1 /*
2 * Copyright (C) 2008-2013 Freescale Semiconductor, Inc. All rights reserved.
3 *
4 * Author: Yu Liu, yu.liu@freescale.com
5 * Scott Wood, scottwood@freescale.com
6 * Ashish Kalra, ashish.kalra@freescale.com
7 * Varun Sethi, varun.sethi@freescale.com
8 * Alexander Graf, agraf@suse.de
9 *
10 * Description:
11 * This file is based on arch/powerpc/kvm/44x_tlb.c,
12 * by Hollis Blanchard <hollisb@us.ibm.com>.
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License, version 2, as
16 * published by the Free Software Foundation.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/slab.h>
22 #include <linux/string.h>
23 #include <linux/kvm.h>
24 #include <linux/kvm_host.h>
25 #include <linux/highmem.h>
26 #include <linux/log2.h>
27 #include <linux/uaccess.h>
28 #include <linux/sched.h>
29 #include <linux/rwsem.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hugetlb.h>
32 #include <asm/kvm_ppc.h>
33
34 #include "e500.h"
35 #include "trace_booke.h"
36 #include "timing.h"
37 #include "e500_mmu_host.h"
38
gtlb0_get_next_victim(struct kvmppc_vcpu_e500 * vcpu_e500)39 static inline unsigned int gtlb0_get_next_victim(
40 struct kvmppc_vcpu_e500 *vcpu_e500)
41 {
42 unsigned int victim;
43
44 victim = vcpu_e500->gtlb_nv[0]++;
45 if (unlikely(vcpu_e500->gtlb_nv[0] >= vcpu_e500->gtlb_params[0].ways))
46 vcpu_e500->gtlb_nv[0] = 0;
47
48 return victim;
49 }
50
tlb0_set_base(gva_t addr,int sets,int ways)51 static int tlb0_set_base(gva_t addr, int sets, int ways)
52 {
53 int set_base;
54
55 set_base = (addr >> PAGE_SHIFT) & (sets - 1);
56 set_base *= ways;
57
58 return set_base;
59 }
60
gtlb0_set_base(struct kvmppc_vcpu_e500 * vcpu_e500,gva_t addr)61 static int gtlb0_set_base(struct kvmppc_vcpu_e500 *vcpu_e500, gva_t addr)
62 {
63 return tlb0_set_base(addr, vcpu_e500->gtlb_params[0].sets,
64 vcpu_e500->gtlb_params[0].ways);
65 }
66
get_tlb_esel(struct kvm_vcpu * vcpu,int tlbsel)67 static unsigned int get_tlb_esel(struct kvm_vcpu *vcpu, int tlbsel)
68 {
69 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
70 int esel = get_tlb_esel_bit(vcpu);
71
72 if (tlbsel == 0) {
73 esel &= vcpu_e500->gtlb_params[0].ways - 1;
74 esel += gtlb0_set_base(vcpu_e500, vcpu->arch.shared->mas2);
75 } else {
76 esel &= vcpu_e500->gtlb_params[tlbsel].entries - 1;
77 }
78
79 return esel;
80 }
81
82 /* Search the guest TLB for a matching entry. */
kvmppc_e500_tlb_index(struct kvmppc_vcpu_e500 * vcpu_e500,gva_t eaddr,int tlbsel,unsigned int pid,int as)83 static int kvmppc_e500_tlb_index(struct kvmppc_vcpu_e500 *vcpu_e500,
84 gva_t eaddr, int tlbsel, unsigned int pid, int as)
85 {
86 int size = vcpu_e500->gtlb_params[tlbsel].entries;
87 unsigned int set_base, offset;
88 int i;
89
90 if (tlbsel == 0) {
91 set_base = gtlb0_set_base(vcpu_e500, eaddr);
92 size = vcpu_e500->gtlb_params[0].ways;
93 } else {
94 if (eaddr < vcpu_e500->tlb1_min_eaddr ||
95 eaddr > vcpu_e500->tlb1_max_eaddr)
96 return -1;
97 set_base = 0;
98 }
99
100 offset = vcpu_e500->gtlb_offset[tlbsel];
101
102 for (i = 0; i < size; i++) {
103 struct kvm_book3e_206_tlb_entry *tlbe =
104 &vcpu_e500->gtlb_arch[offset + set_base + i];
105 unsigned int tid;
106
107 if (eaddr < get_tlb_eaddr(tlbe))
108 continue;
109
110 if (eaddr > get_tlb_end(tlbe))
111 continue;
112
113 tid = get_tlb_tid(tlbe);
114 if (tid && (tid != pid))
115 continue;
116
117 if (!get_tlb_v(tlbe))
118 continue;
119
120 if (get_tlb_ts(tlbe) != as && as != -1)
121 continue;
122
123 return set_base + i;
124 }
125
126 return -1;
127 }
128
kvmppc_e500_deliver_tlb_miss(struct kvm_vcpu * vcpu,gva_t eaddr,int as)129 static inline void kvmppc_e500_deliver_tlb_miss(struct kvm_vcpu *vcpu,
130 gva_t eaddr, int as)
131 {
132 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
133 unsigned int victim, tsized;
134 int tlbsel;
135
136 /* since we only have two TLBs, only lower bit is used. */
137 tlbsel = (vcpu->arch.shared->mas4 >> 28) & 0x1;
138 victim = (tlbsel == 0) ? gtlb0_get_next_victim(vcpu_e500) : 0;
139 tsized = (vcpu->arch.shared->mas4 >> 7) & 0x1f;
140
141 vcpu->arch.shared->mas0 = MAS0_TLBSEL(tlbsel) | MAS0_ESEL(victim)
142 | MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
143 vcpu->arch.shared->mas1 = MAS1_VALID | (as ? MAS1_TS : 0)
144 | MAS1_TID(get_tlbmiss_tid(vcpu))
145 | MAS1_TSIZE(tsized);
146 vcpu->arch.shared->mas2 = (eaddr & MAS2_EPN)
147 | (vcpu->arch.shared->mas4 & MAS2_ATTRIB_MASK);
148 vcpu->arch.shared->mas7_3 &= MAS3_U0 | MAS3_U1 | MAS3_U2 | MAS3_U3;
149 vcpu->arch.shared->mas6 = (vcpu->arch.shared->mas6 & MAS6_SPID1)
150 | (get_cur_pid(vcpu) << 16)
151 | (as ? MAS6_SAS : 0);
152 }
153
kvmppc_recalc_tlb1map_range(struct kvmppc_vcpu_e500 * vcpu_e500)154 static void kvmppc_recalc_tlb1map_range(struct kvmppc_vcpu_e500 *vcpu_e500)
155 {
156 int size = vcpu_e500->gtlb_params[1].entries;
157 unsigned int offset;
158 gva_t eaddr;
159 int i;
160
161 vcpu_e500->tlb1_min_eaddr = ~0UL;
162 vcpu_e500->tlb1_max_eaddr = 0;
163 offset = vcpu_e500->gtlb_offset[1];
164
165 for (i = 0; i < size; i++) {
166 struct kvm_book3e_206_tlb_entry *tlbe =
167 &vcpu_e500->gtlb_arch[offset + i];
168
169 if (!get_tlb_v(tlbe))
170 continue;
171
172 eaddr = get_tlb_eaddr(tlbe);
173 vcpu_e500->tlb1_min_eaddr =
174 min(vcpu_e500->tlb1_min_eaddr, eaddr);
175
176 eaddr = get_tlb_end(tlbe);
177 vcpu_e500->tlb1_max_eaddr =
178 max(vcpu_e500->tlb1_max_eaddr, eaddr);
179 }
180 }
181
kvmppc_need_recalc_tlb1map_range(struct kvmppc_vcpu_e500 * vcpu_e500,struct kvm_book3e_206_tlb_entry * gtlbe)182 static int kvmppc_need_recalc_tlb1map_range(struct kvmppc_vcpu_e500 *vcpu_e500,
183 struct kvm_book3e_206_tlb_entry *gtlbe)
184 {
185 unsigned long start, end, size;
186
187 size = get_tlb_bytes(gtlbe);
188 start = get_tlb_eaddr(gtlbe) & ~(size - 1);
189 end = start + size - 1;
190
191 return vcpu_e500->tlb1_min_eaddr == start ||
192 vcpu_e500->tlb1_max_eaddr == end;
193 }
194
195 /* This function is supposed to be called for a adding a new valid tlb entry */
kvmppc_set_tlb1map_range(struct kvm_vcpu * vcpu,struct kvm_book3e_206_tlb_entry * gtlbe)196 static void kvmppc_set_tlb1map_range(struct kvm_vcpu *vcpu,
197 struct kvm_book3e_206_tlb_entry *gtlbe)
198 {
199 unsigned long start, end, size;
200 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
201
202 if (!get_tlb_v(gtlbe))
203 return;
204
205 size = get_tlb_bytes(gtlbe);
206 start = get_tlb_eaddr(gtlbe) & ~(size - 1);
207 end = start + size - 1;
208
209 vcpu_e500->tlb1_min_eaddr = min(vcpu_e500->tlb1_min_eaddr, start);
210 vcpu_e500->tlb1_max_eaddr = max(vcpu_e500->tlb1_max_eaddr, end);
211 }
212
kvmppc_e500_gtlbe_invalidate(struct kvmppc_vcpu_e500 * vcpu_e500,int tlbsel,int esel)213 static inline int kvmppc_e500_gtlbe_invalidate(
214 struct kvmppc_vcpu_e500 *vcpu_e500,
215 int tlbsel, int esel)
216 {
217 struct kvm_book3e_206_tlb_entry *gtlbe =
218 get_entry(vcpu_e500, tlbsel, esel);
219
220 if (unlikely(get_tlb_iprot(gtlbe)))
221 return -1;
222
223 if (tlbsel == 1 && kvmppc_need_recalc_tlb1map_range(vcpu_e500, gtlbe))
224 kvmppc_recalc_tlb1map_range(vcpu_e500);
225
226 gtlbe->mas1 = 0;
227
228 return 0;
229 }
230
kvmppc_e500_emul_mt_mmucsr0(struct kvmppc_vcpu_e500 * vcpu_e500,ulong value)231 int kvmppc_e500_emul_mt_mmucsr0(struct kvmppc_vcpu_e500 *vcpu_e500, ulong value)
232 {
233 int esel;
234
235 if (value & MMUCSR0_TLB0FI)
236 for (esel = 0; esel < vcpu_e500->gtlb_params[0].entries; esel++)
237 kvmppc_e500_gtlbe_invalidate(vcpu_e500, 0, esel);
238 if (value & MMUCSR0_TLB1FI)
239 for (esel = 0; esel < vcpu_e500->gtlb_params[1].entries; esel++)
240 kvmppc_e500_gtlbe_invalidate(vcpu_e500, 1, esel);
241
242 /* Invalidate all host shadow mappings */
243 kvmppc_core_flush_tlb(&vcpu_e500->vcpu);
244
245 return EMULATE_DONE;
246 }
247
kvmppc_e500_emul_tlbivax(struct kvm_vcpu * vcpu,gva_t ea)248 int kvmppc_e500_emul_tlbivax(struct kvm_vcpu *vcpu, gva_t ea)
249 {
250 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
251 unsigned int ia;
252 int esel, tlbsel;
253
254 ia = (ea >> 2) & 0x1;
255
256 /* since we only have two TLBs, only lower bit is used. */
257 tlbsel = (ea >> 3) & 0x1;
258
259 if (ia) {
260 /* invalidate all entries */
261 for (esel = 0; esel < vcpu_e500->gtlb_params[tlbsel].entries;
262 esel++)
263 kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel);
264 } else {
265 ea &= 0xfffff000;
266 esel = kvmppc_e500_tlb_index(vcpu_e500, ea, tlbsel,
267 get_cur_pid(vcpu), -1);
268 if (esel >= 0)
269 kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel);
270 }
271
272 /* Invalidate all host shadow mappings */
273 kvmppc_core_flush_tlb(&vcpu_e500->vcpu);
274
275 return EMULATE_DONE;
276 }
277
tlbilx_all(struct kvmppc_vcpu_e500 * vcpu_e500,int tlbsel,int pid,int type)278 static void tlbilx_all(struct kvmppc_vcpu_e500 *vcpu_e500, int tlbsel,
279 int pid, int type)
280 {
281 struct kvm_book3e_206_tlb_entry *tlbe;
282 int tid, esel;
283
284 /* invalidate all entries */
285 for (esel = 0; esel < vcpu_e500->gtlb_params[tlbsel].entries; esel++) {
286 tlbe = get_entry(vcpu_e500, tlbsel, esel);
287 tid = get_tlb_tid(tlbe);
288 if (type == 0 || tid == pid) {
289 inval_gtlbe_on_host(vcpu_e500, tlbsel, esel);
290 kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel);
291 }
292 }
293 }
294
tlbilx_one(struct kvmppc_vcpu_e500 * vcpu_e500,int pid,gva_t ea)295 static void tlbilx_one(struct kvmppc_vcpu_e500 *vcpu_e500, int pid,
296 gva_t ea)
297 {
298 int tlbsel, esel;
299
300 for (tlbsel = 0; tlbsel < 2; tlbsel++) {
301 esel = kvmppc_e500_tlb_index(vcpu_e500, ea, tlbsel, pid, -1);
302 if (esel >= 0) {
303 inval_gtlbe_on_host(vcpu_e500, tlbsel, esel);
304 kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel);
305 break;
306 }
307 }
308 }
309
kvmppc_e500_emul_tlbilx(struct kvm_vcpu * vcpu,int type,gva_t ea)310 int kvmppc_e500_emul_tlbilx(struct kvm_vcpu *vcpu, int type, gva_t ea)
311 {
312 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
313 int pid = get_cur_spid(vcpu);
314
315 if (type == 0 || type == 1) {
316 tlbilx_all(vcpu_e500, 0, pid, type);
317 tlbilx_all(vcpu_e500, 1, pid, type);
318 } else if (type == 3) {
319 tlbilx_one(vcpu_e500, pid, ea);
320 }
321
322 return EMULATE_DONE;
323 }
324
kvmppc_e500_emul_tlbre(struct kvm_vcpu * vcpu)325 int kvmppc_e500_emul_tlbre(struct kvm_vcpu *vcpu)
326 {
327 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
328 int tlbsel, esel;
329 struct kvm_book3e_206_tlb_entry *gtlbe;
330
331 tlbsel = get_tlb_tlbsel(vcpu);
332 esel = get_tlb_esel(vcpu, tlbsel);
333
334 gtlbe = get_entry(vcpu_e500, tlbsel, esel);
335 vcpu->arch.shared->mas0 &= ~MAS0_NV(~0);
336 vcpu->arch.shared->mas0 |= MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
337 vcpu->arch.shared->mas1 = gtlbe->mas1;
338 vcpu->arch.shared->mas2 = gtlbe->mas2;
339 vcpu->arch.shared->mas7_3 = gtlbe->mas7_3;
340
341 return EMULATE_DONE;
342 }
343
kvmppc_e500_emul_tlbsx(struct kvm_vcpu * vcpu,gva_t ea)344 int kvmppc_e500_emul_tlbsx(struct kvm_vcpu *vcpu, gva_t ea)
345 {
346 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
347 int as = !!get_cur_sas(vcpu);
348 unsigned int pid = get_cur_spid(vcpu);
349 int esel, tlbsel;
350 struct kvm_book3e_206_tlb_entry *gtlbe = NULL;
351
352 for (tlbsel = 0; tlbsel < 2; tlbsel++) {
353 esel = kvmppc_e500_tlb_index(vcpu_e500, ea, tlbsel, pid, as);
354 if (esel >= 0) {
355 gtlbe = get_entry(vcpu_e500, tlbsel, esel);
356 break;
357 }
358 }
359
360 if (gtlbe) {
361 esel &= vcpu_e500->gtlb_params[tlbsel].ways - 1;
362
363 vcpu->arch.shared->mas0 = MAS0_TLBSEL(tlbsel) | MAS0_ESEL(esel)
364 | MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
365 vcpu->arch.shared->mas1 = gtlbe->mas1;
366 vcpu->arch.shared->mas2 = gtlbe->mas2;
367 vcpu->arch.shared->mas7_3 = gtlbe->mas7_3;
368 } else {
369 int victim;
370
371 /* since we only have two TLBs, only lower bit is used. */
372 tlbsel = vcpu->arch.shared->mas4 >> 28 & 0x1;
373 victim = (tlbsel == 0) ? gtlb0_get_next_victim(vcpu_e500) : 0;
374
375 vcpu->arch.shared->mas0 = MAS0_TLBSEL(tlbsel)
376 | MAS0_ESEL(victim)
377 | MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
378 vcpu->arch.shared->mas1 =
379 (vcpu->arch.shared->mas6 & MAS6_SPID0)
380 | ((vcpu->arch.shared->mas6 & MAS6_SAS) ? MAS1_TS : 0)
381 | (vcpu->arch.shared->mas4 & MAS4_TSIZED(~0));
382 vcpu->arch.shared->mas2 &= MAS2_EPN;
383 vcpu->arch.shared->mas2 |= vcpu->arch.shared->mas4 &
384 MAS2_ATTRIB_MASK;
385 vcpu->arch.shared->mas7_3 &= MAS3_U0 | MAS3_U1 |
386 MAS3_U2 | MAS3_U3;
387 }
388
389 kvmppc_set_exit_type(vcpu, EMULATED_TLBSX_EXITS);
390 return EMULATE_DONE;
391 }
392
kvmppc_e500_emul_tlbwe(struct kvm_vcpu * vcpu)393 int kvmppc_e500_emul_tlbwe(struct kvm_vcpu *vcpu)
394 {
395 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
396 struct kvm_book3e_206_tlb_entry *gtlbe;
397 int tlbsel, esel;
398 int recal = 0;
399 int idx;
400
401 tlbsel = get_tlb_tlbsel(vcpu);
402 esel = get_tlb_esel(vcpu, tlbsel);
403
404 gtlbe = get_entry(vcpu_e500, tlbsel, esel);
405
406 if (get_tlb_v(gtlbe)) {
407 inval_gtlbe_on_host(vcpu_e500, tlbsel, esel);
408 if ((tlbsel == 1) &&
409 kvmppc_need_recalc_tlb1map_range(vcpu_e500, gtlbe))
410 recal = 1;
411 }
412
413 gtlbe->mas1 = vcpu->arch.shared->mas1;
414 gtlbe->mas2 = vcpu->arch.shared->mas2;
415 if (!(vcpu->arch.shared->msr & MSR_CM))
416 gtlbe->mas2 &= 0xffffffffUL;
417 gtlbe->mas7_3 = vcpu->arch.shared->mas7_3;
418
419 trace_kvm_booke206_gtlb_write(vcpu->arch.shared->mas0, gtlbe->mas1,
420 gtlbe->mas2, gtlbe->mas7_3);
421
422 if (tlbsel == 1) {
423 /*
424 * If a valid tlb1 entry is overwritten then recalculate the
425 * min/max TLB1 map address range otherwise no need to look
426 * in tlb1 array.
427 */
428 if (recal)
429 kvmppc_recalc_tlb1map_range(vcpu_e500);
430 else
431 kvmppc_set_tlb1map_range(vcpu, gtlbe);
432 }
433
434 idx = srcu_read_lock(&vcpu->kvm->srcu);
435
436 /* Invalidate shadow mappings for the about-to-be-clobbered TLBE. */
437 if (tlbe_is_host_safe(vcpu, gtlbe)) {
438 u64 eaddr = get_tlb_eaddr(gtlbe);
439 u64 raddr = get_tlb_raddr(gtlbe);
440
441 if (tlbsel == 0) {
442 gtlbe->mas1 &= ~MAS1_TSIZE(~0);
443 gtlbe->mas1 |= MAS1_TSIZE(BOOK3E_PAGESZ_4K);
444 }
445
446 /* Premap the faulting page */
447 kvmppc_mmu_map(vcpu, eaddr, raddr, index_of(tlbsel, esel));
448 }
449
450 srcu_read_unlock(&vcpu->kvm->srcu, idx);
451
452 kvmppc_set_exit_type(vcpu, EMULATED_TLBWE_EXITS);
453 return EMULATE_DONE;
454 }
455
kvmppc_e500_tlb_search(struct kvm_vcpu * vcpu,gva_t eaddr,unsigned int pid,int as)456 static int kvmppc_e500_tlb_search(struct kvm_vcpu *vcpu,
457 gva_t eaddr, unsigned int pid, int as)
458 {
459 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
460 int esel, tlbsel;
461
462 for (tlbsel = 0; tlbsel < 2; tlbsel++) {
463 esel = kvmppc_e500_tlb_index(vcpu_e500, eaddr, tlbsel, pid, as);
464 if (esel >= 0)
465 return index_of(tlbsel, esel);
466 }
467
468 return -1;
469 }
470
471 /* 'linear_address' is actually an encoding of AS|PID|EADDR . */
kvmppc_core_vcpu_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)472 int kvmppc_core_vcpu_translate(struct kvm_vcpu *vcpu,
473 struct kvm_translation *tr)
474 {
475 int index;
476 gva_t eaddr;
477 u8 pid;
478 u8 as;
479
480 eaddr = tr->linear_address;
481 pid = (tr->linear_address >> 32) & 0xff;
482 as = (tr->linear_address >> 40) & 0x1;
483
484 index = kvmppc_e500_tlb_search(vcpu, eaddr, pid, as);
485 if (index < 0) {
486 tr->valid = 0;
487 return 0;
488 }
489
490 tr->physical_address = kvmppc_mmu_xlate(vcpu, index, eaddr);
491 /* XXX what does "writeable" and "usermode" even mean? */
492 tr->valid = 1;
493
494 return 0;
495 }
496
497
kvmppc_mmu_itlb_index(struct kvm_vcpu * vcpu,gva_t eaddr)498 int kvmppc_mmu_itlb_index(struct kvm_vcpu *vcpu, gva_t eaddr)
499 {
500 unsigned int as = !!(vcpu->arch.shared->msr & MSR_IS);
501
502 return kvmppc_e500_tlb_search(vcpu, eaddr, get_cur_pid(vcpu), as);
503 }
504
kvmppc_mmu_dtlb_index(struct kvm_vcpu * vcpu,gva_t eaddr)505 int kvmppc_mmu_dtlb_index(struct kvm_vcpu *vcpu, gva_t eaddr)
506 {
507 unsigned int as = !!(vcpu->arch.shared->msr & MSR_DS);
508
509 return kvmppc_e500_tlb_search(vcpu, eaddr, get_cur_pid(vcpu), as);
510 }
511
kvmppc_mmu_itlb_miss(struct kvm_vcpu * vcpu)512 void kvmppc_mmu_itlb_miss(struct kvm_vcpu *vcpu)
513 {
514 unsigned int as = !!(vcpu->arch.shared->msr & MSR_IS);
515
516 kvmppc_e500_deliver_tlb_miss(vcpu, vcpu->arch.pc, as);
517 }
518
kvmppc_mmu_dtlb_miss(struct kvm_vcpu * vcpu)519 void kvmppc_mmu_dtlb_miss(struct kvm_vcpu *vcpu)
520 {
521 unsigned int as = !!(vcpu->arch.shared->msr & MSR_DS);
522
523 kvmppc_e500_deliver_tlb_miss(vcpu, vcpu->arch.fault_dear, as);
524 }
525
kvmppc_mmu_xlate(struct kvm_vcpu * vcpu,unsigned int index,gva_t eaddr)526 gpa_t kvmppc_mmu_xlate(struct kvm_vcpu *vcpu, unsigned int index,
527 gva_t eaddr)
528 {
529 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
530 struct kvm_book3e_206_tlb_entry *gtlbe;
531 u64 pgmask;
532
533 gtlbe = get_entry(vcpu_e500, tlbsel_of(index), esel_of(index));
534 pgmask = get_tlb_bytes(gtlbe) - 1;
535
536 return get_tlb_raddr(gtlbe) | (eaddr & pgmask);
537 }
538
kvmppc_mmu_destroy_e500(struct kvm_vcpu * vcpu)539 void kvmppc_mmu_destroy_e500(struct kvm_vcpu *vcpu)
540 {
541 }
542
543 /*****************************************/
544
free_gtlb(struct kvmppc_vcpu_e500 * vcpu_e500)545 static void free_gtlb(struct kvmppc_vcpu_e500 *vcpu_e500)
546 {
547 int i;
548
549 kvmppc_core_flush_tlb(&vcpu_e500->vcpu);
550 kfree(vcpu_e500->g2h_tlb1_map);
551 kfree(vcpu_e500->gtlb_priv[0]);
552 kfree(vcpu_e500->gtlb_priv[1]);
553
554 if (vcpu_e500->shared_tlb_pages) {
555 vfree((void *)(round_down((uintptr_t)vcpu_e500->gtlb_arch,
556 PAGE_SIZE)));
557
558 for (i = 0; i < vcpu_e500->num_shared_tlb_pages; i++) {
559 set_page_dirty_lock(vcpu_e500->shared_tlb_pages[i]);
560 put_page(vcpu_e500->shared_tlb_pages[i]);
561 }
562
563 vcpu_e500->num_shared_tlb_pages = 0;
564
565 kfree(vcpu_e500->shared_tlb_pages);
566 vcpu_e500->shared_tlb_pages = NULL;
567 } else {
568 kfree(vcpu_e500->gtlb_arch);
569 }
570
571 vcpu_e500->gtlb_arch = NULL;
572 }
573
kvmppc_get_sregs_e500_tlb(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)574 void kvmppc_get_sregs_e500_tlb(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
575 {
576 sregs->u.e.mas0 = vcpu->arch.shared->mas0;
577 sregs->u.e.mas1 = vcpu->arch.shared->mas1;
578 sregs->u.e.mas2 = vcpu->arch.shared->mas2;
579 sregs->u.e.mas7_3 = vcpu->arch.shared->mas7_3;
580 sregs->u.e.mas4 = vcpu->arch.shared->mas4;
581 sregs->u.e.mas6 = vcpu->arch.shared->mas6;
582
583 sregs->u.e.mmucfg = vcpu->arch.mmucfg;
584 sregs->u.e.tlbcfg[0] = vcpu->arch.tlbcfg[0];
585 sregs->u.e.tlbcfg[1] = vcpu->arch.tlbcfg[1];
586 sregs->u.e.tlbcfg[2] = 0;
587 sregs->u.e.tlbcfg[3] = 0;
588 }
589
kvmppc_set_sregs_e500_tlb(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)590 int kvmppc_set_sregs_e500_tlb(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
591 {
592 if (sregs->u.e.features & KVM_SREGS_E_ARCH206_MMU) {
593 vcpu->arch.shared->mas0 = sregs->u.e.mas0;
594 vcpu->arch.shared->mas1 = sregs->u.e.mas1;
595 vcpu->arch.shared->mas2 = sregs->u.e.mas2;
596 vcpu->arch.shared->mas7_3 = sregs->u.e.mas7_3;
597 vcpu->arch.shared->mas4 = sregs->u.e.mas4;
598 vcpu->arch.shared->mas6 = sregs->u.e.mas6;
599 }
600
601 return 0;
602 }
603
kvmppc_get_one_reg_e500_tlb(struct kvm_vcpu * vcpu,u64 id,union kvmppc_one_reg * val)604 int kvmppc_get_one_reg_e500_tlb(struct kvm_vcpu *vcpu, u64 id,
605 union kvmppc_one_reg *val)
606 {
607 int r = 0;
608 long int i;
609
610 switch (id) {
611 case KVM_REG_PPC_MAS0:
612 *val = get_reg_val(id, vcpu->arch.shared->mas0);
613 break;
614 case KVM_REG_PPC_MAS1:
615 *val = get_reg_val(id, vcpu->arch.shared->mas1);
616 break;
617 case KVM_REG_PPC_MAS2:
618 *val = get_reg_val(id, vcpu->arch.shared->mas2);
619 break;
620 case KVM_REG_PPC_MAS7_3:
621 *val = get_reg_val(id, vcpu->arch.shared->mas7_3);
622 break;
623 case KVM_REG_PPC_MAS4:
624 *val = get_reg_val(id, vcpu->arch.shared->mas4);
625 break;
626 case KVM_REG_PPC_MAS6:
627 *val = get_reg_val(id, vcpu->arch.shared->mas6);
628 break;
629 case KVM_REG_PPC_MMUCFG:
630 *val = get_reg_val(id, vcpu->arch.mmucfg);
631 break;
632 case KVM_REG_PPC_EPTCFG:
633 *val = get_reg_val(id, vcpu->arch.eptcfg);
634 break;
635 case KVM_REG_PPC_TLB0CFG:
636 case KVM_REG_PPC_TLB1CFG:
637 case KVM_REG_PPC_TLB2CFG:
638 case KVM_REG_PPC_TLB3CFG:
639 i = id - KVM_REG_PPC_TLB0CFG;
640 *val = get_reg_val(id, vcpu->arch.tlbcfg[i]);
641 break;
642 case KVM_REG_PPC_TLB0PS:
643 case KVM_REG_PPC_TLB1PS:
644 case KVM_REG_PPC_TLB2PS:
645 case KVM_REG_PPC_TLB3PS:
646 i = id - KVM_REG_PPC_TLB0PS;
647 *val = get_reg_val(id, vcpu->arch.tlbps[i]);
648 break;
649 default:
650 r = -EINVAL;
651 break;
652 }
653
654 return r;
655 }
656
kvmppc_set_one_reg_e500_tlb(struct kvm_vcpu * vcpu,u64 id,union kvmppc_one_reg * val)657 int kvmppc_set_one_reg_e500_tlb(struct kvm_vcpu *vcpu, u64 id,
658 union kvmppc_one_reg *val)
659 {
660 int r = 0;
661 long int i;
662
663 switch (id) {
664 case KVM_REG_PPC_MAS0:
665 vcpu->arch.shared->mas0 = set_reg_val(id, *val);
666 break;
667 case KVM_REG_PPC_MAS1:
668 vcpu->arch.shared->mas1 = set_reg_val(id, *val);
669 break;
670 case KVM_REG_PPC_MAS2:
671 vcpu->arch.shared->mas2 = set_reg_val(id, *val);
672 break;
673 case KVM_REG_PPC_MAS7_3:
674 vcpu->arch.shared->mas7_3 = set_reg_val(id, *val);
675 break;
676 case KVM_REG_PPC_MAS4:
677 vcpu->arch.shared->mas4 = set_reg_val(id, *val);
678 break;
679 case KVM_REG_PPC_MAS6:
680 vcpu->arch.shared->mas6 = set_reg_val(id, *val);
681 break;
682 /* Only allow MMU registers to be set to the config supported by KVM */
683 case KVM_REG_PPC_MMUCFG: {
684 u32 reg = set_reg_val(id, *val);
685 if (reg != vcpu->arch.mmucfg)
686 r = -EINVAL;
687 break;
688 }
689 case KVM_REG_PPC_EPTCFG: {
690 u32 reg = set_reg_val(id, *val);
691 if (reg != vcpu->arch.eptcfg)
692 r = -EINVAL;
693 break;
694 }
695 case KVM_REG_PPC_TLB0CFG:
696 case KVM_REG_PPC_TLB1CFG:
697 case KVM_REG_PPC_TLB2CFG:
698 case KVM_REG_PPC_TLB3CFG: {
699 /* MMU geometry (N_ENTRY/ASSOC) can be set only using SW_TLB */
700 u32 reg = set_reg_val(id, *val);
701 i = id - KVM_REG_PPC_TLB0CFG;
702 if (reg != vcpu->arch.tlbcfg[i])
703 r = -EINVAL;
704 break;
705 }
706 case KVM_REG_PPC_TLB0PS:
707 case KVM_REG_PPC_TLB1PS:
708 case KVM_REG_PPC_TLB2PS:
709 case KVM_REG_PPC_TLB3PS: {
710 u32 reg = set_reg_val(id, *val);
711 i = id - KVM_REG_PPC_TLB0PS;
712 if (reg != vcpu->arch.tlbps[i])
713 r = -EINVAL;
714 break;
715 }
716 default:
717 r = -EINVAL;
718 break;
719 }
720
721 return r;
722 }
723
vcpu_mmu_geometry_update(struct kvm_vcpu * vcpu,struct kvm_book3e_206_tlb_params * params)724 static int vcpu_mmu_geometry_update(struct kvm_vcpu *vcpu,
725 struct kvm_book3e_206_tlb_params *params)
726 {
727 vcpu->arch.tlbcfg[0] &= ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC);
728 if (params->tlb_sizes[0] <= 2048)
729 vcpu->arch.tlbcfg[0] |= params->tlb_sizes[0];
730 vcpu->arch.tlbcfg[0] |= params->tlb_ways[0] << TLBnCFG_ASSOC_SHIFT;
731
732 vcpu->arch.tlbcfg[1] &= ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC);
733 vcpu->arch.tlbcfg[1] |= params->tlb_sizes[1];
734 vcpu->arch.tlbcfg[1] |= params->tlb_ways[1] << TLBnCFG_ASSOC_SHIFT;
735 return 0;
736 }
737
kvm_vcpu_ioctl_config_tlb(struct kvm_vcpu * vcpu,struct kvm_config_tlb * cfg)738 int kvm_vcpu_ioctl_config_tlb(struct kvm_vcpu *vcpu,
739 struct kvm_config_tlb *cfg)
740 {
741 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
742 struct kvm_book3e_206_tlb_params params;
743 char *virt;
744 struct page **pages;
745 struct tlbe_priv *privs[2] = {};
746 u64 *g2h_bitmap;
747 size_t array_len;
748 u32 sets;
749 int num_pages, ret, i;
750
751 if (cfg->mmu_type != KVM_MMU_FSL_BOOKE_NOHV)
752 return -EINVAL;
753
754 if (copy_from_user(¶ms, (void __user *)(uintptr_t)cfg->params,
755 sizeof(params)))
756 return -EFAULT;
757
758 if (params.tlb_sizes[1] > 64)
759 return -EINVAL;
760 if (params.tlb_ways[1] != params.tlb_sizes[1])
761 return -EINVAL;
762 if (params.tlb_sizes[2] != 0 || params.tlb_sizes[3] != 0)
763 return -EINVAL;
764 if (params.tlb_ways[2] != 0 || params.tlb_ways[3] != 0)
765 return -EINVAL;
766
767 if (!is_power_of_2(params.tlb_ways[0]))
768 return -EINVAL;
769
770 sets = params.tlb_sizes[0] >> ilog2(params.tlb_ways[0]);
771 if (!is_power_of_2(sets))
772 return -EINVAL;
773
774 array_len = params.tlb_sizes[0] + params.tlb_sizes[1];
775 array_len *= sizeof(struct kvm_book3e_206_tlb_entry);
776
777 if (cfg->array_len < array_len)
778 return -EINVAL;
779
780 num_pages = DIV_ROUND_UP(cfg->array + array_len - 1, PAGE_SIZE) -
781 cfg->array / PAGE_SIZE;
782 pages = kmalloc_array(num_pages, sizeof(*pages), GFP_KERNEL);
783 if (!pages)
784 return -ENOMEM;
785
786 ret = get_user_pages_fast(cfg->array, num_pages, 1, pages);
787 if (ret < 0)
788 goto free_pages;
789
790 if (ret != num_pages) {
791 num_pages = ret;
792 ret = -EFAULT;
793 goto put_pages;
794 }
795
796 virt = vmap(pages, num_pages, VM_MAP, PAGE_KERNEL);
797 if (!virt) {
798 ret = -ENOMEM;
799 goto put_pages;
800 }
801
802 privs[0] = kcalloc(params.tlb_sizes[0], sizeof(*privs[0]), GFP_KERNEL);
803 if (!privs[0]) {
804 ret = -ENOMEM;
805 goto put_pages;
806 }
807
808 privs[1] = kcalloc(params.tlb_sizes[1], sizeof(*privs[1]), GFP_KERNEL);
809 if (!privs[1]) {
810 ret = -ENOMEM;
811 goto free_privs_first;
812 }
813
814 g2h_bitmap = kcalloc(params.tlb_sizes[1],
815 sizeof(*g2h_bitmap),
816 GFP_KERNEL);
817 if (!g2h_bitmap) {
818 ret = -ENOMEM;
819 goto free_privs_second;
820 }
821
822 free_gtlb(vcpu_e500);
823
824 vcpu_e500->gtlb_priv[0] = privs[0];
825 vcpu_e500->gtlb_priv[1] = privs[1];
826 vcpu_e500->g2h_tlb1_map = g2h_bitmap;
827
828 vcpu_e500->gtlb_arch = (struct kvm_book3e_206_tlb_entry *)
829 (virt + (cfg->array & (PAGE_SIZE - 1)));
830
831 vcpu_e500->gtlb_params[0].entries = params.tlb_sizes[0];
832 vcpu_e500->gtlb_params[1].entries = params.tlb_sizes[1];
833
834 vcpu_e500->gtlb_offset[0] = 0;
835 vcpu_e500->gtlb_offset[1] = params.tlb_sizes[0];
836
837 /* Update vcpu's MMU geometry based on SW_TLB input */
838 vcpu_mmu_geometry_update(vcpu, ¶ms);
839
840 vcpu_e500->shared_tlb_pages = pages;
841 vcpu_e500->num_shared_tlb_pages = num_pages;
842
843 vcpu_e500->gtlb_params[0].ways = params.tlb_ways[0];
844 vcpu_e500->gtlb_params[0].sets = sets;
845
846 vcpu_e500->gtlb_params[1].ways = params.tlb_sizes[1];
847 vcpu_e500->gtlb_params[1].sets = 1;
848
849 kvmppc_recalc_tlb1map_range(vcpu_e500);
850 return 0;
851 free_privs_second:
852 kfree(privs[1]);
853 free_privs_first:
854 kfree(privs[0]);
855 put_pages:
856 for (i = 0; i < num_pages; i++)
857 put_page(pages[i]);
858 free_pages:
859 kfree(pages);
860 return ret;
861 }
862
kvm_vcpu_ioctl_dirty_tlb(struct kvm_vcpu * vcpu,struct kvm_dirty_tlb * dirty)863 int kvm_vcpu_ioctl_dirty_tlb(struct kvm_vcpu *vcpu,
864 struct kvm_dirty_tlb *dirty)
865 {
866 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
867 kvmppc_recalc_tlb1map_range(vcpu_e500);
868 kvmppc_core_flush_tlb(vcpu);
869 return 0;
870 }
871
872 /* Vcpu's MMU default configuration */
vcpu_mmu_init(struct kvm_vcpu * vcpu,struct kvmppc_e500_tlb_params * params)873 static int vcpu_mmu_init(struct kvm_vcpu *vcpu,
874 struct kvmppc_e500_tlb_params *params)
875 {
876 /* Initialize RASIZE, PIDSIZE, NTLBS and MAVN fields with host values*/
877 vcpu->arch.mmucfg = mfspr(SPRN_MMUCFG) & ~MMUCFG_LPIDSIZE;
878
879 /* Initialize TLBnCFG fields with host values and SW_TLB geometry*/
880 vcpu->arch.tlbcfg[0] = mfspr(SPRN_TLB0CFG) &
881 ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC);
882 vcpu->arch.tlbcfg[0] |= params[0].entries;
883 vcpu->arch.tlbcfg[0] |= params[0].ways << TLBnCFG_ASSOC_SHIFT;
884
885 vcpu->arch.tlbcfg[1] = mfspr(SPRN_TLB1CFG) &
886 ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC);
887 vcpu->arch.tlbcfg[1] |= params[1].entries;
888 vcpu->arch.tlbcfg[1] |= params[1].ways << TLBnCFG_ASSOC_SHIFT;
889
890 if (has_feature(vcpu, VCPU_FTR_MMU_V2)) {
891 vcpu->arch.tlbps[0] = mfspr(SPRN_TLB0PS);
892 vcpu->arch.tlbps[1] = mfspr(SPRN_TLB1PS);
893
894 vcpu->arch.mmucfg &= ~MMUCFG_LRAT;
895
896 /* Guest mmu emulation currently doesn't handle E.PT */
897 vcpu->arch.eptcfg = 0;
898 vcpu->arch.tlbcfg[0] &= ~TLBnCFG_PT;
899 vcpu->arch.tlbcfg[1] &= ~TLBnCFG_IND;
900 }
901
902 return 0;
903 }
904
kvmppc_e500_tlb_init(struct kvmppc_vcpu_e500 * vcpu_e500)905 int kvmppc_e500_tlb_init(struct kvmppc_vcpu_e500 *vcpu_e500)
906 {
907 struct kvm_vcpu *vcpu = &vcpu_e500->vcpu;
908
909 if (e500_mmu_host_init(vcpu_e500))
910 goto free_vcpu;
911
912 vcpu_e500->gtlb_params[0].entries = KVM_E500_TLB0_SIZE;
913 vcpu_e500->gtlb_params[1].entries = KVM_E500_TLB1_SIZE;
914
915 vcpu_e500->gtlb_params[0].ways = KVM_E500_TLB0_WAY_NUM;
916 vcpu_e500->gtlb_params[0].sets =
917 KVM_E500_TLB0_SIZE / KVM_E500_TLB0_WAY_NUM;
918
919 vcpu_e500->gtlb_params[1].ways = KVM_E500_TLB1_SIZE;
920 vcpu_e500->gtlb_params[1].sets = 1;
921
922 vcpu_e500->gtlb_arch = kmalloc_array(KVM_E500_TLB0_SIZE +
923 KVM_E500_TLB1_SIZE,
924 sizeof(*vcpu_e500->gtlb_arch),
925 GFP_KERNEL);
926 if (!vcpu_e500->gtlb_arch)
927 return -ENOMEM;
928
929 vcpu_e500->gtlb_offset[0] = 0;
930 vcpu_e500->gtlb_offset[1] = KVM_E500_TLB0_SIZE;
931
932 vcpu_e500->gtlb_priv[0] = kcalloc(vcpu_e500->gtlb_params[0].entries,
933 sizeof(struct tlbe_ref),
934 GFP_KERNEL);
935 if (!vcpu_e500->gtlb_priv[0])
936 goto free_vcpu;
937
938 vcpu_e500->gtlb_priv[1] = kcalloc(vcpu_e500->gtlb_params[1].entries,
939 sizeof(struct tlbe_ref),
940 GFP_KERNEL);
941 if (!vcpu_e500->gtlb_priv[1])
942 goto free_vcpu;
943
944 vcpu_e500->g2h_tlb1_map = kcalloc(vcpu_e500->gtlb_params[1].entries,
945 sizeof(*vcpu_e500->g2h_tlb1_map),
946 GFP_KERNEL);
947 if (!vcpu_e500->g2h_tlb1_map)
948 goto free_vcpu;
949
950 vcpu_mmu_init(vcpu, vcpu_e500->gtlb_params);
951
952 kvmppc_recalc_tlb1map_range(vcpu_e500);
953 return 0;
954 free_vcpu:
955 free_gtlb(vcpu_e500);
956 return -1;
957 }
958
kvmppc_e500_tlb_uninit(struct kvmppc_vcpu_e500 * vcpu_e500)959 void kvmppc_e500_tlb_uninit(struct kvmppc_vcpu_e500 *vcpu_e500)
960 {
961 free_gtlb(vcpu_e500);
962 e500_mmu_host_uninit(vcpu_e500);
963 }
964