• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/super.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  super.c contains code to handle: - mount structures
8  *                                   - super-block tables
9  *                                   - filesystem drivers list
10  *                                   - mount system call
11  *                                   - umount system call
12  *                                   - ustat system call
13  *
14  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
15  *
16  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18  *  Added options to /proc/mounts:
19  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
22  */
23 
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h>		/* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include <linux/user_namespace.h>
38 #include "internal.h"
39 
40 
41 static LIST_HEAD(super_blocks);
42 static DEFINE_SPINLOCK(sb_lock);
43 
44 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
45 	"sb_writers",
46 	"sb_pagefaults",
47 	"sb_internal",
48 };
49 
50 /*
51  * One thing we have to be careful of with a per-sb shrinker is that we don't
52  * drop the last active reference to the superblock from within the shrinker.
53  * If that happens we could trigger unregistering the shrinker from within the
54  * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
55  * take a passive reference to the superblock to avoid this from occurring.
56  */
super_cache_scan(struct shrinker * shrink,struct shrink_control * sc)57 static unsigned long super_cache_scan(struct shrinker *shrink,
58 				      struct shrink_control *sc)
59 {
60 	struct super_block *sb;
61 	long	fs_objects = 0;
62 	long	total_objects;
63 	long	freed = 0;
64 	long	dentries;
65 	long	inodes;
66 
67 	sb = container_of(shrink, struct super_block, s_shrink);
68 
69 	/*
70 	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
71 	 * to recurse into the FS that called us in clear_inode() and friends..
72 	 */
73 	if (!(sc->gfp_mask & __GFP_FS))
74 		return SHRINK_STOP;
75 
76 	if (!trylock_super(sb))
77 		return SHRINK_STOP;
78 
79 	if (sb->s_op->nr_cached_objects)
80 		fs_objects = sb->s_op->nr_cached_objects(sb, sc);
81 
82 	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
83 	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
84 	total_objects = dentries + inodes + fs_objects + 1;
85 	if (!total_objects)
86 		total_objects = 1;
87 
88 	/* proportion the scan between the caches */
89 	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
90 	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
91 	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
92 
93 	/*
94 	 * prune the dcache first as the icache is pinned by it, then
95 	 * prune the icache, followed by the filesystem specific caches
96 	 *
97 	 * Ensure that we always scan at least one object - memcg kmem
98 	 * accounting uses this to fully empty the caches.
99 	 */
100 	sc->nr_to_scan = dentries + 1;
101 	freed = prune_dcache_sb(sb, sc);
102 	sc->nr_to_scan = inodes + 1;
103 	freed += prune_icache_sb(sb, sc);
104 
105 	if (fs_objects) {
106 		sc->nr_to_scan = fs_objects + 1;
107 		freed += sb->s_op->free_cached_objects(sb, sc);
108 	}
109 
110 	up_read(&sb->s_umount);
111 	return freed;
112 }
113 
super_cache_count(struct shrinker * shrink,struct shrink_control * sc)114 static unsigned long super_cache_count(struct shrinker *shrink,
115 				       struct shrink_control *sc)
116 {
117 	struct super_block *sb;
118 	long	total_objects = 0;
119 
120 	sb = container_of(shrink, struct super_block, s_shrink);
121 
122 	/*
123 	 * We don't call trylock_super() here as it is a scalability bottleneck,
124 	 * so we're exposed to partial setup state. The shrinker rwsem does not
125 	 * protect filesystem operations backing list_lru_shrink_count() or
126 	 * s_op->nr_cached_objects(). Counts can change between
127 	 * super_cache_count and super_cache_scan, so we really don't need locks
128 	 * here.
129 	 *
130 	 * However, if we are currently mounting the superblock, the underlying
131 	 * filesystem might be in a state of partial construction and hence it
132 	 * is dangerous to access it.  trylock_super() uses a SB_BORN check to
133 	 * avoid this situation, so do the same here. The memory barrier is
134 	 * matched with the one in mount_fs() as we don't hold locks here.
135 	 */
136 	if (!(sb->s_flags & SB_BORN))
137 		return 0;
138 	smp_rmb();
139 
140 	if (sb->s_op && sb->s_op->nr_cached_objects)
141 		total_objects = sb->s_op->nr_cached_objects(sb, sc);
142 
143 	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
144 	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
145 
146 	total_objects = vfs_pressure_ratio(total_objects);
147 	return total_objects;
148 }
149 
destroy_super_work(struct work_struct * work)150 static void destroy_super_work(struct work_struct *work)
151 {
152 	struct super_block *s = container_of(work, struct super_block,
153 							destroy_work);
154 	int i;
155 
156 	for (i = 0; i < SB_FREEZE_LEVELS; i++)
157 		percpu_free_rwsem(&s->s_writers.rw_sem[i]);
158 	kfree(s);
159 }
160 
destroy_super_rcu(struct rcu_head * head)161 static void destroy_super_rcu(struct rcu_head *head)
162 {
163 	struct super_block *s = container_of(head, struct super_block, rcu);
164 	INIT_WORK(&s->destroy_work, destroy_super_work);
165 	schedule_work(&s->destroy_work);
166 }
167 
168 /**
169  *	destroy_super	-	frees a superblock
170  *	@s: superblock to free
171  *
172  *	Frees a superblock.
173  */
destroy_super(struct super_block * s)174 static void destroy_super(struct super_block *s)
175 {
176 	list_lru_destroy(&s->s_dentry_lru);
177 	list_lru_destroy(&s->s_inode_lru);
178 	security_sb_free(s);
179 	WARN_ON(!list_empty(&s->s_mounts));
180 	put_user_ns(s->s_user_ns);
181 	kfree(s->s_subtype);
182 	call_rcu(&s->rcu, destroy_super_rcu);
183 }
184 
185 /**
186  *	alloc_super	-	create new superblock
187  *	@type:	filesystem type superblock should belong to
188  *	@flags: the mount flags
189  *	@user_ns: User namespace for the super_block
190  *
191  *	Allocates and initializes a new &struct super_block.  alloc_super()
192  *	returns a pointer new superblock or %NULL if allocation had failed.
193  */
alloc_super(struct file_system_type * type,int flags,struct user_namespace * user_ns)194 static struct super_block *alloc_super(struct file_system_type *type, int flags,
195 				       struct user_namespace *user_ns)
196 {
197 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
198 	static const struct super_operations default_op;
199 	int i;
200 
201 	if (!s)
202 		return NULL;
203 
204 	INIT_LIST_HEAD(&s->s_mounts);
205 	s->s_user_ns = get_user_ns(user_ns);
206 
207 	if (security_sb_alloc(s))
208 		goto fail;
209 
210 	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
211 		if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
212 					sb_writers_name[i],
213 					&type->s_writers_key[i]))
214 			goto fail;
215 	}
216 	init_waitqueue_head(&s->s_writers.wait_unfrozen);
217 	s->s_bdi = &noop_backing_dev_info;
218 	s->s_flags = flags;
219 	if (s->s_user_ns != &init_user_ns)
220 		s->s_iflags |= SB_I_NODEV;
221 	INIT_HLIST_NODE(&s->s_instances);
222 	INIT_HLIST_BL_HEAD(&s->s_anon);
223 	mutex_init(&s->s_sync_lock);
224 	INIT_LIST_HEAD(&s->s_inodes);
225 	spin_lock_init(&s->s_inode_list_lock);
226 	INIT_LIST_HEAD(&s->s_inodes_wb);
227 	spin_lock_init(&s->s_inode_wblist_lock);
228 
229 	if (list_lru_init_memcg(&s->s_dentry_lru))
230 		goto fail;
231 	if (list_lru_init_memcg(&s->s_inode_lru))
232 		goto fail;
233 
234 	init_rwsem(&s->s_umount);
235 	lockdep_set_class(&s->s_umount, &type->s_umount_key);
236 	/*
237 	 * sget() can have s_umount recursion.
238 	 *
239 	 * When it cannot find a suitable sb, it allocates a new
240 	 * one (this one), and tries again to find a suitable old
241 	 * one.
242 	 *
243 	 * In case that succeeds, it will acquire the s_umount
244 	 * lock of the old one. Since these are clearly distrinct
245 	 * locks, and this object isn't exposed yet, there's no
246 	 * risk of deadlocks.
247 	 *
248 	 * Annotate this by putting this lock in a different
249 	 * subclass.
250 	 */
251 	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
252 	s->s_count = 1;
253 	atomic_set(&s->s_active, 1);
254 	mutex_init(&s->s_vfs_rename_mutex);
255 	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
256 	init_rwsem(&s->s_dquot.dqio_sem);
257 	s->s_maxbytes = MAX_NON_LFS;
258 	s->s_op = &default_op;
259 	s->s_time_gran = 1000000000;
260 	s->cleancache_poolid = CLEANCACHE_NO_POOL;
261 
262 	s->s_shrink.seeks = DEFAULT_SEEKS;
263 	s->s_shrink.scan_objects = super_cache_scan;
264 	s->s_shrink.count_objects = super_cache_count;
265 	s->s_shrink.batch = 1024;
266 	s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
267 	return s;
268 
269 fail:
270 	destroy_super(s);
271 	return NULL;
272 }
273 
274 /* Superblock refcounting  */
275 
276 /*
277  * Drop a superblock's refcount.  The caller must hold sb_lock.
278  */
__put_super(struct super_block * sb)279 static void __put_super(struct super_block *sb)
280 {
281 	if (!--sb->s_count) {
282 		list_del_init(&sb->s_list);
283 		destroy_super(sb);
284 	}
285 }
286 
287 /**
288  *	put_super	-	drop a temporary reference to superblock
289  *	@sb: superblock in question
290  *
291  *	Drops a temporary reference, frees superblock if there's no
292  *	references left.
293  */
put_super(struct super_block * sb)294 static void put_super(struct super_block *sb)
295 {
296 	spin_lock(&sb_lock);
297 	__put_super(sb);
298 	spin_unlock(&sb_lock);
299 }
300 
301 
302 /**
303  *	deactivate_locked_super	-	drop an active reference to superblock
304  *	@s: superblock to deactivate
305  *
306  *	Drops an active reference to superblock, converting it into a temporary
307  *	one if there is no other active references left.  In that case we
308  *	tell fs driver to shut it down and drop the temporary reference we
309  *	had just acquired.
310  *
311  *	Caller holds exclusive lock on superblock; that lock is released.
312  */
deactivate_locked_super(struct super_block * s)313 void deactivate_locked_super(struct super_block *s)
314 {
315 	struct file_system_type *fs = s->s_type;
316 	if (atomic_dec_and_test(&s->s_active)) {
317 		cleancache_invalidate_fs(s);
318 		unregister_shrinker(&s->s_shrink);
319 		fs->kill_sb(s);
320 
321 		/*
322 		 * Since list_lru_destroy() may sleep, we cannot call it from
323 		 * put_super(), where we hold the sb_lock. Therefore we destroy
324 		 * the lru lists right now.
325 		 */
326 		list_lru_destroy(&s->s_dentry_lru);
327 		list_lru_destroy(&s->s_inode_lru);
328 
329 		put_filesystem(fs);
330 		put_super(s);
331 	} else {
332 		up_write(&s->s_umount);
333 	}
334 }
335 
336 EXPORT_SYMBOL(deactivate_locked_super);
337 
338 /**
339  *	deactivate_super	-	drop an active reference to superblock
340  *	@s: superblock to deactivate
341  *
342  *	Variant of deactivate_locked_super(), except that superblock is *not*
343  *	locked by caller.  If we are going to drop the final active reference,
344  *	lock will be acquired prior to that.
345  */
deactivate_super(struct super_block * s)346 void deactivate_super(struct super_block *s)
347 {
348         if (!atomic_add_unless(&s->s_active, -1, 1)) {
349 		down_write(&s->s_umount);
350 		deactivate_locked_super(s);
351 	}
352 }
353 
354 EXPORT_SYMBOL(deactivate_super);
355 
356 /**
357  *	grab_super - acquire an active reference
358  *	@s: reference we are trying to make active
359  *
360  *	Tries to acquire an active reference.  grab_super() is used when we
361  * 	had just found a superblock in super_blocks or fs_type->fs_supers
362  *	and want to turn it into a full-blown active reference.  grab_super()
363  *	is called with sb_lock held and drops it.  Returns 1 in case of
364  *	success, 0 if we had failed (superblock contents was already dead or
365  *	dying when grab_super() had been called).  Note that this is only
366  *	called for superblocks not in rundown mode (== ones still on ->fs_supers
367  *	of their type), so increment of ->s_count is OK here.
368  */
grab_super(struct super_block * s)369 static int grab_super(struct super_block *s) __releases(sb_lock)
370 {
371 	s->s_count++;
372 	spin_unlock(&sb_lock);
373 	down_write(&s->s_umount);
374 	if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
375 		put_super(s);
376 		return 1;
377 	}
378 	up_write(&s->s_umount);
379 	put_super(s);
380 	return 0;
381 }
382 
383 /*
384  *	trylock_super - try to grab ->s_umount shared
385  *	@sb: reference we are trying to grab
386  *
387  *	Try to prevent fs shutdown.  This is used in places where we
388  *	cannot take an active reference but we need to ensure that the
389  *	filesystem is not shut down while we are working on it. It returns
390  *	false if we cannot acquire s_umount or if we lose the race and
391  *	filesystem already got into shutdown, and returns true with the s_umount
392  *	lock held in read mode in case of success. On successful return,
393  *	the caller must drop the s_umount lock when done.
394  *
395  *	Note that unlike get_super() et.al. this one does *not* bump ->s_count.
396  *	The reason why it's safe is that we are OK with doing trylock instead
397  *	of down_read().  There's a couple of places that are OK with that, but
398  *	it's very much not a general-purpose interface.
399  */
trylock_super(struct super_block * sb)400 bool trylock_super(struct super_block *sb)
401 {
402 	if (down_read_trylock(&sb->s_umount)) {
403 		if (!hlist_unhashed(&sb->s_instances) &&
404 		    sb->s_root && (sb->s_flags & SB_BORN))
405 			return true;
406 		up_read(&sb->s_umount);
407 	}
408 
409 	return false;
410 }
411 
412 /**
413  *	generic_shutdown_super	-	common helper for ->kill_sb()
414  *	@sb: superblock to kill
415  *
416  *	generic_shutdown_super() does all fs-independent work on superblock
417  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
418  *	that need destruction out of superblock, call generic_shutdown_super()
419  *	and release aforementioned objects.  Note: dentries and inodes _are_
420  *	taken care of and do not need specific handling.
421  *
422  *	Upon calling this function, the filesystem may no longer alter or
423  *	rearrange the set of dentries belonging to this super_block, nor may it
424  *	change the attachments of dentries to inodes.
425  */
generic_shutdown_super(struct super_block * sb)426 void generic_shutdown_super(struct super_block *sb)
427 {
428 	const struct super_operations *sop = sb->s_op;
429 
430 	if (sb->s_root) {
431 		shrink_dcache_for_umount(sb);
432 		sync_filesystem(sb);
433 		sb->s_flags &= ~SB_ACTIVE;
434 
435 		fsnotify_unmount_inodes(sb);
436 		cgroup_writeback_umount();
437 
438 		evict_inodes(sb);
439 
440 		if (sb->s_dio_done_wq) {
441 			destroy_workqueue(sb->s_dio_done_wq);
442 			sb->s_dio_done_wq = NULL;
443 		}
444 
445 		if (sop->put_super)
446 			sop->put_super(sb);
447 
448 		if (!list_empty(&sb->s_inodes)) {
449 			printk("VFS: Busy inodes after unmount of %s. "
450 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
451 			   sb->s_id);
452 		}
453 	}
454 	spin_lock(&sb_lock);
455 	/* should be initialized for __put_super_and_need_restart() */
456 	hlist_del_init(&sb->s_instances);
457 	spin_unlock(&sb_lock);
458 	up_write(&sb->s_umount);
459 	if (sb->s_bdi != &noop_backing_dev_info) {
460 		bdi_put(sb->s_bdi);
461 		sb->s_bdi = &noop_backing_dev_info;
462 	}
463 }
464 
465 EXPORT_SYMBOL(generic_shutdown_super);
466 
467 /**
468  *	sget_userns -	find or create a superblock
469  *	@type:	filesystem type superblock should belong to
470  *	@test:	comparison callback
471  *	@set:	setup callback
472  *	@flags:	mount flags
473  *	@user_ns: User namespace for the super_block
474  *	@data:	argument to each of them
475  */
sget_userns(struct file_system_type * type,int (* test)(struct super_block *,void *),int (* set)(struct super_block *,void *),int flags,struct user_namespace * user_ns,void * data)476 struct super_block *sget_userns(struct file_system_type *type,
477 			int (*test)(struct super_block *,void *),
478 			int (*set)(struct super_block *,void *),
479 			int flags, struct user_namespace *user_ns,
480 			void *data)
481 {
482 	struct super_block *s = NULL;
483 	struct super_block *old;
484 	int err;
485 
486 	if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) &&
487 	    !(type->fs_flags & FS_USERNS_MOUNT) &&
488 	    !capable(CAP_SYS_ADMIN))
489 		return ERR_PTR(-EPERM);
490 retry:
491 	spin_lock(&sb_lock);
492 	if (test) {
493 		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
494 			if (!test(old, data))
495 				continue;
496 			if (user_ns != old->s_user_ns) {
497 				spin_unlock(&sb_lock);
498 				if (s) {
499 					up_write(&s->s_umount);
500 					destroy_super(s);
501 				}
502 				return ERR_PTR(-EBUSY);
503 			}
504 			if (!grab_super(old))
505 				goto retry;
506 			if (s) {
507 				up_write(&s->s_umount);
508 				destroy_super(s);
509 				s = NULL;
510 			}
511 			return old;
512 		}
513 	}
514 	if (!s) {
515 		spin_unlock(&sb_lock);
516 		s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
517 		if (!s)
518 			return ERR_PTR(-ENOMEM);
519 		goto retry;
520 	}
521 
522 	err = set(s, data);
523 	if (err) {
524 		spin_unlock(&sb_lock);
525 		up_write(&s->s_umount);
526 		destroy_super(s);
527 		return ERR_PTR(err);
528 	}
529 	s->s_type = type;
530 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
531 	list_add_tail(&s->s_list, &super_blocks);
532 	hlist_add_head(&s->s_instances, &type->fs_supers);
533 	spin_unlock(&sb_lock);
534 	get_filesystem(type);
535 	err = register_shrinker(&s->s_shrink);
536 	if (err) {
537 		deactivate_locked_super(s);
538 		s = ERR_PTR(err);
539 	}
540 	return s;
541 }
542 
543 EXPORT_SYMBOL(sget_userns);
544 
545 /**
546  *	sget	-	find or create a superblock
547  *	@type:	  filesystem type superblock should belong to
548  *	@test:	  comparison callback
549  *	@set:	  setup callback
550  *	@flags:	  mount flags
551  *	@data:	  argument to each of them
552  */
sget(struct file_system_type * type,int (* test)(struct super_block *,void *),int (* set)(struct super_block *,void *),int flags,void * data)553 struct super_block *sget(struct file_system_type *type,
554 			int (*test)(struct super_block *,void *),
555 			int (*set)(struct super_block *,void *),
556 			int flags,
557 			void *data)
558 {
559 	struct user_namespace *user_ns = current_user_ns();
560 
561 	/* We don't yet pass the user namespace of the parent
562 	 * mount through to here so always use &init_user_ns
563 	 * until that changes.
564 	 */
565 	if (flags & SB_SUBMOUNT)
566 		user_ns = &init_user_ns;
567 
568 	/* Ensure the requestor has permissions over the target filesystem */
569 	if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) && !ns_capable(user_ns, CAP_SYS_ADMIN))
570 		return ERR_PTR(-EPERM);
571 
572 	return sget_userns(type, test, set, flags, user_ns, data);
573 }
574 
575 EXPORT_SYMBOL(sget);
576 
drop_super(struct super_block * sb)577 void drop_super(struct super_block *sb)
578 {
579 	up_read(&sb->s_umount);
580 	put_super(sb);
581 }
582 
583 EXPORT_SYMBOL(drop_super);
584 
drop_super_exclusive(struct super_block * sb)585 void drop_super_exclusive(struct super_block *sb)
586 {
587 	up_write(&sb->s_umount);
588 	put_super(sb);
589 }
590 EXPORT_SYMBOL(drop_super_exclusive);
591 
592 /**
593  *	iterate_supers - call function for all active superblocks
594  *	@f: function to call
595  *	@arg: argument to pass to it
596  *
597  *	Scans the superblock list and calls given function, passing it
598  *	locked superblock and given argument.
599  */
iterate_supers(void (* f)(struct super_block *,void *),void * arg)600 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
601 {
602 	struct super_block *sb, *p = NULL;
603 
604 	spin_lock(&sb_lock);
605 	list_for_each_entry(sb, &super_blocks, s_list) {
606 		if (hlist_unhashed(&sb->s_instances))
607 			continue;
608 		sb->s_count++;
609 		spin_unlock(&sb_lock);
610 
611 		down_read(&sb->s_umount);
612 		if (sb->s_root && (sb->s_flags & SB_BORN))
613 			f(sb, arg);
614 		up_read(&sb->s_umount);
615 
616 		spin_lock(&sb_lock);
617 		if (p)
618 			__put_super(p);
619 		p = sb;
620 	}
621 	if (p)
622 		__put_super(p);
623 	spin_unlock(&sb_lock);
624 }
625 
626 /**
627  *	iterate_supers_type - call function for superblocks of given type
628  *	@type: fs type
629  *	@f: function to call
630  *	@arg: argument to pass to it
631  *
632  *	Scans the superblock list and calls given function, passing it
633  *	locked superblock and given argument.
634  */
iterate_supers_type(struct file_system_type * type,void (* f)(struct super_block *,void *),void * arg)635 void iterate_supers_type(struct file_system_type *type,
636 	void (*f)(struct super_block *, void *), void *arg)
637 {
638 	struct super_block *sb, *p = NULL;
639 
640 	spin_lock(&sb_lock);
641 	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
642 		sb->s_count++;
643 		spin_unlock(&sb_lock);
644 
645 		down_read(&sb->s_umount);
646 		if (sb->s_root && (sb->s_flags & SB_BORN))
647 			f(sb, arg);
648 		up_read(&sb->s_umount);
649 
650 		spin_lock(&sb_lock);
651 		if (p)
652 			__put_super(p);
653 		p = sb;
654 	}
655 	if (p)
656 		__put_super(p);
657 	spin_unlock(&sb_lock);
658 }
659 
660 EXPORT_SYMBOL(iterate_supers_type);
661 
__get_super(struct block_device * bdev,bool excl)662 static struct super_block *__get_super(struct block_device *bdev, bool excl)
663 {
664 	struct super_block *sb;
665 
666 	if (!bdev)
667 		return NULL;
668 
669 	spin_lock(&sb_lock);
670 rescan:
671 	list_for_each_entry(sb, &super_blocks, s_list) {
672 		if (hlist_unhashed(&sb->s_instances))
673 			continue;
674 		if (sb->s_bdev == bdev) {
675 			sb->s_count++;
676 			spin_unlock(&sb_lock);
677 			if (!excl)
678 				down_read(&sb->s_umount);
679 			else
680 				down_write(&sb->s_umount);
681 			/* still alive? */
682 			if (sb->s_root && (sb->s_flags & SB_BORN))
683 				return sb;
684 			if (!excl)
685 				up_read(&sb->s_umount);
686 			else
687 				up_write(&sb->s_umount);
688 			/* nope, got unmounted */
689 			spin_lock(&sb_lock);
690 			__put_super(sb);
691 			goto rescan;
692 		}
693 	}
694 	spin_unlock(&sb_lock);
695 	return NULL;
696 }
697 
698 /**
699  *	get_super - get the superblock of a device
700  *	@bdev: device to get the superblock for
701  *
702  *	Scans the superblock list and finds the superblock of the file system
703  *	mounted on the device given. %NULL is returned if no match is found.
704  */
get_super(struct block_device * bdev)705 struct super_block *get_super(struct block_device *bdev)
706 {
707 	return __get_super(bdev, false);
708 }
709 EXPORT_SYMBOL(get_super);
710 
__get_super_thawed(struct block_device * bdev,bool excl)711 static struct super_block *__get_super_thawed(struct block_device *bdev,
712 					      bool excl)
713 {
714 	while (1) {
715 		struct super_block *s = __get_super(bdev, excl);
716 		if (!s || s->s_writers.frozen == SB_UNFROZEN)
717 			return s;
718 		if (!excl)
719 			up_read(&s->s_umount);
720 		else
721 			up_write(&s->s_umount);
722 		wait_event(s->s_writers.wait_unfrozen,
723 			   s->s_writers.frozen == SB_UNFROZEN);
724 		put_super(s);
725 	}
726 }
727 
728 /**
729  *	get_super_thawed - get thawed superblock of a device
730  *	@bdev: device to get the superblock for
731  *
732  *	Scans the superblock list and finds the superblock of the file system
733  *	mounted on the device. The superblock is returned once it is thawed
734  *	(or immediately if it was not frozen). %NULL is returned if no match
735  *	is found.
736  */
get_super_thawed(struct block_device * bdev)737 struct super_block *get_super_thawed(struct block_device *bdev)
738 {
739 	return __get_super_thawed(bdev, false);
740 }
741 EXPORT_SYMBOL(get_super_thawed);
742 
743 /**
744  *	get_super_exclusive_thawed - get thawed superblock of a device
745  *	@bdev: device to get the superblock for
746  *
747  *	Scans the superblock list and finds the superblock of the file system
748  *	mounted on the device. The superblock is returned once it is thawed
749  *	(or immediately if it was not frozen) and s_umount semaphore is held
750  *	in exclusive mode. %NULL is returned if no match is found.
751  */
get_super_exclusive_thawed(struct block_device * bdev)752 struct super_block *get_super_exclusive_thawed(struct block_device *bdev)
753 {
754 	return __get_super_thawed(bdev, true);
755 }
756 EXPORT_SYMBOL(get_super_exclusive_thawed);
757 
758 /**
759  * get_active_super - get an active reference to the superblock of a device
760  * @bdev: device to get the superblock for
761  *
762  * Scans the superblock list and finds the superblock of the file system
763  * mounted on the device given.  Returns the superblock with an active
764  * reference or %NULL if none was found.
765  */
get_active_super(struct block_device * bdev)766 struct super_block *get_active_super(struct block_device *bdev)
767 {
768 	struct super_block *sb;
769 
770 	if (!bdev)
771 		return NULL;
772 
773 restart:
774 	spin_lock(&sb_lock);
775 	list_for_each_entry(sb, &super_blocks, s_list) {
776 		if (hlist_unhashed(&sb->s_instances))
777 			continue;
778 		if (sb->s_bdev == bdev) {
779 			if (!grab_super(sb))
780 				goto restart;
781 			up_write(&sb->s_umount);
782 			return sb;
783 		}
784 	}
785 	spin_unlock(&sb_lock);
786 	return NULL;
787 }
788 
user_get_super(dev_t dev)789 struct super_block *user_get_super(dev_t dev)
790 {
791 	struct super_block *sb;
792 
793 	spin_lock(&sb_lock);
794 rescan:
795 	list_for_each_entry(sb, &super_blocks, s_list) {
796 		if (hlist_unhashed(&sb->s_instances))
797 			continue;
798 		if (sb->s_dev ==  dev) {
799 			sb->s_count++;
800 			spin_unlock(&sb_lock);
801 			down_read(&sb->s_umount);
802 			/* still alive? */
803 			if (sb->s_root && (sb->s_flags & SB_BORN))
804 				return sb;
805 			up_read(&sb->s_umount);
806 			/* nope, got unmounted */
807 			spin_lock(&sb_lock);
808 			__put_super(sb);
809 			goto rescan;
810 		}
811 	}
812 	spin_unlock(&sb_lock);
813 	return NULL;
814 }
815 
816 /**
817  *	do_remount_sb2 - asks filesystem to change mount options.
818  *	@mnt:   mount we are looking at
819  *	@sb:	superblock in question
820  *	@sb_flags: revised superblock flags
821  *	@data:	the rest of options
822  *      @force: whether or not to force the change
823  *
824  *	Alters the mount options of a mounted file system.
825  */
do_remount_sb2(struct vfsmount * mnt,struct super_block * sb,int sb_flags,void * data,int force)826 int do_remount_sb2(struct vfsmount *mnt, struct super_block *sb, int sb_flags, void *data, int force)
827 {
828 	int retval;
829 	int remount_ro;
830 
831 	if (sb->s_writers.frozen != SB_UNFROZEN)
832 		return -EBUSY;
833 
834 #ifdef CONFIG_BLOCK
835 	if (!(sb_flags & SB_RDONLY) && bdev_read_only(sb->s_bdev))
836 		return -EACCES;
837 #endif
838 
839 	remount_ro = (sb_flags & SB_RDONLY) && !sb_rdonly(sb);
840 
841 	if (remount_ro) {
842 		if (!hlist_empty(&sb->s_pins)) {
843 			up_write(&sb->s_umount);
844 			group_pin_kill(&sb->s_pins);
845 			down_write(&sb->s_umount);
846 			if (!sb->s_root)
847 				return 0;
848 			if (sb->s_writers.frozen != SB_UNFROZEN)
849 				return -EBUSY;
850 			remount_ro = (sb_flags & SB_RDONLY) && !sb_rdonly(sb);
851 		}
852 	}
853 	shrink_dcache_sb(sb);
854 
855 	/* If we are remounting RDONLY and current sb is read/write,
856 	   make sure there are no rw files opened */
857 	if (remount_ro) {
858 		if (force) {
859 			sb->s_readonly_remount = 1;
860 			smp_wmb();
861 		} else {
862 			retval = sb_prepare_remount_readonly(sb);
863 			if (retval)
864 				return retval;
865 		}
866 	}
867 
868 	if (mnt && sb->s_op->remount_fs2) {
869 		retval = sb->s_op->remount_fs2(mnt, sb, &sb_flags, data);
870 		if (retval) {
871 			if (!force)
872 				goto cancel_readonly;
873 			/* If forced remount, go ahead despite any errors */
874 			WARN(1, "forced remount of a %s fs returned %i\n",
875 			     sb->s_type->name, retval);
876 		}
877 	} else if (sb->s_op->remount_fs) {
878 		retval = sb->s_op->remount_fs(sb, &sb_flags, data);
879 		if (retval) {
880 			if (!force)
881 				goto cancel_readonly;
882 			/* If forced remount, go ahead despite any errors */
883 			WARN(1, "forced remount of a %s fs returned %i\n",
884 			     sb->s_type->name, retval);
885 		}
886 	}
887 	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (sb_flags & MS_RMT_MASK);
888 	/* Needs to be ordered wrt mnt_is_readonly() */
889 	smp_wmb();
890 	sb->s_readonly_remount = 0;
891 
892 	/*
893 	 * Some filesystems modify their metadata via some other path than the
894 	 * bdev buffer cache (eg. use a private mapping, or directories in
895 	 * pagecache, etc). Also file data modifications go via their own
896 	 * mappings. So If we try to mount readonly then copy the filesystem
897 	 * from bdev, we could get stale data, so invalidate it to give a best
898 	 * effort at coherency.
899 	 */
900 	if (remount_ro && sb->s_bdev)
901 		invalidate_bdev(sb->s_bdev);
902 	return 0;
903 
904 cancel_readonly:
905 	sb->s_readonly_remount = 0;
906 	return retval;
907 }
908 
do_remount_sb(struct super_block * sb,int flags,void * data,int force)909 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
910 {
911 	return do_remount_sb2(NULL, sb, flags, data, force);
912 }
913 
do_emergency_remount(struct work_struct * work)914 static void do_emergency_remount(struct work_struct *work)
915 {
916 	struct super_block *sb, *p = NULL;
917 
918 	spin_lock(&sb_lock);
919 	list_for_each_entry_reverse(sb, &super_blocks, s_list) {
920 		if (hlist_unhashed(&sb->s_instances))
921 			continue;
922 		sb->s_count++;
923 		spin_unlock(&sb_lock);
924 		down_write(&sb->s_umount);
925 		if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
926 		    !sb_rdonly(sb)) {
927 			/*
928 			 * What lock protects sb->s_flags??
929 			 */
930 			do_remount_sb(sb, SB_RDONLY, NULL, 1);
931 		}
932 		up_write(&sb->s_umount);
933 		spin_lock(&sb_lock);
934 		if (p)
935 			__put_super(p);
936 		p = sb;
937 	}
938 	if (p)
939 		__put_super(p);
940 	spin_unlock(&sb_lock);
941 	kfree(work);
942 	printk("Emergency Remount complete\n");
943 }
944 
emergency_remount(void)945 void emergency_remount(void)
946 {
947 	struct work_struct *work;
948 
949 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
950 	if (work) {
951 		INIT_WORK(work, do_emergency_remount);
952 		schedule_work(work);
953 	}
954 }
955 
956 /*
957  * Unnamed block devices are dummy devices used by virtual
958  * filesystems which don't use real block-devices.  -- jrs
959  */
960 
961 static DEFINE_IDA(unnamed_dev_ida);
962 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
963 /* Many userspace utilities consider an FSID of 0 invalid.
964  * Always return at least 1 from get_anon_bdev.
965  */
966 static int unnamed_dev_start = 1;
967 
get_anon_bdev(dev_t * p)968 int get_anon_bdev(dev_t *p)
969 {
970 	int dev;
971 	int error;
972 
973  retry:
974 	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
975 		return -ENOMEM;
976 	spin_lock(&unnamed_dev_lock);
977 	error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
978 	if (!error)
979 		unnamed_dev_start = dev + 1;
980 	spin_unlock(&unnamed_dev_lock);
981 	if (error == -EAGAIN)
982 		/* We raced and lost with another CPU. */
983 		goto retry;
984 	else if (error)
985 		return -EAGAIN;
986 
987 	if (dev >= (1 << MINORBITS)) {
988 		spin_lock(&unnamed_dev_lock);
989 		ida_remove(&unnamed_dev_ida, dev);
990 		if (unnamed_dev_start > dev)
991 			unnamed_dev_start = dev;
992 		spin_unlock(&unnamed_dev_lock);
993 		return -EMFILE;
994 	}
995 	*p = MKDEV(0, dev & MINORMASK);
996 	return 0;
997 }
998 EXPORT_SYMBOL(get_anon_bdev);
999 
free_anon_bdev(dev_t dev)1000 void free_anon_bdev(dev_t dev)
1001 {
1002 	int slot = MINOR(dev);
1003 	spin_lock(&unnamed_dev_lock);
1004 	ida_remove(&unnamed_dev_ida, slot);
1005 	if (slot < unnamed_dev_start)
1006 		unnamed_dev_start = slot;
1007 	spin_unlock(&unnamed_dev_lock);
1008 }
1009 EXPORT_SYMBOL(free_anon_bdev);
1010 
set_anon_super(struct super_block * s,void * data)1011 int set_anon_super(struct super_block *s, void *data)
1012 {
1013 	return get_anon_bdev(&s->s_dev);
1014 }
1015 
1016 EXPORT_SYMBOL(set_anon_super);
1017 
kill_anon_super(struct super_block * sb)1018 void kill_anon_super(struct super_block *sb)
1019 {
1020 	dev_t dev = sb->s_dev;
1021 	generic_shutdown_super(sb);
1022 	free_anon_bdev(dev);
1023 }
1024 
1025 EXPORT_SYMBOL(kill_anon_super);
1026 
kill_litter_super(struct super_block * sb)1027 void kill_litter_super(struct super_block *sb)
1028 {
1029 	if (sb->s_root)
1030 		d_genocide(sb->s_root);
1031 	kill_anon_super(sb);
1032 }
1033 
1034 EXPORT_SYMBOL(kill_litter_super);
1035 
ns_test_super(struct super_block * sb,void * data)1036 static int ns_test_super(struct super_block *sb, void *data)
1037 {
1038 	return sb->s_fs_info == data;
1039 }
1040 
ns_set_super(struct super_block * sb,void * data)1041 static int ns_set_super(struct super_block *sb, void *data)
1042 {
1043 	sb->s_fs_info = data;
1044 	return set_anon_super(sb, NULL);
1045 }
1046 
mount_ns(struct file_system_type * fs_type,int flags,void * data,void * ns,struct user_namespace * user_ns,int (* fill_super)(struct super_block *,void *,int))1047 struct dentry *mount_ns(struct file_system_type *fs_type,
1048 	int flags, void *data, void *ns, struct user_namespace *user_ns,
1049 	int (*fill_super)(struct super_block *, void *, int))
1050 {
1051 	struct super_block *sb;
1052 
1053 	/* Don't allow mounting unless the caller has CAP_SYS_ADMIN
1054 	 * over the namespace.
1055 	 */
1056 	if (!(flags & SB_KERNMOUNT) && !ns_capable(user_ns, CAP_SYS_ADMIN))
1057 		return ERR_PTR(-EPERM);
1058 
1059 	sb = sget_userns(fs_type, ns_test_super, ns_set_super, flags,
1060 			 user_ns, ns);
1061 	if (IS_ERR(sb))
1062 		return ERR_CAST(sb);
1063 
1064 	if (!sb->s_root) {
1065 		int err;
1066 		err = fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
1067 		if (err) {
1068 			deactivate_locked_super(sb);
1069 			return ERR_PTR(err);
1070 		}
1071 
1072 		sb->s_flags |= SB_ACTIVE;
1073 	}
1074 
1075 	return dget(sb->s_root);
1076 }
1077 
1078 EXPORT_SYMBOL(mount_ns);
1079 
1080 #ifdef CONFIG_BLOCK
set_bdev_super(struct super_block * s,void * data)1081 static int set_bdev_super(struct super_block *s, void *data)
1082 {
1083 	s->s_bdev = data;
1084 	s->s_dev = s->s_bdev->bd_dev;
1085 	s->s_bdi = bdi_get(s->s_bdev->bd_bdi);
1086 
1087 	return 0;
1088 }
1089 
test_bdev_super(struct super_block * s,void * data)1090 static int test_bdev_super(struct super_block *s, void *data)
1091 {
1092 	return (void *)s->s_bdev == data;
1093 }
1094 
mount_bdev(struct file_system_type * fs_type,int flags,const char * dev_name,void * data,int (* fill_super)(struct super_block *,void *,int))1095 struct dentry *mount_bdev(struct file_system_type *fs_type,
1096 	int flags, const char *dev_name, void *data,
1097 	int (*fill_super)(struct super_block *, void *, int))
1098 {
1099 	struct block_device *bdev;
1100 	struct super_block *s;
1101 	fmode_t mode = FMODE_READ | FMODE_EXCL;
1102 	int error = 0;
1103 
1104 	if (!(flags & SB_RDONLY))
1105 		mode |= FMODE_WRITE;
1106 
1107 	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1108 	if (IS_ERR(bdev))
1109 		return ERR_CAST(bdev);
1110 
1111 	/*
1112 	 * once the super is inserted into the list by sget, s_umount
1113 	 * will protect the lockfs code from trying to start a snapshot
1114 	 * while we are mounting
1115 	 */
1116 	mutex_lock(&bdev->bd_fsfreeze_mutex);
1117 	if (bdev->bd_fsfreeze_count > 0) {
1118 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
1119 		error = -EBUSY;
1120 		goto error_bdev;
1121 	}
1122 	s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
1123 		 bdev);
1124 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
1125 	if (IS_ERR(s))
1126 		goto error_s;
1127 
1128 	if (s->s_root) {
1129 		if ((flags ^ s->s_flags) & SB_RDONLY) {
1130 			deactivate_locked_super(s);
1131 			error = -EBUSY;
1132 			goto error_bdev;
1133 		}
1134 
1135 		/*
1136 		 * s_umount nests inside bd_mutex during
1137 		 * __invalidate_device().  blkdev_put() acquires
1138 		 * bd_mutex and can't be called under s_umount.  Drop
1139 		 * s_umount temporarily.  This is safe as we're
1140 		 * holding an active reference.
1141 		 */
1142 		up_write(&s->s_umount);
1143 		blkdev_put(bdev, mode);
1144 		down_write(&s->s_umount);
1145 	} else {
1146 		s->s_mode = mode;
1147 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1148 		sb_set_blocksize(s, block_size(bdev));
1149 		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1150 		if (error) {
1151 			deactivate_locked_super(s);
1152 			goto error;
1153 		}
1154 
1155 		s->s_flags |= SB_ACTIVE;
1156 		bdev->bd_super = s;
1157 	}
1158 
1159 	return dget(s->s_root);
1160 
1161 error_s:
1162 	error = PTR_ERR(s);
1163 error_bdev:
1164 	blkdev_put(bdev, mode);
1165 error:
1166 	return ERR_PTR(error);
1167 }
1168 EXPORT_SYMBOL(mount_bdev);
1169 
kill_block_super(struct super_block * sb)1170 void kill_block_super(struct super_block *sb)
1171 {
1172 	struct block_device *bdev = sb->s_bdev;
1173 	fmode_t mode = sb->s_mode;
1174 
1175 	bdev->bd_super = NULL;
1176 	generic_shutdown_super(sb);
1177 	sync_blockdev(bdev);
1178 	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1179 	blkdev_put(bdev, mode | FMODE_EXCL);
1180 }
1181 
1182 EXPORT_SYMBOL(kill_block_super);
1183 #endif
1184 
mount_nodev(struct file_system_type * fs_type,int flags,void * data,int (* fill_super)(struct super_block *,void *,int))1185 struct dentry *mount_nodev(struct file_system_type *fs_type,
1186 	int flags, void *data,
1187 	int (*fill_super)(struct super_block *, void *, int))
1188 {
1189 	int error;
1190 	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1191 
1192 	if (IS_ERR(s))
1193 		return ERR_CAST(s);
1194 
1195 	error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1196 	if (error) {
1197 		deactivate_locked_super(s);
1198 		return ERR_PTR(error);
1199 	}
1200 	s->s_flags |= SB_ACTIVE;
1201 	return dget(s->s_root);
1202 }
1203 EXPORT_SYMBOL(mount_nodev);
1204 
compare_single(struct super_block * s,void * p)1205 static int compare_single(struct super_block *s, void *p)
1206 {
1207 	return 1;
1208 }
1209 
mount_single(struct file_system_type * fs_type,int flags,void * data,int (* fill_super)(struct super_block *,void *,int))1210 struct dentry *mount_single(struct file_system_type *fs_type,
1211 	int flags, void *data,
1212 	int (*fill_super)(struct super_block *, void *, int))
1213 {
1214 	struct super_block *s;
1215 	int error;
1216 
1217 	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1218 	if (IS_ERR(s))
1219 		return ERR_CAST(s);
1220 	if (!s->s_root) {
1221 		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1222 		if (error) {
1223 			deactivate_locked_super(s);
1224 			return ERR_PTR(error);
1225 		}
1226 		s->s_flags |= SB_ACTIVE;
1227 	} else {
1228 		do_remount_sb(s, flags, data, 0);
1229 	}
1230 	return dget(s->s_root);
1231 }
1232 EXPORT_SYMBOL(mount_single);
1233 
1234 struct dentry *
mount_fs(struct file_system_type * type,int flags,const char * name,struct vfsmount * mnt,void * data)1235 mount_fs(struct file_system_type *type, int flags, const char *name, struct vfsmount *mnt, void *data)
1236 {
1237 	struct dentry *root;
1238 	struct super_block *sb;
1239 	char *secdata = NULL;
1240 	int error = -ENOMEM;
1241 
1242 	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1243 		secdata = alloc_secdata();
1244 		if (!secdata)
1245 			goto out;
1246 
1247 		error = security_sb_copy_data(data, secdata);
1248 		if (error)
1249 			goto out_free_secdata;
1250 	}
1251 
1252 	if (type->mount2)
1253 		root = type->mount2(mnt, type, flags, name, data);
1254 	else
1255 		root = type->mount(type, flags, name, data);
1256 	if (IS_ERR(root)) {
1257 		error = PTR_ERR(root);
1258 		goto out_free_secdata;
1259 	}
1260 	sb = root->d_sb;
1261 	BUG_ON(!sb);
1262 	WARN_ON(!sb->s_bdi);
1263 
1264 	/*
1265 	 * Write barrier is for super_cache_count(). We place it before setting
1266 	 * SB_BORN as the data dependency between the two functions is the
1267 	 * superblock structure contents that we just set up, not the SB_BORN
1268 	 * flag.
1269 	 */
1270 	smp_wmb();
1271 	sb->s_flags |= SB_BORN;
1272 
1273 	error = security_sb_kern_mount(sb, flags, secdata);
1274 	if (error)
1275 		goto out_sb;
1276 
1277 	/*
1278 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1279 	 * but s_maxbytes was an unsigned long long for many releases. Throw
1280 	 * this warning for a little while to try and catch filesystems that
1281 	 * violate this rule.
1282 	 */
1283 	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1284 		"negative value (%lld)\n", type->name, sb->s_maxbytes);
1285 
1286 	up_write(&sb->s_umount);
1287 	free_secdata(secdata);
1288 	return root;
1289 out_sb:
1290 	dput(root);
1291 	deactivate_locked_super(sb);
1292 out_free_secdata:
1293 	free_secdata(secdata);
1294 out:
1295 	return ERR_PTR(error);
1296 }
1297 
1298 /*
1299  * Setup private BDI for given superblock. It gets automatically cleaned up
1300  * in generic_shutdown_super().
1301  */
super_setup_bdi_name(struct super_block * sb,char * fmt,...)1302 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1303 {
1304 	struct backing_dev_info *bdi;
1305 	int err;
1306 	va_list args;
1307 
1308 	bdi = bdi_alloc(GFP_KERNEL);
1309 	if (!bdi)
1310 		return -ENOMEM;
1311 
1312 	bdi->name = sb->s_type->name;
1313 
1314 	va_start(args, fmt);
1315 	err = bdi_register_va(bdi, fmt, args);
1316 	va_end(args);
1317 	if (err) {
1318 		bdi_put(bdi);
1319 		return err;
1320 	}
1321 	WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1322 	sb->s_bdi = bdi;
1323 
1324 	return 0;
1325 }
1326 EXPORT_SYMBOL(super_setup_bdi_name);
1327 
1328 /*
1329  * Setup private BDI for given superblock. I gets automatically cleaned up
1330  * in generic_shutdown_super().
1331  */
super_setup_bdi(struct super_block * sb)1332 int super_setup_bdi(struct super_block *sb)
1333 {
1334 	static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1335 
1336 	return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1337 				    atomic_long_inc_return(&bdi_seq));
1338 }
1339 EXPORT_SYMBOL(super_setup_bdi);
1340 
1341 /*
1342  * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1343  * instead.
1344  */
__sb_end_write(struct super_block * sb,int level)1345 void __sb_end_write(struct super_block *sb, int level)
1346 {
1347 	percpu_up_read(sb->s_writers.rw_sem + level-1);
1348 }
1349 EXPORT_SYMBOL(__sb_end_write);
1350 
1351 /*
1352  * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1353  * instead.
1354  */
__sb_start_write(struct super_block * sb,int level,bool wait)1355 int __sb_start_write(struct super_block *sb, int level, bool wait)
1356 {
1357 	bool force_trylock = false;
1358 	int ret = 1;
1359 
1360 #ifdef CONFIG_LOCKDEP
1361 	/*
1362 	 * We want lockdep to tell us about possible deadlocks with freezing
1363 	 * but it's it bit tricky to properly instrument it. Getting a freeze
1364 	 * protection works as getting a read lock but there are subtle
1365 	 * problems. XFS for example gets freeze protection on internal level
1366 	 * twice in some cases, which is OK only because we already hold a
1367 	 * freeze protection also on higher level. Due to these cases we have
1368 	 * to use wait == F (trylock mode) which must not fail.
1369 	 */
1370 	if (wait) {
1371 		int i;
1372 
1373 		for (i = 0; i < level - 1; i++)
1374 			if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) {
1375 				force_trylock = true;
1376 				break;
1377 			}
1378 	}
1379 #endif
1380 	if (wait && !force_trylock)
1381 		percpu_down_read(sb->s_writers.rw_sem + level-1);
1382 	else
1383 		ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1);
1384 
1385 	WARN_ON(force_trylock && !ret);
1386 	return ret;
1387 }
1388 EXPORT_SYMBOL(__sb_start_write);
1389 
1390 /**
1391  * sb_wait_write - wait until all writers to given file system finish
1392  * @sb: the super for which we wait
1393  * @level: type of writers we wait for (normal vs page fault)
1394  *
1395  * This function waits until there are no writers of given type to given file
1396  * system.
1397  */
sb_wait_write(struct super_block * sb,int level)1398 static void sb_wait_write(struct super_block *sb, int level)
1399 {
1400 	percpu_down_write(sb->s_writers.rw_sem + level-1);
1401 }
1402 
1403 /*
1404  * We are going to return to userspace and forget about these locks, the
1405  * ownership goes to the caller of thaw_super() which does unlock().
1406  */
lockdep_sb_freeze_release(struct super_block * sb)1407 static void lockdep_sb_freeze_release(struct super_block *sb)
1408 {
1409 	int level;
1410 
1411 	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1412 		percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1413 }
1414 
1415 /*
1416  * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1417  */
lockdep_sb_freeze_acquire(struct super_block * sb)1418 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1419 {
1420 	int level;
1421 
1422 	for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1423 		percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1424 }
1425 
sb_freeze_unlock(struct super_block * sb)1426 static void sb_freeze_unlock(struct super_block *sb)
1427 {
1428 	int level;
1429 
1430 	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1431 		percpu_up_write(sb->s_writers.rw_sem + level);
1432 }
1433 
1434 /**
1435  * freeze_super - lock the filesystem and force it into a consistent state
1436  * @sb: the super to lock
1437  *
1438  * Syncs the super to make sure the filesystem is consistent and calls the fs's
1439  * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1440  * -EBUSY.
1441  *
1442  * During this function, sb->s_writers.frozen goes through these values:
1443  *
1444  * SB_UNFROZEN: File system is normal, all writes progress as usual.
1445  *
1446  * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1447  * writes should be blocked, though page faults are still allowed. We wait for
1448  * all writes to complete and then proceed to the next stage.
1449  *
1450  * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1451  * but internal fs threads can still modify the filesystem (although they
1452  * should not dirty new pages or inodes), writeback can run etc. After waiting
1453  * for all running page faults we sync the filesystem which will clean all
1454  * dirty pages and inodes (no new dirty pages or inodes can be created when
1455  * sync is running).
1456  *
1457  * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1458  * modification are blocked (e.g. XFS preallocation truncation on inode
1459  * reclaim). This is usually implemented by blocking new transactions for
1460  * filesystems that have them and need this additional guard. After all
1461  * internal writers are finished we call ->freeze_fs() to finish filesystem
1462  * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1463  * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1464  *
1465  * sb->s_writers.frozen is protected by sb->s_umount.
1466  */
freeze_super(struct super_block * sb)1467 int freeze_super(struct super_block *sb)
1468 {
1469 	int ret;
1470 
1471 	atomic_inc(&sb->s_active);
1472 	down_write(&sb->s_umount);
1473 	if (sb->s_writers.frozen != SB_UNFROZEN) {
1474 		deactivate_locked_super(sb);
1475 		return -EBUSY;
1476 	}
1477 
1478 	if (!(sb->s_flags & SB_BORN)) {
1479 		up_write(&sb->s_umount);
1480 		return 0;	/* sic - it's "nothing to do" */
1481 	}
1482 
1483 	if (sb_rdonly(sb)) {
1484 		/* Nothing to do really... */
1485 		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1486 		up_write(&sb->s_umount);
1487 		return 0;
1488 	}
1489 
1490 	sb->s_writers.frozen = SB_FREEZE_WRITE;
1491 	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
1492 	up_write(&sb->s_umount);
1493 	sb_wait_write(sb, SB_FREEZE_WRITE);
1494 	down_write(&sb->s_umount);
1495 
1496 	/* Now we go and block page faults... */
1497 	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1498 	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1499 
1500 	/* All writers are done so after syncing there won't be dirty data */
1501 	sync_filesystem(sb);
1502 
1503 	/* Now wait for internal filesystem counter */
1504 	sb->s_writers.frozen = SB_FREEZE_FS;
1505 	sb_wait_write(sb, SB_FREEZE_FS);
1506 
1507 	if (sb->s_op->freeze_fs) {
1508 		ret = sb->s_op->freeze_fs(sb);
1509 		if (ret) {
1510 			printk(KERN_ERR
1511 				"VFS:Filesystem freeze failed\n");
1512 			sb->s_writers.frozen = SB_UNFROZEN;
1513 			sb_freeze_unlock(sb);
1514 			wake_up(&sb->s_writers.wait_unfrozen);
1515 			deactivate_locked_super(sb);
1516 			return ret;
1517 		}
1518 	}
1519 	/*
1520 	 * For debugging purposes so that fs can warn if it sees write activity
1521 	 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1522 	 */
1523 	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1524 	lockdep_sb_freeze_release(sb);
1525 	up_write(&sb->s_umount);
1526 	return 0;
1527 }
1528 EXPORT_SYMBOL(freeze_super);
1529 
1530 /**
1531  * thaw_super -- unlock filesystem
1532  * @sb: the super to thaw
1533  *
1534  * Unlocks the filesystem and marks it writeable again after freeze_super().
1535  */
thaw_super(struct super_block * sb)1536 int thaw_super(struct super_block *sb)
1537 {
1538 	int error;
1539 
1540 	down_write(&sb->s_umount);
1541 	if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1542 		up_write(&sb->s_umount);
1543 		return -EINVAL;
1544 	}
1545 
1546 	if (sb_rdonly(sb)) {
1547 		sb->s_writers.frozen = SB_UNFROZEN;
1548 		goto out;
1549 	}
1550 
1551 	lockdep_sb_freeze_acquire(sb);
1552 
1553 	if (sb->s_op->unfreeze_fs) {
1554 		error = sb->s_op->unfreeze_fs(sb);
1555 		if (error) {
1556 			printk(KERN_ERR
1557 				"VFS:Filesystem thaw failed\n");
1558 			lockdep_sb_freeze_release(sb);
1559 			up_write(&sb->s_umount);
1560 			return error;
1561 		}
1562 	}
1563 
1564 	sb->s_writers.frozen = SB_UNFROZEN;
1565 	sb_freeze_unlock(sb);
1566 out:
1567 	wake_up(&sb->s_writers.wait_unfrozen);
1568 	deactivate_locked_super(sb);
1569 	return 0;
1570 }
1571 EXPORT_SYMBOL(thaw_super);
1572