1 /*
2 * Copyright (C) 2008-2013 Freescale Semiconductor, Inc. All rights reserved.
3 *
4 * Author: Yu Liu, yu.liu@freescale.com
5 * Scott Wood, scottwood@freescale.com
6 * Ashish Kalra, ashish.kalra@freescale.com
7 * Varun Sethi, varun.sethi@freescale.com
8 * Alexander Graf, agraf@suse.de
9 *
10 * Description:
11 * This file is based on arch/powerpc/kvm/44x_tlb.c,
12 * by Hollis Blanchard <hollisb@us.ibm.com>.
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License, version 2, as
16 * published by the Free Software Foundation.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/slab.h>
22 #include <linux/string.h>
23 #include <linux/kvm.h>
24 #include <linux/kvm_host.h>
25 #include <linux/highmem.h>
26 #include <linux/log2.h>
27 #include <linux/uaccess.h>
28 #include <linux/sched/mm.h>
29 #include <linux/rwsem.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hugetlb.h>
32 #include <asm/kvm_ppc.h>
33 #include <asm/pte-walk.h>
34
35 #include "e500.h"
36 #include "timing.h"
37 #include "e500_mmu_host.h"
38
39 #include "trace_booke.h"
40
41 #define to_htlb1_esel(esel) (host_tlb_params[1].entries - (esel) - 1)
42
43 static struct kvmppc_e500_tlb_params host_tlb_params[E500_TLB_NUM];
44
tlb1_max_shadow_size(void)45 static inline unsigned int tlb1_max_shadow_size(void)
46 {
47 /* reserve one entry for magic page */
48 return host_tlb_params[1].entries - tlbcam_index - 1;
49 }
50
e500_shadow_mas3_attrib(u32 mas3,int usermode)51 static inline u32 e500_shadow_mas3_attrib(u32 mas3, int usermode)
52 {
53 /* Mask off reserved bits. */
54 mas3 &= MAS3_ATTRIB_MASK;
55
56 #ifndef CONFIG_KVM_BOOKE_HV
57 if (!usermode) {
58 /* Guest is in supervisor mode,
59 * so we need to translate guest
60 * supervisor permissions into user permissions. */
61 mas3 &= ~E500_TLB_USER_PERM_MASK;
62 mas3 |= (mas3 & E500_TLB_SUPER_PERM_MASK) << 1;
63 }
64 mas3 |= E500_TLB_SUPER_PERM_MASK;
65 #endif
66 return mas3;
67 }
68
69 /*
70 * writing shadow tlb entry to host TLB
71 */
__write_host_tlbe(struct kvm_book3e_206_tlb_entry * stlbe,uint32_t mas0,uint32_t lpid)72 static inline void __write_host_tlbe(struct kvm_book3e_206_tlb_entry *stlbe,
73 uint32_t mas0,
74 uint32_t lpid)
75 {
76 unsigned long flags;
77
78 local_irq_save(flags);
79 mtspr(SPRN_MAS0, mas0);
80 mtspr(SPRN_MAS1, stlbe->mas1);
81 mtspr(SPRN_MAS2, (unsigned long)stlbe->mas2);
82 mtspr(SPRN_MAS3, (u32)stlbe->mas7_3);
83 mtspr(SPRN_MAS7, (u32)(stlbe->mas7_3 >> 32));
84 #ifdef CONFIG_KVM_BOOKE_HV
85 mtspr(SPRN_MAS8, MAS8_TGS | get_thread_specific_lpid(lpid));
86 #endif
87 asm volatile("isync; tlbwe" : : : "memory");
88
89 #ifdef CONFIG_KVM_BOOKE_HV
90 /* Must clear mas8 for other host tlbwe's */
91 mtspr(SPRN_MAS8, 0);
92 isync();
93 #endif
94 local_irq_restore(flags);
95
96 trace_kvm_booke206_stlb_write(mas0, stlbe->mas8, stlbe->mas1,
97 stlbe->mas2, stlbe->mas7_3);
98 }
99
100 /*
101 * Acquire a mas0 with victim hint, as if we just took a TLB miss.
102 *
103 * We don't care about the address we're searching for, other than that it's
104 * in the right set and is not present in the TLB. Using a zero PID and a
105 * userspace address means we don't have to set and then restore MAS5, or
106 * calculate a proper MAS6 value.
107 */
get_host_mas0(unsigned long eaddr)108 static u32 get_host_mas0(unsigned long eaddr)
109 {
110 unsigned long flags;
111 u32 mas0;
112 u32 mas4;
113
114 local_irq_save(flags);
115 mtspr(SPRN_MAS6, 0);
116 mas4 = mfspr(SPRN_MAS4);
117 mtspr(SPRN_MAS4, mas4 & ~MAS4_TLBSEL_MASK);
118 asm volatile("tlbsx 0, %0" : : "b" (eaddr & ~CONFIG_PAGE_OFFSET));
119 mas0 = mfspr(SPRN_MAS0);
120 mtspr(SPRN_MAS4, mas4);
121 local_irq_restore(flags);
122
123 return mas0;
124 }
125
126 /* sesel is for tlb1 only */
write_host_tlbe(struct kvmppc_vcpu_e500 * vcpu_e500,int tlbsel,int sesel,struct kvm_book3e_206_tlb_entry * stlbe)127 static inline void write_host_tlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
128 int tlbsel, int sesel, struct kvm_book3e_206_tlb_entry *stlbe)
129 {
130 u32 mas0;
131
132 if (tlbsel == 0) {
133 mas0 = get_host_mas0(stlbe->mas2);
134 __write_host_tlbe(stlbe, mas0, vcpu_e500->vcpu.kvm->arch.lpid);
135 } else {
136 __write_host_tlbe(stlbe,
137 MAS0_TLBSEL(1) |
138 MAS0_ESEL(to_htlb1_esel(sesel)),
139 vcpu_e500->vcpu.kvm->arch.lpid);
140 }
141 }
142
143 /* sesel is for tlb1 only */
write_stlbe(struct kvmppc_vcpu_e500 * vcpu_e500,struct kvm_book3e_206_tlb_entry * gtlbe,struct kvm_book3e_206_tlb_entry * stlbe,int stlbsel,int sesel)144 static void write_stlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
145 struct kvm_book3e_206_tlb_entry *gtlbe,
146 struct kvm_book3e_206_tlb_entry *stlbe,
147 int stlbsel, int sesel)
148 {
149 int stid;
150
151 preempt_disable();
152 stid = kvmppc_e500_get_tlb_stid(&vcpu_e500->vcpu, gtlbe);
153
154 stlbe->mas1 |= MAS1_TID(stid);
155 write_host_tlbe(vcpu_e500, stlbsel, sesel, stlbe);
156 preempt_enable();
157 }
158
159 #ifdef CONFIG_KVM_E500V2
160 /* XXX should be a hook in the gva2hpa translation */
kvmppc_map_magic(struct kvm_vcpu * vcpu)161 void kvmppc_map_magic(struct kvm_vcpu *vcpu)
162 {
163 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
164 struct kvm_book3e_206_tlb_entry magic;
165 ulong shared_page = ((ulong)vcpu->arch.shared) & PAGE_MASK;
166 unsigned int stid;
167 kvm_pfn_t pfn;
168
169 pfn = (kvm_pfn_t)virt_to_phys((void *)shared_page) >> PAGE_SHIFT;
170 get_page(pfn_to_page(pfn));
171
172 preempt_disable();
173 stid = kvmppc_e500_get_sid(vcpu_e500, 0, 0, 0, 0);
174
175 magic.mas1 = MAS1_VALID | MAS1_TS | MAS1_TID(stid) |
176 MAS1_TSIZE(BOOK3E_PAGESZ_4K);
177 magic.mas2 = vcpu->arch.magic_page_ea | MAS2_M;
178 magic.mas7_3 = ((u64)pfn << PAGE_SHIFT) |
179 MAS3_SW | MAS3_SR | MAS3_UW | MAS3_UR;
180 magic.mas8 = 0;
181
182 __write_host_tlbe(&magic, MAS0_TLBSEL(1) | MAS0_ESEL(tlbcam_index), 0);
183 preempt_enable();
184 }
185 #endif
186
inval_gtlbe_on_host(struct kvmppc_vcpu_e500 * vcpu_e500,int tlbsel,int esel)187 void inval_gtlbe_on_host(struct kvmppc_vcpu_e500 *vcpu_e500, int tlbsel,
188 int esel)
189 {
190 struct kvm_book3e_206_tlb_entry *gtlbe =
191 get_entry(vcpu_e500, tlbsel, esel);
192 struct tlbe_ref *ref = &vcpu_e500->gtlb_priv[tlbsel][esel].ref;
193
194 /* Don't bother with unmapped entries */
195 if (!(ref->flags & E500_TLB_VALID)) {
196 WARN(ref->flags & (E500_TLB_BITMAP | E500_TLB_TLB0),
197 "%s: flags %x\n", __func__, ref->flags);
198 WARN_ON(tlbsel == 1 && vcpu_e500->g2h_tlb1_map[esel]);
199 }
200
201 if (tlbsel == 1 && ref->flags & E500_TLB_BITMAP) {
202 u64 tmp = vcpu_e500->g2h_tlb1_map[esel];
203 int hw_tlb_indx;
204 unsigned long flags;
205
206 local_irq_save(flags);
207 while (tmp) {
208 hw_tlb_indx = __ilog2_u64(tmp & -tmp);
209 mtspr(SPRN_MAS0,
210 MAS0_TLBSEL(1) |
211 MAS0_ESEL(to_htlb1_esel(hw_tlb_indx)));
212 mtspr(SPRN_MAS1, 0);
213 asm volatile("tlbwe");
214 vcpu_e500->h2g_tlb1_rmap[hw_tlb_indx] = 0;
215 tmp &= tmp - 1;
216 }
217 mb();
218 vcpu_e500->g2h_tlb1_map[esel] = 0;
219 ref->flags &= ~(E500_TLB_BITMAP | E500_TLB_VALID);
220 local_irq_restore(flags);
221 }
222
223 if (tlbsel == 1 && ref->flags & E500_TLB_TLB0) {
224 /*
225 * TLB1 entry is backed by 4k pages. This should happen
226 * rarely and is not worth optimizing. Invalidate everything.
227 */
228 kvmppc_e500_tlbil_all(vcpu_e500);
229 ref->flags &= ~(E500_TLB_TLB0 | E500_TLB_VALID);
230 }
231
232 /*
233 * If TLB entry is still valid then it's a TLB0 entry, and thus
234 * backed by at most one host tlbe per shadow pid
235 */
236 if (ref->flags & E500_TLB_VALID)
237 kvmppc_e500_tlbil_one(vcpu_e500, gtlbe);
238
239 /* Mark the TLB as not backed by the host anymore */
240 ref->flags = 0;
241 }
242
tlbe_is_writable(struct kvm_book3e_206_tlb_entry * tlbe)243 static inline int tlbe_is_writable(struct kvm_book3e_206_tlb_entry *tlbe)
244 {
245 return tlbe->mas7_3 & (MAS3_SW|MAS3_UW);
246 }
247
kvmppc_e500_ref_setup(struct tlbe_ref * ref,struct kvm_book3e_206_tlb_entry * gtlbe,kvm_pfn_t pfn,unsigned int wimg)248 static inline void kvmppc_e500_ref_setup(struct tlbe_ref *ref,
249 struct kvm_book3e_206_tlb_entry *gtlbe,
250 kvm_pfn_t pfn, unsigned int wimg)
251 {
252 ref->pfn = pfn;
253 ref->flags = E500_TLB_VALID;
254
255 /* Use guest supplied MAS2_G and MAS2_E */
256 ref->flags |= (gtlbe->mas2 & MAS2_ATTRIB_MASK) | wimg;
257
258 /* Mark the page accessed */
259 kvm_set_pfn_accessed(pfn);
260
261 if (tlbe_is_writable(gtlbe))
262 kvm_set_pfn_dirty(pfn);
263 }
264
kvmppc_e500_ref_release(struct tlbe_ref * ref)265 static inline void kvmppc_e500_ref_release(struct tlbe_ref *ref)
266 {
267 if (ref->flags & E500_TLB_VALID) {
268 /* FIXME: don't log bogus pfn for TLB1 */
269 trace_kvm_booke206_ref_release(ref->pfn, ref->flags);
270 ref->flags = 0;
271 }
272 }
273
clear_tlb1_bitmap(struct kvmppc_vcpu_e500 * vcpu_e500)274 static void clear_tlb1_bitmap(struct kvmppc_vcpu_e500 *vcpu_e500)
275 {
276 if (vcpu_e500->g2h_tlb1_map)
277 memset(vcpu_e500->g2h_tlb1_map, 0,
278 sizeof(u64) * vcpu_e500->gtlb_params[1].entries);
279 if (vcpu_e500->h2g_tlb1_rmap)
280 memset(vcpu_e500->h2g_tlb1_rmap, 0,
281 sizeof(unsigned int) * host_tlb_params[1].entries);
282 }
283
clear_tlb_privs(struct kvmppc_vcpu_e500 * vcpu_e500)284 static void clear_tlb_privs(struct kvmppc_vcpu_e500 *vcpu_e500)
285 {
286 int tlbsel;
287 int i;
288
289 for (tlbsel = 0; tlbsel <= 1; tlbsel++) {
290 for (i = 0; i < vcpu_e500->gtlb_params[tlbsel].entries; i++) {
291 struct tlbe_ref *ref =
292 &vcpu_e500->gtlb_priv[tlbsel][i].ref;
293 kvmppc_e500_ref_release(ref);
294 }
295 }
296 }
297
kvmppc_core_flush_tlb(struct kvm_vcpu * vcpu)298 void kvmppc_core_flush_tlb(struct kvm_vcpu *vcpu)
299 {
300 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
301 kvmppc_e500_tlbil_all(vcpu_e500);
302 clear_tlb_privs(vcpu_e500);
303 clear_tlb1_bitmap(vcpu_e500);
304 }
305
306 /* TID must be supplied by the caller */
kvmppc_e500_setup_stlbe(struct kvm_vcpu * vcpu,struct kvm_book3e_206_tlb_entry * gtlbe,int tsize,struct tlbe_ref * ref,u64 gvaddr,struct kvm_book3e_206_tlb_entry * stlbe)307 static void kvmppc_e500_setup_stlbe(
308 struct kvm_vcpu *vcpu,
309 struct kvm_book3e_206_tlb_entry *gtlbe,
310 int tsize, struct tlbe_ref *ref, u64 gvaddr,
311 struct kvm_book3e_206_tlb_entry *stlbe)
312 {
313 kvm_pfn_t pfn = ref->pfn;
314 u32 pr = vcpu->arch.shared->msr & MSR_PR;
315
316 BUG_ON(!(ref->flags & E500_TLB_VALID));
317
318 /* Force IPROT=0 for all guest mappings. */
319 stlbe->mas1 = MAS1_TSIZE(tsize) | get_tlb_sts(gtlbe) | MAS1_VALID;
320 stlbe->mas2 = (gvaddr & MAS2_EPN) | (ref->flags & E500_TLB_MAS2_ATTR);
321 stlbe->mas7_3 = ((u64)pfn << PAGE_SHIFT) |
322 e500_shadow_mas3_attrib(gtlbe->mas7_3, pr);
323 }
324
kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 * vcpu_e500,u64 gvaddr,gfn_t gfn,struct kvm_book3e_206_tlb_entry * gtlbe,int tlbsel,struct kvm_book3e_206_tlb_entry * stlbe,struct tlbe_ref * ref)325 static inline int kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 *vcpu_e500,
326 u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
327 int tlbsel, struct kvm_book3e_206_tlb_entry *stlbe,
328 struct tlbe_ref *ref)
329 {
330 struct kvm_memory_slot *slot;
331 unsigned long pfn = 0; /* silence GCC warning */
332 unsigned long hva;
333 int pfnmap = 0;
334 int tsize = BOOK3E_PAGESZ_4K;
335 int ret = 0;
336 unsigned long mmu_seq;
337 struct kvm *kvm = vcpu_e500->vcpu.kvm;
338 unsigned long tsize_pages = 0;
339 pte_t *ptep;
340 unsigned int wimg = 0;
341 pgd_t *pgdir;
342 unsigned long flags;
343
344 /* used to check for invalidations in progress */
345 mmu_seq = kvm->mmu_notifier_seq;
346 smp_rmb();
347
348 /*
349 * Translate guest physical to true physical, acquiring
350 * a page reference if it is normal, non-reserved memory.
351 *
352 * gfn_to_memslot() must succeed because otherwise we wouldn't
353 * have gotten this far. Eventually we should just pass the slot
354 * pointer through from the first lookup.
355 */
356 slot = gfn_to_memslot(vcpu_e500->vcpu.kvm, gfn);
357 hva = gfn_to_hva_memslot(slot, gfn);
358
359 if (tlbsel == 1) {
360 struct vm_area_struct *vma;
361 down_read(¤t->mm->mmap_sem);
362
363 vma = find_vma(current->mm, hva);
364 if (vma && hva >= vma->vm_start &&
365 (vma->vm_flags & VM_PFNMAP)) {
366 /*
367 * This VMA is a physically contiguous region (e.g.
368 * /dev/mem) that bypasses normal Linux page
369 * management. Find the overlap between the
370 * vma and the memslot.
371 */
372
373 unsigned long start, end;
374 unsigned long slot_start, slot_end;
375
376 pfnmap = 1;
377
378 start = vma->vm_pgoff;
379 end = start +
380 ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT);
381
382 pfn = start + ((hva - vma->vm_start) >> PAGE_SHIFT);
383
384 slot_start = pfn - (gfn - slot->base_gfn);
385 slot_end = slot_start + slot->npages;
386
387 if (start < slot_start)
388 start = slot_start;
389 if (end > slot_end)
390 end = slot_end;
391
392 tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
393 MAS1_TSIZE_SHIFT;
394
395 /*
396 * e500 doesn't implement the lowest tsize bit,
397 * or 1K pages.
398 */
399 tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
400
401 /*
402 * Now find the largest tsize (up to what the guest
403 * requested) that will cover gfn, stay within the
404 * range, and for which gfn and pfn are mutually
405 * aligned.
406 */
407
408 for (; tsize > BOOK3E_PAGESZ_4K; tsize -= 2) {
409 unsigned long gfn_start, gfn_end;
410 tsize_pages = 1UL << (tsize - 2);
411
412 gfn_start = gfn & ~(tsize_pages - 1);
413 gfn_end = gfn_start + tsize_pages;
414
415 if (gfn_start + pfn - gfn < start)
416 continue;
417 if (gfn_end + pfn - gfn > end)
418 continue;
419 if ((gfn & (tsize_pages - 1)) !=
420 (pfn & (tsize_pages - 1)))
421 continue;
422
423 gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
424 pfn &= ~(tsize_pages - 1);
425 break;
426 }
427 } else if (vma && hva >= vma->vm_start &&
428 (vma->vm_flags & VM_HUGETLB)) {
429 unsigned long psize = vma_kernel_pagesize(vma);
430
431 tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
432 MAS1_TSIZE_SHIFT;
433
434 /*
435 * Take the largest page size that satisfies both host
436 * and guest mapping
437 */
438 tsize = min(__ilog2(psize) - 10, tsize);
439
440 /*
441 * e500 doesn't implement the lowest tsize bit,
442 * or 1K pages.
443 */
444 tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
445 }
446
447 up_read(¤t->mm->mmap_sem);
448 }
449
450 if (likely(!pfnmap)) {
451 tsize_pages = 1UL << (tsize + 10 - PAGE_SHIFT);
452 pfn = gfn_to_pfn_memslot(slot, gfn);
453 if (is_error_noslot_pfn(pfn)) {
454 if (printk_ratelimit())
455 pr_err("%s: real page not found for gfn %lx\n",
456 __func__, (long)gfn);
457 return -EINVAL;
458 }
459
460 /* Align guest and physical address to page map boundaries */
461 pfn &= ~(tsize_pages - 1);
462 gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
463 }
464
465 spin_lock(&kvm->mmu_lock);
466 if (mmu_notifier_retry(kvm, mmu_seq)) {
467 ret = -EAGAIN;
468 goto out;
469 }
470
471
472 pgdir = vcpu_e500->vcpu.arch.pgdir;
473 /*
474 * We are just looking at the wimg bits, so we don't
475 * care much about the trans splitting bit.
476 * We are holding kvm->mmu_lock so a notifier invalidate
477 * can't run hence pfn won't change.
478 */
479 local_irq_save(flags);
480 ptep = find_linux_pte(pgdir, hva, NULL, NULL);
481 if (ptep) {
482 pte_t pte = READ_ONCE(*ptep);
483
484 if (pte_present(pte)) {
485 wimg = (pte_val(pte) >> PTE_WIMGE_SHIFT) &
486 MAS2_WIMGE_MASK;
487 local_irq_restore(flags);
488 } else {
489 local_irq_restore(flags);
490 pr_err_ratelimited("%s: pte not present: gfn %lx,pfn %lx\n",
491 __func__, (long)gfn, pfn);
492 ret = -EINVAL;
493 goto out;
494 }
495 }
496 kvmppc_e500_ref_setup(ref, gtlbe, pfn, wimg);
497
498 kvmppc_e500_setup_stlbe(&vcpu_e500->vcpu, gtlbe, tsize,
499 ref, gvaddr, stlbe);
500
501 /* Clear i-cache for new pages */
502 kvmppc_mmu_flush_icache(pfn);
503
504 out:
505 spin_unlock(&kvm->mmu_lock);
506
507 /* Drop refcount on page, so that mmu notifiers can clear it */
508 kvm_release_pfn_clean(pfn);
509
510 return ret;
511 }
512
513 /* XXX only map the one-one case, for now use TLB0 */
kvmppc_e500_tlb0_map(struct kvmppc_vcpu_e500 * vcpu_e500,int esel,struct kvm_book3e_206_tlb_entry * stlbe)514 static int kvmppc_e500_tlb0_map(struct kvmppc_vcpu_e500 *vcpu_e500, int esel,
515 struct kvm_book3e_206_tlb_entry *stlbe)
516 {
517 struct kvm_book3e_206_tlb_entry *gtlbe;
518 struct tlbe_ref *ref;
519 int stlbsel = 0;
520 int sesel = 0;
521 int r;
522
523 gtlbe = get_entry(vcpu_e500, 0, esel);
524 ref = &vcpu_e500->gtlb_priv[0][esel].ref;
525
526 r = kvmppc_e500_shadow_map(vcpu_e500, get_tlb_eaddr(gtlbe),
527 get_tlb_raddr(gtlbe) >> PAGE_SHIFT,
528 gtlbe, 0, stlbe, ref);
529 if (r)
530 return r;
531
532 write_stlbe(vcpu_e500, gtlbe, stlbe, stlbsel, sesel);
533
534 return 0;
535 }
536
kvmppc_e500_tlb1_map_tlb1(struct kvmppc_vcpu_e500 * vcpu_e500,struct tlbe_ref * ref,int esel)537 static int kvmppc_e500_tlb1_map_tlb1(struct kvmppc_vcpu_e500 *vcpu_e500,
538 struct tlbe_ref *ref,
539 int esel)
540 {
541 unsigned int sesel = vcpu_e500->host_tlb1_nv++;
542
543 if (unlikely(vcpu_e500->host_tlb1_nv >= tlb1_max_shadow_size()))
544 vcpu_e500->host_tlb1_nv = 0;
545
546 if (vcpu_e500->h2g_tlb1_rmap[sesel]) {
547 unsigned int idx = vcpu_e500->h2g_tlb1_rmap[sesel] - 1;
548 vcpu_e500->g2h_tlb1_map[idx] &= ~(1ULL << sesel);
549 }
550
551 vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_BITMAP;
552 vcpu_e500->g2h_tlb1_map[esel] |= (u64)1 << sesel;
553 vcpu_e500->h2g_tlb1_rmap[sesel] = esel + 1;
554 WARN_ON(!(ref->flags & E500_TLB_VALID));
555
556 return sesel;
557 }
558
559 /* Caller must ensure that the specified guest TLB entry is safe to insert into
560 * the shadow TLB. */
561 /* For both one-one and one-to-many */
kvmppc_e500_tlb1_map(struct kvmppc_vcpu_e500 * vcpu_e500,u64 gvaddr,gfn_t gfn,struct kvm_book3e_206_tlb_entry * gtlbe,struct kvm_book3e_206_tlb_entry * stlbe,int esel)562 static int kvmppc_e500_tlb1_map(struct kvmppc_vcpu_e500 *vcpu_e500,
563 u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
564 struct kvm_book3e_206_tlb_entry *stlbe, int esel)
565 {
566 struct tlbe_ref *ref = &vcpu_e500->gtlb_priv[1][esel].ref;
567 int sesel;
568 int r;
569
570 r = kvmppc_e500_shadow_map(vcpu_e500, gvaddr, gfn, gtlbe, 1, stlbe,
571 ref);
572 if (r)
573 return r;
574
575 /* Use TLB0 when we can only map a page with 4k */
576 if (get_tlb_tsize(stlbe) == BOOK3E_PAGESZ_4K) {
577 vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_TLB0;
578 write_stlbe(vcpu_e500, gtlbe, stlbe, 0, 0);
579 return 0;
580 }
581
582 /* Otherwise map into TLB1 */
583 sesel = kvmppc_e500_tlb1_map_tlb1(vcpu_e500, ref, esel);
584 write_stlbe(vcpu_e500, gtlbe, stlbe, 1, sesel);
585
586 return 0;
587 }
588
kvmppc_mmu_map(struct kvm_vcpu * vcpu,u64 eaddr,gpa_t gpaddr,unsigned int index)589 void kvmppc_mmu_map(struct kvm_vcpu *vcpu, u64 eaddr, gpa_t gpaddr,
590 unsigned int index)
591 {
592 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
593 struct tlbe_priv *priv;
594 struct kvm_book3e_206_tlb_entry *gtlbe, stlbe;
595 int tlbsel = tlbsel_of(index);
596 int esel = esel_of(index);
597
598 gtlbe = get_entry(vcpu_e500, tlbsel, esel);
599
600 switch (tlbsel) {
601 case 0:
602 priv = &vcpu_e500->gtlb_priv[tlbsel][esel];
603
604 /* Triggers after clear_tlb_privs or on initial mapping */
605 if (!(priv->ref.flags & E500_TLB_VALID)) {
606 kvmppc_e500_tlb0_map(vcpu_e500, esel, &stlbe);
607 } else {
608 kvmppc_e500_setup_stlbe(vcpu, gtlbe, BOOK3E_PAGESZ_4K,
609 &priv->ref, eaddr, &stlbe);
610 write_stlbe(vcpu_e500, gtlbe, &stlbe, 0, 0);
611 }
612 break;
613
614 case 1: {
615 gfn_t gfn = gpaddr >> PAGE_SHIFT;
616 kvmppc_e500_tlb1_map(vcpu_e500, eaddr, gfn, gtlbe, &stlbe,
617 esel);
618 break;
619 }
620
621 default:
622 BUG();
623 break;
624 }
625 }
626
627 #ifdef CONFIG_KVM_BOOKE_HV
kvmppc_load_last_inst(struct kvm_vcpu * vcpu,enum instruction_type type,u32 * instr)628 int kvmppc_load_last_inst(struct kvm_vcpu *vcpu, enum instruction_type type,
629 u32 *instr)
630 {
631 gva_t geaddr;
632 hpa_t addr;
633 hfn_t pfn;
634 hva_t eaddr;
635 u32 mas1, mas2, mas3;
636 u64 mas7_mas3;
637 struct page *page;
638 unsigned int addr_space, psize_shift;
639 bool pr;
640 unsigned long flags;
641
642 /* Search TLB for guest pc to get the real address */
643 geaddr = kvmppc_get_pc(vcpu);
644
645 addr_space = (vcpu->arch.shared->msr & MSR_IS) >> MSR_IR_LG;
646
647 local_irq_save(flags);
648 mtspr(SPRN_MAS6, (vcpu->arch.pid << MAS6_SPID_SHIFT) | addr_space);
649 mtspr(SPRN_MAS5, MAS5_SGS | get_lpid(vcpu));
650 asm volatile("tlbsx 0, %[geaddr]\n" : :
651 [geaddr] "r" (geaddr));
652 mtspr(SPRN_MAS5, 0);
653 mtspr(SPRN_MAS8, 0);
654 mas1 = mfspr(SPRN_MAS1);
655 mas2 = mfspr(SPRN_MAS2);
656 mas3 = mfspr(SPRN_MAS3);
657 #ifdef CONFIG_64BIT
658 mas7_mas3 = mfspr(SPRN_MAS7_MAS3);
659 #else
660 mas7_mas3 = ((u64)mfspr(SPRN_MAS7) << 32) | mas3;
661 #endif
662 local_irq_restore(flags);
663
664 /*
665 * If the TLB entry for guest pc was evicted, return to the guest.
666 * There are high chances to find a valid TLB entry next time.
667 */
668 if (!(mas1 & MAS1_VALID))
669 return EMULATE_AGAIN;
670
671 /*
672 * Another thread may rewrite the TLB entry in parallel, don't
673 * execute from the address if the execute permission is not set
674 */
675 pr = vcpu->arch.shared->msr & MSR_PR;
676 if (unlikely((pr && !(mas3 & MAS3_UX)) ||
677 (!pr && !(mas3 & MAS3_SX)))) {
678 pr_err_ratelimited(
679 "%s: Instruction emulation from guest address %08lx without execute permission\n",
680 __func__, geaddr);
681 return EMULATE_AGAIN;
682 }
683
684 /*
685 * The real address will be mapped by a cacheable, memory coherent,
686 * write-back page. Check for mismatches when LRAT is used.
687 */
688 if (has_feature(vcpu, VCPU_FTR_MMU_V2) &&
689 unlikely((mas2 & MAS2_I) || (mas2 & MAS2_W) || !(mas2 & MAS2_M))) {
690 pr_err_ratelimited(
691 "%s: Instruction emulation from guest address %08lx mismatches storage attributes\n",
692 __func__, geaddr);
693 return EMULATE_AGAIN;
694 }
695
696 /* Get pfn */
697 psize_shift = MAS1_GET_TSIZE(mas1) + 10;
698 addr = (mas7_mas3 & (~0ULL << psize_shift)) |
699 (geaddr & ((1ULL << psize_shift) - 1ULL));
700 pfn = addr >> PAGE_SHIFT;
701
702 /* Guard against emulation from devices area */
703 if (unlikely(!page_is_ram(pfn))) {
704 pr_err_ratelimited("%s: Instruction emulation from non-RAM host address %08llx is not supported\n",
705 __func__, addr);
706 return EMULATE_AGAIN;
707 }
708
709 /* Map a page and get guest's instruction */
710 page = pfn_to_page(pfn);
711 eaddr = (unsigned long)kmap_atomic(page);
712 *instr = *(u32 *)(eaddr | (unsigned long)(addr & ~PAGE_MASK));
713 kunmap_atomic((u32 *)eaddr);
714
715 return EMULATE_DONE;
716 }
717 #else
kvmppc_load_last_inst(struct kvm_vcpu * vcpu,enum instruction_type type,u32 * instr)718 int kvmppc_load_last_inst(struct kvm_vcpu *vcpu, enum instruction_type type,
719 u32 *instr)
720 {
721 return EMULATE_AGAIN;
722 }
723 #endif
724
725 /************* MMU Notifiers *************/
726
kvm_unmap_hva(struct kvm * kvm,unsigned long hva)727 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
728 {
729 trace_kvm_unmap_hva(hva);
730
731 /*
732 * Flush all shadow tlb entries everywhere. This is slow, but
733 * we are 100% sure that we catch the to be unmapped page
734 */
735 kvm_flush_remote_tlbs(kvm);
736
737 return 0;
738 }
739
kvm_unmap_hva_range(struct kvm * kvm,unsigned long start,unsigned long end)740 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
741 {
742 /* kvm_unmap_hva flushes everything anyways */
743 kvm_unmap_hva(kvm, start);
744
745 return 0;
746 }
747
kvm_age_hva(struct kvm * kvm,unsigned long start,unsigned long end)748 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
749 {
750 /* XXX could be more clever ;) */
751 return 0;
752 }
753
kvm_test_age_hva(struct kvm * kvm,unsigned long hva)754 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
755 {
756 /* XXX could be more clever ;) */
757 return 0;
758 }
759
kvm_set_spte_hva(struct kvm * kvm,unsigned long hva,pte_t pte)760 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
761 {
762 /* The page will get remapped properly on its next fault */
763 kvm_unmap_hva(kvm, hva);
764 }
765
766 /*****************************************/
767
e500_mmu_host_init(struct kvmppc_vcpu_e500 * vcpu_e500)768 int e500_mmu_host_init(struct kvmppc_vcpu_e500 *vcpu_e500)
769 {
770 host_tlb_params[0].entries = mfspr(SPRN_TLB0CFG) & TLBnCFG_N_ENTRY;
771 host_tlb_params[1].entries = mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY;
772
773 /*
774 * This should never happen on real e500 hardware, but is
775 * architecturally possible -- e.g. in some weird nested
776 * virtualization case.
777 */
778 if (host_tlb_params[0].entries == 0 ||
779 host_tlb_params[1].entries == 0) {
780 pr_err("%s: need to know host tlb size\n", __func__);
781 return -ENODEV;
782 }
783
784 host_tlb_params[0].ways = (mfspr(SPRN_TLB0CFG) & TLBnCFG_ASSOC) >>
785 TLBnCFG_ASSOC_SHIFT;
786 host_tlb_params[1].ways = host_tlb_params[1].entries;
787
788 if (!is_power_of_2(host_tlb_params[0].entries) ||
789 !is_power_of_2(host_tlb_params[0].ways) ||
790 host_tlb_params[0].entries < host_tlb_params[0].ways ||
791 host_tlb_params[0].ways == 0) {
792 pr_err("%s: bad tlb0 host config: %u entries %u ways\n",
793 __func__, host_tlb_params[0].entries,
794 host_tlb_params[0].ways);
795 return -ENODEV;
796 }
797
798 host_tlb_params[0].sets =
799 host_tlb_params[0].entries / host_tlb_params[0].ways;
800 host_tlb_params[1].sets = 1;
801 vcpu_e500->h2g_tlb1_rmap = kcalloc(host_tlb_params[1].entries,
802 sizeof(*vcpu_e500->h2g_tlb1_rmap),
803 GFP_KERNEL);
804 if (!vcpu_e500->h2g_tlb1_rmap)
805 return -EINVAL;
806
807 return 0;
808 }
809
e500_mmu_host_uninit(struct kvmppc_vcpu_e500 * vcpu_e500)810 void e500_mmu_host_uninit(struct kvmppc_vcpu_e500 *vcpu_e500)
811 {
812 kfree(vcpu_e500->h2g_tlb1_rmap);
813 }
814