• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20 
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "cpuid.h"
26 
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/moduleparam.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/hugetlb.h>
36 #include <linux/compiler.h>
37 #include <linux/srcu.h>
38 #include <linux/slab.h>
39 #include <linux/sched/signal.h>
40 #include <linux/uaccess.h>
41 #include <linux/hash.h>
42 #include <linux/kern_levels.h>
43 #include <linux/kthread.h>
44 
45 #include <asm/page.h>
46 #include <asm/cmpxchg.h>
47 #include <asm/io.h>
48 #include <asm/vmx.h>
49 #include <asm/kvm_page_track.h>
50 #include "trace.h"
51 
52 extern bool itlb_multihit_kvm_mitigation;
53 
54 static int __read_mostly nx_huge_pages = -1;
55 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
56 
57 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
58 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
59 
60 static struct kernel_param_ops nx_huge_pages_ops = {
61 	.set = set_nx_huge_pages,
62 	.get = param_get_bool,
63 };
64 
65 static struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
66 	.set = set_nx_huge_pages_recovery_ratio,
67 	.get = param_get_uint,
68 };
69 
70 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
71 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
72 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
73 		&nx_huge_pages_recovery_ratio, 0644);
74 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
75 
76 /*
77  * When setting this variable to true it enables Two-Dimensional-Paging
78  * where the hardware walks 2 page tables:
79  * 1. the guest-virtual to guest-physical
80  * 2. while doing 1. it walks guest-physical to host-physical
81  * If the hardware supports that we don't need to do shadow paging.
82  */
83 bool tdp_enabled = false;
84 
85 enum {
86 	AUDIT_PRE_PAGE_FAULT,
87 	AUDIT_POST_PAGE_FAULT,
88 	AUDIT_PRE_PTE_WRITE,
89 	AUDIT_POST_PTE_WRITE,
90 	AUDIT_PRE_SYNC,
91 	AUDIT_POST_SYNC
92 };
93 
94 #undef MMU_DEBUG
95 
96 #ifdef MMU_DEBUG
97 static bool dbg = 0;
98 module_param(dbg, bool, 0644);
99 
100 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
101 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
102 #define MMU_WARN_ON(x) WARN_ON(x)
103 #else
104 #define pgprintk(x...) do { } while (0)
105 #define rmap_printk(x...) do { } while (0)
106 #define MMU_WARN_ON(x) do { } while (0)
107 #endif
108 
109 #define PTE_PREFETCH_NUM		8
110 
111 #define PT_FIRST_AVAIL_BITS_SHIFT 10
112 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
113 
114 #define PT64_LEVEL_BITS 9
115 
116 #define PT64_LEVEL_SHIFT(level) \
117 		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
118 
119 #define PT64_INDEX(address, level)\
120 	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
121 
122 
123 #define PT32_LEVEL_BITS 10
124 
125 #define PT32_LEVEL_SHIFT(level) \
126 		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
127 
128 #define PT32_LVL_OFFSET_MASK(level) \
129 	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
130 						* PT32_LEVEL_BITS))) - 1))
131 
132 #define PT32_INDEX(address, level)\
133 	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
134 
135 
136 #define PT64_BASE_ADDR_MASK __sme_clr((((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)))
137 #define PT64_DIR_BASE_ADDR_MASK \
138 	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
139 #define PT64_LVL_ADDR_MASK(level) \
140 	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
141 						* PT64_LEVEL_BITS))) - 1))
142 #define PT64_LVL_OFFSET_MASK(level) \
143 	(PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
144 						* PT64_LEVEL_BITS))) - 1))
145 
146 #define PT32_BASE_ADDR_MASK PAGE_MASK
147 #define PT32_DIR_BASE_ADDR_MASK \
148 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
149 #define PT32_LVL_ADDR_MASK(level) \
150 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
151 					    * PT32_LEVEL_BITS))) - 1))
152 
153 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
154 			| shadow_x_mask | shadow_nx_mask | shadow_me_mask)
155 
156 #define ACC_EXEC_MASK    1
157 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
158 #define ACC_USER_MASK    PT_USER_MASK
159 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
160 
161 /* The mask for the R/X bits in EPT PTEs */
162 #define PT64_EPT_READABLE_MASK			0x1ull
163 #define PT64_EPT_EXECUTABLE_MASK		0x4ull
164 
165 #include <trace/events/kvm.h>
166 
167 #define SPTE_HOST_WRITEABLE	(1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
168 #define SPTE_MMU_WRITEABLE	(1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
169 
170 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
171 
172 /* make pte_list_desc fit well in cache line */
173 #define PTE_LIST_EXT 3
174 
175 /*
176  * Return values of handle_mmio_page_fault and mmu.page_fault:
177  * RET_PF_RETRY: let CPU fault again on the address.
178  * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
179  *
180  * For handle_mmio_page_fault only:
181  * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
182  */
183 enum {
184 	RET_PF_RETRY = 0,
185 	RET_PF_EMULATE = 1,
186 	RET_PF_INVALID = 2,
187 };
188 
189 struct pte_list_desc {
190 	u64 *sptes[PTE_LIST_EXT];
191 	struct pte_list_desc *more;
192 };
193 
194 struct kvm_shadow_walk_iterator {
195 	u64 addr;
196 	hpa_t shadow_addr;
197 	u64 *sptep;
198 	int level;
199 	unsigned index;
200 };
201 
202 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
203 	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
204 	     shadow_walk_okay(&(_walker));			\
205 	     shadow_walk_next(&(_walker)))
206 
207 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
208 	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
209 	     shadow_walk_okay(&(_walker)) &&				\
210 		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
211 	     __shadow_walk_next(&(_walker), spte))
212 
213 static struct kmem_cache *pte_list_desc_cache;
214 static struct kmem_cache *mmu_page_header_cache;
215 static struct percpu_counter kvm_total_used_mmu_pages;
216 
217 static u64 __read_mostly shadow_nx_mask;
218 static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */
219 static u64 __read_mostly shadow_user_mask;
220 static u64 __read_mostly shadow_accessed_mask;
221 static u64 __read_mostly shadow_dirty_mask;
222 static u64 __read_mostly shadow_mmio_mask;
223 static u64 __read_mostly shadow_mmio_value;
224 static u64 __read_mostly shadow_present_mask;
225 static u64 __read_mostly shadow_me_mask;
226 
227 /*
228  * SPTEs used by MMUs without A/D bits are marked with shadow_acc_track_value.
229  * Non-present SPTEs with shadow_acc_track_value set are in place for access
230  * tracking.
231  */
232 static u64 __read_mostly shadow_acc_track_mask;
233 static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK;
234 
235 /*
236  * The mask/shift to use for saving the original R/X bits when marking the PTE
237  * as not-present for access tracking purposes. We do not save the W bit as the
238  * PTEs being access tracked also need to be dirty tracked, so the W bit will be
239  * restored only when a write is attempted to the page.
240  */
241 static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
242 						    PT64_EPT_EXECUTABLE_MASK;
243 static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
244 
245 /*
246  * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
247  * to guard against L1TF attacks.
248  */
249 static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
250 
251 /*
252  * The number of high-order 1 bits to use in the mask above.
253  */
254 static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;
255 
256 /*
257  * In some cases, we need to preserve the GFN of a non-present or reserved
258  * SPTE when we usurp the upper five bits of the physical address space to
259  * defend against L1TF, e.g. for MMIO SPTEs.  To preserve the GFN, we'll
260  * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
261  * left into the reserved bits, i.e. the GFN in the SPTE will be split into
262  * high and low parts.  This mask covers the lower bits of the GFN.
263  */
264 static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
265 
266 
267 static void mmu_spte_set(u64 *sptep, u64 spte);
268 static void mmu_free_roots(struct kvm_vcpu *vcpu);
269 static bool is_executable_pte(u64 spte);
270 
271 #define CREATE_TRACE_POINTS
272 #include "mmutrace.h"
273 
274 
kvm_mmu_set_mmio_spte_mask(u64 mmio_mask,u64 mmio_value)275 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value)
276 {
277 	BUG_ON((mmio_mask & mmio_value) != mmio_value);
278 	shadow_mmio_value = mmio_value | SPTE_SPECIAL_MASK;
279 	shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
280 }
281 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
282 
sp_ad_disabled(struct kvm_mmu_page * sp)283 static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
284 {
285 	return sp->role.ad_disabled;
286 }
287 
spte_ad_enabled(u64 spte)288 static inline bool spte_ad_enabled(u64 spte)
289 {
290 	MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
291 	return !(spte & shadow_acc_track_value);
292 }
293 
is_nx_huge_page_enabled(void)294 static bool is_nx_huge_page_enabled(void)
295 {
296 	return READ_ONCE(nx_huge_pages);
297 }
298 
spte_shadow_accessed_mask(u64 spte)299 static inline u64 spte_shadow_accessed_mask(u64 spte)
300 {
301 	MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
302 	return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
303 }
304 
spte_shadow_dirty_mask(u64 spte)305 static inline u64 spte_shadow_dirty_mask(u64 spte)
306 {
307 	MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
308 	return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
309 }
310 
is_access_track_spte(u64 spte)311 static inline bool is_access_track_spte(u64 spte)
312 {
313 	return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
314 }
315 
316 /*
317  * the low bit of the generation number is always presumed to be zero.
318  * This disables mmio caching during memslot updates.  The concept is
319  * similar to a seqcount but instead of retrying the access we just punt
320  * and ignore the cache.
321  *
322  * spte bits 3-11 are used as bits 1-9 of the generation number,
323  * the bits 52-61 are used as bits 10-19 of the generation number.
324  */
325 #define MMIO_SPTE_GEN_LOW_SHIFT		2
326 #define MMIO_SPTE_GEN_HIGH_SHIFT	52
327 
328 #define MMIO_GEN_SHIFT			20
329 #define MMIO_GEN_LOW_SHIFT		10
330 #define MMIO_GEN_LOW_MASK		((1 << MMIO_GEN_LOW_SHIFT) - 2)
331 #define MMIO_GEN_MASK			((1 << MMIO_GEN_SHIFT) - 1)
332 
generation_mmio_spte_mask(unsigned int gen)333 static u64 generation_mmio_spte_mask(unsigned int gen)
334 {
335 	u64 mask;
336 
337 	WARN_ON(gen & ~MMIO_GEN_MASK);
338 
339 	mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
340 	mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
341 	return mask;
342 }
343 
get_mmio_spte_generation(u64 spte)344 static unsigned int get_mmio_spte_generation(u64 spte)
345 {
346 	unsigned int gen;
347 
348 	spte &= ~shadow_mmio_mask;
349 
350 	gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
351 	gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
352 	return gen;
353 }
354 
kvm_current_mmio_generation(struct kvm_vcpu * vcpu)355 static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
356 {
357 	return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
358 }
359 
mark_mmio_spte(struct kvm_vcpu * vcpu,u64 * sptep,u64 gfn,unsigned access)360 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
361 			   unsigned access)
362 {
363 	unsigned int gen = kvm_current_mmio_generation(vcpu);
364 	u64 mask = generation_mmio_spte_mask(gen);
365 	u64 gpa = gfn << PAGE_SHIFT;
366 
367 	access &= ACC_WRITE_MASK | ACC_USER_MASK;
368 	mask |= shadow_mmio_value | access;
369 	mask |= gpa | shadow_nonpresent_or_rsvd_mask;
370 	mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
371 		<< shadow_nonpresent_or_rsvd_mask_len;
372 
373 	trace_mark_mmio_spte(sptep, gfn, access, gen);
374 	mmu_spte_set(sptep, mask);
375 }
376 
is_mmio_spte(u64 spte)377 static bool is_mmio_spte(u64 spte)
378 {
379 	return (spte & shadow_mmio_mask) == shadow_mmio_value;
380 }
381 
get_mmio_spte_gfn(u64 spte)382 static gfn_t get_mmio_spte_gfn(u64 spte)
383 {
384 	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
385 
386 	gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
387 	       & shadow_nonpresent_or_rsvd_mask;
388 
389 	return gpa >> PAGE_SHIFT;
390 }
391 
get_mmio_spte_access(u64 spte)392 static unsigned get_mmio_spte_access(u64 spte)
393 {
394 	u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
395 	return (spte & ~mask) & ~PAGE_MASK;
396 }
397 
set_mmio_spte(struct kvm_vcpu * vcpu,u64 * sptep,gfn_t gfn,kvm_pfn_t pfn,unsigned access)398 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
399 			  kvm_pfn_t pfn, unsigned access)
400 {
401 	if (unlikely(is_noslot_pfn(pfn))) {
402 		mark_mmio_spte(vcpu, sptep, gfn, access);
403 		return true;
404 	}
405 
406 	return false;
407 }
408 
check_mmio_spte(struct kvm_vcpu * vcpu,u64 spte)409 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
410 {
411 	unsigned int kvm_gen, spte_gen;
412 
413 	kvm_gen = kvm_current_mmio_generation(vcpu);
414 	spte_gen = get_mmio_spte_generation(spte);
415 
416 	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
417 	return likely(kvm_gen == spte_gen);
418 }
419 
420 /*
421  * Sets the shadow PTE masks used by the MMU.
422  *
423  * Assumptions:
424  *  - Setting either @accessed_mask or @dirty_mask requires setting both
425  *  - At least one of @accessed_mask or @acc_track_mask must be set
426  */
kvm_mmu_set_mask_ptes(u64 user_mask,u64 accessed_mask,u64 dirty_mask,u64 nx_mask,u64 x_mask,u64 p_mask,u64 acc_track_mask,u64 me_mask)427 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
428 		u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
429 		u64 acc_track_mask, u64 me_mask)
430 {
431 	BUG_ON(!dirty_mask != !accessed_mask);
432 	BUG_ON(!accessed_mask && !acc_track_mask);
433 	BUG_ON(acc_track_mask & shadow_acc_track_value);
434 
435 	shadow_user_mask = user_mask;
436 	shadow_accessed_mask = accessed_mask;
437 	shadow_dirty_mask = dirty_mask;
438 	shadow_nx_mask = nx_mask;
439 	shadow_x_mask = x_mask;
440 	shadow_present_mask = p_mask;
441 	shadow_acc_track_mask = acc_track_mask;
442 	shadow_me_mask = me_mask;
443 }
444 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
445 
kvm_mmu_reset_all_pte_masks(void)446 static void kvm_mmu_reset_all_pte_masks(void)
447 {
448 	u8 low_phys_bits;
449 
450 	shadow_user_mask = 0;
451 	shadow_accessed_mask = 0;
452 	shadow_dirty_mask = 0;
453 	shadow_nx_mask = 0;
454 	shadow_x_mask = 0;
455 	shadow_mmio_mask = 0;
456 	shadow_present_mask = 0;
457 	shadow_acc_track_mask = 0;
458 
459 	/*
460 	 * If the CPU has 46 or less physical address bits, then set an
461 	 * appropriate mask to guard against L1TF attacks. Otherwise, it is
462 	 * assumed that the CPU is not vulnerable to L1TF.
463 	 */
464 	low_phys_bits = boot_cpu_data.x86_phys_bits;
465 	if (boot_cpu_data.x86_phys_bits <
466 	    52 - shadow_nonpresent_or_rsvd_mask_len) {
467 		shadow_nonpresent_or_rsvd_mask =
468 			rsvd_bits(boot_cpu_data.x86_phys_bits -
469 				  shadow_nonpresent_or_rsvd_mask_len,
470 				  boot_cpu_data.x86_phys_bits - 1);
471 		low_phys_bits -= shadow_nonpresent_or_rsvd_mask_len;
472 	}
473 	shadow_nonpresent_or_rsvd_lower_gfn_mask =
474 		GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
475 }
476 
is_cpuid_PSE36(void)477 static int is_cpuid_PSE36(void)
478 {
479 	return 1;
480 }
481 
is_nx(struct kvm_vcpu * vcpu)482 static int is_nx(struct kvm_vcpu *vcpu)
483 {
484 	return vcpu->arch.efer & EFER_NX;
485 }
486 
is_shadow_present_pte(u64 pte)487 static int is_shadow_present_pte(u64 pte)
488 {
489 	return (pte != 0) && !is_mmio_spte(pte);
490 }
491 
is_large_pte(u64 pte)492 static int is_large_pte(u64 pte)
493 {
494 	return pte & PT_PAGE_SIZE_MASK;
495 }
496 
is_last_spte(u64 pte,int level)497 static int is_last_spte(u64 pte, int level)
498 {
499 	if (level == PT_PAGE_TABLE_LEVEL)
500 		return 1;
501 	if (is_large_pte(pte))
502 		return 1;
503 	return 0;
504 }
505 
is_executable_pte(u64 spte)506 static bool is_executable_pte(u64 spte)
507 {
508 	return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
509 }
510 
spte_to_pfn(u64 pte)511 static kvm_pfn_t spte_to_pfn(u64 pte)
512 {
513 	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
514 }
515 
pse36_gfn_delta(u32 gpte)516 static gfn_t pse36_gfn_delta(u32 gpte)
517 {
518 	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
519 
520 	return (gpte & PT32_DIR_PSE36_MASK) << shift;
521 }
522 
523 #ifdef CONFIG_X86_64
__set_spte(u64 * sptep,u64 spte)524 static void __set_spte(u64 *sptep, u64 spte)
525 {
526 	WRITE_ONCE(*sptep, spte);
527 }
528 
__update_clear_spte_fast(u64 * sptep,u64 spte)529 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
530 {
531 	WRITE_ONCE(*sptep, spte);
532 }
533 
__update_clear_spte_slow(u64 * sptep,u64 spte)534 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
535 {
536 	return xchg(sptep, spte);
537 }
538 
__get_spte_lockless(u64 * sptep)539 static u64 __get_spte_lockless(u64 *sptep)
540 {
541 	return ACCESS_ONCE(*sptep);
542 }
543 #else
544 union split_spte {
545 	struct {
546 		u32 spte_low;
547 		u32 spte_high;
548 	};
549 	u64 spte;
550 };
551 
count_spte_clear(u64 * sptep,u64 spte)552 static void count_spte_clear(u64 *sptep, u64 spte)
553 {
554 	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
555 
556 	if (is_shadow_present_pte(spte))
557 		return;
558 
559 	/* Ensure the spte is completely set before we increase the count */
560 	smp_wmb();
561 	sp->clear_spte_count++;
562 }
563 
__set_spte(u64 * sptep,u64 spte)564 static void __set_spte(u64 *sptep, u64 spte)
565 {
566 	union split_spte *ssptep, sspte;
567 
568 	ssptep = (union split_spte *)sptep;
569 	sspte = (union split_spte)spte;
570 
571 	ssptep->spte_high = sspte.spte_high;
572 
573 	/*
574 	 * If we map the spte from nonpresent to present, We should store
575 	 * the high bits firstly, then set present bit, so cpu can not
576 	 * fetch this spte while we are setting the spte.
577 	 */
578 	smp_wmb();
579 
580 	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
581 }
582 
__update_clear_spte_fast(u64 * sptep,u64 spte)583 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
584 {
585 	union split_spte *ssptep, sspte;
586 
587 	ssptep = (union split_spte *)sptep;
588 	sspte = (union split_spte)spte;
589 
590 	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
591 
592 	/*
593 	 * If we map the spte from present to nonpresent, we should clear
594 	 * present bit firstly to avoid vcpu fetch the old high bits.
595 	 */
596 	smp_wmb();
597 
598 	ssptep->spte_high = sspte.spte_high;
599 	count_spte_clear(sptep, spte);
600 }
601 
__update_clear_spte_slow(u64 * sptep,u64 spte)602 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
603 {
604 	union split_spte *ssptep, sspte, orig;
605 
606 	ssptep = (union split_spte *)sptep;
607 	sspte = (union split_spte)spte;
608 
609 	/* xchg acts as a barrier before the setting of the high bits */
610 	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
611 	orig.spte_high = ssptep->spte_high;
612 	ssptep->spte_high = sspte.spte_high;
613 	count_spte_clear(sptep, spte);
614 
615 	return orig.spte;
616 }
617 
618 /*
619  * The idea using the light way get the spte on x86_32 guest is from
620  * gup_get_pte(arch/x86/mm/gup.c).
621  *
622  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
623  * coalesces them and we are running out of the MMU lock.  Therefore
624  * we need to protect against in-progress updates of the spte.
625  *
626  * Reading the spte while an update is in progress may get the old value
627  * for the high part of the spte.  The race is fine for a present->non-present
628  * change (because the high part of the spte is ignored for non-present spte),
629  * but for a present->present change we must reread the spte.
630  *
631  * All such changes are done in two steps (present->non-present and
632  * non-present->present), hence it is enough to count the number of
633  * present->non-present updates: if it changed while reading the spte,
634  * we might have hit the race.  This is done using clear_spte_count.
635  */
__get_spte_lockless(u64 * sptep)636 static u64 __get_spte_lockless(u64 *sptep)
637 {
638 	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
639 	union split_spte spte, *orig = (union split_spte *)sptep;
640 	int count;
641 
642 retry:
643 	count = sp->clear_spte_count;
644 	smp_rmb();
645 
646 	spte.spte_low = orig->spte_low;
647 	smp_rmb();
648 
649 	spte.spte_high = orig->spte_high;
650 	smp_rmb();
651 
652 	if (unlikely(spte.spte_low != orig->spte_low ||
653 	      count != sp->clear_spte_count))
654 		goto retry;
655 
656 	return spte.spte;
657 }
658 #endif
659 
spte_can_locklessly_be_made_writable(u64 spte)660 static bool spte_can_locklessly_be_made_writable(u64 spte)
661 {
662 	return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
663 		(SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
664 }
665 
spte_has_volatile_bits(u64 spte)666 static bool spte_has_volatile_bits(u64 spte)
667 {
668 	if (!is_shadow_present_pte(spte))
669 		return false;
670 
671 	/*
672 	 * Always atomically update spte if it can be updated
673 	 * out of mmu-lock, it can ensure dirty bit is not lost,
674 	 * also, it can help us to get a stable is_writable_pte()
675 	 * to ensure tlb flush is not missed.
676 	 */
677 	if (spte_can_locklessly_be_made_writable(spte) ||
678 	    is_access_track_spte(spte))
679 		return true;
680 
681 	if (spte_ad_enabled(spte)) {
682 		if ((spte & shadow_accessed_mask) == 0 ||
683 	    	    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
684 			return true;
685 	}
686 
687 	return false;
688 }
689 
is_accessed_spte(u64 spte)690 static bool is_accessed_spte(u64 spte)
691 {
692 	u64 accessed_mask = spte_shadow_accessed_mask(spte);
693 
694 	return accessed_mask ? spte & accessed_mask
695 			     : !is_access_track_spte(spte);
696 }
697 
is_dirty_spte(u64 spte)698 static bool is_dirty_spte(u64 spte)
699 {
700 	u64 dirty_mask = spte_shadow_dirty_mask(spte);
701 
702 	return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
703 }
704 
705 /* Rules for using mmu_spte_set:
706  * Set the sptep from nonpresent to present.
707  * Note: the sptep being assigned *must* be either not present
708  * or in a state where the hardware will not attempt to update
709  * the spte.
710  */
mmu_spte_set(u64 * sptep,u64 new_spte)711 static void mmu_spte_set(u64 *sptep, u64 new_spte)
712 {
713 	WARN_ON(is_shadow_present_pte(*sptep));
714 	__set_spte(sptep, new_spte);
715 }
716 
717 /*
718  * Update the SPTE (excluding the PFN), but do not track changes in its
719  * accessed/dirty status.
720  */
mmu_spte_update_no_track(u64 * sptep,u64 new_spte)721 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
722 {
723 	u64 old_spte = *sptep;
724 
725 	WARN_ON(!is_shadow_present_pte(new_spte));
726 
727 	if (!is_shadow_present_pte(old_spte)) {
728 		mmu_spte_set(sptep, new_spte);
729 		return old_spte;
730 	}
731 
732 	if (!spte_has_volatile_bits(old_spte))
733 		__update_clear_spte_fast(sptep, new_spte);
734 	else
735 		old_spte = __update_clear_spte_slow(sptep, new_spte);
736 
737 	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
738 
739 	return old_spte;
740 }
741 
742 /* Rules for using mmu_spte_update:
743  * Update the state bits, it means the mapped pfn is not changed.
744  *
745  * Whenever we overwrite a writable spte with a read-only one we
746  * should flush remote TLBs. Otherwise rmap_write_protect
747  * will find a read-only spte, even though the writable spte
748  * might be cached on a CPU's TLB, the return value indicates this
749  * case.
750  *
751  * Returns true if the TLB needs to be flushed
752  */
mmu_spte_update(u64 * sptep,u64 new_spte)753 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
754 {
755 	bool flush = false;
756 	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
757 
758 	if (!is_shadow_present_pte(old_spte))
759 		return false;
760 
761 	/*
762 	 * For the spte updated out of mmu-lock is safe, since
763 	 * we always atomically update it, see the comments in
764 	 * spte_has_volatile_bits().
765 	 */
766 	if (spte_can_locklessly_be_made_writable(old_spte) &&
767 	      !is_writable_pte(new_spte))
768 		flush = true;
769 
770 	/*
771 	 * Flush TLB when accessed/dirty states are changed in the page tables,
772 	 * to guarantee consistency between TLB and page tables.
773 	 */
774 
775 	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
776 		flush = true;
777 		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
778 	}
779 
780 	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
781 		flush = true;
782 		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
783 	}
784 
785 	return flush;
786 }
787 
788 /*
789  * Rules for using mmu_spte_clear_track_bits:
790  * It sets the sptep from present to nonpresent, and track the
791  * state bits, it is used to clear the last level sptep.
792  * Returns non-zero if the PTE was previously valid.
793  */
mmu_spte_clear_track_bits(u64 * sptep)794 static int mmu_spte_clear_track_bits(u64 *sptep)
795 {
796 	kvm_pfn_t pfn;
797 	u64 old_spte = *sptep;
798 
799 	if (!spte_has_volatile_bits(old_spte))
800 		__update_clear_spte_fast(sptep, 0ull);
801 	else
802 		old_spte = __update_clear_spte_slow(sptep, 0ull);
803 
804 	if (!is_shadow_present_pte(old_spte))
805 		return 0;
806 
807 	pfn = spte_to_pfn(old_spte);
808 
809 	/*
810 	 * KVM does not hold the refcount of the page used by
811 	 * kvm mmu, before reclaiming the page, we should
812 	 * unmap it from mmu first.
813 	 */
814 	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
815 
816 	if (is_accessed_spte(old_spte))
817 		kvm_set_pfn_accessed(pfn);
818 
819 	if (is_dirty_spte(old_spte))
820 		kvm_set_pfn_dirty(pfn);
821 
822 	return 1;
823 }
824 
825 /*
826  * Rules for using mmu_spte_clear_no_track:
827  * Directly clear spte without caring the state bits of sptep,
828  * it is used to set the upper level spte.
829  */
mmu_spte_clear_no_track(u64 * sptep)830 static void mmu_spte_clear_no_track(u64 *sptep)
831 {
832 	__update_clear_spte_fast(sptep, 0ull);
833 }
834 
mmu_spte_get_lockless(u64 * sptep)835 static u64 mmu_spte_get_lockless(u64 *sptep)
836 {
837 	return __get_spte_lockless(sptep);
838 }
839 
mark_spte_for_access_track(u64 spte)840 static u64 mark_spte_for_access_track(u64 spte)
841 {
842 	if (spte_ad_enabled(spte))
843 		return spte & ~shadow_accessed_mask;
844 
845 	if (is_access_track_spte(spte))
846 		return spte;
847 
848 	/*
849 	 * Making an Access Tracking PTE will result in removal of write access
850 	 * from the PTE. So, verify that we will be able to restore the write
851 	 * access in the fast page fault path later on.
852 	 */
853 	WARN_ONCE((spte & PT_WRITABLE_MASK) &&
854 		  !spte_can_locklessly_be_made_writable(spte),
855 		  "kvm: Writable SPTE is not locklessly dirty-trackable\n");
856 
857 	WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
858 			  shadow_acc_track_saved_bits_shift),
859 		  "kvm: Access Tracking saved bit locations are not zero\n");
860 
861 	spte |= (spte & shadow_acc_track_saved_bits_mask) <<
862 		shadow_acc_track_saved_bits_shift;
863 	spte &= ~shadow_acc_track_mask;
864 
865 	return spte;
866 }
867 
868 /* Restore an acc-track PTE back to a regular PTE */
restore_acc_track_spte(u64 spte)869 static u64 restore_acc_track_spte(u64 spte)
870 {
871 	u64 new_spte = spte;
872 	u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
873 			 & shadow_acc_track_saved_bits_mask;
874 
875 	WARN_ON_ONCE(spte_ad_enabled(spte));
876 	WARN_ON_ONCE(!is_access_track_spte(spte));
877 
878 	new_spte &= ~shadow_acc_track_mask;
879 	new_spte &= ~(shadow_acc_track_saved_bits_mask <<
880 		      shadow_acc_track_saved_bits_shift);
881 	new_spte |= saved_bits;
882 
883 	return new_spte;
884 }
885 
886 /* Returns the Accessed status of the PTE and resets it at the same time. */
mmu_spte_age(u64 * sptep)887 static bool mmu_spte_age(u64 *sptep)
888 {
889 	u64 spte = mmu_spte_get_lockless(sptep);
890 
891 	if (!is_accessed_spte(spte))
892 		return false;
893 
894 	if (spte_ad_enabled(spte)) {
895 		clear_bit((ffs(shadow_accessed_mask) - 1),
896 			  (unsigned long *)sptep);
897 	} else {
898 		/*
899 		 * Capture the dirty status of the page, so that it doesn't get
900 		 * lost when the SPTE is marked for access tracking.
901 		 */
902 		if (is_writable_pte(spte))
903 			kvm_set_pfn_dirty(spte_to_pfn(spte));
904 
905 		spte = mark_spte_for_access_track(spte);
906 		mmu_spte_update_no_track(sptep, spte);
907 	}
908 
909 	return true;
910 }
911 
walk_shadow_page_lockless_begin(struct kvm_vcpu * vcpu)912 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
913 {
914 	/*
915 	 * Prevent page table teardown by making any free-er wait during
916 	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
917 	 */
918 	local_irq_disable();
919 
920 	/*
921 	 * Make sure a following spte read is not reordered ahead of the write
922 	 * to vcpu->mode.
923 	 */
924 	smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
925 }
926 
walk_shadow_page_lockless_end(struct kvm_vcpu * vcpu)927 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
928 {
929 	/*
930 	 * Make sure the write to vcpu->mode is not reordered in front of
931 	 * reads to sptes.  If it does, kvm_commit_zap_page() can see us
932 	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
933 	 */
934 	smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
935 	local_irq_enable();
936 }
937 
mmu_topup_memory_cache(struct kvm_mmu_memory_cache * cache,struct kmem_cache * base_cache,int min)938 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
939 				  struct kmem_cache *base_cache, int min)
940 {
941 	void *obj;
942 
943 	if (cache->nobjs >= min)
944 		return 0;
945 	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
946 		obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
947 		if (!obj)
948 			return -ENOMEM;
949 		cache->objects[cache->nobjs++] = obj;
950 	}
951 	return 0;
952 }
953 
mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache * cache)954 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
955 {
956 	return cache->nobjs;
957 }
958 
mmu_free_memory_cache(struct kvm_mmu_memory_cache * mc,struct kmem_cache * cache)959 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
960 				  struct kmem_cache *cache)
961 {
962 	while (mc->nobjs)
963 		kmem_cache_free(cache, mc->objects[--mc->nobjs]);
964 }
965 
mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache * cache,int min)966 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
967 				       int min)
968 {
969 	void *page;
970 
971 	if (cache->nobjs >= min)
972 		return 0;
973 	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
974 		page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
975 		if (!page)
976 			return -ENOMEM;
977 		cache->objects[cache->nobjs++] = page;
978 	}
979 	return 0;
980 }
981 
mmu_free_memory_cache_page(struct kvm_mmu_memory_cache * mc)982 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
983 {
984 	while (mc->nobjs)
985 		free_page((unsigned long)mc->objects[--mc->nobjs]);
986 }
987 
mmu_topup_memory_caches(struct kvm_vcpu * vcpu)988 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
989 {
990 	int r;
991 
992 	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
993 				   pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
994 	if (r)
995 		goto out;
996 	r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
997 	if (r)
998 		goto out;
999 	r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
1000 				   mmu_page_header_cache, 4);
1001 out:
1002 	return r;
1003 }
1004 
mmu_free_memory_caches(struct kvm_vcpu * vcpu)1005 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1006 {
1007 	mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1008 				pte_list_desc_cache);
1009 	mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
1010 	mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
1011 				mmu_page_header_cache);
1012 }
1013 
mmu_memory_cache_alloc(struct kvm_mmu_memory_cache * mc)1014 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
1015 {
1016 	void *p;
1017 
1018 	BUG_ON(!mc->nobjs);
1019 	p = mc->objects[--mc->nobjs];
1020 	return p;
1021 }
1022 
mmu_alloc_pte_list_desc(struct kvm_vcpu * vcpu)1023 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
1024 {
1025 	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
1026 }
1027 
mmu_free_pte_list_desc(struct pte_list_desc * pte_list_desc)1028 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
1029 {
1030 	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
1031 }
1032 
kvm_mmu_page_get_gfn(struct kvm_mmu_page * sp,int index)1033 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
1034 {
1035 	if (!sp->role.direct)
1036 		return sp->gfns[index];
1037 
1038 	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
1039 }
1040 
kvm_mmu_page_set_gfn(struct kvm_mmu_page * sp,int index,gfn_t gfn)1041 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
1042 {
1043 	if (!sp->role.direct) {
1044 		sp->gfns[index] = gfn;
1045 		return;
1046 	}
1047 
1048 	if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
1049 		pr_err_ratelimited("gfn mismatch under direct page %llx "
1050 				   "(expected %llx, got %llx)\n",
1051 				   sp->gfn,
1052 				   kvm_mmu_page_get_gfn(sp, index), gfn);
1053 }
1054 
1055 /*
1056  * Return the pointer to the large page information for a given gfn,
1057  * handling slots that are not large page aligned.
1058  */
lpage_info_slot(gfn_t gfn,struct kvm_memory_slot * slot,int level)1059 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
1060 					      struct kvm_memory_slot *slot,
1061 					      int level)
1062 {
1063 	unsigned long idx;
1064 
1065 	idx = gfn_to_index(gfn, slot->base_gfn, level);
1066 	return &slot->arch.lpage_info[level - 2][idx];
1067 }
1068 
update_gfn_disallow_lpage_count(struct kvm_memory_slot * slot,gfn_t gfn,int count)1069 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
1070 					    gfn_t gfn, int count)
1071 {
1072 	struct kvm_lpage_info *linfo;
1073 	int i;
1074 
1075 	for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1076 		linfo = lpage_info_slot(gfn, slot, i);
1077 		linfo->disallow_lpage += count;
1078 		WARN_ON(linfo->disallow_lpage < 0);
1079 	}
1080 }
1081 
kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot * slot,gfn_t gfn)1082 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1083 {
1084 	update_gfn_disallow_lpage_count(slot, gfn, 1);
1085 }
1086 
kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot * slot,gfn_t gfn)1087 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1088 {
1089 	update_gfn_disallow_lpage_count(slot, gfn, -1);
1090 }
1091 
account_shadowed(struct kvm * kvm,struct kvm_mmu_page * sp)1092 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1093 {
1094 	struct kvm_memslots *slots;
1095 	struct kvm_memory_slot *slot;
1096 	gfn_t gfn;
1097 
1098 	kvm->arch.indirect_shadow_pages++;
1099 	gfn = sp->gfn;
1100 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
1101 	slot = __gfn_to_memslot(slots, gfn);
1102 
1103 	/* the non-leaf shadow pages are keeping readonly. */
1104 	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1105 		return kvm_slot_page_track_add_page(kvm, slot, gfn,
1106 						    KVM_PAGE_TRACK_WRITE);
1107 
1108 	kvm_mmu_gfn_disallow_lpage(slot, gfn);
1109 }
1110 
account_huge_nx_page(struct kvm * kvm,struct kvm_mmu_page * sp)1111 static void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1112 {
1113 	if (sp->lpage_disallowed)
1114 		return;
1115 
1116 	++kvm->stat.nx_lpage_splits;
1117 	list_add_tail(&sp->lpage_disallowed_link,
1118 		      &kvm->arch.lpage_disallowed_mmu_pages);
1119 	sp->lpage_disallowed = true;
1120 }
1121 
unaccount_shadowed(struct kvm * kvm,struct kvm_mmu_page * sp)1122 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1123 {
1124 	struct kvm_memslots *slots;
1125 	struct kvm_memory_slot *slot;
1126 	gfn_t gfn;
1127 
1128 	kvm->arch.indirect_shadow_pages--;
1129 	gfn = sp->gfn;
1130 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
1131 	slot = __gfn_to_memslot(slots, gfn);
1132 	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1133 		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1134 						       KVM_PAGE_TRACK_WRITE);
1135 
1136 	kvm_mmu_gfn_allow_lpage(slot, gfn);
1137 }
1138 
unaccount_huge_nx_page(struct kvm * kvm,struct kvm_mmu_page * sp)1139 static void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1140 {
1141 	--kvm->stat.nx_lpage_splits;
1142 	sp->lpage_disallowed = false;
1143 	list_del(&sp->lpage_disallowed_link);
1144 }
1145 
__mmu_gfn_lpage_is_disallowed(gfn_t gfn,int level,struct kvm_memory_slot * slot)1146 static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
1147 					  struct kvm_memory_slot *slot)
1148 {
1149 	struct kvm_lpage_info *linfo;
1150 
1151 	if (slot) {
1152 		linfo = lpage_info_slot(gfn, slot, level);
1153 		return !!linfo->disallow_lpage;
1154 	}
1155 
1156 	return true;
1157 }
1158 
mmu_gfn_lpage_is_disallowed(struct kvm_vcpu * vcpu,gfn_t gfn,int level)1159 static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
1160 					int level)
1161 {
1162 	struct kvm_memory_slot *slot;
1163 
1164 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1165 	return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
1166 }
1167 
host_mapping_level(struct kvm_vcpu * vcpu,gfn_t gfn)1168 static int host_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn)
1169 {
1170 	unsigned long page_size;
1171 	int i, ret = 0;
1172 
1173 	page_size = kvm_host_page_size(vcpu, gfn);
1174 
1175 	for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1176 		if (page_size >= KVM_HPAGE_SIZE(i))
1177 			ret = i;
1178 		else
1179 			break;
1180 	}
1181 
1182 	return ret;
1183 }
1184 
memslot_valid_for_gpte(struct kvm_memory_slot * slot,bool no_dirty_log)1185 static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
1186 					  bool no_dirty_log)
1187 {
1188 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1189 		return false;
1190 	if (no_dirty_log && slot->dirty_bitmap)
1191 		return false;
1192 
1193 	return true;
1194 }
1195 
1196 static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu * vcpu,gfn_t gfn,bool no_dirty_log)1197 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1198 			    bool no_dirty_log)
1199 {
1200 	struct kvm_memory_slot *slot;
1201 
1202 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1203 	if (!memslot_valid_for_gpte(slot, no_dirty_log))
1204 		slot = NULL;
1205 
1206 	return slot;
1207 }
1208 
mapping_level(struct kvm_vcpu * vcpu,gfn_t large_gfn,bool * force_pt_level)1209 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
1210 			 bool *force_pt_level)
1211 {
1212 	int host_level, level, max_level;
1213 	struct kvm_memory_slot *slot;
1214 
1215 	if (unlikely(*force_pt_level))
1216 		return PT_PAGE_TABLE_LEVEL;
1217 
1218 	slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
1219 	*force_pt_level = !memslot_valid_for_gpte(slot, true);
1220 	if (unlikely(*force_pt_level))
1221 		return PT_PAGE_TABLE_LEVEL;
1222 
1223 	host_level = host_mapping_level(vcpu, large_gfn);
1224 
1225 	if (host_level == PT_PAGE_TABLE_LEVEL)
1226 		return host_level;
1227 
1228 	max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
1229 
1230 	for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
1231 		if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
1232 			break;
1233 
1234 	return level - 1;
1235 }
1236 
1237 /*
1238  * About rmap_head encoding:
1239  *
1240  * If the bit zero of rmap_head->val is clear, then it points to the only spte
1241  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1242  * pte_list_desc containing more mappings.
1243  */
1244 
1245 /*
1246  * Returns the number of pointers in the rmap chain, not counting the new one.
1247  */
pte_list_add(struct kvm_vcpu * vcpu,u64 * spte,struct kvm_rmap_head * rmap_head)1248 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1249 			struct kvm_rmap_head *rmap_head)
1250 {
1251 	struct pte_list_desc *desc;
1252 	int i, count = 0;
1253 
1254 	if (!rmap_head->val) {
1255 		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1256 		rmap_head->val = (unsigned long)spte;
1257 	} else if (!(rmap_head->val & 1)) {
1258 		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1259 		desc = mmu_alloc_pte_list_desc(vcpu);
1260 		desc->sptes[0] = (u64 *)rmap_head->val;
1261 		desc->sptes[1] = spte;
1262 		rmap_head->val = (unsigned long)desc | 1;
1263 		++count;
1264 	} else {
1265 		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1266 		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1267 		while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1268 			desc = desc->more;
1269 			count += PTE_LIST_EXT;
1270 		}
1271 		if (desc->sptes[PTE_LIST_EXT-1]) {
1272 			desc->more = mmu_alloc_pte_list_desc(vcpu);
1273 			desc = desc->more;
1274 		}
1275 		for (i = 0; desc->sptes[i]; ++i)
1276 			++count;
1277 		desc->sptes[i] = spte;
1278 	}
1279 	return count;
1280 }
1281 
1282 static void
pte_list_desc_remove_entry(struct kvm_rmap_head * rmap_head,struct pte_list_desc * desc,int i,struct pte_list_desc * prev_desc)1283 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1284 			   struct pte_list_desc *desc, int i,
1285 			   struct pte_list_desc *prev_desc)
1286 {
1287 	int j;
1288 
1289 	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1290 		;
1291 	desc->sptes[i] = desc->sptes[j];
1292 	desc->sptes[j] = NULL;
1293 	if (j != 0)
1294 		return;
1295 	if (!prev_desc && !desc->more)
1296 		rmap_head->val = (unsigned long)desc->sptes[0];
1297 	else
1298 		if (prev_desc)
1299 			prev_desc->more = desc->more;
1300 		else
1301 			rmap_head->val = (unsigned long)desc->more | 1;
1302 	mmu_free_pte_list_desc(desc);
1303 }
1304 
pte_list_remove(u64 * spte,struct kvm_rmap_head * rmap_head)1305 static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1306 {
1307 	struct pte_list_desc *desc;
1308 	struct pte_list_desc *prev_desc;
1309 	int i;
1310 
1311 	if (!rmap_head->val) {
1312 		printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
1313 		BUG();
1314 	} else if (!(rmap_head->val & 1)) {
1315 		rmap_printk("pte_list_remove:  %p 1->0\n", spte);
1316 		if ((u64 *)rmap_head->val != spte) {
1317 			printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
1318 			BUG();
1319 		}
1320 		rmap_head->val = 0;
1321 	} else {
1322 		rmap_printk("pte_list_remove:  %p many->many\n", spte);
1323 		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1324 		prev_desc = NULL;
1325 		while (desc) {
1326 			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1327 				if (desc->sptes[i] == spte) {
1328 					pte_list_desc_remove_entry(rmap_head,
1329 							desc, i, prev_desc);
1330 					return;
1331 				}
1332 			}
1333 			prev_desc = desc;
1334 			desc = desc->more;
1335 		}
1336 		pr_err("pte_list_remove: %p many->many\n", spte);
1337 		BUG();
1338 	}
1339 }
1340 
__gfn_to_rmap(gfn_t gfn,int level,struct kvm_memory_slot * slot)1341 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1342 					   struct kvm_memory_slot *slot)
1343 {
1344 	unsigned long idx;
1345 
1346 	idx = gfn_to_index(gfn, slot->base_gfn, level);
1347 	return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1348 }
1349 
gfn_to_rmap(struct kvm * kvm,gfn_t gfn,struct kvm_mmu_page * sp)1350 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1351 					 struct kvm_mmu_page *sp)
1352 {
1353 	struct kvm_memslots *slots;
1354 	struct kvm_memory_slot *slot;
1355 
1356 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
1357 	slot = __gfn_to_memslot(slots, gfn);
1358 	return __gfn_to_rmap(gfn, sp->role.level, slot);
1359 }
1360 
rmap_can_add(struct kvm_vcpu * vcpu)1361 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1362 {
1363 	struct kvm_mmu_memory_cache *cache;
1364 
1365 	cache = &vcpu->arch.mmu_pte_list_desc_cache;
1366 	return mmu_memory_cache_free_objects(cache);
1367 }
1368 
rmap_add(struct kvm_vcpu * vcpu,u64 * spte,gfn_t gfn)1369 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1370 {
1371 	struct kvm_mmu_page *sp;
1372 	struct kvm_rmap_head *rmap_head;
1373 
1374 	sp = page_header(__pa(spte));
1375 	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1376 	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1377 	return pte_list_add(vcpu, spte, rmap_head);
1378 }
1379 
rmap_remove(struct kvm * kvm,u64 * spte)1380 static void rmap_remove(struct kvm *kvm, u64 *spte)
1381 {
1382 	struct kvm_mmu_page *sp;
1383 	gfn_t gfn;
1384 	struct kvm_rmap_head *rmap_head;
1385 
1386 	sp = page_header(__pa(spte));
1387 	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1388 	rmap_head = gfn_to_rmap(kvm, gfn, sp);
1389 	pte_list_remove(spte, rmap_head);
1390 }
1391 
1392 /*
1393  * Used by the following functions to iterate through the sptes linked by a
1394  * rmap.  All fields are private and not assumed to be used outside.
1395  */
1396 struct rmap_iterator {
1397 	/* private fields */
1398 	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
1399 	int pos;			/* index of the sptep */
1400 };
1401 
1402 /*
1403  * Iteration must be started by this function.  This should also be used after
1404  * removing/dropping sptes from the rmap link because in such cases the
1405  * information in the itererator may not be valid.
1406  *
1407  * Returns sptep if found, NULL otherwise.
1408  */
rmap_get_first(struct kvm_rmap_head * rmap_head,struct rmap_iterator * iter)1409 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1410 			   struct rmap_iterator *iter)
1411 {
1412 	u64 *sptep;
1413 
1414 	if (!rmap_head->val)
1415 		return NULL;
1416 
1417 	if (!(rmap_head->val & 1)) {
1418 		iter->desc = NULL;
1419 		sptep = (u64 *)rmap_head->val;
1420 		goto out;
1421 	}
1422 
1423 	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1424 	iter->pos = 0;
1425 	sptep = iter->desc->sptes[iter->pos];
1426 out:
1427 	BUG_ON(!is_shadow_present_pte(*sptep));
1428 	return sptep;
1429 }
1430 
1431 /*
1432  * Must be used with a valid iterator: e.g. after rmap_get_first().
1433  *
1434  * Returns sptep if found, NULL otherwise.
1435  */
rmap_get_next(struct rmap_iterator * iter)1436 static u64 *rmap_get_next(struct rmap_iterator *iter)
1437 {
1438 	u64 *sptep;
1439 
1440 	if (iter->desc) {
1441 		if (iter->pos < PTE_LIST_EXT - 1) {
1442 			++iter->pos;
1443 			sptep = iter->desc->sptes[iter->pos];
1444 			if (sptep)
1445 				goto out;
1446 		}
1447 
1448 		iter->desc = iter->desc->more;
1449 
1450 		if (iter->desc) {
1451 			iter->pos = 0;
1452 			/* desc->sptes[0] cannot be NULL */
1453 			sptep = iter->desc->sptes[iter->pos];
1454 			goto out;
1455 		}
1456 	}
1457 
1458 	return NULL;
1459 out:
1460 	BUG_ON(!is_shadow_present_pte(*sptep));
1461 	return sptep;
1462 }
1463 
1464 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
1465 	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1466 	     _spte_; _spte_ = rmap_get_next(_iter_))
1467 
drop_spte(struct kvm * kvm,u64 * sptep)1468 static void drop_spte(struct kvm *kvm, u64 *sptep)
1469 {
1470 	if (mmu_spte_clear_track_bits(sptep))
1471 		rmap_remove(kvm, sptep);
1472 }
1473 
1474 
__drop_large_spte(struct kvm * kvm,u64 * sptep)1475 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1476 {
1477 	if (is_large_pte(*sptep)) {
1478 		WARN_ON(page_header(__pa(sptep))->role.level ==
1479 			PT_PAGE_TABLE_LEVEL);
1480 		drop_spte(kvm, sptep);
1481 		--kvm->stat.lpages;
1482 		return true;
1483 	}
1484 
1485 	return false;
1486 }
1487 
drop_large_spte(struct kvm_vcpu * vcpu,u64 * sptep)1488 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1489 {
1490 	if (__drop_large_spte(vcpu->kvm, sptep))
1491 		kvm_flush_remote_tlbs(vcpu->kvm);
1492 }
1493 
1494 /*
1495  * Write-protect on the specified @sptep, @pt_protect indicates whether
1496  * spte write-protection is caused by protecting shadow page table.
1497  *
1498  * Note: write protection is difference between dirty logging and spte
1499  * protection:
1500  * - for dirty logging, the spte can be set to writable at anytime if
1501  *   its dirty bitmap is properly set.
1502  * - for spte protection, the spte can be writable only after unsync-ing
1503  *   shadow page.
1504  *
1505  * Return true if tlb need be flushed.
1506  */
spte_write_protect(u64 * sptep,bool pt_protect)1507 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1508 {
1509 	u64 spte = *sptep;
1510 
1511 	if (!is_writable_pte(spte) &&
1512 	      !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1513 		return false;
1514 
1515 	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1516 
1517 	if (pt_protect)
1518 		spte &= ~SPTE_MMU_WRITEABLE;
1519 	spte = spte & ~PT_WRITABLE_MASK;
1520 
1521 	return mmu_spte_update(sptep, spte);
1522 }
1523 
__rmap_write_protect(struct kvm * kvm,struct kvm_rmap_head * rmap_head,bool pt_protect)1524 static bool __rmap_write_protect(struct kvm *kvm,
1525 				 struct kvm_rmap_head *rmap_head,
1526 				 bool pt_protect)
1527 {
1528 	u64 *sptep;
1529 	struct rmap_iterator iter;
1530 	bool flush = false;
1531 
1532 	for_each_rmap_spte(rmap_head, &iter, sptep)
1533 		flush |= spte_write_protect(sptep, pt_protect);
1534 
1535 	return flush;
1536 }
1537 
spte_clear_dirty(u64 * sptep)1538 static bool spte_clear_dirty(u64 *sptep)
1539 {
1540 	u64 spte = *sptep;
1541 
1542 	rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1543 
1544 	spte &= ~shadow_dirty_mask;
1545 
1546 	return mmu_spte_update(sptep, spte);
1547 }
1548 
wrprot_ad_disabled_spte(u64 * sptep)1549 static bool wrprot_ad_disabled_spte(u64 *sptep)
1550 {
1551 	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1552 					       (unsigned long *)sptep);
1553 	if (was_writable)
1554 		kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1555 
1556 	return was_writable;
1557 }
1558 
1559 /*
1560  * Gets the GFN ready for another round of dirty logging by clearing the
1561  *	- D bit on ad-enabled SPTEs, and
1562  *	- W bit on ad-disabled SPTEs.
1563  * Returns true iff any D or W bits were cleared.
1564  */
__rmap_clear_dirty(struct kvm * kvm,struct kvm_rmap_head * rmap_head)1565 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1566 {
1567 	u64 *sptep;
1568 	struct rmap_iterator iter;
1569 	bool flush = false;
1570 
1571 	for_each_rmap_spte(rmap_head, &iter, sptep)
1572 		if (spte_ad_enabled(*sptep))
1573 			flush |= spte_clear_dirty(sptep);
1574 		else
1575 			flush |= wrprot_ad_disabled_spte(sptep);
1576 
1577 	return flush;
1578 }
1579 
spte_set_dirty(u64 * sptep)1580 static bool spte_set_dirty(u64 *sptep)
1581 {
1582 	u64 spte = *sptep;
1583 
1584 	rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1585 
1586 	spte |= shadow_dirty_mask;
1587 
1588 	return mmu_spte_update(sptep, spte);
1589 }
1590 
__rmap_set_dirty(struct kvm * kvm,struct kvm_rmap_head * rmap_head)1591 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1592 {
1593 	u64 *sptep;
1594 	struct rmap_iterator iter;
1595 	bool flush = false;
1596 
1597 	for_each_rmap_spte(rmap_head, &iter, sptep)
1598 		if (spte_ad_enabled(*sptep))
1599 			flush |= spte_set_dirty(sptep);
1600 
1601 	return flush;
1602 }
1603 
1604 /**
1605  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1606  * @kvm: kvm instance
1607  * @slot: slot to protect
1608  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1609  * @mask: indicates which pages we should protect
1610  *
1611  * Used when we do not need to care about huge page mappings: e.g. during dirty
1612  * logging we do not have any such mappings.
1613  */
kvm_mmu_write_protect_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1614 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1615 				     struct kvm_memory_slot *slot,
1616 				     gfn_t gfn_offset, unsigned long mask)
1617 {
1618 	struct kvm_rmap_head *rmap_head;
1619 
1620 	while (mask) {
1621 		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1622 					  PT_PAGE_TABLE_LEVEL, slot);
1623 		__rmap_write_protect(kvm, rmap_head, false);
1624 
1625 		/* clear the first set bit */
1626 		mask &= mask - 1;
1627 	}
1628 }
1629 
1630 /**
1631  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1632  * protect the page if the D-bit isn't supported.
1633  * @kvm: kvm instance
1634  * @slot: slot to clear D-bit
1635  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1636  * @mask: indicates which pages we should clear D-bit
1637  *
1638  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1639  */
kvm_mmu_clear_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1640 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1641 				     struct kvm_memory_slot *slot,
1642 				     gfn_t gfn_offset, unsigned long mask)
1643 {
1644 	struct kvm_rmap_head *rmap_head;
1645 
1646 	while (mask) {
1647 		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1648 					  PT_PAGE_TABLE_LEVEL, slot);
1649 		__rmap_clear_dirty(kvm, rmap_head);
1650 
1651 		/* clear the first set bit */
1652 		mask &= mask - 1;
1653 	}
1654 }
1655 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1656 
1657 /**
1658  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1659  * PT level pages.
1660  *
1661  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1662  * enable dirty logging for them.
1663  *
1664  * Used when we do not need to care about huge page mappings: e.g. during dirty
1665  * logging we do not have any such mappings.
1666  */
kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1667 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1668 				struct kvm_memory_slot *slot,
1669 				gfn_t gfn_offset, unsigned long mask)
1670 {
1671 	if (kvm_x86_ops->enable_log_dirty_pt_masked)
1672 		kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1673 				mask);
1674 	else
1675 		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1676 }
1677 
1678 /**
1679  * kvm_arch_write_log_dirty - emulate dirty page logging
1680  * @vcpu: Guest mode vcpu
1681  *
1682  * Emulate arch specific page modification logging for the
1683  * nested hypervisor
1684  */
kvm_arch_write_log_dirty(struct kvm_vcpu * vcpu)1685 int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
1686 {
1687 	if (kvm_x86_ops->write_log_dirty)
1688 		return kvm_x86_ops->write_log_dirty(vcpu);
1689 
1690 	return 0;
1691 }
1692 
kvm_mmu_slot_gfn_write_protect(struct kvm * kvm,struct kvm_memory_slot * slot,u64 gfn)1693 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1694 				    struct kvm_memory_slot *slot, u64 gfn)
1695 {
1696 	struct kvm_rmap_head *rmap_head;
1697 	int i;
1698 	bool write_protected = false;
1699 
1700 	for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1701 		rmap_head = __gfn_to_rmap(gfn, i, slot);
1702 		write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1703 	}
1704 
1705 	return write_protected;
1706 }
1707 
rmap_write_protect(struct kvm_vcpu * vcpu,u64 gfn)1708 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1709 {
1710 	struct kvm_memory_slot *slot;
1711 
1712 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1713 	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1714 }
1715 
kvm_zap_rmapp(struct kvm * kvm,struct kvm_rmap_head * rmap_head)1716 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1717 {
1718 	u64 *sptep;
1719 	struct rmap_iterator iter;
1720 	bool flush = false;
1721 
1722 	while ((sptep = rmap_get_first(rmap_head, &iter))) {
1723 		rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1724 
1725 		drop_spte(kvm, sptep);
1726 		flush = true;
1727 	}
1728 
1729 	return flush;
1730 }
1731 
kvm_unmap_rmapp(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long data)1732 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1733 			   struct kvm_memory_slot *slot, gfn_t gfn, int level,
1734 			   unsigned long data)
1735 {
1736 	return kvm_zap_rmapp(kvm, rmap_head);
1737 }
1738 
kvm_set_pte_rmapp(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long data)1739 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1740 			     struct kvm_memory_slot *slot, gfn_t gfn, int level,
1741 			     unsigned long data)
1742 {
1743 	u64 *sptep;
1744 	struct rmap_iterator iter;
1745 	int need_flush = 0;
1746 	u64 new_spte;
1747 	pte_t *ptep = (pte_t *)data;
1748 	kvm_pfn_t new_pfn;
1749 
1750 	WARN_ON(pte_huge(*ptep));
1751 	new_pfn = pte_pfn(*ptep);
1752 
1753 restart:
1754 	for_each_rmap_spte(rmap_head, &iter, sptep) {
1755 		rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1756 			    sptep, *sptep, gfn, level);
1757 
1758 		need_flush = 1;
1759 
1760 		if (pte_write(*ptep)) {
1761 			drop_spte(kvm, sptep);
1762 			goto restart;
1763 		} else {
1764 			new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1765 			new_spte |= (u64)new_pfn << PAGE_SHIFT;
1766 
1767 			new_spte &= ~PT_WRITABLE_MASK;
1768 			new_spte &= ~SPTE_HOST_WRITEABLE;
1769 
1770 			new_spte = mark_spte_for_access_track(new_spte);
1771 
1772 			mmu_spte_clear_track_bits(sptep);
1773 			mmu_spte_set(sptep, new_spte);
1774 		}
1775 	}
1776 
1777 	if (need_flush)
1778 		kvm_flush_remote_tlbs(kvm);
1779 
1780 	return 0;
1781 }
1782 
1783 struct slot_rmap_walk_iterator {
1784 	/* input fields. */
1785 	struct kvm_memory_slot *slot;
1786 	gfn_t start_gfn;
1787 	gfn_t end_gfn;
1788 	int start_level;
1789 	int end_level;
1790 
1791 	/* output fields. */
1792 	gfn_t gfn;
1793 	struct kvm_rmap_head *rmap;
1794 	int level;
1795 
1796 	/* private field. */
1797 	struct kvm_rmap_head *end_rmap;
1798 };
1799 
1800 static void
rmap_walk_init_level(struct slot_rmap_walk_iterator * iterator,int level)1801 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1802 {
1803 	iterator->level = level;
1804 	iterator->gfn = iterator->start_gfn;
1805 	iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1806 	iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1807 					   iterator->slot);
1808 }
1809 
1810 static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator * iterator,struct kvm_memory_slot * slot,int start_level,int end_level,gfn_t start_gfn,gfn_t end_gfn)1811 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1812 		    struct kvm_memory_slot *slot, int start_level,
1813 		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
1814 {
1815 	iterator->slot = slot;
1816 	iterator->start_level = start_level;
1817 	iterator->end_level = end_level;
1818 	iterator->start_gfn = start_gfn;
1819 	iterator->end_gfn = end_gfn;
1820 
1821 	rmap_walk_init_level(iterator, iterator->start_level);
1822 }
1823 
slot_rmap_walk_okay(struct slot_rmap_walk_iterator * iterator)1824 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1825 {
1826 	return !!iterator->rmap;
1827 }
1828 
slot_rmap_walk_next(struct slot_rmap_walk_iterator * iterator)1829 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1830 {
1831 	if (++iterator->rmap <= iterator->end_rmap) {
1832 		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1833 		return;
1834 	}
1835 
1836 	if (++iterator->level > iterator->end_level) {
1837 		iterator->rmap = NULL;
1838 		return;
1839 	}
1840 
1841 	rmap_walk_init_level(iterator, iterator->level);
1842 }
1843 
1844 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
1845 	   _start_gfn, _end_gfn, _iter_)				\
1846 	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
1847 				 _end_level_, _start_gfn, _end_gfn);	\
1848 	     slot_rmap_walk_okay(_iter_);				\
1849 	     slot_rmap_walk_next(_iter_))
1850 
kvm_handle_hva_range(struct kvm * kvm,unsigned long start,unsigned long end,unsigned long data,int (* handler)(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long data))1851 static int kvm_handle_hva_range(struct kvm *kvm,
1852 				unsigned long start,
1853 				unsigned long end,
1854 				unsigned long data,
1855 				int (*handler)(struct kvm *kvm,
1856 					       struct kvm_rmap_head *rmap_head,
1857 					       struct kvm_memory_slot *slot,
1858 					       gfn_t gfn,
1859 					       int level,
1860 					       unsigned long data))
1861 {
1862 	struct kvm_memslots *slots;
1863 	struct kvm_memory_slot *memslot;
1864 	struct slot_rmap_walk_iterator iterator;
1865 	int ret = 0;
1866 	int i;
1867 
1868 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1869 		slots = __kvm_memslots(kvm, i);
1870 		kvm_for_each_memslot(memslot, slots) {
1871 			unsigned long hva_start, hva_end;
1872 			gfn_t gfn_start, gfn_end;
1873 
1874 			hva_start = max(start, memslot->userspace_addr);
1875 			hva_end = min(end, memslot->userspace_addr +
1876 				      (memslot->npages << PAGE_SHIFT));
1877 			if (hva_start >= hva_end)
1878 				continue;
1879 			/*
1880 			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1881 			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1882 			 */
1883 			gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1884 			gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1885 
1886 			for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1887 						 PT_MAX_HUGEPAGE_LEVEL,
1888 						 gfn_start, gfn_end - 1,
1889 						 &iterator)
1890 				ret |= handler(kvm, iterator.rmap, memslot,
1891 					       iterator.gfn, iterator.level, data);
1892 		}
1893 	}
1894 
1895 	return ret;
1896 }
1897 
kvm_handle_hva(struct kvm * kvm,unsigned long hva,unsigned long data,int (* handler)(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long data))1898 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1899 			  unsigned long data,
1900 			  int (*handler)(struct kvm *kvm,
1901 					 struct kvm_rmap_head *rmap_head,
1902 					 struct kvm_memory_slot *slot,
1903 					 gfn_t gfn, int level,
1904 					 unsigned long data))
1905 {
1906 	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1907 }
1908 
kvm_unmap_hva(struct kvm * kvm,unsigned long hva)1909 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1910 {
1911 	return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1912 }
1913 
kvm_unmap_hva_range(struct kvm * kvm,unsigned long start,unsigned long end)1914 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1915 {
1916 	return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1917 }
1918 
kvm_set_spte_hva(struct kvm * kvm,unsigned long hva,pte_t pte)1919 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1920 {
1921 	kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1922 }
1923 
kvm_age_rmapp(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long data)1924 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1925 			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1926 			 unsigned long data)
1927 {
1928 	u64 *sptep;
1929 	struct rmap_iterator uninitialized_var(iter);
1930 	int young = 0;
1931 
1932 	for_each_rmap_spte(rmap_head, &iter, sptep)
1933 		young |= mmu_spte_age(sptep);
1934 
1935 	trace_kvm_age_page(gfn, level, slot, young);
1936 	return young;
1937 }
1938 
kvm_test_age_rmapp(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long data)1939 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1940 			      struct kvm_memory_slot *slot, gfn_t gfn,
1941 			      int level, unsigned long data)
1942 {
1943 	u64 *sptep;
1944 	struct rmap_iterator iter;
1945 
1946 	for_each_rmap_spte(rmap_head, &iter, sptep)
1947 		if (is_accessed_spte(*sptep))
1948 			return 1;
1949 	return 0;
1950 }
1951 
1952 #define RMAP_RECYCLE_THRESHOLD 1000
1953 
rmap_recycle(struct kvm_vcpu * vcpu,u64 * spte,gfn_t gfn)1954 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1955 {
1956 	struct kvm_rmap_head *rmap_head;
1957 	struct kvm_mmu_page *sp;
1958 
1959 	sp = page_header(__pa(spte));
1960 
1961 	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1962 
1963 	kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1964 	kvm_flush_remote_tlbs(vcpu->kvm);
1965 }
1966 
kvm_age_hva(struct kvm * kvm,unsigned long start,unsigned long end)1967 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1968 {
1969 	return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1970 }
1971 
kvm_test_age_hva(struct kvm * kvm,unsigned long hva)1972 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1973 {
1974 	return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1975 }
1976 
1977 #ifdef MMU_DEBUG
is_empty_shadow_page(u64 * spt)1978 static int is_empty_shadow_page(u64 *spt)
1979 {
1980 	u64 *pos;
1981 	u64 *end;
1982 
1983 	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1984 		if (is_shadow_present_pte(*pos)) {
1985 			printk(KERN_ERR "%s: %p %llx\n", __func__,
1986 			       pos, *pos);
1987 			return 0;
1988 		}
1989 	return 1;
1990 }
1991 #endif
1992 
1993 /*
1994  * This value is the sum of all of the kvm instances's
1995  * kvm->arch.n_used_mmu_pages values.  We need a global,
1996  * aggregate version in order to make the slab shrinker
1997  * faster
1998  */
kvm_mod_used_mmu_pages(struct kvm * kvm,int nr)1999 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
2000 {
2001 	kvm->arch.n_used_mmu_pages += nr;
2002 	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
2003 }
2004 
kvm_mmu_free_page(struct kvm_mmu_page * sp)2005 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
2006 {
2007 	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
2008 	hlist_del(&sp->hash_link);
2009 	list_del(&sp->link);
2010 	free_page((unsigned long)sp->spt);
2011 	if (!sp->role.direct)
2012 		free_page((unsigned long)sp->gfns);
2013 	kmem_cache_free(mmu_page_header_cache, sp);
2014 }
2015 
kvm_page_table_hashfn(gfn_t gfn)2016 static unsigned kvm_page_table_hashfn(gfn_t gfn)
2017 {
2018 	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
2019 }
2020 
mmu_page_add_parent_pte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * parent_pte)2021 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
2022 				    struct kvm_mmu_page *sp, u64 *parent_pte)
2023 {
2024 	if (!parent_pte)
2025 		return;
2026 
2027 	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
2028 }
2029 
mmu_page_remove_parent_pte(struct kvm_mmu_page * sp,u64 * parent_pte)2030 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
2031 				       u64 *parent_pte)
2032 {
2033 	pte_list_remove(parent_pte, &sp->parent_ptes);
2034 }
2035 
drop_parent_pte(struct kvm_mmu_page * sp,u64 * parent_pte)2036 static void drop_parent_pte(struct kvm_mmu_page *sp,
2037 			    u64 *parent_pte)
2038 {
2039 	mmu_page_remove_parent_pte(sp, parent_pte);
2040 	mmu_spte_clear_no_track(parent_pte);
2041 }
2042 
kvm_mmu_alloc_page(struct kvm_vcpu * vcpu,int direct)2043 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
2044 {
2045 	struct kvm_mmu_page *sp;
2046 
2047 	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
2048 	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2049 	if (!direct)
2050 		sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2051 	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
2052 
2053 	/*
2054 	 * The active_mmu_pages list is the FIFO list, do not move the
2055 	 * page until it is zapped. kvm_zap_obsolete_pages depends on
2056 	 * this feature. See the comments in kvm_zap_obsolete_pages().
2057 	 */
2058 	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
2059 	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
2060 	return sp;
2061 }
2062 
2063 static void mark_unsync(u64 *spte);
kvm_mmu_mark_parents_unsync(struct kvm_mmu_page * sp)2064 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
2065 {
2066 	u64 *sptep;
2067 	struct rmap_iterator iter;
2068 
2069 	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
2070 		mark_unsync(sptep);
2071 	}
2072 }
2073 
mark_unsync(u64 * spte)2074 static void mark_unsync(u64 *spte)
2075 {
2076 	struct kvm_mmu_page *sp;
2077 	unsigned int index;
2078 
2079 	sp = page_header(__pa(spte));
2080 	index = spte - sp->spt;
2081 	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
2082 		return;
2083 	if (sp->unsync_children++)
2084 		return;
2085 	kvm_mmu_mark_parents_unsync(sp);
2086 }
2087 
nonpaging_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp)2088 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
2089 			       struct kvm_mmu_page *sp)
2090 {
2091 	return 0;
2092 }
2093 
nonpaging_invlpg(struct kvm_vcpu * vcpu,gva_t gva)2094 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
2095 {
2096 }
2097 
nonpaging_update_pte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * spte,const void * pte)2098 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
2099 				 struct kvm_mmu_page *sp, u64 *spte,
2100 				 const void *pte)
2101 {
2102 	WARN_ON(1);
2103 }
2104 
2105 #define KVM_PAGE_ARRAY_NR 16
2106 
2107 struct kvm_mmu_pages {
2108 	struct mmu_page_and_offset {
2109 		struct kvm_mmu_page *sp;
2110 		unsigned int idx;
2111 	} page[KVM_PAGE_ARRAY_NR];
2112 	unsigned int nr;
2113 };
2114 
mmu_pages_add(struct kvm_mmu_pages * pvec,struct kvm_mmu_page * sp,int idx)2115 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2116 			 int idx)
2117 {
2118 	int i;
2119 
2120 	if (sp->unsync)
2121 		for (i=0; i < pvec->nr; i++)
2122 			if (pvec->page[i].sp == sp)
2123 				return 0;
2124 
2125 	pvec->page[pvec->nr].sp = sp;
2126 	pvec->page[pvec->nr].idx = idx;
2127 	pvec->nr++;
2128 	return (pvec->nr == KVM_PAGE_ARRAY_NR);
2129 }
2130 
clear_unsync_child_bit(struct kvm_mmu_page * sp,int idx)2131 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2132 {
2133 	--sp->unsync_children;
2134 	WARN_ON((int)sp->unsync_children < 0);
2135 	__clear_bit(idx, sp->unsync_child_bitmap);
2136 }
2137 
__mmu_unsync_walk(struct kvm_mmu_page * sp,struct kvm_mmu_pages * pvec)2138 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2139 			   struct kvm_mmu_pages *pvec)
2140 {
2141 	int i, ret, nr_unsync_leaf = 0;
2142 
2143 	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
2144 		struct kvm_mmu_page *child;
2145 		u64 ent = sp->spt[i];
2146 
2147 		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2148 			clear_unsync_child_bit(sp, i);
2149 			continue;
2150 		}
2151 
2152 		child = page_header(ent & PT64_BASE_ADDR_MASK);
2153 
2154 		if (child->unsync_children) {
2155 			if (mmu_pages_add(pvec, child, i))
2156 				return -ENOSPC;
2157 
2158 			ret = __mmu_unsync_walk(child, pvec);
2159 			if (!ret) {
2160 				clear_unsync_child_bit(sp, i);
2161 				continue;
2162 			} else if (ret > 0) {
2163 				nr_unsync_leaf += ret;
2164 			} else
2165 				return ret;
2166 		} else if (child->unsync) {
2167 			nr_unsync_leaf++;
2168 			if (mmu_pages_add(pvec, child, i))
2169 				return -ENOSPC;
2170 		} else
2171 			clear_unsync_child_bit(sp, i);
2172 	}
2173 
2174 	return nr_unsync_leaf;
2175 }
2176 
2177 #define INVALID_INDEX (-1)
2178 
mmu_unsync_walk(struct kvm_mmu_page * sp,struct kvm_mmu_pages * pvec)2179 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2180 			   struct kvm_mmu_pages *pvec)
2181 {
2182 	pvec->nr = 0;
2183 	if (!sp->unsync_children)
2184 		return 0;
2185 
2186 	mmu_pages_add(pvec, sp, INVALID_INDEX);
2187 	return __mmu_unsync_walk(sp, pvec);
2188 }
2189 
kvm_unlink_unsync_page(struct kvm * kvm,struct kvm_mmu_page * sp)2190 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2191 {
2192 	WARN_ON(!sp->unsync);
2193 	trace_kvm_mmu_sync_page(sp);
2194 	sp->unsync = 0;
2195 	--kvm->stat.mmu_unsync;
2196 }
2197 
2198 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2199 				    struct list_head *invalid_list);
2200 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2201 				    struct list_head *invalid_list);
2202 
2203 /*
2204  * NOTE: we should pay more attention on the zapped-obsolete page
2205  * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
2206  * since it has been deleted from active_mmu_pages but still can be found
2207  * at hast list.
2208  *
2209  * for_each_valid_sp() has skipped that kind of pages.
2210  */
2211 #define for_each_valid_sp(_kvm, _sp, _gfn)				\
2212 	hlist_for_each_entry(_sp,					\
2213 	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
2214 		if (is_obsolete_sp((_kvm), (_sp)) || (_sp)->role.invalid) {    \
2215 		} else
2216 
2217 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
2218 	for_each_valid_sp(_kvm, _sp, _gfn)				\
2219 		if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2220 
2221 /* @sp->gfn should be write-protected at the call site */
__kvm_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,struct list_head * invalid_list)2222 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2223 			    struct list_head *invalid_list)
2224 {
2225 	if (sp->role.cr4_pae != !!is_pae(vcpu)) {
2226 		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2227 		return false;
2228 	}
2229 
2230 	if (vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
2231 		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2232 		return false;
2233 	}
2234 
2235 	return true;
2236 }
2237 
kvm_mmu_flush_or_zap(struct kvm_vcpu * vcpu,struct list_head * invalid_list,bool remote_flush,bool local_flush)2238 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2239 				 struct list_head *invalid_list,
2240 				 bool remote_flush, bool local_flush)
2241 {
2242 	if (!list_empty(invalid_list)) {
2243 		kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
2244 		return;
2245 	}
2246 
2247 	if (remote_flush)
2248 		kvm_flush_remote_tlbs(vcpu->kvm);
2249 	else if (local_flush)
2250 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2251 }
2252 
2253 #ifdef CONFIG_KVM_MMU_AUDIT
2254 #include "mmu_audit.c"
2255 #else
kvm_mmu_audit(struct kvm_vcpu * vcpu,int point)2256 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
mmu_audit_disable(void)2257 static void mmu_audit_disable(void) { }
2258 #endif
2259 
is_obsolete_sp(struct kvm * kvm,struct kvm_mmu_page * sp)2260 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2261 {
2262 	return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2263 }
2264 
kvm_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,struct list_head * invalid_list)2265 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2266 			 struct list_head *invalid_list)
2267 {
2268 	kvm_unlink_unsync_page(vcpu->kvm, sp);
2269 	return __kvm_sync_page(vcpu, sp, invalid_list);
2270 }
2271 
2272 /* @gfn should be write-protected at the call site */
kvm_sync_pages(struct kvm_vcpu * vcpu,gfn_t gfn,struct list_head * invalid_list)2273 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2274 			   struct list_head *invalid_list)
2275 {
2276 	struct kvm_mmu_page *s;
2277 	bool ret = false;
2278 
2279 	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2280 		if (!s->unsync)
2281 			continue;
2282 
2283 		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2284 		ret |= kvm_sync_page(vcpu, s, invalid_list);
2285 	}
2286 
2287 	return ret;
2288 }
2289 
2290 struct mmu_page_path {
2291 	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2292 	unsigned int idx[PT64_ROOT_MAX_LEVEL];
2293 };
2294 
2295 #define for_each_sp(pvec, sp, parents, i)			\
2296 		for (i = mmu_pages_first(&pvec, &parents);	\
2297 			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
2298 			i = mmu_pages_next(&pvec, &parents, i))
2299 
mmu_pages_next(struct kvm_mmu_pages * pvec,struct mmu_page_path * parents,int i)2300 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2301 			  struct mmu_page_path *parents,
2302 			  int i)
2303 {
2304 	int n;
2305 
2306 	for (n = i+1; n < pvec->nr; n++) {
2307 		struct kvm_mmu_page *sp = pvec->page[n].sp;
2308 		unsigned idx = pvec->page[n].idx;
2309 		int level = sp->role.level;
2310 
2311 		parents->idx[level-1] = idx;
2312 		if (level == PT_PAGE_TABLE_LEVEL)
2313 			break;
2314 
2315 		parents->parent[level-2] = sp;
2316 	}
2317 
2318 	return n;
2319 }
2320 
mmu_pages_first(struct kvm_mmu_pages * pvec,struct mmu_page_path * parents)2321 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2322 			   struct mmu_page_path *parents)
2323 {
2324 	struct kvm_mmu_page *sp;
2325 	int level;
2326 
2327 	if (pvec->nr == 0)
2328 		return 0;
2329 
2330 	WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2331 
2332 	sp = pvec->page[0].sp;
2333 	level = sp->role.level;
2334 	WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2335 
2336 	parents->parent[level-2] = sp;
2337 
2338 	/* Also set up a sentinel.  Further entries in pvec are all
2339 	 * children of sp, so this element is never overwritten.
2340 	 */
2341 	parents->parent[level-1] = NULL;
2342 	return mmu_pages_next(pvec, parents, 0);
2343 }
2344 
mmu_pages_clear_parents(struct mmu_page_path * parents)2345 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2346 {
2347 	struct kvm_mmu_page *sp;
2348 	unsigned int level = 0;
2349 
2350 	do {
2351 		unsigned int idx = parents->idx[level];
2352 		sp = parents->parent[level];
2353 		if (!sp)
2354 			return;
2355 
2356 		WARN_ON(idx == INVALID_INDEX);
2357 		clear_unsync_child_bit(sp, idx);
2358 		level++;
2359 	} while (!sp->unsync_children);
2360 }
2361 
mmu_sync_children(struct kvm_vcpu * vcpu,struct kvm_mmu_page * parent)2362 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2363 			      struct kvm_mmu_page *parent)
2364 {
2365 	int i;
2366 	struct kvm_mmu_page *sp;
2367 	struct mmu_page_path parents;
2368 	struct kvm_mmu_pages pages;
2369 	LIST_HEAD(invalid_list);
2370 	bool flush = false;
2371 
2372 	while (mmu_unsync_walk(parent, &pages)) {
2373 		bool protected = false;
2374 
2375 		for_each_sp(pages, sp, parents, i)
2376 			protected |= rmap_write_protect(vcpu, sp->gfn);
2377 
2378 		if (protected) {
2379 			kvm_flush_remote_tlbs(vcpu->kvm);
2380 			flush = false;
2381 		}
2382 
2383 		for_each_sp(pages, sp, parents, i) {
2384 			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2385 			mmu_pages_clear_parents(&parents);
2386 		}
2387 		if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2388 			kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2389 			cond_resched_lock(&vcpu->kvm->mmu_lock);
2390 			flush = false;
2391 		}
2392 	}
2393 
2394 	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2395 }
2396 
__clear_sp_write_flooding_count(struct kvm_mmu_page * sp)2397 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2398 {
2399 	atomic_set(&sp->write_flooding_count,  0);
2400 }
2401 
clear_sp_write_flooding_count(u64 * spte)2402 static void clear_sp_write_flooding_count(u64 *spte)
2403 {
2404 	struct kvm_mmu_page *sp =  page_header(__pa(spte));
2405 
2406 	__clear_sp_write_flooding_count(sp);
2407 }
2408 
kvm_mmu_get_page(struct kvm_vcpu * vcpu,gfn_t gfn,gva_t gaddr,unsigned level,int direct,unsigned access)2409 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2410 					     gfn_t gfn,
2411 					     gva_t gaddr,
2412 					     unsigned level,
2413 					     int direct,
2414 					     unsigned access)
2415 {
2416 	union kvm_mmu_page_role role;
2417 	unsigned quadrant;
2418 	struct kvm_mmu_page *sp;
2419 	bool need_sync = false;
2420 	bool flush = false;
2421 	int collisions = 0;
2422 	LIST_HEAD(invalid_list);
2423 
2424 	role = vcpu->arch.mmu.base_role;
2425 	role.level = level;
2426 	role.direct = direct;
2427 	if (role.direct)
2428 		role.cr4_pae = 0;
2429 	role.access = access;
2430 	if (!vcpu->arch.mmu.direct_map
2431 	    && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2432 		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2433 		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2434 		role.quadrant = quadrant;
2435 	}
2436 	for_each_valid_sp(vcpu->kvm, sp, gfn) {
2437 		if (sp->gfn != gfn) {
2438 			collisions++;
2439 			continue;
2440 		}
2441 
2442 		if (!need_sync && sp->unsync)
2443 			need_sync = true;
2444 
2445 		if (sp->role.word != role.word)
2446 			continue;
2447 
2448 		if (sp->unsync) {
2449 			/* The page is good, but __kvm_sync_page might still end
2450 			 * up zapping it.  If so, break in order to rebuild it.
2451 			 */
2452 			if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2453 				break;
2454 
2455 			WARN_ON(!list_empty(&invalid_list));
2456 			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2457 		}
2458 
2459 		if (sp->unsync_children)
2460 			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2461 
2462 		__clear_sp_write_flooding_count(sp);
2463 		trace_kvm_mmu_get_page(sp, false);
2464 		goto out;
2465 	}
2466 
2467 	++vcpu->kvm->stat.mmu_cache_miss;
2468 
2469 	sp = kvm_mmu_alloc_page(vcpu, direct);
2470 
2471 	sp->gfn = gfn;
2472 	sp->role = role;
2473 	hlist_add_head(&sp->hash_link,
2474 		&vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2475 	if (!direct) {
2476 		/*
2477 		 * we should do write protection before syncing pages
2478 		 * otherwise the content of the synced shadow page may
2479 		 * be inconsistent with guest page table.
2480 		 */
2481 		account_shadowed(vcpu->kvm, sp);
2482 		if (level == PT_PAGE_TABLE_LEVEL &&
2483 		      rmap_write_protect(vcpu, gfn))
2484 			kvm_flush_remote_tlbs(vcpu->kvm);
2485 
2486 		if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2487 			flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2488 	}
2489 	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2490 	clear_page(sp->spt);
2491 	trace_kvm_mmu_get_page(sp, true);
2492 
2493 	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2494 out:
2495 	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2496 		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2497 	return sp;
2498 }
2499 
shadow_walk_init(struct kvm_shadow_walk_iterator * iterator,struct kvm_vcpu * vcpu,u64 addr)2500 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2501 			     struct kvm_vcpu *vcpu, u64 addr)
2502 {
2503 	iterator->addr = addr;
2504 	iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2505 	iterator->level = vcpu->arch.mmu.shadow_root_level;
2506 
2507 	if (iterator->level == PT64_ROOT_4LEVEL &&
2508 	    vcpu->arch.mmu.root_level < PT64_ROOT_4LEVEL &&
2509 	    !vcpu->arch.mmu.direct_map)
2510 		--iterator->level;
2511 
2512 	if (iterator->level == PT32E_ROOT_LEVEL) {
2513 		iterator->shadow_addr
2514 			= vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2515 		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2516 		--iterator->level;
2517 		if (!iterator->shadow_addr)
2518 			iterator->level = 0;
2519 	}
2520 }
2521 
shadow_walk_okay(struct kvm_shadow_walk_iterator * iterator)2522 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2523 {
2524 	if (iterator->level < PT_PAGE_TABLE_LEVEL)
2525 		return false;
2526 
2527 	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2528 	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2529 	return true;
2530 }
2531 
__shadow_walk_next(struct kvm_shadow_walk_iterator * iterator,u64 spte)2532 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2533 			       u64 spte)
2534 {
2535 	if (is_last_spte(spte, iterator->level)) {
2536 		iterator->level = 0;
2537 		return;
2538 	}
2539 
2540 	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2541 	--iterator->level;
2542 }
2543 
shadow_walk_next(struct kvm_shadow_walk_iterator * iterator)2544 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2545 {
2546 	return __shadow_walk_next(iterator, *iterator->sptep);
2547 }
2548 
link_shadow_page(struct kvm_vcpu * vcpu,u64 * sptep,struct kvm_mmu_page * sp)2549 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2550 			     struct kvm_mmu_page *sp)
2551 {
2552 	u64 spte;
2553 
2554 	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2555 
2556 	spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2557 	       shadow_user_mask | shadow_x_mask | shadow_me_mask;
2558 
2559 	if (sp_ad_disabled(sp))
2560 		spte |= shadow_acc_track_value;
2561 	else
2562 		spte |= shadow_accessed_mask;
2563 
2564 	mmu_spte_set(sptep, spte);
2565 
2566 	mmu_page_add_parent_pte(vcpu, sp, sptep);
2567 
2568 	if (sp->unsync_children || sp->unsync)
2569 		mark_unsync(sptep);
2570 }
2571 
validate_direct_spte(struct kvm_vcpu * vcpu,u64 * sptep,unsigned direct_access)2572 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2573 				   unsigned direct_access)
2574 {
2575 	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2576 		struct kvm_mmu_page *child;
2577 
2578 		/*
2579 		 * For the direct sp, if the guest pte's dirty bit
2580 		 * changed form clean to dirty, it will corrupt the
2581 		 * sp's access: allow writable in the read-only sp,
2582 		 * so we should update the spte at this point to get
2583 		 * a new sp with the correct access.
2584 		 */
2585 		child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2586 		if (child->role.access == direct_access)
2587 			return;
2588 
2589 		drop_parent_pte(child, sptep);
2590 		kvm_flush_remote_tlbs(vcpu->kvm);
2591 	}
2592 }
2593 
mmu_page_zap_pte(struct kvm * kvm,struct kvm_mmu_page * sp,u64 * spte)2594 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2595 			     u64 *spte)
2596 {
2597 	u64 pte;
2598 	struct kvm_mmu_page *child;
2599 
2600 	pte = *spte;
2601 	if (is_shadow_present_pte(pte)) {
2602 		if (is_last_spte(pte, sp->role.level)) {
2603 			drop_spte(kvm, spte);
2604 			if (is_large_pte(pte))
2605 				--kvm->stat.lpages;
2606 		} else {
2607 			child = page_header(pte & PT64_BASE_ADDR_MASK);
2608 			drop_parent_pte(child, spte);
2609 		}
2610 		return true;
2611 	}
2612 
2613 	if (is_mmio_spte(pte))
2614 		mmu_spte_clear_no_track(spte);
2615 
2616 	return false;
2617 }
2618 
kvm_mmu_page_unlink_children(struct kvm * kvm,struct kvm_mmu_page * sp)2619 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2620 					 struct kvm_mmu_page *sp)
2621 {
2622 	unsigned i;
2623 
2624 	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2625 		mmu_page_zap_pte(kvm, sp, sp->spt + i);
2626 }
2627 
kvm_mmu_unlink_parents(struct kvm * kvm,struct kvm_mmu_page * sp)2628 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2629 {
2630 	u64 *sptep;
2631 	struct rmap_iterator iter;
2632 
2633 	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2634 		drop_parent_pte(sp, sptep);
2635 }
2636 
mmu_zap_unsync_children(struct kvm * kvm,struct kvm_mmu_page * parent,struct list_head * invalid_list)2637 static int mmu_zap_unsync_children(struct kvm *kvm,
2638 				   struct kvm_mmu_page *parent,
2639 				   struct list_head *invalid_list)
2640 {
2641 	int i, zapped = 0;
2642 	struct mmu_page_path parents;
2643 	struct kvm_mmu_pages pages;
2644 
2645 	if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2646 		return 0;
2647 
2648 	while (mmu_unsync_walk(parent, &pages)) {
2649 		struct kvm_mmu_page *sp;
2650 
2651 		for_each_sp(pages, sp, parents, i) {
2652 			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2653 			mmu_pages_clear_parents(&parents);
2654 			zapped++;
2655 		}
2656 	}
2657 
2658 	return zapped;
2659 }
2660 
kvm_mmu_prepare_zap_page(struct kvm * kvm,struct kvm_mmu_page * sp,struct list_head * invalid_list)2661 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2662 				    struct list_head *invalid_list)
2663 {
2664 	int ret;
2665 
2666 	trace_kvm_mmu_prepare_zap_page(sp);
2667 	++kvm->stat.mmu_shadow_zapped;
2668 	ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2669 	kvm_mmu_page_unlink_children(kvm, sp);
2670 	kvm_mmu_unlink_parents(kvm, sp);
2671 
2672 	if (!sp->role.invalid && !sp->role.direct)
2673 		unaccount_shadowed(kvm, sp);
2674 
2675 	if (sp->unsync)
2676 		kvm_unlink_unsync_page(kvm, sp);
2677 	if (!sp->root_count) {
2678 		/* Count self */
2679 		ret++;
2680 		list_move(&sp->link, invalid_list);
2681 		kvm_mod_used_mmu_pages(kvm, -1);
2682 	} else {
2683 		list_move(&sp->link, &kvm->arch.active_mmu_pages);
2684 
2685 		/*
2686 		 * The obsolete pages can not be used on any vcpus.
2687 		 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2688 		 */
2689 		if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2690 			kvm_reload_remote_mmus(kvm);
2691 	}
2692 
2693 	if (sp->lpage_disallowed)
2694 		unaccount_huge_nx_page(kvm, sp);
2695 
2696 	sp->role.invalid = 1;
2697 	return ret;
2698 }
2699 
kvm_mmu_commit_zap_page(struct kvm * kvm,struct list_head * invalid_list)2700 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2701 				    struct list_head *invalid_list)
2702 {
2703 	struct kvm_mmu_page *sp, *nsp;
2704 
2705 	if (list_empty(invalid_list))
2706 		return;
2707 
2708 	/*
2709 	 * We need to make sure everyone sees our modifications to
2710 	 * the page tables and see changes to vcpu->mode here. The barrier
2711 	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2712 	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2713 	 *
2714 	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2715 	 * guest mode and/or lockless shadow page table walks.
2716 	 */
2717 	kvm_flush_remote_tlbs(kvm);
2718 
2719 	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2720 		WARN_ON(!sp->role.invalid || sp->root_count);
2721 		kvm_mmu_free_page(sp);
2722 	}
2723 }
2724 
prepare_zap_oldest_mmu_page(struct kvm * kvm,struct list_head * invalid_list)2725 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2726 					struct list_head *invalid_list)
2727 {
2728 	struct kvm_mmu_page *sp;
2729 
2730 	if (list_empty(&kvm->arch.active_mmu_pages))
2731 		return false;
2732 
2733 	sp = list_last_entry(&kvm->arch.active_mmu_pages,
2734 			     struct kvm_mmu_page, link);
2735 	return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2736 }
2737 
2738 /*
2739  * Changing the number of mmu pages allocated to the vm
2740  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2741  */
kvm_mmu_change_mmu_pages(struct kvm * kvm,unsigned int goal_nr_mmu_pages)2742 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2743 {
2744 	LIST_HEAD(invalid_list);
2745 
2746 	spin_lock(&kvm->mmu_lock);
2747 
2748 	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2749 		/* Need to free some mmu pages to achieve the goal. */
2750 		while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2751 			if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2752 				break;
2753 
2754 		kvm_mmu_commit_zap_page(kvm, &invalid_list);
2755 		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2756 	}
2757 
2758 	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2759 
2760 	spin_unlock(&kvm->mmu_lock);
2761 }
2762 
kvm_mmu_unprotect_page(struct kvm * kvm,gfn_t gfn)2763 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2764 {
2765 	struct kvm_mmu_page *sp;
2766 	LIST_HEAD(invalid_list);
2767 	int r;
2768 
2769 	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2770 	r = 0;
2771 	spin_lock(&kvm->mmu_lock);
2772 	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2773 		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2774 			 sp->role.word);
2775 		r = 1;
2776 		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2777 	}
2778 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2779 	spin_unlock(&kvm->mmu_lock);
2780 
2781 	return r;
2782 }
2783 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2784 
kvm_unsync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp)2785 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2786 {
2787 	trace_kvm_mmu_unsync_page(sp);
2788 	++vcpu->kvm->stat.mmu_unsync;
2789 	sp->unsync = 1;
2790 
2791 	kvm_mmu_mark_parents_unsync(sp);
2792 }
2793 
mmu_need_write_protect(struct kvm_vcpu * vcpu,gfn_t gfn,bool can_unsync)2794 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2795 				   bool can_unsync)
2796 {
2797 	struct kvm_mmu_page *sp;
2798 
2799 	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2800 		return true;
2801 
2802 	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2803 		if (!can_unsync)
2804 			return true;
2805 
2806 		if (sp->unsync)
2807 			continue;
2808 
2809 		WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2810 		kvm_unsync_page(vcpu, sp);
2811 	}
2812 
2813 	return false;
2814 }
2815 
kvm_is_mmio_pfn(kvm_pfn_t pfn)2816 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2817 {
2818 	if (pfn_valid(pfn))
2819 		return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
2820 
2821 	return true;
2822 }
2823 
set_spte(struct kvm_vcpu * vcpu,u64 * sptep,unsigned pte_access,int level,gfn_t gfn,kvm_pfn_t pfn,bool speculative,bool can_unsync,bool host_writable)2824 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2825 		    unsigned pte_access, int level,
2826 		    gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2827 		    bool can_unsync, bool host_writable)
2828 {
2829 	u64 spte = 0;
2830 	int ret = 0;
2831 	struct kvm_mmu_page *sp;
2832 
2833 	if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2834 		return 0;
2835 
2836 	sp = page_header(__pa(sptep));
2837 	if (sp_ad_disabled(sp))
2838 		spte |= shadow_acc_track_value;
2839 
2840 	/*
2841 	 * For the EPT case, shadow_present_mask is 0 if hardware
2842 	 * supports exec-only page table entries.  In that case,
2843 	 * ACC_USER_MASK and shadow_user_mask are used to represent
2844 	 * read access.  See FNAME(gpte_access) in paging_tmpl.h.
2845 	 */
2846 	spte |= shadow_present_mask;
2847 	if (!speculative)
2848 		spte |= spte_shadow_accessed_mask(spte);
2849 
2850 	if (level > PT_PAGE_TABLE_LEVEL && (pte_access & ACC_EXEC_MASK) &&
2851 	    is_nx_huge_page_enabled()) {
2852 		pte_access &= ~ACC_EXEC_MASK;
2853 	}
2854 
2855 	if (pte_access & ACC_EXEC_MASK)
2856 		spte |= shadow_x_mask;
2857 	else
2858 		spte |= shadow_nx_mask;
2859 
2860 	if (pte_access & ACC_USER_MASK)
2861 		spte |= shadow_user_mask;
2862 
2863 	if (level > PT_PAGE_TABLE_LEVEL)
2864 		spte |= PT_PAGE_SIZE_MASK;
2865 	if (tdp_enabled)
2866 		spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2867 			kvm_is_mmio_pfn(pfn));
2868 
2869 	if (host_writable)
2870 		spte |= SPTE_HOST_WRITEABLE;
2871 	else
2872 		pte_access &= ~ACC_WRITE_MASK;
2873 
2874 	if (!kvm_is_mmio_pfn(pfn))
2875 		spte |= shadow_me_mask;
2876 
2877 	spte |= (u64)pfn << PAGE_SHIFT;
2878 
2879 	if (pte_access & ACC_WRITE_MASK) {
2880 
2881 		/*
2882 		 * Other vcpu creates new sp in the window between
2883 		 * mapping_level() and acquiring mmu-lock. We can
2884 		 * allow guest to retry the access, the mapping can
2885 		 * be fixed if guest refault.
2886 		 */
2887 		if (level > PT_PAGE_TABLE_LEVEL &&
2888 		    mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
2889 			goto done;
2890 
2891 		spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2892 
2893 		/*
2894 		 * Optimization: for pte sync, if spte was writable the hash
2895 		 * lookup is unnecessary (and expensive). Write protection
2896 		 * is responsibility of mmu_get_page / kvm_sync_page.
2897 		 * Same reasoning can be applied to dirty page accounting.
2898 		 */
2899 		if (!can_unsync && is_writable_pte(*sptep))
2900 			goto set_pte;
2901 
2902 		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2903 			pgprintk("%s: found shadow page for %llx, marking ro\n",
2904 				 __func__, gfn);
2905 			ret = 1;
2906 			pte_access &= ~ACC_WRITE_MASK;
2907 			spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2908 		}
2909 	}
2910 
2911 	if (pte_access & ACC_WRITE_MASK) {
2912 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
2913 		spte |= spte_shadow_dirty_mask(spte);
2914 	}
2915 
2916 	if (speculative)
2917 		spte = mark_spte_for_access_track(spte);
2918 
2919 set_pte:
2920 	if (mmu_spte_update(sptep, spte))
2921 		kvm_flush_remote_tlbs(vcpu->kvm);
2922 done:
2923 	return ret;
2924 }
2925 
mmu_set_spte(struct kvm_vcpu * vcpu,u64 * sptep,unsigned pte_access,int write_fault,int level,gfn_t gfn,kvm_pfn_t pfn,bool speculative,bool host_writable)2926 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
2927 			int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
2928 		       	bool speculative, bool host_writable)
2929 {
2930 	int was_rmapped = 0;
2931 	int rmap_count;
2932 	int ret = RET_PF_RETRY;
2933 
2934 	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2935 		 *sptep, write_fault, gfn);
2936 
2937 	if (is_shadow_present_pte(*sptep)) {
2938 		/*
2939 		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2940 		 * the parent of the now unreachable PTE.
2941 		 */
2942 		if (level > PT_PAGE_TABLE_LEVEL &&
2943 		    !is_large_pte(*sptep)) {
2944 			struct kvm_mmu_page *child;
2945 			u64 pte = *sptep;
2946 
2947 			child = page_header(pte & PT64_BASE_ADDR_MASK);
2948 			drop_parent_pte(child, sptep);
2949 			kvm_flush_remote_tlbs(vcpu->kvm);
2950 		} else if (pfn != spte_to_pfn(*sptep)) {
2951 			pgprintk("hfn old %llx new %llx\n",
2952 				 spte_to_pfn(*sptep), pfn);
2953 			drop_spte(vcpu->kvm, sptep);
2954 			kvm_flush_remote_tlbs(vcpu->kvm);
2955 		} else
2956 			was_rmapped = 1;
2957 	}
2958 
2959 	if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2960 	      true, host_writable)) {
2961 		if (write_fault)
2962 			ret = RET_PF_EMULATE;
2963 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2964 	}
2965 
2966 	if (unlikely(is_mmio_spte(*sptep)))
2967 		ret = RET_PF_EMULATE;
2968 
2969 	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2970 	trace_kvm_mmu_set_spte(level, gfn, sptep);
2971 	if (!was_rmapped && is_large_pte(*sptep))
2972 		++vcpu->kvm->stat.lpages;
2973 
2974 	if (is_shadow_present_pte(*sptep)) {
2975 		if (!was_rmapped) {
2976 			rmap_count = rmap_add(vcpu, sptep, gfn);
2977 			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2978 				rmap_recycle(vcpu, sptep, gfn);
2979 		}
2980 	}
2981 
2982 	return ret;
2983 }
2984 
pte_prefetch_gfn_to_pfn(struct kvm_vcpu * vcpu,gfn_t gfn,bool no_dirty_log)2985 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2986 				     bool no_dirty_log)
2987 {
2988 	struct kvm_memory_slot *slot;
2989 
2990 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2991 	if (!slot)
2992 		return KVM_PFN_ERR_FAULT;
2993 
2994 	return gfn_to_pfn_memslot_atomic(slot, gfn);
2995 }
2996 
direct_pte_prefetch_many(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * start,u64 * end)2997 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2998 				    struct kvm_mmu_page *sp,
2999 				    u64 *start, u64 *end)
3000 {
3001 	struct page *pages[PTE_PREFETCH_NUM];
3002 	struct kvm_memory_slot *slot;
3003 	unsigned access = sp->role.access;
3004 	int i, ret;
3005 	gfn_t gfn;
3006 
3007 	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
3008 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
3009 	if (!slot)
3010 		return -1;
3011 
3012 	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
3013 	if (ret <= 0)
3014 		return -1;
3015 
3016 	for (i = 0; i < ret; i++, gfn++, start++) {
3017 		mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
3018 			     page_to_pfn(pages[i]), true, true);
3019 		put_page(pages[i]);
3020 	}
3021 
3022 	return 0;
3023 }
3024 
__direct_pte_prefetch(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * sptep)3025 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3026 				  struct kvm_mmu_page *sp, u64 *sptep)
3027 {
3028 	u64 *spte, *start = NULL;
3029 	int i;
3030 
3031 	WARN_ON(!sp->role.direct);
3032 
3033 	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
3034 	spte = sp->spt + i;
3035 
3036 	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
3037 		if (is_shadow_present_pte(*spte) || spte == sptep) {
3038 			if (!start)
3039 				continue;
3040 			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
3041 				break;
3042 			start = NULL;
3043 		} else if (!start)
3044 			start = spte;
3045 	}
3046 }
3047 
direct_pte_prefetch(struct kvm_vcpu * vcpu,u64 * sptep)3048 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3049 {
3050 	struct kvm_mmu_page *sp;
3051 
3052 	sp = page_header(__pa(sptep));
3053 
3054 	/*
3055 	 * Without accessed bits, there's no way to distinguish between
3056 	 * actually accessed translations and prefetched, so disable pte
3057 	 * prefetch if accessed bits aren't available.
3058 	 */
3059 	if (sp_ad_disabled(sp))
3060 		return;
3061 
3062 	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3063 		return;
3064 
3065 	__direct_pte_prefetch(vcpu, sp, sptep);
3066 }
3067 
disallowed_hugepage_adjust(struct kvm_shadow_walk_iterator it,gfn_t gfn,kvm_pfn_t * pfnp,int * levelp)3068 static void disallowed_hugepage_adjust(struct kvm_shadow_walk_iterator it,
3069 				       gfn_t gfn, kvm_pfn_t *pfnp, int *levelp)
3070 {
3071 	int level = *levelp;
3072 	u64 spte = *it.sptep;
3073 
3074 	if (it.level == level && level > PT_PAGE_TABLE_LEVEL &&
3075 	    is_nx_huge_page_enabled() &&
3076 	    is_shadow_present_pte(spte) &&
3077 	    !is_large_pte(spte)) {
3078 		/*
3079 		 * A small SPTE exists for this pfn, but FNAME(fetch)
3080 		 * and __direct_map would like to create a large PTE
3081 		 * instead: just force them to go down another level,
3082 		 * patching back for them into pfn the next 9 bits of
3083 		 * the address.
3084 		 */
3085 		u64 page_mask = KVM_PAGES_PER_HPAGE(level) - KVM_PAGES_PER_HPAGE(level - 1);
3086 		*pfnp |= gfn & page_mask;
3087 		(*levelp)--;
3088 	}
3089 }
3090 
__direct_map(struct kvm_vcpu * vcpu,gpa_t gpa,int write,int map_writable,int level,kvm_pfn_t pfn,bool prefault,bool lpage_disallowed)3091 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, int write,
3092 			int map_writable, int level, kvm_pfn_t pfn,
3093 			bool prefault, bool lpage_disallowed)
3094 {
3095 	struct kvm_shadow_walk_iterator it;
3096 	struct kvm_mmu_page *sp;
3097 	int ret;
3098 	gfn_t gfn = gpa >> PAGE_SHIFT;
3099 	gfn_t base_gfn = gfn;
3100 
3101 	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3102 		return RET_PF_RETRY;
3103 
3104 	trace_kvm_mmu_spte_requested(gpa, level, pfn);
3105 	for_each_shadow_entry(vcpu, gpa, it) {
3106 		/*
3107 		 * We cannot overwrite existing page tables with an NX
3108 		 * large page, as the leaf could be executable.
3109 		 */
3110 		disallowed_hugepage_adjust(it, gfn, &pfn, &level);
3111 
3112 		base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
3113 		if (it.level == level)
3114 			break;
3115 
3116 		drop_large_spte(vcpu, it.sptep);
3117 		if (!is_shadow_present_pte(*it.sptep)) {
3118 			sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
3119 					      it.level - 1, true, ACC_ALL);
3120 
3121 			link_shadow_page(vcpu, it.sptep, sp);
3122 			if (lpage_disallowed)
3123 				account_huge_nx_page(vcpu->kvm, sp);
3124 		}
3125 	}
3126 
3127 	ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
3128 			   write, level, base_gfn, pfn, prefault,
3129 			   map_writable);
3130 	direct_pte_prefetch(vcpu, it.sptep);
3131 	++vcpu->stat.pf_fixed;
3132 	return ret;
3133 }
3134 
kvm_send_hwpoison_signal(unsigned long address,struct task_struct * tsk)3135 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3136 {
3137 	siginfo_t info;
3138 
3139 	info.si_signo	= SIGBUS;
3140 	info.si_errno	= 0;
3141 	info.si_code	= BUS_MCEERR_AR;
3142 	info.si_addr	= (void __user *)address;
3143 	info.si_addr_lsb = PAGE_SHIFT;
3144 
3145 	send_sig_info(SIGBUS, &info, tsk);
3146 }
3147 
kvm_handle_bad_page(struct kvm_vcpu * vcpu,gfn_t gfn,kvm_pfn_t pfn)3148 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3149 {
3150 	/*
3151 	 * Do not cache the mmio info caused by writing the readonly gfn
3152 	 * into the spte otherwise read access on readonly gfn also can
3153 	 * caused mmio page fault and treat it as mmio access.
3154 	 */
3155 	if (pfn == KVM_PFN_ERR_RO_FAULT)
3156 		return RET_PF_EMULATE;
3157 
3158 	if (pfn == KVM_PFN_ERR_HWPOISON) {
3159 		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3160 		return RET_PF_RETRY;
3161 	}
3162 
3163 	return -EFAULT;
3164 }
3165 
transparent_hugepage_adjust(struct kvm_vcpu * vcpu,gfn_t gfn,kvm_pfn_t * pfnp,int * levelp)3166 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
3167 					gfn_t gfn, kvm_pfn_t *pfnp,
3168 					int *levelp)
3169 {
3170 	kvm_pfn_t pfn = *pfnp;
3171 	int level = *levelp;
3172 
3173 	/*
3174 	 * Check if it's a transparent hugepage. If this would be an
3175 	 * hugetlbfs page, level wouldn't be set to
3176 	 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
3177 	 * here.
3178 	 */
3179 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
3180 	    !kvm_is_zone_device_pfn(pfn) && level == PT_PAGE_TABLE_LEVEL &&
3181 	    PageTransCompoundMap(pfn_to_page(pfn)) &&
3182 	    !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
3183 		unsigned long mask;
3184 		/*
3185 		 * mmu_notifier_retry was successful and we hold the
3186 		 * mmu_lock here, so the pmd can't become splitting
3187 		 * from under us, and in turn
3188 		 * __split_huge_page_refcount() can't run from under
3189 		 * us and we can safely transfer the refcount from
3190 		 * PG_tail to PG_head as we switch the pfn to tail to
3191 		 * head.
3192 		 */
3193 		*levelp = level = PT_DIRECTORY_LEVEL;
3194 		mask = KVM_PAGES_PER_HPAGE(level) - 1;
3195 		VM_BUG_ON((gfn & mask) != (pfn & mask));
3196 		if (pfn & mask) {
3197 			kvm_release_pfn_clean(pfn);
3198 			pfn &= ~mask;
3199 			kvm_get_pfn(pfn);
3200 			*pfnp = pfn;
3201 		}
3202 	}
3203 }
3204 
handle_abnormal_pfn(struct kvm_vcpu * vcpu,gva_t gva,gfn_t gfn,kvm_pfn_t pfn,unsigned access,int * ret_val)3205 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3206 				kvm_pfn_t pfn, unsigned access, int *ret_val)
3207 {
3208 	/* The pfn is invalid, report the error! */
3209 	if (unlikely(is_error_pfn(pfn))) {
3210 		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3211 		return true;
3212 	}
3213 
3214 	if (unlikely(is_noslot_pfn(pfn)))
3215 		vcpu_cache_mmio_info(vcpu, gva, gfn, access);
3216 
3217 	return false;
3218 }
3219 
page_fault_can_be_fast(u32 error_code)3220 static bool page_fault_can_be_fast(u32 error_code)
3221 {
3222 	/*
3223 	 * Do not fix the mmio spte with invalid generation number which
3224 	 * need to be updated by slow page fault path.
3225 	 */
3226 	if (unlikely(error_code & PFERR_RSVD_MASK))
3227 		return false;
3228 
3229 	/* See if the page fault is due to an NX violation */
3230 	if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3231 		      == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3232 		return false;
3233 
3234 	/*
3235 	 * #PF can be fast if:
3236 	 * 1. The shadow page table entry is not present, which could mean that
3237 	 *    the fault is potentially caused by access tracking (if enabled).
3238 	 * 2. The shadow page table entry is present and the fault
3239 	 *    is caused by write-protect, that means we just need change the W
3240 	 *    bit of the spte which can be done out of mmu-lock.
3241 	 *
3242 	 * However, if access tracking is disabled we know that a non-present
3243 	 * page must be a genuine page fault where we have to create a new SPTE.
3244 	 * So, if access tracking is disabled, we return true only for write
3245 	 * accesses to a present page.
3246 	 */
3247 
3248 	return shadow_acc_track_mask != 0 ||
3249 	       ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3250 		== (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3251 }
3252 
3253 /*
3254  * Returns true if the SPTE was fixed successfully. Otherwise,
3255  * someone else modified the SPTE from its original value.
3256  */
3257 static bool
fast_pf_fix_direct_spte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * sptep,u64 old_spte,u64 new_spte)3258 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3259 			u64 *sptep, u64 old_spte, u64 new_spte)
3260 {
3261 	gfn_t gfn;
3262 
3263 	WARN_ON(!sp->role.direct);
3264 
3265 	/*
3266 	 * Theoretically we could also set dirty bit (and flush TLB) here in
3267 	 * order to eliminate unnecessary PML logging. See comments in
3268 	 * set_spte. But fast_page_fault is very unlikely to happen with PML
3269 	 * enabled, so we do not do this. This might result in the same GPA
3270 	 * to be logged in PML buffer again when the write really happens, and
3271 	 * eventually to be called by mark_page_dirty twice. But it's also no
3272 	 * harm. This also avoids the TLB flush needed after setting dirty bit
3273 	 * so non-PML cases won't be impacted.
3274 	 *
3275 	 * Compare with set_spte where instead shadow_dirty_mask is set.
3276 	 */
3277 	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3278 		return false;
3279 
3280 	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3281 		/*
3282 		 * The gfn of direct spte is stable since it is
3283 		 * calculated by sp->gfn.
3284 		 */
3285 		gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3286 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3287 	}
3288 
3289 	return true;
3290 }
3291 
is_access_allowed(u32 fault_err_code,u64 spte)3292 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3293 {
3294 	if (fault_err_code & PFERR_FETCH_MASK)
3295 		return is_executable_pte(spte);
3296 
3297 	if (fault_err_code & PFERR_WRITE_MASK)
3298 		return is_writable_pte(spte);
3299 
3300 	/* Fault was on Read access */
3301 	return spte & PT_PRESENT_MASK;
3302 }
3303 
3304 /*
3305  * Return value:
3306  * - true: let the vcpu to access on the same address again.
3307  * - false: let the real page fault path to fix it.
3308  */
fast_page_fault(struct kvm_vcpu * vcpu,gva_t gva,int level,u32 error_code)3309 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
3310 			    u32 error_code)
3311 {
3312 	struct kvm_shadow_walk_iterator iterator;
3313 	struct kvm_mmu_page *sp;
3314 	bool fault_handled = false;
3315 	u64 spte = 0ull;
3316 	uint retry_count = 0;
3317 
3318 	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3319 		return false;
3320 
3321 	if (!page_fault_can_be_fast(error_code))
3322 		return false;
3323 
3324 	walk_shadow_page_lockless_begin(vcpu);
3325 
3326 	do {
3327 		u64 new_spte;
3328 
3329 		for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
3330 			if (!is_shadow_present_pte(spte) ||
3331 			    iterator.level < level)
3332 				break;
3333 
3334 		sp = page_header(__pa(iterator.sptep));
3335 		if (!is_last_spte(spte, sp->role.level))
3336 			break;
3337 
3338 		/*
3339 		 * Check whether the memory access that caused the fault would
3340 		 * still cause it if it were to be performed right now. If not,
3341 		 * then this is a spurious fault caused by TLB lazily flushed,
3342 		 * or some other CPU has already fixed the PTE after the
3343 		 * current CPU took the fault.
3344 		 *
3345 		 * Need not check the access of upper level table entries since
3346 		 * they are always ACC_ALL.
3347 		 */
3348 		if (is_access_allowed(error_code, spte)) {
3349 			fault_handled = true;
3350 			break;
3351 		}
3352 
3353 		new_spte = spte;
3354 
3355 		if (is_access_track_spte(spte))
3356 			new_spte = restore_acc_track_spte(new_spte);
3357 
3358 		/*
3359 		 * Currently, to simplify the code, write-protection can
3360 		 * be removed in the fast path only if the SPTE was
3361 		 * write-protected for dirty-logging or access tracking.
3362 		 */
3363 		if ((error_code & PFERR_WRITE_MASK) &&
3364 		    spte_can_locklessly_be_made_writable(spte))
3365 		{
3366 			new_spte |= PT_WRITABLE_MASK;
3367 
3368 			/*
3369 			 * Do not fix write-permission on the large spte.  Since
3370 			 * we only dirty the first page into the dirty-bitmap in
3371 			 * fast_pf_fix_direct_spte(), other pages are missed
3372 			 * if its slot has dirty logging enabled.
3373 			 *
3374 			 * Instead, we let the slow page fault path create a
3375 			 * normal spte to fix the access.
3376 			 *
3377 			 * See the comments in kvm_arch_commit_memory_region().
3378 			 */
3379 			if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3380 				break;
3381 		}
3382 
3383 		/* Verify that the fault can be handled in the fast path */
3384 		if (new_spte == spte ||
3385 		    !is_access_allowed(error_code, new_spte))
3386 			break;
3387 
3388 		/*
3389 		 * Currently, fast page fault only works for direct mapping
3390 		 * since the gfn is not stable for indirect shadow page. See
3391 		 * Documentation/virtual/kvm/locking.txt to get more detail.
3392 		 */
3393 		fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3394 							iterator.sptep, spte,
3395 							new_spte);
3396 		if (fault_handled)
3397 			break;
3398 
3399 		if (++retry_count > 4) {
3400 			printk_once(KERN_WARNING
3401 				"kvm: Fast #PF retrying more than 4 times.\n");
3402 			break;
3403 		}
3404 
3405 	} while (true);
3406 
3407 	trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
3408 			      spte, fault_handled);
3409 	walk_shadow_page_lockless_end(vcpu);
3410 
3411 	return fault_handled;
3412 }
3413 
3414 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3415 			 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
3416 static int make_mmu_pages_available(struct kvm_vcpu *vcpu);
3417 
nonpaging_map(struct kvm_vcpu * vcpu,gva_t v,u32 error_code,gfn_t gfn,bool prefault)3418 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3419 			 gfn_t gfn, bool prefault)
3420 {
3421 	int r;
3422 	int level;
3423 	bool force_pt_level;
3424 	kvm_pfn_t pfn;
3425 	unsigned long mmu_seq;
3426 	bool map_writable, write = error_code & PFERR_WRITE_MASK;
3427 	bool lpage_disallowed = (error_code & PFERR_FETCH_MASK) &&
3428 				is_nx_huge_page_enabled();
3429 
3430 	force_pt_level = lpage_disallowed;
3431 	level = mapping_level(vcpu, gfn, &force_pt_level);
3432 	if (likely(!force_pt_level)) {
3433 		/*
3434 		 * This path builds a PAE pagetable - so we can map
3435 		 * 2mb pages at maximum. Therefore check if the level
3436 		 * is larger than that.
3437 		 */
3438 		if (level > PT_DIRECTORY_LEVEL)
3439 			level = PT_DIRECTORY_LEVEL;
3440 
3441 		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3442 	}
3443 
3444 	if (fast_page_fault(vcpu, v, level, error_code))
3445 		return RET_PF_RETRY;
3446 
3447 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3448 	smp_rmb();
3449 
3450 	if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3451 		return RET_PF_RETRY;
3452 
3453 	if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3454 		return r;
3455 
3456 	r = RET_PF_RETRY;
3457 	spin_lock(&vcpu->kvm->mmu_lock);
3458 	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3459 		goto out_unlock;
3460 	if (make_mmu_pages_available(vcpu) < 0)
3461 		goto out_unlock;
3462 	if (likely(!force_pt_level))
3463 		transparent_hugepage_adjust(vcpu, gfn, &pfn, &level);
3464 	r = __direct_map(vcpu, v, write, map_writable, level, pfn,
3465 			 prefault, false);
3466 out_unlock:
3467 	spin_unlock(&vcpu->kvm->mmu_lock);
3468 	kvm_release_pfn_clean(pfn);
3469 	return r;
3470 }
3471 
3472 
mmu_free_roots(struct kvm_vcpu * vcpu)3473 static void mmu_free_roots(struct kvm_vcpu *vcpu)
3474 {
3475 	int i;
3476 	struct kvm_mmu_page *sp;
3477 	LIST_HEAD(invalid_list);
3478 
3479 	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3480 		return;
3481 
3482 	if (vcpu->arch.mmu.shadow_root_level >= PT64_ROOT_4LEVEL &&
3483 	    (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL ||
3484 	     vcpu->arch.mmu.direct_map)) {
3485 		hpa_t root = vcpu->arch.mmu.root_hpa;
3486 
3487 		spin_lock(&vcpu->kvm->mmu_lock);
3488 		sp = page_header(root);
3489 		--sp->root_count;
3490 		if (!sp->root_count && sp->role.invalid) {
3491 			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3492 			kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3493 		}
3494 		spin_unlock(&vcpu->kvm->mmu_lock);
3495 		vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3496 		return;
3497 	}
3498 
3499 	spin_lock(&vcpu->kvm->mmu_lock);
3500 	for (i = 0; i < 4; ++i) {
3501 		hpa_t root = vcpu->arch.mmu.pae_root[i];
3502 
3503 		if (root) {
3504 			root &= PT64_BASE_ADDR_MASK;
3505 			sp = page_header(root);
3506 			--sp->root_count;
3507 			if (!sp->root_count && sp->role.invalid)
3508 				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3509 							 &invalid_list);
3510 		}
3511 		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3512 	}
3513 	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3514 	spin_unlock(&vcpu->kvm->mmu_lock);
3515 	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3516 }
3517 
mmu_check_root(struct kvm_vcpu * vcpu,gfn_t root_gfn)3518 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3519 {
3520 	int ret = 0;
3521 
3522 	if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3523 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3524 		ret = 1;
3525 	}
3526 
3527 	return ret;
3528 }
3529 
mmu_alloc_direct_roots(struct kvm_vcpu * vcpu)3530 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3531 {
3532 	struct kvm_mmu_page *sp;
3533 	unsigned i;
3534 
3535 	if (vcpu->arch.mmu.shadow_root_level >= PT64_ROOT_4LEVEL) {
3536 		spin_lock(&vcpu->kvm->mmu_lock);
3537 		if(make_mmu_pages_available(vcpu) < 0) {
3538 			spin_unlock(&vcpu->kvm->mmu_lock);
3539 			return -ENOSPC;
3540 		}
3541 		sp = kvm_mmu_get_page(vcpu, 0, 0,
3542 				vcpu->arch.mmu.shadow_root_level, 1, ACC_ALL);
3543 		++sp->root_count;
3544 		spin_unlock(&vcpu->kvm->mmu_lock);
3545 		vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3546 	} else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3547 		for (i = 0; i < 4; ++i) {
3548 			hpa_t root = vcpu->arch.mmu.pae_root[i];
3549 
3550 			MMU_WARN_ON(VALID_PAGE(root));
3551 			spin_lock(&vcpu->kvm->mmu_lock);
3552 			if (make_mmu_pages_available(vcpu) < 0) {
3553 				spin_unlock(&vcpu->kvm->mmu_lock);
3554 				return -ENOSPC;
3555 			}
3556 			sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3557 					i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3558 			root = __pa(sp->spt);
3559 			++sp->root_count;
3560 			spin_unlock(&vcpu->kvm->mmu_lock);
3561 			vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3562 		}
3563 		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3564 	} else
3565 		BUG();
3566 
3567 	return 0;
3568 }
3569 
mmu_alloc_shadow_roots(struct kvm_vcpu * vcpu)3570 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3571 {
3572 	struct kvm_mmu_page *sp;
3573 	u64 pdptr, pm_mask;
3574 	gfn_t root_gfn;
3575 	int i;
3576 
3577 	root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3578 
3579 	if (mmu_check_root(vcpu, root_gfn))
3580 		return 1;
3581 
3582 	/*
3583 	 * Do we shadow a long mode page table? If so we need to
3584 	 * write-protect the guests page table root.
3585 	 */
3586 	if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) {
3587 		hpa_t root = vcpu->arch.mmu.root_hpa;
3588 
3589 		MMU_WARN_ON(VALID_PAGE(root));
3590 
3591 		spin_lock(&vcpu->kvm->mmu_lock);
3592 		if (make_mmu_pages_available(vcpu) < 0) {
3593 			spin_unlock(&vcpu->kvm->mmu_lock);
3594 			return -ENOSPC;
3595 		}
3596 		sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
3597 				vcpu->arch.mmu.shadow_root_level, 0, ACC_ALL);
3598 		root = __pa(sp->spt);
3599 		++sp->root_count;
3600 		spin_unlock(&vcpu->kvm->mmu_lock);
3601 		vcpu->arch.mmu.root_hpa = root;
3602 		return 0;
3603 	}
3604 
3605 	/*
3606 	 * We shadow a 32 bit page table. This may be a legacy 2-level
3607 	 * or a PAE 3-level page table. In either case we need to be aware that
3608 	 * the shadow page table may be a PAE or a long mode page table.
3609 	 */
3610 	pm_mask = PT_PRESENT_MASK;
3611 	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL)
3612 		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3613 
3614 	for (i = 0; i < 4; ++i) {
3615 		hpa_t root = vcpu->arch.mmu.pae_root[i];
3616 
3617 		MMU_WARN_ON(VALID_PAGE(root));
3618 		if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3619 			pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3620 			if (!(pdptr & PT_PRESENT_MASK)) {
3621 				vcpu->arch.mmu.pae_root[i] = 0;
3622 				continue;
3623 			}
3624 			root_gfn = pdptr >> PAGE_SHIFT;
3625 			if (mmu_check_root(vcpu, root_gfn))
3626 				return 1;
3627 		}
3628 		spin_lock(&vcpu->kvm->mmu_lock);
3629 		if (make_mmu_pages_available(vcpu) < 0) {
3630 			spin_unlock(&vcpu->kvm->mmu_lock);
3631 			return -ENOSPC;
3632 		}
3633 		sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3634 				      0, ACC_ALL);
3635 		root = __pa(sp->spt);
3636 		++sp->root_count;
3637 		spin_unlock(&vcpu->kvm->mmu_lock);
3638 
3639 		vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3640 	}
3641 	vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3642 
3643 	/*
3644 	 * If we shadow a 32 bit page table with a long mode page
3645 	 * table we enter this path.
3646 	 */
3647 	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL) {
3648 		if (vcpu->arch.mmu.lm_root == NULL) {
3649 			/*
3650 			 * The additional page necessary for this is only
3651 			 * allocated on demand.
3652 			 */
3653 
3654 			u64 *lm_root;
3655 
3656 			lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3657 			if (lm_root == NULL)
3658 				return 1;
3659 
3660 			lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3661 
3662 			vcpu->arch.mmu.lm_root = lm_root;
3663 		}
3664 
3665 		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3666 	}
3667 
3668 	return 0;
3669 }
3670 
mmu_alloc_roots(struct kvm_vcpu * vcpu)3671 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3672 {
3673 	if (vcpu->arch.mmu.direct_map)
3674 		return mmu_alloc_direct_roots(vcpu);
3675 	else
3676 		return mmu_alloc_shadow_roots(vcpu);
3677 }
3678 
mmu_sync_roots(struct kvm_vcpu * vcpu)3679 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3680 {
3681 	int i;
3682 	struct kvm_mmu_page *sp;
3683 
3684 	if (vcpu->arch.mmu.direct_map)
3685 		return;
3686 
3687 	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3688 		return;
3689 
3690 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3691 	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3692 	if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) {
3693 		hpa_t root = vcpu->arch.mmu.root_hpa;
3694 		sp = page_header(root);
3695 		mmu_sync_children(vcpu, sp);
3696 		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3697 		return;
3698 	}
3699 	for (i = 0; i < 4; ++i) {
3700 		hpa_t root = vcpu->arch.mmu.pae_root[i];
3701 
3702 		if (root && VALID_PAGE(root)) {
3703 			root &= PT64_BASE_ADDR_MASK;
3704 			sp = page_header(root);
3705 			mmu_sync_children(vcpu, sp);
3706 		}
3707 	}
3708 	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3709 }
3710 
kvm_mmu_sync_roots(struct kvm_vcpu * vcpu)3711 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3712 {
3713 	spin_lock(&vcpu->kvm->mmu_lock);
3714 	mmu_sync_roots(vcpu);
3715 	spin_unlock(&vcpu->kvm->mmu_lock);
3716 }
3717 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3718 
nonpaging_gva_to_gpa(struct kvm_vcpu * vcpu,gva_t vaddr,u32 access,struct x86_exception * exception)3719 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3720 				  u32 access, struct x86_exception *exception)
3721 {
3722 	if (exception)
3723 		exception->error_code = 0;
3724 	return vaddr;
3725 }
3726 
nonpaging_gva_to_gpa_nested(struct kvm_vcpu * vcpu,gva_t vaddr,u32 access,struct x86_exception * exception)3727 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3728 					 u32 access,
3729 					 struct x86_exception *exception)
3730 {
3731 	if (exception)
3732 		exception->error_code = 0;
3733 	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3734 }
3735 
3736 static bool
__is_rsvd_bits_set(struct rsvd_bits_validate * rsvd_check,u64 pte,int level)3737 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3738 {
3739 	int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3740 
3741 	return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3742 		((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3743 }
3744 
is_rsvd_bits_set(struct kvm_mmu * mmu,u64 gpte,int level)3745 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3746 {
3747 	return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3748 }
3749 
is_shadow_zero_bits_set(struct kvm_mmu * mmu,u64 spte,int level)3750 static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3751 {
3752 	return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3753 }
3754 
mmio_info_in_cache(struct kvm_vcpu * vcpu,u64 addr,bool direct)3755 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3756 {
3757 	/*
3758 	 * A nested guest cannot use the MMIO cache if it is using nested
3759 	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3760 	 */
3761 	if (mmu_is_nested(vcpu))
3762 		return false;
3763 
3764 	if (direct)
3765 		return vcpu_match_mmio_gpa(vcpu, addr);
3766 
3767 	return vcpu_match_mmio_gva(vcpu, addr);
3768 }
3769 
3770 /* return true if reserved bit is detected on spte. */
3771 static bool
walk_shadow_page_get_mmio_spte(struct kvm_vcpu * vcpu,u64 addr,u64 * sptep)3772 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3773 {
3774 	struct kvm_shadow_walk_iterator iterator;
3775 	u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
3776 	int root, leaf;
3777 	bool reserved = false;
3778 
3779 	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3780 		goto exit;
3781 
3782 	walk_shadow_page_lockless_begin(vcpu);
3783 
3784 	for (shadow_walk_init(&iterator, vcpu, addr),
3785 		 leaf = root = iterator.level;
3786 	     shadow_walk_okay(&iterator);
3787 	     __shadow_walk_next(&iterator, spte)) {
3788 		spte = mmu_spte_get_lockless(iterator.sptep);
3789 
3790 		sptes[leaf - 1] = spte;
3791 		leaf--;
3792 
3793 		if (!is_shadow_present_pte(spte))
3794 			break;
3795 
3796 		reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3797 						    iterator.level);
3798 	}
3799 
3800 	walk_shadow_page_lockless_end(vcpu);
3801 
3802 	if (reserved) {
3803 		pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3804 		       __func__, addr);
3805 		while (root > leaf) {
3806 			pr_err("------ spte 0x%llx level %d.\n",
3807 			       sptes[root - 1], root);
3808 			root--;
3809 		}
3810 	}
3811 exit:
3812 	*sptep = spte;
3813 	return reserved;
3814 }
3815 
handle_mmio_page_fault(struct kvm_vcpu * vcpu,u64 addr,bool direct)3816 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3817 {
3818 	u64 spte;
3819 	bool reserved;
3820 
3821 	if (mmio_info_in_cache(vcpu, addr, direct))
3822 		return RET_PF_EMULATE;
3823 
3824 	reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3825 	if (WARN_ON(reserved))
3826 		return -EINVAL;
3827 
3828 	if (is_mmio_spte(spte)) {
3829 		gfn_t gfn = get_mmio_spte_gfn(spte);
3830 		unsigned access = get_mmio_spte_access(spte);
3831 
3832 		if (!check_mmio_spte(vcpu, spte))
3833 			return RET_PF_INVALID;
3834 
3835 		if (direct)
3836 			addr = 0;
3837 
3838 		trace_handle_mmio_page_fault(addr, gfn, access);
3839 		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3840 		return RET_PF_EMULATE;
3841 	}
3842 
3843 	/*
3844 	 * If the page table is zapped by other cpus, let CPU fault again on
3845 	 * the address.
3846 	 */
3847 	return RET_PF_RETRY;
3848 }
3849 EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
3850 
page_fault_handle_page_track(struct kvm_vcpu * vcpu,u32 error_code,gfn_t gfn)3851 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3852 					 u32 error_code, gfn_t gfn)
3853 {
3854 	if (unlikely(error_code & PFERR_RSVD_MASK))
3855 		return false;
3856 
3857 	if (!(error_code & PFERR_PRESENT_MASK) ||
3858 	      !(error_code & PFERR_WRITE_MASK))
3859 		return false;
3860 
3861 	/*
3862 	 * guest is writing the page which is write tracked which can
3863 	 * not be fixed by page fault handler.
3864 	 */
3865 	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3866 		return true;
3867 
3868 	return false;
3869 }
3870 
shadow_page_table_clear_flood(struct kvm_vcpu * vcpu,gva_t addr)3871 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3872 {
3873 	struct kvm_shadow_walk_iterator iterator;
3874 	u64 spte;
3875 
3876 	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3877 		return;
3878 
3879 	walk_shadow_page_lockless_begin(vcpu);
3880 	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3881 		clear_sp_write_flooding_count(iterator.sptep);
3882 		if (!is_shadow_present_pte(spte))
3883 			break;
3884 	}
3885 	walk_shadow_page_lockless_end(vcpu);
3886 }
3887 
nonpaging_page_fault(struct kvm_vcpu * vcpu,gva_t gva,u32 error_code,bool prefault)3888 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3889 				u32 error_code, bool prefault)
3890 {
3891 	gfn_t gfn = gva >> PAGE_SHIFT;
3892 	int r;
3893 
3894 	pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3895 
3896 	if (page_fault_handle_page_track(vcpu, error_code, gfn))
3897 		return RET_PF_EMULATE;
3898 
3899 	r = mmu_topup_memory_caches(vcpu);
3900 	if (r)
3901 		return r;
3902 
3903 	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3904 
3905 
3906 	return nonpaging_map(vcpu, gva & PAGE_MASK,
3907 			     error_code, gfn, prefault);
3908 }
3909 
kvm_arch_setup_async_pf(struct kvm_vcpu * vcpu,gva_t gva,gfn_t gfn)3910 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3911 {
3912 	struct kvm_arch_async_pf arch;
3913 
3914 	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3915 	arch.gfn = gfn;
3916 	arch.direct_map = vcpu->arch.mmu.direct_map;
3917 	arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3918 
3919 	return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3920 }
3921 
kvm_can_do_async_pf(struct kvm_vcpu * vcpu)3922 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
3923 {
3924 	if (unlikely(!lapic_in_kernel(vcpu) ||
3925 		     kvm_event_needs_reinjection(vcpu) ||
3926 		     vcpu->arch.exception.pending))
3927 		return false;
3928 
3929 	if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
3930 		return false;
3931 
3932 	return kvm_x86_ops->interrupt_allowed(vcpu);
3933 }
3934 
try_async_pf(struct kvm_vcpu * vcpu,bool prefault,gfn_t gfn,gva_t gva,kvm_pfn_t * pfn,bool write,bool * writable)3935 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3936 			 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
3937 {
3938 	struct kvm_memory_slot *slot;
3939 	bool async;
3940 
3941 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3942 	async = false;
3943 	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3944 	if (!async)
3945 		return false; /* *pfn has correct page already */
3946 
3947 	if (!prefault && kvm_can_do_async_pf(vcpu)) {
3948 		trace_kvm_try_async_get_page(gva, gfn);
3949 		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3950 			trace_kvm_async_pf_doublefault(gva, gfn);
3951 			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3952 			return true;
3953 		} else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3954 			return true;
3955 	}
3956 
3957 	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3958 	return false;
3959 }
3960 
kvm_handle_page_fault(struct kvm_vcpu * vcpu,u64 error_code,u64 fault_address,char * insn,int insn_len,bool need_unprotect)3961 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3962 				u64 fault_address, char *insn, int insn_len,
3963 				bool need_unprotect)
3964 {
3965 	int r = 1;
3966 
3967 	vcpu->arch.l1tf_flush_l1d = true;
3968 	switch (vcpu->arch.apf.host_apf_reason) {
3969 	default:
3970 		trace_kvm_page_fault(fault_address, error_code);
3971 
3972 		if (need_unprotect && kvm_event_needs_reinjection(vcpu))
3973 			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3974 		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3975 				insn_len);
3976 		break;
3977 	case KVM_PV_REASON_PAGE_NOT_PRESENT:
3978 		vcpu->arch.apf.host_apf_reason = 0;
3979 		local_irq_disable();
3980 		kvm_async_pf_task_wait(fault_address, 0);
3981 		local_irq_enable();
3982 		break;
3983 	case KVM_PV_REASON_PAGE_READY:
3984 		vcpu->arch.apf.host_apf_reason = 0;
3985 		local_irq_disable();
3986 		kvm_async_pf_task_wake(fault_address);
3987 		local_irq_enable();
3988 		break;
3989 	}
3990 	return r;
3991 }
3992 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3993 
3994 static bool
check_hugepage_cache_consistency(struct kvm_vcpu * vcpu,gfn_t gfn,int level)3995 check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3996 {
3997 	int page_num = KVM_PAGES_PER_HPAGE(level);
3998 
3999 	gfn &= ~(page_num - 1);
4000 
4001 	return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
4002 }
4003 
tdp_page_fault(struct kvm_vcpu * vcpu,gva_t gpa,u32 error_code,bool prefault)4004 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
4005 			  bool prefault)
4006 {
4007 	kvm_pfn_t pfn;
4008 	int r;
4009 	int level;
4010 	bool force_pt_level;
4011 	gfn_t gfn = gpa >> PAGE_SHIFT;
4012 	unsigned long mmu_seq;
4013 	int write = error_code & PFERR_WRITE_MASK;
4014 	bool map_writable;
4015 	bool lpage_disallowed = (error_code & PFERR_FETCH_MASK) &&
4016 				is_nx_huge_page_enabled();
4017 
4018 	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4019 
4020 	if (page_fault_handle_page_track(vcpu, error_code, gfn))
4021 		return RET_PF_EMULATE;
4022 
4023 	r = mmu_topup_memory_caches(vcpu);
4024 	if (r)
4025 		return r;
4026 
4027 	force_pt_level =
4028 		lpage_disallowed ||
4029 		!check_hugepage_cache_consistency(vcpu, gfn, PT_DIRECTORY_LEVEL);
4030 	level = mapping_level(vcpu, gfn, &force_pt_level);
4031 	if (likely(!force_pt_level)) {
4032 		if (level > PT_DIRECTORY_LEVEL &&
4033 		    !check_hugepage_cache_consistency(vcpu, gfn, level))
4034 			level = PT_DIRECTORY_LEVEL;
4035 		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
4036 	}
4037 
4038 	if (fast_page_fault(vcpu, gpa, level, error_code))
4039 		return RET_PF_RETRY;
4040 
4041 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
4042 	smp_rmb();
4043 
4044 	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
4045 		return RET_PF_RETRY;
4046 
4047 	if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
4048 		return r;
4049 
4050 	r = RET_PF_RETRY;
4051 	spin_lock(&vcpu->kvm->mmu_lock);
4052 	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
4053 		goto out_unlock;
4054 	if (make_mmu_pages_available(vcpu) < 0)
4055 		goto out_unlock;
4056 	if (likely(!force_pt_level))
4057 		transparent_hugepage_adjust(vcpu, gfn, &pfn, &level);
4058 	r = __direct_map(vcpu, gpa, write, map_writable, level, pfn,
4059 			 prefault, lpage_disallowed);
4060 out_unlock:
4061 	spin_unlock(&vcpu->kvm->mmu_lock);
4062 	kvm_release_pfn_clean(pfn);
4063 	return r;
4064 }
4065 
nonpaging_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context)4066 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
4067 				   struct kvm_mmu *context)
4068 {
4069 	context->page_fault = nonpaging_page_fault;
4070 	context->gva_to_gpa = nonpaging_gva_to_gpa;
4071 	context->sync_page = nonpaging_sync_page;
4072 	context->invlpg = nonpaging_invlpg;
4073 	context->update_pte = nonpaging_update_pte;
4074 	context->root_level = 0;
4075 	context->shadow_root_level = PT32E_ROOT_LEVEL;
4076 	context->root_hpa = INVALID_PAGE;
4077 	context->direct_map = true;
4078 	context->nx = false;
4079 }
4080 
kvm_mmu_new_cr3(struct kvm_vcpu * vcpu)4081 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
4082 {
4083 	mmu_free_roots(vcpu);
4084 }
4085 
get_cr3(struct kvm_vcpu * vcpu)4086 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4087 {
4088 	return kvm_read_cr3(vcpu);
4089 }
4090 
inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)4091 static void inject_page_fault(struct kvm_vcpu *vcpu,
4092 			      struct x86_exception *fault)
4093 {
4094 	vcpu->arch.mmu.inject_page_fault(vcpu, fault);
4095 }
4096 
sync_mmio_spte(struct kvm_vcpu * vcpu,u64 * sptep,gfn_t gfn,unsigned access,int * nr_present)4097 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4098 			   unsigned access, int *nr_present)
4099 {
4100 	if (unlikely(is_mmio_spte(*sptep))) {
4101 		if (gfn != get_mmio_spte_gfn(*sptep)) {
4102 			mmu_spte_clear_no_track(sptep);
4103 			return true;
4104 		}
4105 
4106 		(*nr_present)++;
4107 		mark_mmio_spte(vcpu, sptep, gfn, access);
4108 		return true;
4109 	}
4110 
4111 	return false;
4112 }
4113 
is_last_gpte(struct kvm_mmu * mmu,unsigned level,unsigned gpte)4114 static inline bool is_last_gpte(struct kvm_mmu *mmu,
4115 				unsigned level, unsigned gpte)
4116 {
4117 	/*
4118 	 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
4119 	 * If it is clear, there are no large pages at this level, so clear
4120 	 * PT_PAGE_SIZE_MASK in gpte if that is the case.
4121 	 */
4122 	gpte &= level - mmu->last_nonleaf_level;
4123 
4124 	/*
4125 	 * PT_PAGE_TABLE_LEVEL always terminates.  The RHS has bit 7 set
4126 	 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
4127 	 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
4128 	 */
4129 	gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
4130 
4131 	return gpte & PT_PAGE_SIZE_MASK;
4132 }
4133 
4134 #define PTTYPE_EPT 18 /* arbitrary */
4135 #define PTTYPE PTTYPE_EPT
4136 #include "paging_tmpl.h"
4137 #undef PTTYPE
4138 
4139 #define PTTYPE 64
4140 #include "paging_tmpl.h"
4141 #undef PTTYPE
4142 
4143 #define PTTYPE 32
4144 #include "paging_tmpl.h"
4145 #undef PTTYPE
4146 
4147 static void
__reset_rsvds_bits_mask(struct kvm_vcpu * vcpu,struct rsvd_bits_validate * rsvd_check,int maxphyaddr,int level,bool nx,bool gbpages,bool pse,bool amd)4148 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4149 			struct rsvd_bits_validate *rsvd_check,
4150 			int maxphyaddr, int level, bool nx, bool gbpages,
4151 			bool pse, bool amd)
4152 {
4153 	u64 exb_bit_rsvd = 0;
4154 	u64 gbpages_bit_rsvd = 0;
4155 	u64 nonleaf_bit8_rsvd = 0;
4156 
4157 	rsvd_check->bad_mt_xwr = 0;
4158 
4159 	if (!nx)
4160 		exb_bit_rsvd = rsvd_bits(63, 63);
4161 	if (!gbpages)
4162 		gbpages_bit_rsvd = rsvd_bits(7, 7);
4163 
4164 	/*
4165 	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4166 	 * leaf entries) on AMD CPUs only.
4167 	 */
4168 	if (amd)
4169 		nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4170 
4171 	switch (level) {
4172 	case PT32_ROOT_LEVEL:
4173 		/* no rsvd bits for 2 level 4K page table entries */
4174 		rsvd_check->rsvd_bits_mask[0][1] = 0;
4175 		rsvd_check->rsvd_bits_mask[0][0] = 0;
4176 		rsvd_check->rsvd_bits_mask[1][0] =
4177 			rsvd_check->rsvd_bits_mask[0][0];
4178 
4179 		if (!pse) {
4180 			rsvd_check->rsvd_bits_mask[1][1] = 0;
4181 			break;
4182 		}
4183 
4184 		if (is_cpuid_PSE36())
4185 			/* 36bits PSE 4MB page */
4186 			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4187 		else
4188 			/* 32 bits PSE 4MB page */
4189 			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4190 		break;
4191 	case PT32E_ROOT_LEVEL:
4192 		rsvd_check->rsvd_bits_mask[0][2] =
4193 			rsvd_bits(maxphyaddr, 63) |
4194 			rsvd_bits(5, 8) | rsvd_bits(1, 2);	/* PDPTE */
4195 		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4196 			rsvd_bits(maxphyaddr, 62);	/* PDE */
4197 		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4198 			rsvd_bits(maxphyaddr, 62); 	/* PTE */
4199 		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4200 			rsvd_bits(maxphyaddr, 62) |
4201 			rsvd_bits(13, 20);		/* large page */
4202 		rsvd_check->rsvd_bits_mask[1][0] =
4203 			rsvd_check->rsvd_bits_mask[0][0];
4204 		break;
4205 	case PT64_ROOT_5LEVEL:
4206 		rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4207 			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4208 			rsvd_bits(maxphyaddr, 51);
4209 		rsvd_check->rsvd_bits_mask[1][4] =
4210 			rsvd_check->rsvd_bits_mask[0][4];
4211 	case PT64_ROOT_4LEVEL:
4212 		rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4213 			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4214 			rsvd_bits(maxphyaddr, 51);
4215 		rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4216 			nonleaf_bit8_rsvd | gbpages_bit_rsvd |
4217 			rsvd_bits(maxphyaddr, 51);
4218 		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4219 			rsvd_bits(maxphyaddr, 51);
4220 		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4221 			rsvd_bits(maxphyaddr, 51);
4222 		rsvd_check->rsvd_bits_mask[1][3] =
4223 			rsvd_check->rsvd_bits_mask[0][3];
4224 		rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4225 			gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4226 			rsvd_bits(13, 29);
4227 		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4228 			rsvd_bits(maxphyaddr, 51) |
4229 			rsvd_bits(13, 20);		/* large page */
4230 		rsvd_check->rsvd_bits_mask[1][0] =
4231 			rsvd_check->rsvd_bits_mask[0][0];
4232 		break;
4233 	}
4234 }
4235 
reset_rsvds_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context)4236 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4237 				  struct kvm_mmu *context)
4238 {
4239 	__reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4240 				cpuid_maxphyaddr(vcpu), context->root_level,
4241 				context->nx,
4242 				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4243 				is_pse(vcpu), guest_cpuid_is_amd(vcpu));
4244 }
4245 
4246 static void
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate * rsvd_check,int maxphyaddr,bool execonly)4247 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4248 			    int maxphyaddr, bool execonly)
4249 {
4250 	u64 bad_mt_xwr;
4251 
4252 	rsvd_check->rsvd_bits_mask[0][4] =
4253 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4254 	rsvd_check->rsvd_bits_mask[0][3] =
4255 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4256 	rsvd_check->rsvd_bits_mask[0][2] =
4257 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4258 	rsvd_check->rsvd_bits_mask[0][1] =
4259 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4260 	rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4261 
4262 	/* large page */
4263 	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4264 	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4265 	rsvd_check->rsvd_bits_mask[1][2] =
4266 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4267 	rsvd_check->rsvd_bits_mask[1][1] =
4268 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4269 	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4270 
4271 	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
4272 	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
4273 	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
4274 	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
4275 	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
4276 	if (!execonly) {
4277 		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
4278 		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4279 	}
4280 	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4281 }
4282 
reset_rsvds_bits_mask_ept(struct kvm_vcpu * vcpu,struct kvm_mmu * context,bool execonly)4283 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4284 		struct kvm_mmu *context, bool execonly)
4285 {
4286 	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4287 				    cpuid_maxphyaddr(vcpu), execonly);
4288 }
4289 
4290 /*
4291  * the page table on host is the shadow page table for the page
4292  * table in guest or amd nested guest, its mmu features completely
4293  * follow the features in guest.
4294  */
4295 void
reset_shadow_zero_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context)4296 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4297 {
4298 	bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
4299 	struct rsvd_bits_validate *shadow_zero_check;
4300 	int i;
4301 
4302 	/*
4303 	 * Passing "true" to the last argument is okay; it adds a check
4304 	 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4305 	 */
4306 	shadow_zero_check = &context->shadow_zero_check;
4307 	__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4308 				boot_cpu_data.x86_phys_bits,
4309 				context->shadow_root_level, uses_nx,
4310 				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4311 				is_pse(vcpu), true);
4312 
4313 	if (!shadow_me_mask)
4314 		return;
4315 
4316 	for (i = context->shadow_root_level; --i >= 0;) {
4317 		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4318 		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4319 	}
4320 
4321 }
4322 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4323 
boot_cpu_is_amd(void)4324 static inline bool boot_cpu_is_amd(void)
4325 {
4326 	WARN_ON_ONCE(!tdp_enabled);
4327 	return shadow_x_mask == 0;
4328 }
4329 
4330 /*
4331  * the direct page table on host, use as much mmu features as
4332  * possible, however, kvm currently does not do execution-protection.
4333  */
4334 static void
reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context)4335 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4336 				struct kvm_mmu *context)
4337 {
4338 	struct rsvd_bits_validate *shadow_zero_check;
4339 	int i;
4340 
4341 	shadow_zero_check = &context->shadow_zero_check;
4342 
4343 	if (boot_cpu_is_amd())
4344 		__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4345 					boot_cpu_data.x86_phys_bits,
4346 					context->shadow_root_level, false,
4347 					boot_cpu_has(X86_FEATURE_GBPAGES),
4348 					true, true);
4349 	else
4350 		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4351 					    boot_cpu_data.x86_phys_bits,
4352 					    false);
4353 
4354 	if (!shadow_me_mask)
4355 		return;
4356 
4357 	for (i = context->shadow_root_level; --i >= 0;) {
4358 		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4359 		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4360 	}
4361 }
4362 
4363 /*
4364  * as the comments in reset_shadow_zero_bits_mask() except it
4365  * is the shadow page table for intel nested guest.
4366  */
4367 static void
reset_ept_shadow_zero_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context,bool execonly)4368 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4369 				struct kvm_mmu *context, bool execonly)
4370 {
4371 	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4372 				    boot_cpu_data.x86_phys_bits, execonly);
4373 }
4374 
4375 #define BYTE_MASK(access) \
4376 	((1 & (access) ? 2 : 0) | \
4377 	 (2 & (access) ? 4 : 0) | \
4378 	 (3 & (access) ? 8 : 0) | \
4379 	 (4 & (access) ? 16 : 0) | \
4380 	 (5 & (access) ? 32 : 0) | \
4381 	 (6 & (access) ? 64 : 0) | \
4382 	 (7 & (access) ? 128 : 0))
4383 
4384 
update_permission_bitmask(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,bool ept)4385 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4386 				      struct kvm_mmu *mmu, bool ept)
4387 {
4388 	unsigned byte;
4389 
4390 	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4391 	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4392 	const u8 u = BYTE_MASK(ACC_USER_MASK);
4393 
4394 	bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4395 	bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4396 	bool cr0_wp = is_write_protection(vcpu);
4397 
4398 	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4399 		unsigned pfec = byte << 1;
4400 
4401 		/*
4402 		 * Each "*f" variable has a 1 bit for each UWX value
4403 		 * that causes a fault with the given PFEC.
4404 		 */
4405 
4406 		/* Faults from writes to non-writable pages */
4407 		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4408 		/* Faults from user mode accesses to supervisor pages */
4409 		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4410 		/* Faults from fetches of non-executable pages*/
4411 		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4412 		/* Faults from kernel mode fetches of user pages */
4413 		u8 smepf = 0;
4414 		/* Faults from kernel mode accesses of user pages */
4415 		u8 smapf = 0;
4416 
4417 		if (!ept) {
4418 			/* Faults from kernel mode accesses to user pages */
4419 			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4420 
4421 			/* Not really needed: !nx will cause pte.nx to fault */
4422 			if (!mmu->nx)
4423 				ff = 0;
4424 
4425 			/* Allow supervisor writes if !cr0.wp */
4426 			if (!cr0_wp)
4427 				wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4428 
4429 			/* Disallow supervisor fetches of user code if cr4.smep */
4430 			if (cr4_smep)
4431 				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4432 
4433 			/*
4434 			 * SMAP:kernel-mode data accesses from user-mode
4435 			 * mappings should fault. A fault is considered
4436 			 * as a SMAP violation if all of the following
4437 			 * conditions are ture:
4438 			 *   - X86_CR4_SMAP is set in CR4
4439 			 *   - A user page is accessed
4440 			 *   - The access is not a fetch
4441 			 *   - Page fault in kernel mode
4442 			 *   - if CPL = 3 or X86_EFLAGS_AC is clear
4443 			 *
4444 			 * Here, we cover the first three conditions.
4445 			 * The fourth is computed dynamically in permission_fault();
4446 			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4447 			 * *not* subject to SMAP restrictions.
4448 			 */
4449 			if (cr4_smap)
4450 				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4451 		}
4452 
4453 		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4454 	}
4455 }
4456 
4457 /*
4458 * PKU is an additional mechanism by which the paging controls access to
4459 * user-mode addresses based on the value in the PKRU register.  Protection
4460 * key violations are reported through a bit in the page fault error code.
4461 * Unlike other bits of the error code, the PK bit is not known at the
4462 * call site of e.g. gva_to_gpa; it must be computed directly in
4463 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4464 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4465 *
4466 * In particular the following conditions come from the error code, the
4467 * page tables and the machine state:
4468 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4469 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4470 * - PK is always zero if U=0 in the page tables
4471 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4472 *
4473 * The PKRU bitmask caches the result of these four conditions.  The error
4474 * code (minus the P bit) and the page table's U bit form an index into the
4475 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4476 * with the two bits of the PKRU register corresponding to the protection key.
4477 * For the first three conditions above the bits will be 00, thus masking
4478 * away both AD and WD.  For all reads or if the last condition holds, WD
4479 * only will be masked away.
4480 */
update_pkru_bitmask(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,bool ept)4481 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4482 				bool ept)
4483 {
4484 	unsigned bit;
4485 	bool wp;
4486 
4487 	if (ept) {
4488 		mmu->pkru_mask = 0;
4489 		return;
4490 	}
4491 
4492 	/* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4493 	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4494 		mmu->pkru_mask = 0;
4495 		return;
4496 	}
4497 
4498 	wp = is_write_protection(vcpu);
4499 
4500 	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4501 		unsigned pfec, pkey_bits;
4502 		bool check_pkey, check_write, ff, uf, wf, pte_user;
4503 
4504 		pfec = bit << 1;
4505 		ff = pfec & PFERR_FETCH_MASK;
4506 		uf = pfec & PFERR_USER_MASK;
4507 		wf = pfec & PFERR_WRITE_MASK;
4508 
4509 		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
4510 		pte_user = pfec & PFERR_RSVD_MASK;
4511 
4512 		/*
4513 		 * Only need to check the access which is not an
4514 		 * instruction fetch and is to a user page.
4515 		 */
4516 		check_pkey = (!ff && pte_user);
4517 		/*
4518 		 * write access is controlled by PKRU if it is a
4519 		 * user access or CR0.WP = 1.
4520 		 */
4521 		check_write = check_pkey && wf && (uf || wp);
4522 
4523 		/* PKRU.AD stops both read and write access. */
4524 		pkey_bits = !!check_pkey;
4525 		/* PKRU.WD stops write access. */
4526 		pkey_bits |= (!!check_write) << 1;
4527 
4528 		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4529 	}
4530 }
4531 
update_last_nonleaf_level(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu)4532 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4533 {
4534 	unsigned root_level = mmu->root_level;
4535 
4536 	mmu->last_nonleaf_level = root_level;
4537 	if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4538 		mmu->last_nonleaf_level++;
4539 }
4540 
paging64_init_context_common(struct kvm_vcpu * vcpu,struct kvm_mmu * context,int level)4541 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4542 					 struct kvm_mmu *context,
4543 					 int level)
4544 {
4545 	context->nx = is_nx(vcpu);
4546 	context->root_level = level;
4547 
4548 	reset_rsvds_bits_mask(vcpu, context);
4549 	update_permission_bitmask(vcpu, context, false);
4550 	update_pkru_bitmask(vcpu, context, false);
4551 	update_last_nonleaf_level(vcpu, context);
4552 
4553 	MMU_WARN_ON(!is_pae(vcpu));
4554 	context->page_fault = paging64_page_fault;
4555 	context->gva_to_gpa = paging64_gva_to_gpa;
4556 	context->sync_page = paging64_sync_page;
4557 	context->invlpg = paging64_invlpg;
4558 	context->update_pte = paging64_update_pte;
4559 	context->shadow_root_level = level;
4560 	context->root_hpa = INVALID_PAGE;
4561 	context->direct_map = false;
4562 }
4563 
paging64_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context)4564 static void paging64_init_context(struct kvm_vcpu *vcpu,
4565 				  struct kvm_mmu *context)
4566 {
4567 	int root_level = is_la57_mode(vcpu) ?
4568 			 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4569 
4570 	paging64_init_context_common(vcpu, context, root_level);
4571 }
4572 
paging32_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context)4573 static void paging32_init_context(struct kvm_vcpu *vcpu,
4574 				  struct kvm_mmu *context)
4575 {
4576 	context->nx = false;
4577 	context->root_level = PT32_ROOT_LEVEL;
4578 
4579 	reset_rsvds_bits_mask(vcpu, context);
4580 	update_permission_bitmask(vcpu, context, false);
4581 	update_pkru_bitmask(vcpu, context, false);
4582 	update_last_nonleaf_level(vcpu, context);
4583 
4584 	context->page_fault = paging32_page_fault;
4585 	context->gva_to_gpa = paging32_gva_to_gpa;
4586 	context->sync_page = paging32_sync_page;
4587 	context->invlpg = paging32_invlpg;
4588 	context->update_pte = paging32_update_pte;
4589 	context->shadow_root_level = PT32E_ROOT_LEVEL;
4590 	context->root_hpa = INVALID_PAGE;
4591 	context->direct_map = false;
4592 }
4593 
paging32E_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context)4594 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4595 				   struct kvm_mmu *context)
4596 {
4597 	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4598 }
4599 
init_kvm_tdp_mmu(struct kvm_vcpu * vcpu)4600 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4601 {
4602 	struct kvm_mmu *context = &vcpu->arch.mmu;
4603 
4604 	context->base_role.word = 0;
4605 	context->base_role.smm = is_smm(vcpu);
4606 	context->base_role.ad_disabled = (shadow_accessed_mask == 0);
4607 	context->page_fault = tdp_page_fault;
4608 	context->sync_page = nonpaging_sync_page;
4609 	context->invlpg = nonpaging_invlpg;
4610 	context->update_pte = nonpaging_update_pte;
4611 	context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu);
4612 	context->root_hpa = INVALID_PAGE;
4613 	context->direct_map = true;
4614 	context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
4615 	context->get_cr3 = get_cr3;
4616 	context->get_pdptr = kvm_pdptr_read;
4617 	context->inject_page_fault = kvm_inject_page_fault;
4618 
4619 	if (!is_paging(vcpu)) {
4620 		context->nx = false;
4621 		context->gva_to_gpa = nonpaging_gva_to_gpa;
4622 		context->root_level = 0;
4623 	} else if (is_long_mode(vcpu)) {
4624 		context->nx = is_nx(vcpu);
4625 		context->root_level = is_la57_mode(vcpu) ?
4626 				PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4627 		reset_rsvds_bits_mask(vcpu, context);
4628 		context->gva_to_gpa = paging64_gva_to_gpa;
4629 	} else if (is_pae(vcpu)) {
4630 		context->nx = is_nx(vcpu);
4631 		context->root_level = PT32E_ROOT_LEVEL;
4632 		reset_rsvds_bits_mask(vcpu, context);
4633 		context->gva_to_gpa = paging64_gva_to_gpa;
4634 	} else {
4635 		context->nx = false;
4636 		context->root_level = PT32_ROOT_LEVEL;
4637 		reset_rsvds_bits_mask(vcpu, context);
4638 		context->gva_to_gpa = paging32_gva_to_gpa;
4639 	}
4640 
4641 	update_permission_bitmask(vcpu, context, false);
4642 	update_pkru_bitmask(vcpu, context, false);
4643 	update_last_nonleaf_level(vcpu, context);
4644 	reset_tdp_shadow_zero_bits_mask(vcpu, context);
4645 }
4646 
kvm_init_shadow_mmu(struct kvm_vcpu * vcpu)4647 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4648 {
4649 	bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4650 	bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4651 	struct kvm_mmu *context = &vcpu->arch.mmu;
4652 
4653 	MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4654 
4655 	if (!is_paging(vcpu))
4656 		nonpaging_init_context(vcpu, context);
4657 	else if (is_long_mode(vcpu))
4658 		paging64_init_context(vcpu, context);
4659 	else if (is_pae(vcpu))
4660 		paging32E_init_context(vcpu, context);
4661 	else
4662 		paging32_init_context(vcpu, context);
4663 
4664 	context->base_role.nxe = is_nx(vcpu);
4665 	context->base_role.cr4_pae = !!is_pae(vcpu);
4666 	context->base_role.cr0_wp  = is_write_protection(vcpu);
4667 	context->base_role.smep_andnot_wp
4668 		= smep && !is_write_protection(vcpu);
4669 	context->base_role.smap_andnot_wp
4670 		= smap && !is_write_protection(vcpu);
4671 	context->base_role.smm = is_smm(vcpu);
4672 	reset_shadow_zero_bits_mask(vcpu, context);
4673 }
4674 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4675 
kvm_init_shadow_ept_mmu(struct kvm_vcpu * vcpu,bool execonly,bool accessed_dirty)4676 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4677 			     bool accessed_dirty)
4678 {
4679 	struct kvm_mmu *context = &vcpu->arch.mmu;
4680 
4681 	MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4682 
4683 	context->shadow_root_level = PT64_ROOT_4LEVEL;
4684 
4685 	context->nx = true;
4686 	context->ept_ad = accessed_dirty;
4687 	context->page_fault = ept_page_fault;
4688 	context->gva_to_gpa = ept_gva_to_gpa;
4689 	context->sync_page = ept_sync_page;
4690 	context->invlpg = ept_invlpg;
4691 	context->update_pte = ept_update_pte;
4692 	context->root_level = PT64_ROOT_4LEVEL;
4693 	context->root_hpa = INVALID_PAGE;
4694 	context->direct_map = false;
4695 	context->base_role.ad_disabled = !accessed_dirty;
4696 
4697 	update_permission_bitmask(vcpu, context, true);
4698 	update_pkru_bitmask(vcpu, context, true);
4699 	update_last_nonleaf_level(vcpu, context);
4700 	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4701 	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4702 }
4703 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4704 
init_kvm_softmmu(struct kvm_vcpu * vcpu)4705 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4706 {
4707 	struct kvm_mmu *context = &vcpu->arch.mmu;
4708 
4709 	kvm_init_shadow_mmu(vcpu);
4710 	context->set_cr3           = kvm_x86_ops->set_cr3;
4711 	context->get_cr3           = get_cr3;
4712 	context->get_pdptr         = kvm_pdptr_read;
4713 	context->inject_page_fault = kvm_inject_page_fault;
4714 }
4715 
init_kvm_nested_mmu(struct kvm_vcpu * vcpu)4716 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4717 {
4718 	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4719 
4720 	g_context->get_cr3           = get_cr3;
4721 	g_context->get_pdptr         = kvm_pdptr_read;
4722 	g_context->inject_page_fault = kvm_inject_page_fault;
4723 
4724 	/*
4725 	 * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
4726 	 * L1's nested page tables (e.g. EPT12). The nested translation
4727 	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4728 	 * L2's page tables as the first level of translation and L1's
4729 	 * nested page tables as the second level of translation. Basically
4730 	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4731 	 */
4732 	if (!is_paging(vcpu)) {
4733 		g_context->nx = false;
4734 		g_context->root_level = 0;
4735 		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4736 	} else if (is_long_mode(vcpu)) {
4737 		g_context->nx = is_nx(vcpu);
4738 		g_context->root_level = is_la57_mode(vcpu) ?
4739 					PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4740 		reset_rsvds_bits_mask(vcpu, g_context);
4741 		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4742 	} else if (is_pae(vcpu)) {
4743 		g_context->nx = is_nx(vcpu);
4744 		g_context->root_level = PT32E_ROOT_LEVEL;
4745 		reset_rsvds_bits_mask(vcpu, g_context);
4746 		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4747 	} else {
4748 		g_context->nx = false;
4749 		g_context->root_level = PT32_ROOT_LEVEL;
4750 		reset_rsvds_bits_mask(vcpu, g_context);
4751 		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4752 	}
4753 
4754 	update_permission_bitmask(vcpu, g_context, false);
4755 	update_pkru_bitmask(vcpu, g_context, false);
4756 	update_last_nonleaf_level(vcpu, g_context);
4757 }
4758 
init_kvm_mmu(struct kvm_vcpu * vcpu)4759 static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4760 {
4761 	if (mmu_is_nested(vcpu))
4762 		init_kvm_nested_mmu(vcpu);
4763 	else if (tdp_enabled)
4764 		init_kvm_tdp_mmu(vcpu);
4765 	else
4766 		init_kvm_softmmu(vcpu);
4767 }
4768 
kvm_mmu_reset_context(struct kvm_vcpu * vcpu)4769 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4770 {
4771 	kvm_mmu_unload(vcpu);
4772 	init_kvm_mmu(vcpu);
4773 }
4774 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4775 
kvm_mmu_load(struct kvm_vcpu * vcpu)4776 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4777 {
4778 	int r;
4779 
4780 	r = mmu_topup_memory_caches(vcpu);
4781 	if (r)
4782 		goto out;
4783 	r = mmu_alloc_roots(vcpu);
4784 	kvm_mmu_sync_roots(vcpu);
4785 	if (r)
4786 		goto out;
4787 	/* set_cr3() should ensure TLB has been flushed */
4788 	vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4789 out:
4790 	return r;
4791 }
4792 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4793 
kvm_mmu_unload(struct kvm_vcpu * vcpu)4794 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4795 {
4796 	mmu_free_roots(vcpu);
4797 	WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4798 }
4799 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4800 
mmu_pte_write_new_pte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * spte,const void * new)4801 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4802 				  struct kvm_mmu_page *sp, u64 *spte,
4803 				  const void *new)
4804 {
4805 	if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4806 		++vcpu->kvm->stat.mmu_pde_zapped;
4807 		return;
4808         }
4809 
4810 	++vcpu->kvm->stat.mmu_pte_updated;
4811 	vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4812 }
4813 
need_remote_flush(u64 old,u64 new)4814 static bool need_remote_flush(u64 old, u64 new)
4815 {
4816 	if (!is_shadow_present_pte(old))
4817 		return false;
4818 	if (!is_shadow_present_pte(new))
4819 		return true;
4820 	if ((old ^ new) & PT64_BASE_ADDR_MASK)
4821 		return true;
4822 	old ^= shadow_nx_mask;
4823 	new ^= shadow_nx_mask;
4824 	return (old & ~new & PT64_PERM_MASK) != 0;
4825 }
4826 
mmu_pte_write_fetch_gpte(struct kvm_vcpu * vcpu,gpa_t * gpa,int * bytes)4827 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4828 				    int *bytes)
4829 {
4830 	u64 gentry = 0;
4831 	int r;
4832 
4833 	/*
4834 	 * Assume that the pte write on a page table of the same type
4835 	 * as the current vcpu paging mode since we update the sptes only
4836 	 * when they have the same mode.
4837 	 */
4838 	if (is_pae(vcpu) && *bytes == 4) {
4839 		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4840 		*gpa &= ~(gpa_t)7;
4841 		*bytes = 8;
4842 	}
4843 
4844 	if (*bytes == 4 || *bytes == 8) {
4845 		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
4846 		if (r)
4847 			gentry = 0;
4848 	}
4849 
4850 	return gentry;
4851 }
4852 
4853 /*
4854  * If we're seeing too many writes to a page, it may no longer be a page table,
4855  * or we may be forking, in which case it is better to unmap the page.
4856  */
detect_write_flooding(struct kvm_mmu_page * sp)4857 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4858 {
4859 	/*
4860 	 * Skip write-flooding detected for the sp whose level is 1, because
4861 	 * it can become unsync, then the guest page is not write-protected.
4862 	 */
4863 	if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4864 		return false;
4865 
4866 	atomic_inc(&sp->write_flooding_count);
4867 	return atomic_read(&sp->write_flooding_count) >= 3;
4868 }
4869 
4870 /*
4871  * Misaligned accesses are too much trouble to fix up; also, they usually
4872  * indicate a page is not used as a page table.
4873  */
detect_write_misaligned(struct kvm_mmu_page * sp,gpa_t gpa,int bytes)4874 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4875 				    int bytes)
4876 {
4877 	unsigned offset, pte_size, misaligned;
4878 
4879 	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4880 		 gpa, bytes, sp->role.word);
4881 
4882 	offset = offset_in_page(gpa);
4883 	pte_size = sp->role.cr4_pae ? 8 : 4;
4884 
4885 	/*
4886 	 * Sometimes, the OS only writes the last one bytes to update status
4887 	 * bits, for example, in linux, andb instruction is used in clear_bit().
4888 	 */
4889 	if (!(offset & (pte_size - 1)) && bytes == 1)
4890 		return false;
4891 
4892 	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4893 	misaligned |= bytes < 4;
4894 
4895 	return misaligned;
4896 }
4897 
get_written_sptes(struct kvm_mmu_page * sp,gpa_t gpa,int * nspte)4898 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4899 {
4900 	unsigned page_offset, quadrant;
4901 	u64 *spte;
4902 	int level;
4903 
4904 	page_offset = offset_in_page(gpa);
4905 	level = sp->role.level;
4906 	*nspte = 1;
4907 	if (!sp->role.cr4_pae) {
4908 		page_offset <<= 1;	/* 32->64 */
4909 		/*
4910 		 * A 32-bit pde maps 4MB while the shadow pdes map
4911 		 * only 2MB.  So we need to double the offset again
4912 		 * and zap two pdes instead of one.
4913 		 */
4914 		if (level == PT32_ROOT_LEVEL) {
4915 			page_offset &= ~7; /* kill rounding error */
4916 			page_offset <<= 1;
4917 			*nspte = 2;
4918 		}
4919 		quadrant = page_offset >> PAGE_SHIFT;
4920 		page_offset &= ~PAGE_MASK;
4921 		if (quadrant != sp->role.quadrant)
4922 			return NULL;
4923 	}
4924 
4925 	spte = &sp->spt[page_offset / sizeof(*spte)];
4926 	return spte;
4927 }
4928 
kvm_mmu_pte_write(struct kvm_vcpu * vcpu,gpa_t gpa,const u8 * new,int bytes,struct kvm_page_track_notifier_node * node)4929 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4930 			      const u8 *new, int bytes,
4931 			      struct kvm_page_track_notifier_node *node)
4932 {
4933 	gfn_t gfn = gpa >> PAGE_SHIFT;
4934 	struct kvm_mmu_page *sp;
4935 	LIST_HEAD(invalid_list);
4936 	u64 entry, gentry, *spte;
4937 	int npte;
4938 	bool remote_flush, local_flush;
4939 	union kvm_mmu_page_role mask = { };
4940 
4941 	mask.cr0_wp = 1;
4942 	mask.cr4_pae = 1;
4943 	mask.nxe = 1;
4944 	mask.smep_andnot_wp = 1;
4945 	mask.smap_andnot_wp = 1;
4946 	mask.smm = 1;
4947 	mask.ad_disabled = 1;
4948 
4949 	/*
4950 	 * If we don't have indirect shadow pages, it means no page is
4951 	 * write-protected, so we can exit simply.
4952 	 */
4953 	if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4954 		return;
4955 
4956 	remote_flush = local_flush = false;
4957 
4958 	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4959 
4960 	/*
4961 	 * No need to care whether allocation memory is successful
4962 	 * or not since pte prefetch is skiped if it does not have
4963 	 * enough objects in the cache.
4964 	 */
4965 	mmu_topup_memory_caches(vcpu);
4966 
4967 	spin_lock(&vcpu->kvm->mmu_lock);
4968 
4969 	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
4970 
4971 	++vcpu->kvm->stat.mmu_pte_write;
4972 	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4973 
4974 	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4975 		if (detect_write_misaligned(sp, gpa, bytes) ||
4976 		      detect_write_flooding(sp)) {
4977 			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4978 			++vcpu->kvm->stat.mmu_flooded;
4979 			continue;
4980 		}
4981 
4982 		spte = get_written_sptes(sp, gpa, &npte);
4983 		if (!spte)
4984 			continue;
4985 
4986 		local_flush = true;
4987 		while (npte--) {
4988 			entry = *spte;
4989 			mmu_page_zap_pte(vcpu->kvm, sp, spte);
4990 			if (gentry &&
4991 			      !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4992 			      & mask.word) && rmap_can_add(vcpu))
4993 				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4994 			if (need_remote_flush(entry, *spte))
4995 				remote_flush = true;
4996 			++spte;
4997 		}
4998 	}
4999 	kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5000 	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5001 	spin_unlock(&vcpu->kvm->mmu_lock);
5002 }
5003 
kvm_mmu_unprotect_page_virt(struct kvm_vcpu * vcpu,gva_t gva)5004 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5005 {
5006 	gpa_t gpa;
5007 	int r;
5008 
5009 	if (vcpu->arch.mmu.direct_map)
5010 		return 0;
5011 
5012 	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5013 
5014 	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5015 
5016 	return r;
5017 }
5018 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5019 
make_mmu_pages_available(struct kvm_vcpu * vcpu)5020 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
5021 {
5022 	LIST_HEAD(invalid_list);
5023 
5024 	if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
5025 		return 0;
5026 
5027 	while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
5028 		if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
5029 			break;
5030 
5031 		++vcpu->kvm->stat.mmu_recycled;
5032 	}
5033 	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
5034 
5035 	if (!kvm_mmu_available_pages(vcpu->kvm))
5036 		return -ENOSPC;
5037 	return 0;
5038 }
5039 
kvm_mmu_page_fault(struct kvm_vcpu * vcpu,gva_t cr2,u64 error_code,void * insn,int insn_len)5040 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
5041 		       void *insn, int insn_len)
5042 {
5043 	int r, emulation_type = EMULTYPE_RETRY;
5044 	enum emulation_result er;
5045 	bool direct = vcpu->arch.mmu.direct_map;
5046 
5047 	/* With shadow page tables, fault_address contains a GVA or nGPA.  */
5048 	if (vcpu->arch.mmu.direct_map) {
5049 		vcpu->arch.gpa_available = true;
5050 		vcpu->arch.gpa_val = cr2;
5051 	}
5052 
5053 	r = RET_PF_INVALID;
5054 	if (unlikely(error_code & PFERR_RSVD_MASK)) {
5055 		r = handle_mmio_page_fault(vcpu, cr2, direct);
5056 		if (r == RET_PF_EMULATE) {
5057 			emulation_type = 0;
5058 			goto emulate;
5059 		}
5060 	}
5061 
5062 	if (r == RET_PF_INVALID) {
5063 		r = vcpu->arch.mmu.page_fault(vcpu, cr2, lower_32_bits(error_code),
5064 					      false);
5065 		WARN_ON(r == RET_PF_INVALID);
5066 	}
5067 
5068 	if (r == RET_PF_RETRY)
5069 		return 1;
5070 	if (r < 0)
5071 		return r;
5072 
5073 	/*
5074 	 * Before emulating the instruction, check if the error code
5075 	 * was due to a RO violation while translating the guest page.
5076 	 * This can occur when using nested virtualization with nested
5077 	 * paging in both guests. If true, we simply unprotect the page
5078 	 * and resume the guest.
5079 	 */
5080 	if (vcpu->arch.mmu.direct_map &&
5081 	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5082 		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
5083 		return 1;
5084 	}
5085 
5086 	if (mmio_info_in_cache(vcpu, cr2, direct))
5087 		emulation_type = 0;
5088 emulate:
5089 	er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
5090 
5091 	switch (er) {
5092 	case EMULATE_DONE:
5093 		return 1;
5094 	case EMULATE_USER_EXIT:
5095 		++vcpu->stat.mmio_exits;
5096 		/* fall through */
5097 	case EMULATE_FAIL:
5098 		return 0;
5099 	default:
5100 		BUG();
5101 	}
5102 }
5103 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5104 
kvm_mmu_invlpg(struct kvm_vcpu * vcpu,gva_t gva)5105 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5106 {
5107 	vcpu->arch.mmu.invlpg(vcpu, gva);
5108 	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
5109 	++vcpu->stat.invlpg;
5110 }
5111 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5112 
kvm_enable_tdp(void)5113 void kvm_enable_tdp(void)
5114 {
5115 	tdp_enabled = true;
5116 }
5117 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
5118 
kvm_disable_tdp(void)5119 void kvm_disable_tdp(void)
5120 {
5121 	tdp_enabled = false;
5122 }
5123 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
5124 
free_mmu_pages(struct kvm_vcpu * vcpu)5125 static void free_mmu_pages(struct kvm_vcpu *vcpu)
5126 {
5127 	free_page((unsigned long)vcpu->arch.mmu.pae_root);
5128 	if (vcpu->arch.mmu.lm_root != NULL)
5129 		free_page((unsigned long)vcpu->arch.mmu.lm_root);
5130 }
5131 
alloc_mmu_pages(struct kvm_vcpu * vcpu)5132 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
5133 {
5134 	struct page *page;
5135 	int i;
5136 
5137 	/*
5138 	 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
5139 	 * Therefore we need to allocate shadow page tables in the first
5140 	 * 4GB of memory, which happens to fit the DMA32 zone.
5141 	 */
5142 	page = alloc_page(GFP_KERNEL | __GFP_DMA32);
5143 	if (!page)
5144 		return -ENOMEM;
5145 
5146 	vcpu->arch.mmu.pae_root = page_address(page);
5147 	for (i = 0; i < 4; ++i)
5148 		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
5149 
5150 	return 0;
5151 }
5152 
kvm_mmu_create(struct kvm_vcpu * vcpu)5153 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5154 {
5155 	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
5156 	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5157 	vcpu->arch.mmu.translate_gpa = translate_gpa;
5158 	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5159 
5160 	return alloc_mmu_pages(vcpu);
5161 }
5162 
kvm_mmu_setup(struct kvm_vcpu * vcpu)5163 void kvm_mmu_setup(struct kvm_vcpu *vcpu)
5164 {
5165 	MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
5166 
5167 	init_kvm_mmu(vcpu);
5168 }
5169 
kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm * kvm,struct kvm_memory_slot * slot,struct kvm_page_track_notifier_node * node)5170 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5171 			struct kvm_memory_slot *slot,
5172 			struct kvm_page_track_notifier_node *node)
5173 {
5174 	kvm_mmu_invalidate_zap_all_pages(kvm);
5175 }
5176 
kvm_mmu_init_vm(struct kvm * kvm)5177 void kvm_mmu_init_vm(struct kvm *kvm)
5178 {
5179 	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5180 
5181 	node->track_write = kvm_mmu_pte_write;
5182 	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5183 	kvm_page_track_register_notifier(kvm, node);
5184 }
5185 
kvm_mmu_uninit_vm(struct kvm * kvm)5186 void kvm_mmu_uninit_vm(struct kvm *kvm)
5187 {
5188 	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5189 
5190 	kvm_page_track_unregister_notifier(kvm, node);
5191 }
5192 
5193 /* The return value indicates if tlb flush on all vcpus is needed. */
5194 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5195 
5196 /* The caller should hold mmu-lock before calling this function. */
5197 static __always_inline bool
slot_handle_level_range(struct kvm * kvm,struct kvm_memory_slot * memslot,slot_level_handler fn,int start_level,int end_level,gfn_t start_gfn,gfn_t end_gfn,bool lock_flush_tlb)5198 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5199 			slot_level_handler fn, int start_level, int end_level,
5200 			gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5201 {
5202 	struct slot_rmap_walk_iterator iterator;
5203 	bool flush = false;
5204 
5205 	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5206 			end_gfn, &iterator) {
5207 		if (iterator.rmap)
5208 			flush |= fn(kvm, iterator.rmap);
5209 
5210 		if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5211 			if (flush && lock_flush_tlb) {
5212 				kvm_flush_remote_tlbs(kvm);
5213 				flush = false;
5214 			}
5215 			cond_resched_lock(&kvm->mmu_lock);
5216 		}
5217 	}
5218 
5219 	if (flush && lock_flush_tlb) {
5220 		kvm_flush_remote_tlbs(kvm);
5221 		flush = false;
5222 	}
5223 
5224 	return flush;
5225 }
5226 
5227 static __always_inline bool
slot_handle_level(struct kvm * kvm,struct kvm_memory_slot * memslot,slot_level_handler fn,int start_level,int end_level,bool lock_flush_tlb)5228 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5229 		  slot_level_handler fn, int start_level, int end_level,
5230 		  bool lock_flush_tlb)
5231 {
5232 	return slot_handle_level_range(kvm, memslot, fn, start_level,
5233 			end_level, memslot->base_gfn,
5234 			memslot->base_gfn + memslot->npages - 1,
5235 			lock_flush_tlb);
5236 }
5237 
5238 static __always_inline bool
slot_handle_all_level(struct kvm * kvm,struct kvm_memory_slot * memslot,slot_level_handler fn,bool lock_flush_tlb)5239 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5240 		      slot_level_handler fn, bool lock_flush_tlb)
5241 {
5242 	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5243 				 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5244 }
5245 
5246 static __always_inline bool
slot_handle_large_level(struct kvm * kvm,struct kvm_memory_slot * memslot,slot_level_handler fn,bool lock_flush_tlb)5247 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5248 			slot_level_handler fn, bool lock_flush_tlb)
5249 {
5250 	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
5251 				 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5252 }
5253 
5254 static __always_inline bool
slot_handle_leaf(struct kvm * kvm,struct kvm_memory_slot * memslot,slot_level_handler fn,bool lock_flush_tlb)5255 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5256 		 slot_level_handler fn, bool lock_flush_tlb)
5257 {
5258 	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5259 				 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
5260 }
5261 
kvm_zap_gfn_range(struct kvm * kvm,gfn_t gfn_start,gfn_t gfn_end)5262 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5263 {
5264 	struct kvm_memslots *slots;
5265 	struct kvm_memory_slot *memslot;
5266 	int i;
5267 
5268 	spin_lock(&kvm->mmu_lock);
5269 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5270 		slots = __kvm_memslots(kvm, i);
5271 		kvm_for_each_memslot(memslot, slots) {
5272 			gfn_t start, end;
5273 
5274 			start = max(gfn_start, memslot->base_gfn);
5275 			end = min(gfn_end, memslot->base_gfn + memslot->npages);
5276 			if (start >= end)
5277 				continue;
5278 
5279 			slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5280 						PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
5281 						start, end - 1, true);
5282 		}
5283 	}
5284 
5285 	spin_unlock(&kvm->mmu_lock);
5286 }
5287 
slot_rmap_write_protect(struct kvm * kvm,struct kvm_rmap_head * rmap_head)5288 static bool slot_rmap_write_protect(struct kvm *kvm,
5289 				    struct kvm_rmap_head *rmap_head)
5290 {
5291 	return __rmap_write_protect(kvm, rmap_head, false);
5292 }
5293 
kvm_mmu_slot_remove_write_access(struct kvm * kvm,struct kvm_memory_slot * memslot)5294 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5295 				      struct kvm_memory_slot *memslot)
5296 {
5297 	bool flush;
5298 
5299 	spin_lock(&kvm->mmu_lock);
5300 	flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
5301 				      false);
5302 	spin_unlock(&kvm->mmu_lock);
5303 
5304 	/*
5305 	 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
5306 	 * which do tlb flush out of mmu-lock should be serialized by
5307 	 * kvm->slots_lock otherwise tlb flush would be missed.
5308 	 */
5309 	lockdep_assert_held(&kvm->slots_lock);
5310 
5311 	/*
5312 	 * We can flush all the TLBs out of the mmu lock without TLB
5313 	 * corruption since we just change the spte from writable to
5314 	 * readonly so that we only need to care the case of changing
5315 	 * spte from present to present (changing the spte from present
5316 	 * to nonpresent will flush all the TLBs immediately), in other
5317 	 * words, the only case we care is mmu_spte_update() where we
5318 	 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5319 	 * instead of PT_WRITABLE_MASK, that means it does not depend
5320 	 * on PT_WRITABLE_MASK anymore.
5321 	 */
5322 	if (flush)
5323 		kvm_flush_remote_tlbs(kvm);
5324 }
5325 
kvm_mmu_zap_collapsible_spte(struct kvm * kvm,struct kvm_rmap_head * rmap_head)5326 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5327 					 struct kvm_rmap_head *rmap_head)
5328 {
5329 	u64 *sptep;
5330 	struct rmap_iterator iter;
5331 	int need_tlb_flush = 0;
5332 	kvm_pfn_t pfn;
5333 	struct kvm_mmu_page *sp;
5334 
5335 restart:
5336 	for_each_rmap_spte(rmap_head, &iter, sptep) {
5337 		sp = page_header(__pa(sptep));
5338 		pfn = spte_to_pfn(*sptep);
5339 
5340 		/*
5341 		 * We cannot do huge page mapping for indirect shadow pages,
5342 		 * which are found on the last rmap (level = 1) when not using
5343 		 * tdp; such shadow pages are synced with the page table in
5344 		 * the guest, and the guest page table is using 4K page size
5345 		 * mapping if the indirect sp has level = 1.
5346 		 */
5347 		if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5348 		    !kvm_is_zone_device_pfn(pfn) &&
5349 		    PageTransCompoundMap(pfn_to_page(pfn))) {
5350 			drop_spte(kvm, sptep);
5351 			need_tlb_flush = 1;
5352 			goto restart;
5353 		}
5354 	}
5355 
5356 	return need_tlb_flush;
5357 }
5358 
kvm_mmu_zap_collapsible_sptes(struct kvm * kvm,const struct kvm_memory_slot * memslot)5359 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5360 				   const struct kvm_memory_slot *memslot)
5361 {
5362 	/* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5363 	spin_lock(&kvm->mmu_lock);
5364 	slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5365 			 kvm_mmu_zap_collapsible_spte, true);
5366 	spin_unlock(&kvm->mmu_lock);
5367 }
5368 
kvm_mmu_slot_leaf_clear_dirty(struct kvm * kvm,struct kvm_memory_slot * memslot)5369 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5370 				   struct kvm_memory_slot *memslot)
5371 {
5372 	bool flush;
5373 
5374 	spin_lock(&kvm->mmu_lock);
5375 	flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5376 	spin_unlock(&kvm->mmu_lock);
5377 
5378 	lockdep_assert_held(&kvm->slots_lock);
5379 
5380 	/*
5381 	 * It's also safe to flush TLBs out of mmu lock here as currently this
5382 	 * function is only used for dirty logging, in which case flushing TLB
5383 	 * out of mmu lock also guarantees no dirty pages will be lost in
5384 	 * dirty_bitmap.
5385 	 */
5386 	if (flush)
5387 		kvm_flush_remote_tlbs(kvm);
5388 }
5389 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5390 
kvm_mmu_slot_largepage_remove_write_access(struct kvm * kvm,struct kvm_memory_slot * memslot)5391 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5392 					struct kvm_memory_slot *memslot)
5393 {
5394 	bool flush;
5395 
5396 	spin_lock(&kvm->mmu_lock);
5397 	flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5398 					false);
5399 	spin_unlock(&kvm->mmu_lock);
5400 
5401 	/* see kvm_mmu_slot_remove_write_access */
5402 	lockdep_assert_held(&kvm->slots_lock);
5403 
5404 	if (flush)
5405 		kvm_flush_remote_tlbs(kvm);
5406 }
5407 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5408 
kvm_mmu_slot_set_dirty(struct kvm * kvm,struct kvm_memory_slot * memslot)5409 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5410 			    struct kvm_memory_slot *memslot)
5411 {
5412 	bool flush;
5413 
5414 	spin_lock(&kvm->mmu_lock);
5415 	flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5416 	spin_unlock(&kvm->mmu_lock);
5417 
5418 	lockdep_assert_held(&kvm->slots_lock);
5419 
5420 	/* see kvm_mmu_slot_leaf_clear_dirty */
5421 	if (flush)
5422 		kvm_flush_remote_tlbs(kvm);
5423 }
5424 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5425 
5426 #define BATCH_ZAP_PAGES	10
kvm_zap_obsolete_pages(struct kvm * kvm)5427 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5428 {
5429 	struct kvm_mmu_page *sp, *node;
5430 	int batch = 0;
5431 
5432 restart:
5433 	list_for_each_entry_safe_reverse(sp, node,
5434 	      &kvm->arch.active_mmu_pages, link) {
5435 		int ret;
5436 
5437 		/*
5438 		 * No obsolete page exists before new created page since
5439 		 * active_mmu_pages is the FIFO list.
5440 		 */
5441 		if (!is_obsolete_sp(kvm, sp))
5442 			break;
5443 
5444 		/*
5445 		 * Since we are reversely walking the list and the invalid
5446 		 * list will be moved to the head, skip the invalid page
5447 		 * can help us to avoid the infinity list walking.
5448 		 */
5449 		if (sp->role.invalid)
5450 			continue;
5451 
5452 		/*
5453 		 * Need not flush tlb since we only zap the sp with invalid
5454 		 * generation number.
5455 		 */
5456 		if (batch >= BATCH_ZAP_PAGES &&
5457 		      cond_resched_lock(&kvm->mmu_lock)) {
5458 			batch = 0;
5459 			goto restart;
5460 		}
5461 
5462 		ret = kvm_mmu_prepare_zap_page(kvm, sp,
5463 				&kvm->arch.zapped_obsolete_pages);
5464 		batch += ret;
5465 
5466 		if (ret)
5467 			goto restart;
5468 	}
5469 
5470 	/*
5471 	 * Should flush tlb before free page tables since lockless-walking
5472 	 * may use the pages.
5473 	 */
5474 	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5475 }
5476 
5477 /*
5478  * Fast invalidate all shadow pages and use lock-break technique
5479  * to zap obsolete pages.
5480  *
5481  * It's required when memslot is being deleted or VM is being
5482  * destroyed, in these cases, we should ensure that KVM MMU does
5483  * not use any resource of the being-deleted slot or all slots
5484  * after calling the function.
5485  */
kvm_mmu_invalidate_zap_all_pages(struct kvm * kvm)5486 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
5487 {
5488 	spin_lock(&kvm->mmu_lock);
5489 	trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5490 	kvm->arch.mmu_valid_gen++;
5491 
5492 	/*
5493 	 * Notify all vcpus to reload its shadow page table
5494 	 * and flush TLB. Then all vcpus will switch to new
5495 	 * shadow page table with the new mmu_valid_gen.
5496 	 *
5497 	 * Note: we should do this under the protection of
5498 	 * mmu-lock, otherwise, vcpu would purge shadow page
5499 	 * but miss tlb flush.
5500 	 */
5501 	kvm_reload_remote_mmus(kvm);
5502 
5503 	kvm_zap_obsolete_pages(kvm);
5504 	spin_unlock(&kvm->mmu_lock);
5505 }
5506 
kvm_has_zapped_obsolete_pages(struct kvm * kvm)5507 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5508 {
5509 	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5510 }
5511 
kvm_mmu_invalidate_mmio_sptes(struct kvm * kvm,u64 gen)5512 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5513 {
5514 	gen &= MMIO_GEN_MASK;
5515 
5516 	/*
5517 	 * Shift to eliminate the "update in-progress" flag, which isn't
5518 	 * included in the spte's generation number.
5519 	 */
5520 	gen >>= 1;
5521 
5522 	/*
5523 	 * Generation numbers are incremented in multiples of the number of
5524 	 * address spaces in order to provide unique generations across all
5525 	 * address spaces.  Strip what is effectively the address space
5526 	 * modifier prior to checking for a wrap of the MMIO generation so
5527 	 * that a wrap in any address space is detected.
5528 	 */
5529 	gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5530 
5531 	/*
5532 	 * The very rare case: if the MMIO generation number has wrapped,
5533 	 * zap all shadow pages.
5534 	 */
5535 	if (unlikely(gen == 0)) {
5536 		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5537 		kvm_mmu_invalidate_zap_all_pages(kvm);
5538 	}
5539 }
5540 
5541 static unsigned long
mmu_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)5542 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5543 {
5544 	struct kvm *kvm;
5545 	int nr_to_scan = sc->nr_to_scan;
5546 	unsigned long freed = 0;
5547 
5548 	mutex_lock(&kvm_lock);
5549 
5550 	list_for_each_entry(kvm, &vm_list, vm_list) {
5551 		int idx;
5552 		LIST_HEAD(invalid_list);
5553 
5554 		/*
5555 		 * Never scan more than sc->nr_to_scan VM instances.
5556 		 * Will not hit this condition practically since we do not try
5557 		 * to shrink more than one VM and it is very unlikely to see
5558 		 * !n_used_mmu_pages so many times.
5559 		 */
5560 		if (!nr_to_scan--)
5561 			break;
5562 		/*
5563 		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5564 		 * here. We may skip a VM instance errorneosly, but we do not
5565 		 * want to shrink a VM that only started to populate its MMU
5566 		 * anyway.
5567 		 */
5568 		if (!kvm->arch.n_used_mmu_pages &&
5569 		      !kvm_has_zapped_obsolete_pages(kvm))
5570 			continue;
5571 
5572 		idx = srcu_read_lock(&kvm->srcu);
5573 		spin_lock(&kvm->mmu_lock);
5574 
5575 		if (kvm_has_zapped_obsolete_pages(kvm)) {
5576 			kvm_mmu_commit_zap_page(kvm,
5577 			      &kvm->arch.zapped_obsolete_pages);
5578 			goto unlock;
5579 		}
5580 
5581 		if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
5582 			freed++;
5583 		kvm_mmu_commit_zap_page(kvm, &invalid_list);
5584 
5585 unlock:
5586 		spin_unlock(&kvm->mmu_lock);
5587 		srcu_read_unlock(&kvm->srcu, idx);
5588 
5589 		/*
5590 		 * unfair on small ones
5591 		 * per-vm shrinkers cry out
5592 		 * sadness comes quickly
5593 		 */
5594 		list_move_tail(&kvm->vm_list, &vm_list);
5595 		break;
5596 	}
5597 
5598 	mutex_unlock(&kvm_lock);
5599 	return freed;
5600 }
5601 
5602 static unsigned long
mmu_shrink_count(struct shrinker * shrink,struct shrink_control * sc)5603 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5604 {
5605 	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5606 }
5607 
5608 static struct shrinker mmu_shrinker = {
5609 	.count_objects = mmu_shrink_count,
5610 	.scan_objects = mmu_shrink_scan,
5611 	.seeks = DEFAULT_SEEKS * 10,
5612 };
5613 
mmu_destroy_caches(void)5614 static void mmu_destroy_caches(void)
5615 {
5616 	if (pte_list_desc_cache)
5617 		kmem_cache_destroy(pte_list_desc_cache);
5618 	if (mmu_page_header_cache)
5619 		kmem_cache_destroy(mmu_page_header_cache);
5620 }
5621 
get_nx_auto_mode(void)5622 static bool get_nx_auto_mode(void)
5623 {
5624 	/* Return true when CPU has the bug, and mitigations are ON */
5625 	return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
5626 }
5627 
__set_nx_huge_pages(bool val)5628 static void __set_nx_huge_pages(bool val)
5629 {
5630 	nx_huge_pages = itlb_multihit_kvm_mitigation = val;
5631 }
5632 
set_nx_huge_pages(const char * val,const struct kernel_param * kp)5633 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
5634 {
5635 	bool old_val = nx_huge_pages;
5636 	bool new_val;
5637 
5638 	/* In "auto" mode deploy workaround only if CPU has the bug. */
5639 	if (sysfs_streq(val, "off"))
5640 		new_val = 0;
5641 	else if (sysfs_streq(val, "force"))
5642 		new_val = 1;
5643 	else if (sysfs_streq(val, "auto"))
5644 		new_val = get_nx_auto_mode();
5645 	else if (strtobool(val, &new_val) < 0)
5646 		return -EINVAL;
5647 
5648 	__set_nx_huge_pages(new_val);
5649 
5650 	if (new_val != old_val) {
5651 		struct kvm *kvm;
5652 		int idx;
5653 
5654 		mutex_lock(&kvm_lock);
5655 
5656 		list_for_each_entry(kvm, &vm_list, vm_list) {
5657 			idx = srcu_read_lock(&kvm->srcu);
5658 			kvm_mmu_invalidate_zap_all_pages(kvm);
5659 			srcu_read_unlock(&kvm->srcu, idx);
5660 
5661 			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5662 		}
5663 		mutex_unlock(&kvm_lock);
5664 	}
5665 
5666 	return 0;
5667 }
5668 
kvm_mmu_module_init(void)5669 int kvm_mmu_module_init(void)
5670 {
5671 	if (nx_huge_pages == -1)
5672 		__set_nx_huge_pages(get_nx_auto_mode());
5673 
5674 	kvm_mmu_reset_all_pte_masks();
5675 
5676 	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5677 					    sizeof(struct pte_list_desc),
5678 					    0, SLAB_ACCOUNT, NULL);
5679 	if (!pte_list_desc_cache)
5680 		goto nomem;
5681 
5682 	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5683 						  sizeof(struct kvm_mmu_page),
5684 						  0, SLAB_ACCOUNT, NULL);
5685 	if (!mmu_page_header_cache)
5686 		goto nomem;
5687 
5688 	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5689 		goto nomem;
5690 
5691 	register_shrinker(&mmu_shrinker);
5692 
5693 	return 0;
5694 
5695 nomem:
5696 	mmu_destroy_caches();
5697 	return -ENOMEM;
5698 }
5699 
5700 /*
5701  * Caculate mmu pages needed for kvm.
5702  */
kvm_mmu_calculate_mmu_pages(struct kvm * kvm)5703 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
5704 {
5705 	unsigned int nr_mmu_pages;
5706 	unsigned int  nr_pages = 0;
5707 	struct kvm_memslots *slots;
5708 	struct kvm_memory_slot *memslot;
5709 	int i;
5710 
5711 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5712 		slots = __kvm_memslots(kvm, i);
5713 
5714 		kvm_for_each_memslot(memslot, slots)
5715 			nr_pages += memslot->npages;
5716 	}
5717 
5718 	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5719 	nr_mmu_pages = max(nr_mmu_pages,
5720 			   (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
5721 
5722 	return nr_mmu_pages;
5723 }
5724 
kvm_mmu_destroy(struct kvm_vcpu * vcpu)5725 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5726 {
5727 	kvm_mmu_unload(vcpu);
5728 	free_mmu_pages(vcpu);
5729 	mmu_free_memory_caches(vcpu);
5730 }
5731 
kvm_mmu_module_exit(void)5732 void kvm_mmu_module_exit(void)
5733 {
5734 	mmu_destroy_caches();
5735 	percpu_counter_destroy(&kvm_total_used_mmu_pages);
5736 	unregister_shrinker(&mmu_shrinker);
5737 	mmu_audit_disable();
5738 }
5739 
set_nx_huge_pages_recovery_ratio(const char * val,const struct kernel_param * kp)5740 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
5741 {
5742 	unsigned int old_val;
5743 	int err;
5744 
5745 	old_val = nx_huge_pages_recovery_ratio;
5746 	err = param_set_uint(val, kp);
5747 	if (err)
5748 		return err;
5749 
5750 	if (READ_ONCE(nx_huge_pages) &&
5751 	    !old_val && nx_huge_pages_recovery_ratio) {
5752 		struct kvm *kvm;
5753 
5754 		mutex_lock(&kvm_lock);
5755 
5756 		list_for_each_entry(kvm, &vm_list, vm_list)
5757 			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5758 
5759 		mutex_unlock(&kvm_lock);
5760 	}
5761 
5762 	return err;
5763 }
5764 
kvm_recover_nx_lpages(struct kvm * kvm)5765 static void kvm_recover_nx_lpages(struct kvm *kvm)
5766 {
5767 	int rcu_idx;
5768 	struct kvm_mmu_page *sp;
5769 	unsigned int ratio;
5770 	LIST_HEAD(invalid_list);
5771 	ulong to_zap;
5772 
5773 	rcu_idx = srcu_read_lock(&kvm->srcu);
5774 	spin_lock(&kvm->mmu_lock);
5775 
5776 	ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
5777 	to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
5778 	while (to_zap && !list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) {
5779 		/*
5780 		 * We use a separate list instead of just using active_mmu_pages
5781 		 * because the number of lpage_disallowed pages is expected to
5782 		 * be relatively small compared to the total.
5783 		 */
5784 		sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
5785 				      struct kvm_mmu_page,
5786 				      lpage_disallowed_link);
5787 		WARN_ON_ONCE(!sp->lpage_disallowed);
5788 		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
5789 		WARN_ON_ONCE(sp->lpage_disallowed);
5790 
5791 		if (!--to_zap || need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5792 			kvm_mmu_commit_zap_page(kvm, &invalid_list);
5793 			if (to_zap)
5794 				cond_resched_lock(&kvm->mmu_lock);
5795 		}
5796 	}
5797 
5798 	spin_unlock(&kvm->mmu_lock);
5799 	srcu_read_unlock(&kvm->srcu, rcu_idx);
5800 }
5801 
get_nx_lpage_recovery_timeout(u64 start_time)5802 static long get_nx_lpage_recovery_timeout(u64 start_time)
5803 {
5804 	return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
5805 		? start_time + 60 * HZ - get_jiffies_64()
5806 		: MAX_SCHEDULE_TIMEOUT;
5807 }
5808 
kvm_nx_lpage_recovery_worker(struct kvm * kvm,uintptr_t data)5809 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
5810 {
5811 	u64 start_time;
5812 	long remaining_time;
5813 
5814 	while (true) {
5815 		start_time = get_jiffies_64();
5816 		remaining_time = get_nx_lpage_recovery_timeout(start_time);
5817 
5818 		set_current_state(TASK_INTERRUPTIBLE);
5819 		while (!kthread_should_stop() && remaining_time > 0) {
5820 			schedule_timeout(remaining_time);
5821 			remaining_time = get_nx_lpage_recovery_timeout(start_time);
5822 			set_current_state(TASK_INTERRUPTIBLE);
5823 		}
5824 
5825 		set_current_state(TASK_RUNNING);
5826 
5827 		if (kthread_should_stop())
5828 			return 0;
5829 
5830 		kvm_recover_nx_lpages(kvm);
5831 	}
5832 }
5833 
kvm_mmu_post_init_vm(struct kvm * kvm)5834 int kvm_mmu_post_init_vm(struct kvm *kvm)
5835 {
5836 	int err;
5837 
5838 	err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
5839 					  "kvm-nx-lpage-recovery",
5840 					  &kvm->arch.nx_lpage_recovery_thread);
5841 	if (!err)
5842 		kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
5843 
5844 	return err;
5845 }
5846 
kvm_mmu_pre_destroy_vm(struct kvm * kvm)5847 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
5848 {
5849 	if (kvm->arch.nx_lpage_recovery_thread)
5850 		kthread_stop(kvm->arch.nx_lpage_recovery_thread);
5851 }
5852