1 /*
2 * fs/kernfs/dir.c - kernfs directory implementation
3 *
4 * Copyright (c) 2001-3 Patrick Mochel
5 * Copyright (c) 2007 SUSE Linux Products GmbH
6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
7 *
8 * This file is released under the GPLv2.
9 */
10
11 #include <linux/sched.h>
12 #include <linux/fs.h>
13 #include <linux/namei.h>
14 #include <linux/idr.h>
15 #include <linux/slab.h>
16 #include <linux/security.h>
17 #include <linux/hash.h>
18
19 #include "kernfs-internal.h"
20
21 DEFINE_MUTEX(kernfs_mutex);
22 static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */
23 static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by rename_lock */
24 static DEFINE_SPINLOCK(kernfs_idr_lock); /* root->ino_idr */
25
26 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
27
kernfs_active(struct kernfs_node * kn)28 static bool kernfs_active(struct kernfs_node *kn)
29 {
30 lockdep_assert_held(&kernfs_mutex);
31 return atomic_read(&kn->active) >= 0;
32 }
33
kernfs_lockdep(struct kernfs_node * kn)34 static bool kernfs_lockdep(struct kernfs_node *kn)
35 {
36 #ifdef CONFIG_DEBUG_LOCK_ALLOC
37 return kn->flags & KERNFS_LOCKDEP;
38 #else
39 return false;
40 #endif
41 }
42
kernfs_name_locked(struct kernfs_node * kn,char * buf,size_t buflen)43 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
44 {
45 if (!kn)
46 return strlcpy(buf, "(null)", buflen);
47
48 return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
49 }
50
51 /* kernfs_node_depth - compute depth from @from to @to */
kernfs_depth(struct kernfs_node * from,struct kernfs_node * to)52 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
53 {
54 size_t depth = 0;
55
56 while (to->parent && to != from) {
57 depth++;
58 to = to->parent;
59 }
60 return depth;
61 }
62
kernfs_common_ancestor(struct kernfs_node * a,struct kernfs_node * b)63 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
64 struct kernfs_node *b)
65 {
66 size_t da, db;
67 struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
68
69 if (ra != rb)
70 return NULL;
71
72 da = kernfs_depth(ra->kn, a);
73 db = kernfs_depth(rb->kn, b);
74
75 while (da > db) {
76 a = a->parent;
77 da--;
78 }
79 while (db > da) {
80 b = b->parent;
81 db--;
82 }
83
84 /* worst case b and a will be the same at root */
85 while (b != a) {
86 b = b->parent;
87 a = a->parent;
88 }
89
90 return a;
91 }
92
93 /**
94 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
95 * where kn_from is treated as root of the path.
96 * @kn_from: kernfs node which should be treated as root for the path
97 * @kn_to: kernfs node to which path is needed
98 * @buf: buffer to copy the path into
99 * @buflen: size of @buf
100 *
101 * We need to handle couple of scenarios here:
102 * [1] when @kn_from is an ancestor of @kn_to at some level
103 * kn_from: /n1/n2/n3
104 * kn_to: /n1/n2/n3/n4/n5
105 * result: /n4/n5
106 *
107 * [2] when @kn_from is on a different hierarchy and we need to find common
108 * ancestor between @kn_from and @kn_to.
109 * kn_from: /n1/n2/n3/n4
110 * kn_to: /n1/n2/n5
111 * result: /../../n5
112 * OR
113 * kn_from: /n1/n2/n3/n4/n5 [depth=5]
114 * kn_to: /n1/n2/n3 [depth=3]
115 * result: /../..
116 *
117 * [3] when @kn_to is NULL result will be "(null)"
118 *
119 * Returns the length of the full path. If the full length is equal to or
120 * greater than @buflen, @buf contains the truncated path with the trailing
121 * '\0'. On error, -errno is returned.
122 */
kernfs_path_from_node_locked(struct kernfs_node * kn_to,struct kernfs_node * kn_from,char * buf,size_t buflen)123 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
124 struct kernfs_node *kn_from,
125 char *buf, size_t buflen)
126 {
127 struct kernfs_node *kn, *common;
128 const char parent_str[] = "/..";
129 size_t depth_from, depth_to, len = 0;
130 int i, j;
131
132 if (!kn_to)
133 return strlcpy(buf, "(null)", buflen);
134
135 if (!kn_from)
136 kn_from = kernfs_root(kn_to)->kn;
137
138 if (kn_from == kn_to)
139 return strlcpy(buf, "/", buflen);
140
141 common = kernfs_common_ancestor(kn_from, kn_to);
142 if (WARN_ON(!common))
143 return -EINVAL;
144
145 depth_to = kernfs_depth(common, kn_to);
146 depth_from = kernfs_depth(common, kn_from);
147
148 if (buf)
149 buf[0] = '\0';
150
151 for (i = 0; i < depth_from; i++)
152 len += strlcpy(buf + len, parent_str,
153 len < buflen ? buflen - len : 0);
154
155 /* Calculate how many bytes we need for the rest */
156 for (i = depth_to - 1; i >= 0; i--) {
157 for (kn = kn_to, j = 0; j < i; j++)
158 kn = kn->parent;
159 len += strlcpy(buf + len, "/",
160 len < buflen ? buflen - len : 0);
161 len += strlcpy(buf + len, kn->name,
162 len < buflen ? buflen - len : 0);
163 }
164
165 return len;
166 }
167
168 /**
169 * kernfs_name - obtain the name of a given node
170 * @kn: kernfs_node of interest
171 * @buf: buffer to copy @kn's name into
172 * @buflen: size of @buf
173 *
174 * Copies the name of @kn into @buf of @buflen bytes. The behavior is
175 * similar to strlcpy(). It returns the length of @kn's name and if @buf
176 * isn't long enough, it's filled upto @buflen-1 and nul terminated.
177 *
178 * Fills buffer with "(null)" if @kn is NULL.
179 *
180 * This function can be called from any context.
181 */
kernfs_name(struct kernfs_node * kn,char * buf,size_t buflen)182 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
183 {
184 unsigned long flags;
185 int ret;
186
187 spin_lock_irqsave(&kernfs_rename_lock, flags);
188 ret = kernfs_name_locked(kn, buf, buflen);
189 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
190 return ret;
191 }
192
193 /**
194 * kernfs_path_from_node - build path of node @to relative to @from.
195 * @from: parent kernfs_node relative to which we need to build the path
196 * @to: kernfs_node of interest
197 * @buf: buffer to copy @to's path into
198 * @buflen: size of @buf
199 *
200 * Builds @to's path relative to @from in @buf. @from and @to must
201 * be on the same kernfs-root. If @from is not parent of @to, then a relative
202 * path (which includes '..'s) as needed to reach from @from to @to is
203 * returned.
204 *
205 * Returns the length of the full path. If the full length is equal to or
206 * greater than @buflen, @buf contains the truncated path with the trailing
207 * '\0'. On error, -errno is returned.
208 */
kernfs_path_from_node(struct kernfs_node * to,struct kernfs_node * from,char * buf,size_t buflen)209 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
210 char *buf, size_t buflen)
211 {
212 unsigned long flags;
213 int ret;
214
215 spin_lock_irqsave(&kernfs_rename_lock, flags);
216 ret = kernfs_path_from_node_locked(to, from, buf, buflen);
217 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
218 return ret;
219 }
220 EXPORT_SYMBOL_GPL(kernfs_path_from_node);
221
222 /**
223 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
224 * @kn: kernfs_node of interest
225 *
226 * This function can be called from any context.
227 */
pr_cont_kernfs_name(struct kernfs_node * kn)228 void pr_cont_kernfs_name(struct kernfs_node *kn)
229 {
230 unsigned long flags;
231
232 spin_lock_irqsave(&kernfs_rename_lock, flags);
233
234 kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
235 pr_cont("%s", kernfs_pr_cont_buf);
236
237 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
238 }
239
240 /**
241 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
242 * @kn: kernfs_node of interest
243 *
244 * This function can be called from any context.
245 */
pr_cont_kernfs_path(struct kernfs_node * kn)246 void pr_cont_kernfs_path(struct kernfs_node *kn)
247 {
248 unsigned long flags;
249 int sz;
250
251 spin_lock_irqsave(&kernfs_rename_lock, flags);
252
253 sz = kernfs_path_from_node_locked(kn, NULL, kernfs_pr_cont_buf,
254 sizeof(kernfs_pr_cont_buf));
255 if (sz < 0) {
256 pr_cont("(error)");
257 goto out;
258 }
259
260 if (sz >= sizeof(kernfs_pr_cont_buf)) {
261 pr_cont("(name too long)");
262 goto out;
263 }
264
265 pr_cont("%s", kernfs_pr_cont_buf);
266
267 out:
268 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
269 }
270
271 /**
272 * kernfs_get_parent - determine the parent node and pin it
273 * @kn: kernfs_node of interest
274 *
275 * Determines @kn's parent, pins and returns it. This function can be
276 * called from any context.
277 */
kernfs_get_parent(struct kernfs_node * kn)278 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
279 {
280 struct kernfs_node *parent;
281 unsigned long flags;
282
283 spin_lock_irqsave(&kernfs_rename_lock, flags);
284 parent = kn->parent;
285 kernfs_get(parent);
286 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
287
288 return parent;
289 }
290
291 /**
292 * kernfs_name_hash
293 * @name: Null terminated string to hash
294 * @ns: Namespace tag to hash
295 *
296 * Returns 31 bit hash of ns + name (so it fits in an off_t )
297 */
kernfs_name_hash(const char * name,const void * ns)298 static unsigned int kernfs_name_hash(const char *name, const void *ns)
299 {
300 unsigned long hash = init_name_hash(ns);
301 unsigned int len = strlen(name);
302 while (len--)
303 hash = partial_name_hash(*name++, hash);
304 hash = end_name_hash(hash);
305 hash &= 0x7fffffffU;
306 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
307 if (hash < 2)
308 hash += 2;
309 if (hash >= INT_MAX)
310 hash = INT_MAX - 1;
311 return hash;
312 }
313
kernfs_name_compare(unsigned int hash,const char * name,const void * ns,const struct kernfs_node * kn)314 static int kernfs_name_compare(unsigned int hash, const char *name,
315 const void *ns, const struct kernfs_node *kn)
316 {
317 if (hash < kn->hash)
318 return -1;
319 if (hash > kn->hash)
320 return 1;
321 if (ns < kn->ns)
322 return -1;
323 if (ns > kn->ns)
324 return 1;
325 return strcmp(name, kn->name);
326 }
327
kernfs_sd_compare(const struct kernfs_node * left,const struct kernfs_node * right)328 static int kernfs_sd_compare(const struct kernfs_node *left,
329 const struct kernfs_node *right)
330 {
331 return kernfs_name_compare(left->hash, left->name, left->ns, right);
332 }
333
334 /**
335 * kernfs_link_sibling - link kernfs_node into sibling rbtree
336 * @kn: kernfs_node of interest
337 *
338 * Link @kn into its sibling rbtree which starts from
339 * @kn->parent->dir.children.
340 *
341 * Locking:
342 * mutex_lock(kernfs_mutex)
343 *
344 * RETURNS:
345 * 0 on susccess -EEXIST on failure.
346 */
kernfs_link_sibling(struct kernfs_node * kn)347 static int kernfs_link_sibling(struct kernfs_node *kn)
348 {
349 struct rb_node **node = &kn->parent->dir.children.rb_node;
350 struct rb_node *parent = NULL;
351
352 while (*node) {
353 struct kernfs_node *pos;
354 int result;
355
356 pos = rb_to_kn(*node);
357 parent = *node;
358 result = kernfs_sd_compare(kn, pos);
359 if (result < 0)
360 node = &pos->rb.rb_left;
361 else if (result > 0)
362 node = &pos->rb.rb_right;
363 else
364 return -EEXIST;
365 }
366
367 /* add new node and rebalance the tree */
368 rb_link_node(&kn->rb, parent, node);
369 rb_insert_color(&kn->rb, &kn->parent->dir.children);
370
371 /* successfully added, account subdir number */
372 if (kernfs_type(kn) == KERNFS_DIR)
373 kn->parent->dir.subdirs++;
374
375 return 0;
376 }
377
378 /**
379 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
380 * @kn: kernfs_node of interest
381 *
382 * Try to unlink @kn from its sibling rbtree which starts from
383 * kn->parent->dir.children. Returns %true if @kn was actually
384 * removed, %false if @kn wasn't on the rbtree.
385 *
386 * Locking:
387 * mutex_lock(kernfs_mutex)
388 */
kernfs_unlink_sibling(struct kernfs_node * kn)389 static bool kernfs_unlink_sibling(struct kernfs_node *kn)
390 {
391 if (RB_EMPTY_NODE(&kn->rb))
392 return false;
393
394 if (kernfs_type(kn) == KERNFS_DIR)
395 kn->parent->dir.subdirs--;
396
397 rb_erase(&kn->rb, &kn->parent->dir.children);
398 RB_CLEAR_NODE(&kn->rb);
399 return true;
400 }
401
402 /**
403 * kernfs_get_active - get an active reference to kernfs_node
404 * @kn: kernfs_node to get an active reference to
405 *
406 * Get an active reference of @kn. This function is noop if @kn
407 * is NULL.
408 *
409 * RETURNS:
410 * Pointer to @kn on success, NULL on failure.
411 */
kernfs_get_active(struct kernfs_node * kn)412 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
413 {
414 if (unlikely(!kn))
415 return NULL;
416
417 if (!atomic_inc_unless_negative(&kn->active))
418 return NULL;
419
420 if (kernfs_lockdep(kn))
421 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
422 return kn;
423 }
424
425 /**
426 * kernfs_put_active - put an active reference to kernfs_node
427 * @kn: kernfs_node to put an active reference to
428 *
429 * Put an active reference to @kn. This function is noop if @kn
430 * is NULL.
431 */
kernfs_put_active(struct kernfs_node * kn)432 void kernfs_put_active(struct kernfs_node *kn)
433 {
434 struct kernfs_root *root = kernfs_root(kn);
435 int v;
436
437 if (unlikely(!kn))
438 return;
439
440 if (kernfs_lockdep(kn))
441 rwsem_release(&kn->dep_map, 1, _RET_IP_);
442 v = atomic_dec_return(&kn->active);
443 if (likely(v != KN_DEACTIVATED_BIAS))
444 return;
445
446 wake_up_all(&root->deactivate_waitq);
447 }
448
449 /**
450 * kernfs_drain - drain kernfs_node
451 * @kn: kernfs_node to drain
452 *
453 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple
454 * removers may invoke this function concurrently on @kn and all will
455 * return after draining is complete.
456 */
kernfs_drain(struct kernfs_node * kn)457 static void kernfs_drain(struct kernfs_node *kn)
458 __releases(&kernfs_mutex) __acquires(&kernfs_mutex)
459 {
460 struct kernfs_root *root = kernfs_root(kn);
461
462 lockdep_assert_held(&kernfs_mutex);
463 WARN_ON_ONCE(kernfs_active(kn));
464
465 mutex_unlock(&kernfs_mutex);
466
467 if (kernfs_lockdep(kn)) {
468 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
469 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
470 lock_contended(&kn->dep_map, _RET_IP_);
471 }
472
473 /* but everyone should wait for draining */
474 wait_event(root->deactivate_waitq,
475 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
476
477 if (kernfs_lockdep(kn)) {
478 lock_acquired(&kn->dep_map, _RET_IP_);
479 rwsem_release(&kn->dep_map, 1, _RET_IP_);
480 }
481
482 kernfs_drain_open_files(kn);
483
484 mutex_lock(&kernfs_mutex);
485 }
486
487 /**
488 * kernfs_get - get a reference count on a kernfs_node
489 * @kn: the target kernfs_node
490 */
kernfs_get(struct kernfs_node * kn)491 void kernfs_get(struct kernfs_node *kn)
492 {
493 if (kn) {
494 WARN_ON(!atomic_read(&kn->count));
495 atomic_inc(&kn->count);
496 }
497 }
498 EXPORT_SYMBOL_GPL(kernfs_get);
499
500 /**
501 * kernfs_put - put a reference count on a kernfs_node
502 * @kn: the target kernfs_node
503 *
504 * Put a reference count of @kn and destroy it if it reached zero.
505 */
kernfs_put(struct kernfs_node * kn)506 void kernfs_put(struct kernfs_node *kn)
507 {
508 struct kernfs_node *parent;
509 struct kernfs_root *root;
510
511 /*
512 * kernfs_node is freed with ->count 0, kernfs_find_and_get_node_by_ino
513 * depends on this to filter reused stale node
514 */
515 if (!kn || !atomic_dec_and_test(&kn->count))
516 return;
517 root = kernfs_root(kn);
518 repeat:
519 /*
520 * Moving/renaming is always done while holding reference.
521 * kn->parent won't change beneath us.
522 */
523 parent = kn->parent;
524
525 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
526 "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
527 parent ? parent->name : "", kn->name, atomic_read(&kn->active));
528
529 if (kernfs_type(kn) == KERNFS_LINK)
530 kernfs_put(kn->symlink.target_kn);
531
532 kfree_const(kn->name);
533
534 if (kn->iattr) {
535 if (kn->iattr->ia_secdata)
536 security_release_secctx(kn->iattr->ia_secdata,
537 kn->iattr->ia_secdata_len);
538 simple_xattrs_free(&kn->iattr->xattrs);
539 }
540 kfree(kn->iattr);
541 spin_lock(&kernfs_idr_lock);
542 idr_remove(&root->ino_idr, kn->id.ino);
543 spin_unlock(&kernfs_idr_lock);
544 kmem_cache_free(kernfs_node_cache, kn);
545
546 kn = parent;
547 if (kn) {
548 if (atomic_dec_and_test(&kn->count))
549 goto repeat;
550 } else {
551 /* just released the root kn, free @root too */
552 idr_destroy(&root->ino_idr);
553 kfree(root);
554 }
555 }
556 EXPORT_SYMBOL_GPL(kernfs_put);
557
kernfs_dop_revalidate(struct dentry * dentry,unsigned int flags)558 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
559 {
560 struct kernfs_node *kn;
561
562 if (flags & LOOKUP_RCU)
563 return -ECHILD;
564
565 /* Always perform fresh lookup for negatives */
566 if (d_really_is_negative(dentry))
567 goto out_bad_unlocked;
568
569 kn = kernfs_dentry_node(dentry);
570 mutex_lock(&kernfs_mutex);
571
572 /* The kernfs node has been deactivated */
573 if (!kernfs_active(kn))
574 goto out_bad;
575
576 /* The kernfs node has been moved? */
577 if (kernfs_dentry_node(dentry->d_parent) != kn->parent)
578 goto out_bad;
579
580 /* The kernfs node has been renamed */
581 if (strcmp(dentry->d_name.name, kn->name) != 0)
582 goto out_bad;
583
584 /* The kernfs node has been moved to a different namespace */
585 if (kn->parent && kernfs_ns_enabled(kn->parent) &&
586 kernfs_info(dentry->d_sb)->ns != kn->ns)
587 goto out_bad;
588
589 mutex_unlock(&kernfs_mutex);
590 return 1;
591 out_bad:
592 mutex_unlock(&kernfs_mutex);
593 out_bad_unlocked:
594 return 0;
595 }
596
597 const struct dentry_operations kernfs_dops = {
598 .d_revalidate = kernfs_dop_revalidate,
599 };
600
601 /**
602 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
603 * @dentry: the dentry in question
604 *
605 * Return the kernfs_node associated with @dentry. If @dentry is not a
606 * kernfs one, %NULL is returned.
607 *
608 * While the returned kernfs_node will stay accessible as long as @dentry
609 * is accessible, the returned node can be in any state and the caller is
610 * fully responsible for determining what's accessible.
611 */
kernfs_node_from_dentry(struct dentry * dentry)612 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
613 {
614 if (dentry->d_sb->s_op == &kernfs_sops &&
615 !d_really_is_negative(dentry))
616 return kernfs_dentry_node(dentry);
617 return NULL;
618 }
619
__kernfs_new_node(struct kernfs_root * root,const char * name,umode_t mode,unsigned flags)620 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
621 const char *name, umode_t mode,
622 unsigned flags)
623 {
624 struct kernfs_node *kn;
625 u32 gen;
626 int ret;
627
628 name = kstrdup_const(name, GFP_KERNEL);
629 if (!name)
630 return NULL;
631
632 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
633 if (!kn)
634 goto err_out1;
635
636 idr_preload(GFP_KERNEL);
637 spin_lock(&kernfs_idr_lock);
638 ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC);
639 if (ret >= 0 && ret < root->last_ino)
640 root->next_generation++;
641 gen = root->next_generation;
642 root->last_ino = ret;
643 spin_unlock(&kernfs_idr_lock);
644 idr_preload_end();
645 if (ret < 0)
646 goto err_out2;
647 kn->id.ino = ret;
648 kn->id.generation = gen;
649
650 /*
651 * set ino first. This RELEASE is paired with atomic_inc_not_zero in
652 * kernfs_find_and_get_node_by_ino
653 */
654 atomic_set_release(&kn->count, 1);
655 atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
656 RB_CLEAR_NODE(&kn->rb);
657
658 kn->name = name;
659 kn->mode = mode;
660 kn->flags = flags;
661
662 return kn;
663
664 err_out2:
665 kmem_cache_free(kernfs_node_cache, kn);
666 err_out1:
667 kfree_const(name);
668 return NULL;
669 }
670
kernfs_new_node(struct kernfs_node * parent,const char * name,umode_t mode,unsigned flags)671 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
672 const char *name, umode_t mode,
673 unsigned flags)
674 {
675 struct kernfs_node *kn;
676
677 kn = __kernfs_new_node(kernfs_root(parent), name, mode, flags);
678 if (kn) {
679 kernfs_get(parent);
680 kn->parent = parent;
681 }
682 return kn;
683 }
684
685 /*
686 * kernfs_find_and_get_node_by_ino - get kernfs_node from inode number
687 * @root: the kernfs root
688 * @ino: inode number
689 *
690 * RETURNS:
691 * NULL on failure. Return a kernfs node with reference counter incremented
692 */
kernfs_find_and_get_node_by_ino(struct kernfs_root * root,unsigned int ino)693 struct kernfs_node *kernfs_find_and_get_node_by_ino(struct kernfs_root *root,
694 unsigned int ino)
695 {
696 struct kernfs_node *kn;
697
698 rcu_read_lock();
699 kn = idr_find(&root->ino_idr, ino);
700 if (!kn)
701 goto out;
702
703 /*
704 * Since kernfs_node is freed in RCU, it's possible an old node for ino
705 * is freed, but reused before RCU grace period. But a freed node (see
706 * kernfs_put) or an incompletedly initialized node (see
707 * __kernfs_new_node) should have 'count' 0. We can use this fact to
708 * filter out such node.
709 */
710 if (!atomic_inc_not_zero(&kn->count)) {
711 kn = NULL;
712 goto out;
713 }
714
715 /*
716 * The node could be a new node or a reused node. If it's a new node,
717 * we are ok. If it's reused because of RCU (because of
718 * SLAB_TYPESAFE_BY_RCU), the __kernfs_new_node always sets its 'ino'
719 * before 'count'. So if 'count' is uptodate, 'ino' should be uptodate,
720 * hence we can use 'ino' to filter stale node.
721 */
722 if (kn->id.ino != ino)
723 goto out;
724 rcu_read_unlock();
725
726 return kn;
727 out:
728 rcu_read_unlock();
729 kernfs_put(kn);
730 return NULL;
731 }
732
733 /**
734 * kernfs_add_one - add kernfs_node to parent without warning
735 * @kn: kernfs_node to be added
736 *
737 * The caller must already have initialized @kn->parent. This
738 * function increments nlink of the parent's inode if @kn is a
739 * directory and link into the children list of the parent.
740 *
741 * RETURNS:
742 * 0 on success, -EEXIST if entry with the given name already
743 * exists.
744 */
kernfs_add_one(struct kernfs_node * kn)745 int kernfs_add_one(struct kernfs_node *kn)
746 {
747 struct kernfs_node *parent = kn->parent;
748 struct kernfs_iattrs *ps_iattr;
749 bool has_ns;
750 int ret;
751
752 mutex_lock(&kernfs_mutex);
753
754 ret = -EINVAL;
755 has_ns = kernfs_ns_enabled(parent);
756 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
757 has_ns ? "required" : "invalid", parent->name, kn->name))
758 goto out_unlock;
759
760 if (kernfs_type(parent) != KERNFS_DIR)
761 goto out_unlock;
762
763 ret = -ENOENT;
764 if (parent->flags & KERNFS_EMPTY_DIR)
765 goto out_unlock;
766
767 if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
768 goto out_unlock;
769
770 kn->hash = kernfs_name_hash(kn->name, kn->ns);
771
772 ret = kernfs_link_sibling(kn);
773 if (ret)
774 goto out_unlock;
775
776 /* Update timestamps on the parent */
777 ps_iattr = parent->iattr;
778 if (ps_iattr) {
779 struct iattr *ps_iattrs = &ps_iattr->ia_iattr;
780 ktime_get_real_ts(&ps_iattrs->ia_ctime);
781 ps_iattrs->ia_mtime = ps_iattrs->ia_ctime;
782 }
783
784 mutex_unlock(&kernfs_mutex);
785
786 /*
787 * Activate the new node unless CREATE_DEACTIVATED is requested.
788 * If not activated here, the kernfs user is responsible for
789 * activating the node with kernfs_activate(). A node which hasn't
790 * been activated is not visible to userland and its removal won't
791 * trigger deactivation.
792 */
793 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
794 kernfs_activate(kn);
795 return 0;
796
797 out_unlock:
798 mutex_unlock(&kernfs_mutex);
799 return ret;
800 }
801
802 /**
803 * kernfs_find_ns - find kernfs_node with the given name
804 * @parent: kernfs_node to search under
805 * @name: name to look for
806 * @ns: the namespace tag to use
807 *
808 * Look for kernfs_node with name @name under @parent. Returns pointer to
809 * the found kernfs_node on success, %NULL on failure.
810 */
kernfs_find_ns(struct kernfs_node * parent,const unsigned char * name,const void * ns)811 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
812 const unsigned char *name,
813 const void *ns)
814 {
815 struct rb_node *node = parent->dir.children.rb_node;
816 bool has_ns = kernfs_ns_enabled(parent);
817 unsigned int hash;
818
819 lockdep_assert_held(&kernfs_mutex);
820
821 if (has_ns != (bool)ns) {
822 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
823 has_ns ? "required" : "invalid", parent->name, name);
824 return NULL;
825 }
826
827 hash = kernfs_name_hash(name, ns);
828 while (node) {
829 struct kernfs_node *kn;
830 int result;
831
832 kn = rb_to_kn(node);
833 result = kernfs_name_compare(hash, name, ns, kn);
834 if (result < 0)
835 node = node->rb_left;
836 else if (result > 0)
837 node = node->rb_right;
838 else
839 return kn;
840 }
841 return NULL;
842 }
843
kernfs_walk_ns(struct kernfs_node * parent,const unsigned char * path,const void * ns)844 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
845 const unsigned char *path,
846 const void *ns)
847 {
848 size_t len;
849 char *p, *name;
850
851 lockdep_assert_held(&kernfs_mutex);
852
853 /* grab kernfs_rename_lock to piggy back on kernfs_pr_cont_buf */
854 spin_lock_irq(&kernfs_rename_lock);
855
856 len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
857
858 if (len >= sizeof(kernfs_pr_cont_buf)) {
859 spin_unlock_irq(&kernfs_rename_lock);
860 return NULL;
861 }
862
863 p = kernfs_pr_cont_buf;
864
865 while ((name = strsep(&p, "/")) && parent) {
866 if (*name == '\0')
867 continue;
868 parent = kernfs_find_ns(parent, name, ns);
869 }
870
871 spin_unlock_irq(&kernfs_rename_lock);
872
873 return parent;
874 }
875
876 /**
877 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
878 * @parent: kernfs_node to search under
879 * @name: name to look for
880 * @ns: the namespace tag to use
881 *
882 * Look for kernfs_node with name @name under @parent and get a reference
883 * if found. This function may sleep and returns pointer to the found
884 * kernfs_node on success, %NULL on failure.
885 */
kernfs_find_and_get_ns(struct kernfs_node * parent,const char * name,const void * ns)886 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
887 const char *name, const void *ns)
888 {
889 struct kernfs_node *kn;
890
891 mutex_lock(&kernfs_mutex);
892 kn = kernfs_find_ns(parent, name, ns);
893 kernfs_get(kn);
894 mutex_unlock(&kernfs_mutex);
895
896 return kn;
897 }
898 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
899
900 /**
901 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
902 * @parent: kernfs_node to search under
903 * @path: path to look for
904 * @ns: the namespace tag to use
905 *
906 * Look for kernfs_node with path @path under @parent and get a reference
907 * if found. This function may sleep and returns pointer to the found
908 * kernfs_node on success, %NULL on failure.
909 */
kernfs_walk_and_get_ns(struct kernfs_node * parent,const char * path,const void * ns)910 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
911 const char *path, const void *ns)
912 {
913 struct kernfs_node *kn;
914
915 mutex_lock(&kernfs_mutex);
916 kn = kernfs_walk_ns(parent, path, ns);
917 kernfs_get(kn);
918 mutex_unlock(&kernfs_mutex);
919
920 return kn;
921 }
922
923 /**
924 * kernfs_create_root - create a new kernfs hierarchy
925 * @scops: optional syscall operations for the hierarchy
926 * @flags: KERNFS_ROOT_* flags
927 * @priv: opaque data associated with the new directory
928 *
929 * Returns the root of the new hierarchy on success, ERR_PTR() value on
930 * failure.
931 */
kernfs_create_root(struct kernfs_syscall_ops * scops,unsigned int flags,void * priv)932 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
933 unsigned int flags, void *priv)
934 {
935 struct kernfs_root *root;
936 struct kernfs_node *kn;
937
938 root = kzalloc(sizeof(*root), GFP_KERNEL);
939 if (!root)
940 return ERR_PTR(-ENOMEM);
941
942 idr_init(&root->ino_idr);
943 INIT_LIST_HEAD(&root->supers);
944 root->next_generation = 1;
945
946 kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO,
947 KERNFS_DIR);
948 if (!kn) {
949 idr_destroy(&root->ino_idr);
950 kfree(root);
951 return ERR_PTR(-ENOMEM);
952 }
953
954 kn->priv = priv;
955 kn->dir.root = root;
956
957 root->syscall_ops = scops;
958 root->flags = flags;
959 root->kn = kn;
960 init_waitqueue_head(&root->deactivate_waitq);
961
962 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
963 kernfs_activate(kn);
964
965 return root;
966 }
967
968 /**
969 * kernfs_destroy_root - destroy a kernfs hierarchy
970 * @root: root of the hierarchy to destroy
971 *
972 * Destroy the hierarchy anchored at @root by removing all existing
973 * directories and destroying @root.
974 */
kernfs_destroy_root(struct kernfs_root * root)975 void kernfs_destroy_root(struct kernfs_root *root)
976 {
977 kernfs_remove(root->kn); /* will also free @root */
978 }
979
980 /**
981 * kernfs_create_dir_ns - create a directory
982 * @parent: parent in which to create a new directory
983 * @name: name of the new directory
984 * @mode: mode of the new directory
985 * @priv: opaque data associated with the new directory
986 * @ns: optional namespace tag of the directory
987 *
988 * Returns the created node on success, ERR_PTR() value on failure.
989 */
kernfs_create_dir_ns(struct kernfs_node * parent,const char * name,umode_t mode,void * priv,const void * ns)990 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
991 const char *name, umode_t mode,
992 void *priv, const void *ns)
993 {
994 struct kernfs_node *kn;
995 int rc;
996
997 /* allocate */
998 kn = kernfs_new_node(parent, name, mode | S_IFDIR, KERNFS_DIR);
999 if (!kn)
1000 return ERR_PTR(-ENOMEM);
1001
1002 kn->dir.root = parent->dir.root;
1003 kn->ns = ns;
1004 kn->priv = priv;
1005
1006 /* link in */
1007 rc = kernfs_add_one(kn);
1008 if (!rc)
1009 return kn;
1010
1011 kernfs_put(kn);
1012 return ERR_PTR(rc);
1013 }
1014
1015 /**
1016 * kernfs_create_empty_dir - create an always empty directory
1017 * @parent: parent in which to create a new directory
1018 * @name: name of the new directory
1019 *
1020 * Returns the created node on success, ERR_PTR() value on failure.
1021 */
kernfs_create_empty_dir(struct kernfs_node * parent,const char * name)1022 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
1023 const char *name)
1024 {
1025 struct kernfs_node *kn;
1026 int rc;
1027
1028 /* allocate */
1029 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR, KERNFS_DIR);
1030 if (!kn)
1031 return ERR_PTR(-ENOMEM);
1032
1033 kn->flags |= KERNFS_EMPTY_DIR;
1034 kn->dir.root = parent->dir.root;
1035 kn->ns = NULL;
1036 kn->priv = NULL;
1037
1038 /* link in */
1039 rc = kernfs_add_one(kn);
1040 if (!rc)
1041 return kn;
1042
1043 kernfs_put(kn);
1044 return ERR_PTR(rc);
1045 }
1046
kernfs_iop_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)1047 static struct dentry *kernfs_iop_lookup(struct inode *dir,
1048 struct dentry *dentry,
1049 unsigned int flags)
1050 {
1051 struct dentry *ret;
1052 struct kernfs_node *parent = dir->i_private;
1053 struct kernfs_node *kn;
1054 struct inode *inode;
1055 const void *ns = NULL;
1056
1057 mutex_lock(&kernfs_mutex);
1058
1059 if (kernfs_ns_enabled(parent))
1060 ns = kernfs_info(dir->i_sb)->ns;
1061
1062 kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
1063
1064 /* no such entry */
1065 if (!kn || !kernfs_active(kn)) {
1066 ret = NULL;
1067 goto out_unlock;
1068 }
1069
1070 /* attach dentry and inode */
1071 inode = kernfs_get_inode(dir->i_sb, kn);
1072 if (!inode) {
1073 ret = ERR_PTR(-ENOMEM);
1074 goto out_unlock;
1075 }
1076
1077 /* instantiate and hash dentry */
1078 ret = d_splice_alias(inode, dentry);
1079 out_unlock:
1080 mutex_unlock(&kernfs_mutex);
1081 return ret;
1082 }
1083
kernfs_iop_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)1084 static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
1085 umode_t mode)
1086 {
1087 struct kernfs_node *parent = dir->i_private;
1088 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
1089 int ret;
1090
1091 if (!scops || !scops->mkdir)
1092 return -EPERM;
1093
1094 if (!kernfs_get_active(parent))
1095 return -ENODEV;
1096
1097 ret = scops->mkdir(parent, dentry->d_name.name, mode);
1098
1099 kernfs_put_active(parent);
1100 return ret;
1101 }
1102
kernfs_iop_rmdir(struct inode * dir,struct dentry * dentry)1103 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
1104 {
1105 struct kernfs_node *kn = kernfs_dentry_node(dentry);
1106 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1107 int ret;
1108
1109 if (!scops || !scops->rmdir)
1110 return -EPERM;
1111
1112 if (!kernfs_get_active(kn))
1113 return -ENODEV;
1114
1115 ret = scops->rmdir(kn);
1116
1117 kernfs_put_active(kn);
1118 return ret;
1119 }
1120
kernfs_iop_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)1121 static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
1122 struct inode *new_dir, struct dentry *new_dentry,
1123 unsigned int flags)
1124 {
1125 struct kernfs_node *kn = kernfs_dentry_node(old_dentry);
1126 struct kernfs_node *new_parent = new_dir->i_private;
1127 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1128 int ret;
1129
1130 if (flags)
1131 return -EINVAL;
1132
1133 if (!scops || !scops->rename)
1134 return -EPERM;
1135
1136 if (!kernfs_get_active(kn))
1137 return -ENODEV;
1138
1139 if (!kernfs_get_active(new_parent)) {
1140 kernfs_put_active(kn);
1141 return -ENODEV;
1142 }
1143
1144 ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
1145
1146 kernfs_put_active(new_parent);
1147 kernfs_put_active(kn);
1148 return ret;
1149 }
1150
1151 const struct inode_operations kernfs_dir_iops = {
1152 .lookup = kernfs_iop_lookup,
1153 .permission = kernfs_iop_permission,
1154 .setattr = kernfs_iop_setattr,
1155 .getattr = kernfs_iop_getattr,
1156 .listxattr = kernfs_iop_listxattr,
1157
1158 .mkdir = kernfs_iop_mkdir,
1159 .rmdir = kernfs_iop_rmdir,
1160 .rename = kernfs_iop_rename,
1161 };
1162
kernfs_leftmost_descendant(struct kernfs_node * pos)1163 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1164 {
1165 struct kernfs_node *last;
1166
1167 while (true) {
1168 struct rb_node *rbn;
1169
1170 last = pos;
1171
1172 if (kernfs_type(pos) != KERNFS_DIR)
1173 break;
1174
1175 rbn = rb_first(&pos->dir.children);
1176 if (!rbn)
1177 break;
1178
1179 pos = rb_to_kn(rbn);
1180 }
1181
1182 return last;
1183 }
1184
1185 /**
1186 * kernfs_next_descendant_post - find the next descendant for post-order walk
1187 * @pos: the current position (%NULL to initiate traversal)
1188 * @root: kernfs_node whose descendants to walk
1189 *
1190 * Find the next descendant to visit for post-order traversal of @root's
1191 * descendants. @root is included in the iteration and the last node to be
1192 * visited.
1193 */
kernfs_next_descendant_post(struct kernfs_node * pos,struct kernfs_node * root)1194 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1195 struct kernfs_node *root)
1196 {
1197 struct rb_node *rbn;
1198
1199 lockdep_assert_held(&kernfs_mutex);
1200
1201 /* if first iteration, visit leftmost descendant which may be root */
1202 if (!pos)
1203 return kernfs_leftmost_descendant(root);
1204
1205 /* if we visited @root, we're done */
1206 if (pos == root)
1207 return NULL;
1208
1209 /* if there's an unvisited sibling, visit its leftmost descendant */
1210 rbn = rb_next(&pos->rb);
1211 if (rbn)
1212 return kernfs_leftmost_descendant(rb_to_kn(rbn));
1213
1214 /* no sibling left, visit parent */
1215 return pos->parent;
1216 }
1217
1218 /**
1219 * kernfs_activate - activate a node which started deactivated
1220 * @kn: kernfs_node whose subtree is to be activated
1221 *
1222 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1223 * needs to be explicitly activated. A node which hasn't been activated
1224 * isn't visible to userland and deactivation is skipped during its
1225 * removal. This is useful to construct atomic init sequences where
1226 * creation of multiple nodes should either succeed or fail atomically.
1227 *
1228 * The caller is responsible for ensuring that this function is not called
1229 * after kernfs_remove*() is invoked on @kn.
1230 */
kernfs_activate(struct kernfs_node * kn)1231 void kernfs_activate(struct kernfs_node *kn)
1232 {
1233 struct kernfs_node *pos;
1234
1235 mutex_lock(&kernfs_mutex);
1236
1237 pos = NULL;
1238 while ((pos = kernfs_next_descendant_post(pos, kn))) {
1239 if (!pos || (pos->flags & KERNFS_ACTIVATED))
1240 continue;
1241
1242 WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
1243 WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
1244
1245 atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
1246 pos->flags |= KERNFS_ACTIVATED;
1247 }
1248
1249 mutex_unlock(&kernfs_mutex);
1250 }
1251
__kernfs_remove(struct kernfs_node * kn)1252 static void __kernfs_remove(struct kernfs_node *kn)
1253 {
1254 struct kernfs_node *pos;
1255
1256 lockdep_assert_held(&kernfs_mutex);
1257
1258 /*
1259 * Short-circuit if non-root @kn has already finished removal.
1260 * This is for kernfs_remove_self() which plays with active ref
1261 * after removal.
1262 */
1263 if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
1264 return;
1265
1266 pr_debug("kernfs %s: removing\n", kn->name);
1267
1268 /* prevent any new usage under @kn by deactivating all nodes */
1269 pos = NULL;
1270 while ((pos = kernfs_next_descendant_post(pos, kn)))
1271 if (kernfs_active(pos))
1272 atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1273
1274 /* deactivate and unlink the subtree node-by-node */
1275 do {
1276 pos = kernfs_leftmost_descendant(kn);
1277
1278 /*
1279 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1280 * base ref could have been put by someone else by the time
1281 * the function returns. Make sure it doesn't go away
1282 * underneath us.
1283 */
1284 kernfs_get(pos);
1285
1286 /*
1287 * Drain iff @kn was activated. This avoids draining and
1288 * its lockdep annotations for nodes which have never been
1289 * activated and allows embedding kernfs_remove() in create
1290 * error paths without worrying about draining.
1291 */
1292 if (kn->flags & KERNFS_ACTIVATED)
1293 kernfs_drain(pos);
1294 else
1295 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1296
1297 /*
1298 * kernfs_unlink_sibling() succeeds once per node. Use it
1299 * to decide who's responsible for cleanups.
1300 */
1301 if (!pos->parent || kernfs_unlink_sibling(pos)) {
1302 struct kernfs_iattrs *ps_iattr =
1303 pos->parent ? pos->parent->iattr : NULL;
1304
1305 /* update timestamps on the parent */
1306 if (ps_iattr) {
1307 ktime_get_real_ts(&ps_iattr->ia_iattr.ia_ctime);
1308 ps_iattr->ia_iattr.ia_mtime =
1309 ps_iattr->ia_iattr.ia_ctime;
1310 }
1311
1312 kernfs_put(pos);
1313 }
1314
1315 kernfs_put(pos);
1316 } while (pos != kn);
1317 }
1318
1319 /**
1320 * kernfs_remove - remove a kernfs_node recursively
1321 * @kn: the kernfs_node to remove
1322 *
1323 * Remove @kn along with all its subdirectories and files.
1324 */
kernfs_remove(struct kernfs_node * kn)1325 void kernfs_remove(struct kernfs_node *kn)
1326 {
1327 mutex_lock(&kernfs_mutex);
1328 __kernfs_remove(kn);
1329 mutex_unlock(&kernfs_mutex);
1330 }
1331
1332 /**
1333 * kernfs_break_active_protection - break out of active protection
1334 * @kn: the self kernfs_node
1335 *
1336 * The caller must be running off of a kernfs operation which is invoked
1337 * with an active reference - e.g. one of kernfs_ops. Each invocation of
1338 * this function must also be matched with an invocation of
1339 * kernfs_unbreak_active_protection().
1340 *
1341 * This function releases the active reference of @kn the caller is
1342 * holding. Once this function is called, @kn may be removed at any point
1343 * and the caller is solely responsible for ensuring that the objects it
1344 * dereferences are accessible.
1345 */
kernfs_break_active_protection(struct kernfs_node * kn)1346 void kernfs_break_active_protection(struct kernfs_node *kn)
1347 {
1348 /*
1349 * Take out ourself out of the active ref dependency chain. If
1350 * we're called without an active ref, lockdep will complain.
1351 */
1352 kernfs_put_active(kn);
1353 }
1354
1355 /**
1356 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1357 * @kn: the self kernfs_node
1358 *
1359 * If kernfs_break_active_protection() was called, this function must be
1360 * invoked before finishing the kernfs operation. Note that while this
1361 * function restores the active reference, it doesn't and can't actually
1362 * restore the active protection - @kn may already or be in the process of
1363 * being removed. Once kernfs_break_active_protection() is invoked, that
1364 * protection is irreversibly gone for the kernfs operation instance.
1365 *
1366 * While this function may be called at any point after
1367 * kernfs_break_active_protection() is invoked, its most useful location
1368 * would be right before the enclosing kernfs operation returns.
1369 */
kernfs_unbreak_active_protection(struct kernfs_node * kn)1370 void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1371 {
1372 /*
1373 * @kn->active could be in any state; however, the increment we do
1374 * here will be undone as soon as the enclosing kernfs operation
1375 * finishes and this temporary bump can't break anything. If @kn
1376 * is alive, nothing changes. If @kn is being deactivated, the
1377 * soon-to-follow put will either finish deactivation or restore
1378 * deactivated state. If @kn is already removed, the temporary
1379 * bump is guaranteed to be gone before @kn is released.
1380 */
1381 atomic_inc(&kn->active);
1382 if (kernfs_lockdep(kn))
1383 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1384 }
1385
1386 /**
1387 * kernfs_remove_self - remove a kernfs_node from its own method
1388 * @kn: the self kernfs_node to remove
1389 *
1390 * The caller must be running off of a kernfs operation which is invoked
1391 * with an active reference - e.g. one of kernfs_ops. This can be used to
1392 * implement a file operation which deletes itself.
1393 *
1394 * For example, the "delete" file for a sysfs device directory can be
1395 * implemented by invoking kernfs_remove_self() on the "delete" file
1396 * itself. This function breaks the circular dependency of trying to
1397 * deactivate self while holding an active ref itself. It isn't necessary
1398 * to modify the usual removal path to use kernfs_remove_self(). The
1399 * "delete" implementation can simply invoke kernfs_remove_self() on self
1400 * before proceeding with the usual removal path. kernfs will ignore later
1401 * kernfs_remove() on self.
1402 *
1403 * kernfs_remove_self() can be called multiple times concurrently on the
1404 * same kernfs_node. Only the first one actually performs removal and
1405 * returns %true. All others will wait until the kernfs operation which
1406 * won self-removal finishes and return %false. Note that the losers wait
1407 * for the completion of not only the winning kernfs_remove_self() but also
1408 * the whole kernfs_ops which won the arbitration. This can be used to
1409 * guarantee, for example, all concurrent writes to a "delete" file to
1410 * finish only after the whole operation is complete.
1411 */
kernfs_remove_self(struct kernfs_node * kn)1412 bool kernfs_remove_self(struct kernfs_node *kn)
1413 {
1414 bool ret;
1415
1416 mutex_lock(&kernfs_mutex);
1417 kernfs_break_active_protection(kn);
1418
1419 /*
1420 * SUICIDAL is used to arbitrate among competing invocations. Only
1421 * the first one will actually perform removal. When the removal
1422 * is complete, SUICIDED is set and the active ref is restored
1423 * while holding kernfs_mutex. The ones which lost arbitration
1424 * waits for SUICDED && drained which can happen only after the
1425 * enclosing kernfs operation which executed the winning instance
1426 * of kernfs_remove_self() finished.
1427 */
1428 if (!(kn->flags & KERNFS_SUICIDAL)) {
1429 kn->flags |= KERNFS_SUICIDAL;
1430 __kernfs_remove(kn);
1431 kn->flags |= KERNFS_SUICIDED;
1432 ret = true;
1433 } else {
1434 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1435 DEFINE_WAIT(wait);
1436
1437 while (true) {
1438 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1439
1440 if ((kn->flags & KERNFS_SUICIDED) &&
1441 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1442 break;
1443
1444 mutex_unlock(&kernfs_mutex);
1445 schedule();
1446 mutex_lock(&kernfs_mutex);
1447 }
1448 finish_wait(waitq, &wait);
1449 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1450 ret = false;
1451 }
1452
1453 /*
1454 * This must be done while holding kernfs_mutex; otherwise, waiting
1455 * for SUICIDED && deactivated could finish prematurely.
1456 */
1457 kernfs_unbreak_active_protection(kn);
1458
1459 mutex_unlock(&kernfs_mutex);
1460 return ret;
1461 }
1462
1463 /**
1464 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1465 * @parent: parent of the target
1466 * @name: name of the kernfs_node to remove
1467 * @ns: namespace tag of the kernfs_node to remove
1468 *
1469 * Look for the kernfs_node with @name and @ns under @parent and remove it.
1470 * Returns 0 on success, -ENOENT if such entry doesn't exist.
1471 */
kernfs_remove_by_name_ns(struct kernfs_node * parent,const char * name,const void * ns)1472 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1473 const void *ns)
1474 {
1475 struct kernfs_node *kn;
1476
1477 if (!parent) {
1478 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1479 name);
1480 return -ENOENT;
1481 }
1482
1483 mutex_lock(&kernfs_mutex);
1484
1485 kn = kernfs_find_ns(parent, name, ns);
1486 if (kn)
1487 __kernfs_remove(kn);
1488
1489 mutex_unlock(&kernfs_mutex);
1490
1491 if (kn)
1492 return 0;
1493 else
1494 return -ENOENT;
1495 }
1496
1497 /**
1498 * kernfs_rename_ns - move and rename a kernfs_node
1499 * @kn: target node
1500 * @new_parent: new parent to put @sd under
1501 * @new_name: new name
1502 * @new_ns: new namespace tag
1503 */
kernfs_rename_ns(struct kernfs_node * kn,struct kernfs_node * new_parent,const char * new_name,const void * new_ns)1504 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1505 const char *new_name, const void *new_ns)
1506 {
1507 struct kernfs_node *old_parent;
1508 const char *old_name = NULL;
1509 int error;
1510
1511 /* can't move or rename root */
1512 if (!kn->parent)
1513 return -EINVAL;
1514
1515 mutex_lock(&kernfs_mutex);
1516
1517 error = -ENOENT;
1518 if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1519 (new_parent->flags & KERNFS_EMPTY_DIR))
1520 goto out;
1521
1522 error = 0;
1523 if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1524 (strcmp(kn->name, new_name) == 0))
1525 goto out; /* nothing to rename */
1526
1527 error = -EEXIST;
1528 if (kernfs_find_ns(new_parent, new_name, new_ns))
1529 goto out;
1530
1531 /* rename kernfs_node */
1532 if (strcmp(kn->name, new_name) != 0) {
1533 error = -ENOMEM;
1534 new_name = kstrdup_const(new_name, GFP_KERNEL);
1535 if (!new_name)
1536 goto out;
1537 } else {
1538 new_name = NULL;
1539 }
1540
1541 /*
1542 * Move to the appropriate place in the appropriate directories rbtree.
1543 */
1544 kernfs_unlink_sibling(kn);
1545 kernfs_get(new_parent);
1546
1547 /* rename_lock protects ->parent and ->name accessors */
1548 spin_lock_irq(&kernfs_rename_lock);
1549
1550 old_parent = kn->parent;
1551 kn->parent = new_parent;
1552
1553 kn->ns = new_ns;
1554 if (new_name) {
1555 old_name = kn->name;
1556 kn->name = new_name;
1557 }
1558
1559 spin_unlock_irq(&kernfs_rename_lock);
1560
1561 kn->hash = kernfs_name_hash(kn->name, kn->ns);
1562 kernfs_link_sibling(kn);
1563
1564 kernfs_put(old_parent);
1565 kfree_const(old_name);
1566
1567 error = 0;
1568 out:
1569 mutex_unlock(&kernfs_mutex);
1570 return error;
1571 }
1572
1573 /* Relationship between s_mode and the DT_xxx types */
dt_type(struct kernfs_node * kn)1574 static inline unsigned char dt_type(struct kernfs_node *kn)
1575 {
1576 return (kn->mode >> 12) & 15;
1577 }
1578
kernfs_dir_fop_release(struct inode * inode,struct file * filp)1579 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1580 {
1581 kernfs_put(filp->private_data);
1582 return 0;
1583 }
1584
kernfs_dir_pos(const void * ns,struct kernfs_node * parent,loff_t hash,struct kernfs_node * pos)1585 static struct kernfs_node *kernfs_dir_pos(const void *ns,
1586 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1587 {
1588 if (pos) {
1589 int valid = kernfs_active(pos) &&
1590 pos->parent == parent && hash == pos->hash;
1591 kernfs_put(pos);
1592 if (!valid)
1593 pos = NULL;
1594 }
1595 if (!pos && (hash > 1) && (hash < INT_MAX)) {
1596 struct rb_node *node = parent->dir.children.rb_node;
1597 while (node) {
1598 pos = rb_to_kn(node);
1599
1600 if (hash < pos->hash)
1601 node = node->rb_left;
1602 else if (hash > pos->hash)
1603 node = node->rb_right;
1604 else
1605 break;
1606 }
1607 }
1608 /* Skip over entries which are dying/dead or in the wrong namespace */
1609 while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1610 struct rb_node *node = rb_next(&pos->rb);
1611 if (!node)
1612 pos = NULL;
1613 else
1614 pos = rb_to_kn(node);
1615 }
1616 return pos;
1617 }
1618
kernfs_dir_next_pos(const void * ns,struct kernfs_node * parent,ino_t ino,struct kernfs_node * pos)1619 static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1620 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1621 {
1622 pos = kernfs_dir_pos(ns, parent, ino, pos);
1623 if (pos) {
1624 do {
1625 struct rb_node *node = rb_next(&pos->rb);
1626 if (!node)
1627 pos = NULL;
1628 else
1629 pos = rb_to_kn(node);
1630 } while (pos && (!kernfs_active(pos) || pos->ns != ns));
1631 }
1632 return pos;
1633 }
1634
kernfs_fop_readdir(struct file * file,struct dir_context * ctx)1635 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1636 {
1637 struct dentry *dentry = file->f_path.dentry;
1638 struct kernfs_node *parent = kernfs_dentry_node(dentry);
1639 struct kernfs_node *pos = file->private_data;
1640 const void *ns = NULL;
1641
1642 if (!dir_emit_dots(file, ctx))
1643 return 0;
1644 mutex_lock(&kernfs_mutex);
1645
1646 if (kernfs_ns_enabled(parent))
1647 ns = kernfs_info(dentry->d_sb)->ns;
1648
1649 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1650 pos;
1651 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1652 const char *name = pos->name;
1653 unsigned int type = dt_type(pos);
1654 int len = strlen(name);
1655 ino_t ino = pos->id.ino;
1656
1657 ctx->pos = pos->hash;
1658 file->private_data = pos;
1659 kernfs_get(pos);
1660
1661 mutex_unlock(&kernfs_mutex);
1662 if (!dir_emit(ctx, name, len, ino, type))
1663 return 0;
1664 mutex_lock(&kernfs_mutex);
1665 }
1666 mutex_unlock(&kernfs_mutex);
1667 file->private_data = NULL;
1668 ctx->pos = INT_MAX;
1669 return 0;
1670 }
1671
1672 const struct file_operations kernfs_dir_fops = {
1673 .read = generic_read_dir,
1674 .iterate_shared = kernfs_fop_readdir,
1675 .release = kernfs_dir_fop_release,
1676 .llseek = generic_file_llseek,
1677 };
1678