs_iop_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)1047 static struct dentry *kernfs_iop_lookup(struct inode *dir,
1048 					struct dentry *dentry,
1049 					unsigned int flags)
1050 {
1051 	struct dentry *ret;
1052 	struct kernfs_node *parent = dir->i_private;
1053 	struct kernfs_node *kn;
1054 	struct inode *inode;
1055 	const void *ns = NULL;
1056 
1057 	mutex_lock(&kernfs_mutex);
1058 
1059 	if (kernfs_ns_enabled(parent))
1060 		ns = kernfs_info(dir->i_sb)->ns;
1061 
1062 	kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
1063 
1064 	/* no such entry */
1065 	if (!kn || !kernfs_active(kn)) {
1066 		ret = NULL;
1067 		goto out_unlock;
1068 	}
1069 
1070 	/* attach dentry and inode */
1071 	inode = kernfs_get_inode(dir->i_sb, kn);
1072 	if (!inode) {
1073 		ret = ERR_PTR(-ENOMEM);
1074 		goto out_unlock;
1075 	}
1076 
1077 	/* instantiate and hash dentry */
1078 	ret = d_splice_alias(inode, dentry);
1079  out_unlock:
1080 	mutex_unlock(&kernfs_mutex);
1081 	return ret;
1082 }
1083 
kernfs_iop_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)1084 static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
1085 			    umode_t mode)
1086 {
1087 	struct kernfs_node *parent = dir->i_private;
1088 	struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
1089 	int ret;
1090 
1091 	if (!scops || !scops->mkdir)
1092 		return -EPERM;
1093 
1094 	if (!kernfs_get_active(parent))
1095 		return -ENODEV;
1096 
1097 	ret = scops->mkdir(parent, dentry->d_name.name, mode);
1098 
1099 	kernfs_put_active(parent);
1100 	return ret;
1101 }
1102 
kernfs_iop_rmdir(struct inode * dir,struct dentry * dentry)1103 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
1104 {
1105 	struct kernfs_node *kn  = kernfs_dentry_node(dentry);
1106 	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1107 	int ret;
1108 
1109 	if (!scops || !scops->rmdir)
1110 		return -EPERM;
1111 
1112 	if (!kernfs_get_active(kn))
1113 		return -ENODEV;
1114 
1115 	ret = scops->rmdir(kn);
1116 
1117 	kernfs_put_active(kn);
1118 	return ret;
1119 }
1120 
kernfs_iop_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)1121 static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
1122 			     struct inode *new_dir, struct dentry *new_dentry,
1123 			     unsigned int flags)
1124 {
1125 	struct kernfs_node *kn = kernfs_dentry_node(old_dentry);
1126 	struct kernfs_node *new_parent = new_dir->i_private;
1127 	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1128 	int ret;
1129 
1130 	if (flags)
1131 		return -EINVAL;
1132 
1133 	if (!scops || !scops->rename)
1134 		return -EPERM;
1135 
1136 	if (!kernfs_get_active(kn))
1137 		return -ENODEV;
1138 
1139 	if (!kernfs_get_active(new_parent)) {
1140 		kernfs_put_active(kn);
1141 		return -ENODEV;
1142 	}
1143 
1144 	ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
1145 
1146 	kernfs_put_active(new_parent);
1147 	kernfs_put_active(kn);
1148 	return ret;
1149 }
1150 
1151 const struct inode_operations kernfs_dir_iops = {
1152 	.lookup		= kernfs_iop_lookup,
1153 	.permission	= kernfs_iop_permission,
1154 	.setattr	= kernfs_iop_setattr,
1155 	.getattr	= kernfs_iop_getattr,
1156 	.listxattr	= kernfs_iop_listxattr,
1157 
1158 	.mkdir		= kernfs_iop_mkdir,
1159 	.rmdir		= kernfs_iop_rmdir,
1160 	.rename		= kernfs_iop_rename,
1161 };
1162 
kernfs_leftmost_descendant(struct kernfs_node * pos)1163 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1164 {
1165 	struct kernfs_node *last;
1166 
1167 	while (true) {
1168 		struct rb_node *rbn;
1169 
1170 		last = pos;
1171 
1172 		if (kernfs_type(pos) != KERNFS_DIR)
1173 			break;
1174 
1175 		rbn = rb_first(&pos->dir.children);
1176 		if (!rbn)
1177 			break;
1178 
1179 		pos = rb_to_kn(rbn);
1180 	}
1181 
1182 	return last;
1183 }
1184 
1185 /**
1186  * kernfs_next_descendant_post - find the next descendant for post-order walk
1187  * @pos: the current position (%NULL to initiate traversal)
1188  * @root: kernfs_node whose descendants to walk
1189  *
1190  * Find the next descendant to visit for post-order traversal of @root's
1191  * descendants.  @root is included in the iteration and the last node to be
1192  * visited.
1193  */
kernfs_next_descendant_post(struct kernfs_node * pos,struct kernfs_node * root)1194 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1195 						       struct kernfs_node *root)
1196 {
1197 	struct rb_node *rbn;
1198 
1199 	lockdep_assert_held(&kernfs_mutex);
1200 
1201 	/* if first iteration, visit leftmost descendant which may be root */
1202 	if (!pos)
1203 		return kernfs_leftmost_descendant(root);
1204 
1205 	/* if we visited @root, we're done */
1206 	if (pos == root)
1207 		return NULL;
1208 
1209 	/* if there's an unvisited sibling, visit its leftmost descendant */
1210 	rbn = rb_next(&pos->rb);
1211 	if (rbn)
1212 		return kernfs_leftmost_descendant(rb_to_kn(rbn));
1213 
1214 	/* no sibling left, visit parent */
1215 	return pos->parent;
1216 }
1217 
1218 /**
1219  * kernfs_activate - activate a node which started deactivated
1220  * @kn: kernfs_node whose subtree is to be activated
1221  *
1222  * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1223  * needs to be explicitly activated.  A node which hasn't been activated
1224  * isn't visible to userland and deactivation is skipped during its
1225  * removal.  This is useful to construct atomic init sequences where
1226  * creation of multiple nodes should either succeed or fail atomically.
1227  *
1228  * The caller is responsible for ensuring that this function is not called
1229  * after kernfs_remove*() is invoked on @kn.
1230  */
kernfs_activate(struct kernfs_node * kn)1231 void kernfs_activate(struct kernfs_node *kn)
1232 {
1233 	struct kernfs_node *pos;
1234 
1235 	mutex_lock(&kernfs_mutex);
1236 
1237 	pos = NULL;
1238 	while ((pos = kernfs_next_descendant_post(pos, kn))) {
1239 		if (!pos || (pos->flags & KERNFS_ACTIVATED))
1240 			continue;
1241 
1242 		WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
1243 		WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
1244 
1245 		atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
1246 		pos->flags |= KERNFS_ACTIVATED;
1247 	}
1248 
1249 	mutex_unlock(&kernfs_mutex);
1250 }
1251 
__kernfs_remove(struct kernfs_node * kn)1252 static void __kernfs_remove(struct kernfs_node *kn)
1253 {
1254 	struct kernfs_node *pos;
1255 
1256 	lockdep_assert_held(&kernfs_mutex);
1257 
1258 	/*
1259 	 * Short-circuit if non-root @kn has already finished removal.
1260 	 * This is for kernfs_remove_self() which plays with active ref
1261 	 * after removal.
1262 	 */
1263 	if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
1264 		return;
1265 
1266 	pr_debug("kernfs %s: removing\n", kn->name);
1267 
1268 	/* prevent any new usage under @kn by deactivating all nodes */
1269 	pos = NULL;
1270 	while ((pos = kernfs_next_descendant_post(pos, kn)))
1271 		if (kernfs_active(pos))
1272 			atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1273 
1274 	/* deactivate and unlink the subtree node-by-node */
1275 	do {
1276 		pos = kernfs_leftmost_descendant(kn);
1277 
1278 		/*
1279 		 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1280 		 * base ref could have been put by someone else by the time
1281 		 * the function returns.  Make sure it doesn't go away
1282 		 * underneath us.
1283 		 */
1284 		kernfs_get(pos);
1285 
1286 		/*
1287 		 * Drain iff @kn was activated.  This avoids draining and
1288 		 * its lockdep annotations for nodes which have never been
1289 		 * activated and allows embedding kernfs_remove() in create
1290 		 * error paths without worrying about draining.
1291 		 */
1292 		if (kn->flags & KERNFS_ACTIVATED)
1293 			kernfs_drain(pos);
1294 		else
1295 			WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1296 
1297 		/*
1298 		 * kernfs_unlink_sibling() succeeds once per node.  Use it
1299 		 * to decide who's responsible for cleanups.
1300 		 */
1301 		if (!pos->parent || kernfs_unlink_sibling(pos)) {
1302 			struct kernfs_iattrs *ps_iattr =
1303 				pos->parent ? pos->parent->iattr : NULL;
1304 
1305 			/* update timestamps on the parent */
1306 			if (ps_iattr) {
1307 				ktime_get_real_ts(&ps_iattr->ia_iattr.ia_ctime);
1308 				ps_iattr->ia_iattr.ia_mtime =
1309 					ps_iattr->ia_iattr.ia_ctime;
1310 			}
1311 
1312 			kernfs_put(pos);
1313 		}
1314 
1315 		kernfs_put(pos);
1316 	} while (pos != kn);
1317 }
1318 
1319 /**
1320  * kernfs_remove - remove a kernfs_node recursively
1321  * @kn: the kernfs_node to remove
1322  *
1323  * Remove @kn along with all its subdirectories and files.
1324  */
kernfs_remove(struct kernfs_node * kn)1325 void kernfs_remove(struct kernfs_node *kn)
1326 {
1327 	mutex_lock(&kernfs_mutex);
1328 	__kernfs_remove(kn);
1329 	mutex_unlock(&kernfs_mutex);
1330 }
1331 
1332 /**
1333  * kernfs_break_active_protection - break out of active protection
1334  * @kn: the self kernfs_node
1335  *
1336  * The caller must be running off of a kernfs operation which is invoked
1337  * with an active reference - e.g. one of kernfs_ops.  Each invocation of
1338  * this function must also be matched with an invocation of
1339  * kernfs_unbreak_active_protection().
1340  *
1341  * This function releases the active reference of @kn the caller is
1342  * holding.  Once this function is called, @kn may be removed at any point
1343  * and the caller is solely responsible for ensuring that the objects it
1344  * dereferences are accessible.
1345  */
kernfs_break_active_protection(struct kernfs_node * kn)1346 void kernfs_break_active_protection(struct kernfs_node *kn)
1347 {
1348 	/*
1349 	 * Take out ourself out of the active ref dependency chain.  If
1350 	 * we're called without an active ref, lockdep will complain.
1351 	 */
1352 	kernfs_put_active(kn);
1353 }
1354 
1355 /**
1356  * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1357  * @kn: the self kernfs_node
1358  *
1359  * If kernfs_break_active_protection() was called, this function must be
1360  * invoked before finishing the kernfs operation.  Note that while this
1361  * function restores the active reference, it doesn't and can't actually
1362  * restore the active protection - @kn may already or be in the process of
1363  * being removed.  Once kernfs_break_active_protection() is invoked, that
1364  * protection is irreversibly gone for the kernfs operation instance.
1365  *
1366  * While this function may be called at any point after
1367  * kernfs_break_active_protection() is invoked, its most useful location
1368  * would be right before the enclosing kernfs operation returns.
1369  */
kernfs_unbreak_active_protection(struct kernfs_node * kn)1370 void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1371 {
1372 	/*
1373 	 * @kn->active could be in any state; however, the increment we do
1374 	 * here will be undone as soon as the enclosing kernfs operation
1375 	 * finishes and this temporary bump can't break anything.  If @kn
1376 	 * is alive, nothing changes.  If @kn is being deactivated, the
1377 	 * soon-to-follow put will either finish deactivation or restore
1378 	 * deactivated state.  If @kn is already removed, the temporary
1379 	 * bump is guaranteed to be gone before @kn is released.
1380 	 */
1381 	atomic_inc(&kn->active);
1382 	if (kernfs_lockdep(kn))
1383 		rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1384 }
1385 
1386 /**
1387  * kernfs_remove_self - remove a kernfs_node from its own method
1388  * @kn: the self kernfs_node to remove
1389  *
1390  * The caller must be running off of a kernfs operation which is invoked
1391  * with an active reference - e.g. one of kernfs_ops.  This can be used to
1392  * implement a file operation which deletes itself.
1393  *
1394  * For example, the "delete" file for a sysfs device directory can be
1395  * implemented by invoking kernfs_remove_self() on the "delete" file
1396  * itself.  This function breaks the circular dependency of trying to
1397  * deactivate self while holding an active ref itself.  It isn't necessary
1398  * to modify the usual removal path to use kernfs_remove_self().  The
1399  * "delete" implementation can simply invoke kernfs_remove_self() on self
1400  * before proceeding with the usual removal path.  kernfs will ignore later
1401  * kernfs_remove() on self.
1402  *
1403  * kernfs_remove_self() can be called multiple times concurrently on the
1404  * same kernfs_node.  Only the first one actually performs removal and
1405  * returns %true.  All others will wait until the kernfs operation which
1406  * won self-removal finishes and return %false.  Note that the losers wait
1407  * for the completion of not only the winning kernfs_remove_self() but also
1408  * the whole kernfs_ops which won the arbitration.  This can be used to
1409  * guarantee, for example, all concurrent writes to a "delete" file to
1410  * finish only after the whole operation is complete.
1411  */
kernfs_remove_self(struct kernfs_node * kn)1412 bool kernfs_remove_self(struct kernfs_node *kn)
1413 {
1414 	bool ret;
1415 
1416 	mutex_lock(&kernfs_mutex);
1417 	kernfs_break_active_protection(kn);
1418 
1419 	/*
1420 	 * SUICIDAL is used to arbitrate among competing invocations.  Only
1421 	 * the first one will actually perform removal.  When the removal
1422 	 * is complete, SUICIDED is set and the active ref is restored
1423 	 * while holding kernfs_mutex.  The ones which lost arbitration
1424 	 * waits for SUICDED && drained which can happen only after the
1425 	 * enclosing kernfs operation which executed the winning instance
1426 	 * of kernfs_remove_self() finished.
1427 	 */
1428 	if (!(kn->flags & KERNFS_SUICIDAL)) {
1429 		kn->flags |= KERNFS_SUICIDAL;
1430 		__kernfs_remove(kn);
1431 		kn->flags |= KERNFS_SUICIDED;
1432 		ret = true;
1433 	} else {
1434 		wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1435 		DEFINE_WAIT(wait);
1436 
1437 		while (true) {
1438 			prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1439 
1440 			if ((kn->flags & KERNFS_SUICIDED) &&
1441 			    atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1442 				break;
1443 
1444 			mutex_unlock(&kernfs_mutex);
1445 			schedule();
1446 			mutex_lock(&kernfs_mutex);
1447 		}
1448 		finish_wait(waitq, &wait);
1449 		WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1450 		ret = false;
1451 	}
1452 
1453 	/*
1454 	 * This must be done while holding kernfs_mutex; otherwise, waiting
1455 	 * for SUICIDED && deactivated could finish prematurely.
1456 	 */
1457 	kernfs_unbreak_active_protection(kn);
1458 
1459 	mutex_unlock(&kernfs_mutex);
1460 	return ret;
1461 }
1462 
1463 /**
1464  * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1465  * @parent: parent of the target
1466  * @name: name of the kernfs_node to remove
1467  * @ns: namespace tag of the kernfs_node to remove
1468  *
1469  * Look for the kernfs_node with @name and @ns under @parent and remove it.
1470  * Returns 0 on success, -ENOENT if such entry doesn't exist.
1471  */
kernfs_remove_by_name_ns(struct kernfs_node * parent,const char * name,const void * ns)1472 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1473 			     const void *ns)
1474 {
1475 	struct kernfs_node *kn;
1476 
1477 	if (!parent) {
1478 		WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1479 			name);
1480 		return -ENOENT;
1481 	}
1482 
1483 	mutex_lock(&kernfs_mutex);
1484 
1485 	kn = kernfs_find_ns(parent, name, ns);
1486 	if (kn)
1487 		__kernfs_remove(kn);
1488 
1489 	mutex_unlock(&kernfs_mutex);
1490 
1491 	if (kn)
1492 		return 0;
1493 	else
1494 		return -ENOENT;
1495 }
1496 
1497 /**
1498  * kernfs_rename_ns - move and rename a kernfs_node
1499  * @kn: target node
1500  * @new_parent: new parent to put @sd under
1501  * @new_name: new name
1502  * @new_ns: new namespace tag
1503  */
kernfs_rename_ns(struct kernfs_node * kn,struct kernfs_node * new_parent,const char * new_name,const void * new_ns)1504 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1505 		     const char *new_name, const void *new_ns)
1506 {
1507 	struct kernfs_node *old_parent;
1508 	const char *old_name = NULL;
1509 	int error;
1510 
1511 	/* can't move or rename root */
1512 	if (!kn->parent)
1513 		return -EINVAL;
1514 
1515 	mutex_lock(&kernfs_mutex);
1516 
1517 	error = -ENOENT;
1518 	if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1519 	    (new_parent->flags & KERNFS_EMPTY_DIR))
1520 		goto out;
1521 
1522 	error = 0;
1523 	if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1524 	    (strcmp(kn->name, new_name) == 0))
1525 		goto out;	/* nothing to rename */
1526 
1527 	error = -EEXIST;
1528 	if (kernfs_find_ns(new_parent, new_name, new_ns))
1529 		goto out;
1530 
1531 	/* rename kernfs_node */
1532 	if (strcmp(kn->name, new_name) != 0) {
1533 		error = -ENOMEM;
1534 		new_name = kstrdup_const(new_name, GFP_KERNEL);
1535 		if (!new_name)
1536 			goto out;
1537 	} else {
1538 		new_name = NULL;
1539 	}
1540 
1541 	/*
1542 	 * Move to the appropriate place in the appropriate directories rbtree.
1543 	 */
1544 	kernfs_unlink_sibling(kn);
1545 	kernfs_get(new_parent);
1546 
1547 	/* rename_lock protects ->parent and ->name accessors */
1548 	spin_lock_irq(&kernfs_rename_lock);
1549 
1550 	old_parent = kn->parent;
1551 	kn->parent = new_parent;
1552 
1553 	kn->ns = new_ns;
1554 	if (new_name) {
1555 		old_name = kn->name;
1556 		kn->name = new_name;
1557 	}
1558 
1559 	spin_unlock_irq(&kernfs_rename_lock);
1560 
1561 	kn->hash = kernfs_name_hash(kn->name, kn->ns);
1562 	kernfs_link_sibling(kn);
1563 
1564 	kernfs_put(old_parent);
1565 	kfree_const(old_name);
1566 
1567 	error = 0;
1568  out:
1569 	mutex_unlock(&kernfs_mutex);
1570 	return error;
1571 }
1572 
1573 /* Relationship between s_mode and the DT_xxx types */
dt_type(struct kernfs_node * kn)1574 static inline unsigned char dt_type(struct kernfs_node *kn)
1575 {
1576 	return (kn->mode >> 12) & 15;
1577 }
1578 
kernfs_dir_fop_release(struct inode * inode,struct file * filp)1579 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1580 {
1581 	kernfs_put(filp->private_data);
1582 	return 0;
1583 }
1584 
kernfs_dir_pos(const void * ns,struct kernfs_node * parent,loff_t hash,struct kernfs_node * pos)1585 static struct kernfs_node *kernfs_dir_pos(const void *ns,
1586 	struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1587 {
1588 	if (pos) {
1589 		int valid = kernfs_active(pos) &&
1590 			pos->parent == parent && hash == pos->hash;
1591 		kernfs_put(pos);
1592 		if (!valid)
1593 			pos = NULL;
1594 	}
1595 	if (!pos && (hash > 1) && (hash < INT_MAX)) {
1596 		struct rb_node *node = parent->dir.children.rb_node;
1597 		while (node) {
1598 			pos = rb_to_kn(node);
1599 
1600 			if (hash < pos->hash)
1601 				node = node->rb_left;
1602 			else if (hash > pos->hash)
1603 				node = node->rb_right;
1604 			else
1605 				break;
1606 		}
1607 	}
1608 	/* Skip over entries which are dying/dead or in the wrong namespace */
1609 	while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1610 		struct rb_node *node = rb_next(&pos->rb);
1611 		if (!node)
1612 			pos = NULL;
1613 		else
1614 			pos = rb_to_kn(node);
1615 	}
1616 	return pos;
1617 }
1618 
kernfs_dir_next_pos(const void * ns,struct kernfs_node * parent,ino_t ino,struct kernfs_node * pos)1619 static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1620 	struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1621 {
1622 	pos = kernfs_dir_pos(ns, parent, ino, pos);
1623 	if (pos) {
1624 		do {
1625 			struct rb_node *node = rb_next(&pos->rb);
1626 			if (!node)
1627 				pos = NULL;
1628 			else
1629 				pos = rb_to_kn(node);
1630 		} while (pos && (!kernfs_active(pos) || pos->ns != ns));
1631 	}
1632 	return pos;
1633 }
1634 
kernfs_fop_readdir(struct file * file,struct dir_context * ctx)1635 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1636 {
1637 	struct dentry *dentry = file->f_path.dentry;
1638 	struct kernfs_node *parent = kernfs_dentry_node(dentry);
1639 	struct kernfs_node *pos = file->private_data;
1640 	const void *ns = NULL;
1641 
1642 	if (!dir_emit_dots(file, ctx))
1643 		return 0;
1644 	mutex_lock(&kernfs_mutex);
1645 
1646 	if (kernfs_ns_enabled(parent))
1647 		ns = kernfs_info(dentry->d_sb)->ns;
1648 
1649 	for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1650 	     pos;
1651 	     pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1652 		const char *name = pos->name;
1653 		unsigned int type = dt_type(pos);
1654 		int len = strlen(name);
1655 		ino_t ino = pos->id.ino;
1656 
1657 		ctx->pos = pos->hash;
1658 		file->private_data = pos;
1659 		kernfs_get(pos);
1660 
1661 		mutex_unlock(&kernfs_mutex);
1662 		if (!dir_emit(ctx, name, len, ino, type))
1663 			return 0;
1664 		mutex_lock(&kernfs_mutex);
1665 	}
1666 	mutex_unlock(&kernfs_mutex);
1667 	file->private_data = NULL;
1668 	ctx->pos = INT_MAX;
1669 	return 0;
1670 }
1671 
1672 const struct file_operations kernfs_dir_fops = {
1673 	.read		= generic_read_dir,
1674 	.iterate_shared	= kernfs_fop_readdir,
1675 	.release	= kernfs_dir_fop_release,
1676 	.llseek		= generic_file_llseek,
1677 };
1678