1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/super.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * super.c contains code to handle: - mount structures
8 * - super-block tables
9 * - filesystem drivers list
10 * - mount system call
11 * - umount system call
12 * - ustat system call
13 *
14 * GK 2/5/95 - Changed to support mounting the root fs via NFS
15 *
16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18 * Added options to /proc/mounts:
19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
22 */
23
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h> /* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include <linux/user_namespace.h>
38 #include "internal.h"
39
40
41 static LIST_HEAD(super_blocks);
42 static DEFINE_SPINLOCK(sb_lock);
43
44 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
45 "sb_writers",
46 "sb_pagefaults",
47 "sb_internal",
48 };
49
50 /*
51 * One thing we have to be careful of with a per-sb shrinker is that we don't
52 * drop the last active reference to the superblock from within the shrinker.
53 * If that happens we could trigger unregistering the shrinker from within the
54 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
55 * take a passive reference to the superblock to avoid this from occurring.
56 */
super_cache_scan(struct shrinker * shrink,struct shrink_control * sc)57 static unsigned long super_cache_scan(struct shrinker *shrink,
58 struct shrink_control *sc)
59 {
60 struct super_block *sb;
61 long fs_objects = 0;
62 long total_objects;
63 long freed = 0;
64 long dentries;
65 long inodes;
66
67 sb = container_of(shrink, struct super_block, s_shrink);
68
69 /*
70 * Deadlock avoidance. We may hold various FS locks, and we don't want
71 * to recurse into the FS that called us in clear_inode() and friends..
72 */
73 if (!(sc->gfp_mask & __GFP_FS))
74 return SHRINK_STOP;
75
76 if (!trylock_super(sb))
77 return SHRINK_STOP;
78
79 if (sb->s_op->nr_cached_objects)
80 fs_objects = sb->s_op->nr_cached_objects(sb, sc);
81
82 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
83 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
84 total_objects = dentries + inodes + fs_objects + 1;
85 if (!total_objects)
86 total_objects = 1;
87
88 /* proportion the scan between the caches */
89 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
90 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
91 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
92
93 /*
94 * prune the dcache first as the icache is pinned by it, then
95 * prune the icache, followed by the filesystem specific caches
96 *
97 * Ensure that we always scan at least one object - memcg kmem
98 * accounting uses this to fully empty the caches.
99 */
100 sc->nr_to_scan = dentries + 1;
101 freed = prune_dcache_sb(sb, sc);
102 sc->nr_to_scan = inodes + 1;
103 freed += prune_icache_sb(sb, sc);
104
105 if (fs_objects) {
106 sc->nr_to_scan = fs_objects + 1;
107 freed += sb->s_op->free_cached_objects(sb, sc);
108 }
109
110 up_read(&sb->s_umount);
111 return freed;
112 }
113
super_cache_count(struct shrinker * shrink,struct shrink_control * sc)114 static unsigned long super_cache_count(struct shrinker *shrink,
115 struct shrink_control *sc)
116 {
117 struct super_block *sb;
118 long total_objects = 0;
119
120 sb = container_of(shrink, struct super_block, s_shrink);
121
122 /*
123 * We don't call trylock_super() here as it is a scalability bottleneck,
124 * so we're exposed to partial setup state. The shrinker rwsem does not
125 * protect filesystem operations backing list_lru_shrink_count() or
126 * s_op->nr_cached_objects(). Counts can change between
127 * super_cache_count and super_cache_scan, so we really don't need locks
128 * here.
129 *
130 * However, if we are currently mounting the superblock, the underlying
131 * filesystem might be in a state of partial construction and hence it
132 * is dangerous to access it. trylock_super() uses a SB_BORN check to
133 * avoid this situation, so do the same here. The memory barrier is
134 * matched with the one in mount_fs() as we don't hold locks here.
135 */
136 if (!(sb->s_flags & SB_BORN))
137 return 0;
138 smp_rmb();
139
140 if (sb->s_op && sb->s_op->nr_cached_objects)
141 total_objects = sb->s_op->nr_cached_objects(sb, sc);
142
143 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
144 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
145
146 total_objects = vfs_pressure_ratio(total_objects);
147 return total_objects;
148 }
149
destroy_super_work(struct work_struct * work)150 static void destroy_super_work(struct work_struct *work)
151 {
152 struct super_block *s = container_of(work, struct super_block,
153 destroy_work);
154 int i;
155
156 for (i = 0; i < SB_FREEZE_LEVELS; i++)
157 percpu_free_rwsem(&s->s_writers.rw_sem[i]);
158 kfree(s);
159 }
160
destroy_super_rcu(struct rcu_head * head)161 static void destroy_super_rcu(struct rcu_head *head)
162 {
163 struct super_block *s = container_of(head, struct super_block, rcu);
164 INIT_WORK(&s->destroy_work, destroy_super_work);
165 schedule_work(&s->destroy_work);
166 }
167
168 /**
169 * destroy_super - frees a superblock
170 * @s: superblock to free
171 *
172 * Frees a superblock.
173 */
destroy_super(struct super_block * s)174 static void destroy_super(struct super_block *s)
175 {
176 list_lru_destroy(&s->s_dentry_lru);
177 list_lru_destroy(&s->s_inode_lru);
178 security_sb_free(s);
179 WARN_ON(!list_empty(&s->s_mounts));
180 put_user_ns(s->s_user_ns);
181 kfree(s->s_subtype);
182 call_rcu(&s->rcu, destroy_super_rcu);
183 }
184
185 /**
186 * alloc_super - create new superblock
187 * @type: filesystem type superblock should belong to
188 * @flags: the mount flags
189 * @user_ns: User namespace for the super_block
190 *
191 * Allocates and initializes a new &struct super_block. alloc_super()
192 * returns a pointer new superblock or %NULL if allocation had failed.
193 */
alloc_super(struct file_system_type * type,int flags,struct user_namespace * user_ns)194 static struct super_block *alloc_super(struct file_system_type *type, int flags,
195 struct user_namespace *user_ns)
196 {
197 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
198 static const struct super_operations default_op;
199 int i;
200
201 if (!s)
202 return NULL;
203
204 INIT_LIST_HEAD(&s->s_mounts);
205 s->s_user_ns = get_user_ns(user_ns);
206
207 if (security_sb_alloc(s))
208 goto fail;
209
210 for (i = 0; i < SB_FREEZE_LEVELS; i++) {
211 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
212 sb_writers_name[i],
213 &type->s_writers_key[i]))
214 goto fail;
215 }
216 init_waitqueue_head(&s->s_writers.wait_unfrozen);
217 s->s_bdi = &noop_backing_dev_info;
218 s->s_flags = flags;
219 if (s->s_user_ns != &init_user_ns)
220 s->s_iflags |= SB_I_NODEV;
221 INIT_HLIST_NODE(&s->s_instances);
222 INIT_HLIST_BL_HEAD(&s->s_anon);
223 mutex_init(&s->s_sync_lock);
224 INIT_LIST_HEAD(&s->s_inodes);
225 spin_lock_init(&s->s_inode_list_lock);
226 INIT_LIST_HEAD(&s->s_inodes_wb);
227 spin_lock_init(&s->s_inode_wblist_lock);
228
229 if (list_lru_init_memcg(&s->s_dentry_lru))
230 goto fail;
231 if (list_lru_init_memcg(&s->s_inode_lru))
232 goto fail;
233
234 init_rwsem(&s->s_umount);
235 lockdep_set_class(&s->s_umount, &type->s_umount_key);
236 /*
237 * sget() can have s_umount recursion.
238 *
239 * When it cannot find a suitable sb, it allocates a new
240 * one (this one), and tries again to find a suitable old
241 * one.
242 *
243 * In case that succeeds, it will acquire the s_umount
244 * lock of the old one. Since these are clearly distrinct
245 * locks, and this object isn't exposed yet, there's no
246 * risk of deadlocks.
247 *
248 * Annotate this by putting this lock in a different
249 * subclass.
250 */
251 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
252 s->s_count = 1;
253 atomic_set(&s->s_active, 1);
254 mutex_init(&s->s_vfs_rename_mutex);
255 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
256 init_rwsem(&s->s_dquot.dqio_sem);
257 s->s_maxbytes = MAX_NON_LFS;
258 s->s_op = &default_op;
259 s->s_time_gran = 1000000000;
260 s->cleancache_poolid = CLEANCACHE_NO_POOL;
261
262 s->s_shrink.seeks = DEFAULT_SEEKS;
263 s->s_shrink.scan_objects = super_cache_scan;
264 s->s_shrink.count_objects = super_cache_count;
265 s->s_shrink.batch = 1024;
266 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
267 return s;
268
269 fail:
270 destroy_super(s);
271 return NULL;
272 }
273
274 /* Superblock refcounting */
275
276 /*
277 * Drop a superblock's refcount. The caller must hold sb_lock.
278 */
__put_super(struct super_block * sb)279 static void __put_super(struct super_block *sb)
280 {
281 if (!--sb->s_count) {
282 list_del_init(&sb->s_list);
283 destroy_super(sb);
284 }
285 }
286
287 /**
288 * put_super - drop a temporary reference to superblock
289 * @sb: superblock in question
290 *
291 * Drops a temporary reference, frees superblock if there's no
292 * references left.
293 */
put_super(struct super_block * sb)294 static void put_super(struct super_block *sb)
295 {
296 spin_lock(&sb_lock);
297 __put_super(sb);
298 spin_unlock(&sb_lock);
299 }
300
301
302 /**
303 * deactivate_locked_super - drop an active reference to superblock
304 * @s: superblock to deactivate
305 *
306 * Drops an active reference to superblock, converting it into a temporary
307 * one if there is no other active references left. In that case we
308 * tell fs driver to shut it down and drop the temporary reference we
309 * had just acquired.
310 *
311 * Caller holds exclusive lock on superblock; that lock is released.
312 */
deactivate_locked_super(struct super_block * s)313 void deactivate_locked_super(struct super_block *s)
314 {
315 struct file_system_type *fs = s->s_type;
316 if (atomic_dec_and_test(&s->s_active)) {
317 cleancache_invalidate_fs(s);
318 unregister_shrinker(&s->s_shrink);
319 fs->kill_sb(s);
320
321 /*
322 * Since list_lru_destroy() may sleep, we cannot call it from
323 * put_super(), where we hold the sb_lock. Therefore we destroy
324 * the lru lists right now.
325 */
326 list_lru_destroy(&s->s_dentry_lru);
327 list_lru_destroy(&s->s_inode_lru);
328
329 put_filesystem(fs);
330 put_super(s);
331 } else {
332 up_write(&s->s_umount);
333 }
334 }
335
336 EXPORT_SYMBOL(deactivate_locked_super);
337
338 /**
339 * deactivate_super - drop an active reference to superblock
340 * @s: superblock to deactivate
341 *
342 * Variant of deactivate_locked_super(), except that superblock is *not*
343 * locked by caller. If we are going to drop the final active reference,
344 * lock will be acquired prior to that.
345 */
deactivate_super(struct super_block * s)346 void deactivate_super(struct super_block *s)
347 {
348 if (!atomic_add_unless(&s->s_active, -1, 1)) {
349 down_write(&s->s_umount);
350 deactivate_locked_super(s);
351 }
352 }
353
354 EXPORT_SYMBOL(deactivate_super);
355
356 /**
357 * grab_super - acquire an active reference
358 * @s: reference we are trying to make active
359 *
360 * Tries to acquire an active reference. grab_super() is used when we
361 * had just found a superblock in super_blocks or fs_type->fs_supers
362 * and want to turn it into a full-blown active reference. grab_super()
363 * is called with sb_lock held and drops it. Returns 1 in case of
364 * success, 0 if we had failed (superblock contents was already dead or
365 * dying when grab_super() had been called). Note that this is only
366 * called for superblocks not in rundown mode (== ones still on ->fs_supers
367 * of their type), so increment of ->s_count is OK here.
368 */
grab_super(struct super_block * s)369 static int grab_super(struct super_block *s) __releases(sb_lock)
370 {
371 s->s_count++;
372 spin_unlock(&sb_lock);
373 down_write(&s->s_umount);
374 if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
375 put_super(s);
376 return 1;
377 }
378 up_write(&s->s_umount);
379 put_super(s);
380 return 0;
381 }
382
383 /*
384 * trylock_super - try to grab ->s_umount shared
385 * @sb: reference we are trying to grab
386 *
387 * Try to prevent fs shutdown. This is used in places where we
388 * cannot take an active reference but we need to ensure that the
389 * filesystem is not shut down while we are working on it. It returns
390 * false if we cannot acquire s_umount or if we lose the race and
391 * filesystem already got into shutdown, and returns true with the s_umount
392 * lock held in read mode in case of success. On successful return,
393 * the caller must drop the s_umount lock when done.
394 *
395 * Note that unlike get_super() et.al. this one does *not* bump ->s_count.
396 * The reason why it's safe is that we are OK with doing trylock instead
397 * of down_read(). There's a couple of places that are OK with that, but
398 * it's very much not a general-purpose interface.
399 */
trylock_super(struct super_block * sb)400 bool trylock_super(struct super_block *sb)
401 {
402 if (down_read_trylock(&sb->s_umount)) {
403 if (!hlist_unhashed(&sb->s_instances) &&
404 sb->s_root && (sb->s_flags & SB_BORN))
405 return true;
406 up_read(&sb->s_umount);
407 }
408
409 return false;
410 }
411
412 /**
413 * generic_shutdown_super - common helper for ->kill_sb()
414 * @sb: superblock to kill
415 *
416 * generic_shutdown_super() does all fs-independent work on superblock
417 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
418 * that need destruction out of superblock, call generic_shutdown_super()
419 * and release aforementioned objects. Note: dentries and inodes _are_
420 * taken care of and do not need specific handling.
421 *
422 * Upon calling this function, the filesystem may no longer alter or
423 * rearrange the set of dentries belonging to this super_block, nor may it
424 * change the attachments of dentries to inodes.
425 */
generic_shutdown_super(struct super_block * sb)426 void generic_shutdown_super(struct super_block *sb)
427 {
428 const struct super_operations *sop = sb->s_op;
429
430 if (sb->s_root) {
431 shrink_dcache_for_umount(sb);
432 sync_filesystem(sb);
433 sb->s_flags &= ~SB_ACTIVE;
434
435 fsnotify_unmount_inodes(sb);
436 cgroup_writeback_umount();
437
438 evict_inodes(sb);
439
440 if (sb->s_dio_done_wq) {
441 destroy_workqueue(sb->s_dio_done_wq);
442 sb->s_dio_done_wq = NULL;
443 }
444
445 if (sop->put_super)
446 sop->put_super(sb);
447
448 if (!list_empty(&sb->s_inodes)) {
449 printk("VFS: Busy inodes after unmount of %s. "
450 "Self-destruct in 5 seconds. Have a nice day...\n",
451 sb->s_id);
452 }
453 }
454 spin_lock(&sb_lock);
455 /* should be initialized for __put_super_and_need_restart() */
456 hlist_del_init(&sb->s_instances);
457 spin_unlock(&sb_lock);
458 up_write(&sb->s_umount);
459 if (sb->s_bdi != &noop_backing_dev_info) {
460 bdi_put(sb->s_bdi);
461 sb->s_bdi = &noop_backing_dev_info;
462 }
463 }
464
465 EXPORT_SYMBOL(generic_shutdown_super);
466
467 /**
468 * sget_userns - find or create a superblock
469 * @type: filesystem type superblock should belong to
470 * @test: comparison callback
471 * @set: setup callback
472 * @flags: mount flags
473 * @user_ns: User namespace for the super_block
474 * @data: argument to each of them
475 */
sget_userns(struct file_system_type * type,int (* test)(struct super_block *,void *),int (* set)(struct super_block *,void *),int flags,struct user_namespace * user_ns,void * data)476 struct super_block *sget_userns(struct file_system_type *type,
477 int (*test)(struct super_block *,void *),
478 int (*set)(struct super_block *,void *),
479 int flags, struct user_namespace *user_ns,
480 void *data)
481 {
482 struct super_block *s = NULL;
483 struct super_block *old;
484 int err;
485
486 if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) &&
487 !(type->fs_flags & FS_USERNS_MOUNT) &&
488 !capable(CAP_SYS_ADMIN))
489 return ERR_PTR(-EPERM);
490 retry:
491 spin_lock(&sb_lock);
492 if (test) {
493 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
494 if (!test(old, data))
495 continue;
496 if (user_ns != old->s_user_ns) {
497 spin_unlock(&sb_lock);
498 if (s) {
499 up_write(&s->s_umount);
500 destroy_super(s);
501 }
502 return ERR_PTR(-EBUSY);
503 }
504 if (!grab_super(old))
505 goto retry;
506 if (s) {
507 up_write(&s->s_umount);
508 destroy_super(s);
509 s = NULL;
510 }
511 return old;
512 }
513 }
514 if (!s) {
515 spin_unlock(&sb_lock);
516 s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
517 if (!s)
518 return ERR_PTR(-ENOMEM);
519 goto retry;
520 }
521
522 err = set(s, data);
523 if (err) {
524 spin_unlock(&sb_lock);
525 up_write(&s->s_umount);
526 destroy_super(s);
527 return ERR_PTR(err);
528 }
529 s->s_type = type;
530 strlcpy(s->s_id, type->name, sizeof(s->s_id));
531 list_add_tail(&s->s_list, &super_blocks);
532 hlist_add_head(&s->s_instances, &type->fs_supers);
533 spin_unlock(&sb_lock);
534 get_filesystem(type);
535 err = register_shrinker(&s->s_shrink);
536 if (err) {
537 deactivate_locked_super(s);
538 s = ERR_PTR(err);
539 }
540 return s;
541 }
542
543 EXPORT_SYMBOL(sget_userns);
544
545 /**
546 * sget - find or create a superblock
547 * @type: filesystem type superblock should belong to
548 * @test: comparison callback
549 * @set: setup callback
550 * @flags: mount flags
551 * @data: argument to each of them
552 */
sget(struct file_system_type * type,int (* test)(struct super_block *,void *),int (* set)(struct super_block *,void *),int flags,void * data)553 struct super_block *sget(struct file_system_type *type,
554 int (*test)(struct super_block *,void *),
555 int (*set)(struct super_block *,void *),
556 int flags,
557 void *data)
558 {
559 struct user_namespace *user_ns = current_user_ns();
560
561 /* We don't yet pass the user namespace of the parent
562 * mount through to here so always use &init_user_ns
563 * until that changes.
564 */
565 if (flags & SB_SUBMOUNT)
566 user_ns = &init_user_ns;
567
568 /* Ensure the requestor has permissions over the target filesystem */
569 if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) && !ns_capable(user_ns, CAP_SYS_ADMIN))
570 return ERR_PTR(-EPERM);
571
572 return sget_userns(type, test, set, flags, user_ns, data);
573 }
574
575 EXPORT_SYMBOL(sget);
576
drop_super(struct super_block * sb)577 void drop_super(struct super_block *sb)
578 {
579 up_read(&sb->s_umount);
580 put_super(sb);
581 }
582
583 EXPORT_SYMBOL(drop_super);
584
drop_super_exclusive(struct super_block * sb)585 void drop_super_exclusive(struct super_block *sb)
586 {
587 up_write(&sb->s_umount);
588 put_super(sb);
589 }
590 EXPORT_SYMBOL(drop_super_exclusive);
591
592 /**
593 * iterate_supers - call function for all active superblocks
594 * @f: function to call
595 * @arg: argument to pass to it
596 *
597 * Scans the superblock list and calls given function, passing it
598 * locked superblock and given argument.
599 */
iterate_supers(void (* f)(struct super_block *,void *),void * arg)600 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
601 {
602 struct super_block *sb, *p = NULL;
603
604 spin_lock(&sb_lock);
605 list_for_each_entry(sb, &super_blocks, s_list) {
606 if (hlist_unhashed(&sb->s_instances))
607 continue;
608 sb->s_count++;
609 spin_unlock(&sb_lock);
610
611 down_read(&sb->s_umount);
612 if (sb->s_root && (sb->s_flags & SB_BORN))
613 f(sb, arg);
614 up_read(&sb->s_umount);
615
616 spin_lock(&sb_lock);
617 if (p)
618 __put_super(p);
619 p = sb;
620 }
621 if (p)
622 __put_super(p);
623 spin_unlock(&sb_lock);
624 }
625
626 /**
627 * iterate_supers_type - call function for superblocks of given type
628 * @type: fs type
629 * @f: function to call
630 * @arg: argument to pass to it
631 *
632 * Scans the superblock list and calls given function, passing it
633 * locked superblock and given argument.
634 */
iterate_supers_type(struct file_system_type * type,void (* f)(struct super_block *,void *),void * arg)635 void iterate_supers_type(struct file_system_type *type,
636 void (*f)(struct super_block *, void *), void *arg)
637 {
638 struct super_block *sb, *p = NULL;
639
640 spin_lock(&sb_lock);
641 hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
642 sb->s_count++;
643 spin_unlock(&sb_lock);
644
645 down_read(&sb->s_umount);
646 if (sb->s_root && (sb->s_flags & SB_BORN))
647 f(sb, arg);
648 up_read(&sb->s_umount);
649
650 spin_lock(&sb_lock);
651 if (p)
652 __put_super(p);
653 p = sb;
654 }
655 if (p)
656 __put_super(p);
657 spin_unlock(&sb_lock);
658 }
659
660 EXPORT_SYMBOL(iterate_supers_type);
661
__get_super(struct block_device * bdev,bool excl)662 static struct super_block *__get_super(struct block_device *bdev, bool excl)
663 {
664 struct super_block *sb;
665
666 if (!bdev)
667 return NULL;
668
669 spin_lock(&sb_lock);
670 rescan:
671 list_for_each_entry(sb, &super_blocks, s_list) {
672 if (hlist_unhashed(&sb->s_instances))
673 continue;
674 if (sb->s_bdev == bdev) {
675 sb->s_count++;
676 spin_unlock(&sb_lock);
677 if (!excl)
678 down_read(&sb->s_umount);
679 else
680 down_write(&sb->s_umount);
681 /* still alive? */
682 if (sb->s_root && (sb->s_flags & SB_BORN))
683 return sb;
684 if (!excl)
685 up_read(&sb->s_umount);
686 else
687 up_write(&sb->s_umount);
688 /* nope, got unmounted */
689 spin_lock(&sb_lock);
690 __put_super(sb);
691 goto rescan;
692 }
693 }
694 spin_unlock(&sb_lock);
695 return NULL;
696 }
697
698 /**
699 * get_super - get the superblock of a device
700 * @bdev: device to get the superblock for
701 *
702 * Scans the superblock list and finds the superblock of the file system
703 * mounted on the device given. %NULL is returned if no match is found.
704 */
get_super(struct block_device * bdev)705 struct super_block *get_super(struct block_device *bdev)
706 {
707 return __get_super(bdev, false);
708 }
709 EXPORT_SYMBOL(get_super);
710
__get_super_thawed(struct block_device * bdev,bool excl)711 static struct super_block *__get_super_thawed(struct block_device *bdev,
712 bool excl)
713 {
714 while (1) {
715 struct super_block *s = __get_super(bdev, excl);
716 if (!s || s->s_writers.frozen == SB_UNFROZEN)
717 return s;
718 if (!excl)
719 up_read(&s->s_umount);
720 else
721 up_write(&s->s_umount);
722 wait_event(s->s_writers.wait_unfrozen,
723 s->s_writers.frozen == SB_UNFROZEN);
724 put_super(s);
725 }
726 }
727
728 /**
729 * get_super_thawed - get thawed superblock of a device
730 * @bdev: device to get the superblock for
731 *
732 * Scans the superblock list and finds the superblock of the file system
733 * mounted on the device. The superblock is returned once it is thawed
734 * (or immediately if it was not frozen). %NULL is returned if no match
735 * is found.
736 */
get_super_thawed(struct block_device * bdev)737 struct super_block *get_super_thawed(struct block_device *bdev)
738 {
739 return __get_super_thawed(bdev, false);
740 }
741 EXPORT_SYMBOL(get_super_thawed);
742
743 /**
744 * get_super_exclusive_thawed - get thawed superblock of a device
745 * @bdev: device to get the superblock for
746 *
747 * Scans the superblock list and finds the superblock of the file system
748 * mounted on the device. The superblock is returned once it is thawed
749 * (or immediately if it was not frozen) and s_umount semaphore is held
750 * in exclusive mode. %NULL is returned if no match is found.
751 */
get_super_exclusive_thawed(struct block_device * bdev)752 struct super_block *get_super_exclusive_thawed(struct block_device *bdev)
753 {
754 return __get_super_thawed(bdev, true);
755 }
756 EXPORT_SYMBOL(get_super_exclusive_thawed);
757
758 /**
759 * get_active_super - get an active reference to the superblock of a device
760 * @bdev: device to get the superblock for
761 *
762 * Scans the superblock list and finds the superblock of the file system
763 * mounted on the device given. Returns the superblock with an active
764 * reference or %NULL if none was found.
765 */
get_active_super(struct block_device * bdev)766 struct super_block *get_active_super(struct block_device *bdev)
767 {
768 struct super_block *sb;
769
770 if (!bdev)
771 return NULL;
772
773 restart:
774 spin_lock(&sb_lock);
775 list_for_each_entry(sb, &super_blocks, s_list) {
776 if (hlist_unhashed(&sb->s_instances))
777 continue;
778 if (sb->s_bdev == bdev) {
779 if (!grab_super(sb))
780 goto restart;
781 up_write(&sb->s_umount);
782 return sb;
783 }
784 }
785 spin_unlock(&sb_lock);
786 return NULL;
787 }
788
user_get_super(dev_t dev)789 struct super_block *user_get_super(dev_t dev)
790 {
791 struct super_block *sb;
792
793 spin_lock(&sb_lock);
794 rescan:
795 list_for_each_entry(sb, &super_blocks, s_list) {
796 if (hlist_unhashed(&sb->s_instances))
797 continue;
798 if (sb->s_dev == dev) {
799 sb->s_count++;
800 spin_unlock(&sb_lock);
801 down_read(&sb->s_umount);
802 /* still alive? */
803 if (sb->s_root && (sb->s_flags & SB_BORN))
804 return sb;
805 up_read(&sb->s_umount);
806 /* nope, got unmounted */
807 spin_lock(&sb_lock);
808 __put_super(sb);
809 goto rescan;
810 }
811 }
812 spin_unlock(&sb_lock);
813 return NULL;
814 }
815
816 /**
817 * do_remount_sb2 - asks filesystem to change mount options.
818 * @mnt: mount we are looking at
819 * @sb: superblock in question
820 * @sb_flags: revised superblock flags
821 * @data: the rest of options
822 * @force: whether or not to force the change
823 *
824 * Alters the mount options of a mounted file system.
825 */
do_remount_sb2(struct vfsmount * mnt,struct super_block * sb,int sb_flags,void * data,int force)826 int do_remount_sb2(struct vfsmount *mnt, struct super_block *sb, int sb_flags, void *data, int force)
827 {
828 int retval;
829 int remount_ro;
830
831 if (sb->s_writers.frozen != SB_UNFROZEN)
832 return -EBUSY;
833
834 #ifdef CONFIG_BLOCK
835 if (!(sb_flags & SB_RDONLY) && bdev_read_only(sb->s_bdev))
836 return -EACCES;
837 #endif
838
839 remount_ro = (sb_flags & SB_RDONLY) && !sb_rdonly(sb);
840
841 if (remount_ro) {
842 if (!hlist_empty(&sb->s_pins)) {
843 up_write(&sb->s_umount);
844 group_pin_kill(&sb->s_pins);
845 down_write(&sb->s_umount);
846 if (!sb->s_root)
847 return 0;
848 if (sb->s_writers.frozen != SB_UNFROZEN)
849 return -EBUSY;
850 remount_ro = (sb_flags & SB_RDONLY) && !sb_rdonly(sb);
851 }
852 }
853 shrink_dcache_sb(sb);
854
855 /* If we are remounting RDONLY and current sb is read/write,
856 make sure there are no rw files opened */
857 if (remount_ro) {
858 if (force) {
859 sb->s_readonly_remount = 1;
860 smp_wmb();
861 } else {
862 retval = sb_prepare_remount_readonly(sb);
863 if (retval)
864 return retval;
865 }
866 }
867
868 if (mnt && sb->s_op->remount_fs2) {
869 retval = sb->s_op->remount_fs2(mnt, sb, &sb_flags, data);
870 if (retval) {
871 if (!force)
872 goto cancel_readonly;
873 /* If forced remount, go ahead despite any errors */
874 WARN(1, "forced remount of a %s fs returned %i\n",
875 sb->s_type->name, retval);
876 }
877 } else if (sb->s_op->remount_fs) {
878 retval = sb->s_op->remount_fs(sb, &sb_flags, data);
879 if (retval) {
880 if (!force)
881 goto cancel_readonly;
882 /* If forced remount, go ahead despite any errors */
883 WARN(1, "forced remount of a %s fs returned %i\n",
884 sb->s_type->name, retval);
885 }
886 }
887 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (sb_flags & MS_RMT_MASK);
888 /* Needs to be ordered wrt mnt_is_readonly() */
889 smp_wmb();
890 sb->s_readonly_remount = 0;
891
892 /*
893 * Some filesystems modify their metadata via some other path than the
894 * bdev buffer cache (eg. use a private mapping, or directories in
895 * pagecache, etc). Also file data modifications go via their own
896 * mappings. So If we try to mount readonly then copy the filesystem
897 * from bdev, we could get stale data, so invalidate it to give a best
898 * effort at coherency.
899 */
900 if (remount_ro && sb->s_bdev)
901 invalidate_bdev(sb->s_bdev);
902 return 0;
903
904 cancel_readonly:
905 sb->s_readonly_remount = 0;
906 return retval;
907 }
908
do_remount_sb(struct super_block * sb,int flags,void * data,int force)909 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
910 {
911 return do_remount_sb2(NULL, sb, flags, data, force);
912 }
913
do_emergency_remount(struct work_struct * work)914 static void do_emergency_remount(struct work_struct *work)
915 {
916 struct super_block *sb, *p = NULL;
917
918 spin_lock(&sb_lock);
919 list_for_each_entry_reverse(sb, &super_blocks, s_list) {
920 if (hlist_unhashed(&sb->s_instances))
921 continue;
922 sb->s_count++;
923 spin_unlock(&sb_lock);
924 down_write(&sb->s_umount);
925 if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
926 !sb_rdonly(sb)) {
927 /*
928 * What lock protects sb->s_flags??
929 */
930 do_remount_sb(sb, SB_RDONLY, NULL, 1);
931 }
932 up_write(&sb->s_umount);
933 spin_lock(&sb_lock);
934 if (p)
935 __put_super(p);
936 p = sb;
937 }
938 if (p)
939 __put_super(p);
940 spin_unlock(&sb_lock);
941 kfree(work);
942 printk("Emergency Remount complete\n");
943 }
944
emergency_remount(void)945 void emergency_remount(void)
946 {
947 struct work_struct *work;
948
949 work = kmalloc(sizeof(*work), GFP_ATOMIC);
950 if (work) {
951 INIT_WORK(work, do_emergency_remount);
952 schedule_work(work);
953 }
954 }
955
956 /*
957 * Unnamed block devices are dummy devices used by virtual
958 * filesystems which don't use real block-devices. -- jrs
959 */
960
961 static DEFINE_IDA(unnamed_dev_ida);
962 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
963 /* Many userspace utilities consider an FSID of 0 invalid.
964 * Always return at least 1 from get_anon_bdev.
965 */
966 static int unnamed_dev_start = 1;
967
get_anon_bdev(dev_t * p)968 int get_anon_bdev(dev_t *p)
969 {
970 int dev;
971 int error;
972
973 retry:
974 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
975 return -ENOMEM;
976 spin_lock(&unnamed_dev_lock);
977 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
978 if (!error)
979 unnamed_dev_start = dev + 1;
980 spin_unlock(&unnamed_dev_lock);
981 if (error == -EAGAIN)
982 /* We raced and lost with another CPU. */
983 goto retry;
984 else if (error)
985 return -EAGAIN;
986
987 if (dev >= (1 << MINORBITS)) {
988 spin_lock(&unnamed_dev_lock);
989 ida_remove(&unnamed_dev_ida, dev);
990 if (unnamed_dev_start > dev)
991 unnamed_dev_start = dev;
992 spin_unlock(&unnamed_dev_lock);
993 return -EMFILE;
994 }
995 *p = MKDEV(0, dev & MINORMASK);
996 return 0;
997 }
998 EXPORT_SYMBOL(get_anon_bdev);
999
free_anon_bdev(dev_t dev)1000 void free_anon_bdev(dev_t dev)
1001 {
1002 int slot = MINOR(dev);
1003 spin_lock(&unnamed_dev_lock);
1004 ida_remove(&unnamed_dev_ida, slot);
1005 if (slot < unnamed_dev_start)
1006 unnamed_dev_start = slot;
1007 spin_unlock(&unnamed_dev_lock);
1008 }
1009 EXPORT_SYMBOL(free_anon_bdev);
1010
set_anon_super(struct super_block * s,void * data)1011 int set_anon_super(struct super_block *s, void *data)
1012 {
1013 return get_anon_bdev(&s->s_dev);
1014 }
1015
1016 EXPORT_SYMBOL(set_anon_super);
1017
kill_anon_super(struct super_block * sb)1018 void kill_anon_super(struct super_block *sb)
1019 {
1020 dev_t dev = sb->s_dev;
1021 generic_shutdown_super(sb);
1022 free_anon_bdev(dev);
1023 }
1024
1025 EXPORT_SYMBOL(kill_anon_super);
1026
kill_litter_super(struct super_block * sb)1027 void kill_litter_super(struct super_block *sb)
1028 {
1029 if (sb->s_root)
1030 d_genocide(sb->s_root);
1031 kill_anon_super(sb);
1032 }
1033
1034 EXPORT_SYMBOL(kill_litter_super);
1035
ns_test_super(struct super_block * sb,void * data)1036 static int ns_test_super(struct super_block *sb, void *data)
1037 {
1038 return sb->s_fs_info == data;
1039 }
1040
ns_set_super(struct super_block * sb,void * data)1041 static int ns_set_super(struct super_block *sb, void *data)
1042 {
1043 sb->s_fs_info = data;
1044 return set_anon_super(sb, NULL);
1045 }
1046
mount_ns(struct file_system_type * fs_type,int flags,void * data,void * ns,struct user_namespace * user_ns,int (* fill_super)(struct super_block *,void *,int))1047 struct dentry *mount_ns(struct file_system_type *fs_type,
1048 int flags, void *data, void *ns, struct user_namespace *user_ns,
1049 int (*fill_super)(struct super_block *, void *, int))
1050 {
1051 struct super_block *sb;
1052
1053 /* Don't allow mounting unless the caller has CAP_SYS_ADMIN
1054 * over the namespace.
1055 */
1056 if (!(flags & SB_KERNMOUNT) && !ns_capable(user_ns, CAP_SYS_ADMIN))
1057 return ERR_PTR(-EPERM);
1058
1059 sb = sget_userns(fs_type, ns_test_super, ns_set_super, flags,
1060 user_ns, ns);
1061 if (IS_ERR(sb))
1062 return ERR_CAST(sb);
1063
1064 if (!sb->s_root) {
1065 int err;
1066 err = fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
1067 if (err) {
1068 deactivate_locked_super(sb);
1069 return ERR_PTR(err);
1070 }
1071
1072 sb->s_flags |= SB_ACTIVE;
1073 }
1074
1075 return dget(sb->s_root);
1076 }
1077
1078 EXPORT_SYMBOL(mount_ns);
1079
1080 #ifdef CONFIG_BLOCK
set_bdev_super(struct super_block * s,void * data)1081 static int set_bdev_super(struct super_block *s, void *data)
1082 {
1083 s->s_bdev = data;
1084 s->s_dev = s->s_bdev->bd_dev;
1085 s->s_bdi = bdi_get(s->s_bdev->bd_bdi);
1086
1087 return 0;
1088 }
1089
test_bdev_super(struct super_block * s,void * data)1090 static int test_bdev_super(struct super_block *s, void *data)
1091 {
1092 return (void *)s->s_bdev == data;
1093 }
1094
mount_bdev(struct file_system_type * fs_type,int flags,const char * dev_name,void * data,int (* fill_super)(struct super_block *,void *,int))1095 struct dentry *mount_bdev(struct file_system_type *fs_type,
1096 int flags, const char *dev_name, void *data,
1097 int (*fill_super)(struct super_block *, void *, int))
1098 {
1099 struct block_device *bdev;
1100 struct super_block *s;
1101 fmode_t mode = FMODE_READ | FMODE_EXCL;
1102 int error = 0;
1103
1104 if (!(flags & SB_RDONLY))
1105 mode |= FMODE_WRITE;
1106
1107 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1108 if (IS_ERR(bdev))
1109 return ERR_CAST(bdev);
1110
1111 /*
1112 * once the super is inserted into the list by sget, s_umount
1113 * will protect the lockfs code from trying to start a snapshot
1114 * while we are mounting
1115 */
1116 mutex_lock(&bdev->bd_fsfreeze_mutex);
1117 if (bdev->bd_fsfreeze_count > 0) {
1118 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1119 error = -EBUSY;
1120 goto error_bdev;
1121 }
1122 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
1123 bdev);
1124 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1125 if (IS_ERR(s))
1126 goto error_s;
1127
1128 if (s->s_root) {
1129 if ((flags ^ s->s_flags) & SB_RDONLY) {
1130 deactivate_locked_super(s);
1131 error = -EBUSY;
1132 goto error_bdev;
1133 }
1134
1135 /*
1136 * s_umount nests inside bd_mutex during
1137 * __invalidate_device(). blkdev_put() acquires
1138 * bd_mutex and can't be called under s_umount. Drop
1139 * s_umount temporarily. This is safe as we're
1140 * holding an active reference.
1141 */
1142 up_write(&s->s_umount);
1143 blkdev_put(bdev, mode);
1144 down_write(&s->s_umount);
1145 } else {
1146 s->s_mode = mode;
1147 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1148 sb_set_blocksize(s, block_size(bdev));
1149 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1150 if (error) {
1151 deactivate_locked_super(s);
1152 goto error;
1153 }
1154
1155 s->s_flags |= SB_ACTIVE;
1156 bdev->bd_super = s;
1157 }
1158
1159 return dget(s->s_root);
1160
1161 error_s:
1162 error = PTR_ERR(s);
1163 error_bdev:
1164 blkdev_put(bdev, mode);
1165 error:
1166 return ERR_PTR(error);
1167 }
1168 EXPORT_SYMBOL(mount_bdev);
1169
kill_block_super(struct super_block * sb)1170 void kill_block_super(struct super_block *sb)
1171 {
1172 struct block_device *bdev = sb->s_bdev;
1173 fmode_t mode = sb->s_mode;
1174
1175 bdev->bd_super = NULL;
1176 generic_shutdown_super(sb);
1177 sync_blockdev(bdev);
1178 WARN_ON_ONCE(!(mode & FMODE_EXCL));
1179 blkdev_put(bdev, mode | FMODE_EXCL);
1180 }
1181
1182 EXPORT_SYMBOL(kill_block_super);
1183 #endif
1184
mount_nodev(struct file_system_type * fs_type,int flags,void * data,int (* fill_super)(struct super_block *,void *,int))1185 struct dentry *mount_nodev(struct file_system_type *fs_type,
1186 int flags, void *data,
1187 int (*fill_super)(struct super_block *, void *, int))
1188 {
1189 int error;
1190 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1191
1192 if (IS_ERR(s))
1193 return ERR_CAST(s);
1194
1195 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1196 if (error) {
1197 deactivate_locked_super(s);
1198 return ERR_PTR(error);
1199 }
1200 s->s_flags |= SB_ACTIVE;
1201 return dget(s->s_root);
1202 }
1203 EXPORT_SYMBOL(mount_nodev);
1204
compare_single(struct super_block * s,void * p)1205 static int compare_single(struct super_block *s, void *p)
1206 {
1207 return 1;
1208 }
1209
mount_single(struct file_system_type * fs_type,int flags,void * data,int (* fill_super)(struct super_block *,void *,int))1210 struct dentry *mount_single(struct file_system_type *fs_type,
1211 int flags, void *data,
1212 int (*fill_super)(struct super_block *, void *, int))
1213 {
1214 struct super_block *s;
1215 int error;
1216
1217 s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1218 if (IS_ERR(s))
1219 return ERR_CAST(s);
1220 if (!s->s_root) {
1221 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1222 if (error) {
1223 deactivate_locked_super(s);
1224 return ERR_PTR(error);
1225 }
1226 s->s_flags |= SB_ACTIVE;
1227 } else {
1228 do_remount_sb(s, flags, data, 0);
1229 }
1230 return dget(s->s_root);
1231 }
1232 EXPORT_SYMBOL(mount_single);
1233
1234 struct dentry *
mount_fs(struct file_system_type * type,int flags,const char * name,struct vfsmount * mnt,void * data)1235 mount_fs(struct file_system_type *type, int flags, const char *name, struct vfsmount *mnt, void *data)
1236 {
1237 struct dentry *root;
1238 struct super_block *sb;
1239 char *secdata = NULL;
1240 int error = -ENOMEM;
1241
1242 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1243 secdata = alloc_secdata();
1244 if (!secdata)
1245 goto out;
1246
1247 error = security_sb_copy_data(data, secdata);
1248 if (error)
1249 goto out_free_secdata;
1250 }
1251
1252 if (type->mount2)
1253 root = type->mount2(mnt, type, flags, name, data);
1254 else
1255 root = type->mount(type, flags, name, data);
1256 if (IS_ERR(root)) {
1257 error = PTR_ERR(root);
1258 goto out_free_secdata;
1259 }
1260 sb = root->d_sb;
1261 BUG_ON(!sb);
1262 WARN_ON(!sb->s_bdi);
1263
1264 /*
1265 * Write barrier is for super_cache_count(). We place it before setting
1266 * SB_BORN as the data dependency between the two functions is the
1267 * superblock structure contents that we just set up, not the SB_BORN
1268 * flag.
1269 */
1270 smp_wmb();
1271 sb->s_flags |= SB_BORN;
1272
1273 error = security_sb_kern_mount(sb, flags, secdata);
1274 if (error)
1275 goto out_sb;
1276
1277 /*
1278 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1279 * but s_maxbytes was an unsigned long long for many releases. Throw
1280 * this warning for a little while to try and catch filesystems that
1281 * violate this rule.
1282 */
1283 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1284 "negative value (%lld)\n", type->name, sb->s_maxbytes);
1285
1286 up_write(&sb->s_umount);
1287 free_secdata(secdata);
1288 return root;
1289 out_sb:
1290 dput(root);
1291 deactivate_locked_super(sb);
1292 out_free_secdata:
1293 free_secdata(secdata);
1294 out:
1295 return ERR_PTR(error);
1296 }
1297
1298 /*
1299 * Setup private BDI for given superblock. It gets automatically cleaned up
1300 * in generic_shutdown_super().
1301 */
super_setup_bdi_name(struct super_block * sb,char * fmt,...)1302 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1303 {
1304 struct backing_dev_info *bdi;
1305 int err;
1306 va_list args;
1307
1308 bdi = bdi_alloc(GFP_KERNEL);
1309 if (!bdi)
1310 return -ENOMEM;
1311
1312 bdi->name = sb->s_type->name;
1313
1314 va_start(args, fmt);
1315 err = bdi_register_va(bdi, fmt, args);
1316 va_end(args);
1317 if (err) {
1318 bdi_put(bdi);
1319 return err;
1320 }
1321 WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1322 sb->s_bdi = bdi;
1323
1324 return 0;
1325 }
1326 EXPORT_SYMBOL(super_setup_bdi_name);
1327
1328 /*
1329 * Setup private BDI for given superblock. I gets automatically cleaned up
1330 * in generic_shutdown_super().
1331 */
super_setup_bdi(struct super_block * sb)1332 int super_setup_bdi(struct super_block *sb)
1333 {
1334 static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1335
1336 return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1337 atomic_long_inc_return(&bdi_seq));
1338 }
1339 EXPORT_SYMBOL(super_setup_bdi);
1340
1341 /*
1342 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1343 * instead.
1344 */
__sb_end_write(struct super_block * sb,int level)1345 void __sb_end_write(struct super_block *sb, int level)
1346 {
1347 percpu_up_read(sb->s_writers.rw_sem + level-1);
1348 }
1349 EXPORT_SYMBOL(__sb_end_write);
1350
1351 /*
1352 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1353 * instead.
1354 */
__sb_start_write(struct super_block * sb,int level,bool wait)1355 int __sb_start_write(struct super_block *sb, int level, bool wait)
1356 {
1357 bool force_trylock = false;
1358 int ret = 1;
1359
1360 #ifdef CONFIG_LOCKDEP
1361 /*
1362 * We want lockdep to tell us about possible deadlocks with freezing
1363 * but it's it bit tricky to properly instrument it. Getting a freeze
1364 * protection works as getting a read lock but there are subtle
1365 * problems. XFS for example gets freeze protection on internal level
1366 * twice in some cases, which is OK only because we already hold a
1367 * freeze protection also on higher level. Due to these cases we have
1368 * to use wait == F (trylock mode) which must not fail.
1369 */
1370 if (wait) {
1371 int i;
1372
1373 for (i = 0; i < level - 1; i++)
1374 if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) {
1375 force_trylock = true;
1376 break;
1377 }
1378 }
1379 #endif
1380 if (wait && !force_trylock)
1381 percpu_down_read(sb->s_writers.rw_sem + level-1);
1382 else
1383 ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1);
1384
1385 WARN_ON(force_trylock && !ret);
1386 return ret;
1387 }
1388 EXPORT_SYMBOL(__sb_start_write);
1389
1390 /**
1391 * sb_wait_write - wait until all writers to given file system finish
1392 * @sb: the super for which we wait
1393 * @level: type of writers we wait for (normal vs page fault)
1394 *
1395 * This function waits until there are no writers of given type to given file
1396 * system.
1397 */
sb_wait_write(struct super_block * sb,int level)1398 static void sb_wait_write(struct super_block *sb, int level)
1399 {
1400 percpu_down_write(sb->s_writers.rw_sem + level-1);
1401 }
1402
1403 /*
1404 * We are going to return to userspace and forget about these locks, the
1405 * ownership goes to the caller of thaw_super() which does unlock().
1406 */
lockdep_sb_freeze_release(struct super_block * sb)1407 static void lockdep_sb_freeze_release(struct super_block *sb)
1408 {
1409 int level;
1410
1411 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1412 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1413 }
1414
1415 /*
1416 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1417 */
lockdep_sb_freeze_acquire(struct super_block * sb)1418 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1419 {
1420 int level;
1421
1422 for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1423 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1424 }
1425
sb_freeze_unlock(struct super_block * sb)1426 static void sb_freeze_unlock(struct super_block *sb)
1427 {
1428 int level;
1429
1430 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1431 percpu_up_write(sb->s_writers.rw_sem + level);
1432 }
1433
1434 /**
1435 * freeze_super - lock the filesystem and force it into a consistent state
1436 * @sb: the super to lock
1437 *
1438 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1439 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1440 * -EBUSY.
1441 *
1442 * During this function, sb->s_writers.frozen goes through these values:
1443 *
1444 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1445 *
1446 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1447 * writes should be blocked, though page faults are still allowed. We wait for
1448 * all writes to complete and then proceed to the next stage.
1449 *
1450 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1451 * but internal fs threads can still modify the filesystem (although they
1452 * should not dirty new pages or inodes), writeback can run etc. After waiting
1453 * for all running page faults we sync the filesystem which will clean all
1454 * dirty pages and inodes (no new dirty pages or inodes can be created when
1455 * sync is running).
1456 *
1457 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1458 * modification are blocked (e.g. XFS preallocation truncation on inode
1459 * reclaim). This is usually implemented by blocking new transactions for
1460 * filesystems that have them and need this additional guard. After all
1461 * internal writers are finished we call ->freeze_fs() to finish filesystem
1462 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1463 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1464 *
1465 * sb->s_writers.frozen is protected by sb->s_umount.
1466 */
freeze_super(struct super_block * sb)1467 int freeze_super(struct super_block *sb)
1468 {
1469 int ret;
1470
1471 atomic_inc(&sb->s_active);
1472 down_write(&sb->s_umount);
1473 if (sb->s_writers.frozen != SB_UNFROZEN) {
1474 deactivate_locked_super(sb);
1475 return -EBUSY;
1476 }
1477
1478 if (!(sb->s_flags & SB_BORN)) {
1479 up_write(&sb->s_umount);
1480 return 0; /* sic - it's "nothing to do" */
1481 }
1482
1483 if (sb_rdonly(sb)) {
1484 /* Nothing to do really... */
1485 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1486 up_write(&sb->s_umount);
1487 return 0;
1488 }
1489
1490 sb->s_writers.frozen = SB_FREEZE_WRITE;
1491 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1492 up_write(&sb->s_umount);
1493 sb_wait_write(sb, SB_FREEZE_WRITE);
1494 down_write(&sb->s_umount);
1495
1496 /* Now we go and block page faults... */
1497 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1498 sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1499
1500 /* All writers are done so after syncing there won't be dirty data */
1501 sync_filesystem(sb);
1502
1503 /* Now wait for internal filesystem counter */
1504 sb->s_writers.frozen = SB_FREEZE_FS;
1505 sb_wait_write(sb, SB_FREEZE_FS);
1506
1507 if (sb->s_op->freeze_fs) {
1508 ret = sb->s_op->freeze_fs(sb);
1509 if (ret) {
1510 printk(KERN_ERR
1511 "VFS:Filesystem freeze failed\n");
1512 sb->s_writers.frozen = SB_UNFROZEN;
1513 sb_freeze_unlock(sb);
1514 wake_up(&sb->s_writers.wait_unfrozen);
1515 deactivate_locked_super(sb);
1516 return ret;
1517 }
1518 }
1519 /*
1520 * For debugging purposes so that fs can warn if it sees write activity
1521 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1522 */
1523 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1524 lockdep_sb_freeze_release(sb);
1525 up_write(&sb->s_umount);
1526 return 0;
1527 }
1528 EXPORT_SYMBOL(freeze_super);
1529
1530 /**
1531 * thaw_super -- unlock filesystem
1532 * @sb: the super to thaw
1533 *
1534 * Unlocks the filesystem and marks it writeable again after freeze_super().
1535 */
thaw_super(struct super_block * sb)1536 int thaw_super(struct super_block *sb)
1537 {
1538 int error;
1539
1540 down_write(&sb->s_umount);
1541 if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1542 up_write(&sb->s_umount);
1543 return -EINVAL;
1544 }
1545
1546 if (sb_rdonly(sb)) {
1547 sb->s_writers.frozen = SB_UNFROZEN;
1548 goto out;
1549 }
1550
1551 lockdep_sb_freeze_acquire(sb);
1552
1553 if (sb->s_op->unfreeze_fs) {
1554 error = sb->s_op->unfreeze_fs(sb);
1555 if (error) {
1556 printk(KERN_ERR
1557 "VFS:Filesystem thaw failed\n");
1558 lockdep_sb_freeze_release(sb);
1559 up_write(&sb->s_umount);
1560 return error;
1561 }
1562 }
1563
1564 sb->s_writers.frozen = SB_UNFROZEN;
1565 sb_freeze_unlock(sb);
1566 out:
1567 wake_up(&sb->s_writers.wait_unfrozen);
1568 deactivate_locked_super(sb);
1569 return 0;
1570 }
1571 EXPORT_SYMBOL(thaw_super);
1572