• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * This program is distributed in the hope that it will be useful,
7  * but WITHOUT ANY WARRANTY; without even the implied warranty of
8  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
9  * GNU General Public License for more details.
10  *
11  * You should have received a copy of the GNU General Public License
12  * along with this program; if not, write to the Free Software
13  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
14  *
15  * Copyright IBM Corp. 2007
16  *
17  * Authors: Hollis Blanchard <hollisb@us.ibm.com>
18  *          Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
19  */
20 
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/vmalloc.h>
25 #include <linux/hrtimer.h>
26 #include <linux/sched/signal.h>
27 #include <linux/fs.h>
28 #include <linux/slab.h>
29 #include <linux/file.h>
30 #include <linux/module.h>
31 #include <linux/irqbypass.h>
32 #include <linux/kvm_irqfd.h>
33 #include <asm/cputable.h>
34 #include <linux/uaccess.h>
35 #include <asm/kvm_ppc.h>
36 #include <asm/tlbflush.h>
37 #include <asm/cputhreads.h>
38 #include <asm/irqflags.h>
39 #include <asm/iommu.h>
40 #include <asm/switch_to.h>
41 #include <asm/xive.h>
42 
43 #include "timing.h"
44 #include "irq.h"
45 #include "../mm/mmu_decl.h"
46 
47 #define CREATE_TRACE_POINTS
48 #include "trace.h"
49 
50 struct kvmppc_ops *kvmppc_hv_ops;
51 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
52 struct kvmppc_ops *kvmppc_pr_ops;
53 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
54 
55 
kvm_arch_vcpu_runnable(struct kvm_vcpu * v)56 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
57 {
58 	return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
59 }
60 
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)61 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
62 {
63 	return kvm_arch_vcpu_runnable(vcpu);
64 }
65 
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)66 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
67 {
68 	return false;
69 }
70 
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)71 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
72 {
73 	return 1;
74 }
75 
76 /*
77  * Common checks before entering the guest world.  Call with interrupts
78  * disabled.
79  *
80  * returns:
81  *
82  * == 1 if we're ready to go into guest state
83  * <= 0 if we need to go back to the host with return value
84  */
kvmppc_prepare_to_enter(struct kvm_vcpu * vcpu)85 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
86 {
87 	int r;
88 
89 	WARN_ON(irqs_disabled());
90 	hard_irq_disable();
91 
92 	while (true) {
93 		if (need_resched()) {
94 			local_irq_enable();
95 			cond_resched();
96 			hard_irq_disable();
97 			continue;
98 		}
99 
100 		if (signal_pending(current)) {
101 			kvmppc_account_exit(vcpu, SIGNAL_EXITS);
102 			vcpu->run->exit_reason = KVM_EXIT_INTR;
103 			r = -EINTR;
104 			break;
105 		}
106 
107 		vcpu->mode = IN_GUEST_MODE;
108 
109 		/*
110 		 * Reading vcpu->requests must happen after setting vcpu->mode,
111 		 * so we don't miss a request because the requester sees
112 		 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
113 		 * before next entering the guest (and thus doesn't IPI).
114 		 * This also orders the write to mode from any reads
115 		 * to the page tables done while the VCPU is running.
116 		 * Please see the comment in kvm_flush_remote_tlbs.
117 		 */
118 		smp_mb();
119 
120 		if (kvm_request_pending(vcpu)) {
121 			/* Make sure we process requests preemptable */
122 			local_irq_enable();
123 			trace_kvm_check_requests(vcpu);
124 			r = kvmppc_core_check_requests(vcpu);
125 			hard_irq_disable();
126 			if (r > 0)
127 				continue;
128 			break;
129 		}
130 
131 		if (kvmppc_core_prepare_to_enter(vcpu)) {
132 			/* interrupts got enabled in between, so we
133 			   are back at square 1 */
134 			continue;
135 		}
136 
137 		guest_enter_irqoff();
138 		return 1;
139 	}
140 
141 	/* return to host */
142 	local_irq_enable();
143 	return r;
144 }
145 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
146 
147 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
kvmppc_swab_shared(struct kvm_vcpu * vcpu)148 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
149 {
150 	struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
151 	int i;
152 
153 	shared->sprg0 = swab64(shared->sprg0);
154 	shared->sprg1 = swab64(shared->sprg1);
155 	shared->sprg2 = swab64(shared->sprg2);
156 	shared->sprg3 = swab64(shared->sprg3);
157 	shared->srr0 = swab64(shared->srr0);
158 	shared->srr1 = swab64(shared->srr1);
159 	shared->dar = swab64(shared->dar);
160 	shared->msr = swab64(shared->msr);
161 	shared->dsisr = swab32(shared->dsisr);
162 	shared->int_pending = swab32(shared->int_pending);
163 	for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
164 		shared->sr[i] = swab32(shared->sr[i]);
165 }
166 #endif
167 
kvmppc_kvm_pv(struct kvm_vcpu * vcpu)168 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
169 {
170 	int nr = kvmppc_get_gpr(vcpu, 11);
171 	int r;
172 	unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
173 	unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
174 	unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
175 	unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
176 	unsigned long r2 = 0;
177 
178 	if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
179 		/* 32 bit mode */
180 		param1 &= 0xffffffff;
181 		param2 &= 0xffffffff;
182 		param3 &= 0xffffffff;
183 		param4 &= 0xffffffff;
184 	}
185 
186 	switch (nr) {
187 	case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
188 	{
189 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
190 		/* Book3S can be little endian, find it out here */
191 		int shared_big_endian = true;
192 		if (vcpu->arch.intr_msr & MSR_LE)
193 			shared_big_endian = false;
194 		if (shared_big_endian != vcpu->arch.shared_big_endian)
195 			kvmppc_swab_shared(vcpu);
196 		vcpu->arch.shared_big_endian = shared_big_endian;
197 #endif
198 
199 		if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
200 			/*
201 			 * Older versions of the Linux magic page code had
202 			 * a bug where they would map their trampoline code
203 			 * NX. If that's the case, remove !PR NX capability.
204 			 */
205 			vcpu->arch.disable_kernel_nx = true;
206 			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
207 		}
208 
209 		vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
210 		vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
211 
212 #ifdef CONFIG_PPC_64K_PAGES
213 		/*
214 		 * Make sure our 4k magic page is in the same window of a 64k
215 		 * page within the guest and within the host's page.
216 		 */
217 		if ((vcpu->arch.magic_page_pa & 0xf000) !=
218 		    ((ulong)vcpu->arch.shared & 0xf000)) {
219 			void *old_shared = vcpu->arch.shared;
220 			ulong shared = (ulong)vcpu->arch.shared;
221 			void *new_shared;
222 
223 			shared &= PAGE_MASK;
224 			shared |= vcpu->arch.magic_page_pa & 0xf000;
225 			new_shared = (void*)shared;
226 			memcpy(new_shared, old_shared, 0x1000);
227 			vcpu->arch.shared = new_shared;
228 		}
229 #endif
230 
231 		r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
232 
233 		r = EV_SUCCESS;
234 		break;
235 	}
236 	case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
237 		r = EV_SUCCESS;
238 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
239 		r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
240 #endif
241 
242 		/* Second return value is in r4 */
243 		break;
244 	case EV_HCALL_TOKEN(EV_IDLE):
245 		r = EV_SUCCESS;
246 		kvm_vcpu_block(vcpu);
247 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
248 		break;
249 	default:
250 		r = EV_UNIMPLEMENTED;
251 		break;
252 	}
253 
254 	kvmppc_set_gpr(vcpu, 4, r2);
255 
256 	return r;
257 }
258 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
259 
kvmppc_sanity_check(struct kvm_vcpu * vcpu)260 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
261 {
262 	int r = false;
263 
264 	/* We have to know what CPU to virtualize */
265 	if (!vcpu->arch.pvr)
266 		goto out;
267 
268 	/* PAPR only works with book3s_64 */
269 	if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
270 		goto out;
271 
272 	/* HV KVM can only do PAPR mode for now */
273 	if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
274 		goto out;
275 
276 #ifdef CONFIG_KVM_BOOKE_HV
277 	if (!cpu_has_feature(CPU_FTR_EMB_HV))
278 		goto out;
279 #endif
280 
281 	r = true;
282 
283 out:
284 	vcpu->arch.sane = r;
285 	return r ? 0 : -EINVAL;
286 }
287 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
288 
kvmppc_emulate_mmio(struct kvm_run * run,struct kvm_vcpu * vcpu)289 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
290 {
291 	enum emulation_result er;
292 	int r;
293 
294 	er = kvmppc_emulate_loadstore(vcpu);
295 	switch (er) {
296 	case EMULATE_DONE:
297 		/* Future optimization: only reload non-volatiles if they were
298 		 * actually modified. */
299 		r = RESUME_GUEST_NV;
300 		break;
301 	case EMULATE_AGAIN:
302 		r = RESUME_GUEST;
303 		break;
304 	case EMULATE_DO_MMIO:
305 		run->exit_reason = KVM_EXIT_MMIO;
306 		/* We must reload nonvolatiles because "update" load/store
307 		 * instructions modify register state. */
308 		/* Future optimization: only reload non-volatiles if they were
309 		 * actually modified. */
310 		r = RESUME_HOST_NV;
311 		break;
312 	case EMULATE_FAIL:
313 	{
314 		u32 last_inst;
315 
316 		kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
317 		/* XXX Deliver Program interrupt to guest. */
318 		pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
319 		r = RESUME_HOST;
320 		break;
321 	}
322 	default:
323 		WARN_ON(1);
324 		r = RESUME_GUEST;
325 	}
326 
327 	return r;
328 }
329 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
330 
kvmppc_st(struct kvm_vcpu * vcpu,ulong * eaddr,int size,void * ptr,bool data)331 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
332 	      bool data)
333 {
334 	ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
335 	struct kvmppc_pte pte;
336 	int r;
337 
338 	vcpu->stat.st++;
339 
340 	r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
341 			 XLATE_WRITE, &pte);
342 	if (r < 0)
343 		return r;
344 
345 	*eaddr = pte.raddr;
346 
347 	if (!pte.may_write)
348 		return -EPERM;
349 
350 	/* Magic page override */
351 	if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
352 	    ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
353 	    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
354 		void *magic = vcpu->arch.shared;
355 		magic += pte.eaddr & 0xfff;
356 		memcpy(magic, ptr, size);
357 		return EMULATE_DONE;
358 	}
359 
360 	if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
361 		return EMULATE_DO_MMIO;
362 
363 	return EMULATE_DONE;
364 }
365 EXPORT_SYMBOL_GPL(kvmppc_st);
366 
kvmppc_ld(struct kvm_vcpu * vcpu,ulong * eaddr,int size,void * ptr,bool data)367 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
368 		      bool data)
369 {
370 	ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
371 	struct kvmppc_pte pte;
372 	int rc;
373 
374 	vcpu->stat.ld++;
375 
376 	rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
377 			  XLATE_READ, &pte);
378 	if (rc)
379 		return rc;
380 
381 	*eaddr = pte.raddr;
382 
383 	if (!pte.may_read)
384 		return -EPERM;
385 
386 	if (!data && !pte.may_execute)
387 		return -ENOEXEC;
388 
389 	/* Magic page override */
390 	if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
391 	    ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
392 	    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
393 		void *magic = vcpu->arch.shared;
394 		magic += pte.eaddr & 0xfff;
395 		memcpy(ptr, magic, size);
396 		return EMULATE_DONE;
397 	}
398 
399 	if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
400 		return EMULATE_DO_MMIO;
401 
402 	return EMULATE_DONE;
403 }
404 EXPORT_SYMBOL_GPL(kvmppc_ld);
405 
kvm_arch_hardware_enable(void)406 int kvm_arch_hardware_enable(void)
407 {
408 	return 0;
409 }
410 
kvm_arch_hardware_setup(void)411 int kvm_arch_hardware_setup(void)
412 {
413 	return 0;
414 }
415 
kvm_arch_check_processor_compat(void * rtn)416 void kvm_arch_check_processor_compat(void *rtn)
417 {
418 	*(int *)rtn = kvmppc_core_check_processor_compat();
419 }
420 
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)421 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
422 {
423 	struct kvmppc_ops *kvm_ops = NULL;
424 	/*
425 	 * if we have both HV and PR enabled, default is HV
426 	 */
427 	if (type == 0) {
428 		if (kvmppc_hv_ops)
429 			kvm_ops = kvmppc_hv_ops;
430 		else
431 			kvm_ops = kvmppc_pr_ops;
432 		if (!kvm_ops)
433 			goto err_out;
434 	} else	if (type == KVM_VM_PPC_HV) {
435 		if (!kvmppc_hv_ops)
436 			goto err_out;
437 		kvm_ops = kvmppc_hv_ops;
438 	} else if (type == KVM_VM_PPC_PR) {
439 		if (!kvmppc_pr_ops)
440 			goto err_out;
441 		kvm_ops = kvmppc_pr_ops;
442 	} else
443 		goto err_out;
444 
445 	if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
446 		return -ENOENT;
447 
448 	kvm->arch.kvm_ops = kvm_ops;
449 	return kvmppc_core_init_vm(kvm);
450 err_out:
451 	return -EINVAL;
452 }
453 
kvm_arch_has_vcpu_debugfs(void)454 bool kvm_arch_has_vcpu_debugfs(void)
455 {
456 	return false;
457 }
458 
kvm_arch_create_vcpu_debugfs(struct kvm_vcpu * vcpu)459 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
460 {
461 	return 0;
462 }
463 
kvm_arch_destroy_vm(struct kvm * kvm)464 void kvm_arch_destroy_vm(struct kvm *kvm)
465 {
466 	unsigned int i;
467 	struct kvm_vcpu *vcpu;
468 
469 #ifdef CONFIG_KVM_XICS
470 	/*
471 	 * We call kick_all_cpus_sync() to ensure that all
472 	 * CPUs have executed any pending IPIs before we
473 	 * continue and free VCPUs structures below.
474 	 */
475 	if (is_kvmppc_hv_enabled(kvm))
476 		kick_all_cpus_sync();
477 #endif
478 
479 	kvm_for_each_vcpu(i, vcpu, kvm)
480 		kvm_arch_vcpu_free(vcpu);
481 
482 	mutex_lock(&kvm->lock);
483 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
484 		kvm->vcpus[i] = NULL;
485 
486 	atomic_set(&kvm->online_vcpus, 0);
487 
488 	kvmppc_core_destroy_vm(kvm);
489 
490 	mutex_unlock(&kvm->lock);
491 
492 	/* drop the module reference */
493 	module_put(kvm->arch.kvm_ops->owner);
494 }
495 
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)496 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
497 {
498 	int r;
499 	/* Assume we're using HV mode when the HV module is loaded */
500 	int hv_enabled = kvmppc_hv_ops ? 1 : 0;
501 
502 	if (kvm) {
503 		/*
504 		 * Hooray - we know which VM type we're running on. Depend on
505 		 * that rather than the guess above.
506 		 */
507 		hv_enabled = is_kvmppc_hv_enabled(kvm);
508 	}
509 
510 	switch (ext) {
511 #ifdef CONFIG_BOOKE
512 	case KVM_CAP_PPC_BOOKE_SREGS:
513 	case KVM_CAP_PPC_BOOKE_WATCHDOG:
514 	case KVM_CAP_PPC_EPR:
515 #else
516 	case KVM_CAP_PPC_SEGSTATE:
517 	case KVM_CAP_PPC_HIOR:
518 	case KVM_CAP_PPC_PAPR:
519 #endif
520 	case KVM_CAP_PPC_UNSET_IRQ:
521 	case KVM_CAP_PPC_IRQ_LEVEL:
522 	case KVM_CAP_ENABLE_CAP:
523 	case KVM_CAP_ENABLE_CAP_VM:
524 	case KVM_CAP_ONE_REG:
525 	case KVM_CAP_IOEVENTFD:
526 	case KVM_CAP_DEVICE_CTRL:
527 	case KVM_CAP_IMMEDIATE_EXIT:
528 		r = 1;
529 		break;
530 	case KVM_CAP_PPC_PAIRED_SINGLES:
531 	case KVM_CAP_PPC_OSI:
532 	case KVM_CAP_PPC_GET_PVINFO:
533 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
534 	case KVM_CAP_SW_TLB:
535 #endif
536 		/* We support this only for PR */
537 		r = !hv_enabled;
538 		break;
539 #ifdef CONFIG_KVM_MPIC
540 	case KVM_CAP_IRQ_MPIC:
541 		r = 1;
542 		break;
543 #endif
544 
545 #ifdef CONFIG_PPC_BOOK3S_64
546 	case KVM_CAP_SPAPR_TCE:
547 	case KVM_CAP_SPAPR_TCE_64:
548 		r = 1;
549 		break;
550 	case KVM_CAP_SPAPR_TCE_VFIO:
551 		r = !!cpu_has_feature(CPU_FTR_HVMODE);
552 		break;
553 	case KVM_CAP_PPC_RTAS:
554 	case KVM_CAP_PPC_FIXUP_HCALL:
555 	case KVM_CAP_PPC_ENABLE_HCALL:
556 #ifdef CONFIG_KVM_XICS
557 	case KVM_CAP_IRQ_XICS:
558 #endif
559 		r = 1;
560 		break;
561 
562 	case KVM_CAP_PPC_ALLOC_HTAB:
563 		r = hv_enabled;
564 		break;
565 #endif /* CONFIG_PPC_BOOK3S_64 */
566 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
567 	case KVM_CAP_PPC_SMT:
568 		r = 0;
569 		if (kvm) {
570 			if (kvm->arch.emul_smt_mode > 1)
571 				r = kvm->arch.emul_smt_mode;
572 			else
573 				r = kvm->arch.smt_mode;
574 		} else if (hv_enabled) {
575 			if (cpu_has_feature(CPU_FTR_ARCH_300))
576 				r = 1;
577 			else
578 				r = threads_per_subcore;
579 		}
580 		break;
581 	case KVM_CAP_PPC_SMT_POSSIBLE:
582 		r = 1;
583 		if (hv_enabled) {
584 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
585 				r = ((threads_per_subcore << 1) - 1);
586 			else
587 				/* P9 can emulate dbells, so allow any mode */
588 				r = 8 | 4 | 2 | 1;
589 		}
590 		break;
591 	case KVM_CAP_PPC_RMA:
592 		r = 0;
593 		break;
594 	case KVM_CAP_PPC_HWRNG:
595 		r = kvmppc_hwrng_present();
596 		break;
597 	case KVM_CAP_PPC_MMU_RADIX:
598 		r = !!(hv_enabled && radix_enabled());
599 		break;
600 	case KVM_CAP_PPC_MMU_HASH_V3:
601 		r = !!(hv_enabled && !radix_enabled() &&
602 		       cpu_has_feature(CPU_FTR_ARCH_300));
603 		break;
604 #endif
605 	case KVM_CAP_SYNC_MMU:
606 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
607 		r = hv_enabled;
608 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
609 		r = 1;
610 #else
611 		r = 0;
612 #endif
613 		break;
614 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
615 	case KVM_CAP_PPC_HTAB_FD:
616 		r = hv_enabled;
617 		break;
618 #endif
619 	case KVM_CAP_NR_VCPUS:
620 		/*
621 		 * Recommending a number of CPUs is somewhat arbitrary; we
622 		 * return the number of present CPUs for -HV (since a host
623 		 * will have secondary threads "offline"), and for other KVM
624 		 * implementations just count online CPUs.
625 		 */
626 		if (hv_enabled)
627 			r = num_present_cpus();
628 		else
629 			r = num_online_cpus();
630 		break;
631 	case KVM_CAP_NR_MEMSLOTS:
632 		r = KVM_USER_MEM_SLOTS;
633 		break;
634 	case KVM_CAP_MAX_VCPUS:
635 		r = KVM_MAX_VCPUS;
636 		break;
637 	case KVM_CAP_MAX_VCPU_ID:
638 		r = KVM_MAX_VCPU_ID;
639 		break;
640 #ifdef CONFIG_PPC_BOOK3S_64
641 	case KVM_CAP_PPC_GET_SMMU_INFO:
642 		r = 1;
643 		break;
644 	case KVM_CAP_SPAPR_MULTITCE:
645 		r = 1;
646 		break;
647 	case KVM_CAP_SPAPR_RESIZE_HPT:
648 		/* Disable this on POWER9 until code handles new HPTE format */
649 		r = !!hv_enabled && !cpu_has_feature(CPU_FTR_ARCH_300);
650 		break;
651 #endif
652 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
653 	case KVM_CAP_PPC_FWNMI:
654 		r = hv_enabled;
655 		break;
656 #endif
657 	case KVM_CAP_PPC_HTM:
658 		r = cpu_has_feature(CPU_FTR_TM_COMP) && hv_enabled;
659 		break;
660 	default:
661 		r = 0;
662 		break;
663 	}
664 	return r;
665 
666 }
667 
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)668 long kvm_arch_dev_ioctl(struct file *filp,
669                         unsigned int ioctl, unsigned long arg)
670 {
671 	return -EINVAL;
672 }
673 
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * free,struct kvm_memory_slot * dont)674 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
675 			   struct kvm_memory_slot *dont)
676 {
677 	kvmppc_core_free_memslot(kvm, free, dont);
678 }
679 
kvm_arch_create_memslot(struct kvm * kvm,struct kvm_memory_slot * slot,unsigned long npages)680 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
681 			    unsigned long npages)
682 {
683 	return kvmppc_core_create_memslot(kvm, slot, npages);
684 }
685 
kvm_arch_prepare_memory_region(struct kvm * kvm,struct kvm_memory_slot * memslot,const struct kvm_userspace_memory_region * mem,enum kvm_mr_change change)686 int kvm_arch_prepare_memory_region(struct kvm *kvm,
687 				   struct kvm_memory_slot *memslot,
688 				   const struct kvm_userspace_memory_region *mem,
689 				   enum kvm_mr_change change)
690 {
691 	return kvmppc_core_prepare_memory_region(kvm, memslot, mem);
692 }
693 
kvm_arch_commit_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,const struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)694 void kvm_arch_commit_memory_region(struct kvm *kvm,
695 				   const struct kvm_userspace_memory_region *mem,
696 				   const struct kvm_memory_slot *old,
697 				   const struct kvm_memory_slot *new,
698 				   enum kvm_mr_change change)
699 {
700 	kvmppc_core_commit_memory_region(kvm, mem, old, new);
701 }
702 
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)703 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
704 				   struct kvm_memory_slot *slot)
705 {
706 	kvmppc_core_flush_memslot(kvm, slot);
707 }
708 
kvm_arch_vcpu_create(struct kvm * kvm,unsigned int id)709 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
710 {
711 	struct kvm_vcpu *vcpu;
712 	vcpu = kvmppc_core_vcpu_create(kvm, id);
713 	if (!IS_ERR(vcpu)) {
714 		vcpu->arch.wqp = &vcpu->wq;
715 		kvmppc_create_vcpu_debugfs(vcpu, id);
716 	}
717 	return vcpu;
718 }
719 
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)720 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
721 {
722 }
723 
kvm_arch_vcpu_free(struct kvm_vcpu * vcpu)724 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
725 {
726 	/* Make sure we're not using the vcpu anymore */
727 	hrtimer_cancel(&vcpu->arch.dec_timer);
728 
729 	kvmppc_remove_vcpu_debugfs(vcpu);
730 
731 	switch (vcpu->arch.irq_type) {
732 	case KVMPPC_IRQ_MPIC:
733 		kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
734 		break;
735 	case KVMPPC_IRQ_XICS:
736 		if (xive_enabled())
737 			kvmppc_xive_cleanup_vcpu(vcpu);
738 		else
739 			kvmppc_xics_free_icp(vcpu);
740 		break;
741 	}
742 
743 	kvmppc_core_vcpu_free(vcpu);
744 }
745 
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)746 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
747 {
748 	kvm_arch_vcpu_free(vcpu);
749 }
750 
kvm_cpu_has_pending_timer(struct kvm_vcpu * vcpu)751 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
752 {
753 	return kvmppc_core_pending_dec(vcpu);
754 }
755 
kvmppc_decrementer_wakeup(struct hrtimer * timer)756 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
757 {
758 	struct kvm_vcpu *vcpu;
759 
760 	vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
761 	kvmppc_decrementer_func(vcpu);
762 
763 	return HRTIMER_NORESTART;
764 }
765 
kvm_arch_vcpu_init(struct kvm_vcpu * vcpu)766 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
767 {
768 	int ret;
769 
770 	hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
771 	vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
772 	vcpu->arch.dec_expires = get_tb();
773 
774 #ifdef CONFIG_KVM_EXIT_TIMING
775 	mutex_init(&vcpu->arch.exit_timing_lock);
776 #endif
777 	ret = kvmppc_subarch_vcpu_init(vcpu);
778 	return ret;
779 }
780 
kvm_arch_vcpu_uninit(struct kvm_vcpu * vcpu)781 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
782 {
783 	kvmppc_mmu_destroy(vcpu);
784 	kvmppc_subarch_vcpu_uninit(vcpu);
785 }
786 
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)787 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
788 {
789 #ifdef CONFIG_BOOKE
790 	/*
791 	 * vrsave (formerly usprg0) isn't used by Linux, but may
792 	 * be used by the guest.
793 	 *
794 	 * On non-booke this is associated with Altivec and
795 	 * is handled by code in book3s.c.
796 	 */
797 	mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
798 #endif
799 	kvmppc_core_vcpu_load(vcpu, cpu);
800 }
801 
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)802 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
803 {
804 	kvmppc_core_vcpu_put(vcpu);
805 #ifdef CONFIG_BOOKE
806 	vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
807 #endif
808 }
809 
810 /*
811  * irq_bypass_add_producer and irq_bypass_del_producer are only
812  * useful if the architecture supports PCI passthrough.
813  * irq_bypass_stop and irq_bypass_start are not needed and so
814  * kvm_ops are not defined for them.
815  */
kvm_arch_has_irq_bypass(void)816 bool kvm_arch_has_irq_bypass(void)
817 {
818 	return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
819 		(kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
820 }
821 
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)822 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
823 				     struct irq_bypass_producer *prod)
824 {
825 	struct kvm_kernel_irqfd *irqfd =
826 		container_of(cons, struct kvm_kernel_irqfd, consumer);
827 	struct kvm *kvm = irqfd->kvm;
828 
829 	if (kvm->arch.kvm_ops->irq_bypass_add_producer)
830 		return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
831 
832 	return 0;
833 }
834 
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)835 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
836 				      struct irq_bypass_producer *prod)
837 {
838 	struct kvm_kernel_irqfd *irqfd =
839 		container_of(cons, struct kvm_kernel_irqfd, consumer);
840 	struct kvm *kvm = irqfd->kvm;
841 
842 	if (kvm->arch.kvm_ops->irq_bypass_del_producer)
843 		kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
844 }
845 
846 #ifdef CONFIG_VSX
kvmppc_get_vsr_dword_offset(int index)847 static inline int kvmppc_get_vsr_dword_offset(int index)
848 {
849 	int offset;
850 
851 	if ((index != 0) && (index != 1))
852 		return -1;
853 
854 #ifdef __BIG_ENDIAN
855 	offset =  index;
856 #else
857 	offset = 1 - index;
858 #endif
859 
860 	return offset;
861 }
862 
kvmppc_get_vsr_word_offset(int index)863 static inline int kvmppc_get_vsr_word_offset(int index)
864 {
865 	int offset;
866 
867 	if ((index > 3) || (index < 0))
868 		return -1;
869 
870 #ifdef __BIG_ENDIAN
871 	offset = index;
872 #else
873 	offset = 3 - index;
874 #endif
875 	return offset;
876 }
877 
kvmppc_set_vsr_dword(struct kvm_vcpu * vcpu,u64 gpr)878 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
879 	u64 gpr)
880 {
881 	union kvmppc_one_reg val;
882 	int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
883 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
884 
885 	if (offset == -1)
886 		return;
887 
888 	if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
889 		val.vval = VCPU_VSX_VR(vcpu, index);
890 		val.vsxval[offset] = gpr;
891 		VCPU_VSX_VR(vcpu, index) = val.vval;
892 	} else {
893 		VCPU_VSX_FPR(vcpu, index, offset) = gpr;
894 	}
895 }
896 
kvmppc_set_vsr_dword_dump(struct kvm_vcpu * vcpu,u64 gpr)897 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
898 	u64 gpr)
899 {
900 	union kvmppc_one_reg val;
901 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
902 
903 	if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
904 		val.vval = VCPU_VSX_VR(vcpu, index);
905 		val.vsxval[0] = gpr;
906 		val.vsxval[1] = gpr;
907 		VCPU_VSX_VR(vcpu, index) = val.vval;
908 	} else {
909 		VCPU_VSX_FPR(vcpu, index, 0) = gpr;
910 		VCPU_VSX_FPR(vcpu, index, 1) = gpr;
911 	}
912 }
913 
kvmppc_set_vsr_word(struct kvm_vcpu * vcpu,u32 gpr32)914 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
915 	u32 gpr32)
916 {
917 	union kvmppc_one_reg val;
918 	int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
919 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
920 	int dword_offset, word_offset;
921 
922 	if (offset == -1)
923 		return;
924 
925 	if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
926 		val.vval = VCPU_VSX_VR(vcpu, index);
927 		val.vsx32val[offset] = gpr32;
928 		VCPU_VSX_VR(vcpu, index) = val.vval;
929 	} else {
930 		dword_offset = offset / 2;
931 		word_offset = offset % 2;
932 		val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
933 		val.vsx32val[word_offset] = gpr32;
934 		VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
935 	}
936 }
937 #endif /* CONFIG_VSX */
938 
939 #ifdef CONFIG_PPC_FPU
sp_to_dp(u32 fprs)940 static inline u64 sp_to_dp(u32 fprs)
941 {
942 	u64 fprd;
943 
944 	preempt_disable();
945 	enable_kernel_fp();
946 	asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs)
947 	     : "fr0");
948 	preempt_enable();
949 	return fprd;
950 }
951 
dp_to_sp(u64 fprd)952 static inline u32 dp_to_sp(u64 fprd)
953 {
954 	u32 fprs;
955 
956 	preempt_disable();
957 	enable_kernel_fp();
958 	asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd)
959 	     : "fr0");
960 	preempt_enable();
961 	return fprs;
962 }
963 
964 #else
965 #define sp_to_dp(x)	(x)
966 #define dp_to_sp(x)	(x)
967 #endif /* CONFIG_PPC_FPU */
968 
kvmppc_complete_mmio_load(struct kvm_vcpu * vcpu,struct kvm_run * run)969 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
970                                       struct kvm_run *run)
971 {
972 	u64 uninitialized_var(gpr);
973 
974 	if (run->mmio.len > sizeof(gpr)) {
975 		printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
976 		return;
977 	}
978 
979 	if (!vcpu->arch.mmio_host_swabbed) {
980 		switch (run->mmio.len) {
981 		case 8: gpr = *(u64 *)run->mmio.data; break;
982 		case 4: gpr = *(u32 *)run->mmio.data; break;
983 		case 2: gpr = *(u16 *)run->mmio.data; break;
984 		case 1: gpr = *(u8 *)run->mmio.data; break;
985 		}
986 	} else {
987 		switch (run->mmio.len) {
988 		case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
989 		case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
990 		case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
991 		case 1: gpr = *(u8 *)run->mmio.data; break;
992 		}
993 	}
994 
995 	/* conversion between single and double precision */
996 	if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
997 		gpr = sp_to_dp(gpr);
998 
999 	if (vcpu->arch.mmio_sign_extend) {
1000 		switch (run->mmio.len) {
1001 #ifdef CONFIG_PPC64
1002 		case 4:
1003 			gpr = (s64)(s32)gpr;
1004 			break;
1005 #endif
1006 		case 2:
1007 			gpr = (s64)(s16)gpr;
1008 			break;
1009 		case 1:
1010 			gpr = (s64)(s8)gpr;
1011 			break;
1012 		}
1013 	}
1014 
1015 	switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
1016 	case KVM_MMIO_REG_GPR:
1017 		kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
1018 		break;
1019 	case KVM_MMIO_REG_FPR:
1020 		VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1021 		break;
1022 #ifdef CONFIG_PPC_BOOK3S
1023 	case KVM_MMIO_REG_QPR:
1024 		vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1025 		break;
1026 	case KVM_MMIO_REG_FQPR:
1027 		VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1028 		vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1029 		break;
1030 #endif
1031 #ifdef CONFIG_VSX
1032 	case KVM_MMIO_REG_VSX:
1033 		if (vcpu->arch.mmio_vsx_copy_type == KVMPPC_VSX_COPY_DWORD)
1034 			kvmppc_set_vsr_dword(vcpu, gpr);
1035 		else if (vcpu->arch.mmio_vsx_copy_type == KVMPPC_VSX_COPY_WORD)
1036 			kvmppc_set_vsr_word(vcpu, gpr);
1037 		else if (vcpu->arch.mmio_vsx_copy_type ==
1038 				KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
1039 			kvmppc_set_vsr_dword_dump(vcpu, gpr);
1040 		break;
1041 #endif
1042 	default:
1043 		BUG();
1044 	}
1045 }
1046 
__kvmppc_handle_load(struct kvm_run * run,struct kvm_vcpu * vcpu,unsigned int rt,unsigned int bytes,int is_default_endian,int sign_extend)1047 static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1048 				unsigned int rt, unsigned int bytes,
1049 				int is_default_endian, int sign_extend)
1050 {
1051 	int idx, ret;
1052 	bool host_swabbed;
1053 
1054 	/* Pity C doesn't have a logical XOR operator */
1055 	if (kvmppc_need_byteswap(vcpu)) {
1056 		host_swabbed = is_default_endian;
1057 	} else {
1058 		host_swabbed = !is_default_endian;
1059 	}
1060 
1061 	if (bytes > sizeof(run->mmio.data)) {
1062 		printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1063 		       run->mmio.len);
1064 	}
1065 
1066 	run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1067 	run->mmio.len = bytes;
1068 	run->mmio.is_write = 0;
1069 
1070 	vcpu->arch.io_gpr = rt;
1071 	vcpu->arch.mmio_host_swabbed = host_swabbed;
1072 	vcpu->mmio_needed = 1;
1073 	vcpu->mmio_is_write = 0;
1074 	vcpu->arch.mmio_sign_extend = sign_extend;
1075 
1076 	idx = srcu_read_lock(&vcpu->kvm->srcu);
1077 
1078 	ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1079 			      bytes, &run->mmio.data);
1080 
1081 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1082 
1083 	if (!ret) {
1084 		kvmppc_complete_mmio_load(vcpu, run);
1085 		vcpu->mmio_needed = 0;
1086 		return EMULATE_DONE;
1087 	}
1088 
1089 	return EMULATE_DO_MMIO;
1090 }
1091 
kvmppc_handle_load(struct kvm_run * run,struct kvm_vcpu * vcpu,unsigned int rt,unsigned int bytes,int is_default_endian)1092 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1093 		       unsigned int rt, unsigned int bytes,
1094 		       int is_default_endian)
1095 {
1096 	return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0);
1097 }
1098 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1099 
1100 /* Same as above, but sign extends */
kvmppc_handle_loads(struct kvm_run * run,struct kvm_vcpu * vcpu,unsigned int rt,unsigned int bytes,int is_default_endian)1101 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
1102 			unsigned int rt, unsigned int bytes,
1103 			int is_default_endian)
1104 {
1105 	return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1);
1106 }
1107 
1108 #ifdef CONFIG_VSX
kvmppc_handle_vsx_load(struct kvm_run * run,struct kvm_vcpu * vcpu,unsigned int rt,unsigned int bytes,int is_default_endian,int mmio_sign_extend)1109 int kvmppc_handle_vsx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1110 			unsigned int rt, unsigned int bytes,
1111 			int is_default_endian, int mmio_sign_extend)
1112 {
1113 	enum emulation_result emulated = EMULATE_DONE;
1114 
1115 	/* Currently, mmio_vsx_copy_nums only allowed to be less than 4 */
1116 	if ( (vcpu->arch.mmio_vsx_copy_nums > 4) ||
1117 		(vcpu->arch.mmio_vsx_copy_nums < 0) ) {
1118 		return EMULATE_FAIL;
1119 	}
1120 
1121 	while (vcpu->arch.mmio_vsx_copy_nums) {
1122 		emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1123 			is_default_endian, mmio_sign_extend);
1124 
1125 		if (emulated != EMULATE_DONE)
1126 			break;
1127 
1128 		vcpu->arch.paddr_accessed += run->mmio.len;
1129 
1130 		vcpu->arch.mmio_vsx_copy_nums--;
1131 		vcpu->arch.mmio_vsx_offset++;
1132 	}
1133 	return emulated;
1134 }
1135 #endif /* CONFIG_VSX */
1136 
kvmppc_handle_store(struct kvm_run * run,struct kvm_vcpu * vcpu,u64 val,unsigned int bytes,int is_default_endian)1137 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1138 			u64 val, unsigned int bytes, int is_default_endian)
1139 {
1140 	void *data = run->mmio.data;
1141 	int idx, ret;
1142 	bool host_swabbed;
1143 
1144 	/* Pity C doesn't have a logical XOR operator */
1145 	if (kvmppc_need_byteswap(vcpu)) {
1146 		host_swabbed = is_default_endian;
1147 	} else {
1148 		host_swabbed = !is_default_endian;
1149 	}
1150 
1151 	if (bytes > sizeof(run->mmio.data)) {
1152 		printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1153 		       run->mmio.len);
1154 	}
1155 
1156 	run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1157 	run->mmio.len = bytes;
1158 	run->mmio.is_write = 1;
1159 	vcpu->mmio_needed = 1;
1160 	vcpu->mmio_is_write = 1;
1161 
1162 	if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
1163 		val = dp_to_sp(val);
1164 
1165 	/* Store the value at the lowest bytes in 'data'. */
1166 	if (!host_swabbed) {
1167 		switch (bytes) {
1168 		case 8: *(u64 *)data = val; break;
1169 		case 4: *(u32 *)data = val; break;
1170 		case 2: *(u16 *)data = val; break;
1171 		case 1: *(u8  *)data = val; break;
1172 		}
1173 	} else {
1174 		switch (bytes) {
1175 		case 8: *(u64 *)data = swab64(val); break;
1176 		case 4: *(u32 *)data = swab32(val); break;
1177 		case 2: *(u16 *)data = swab16(val); break;
1178 		case 1: *(u8  *)data = val; break;
1179 		}
1180 	}
1181 
1182 	idx = srcu_read_lock(&vcpu->kvm->srcu);
1183 
1184 	ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1185 			       bytes, &run->mmio.data);
1186 
1187 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1188 
1189 	if (!ret) {
1190 		vcpu->mmio_needed = 0;
1191 		return EMULATE_DONE;
1192 	}
1193 
1194 	return EMULATE_DO_MMIO;
1195 }
1196 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1197 
1198 #ifdef CONFIG_VSX
kvmppc_get_vsr_data(struct kvm_vcpu * vcpu,int rs,u64 * val)1199 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1200 {
1201 	u32 dword_offset, word_offset;
1202 	union kvmppc_one_reg reg;
1203 	int vsx_offset = 0;
1204 	int copy_type = vcpu->arch.mmio_vsx_copy_type;
1205 	int result = 0;
1206 
1207 	switch (copy_type) {
1208 	case KVMPPC_VSX_COPY_DWORD:
1209 		vsx_offset =
1210 			kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
1211 
1212 		if (vsx_offset == -1) {
1213 			result = -1;
1214 			break;
1215 		}
1216 
1217 		if (!vcpu->arch.mmio_vsx_tx_sx_enabled) {
1218 			*val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
1219 		} else {
1220 			reg.vval = VCPU_VSX_VR(vcpu, rs);
1221 			*val = reg.vsxval[vsx_offset];
1222 		}
1223 		break;
1224 
1225 	case KVMPPC_VSX_COPY_WORD:
1226 		vsx_offset =
1227 			kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
1228 
1229 		if (vsx_offset == -1) {
1230 			result = -1;
1231 			break;
1232 		}
1233 
1234 		if (!vcpu->arch.mmio_vsx_tx_sx_enabled) {
1235 			dword_offset = vsx_offset / 2;
1236 			word_offset = vsx_offset % 2;
1237 			reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
1238 			*val = reg.vsx32val[word_offset];
1239 		} else {
1240 			reg.vval = VCPU_VSX_VR(vcpu, rs);
1241 			*val = reg.vsx32val[vsx_offset];
1242 		}
1243 		break;
1244 
1245 	default:
1246 		result = -1;
1247 		break;
1248 	}
1249 
1250 	return result;
1251 }
1252 
kvmppc_handle_vsx_store(struct kvm_run * run,struct kvm_vcpu * vcpu,int rs,unsigned int bytes,int is_default_endian)1253 int kvmppc_handle_vsx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1254 			int rs, unsigned int bytes, int is_default_endian)
1255 {
1256 	u64 val;
1257 	enum emulation_result emulated = EMULATE_DONE;
1258 
1259 	vcpu->arch.io_gpr = rs;
1260 
1261 	/* Currently, mmio_vsx_copy_nums only allowed to be less than 4 */
1262 	if ( (vcpu->arch.mmio_vsx_copy_nums > 4) ||
1263 		(vcpu->arch.mmio_vsx_copy_nums < 0) ) {
1264 		return EMULATE_FAIL;
1265 	}
1266 
1267 	while (vcpu->arch.mmio_vsx_copy_nums) {
1268 		if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
1269 			return EMULATE_FAIL;
1270 
1271 		emulated = kvmppc_handle_store(run, vcpu,
1272 			 val, bytes, is_default_endian);
1273 
1274 		if (emulated != EMULATE_DONE)
1275 			break;
1276 
1277 		vcpu->arch.paddr_accessed += run->mmio.len;
1278 
1279 		vcpu->arch.mmio_vsx_copy_nums--;
1280 		vcpu->arch.mmio_vsx_offset++;
1281 	}
1282 
1283 	return emulated;
1284 }
1285 
kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu * vcpu,struct kvm_run * run)1286 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu,
1287 			struct kvm_run *run)
1288 {
1289 	enum emulation_result emulated = EMULATE_FAIL;
1290 	int r;
1291 
1292 	vcpu->arch.paddr_accessed += run->mmio.len;
1293 
1294 	if (!vcpu->mmio_is_write) {
1295 		emulated = kvmppc_handle_vsx_load(run, vcpu, vcpu->arch.io_gpr,
1296 			 run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
1297 	} else {
1298 		emulated = kvmppc_handle_vsx_store(run, vcpu,
1299 			 vcpu->arch.io_gpr, run->mmio.len, 1);
1300 	}
1301 
1302 	switch (emulated) {
1303 	case EMULATE_DO_MMIO:
1304 		run->exit_reason = KVM_EXIT_MMIO;
1305 		r = RESUME_HOST;
1306 		break;
1307 	case EMULATE_FAIL:
1308 		pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
1309 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1310 		run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1311 		r = RESUME_HOST;
1312 		break;
1313 	default:
1314 		r = RESUME_GUEST;
1315 		break;
1316 	}
1317 	return r;
1318 }
1319 #endif /* CONFIG_VSX */
1320 
kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu * vcpu,struct kvm_one_reg * reg)1321 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1322 {
1323 	int r = 0;
1324 	union kvmppc_one_reg val;
1325 	int size;
1326 
1327 	size = one_reg_size(reg->id);
1328 	if (size > sizeof(val))
1329 		return -EINVAL;
1330 
1331 	r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1332 	if (r == -EINVAL) {
1333 		r = 0;
1334 		switch (reg->id) {
1335 #ifdef CONFIG_ALTIVEC
1336 		case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1337 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1338 				r = -ENXIO;
1339 				break;
1340 			}
1341 			val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1342 			break;
1343 		case KVM_REG_PPC_VSCR:
1344 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1345 				r = -ENXIO;
1346 				break;
1347 			}
1348 			val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1349 			break;
1350 		case KVM_REG_PPC_VRSAVE:
1351 			val = get_reg_val(reg->id, vcpu->arch.vrsave);
1352 			break;
1353 #endif /* CONFIG_ALTIVEC */
1354 		default:
1355 			r = -EINVAL;
1356 			break;
1357 		}
1358 	}
1359 
1360 	if (r)
1361 		return r;
1362 
1363 	if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1364 		r = -EFAULT;
1365 
1366 	return r;
1367 }
1368 
kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu * vcpu,struct kvm_one_reg * reg)1369 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1370 {
1371 	int r;
1372 	union kvmppc_one_reg val;
1373 	int size;
1374 
1375 	size = one_reg_size(reg->id);
1376 	if (size > sizeof(val))
1377 		return -EINVAL;
1378 
1379 	if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1380 		return -EFAULT;
1381 
1382 	r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1383 	if (r == -EINVAL) {
1384 		r = 0;
1385 		switch (reg->id) {
1386 #ifdef CONFIG_ALTIVEC
1387 		case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1388 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1389 				r = -ENXIO;
1390 				break;
1391 			}
1392 			vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1393 			break;
1394 		case KVM_REG_PPC_VSCR:
1395 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1396 				r = -ENXIO;
1397 				break;
1398 			}
1399 			vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1400 			break;
1401 		case KVM_REG_PPC_VRSAVE:
1402 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1403 				r = -ENXIO;
1404 				break;
1405 			}
1406 			vcpu->arch.vrsave = set_reg_val(reg->id, val);
1407 			break;
1408 #endif /* CONFIG_ALTIVEC */
1409 		default:
1410 			r = -EINVAL;
1411 			break;
1412 		}
1413 	}
1414 
1415 	return r;
1416 }
1417 
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu,struct kvm_run * run)1418 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
1419 {
1420 	int r;
1421 
1422 	if (vcpu->mmio_needed) {
1423 		vcpu->mmio_needed = 0;
1424 		if (!vcpu->mmio_is_write)
1425 			kvmppc_complete_mmio_load(vcpu, run);
1426 #ifdef CONFIG_VSX
1427 		if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1428 			vcpu->arch.mmio_vsx_copy_nums--;
1429 			vcpu->arch.mmio_vsx_offset++;
1430 		}
1431 
1432 		if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1433 			r = kvmppc_emulate_mmio_vsx_loadstore(vcpu, run);
1434 			if (r == RESUME_HOST) {
1435 				vcpu->mmio_needed = 1;
1436 				return r;
1437 			}
1438 		}
1439 #endif
1440 	} else if (vcpu->arch.osi_needed) {
1441 		u64 *gprs = run->osi.gprs;
1442 		int i;
1443 
1444 		for (i = 0; i < 32; i++)
1445 			kvmppc_set_gpr(vcpu, i, gprs[i]);
1446 		vcpu->arch.osi_needed = 0;
1447 	} else if (vcpu->arch.hcall_needed) {
1448 		int i;
1449 
1450 		kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1451 		for (i = 0; i < 9; ++i)
1452 			kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1453 		vcpu->arch.hcall_needed = 0;
1454 #ifdef CONFIG_BOOKE
1455 	} else if (vcpu->arch.epr_needed) {
1456 		kvmppc_set_epr(vcpu, run->epr.epr);
1457 		vcpu->arch.epr_needed = 0;
1458 #endif
1459 	}
1460 
1461 	kvm_sigset_activate(vcpu);
1462 
1463 	if (run->immediate_exit)
1464 		r = -EINTR;
1465 	else
1466 		r = kvmppc_vcpu_run(run, vcpu);
1467 
1468 	kvm_sigset_deactivate(vcpu);
1469 
1470 	return r;
1471 }
1472 
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_interrupt * irq)1473 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1474 {
1475 	if (irq->irq == KVM_INTERRUPT_UNSET) {
1476 		kvmppc_core_dequeue_external(vcpu);
1477 		return 0;
1478 	}
1479 
1480 	kvmppc_core_queue_external(vcpu, irq);
1481 
1482 	kvm_vcpu_kick(vcpu);
1483 
1484 	return 0;
1485 }
1486 
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)1487 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1488 				     struct kvm_enable_cap *cap)
1489 {
1490 	int r;
1491 
1492 	if (cap->flags)
1493 		return -EINVAL;
1494 
1495 	switch (cap->cap) {
1496 	case KVM_CAP_PPC_OSI:
1497 		r = 0;
1498 		vcpu->arch.osi_enabled = true;
1499 		break;
1500 	case KVM_CAP_PPC_PAPR:
1501 		r = 0;
1502 		vcpu->arch.papr_enabled = true;
1503 		break;
1504 	case KVM_CAP_PPC_EPR:
1505 		r = 0;
1506 		if (cap->args[0])
1507 			vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1508 		else
1509 			vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1510 		break;
1511 #ifdef CONFIG_BOOKE
1512 	case KVM_CAP_PPC_BOOKE_WATCHDOG:
1513 		r = 0;
1514 		vcpu->arch.watchdog_enabled = true;
1515 		break;
1516 #endif
1517 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1518 	case KVM_CAP_SW_TLB: {
1519 		struct kvm_config_tlb cfg;
1520 		void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1521 
1522 		r = -EFAULT;
1523 		if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1524 			break;
1525 
1526 		r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1527 		break;
1528 	}
1529 #endif
1530 #ifdef CONFIG_KVM_MPIC
1531 	case KVM_CAP_IRQ_MPIC: {
1532 		struct fd f;
1533 		struct kvm_device *dev;
1534 
1535 		r = -EBADF;
1536 		f = fdget(cap->args[0]);
1537 		if (!f.file)
1538 			break;
1539 
1540 		r = -EPERM;
1541 		dev = kvm_device_from_filp(f.file);
1542 		if (dev)
1543 			r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1544 
1545 		fdput(f);
1546 		break;
1547 	}
1548 #endif
1549 #ifdef CONFIG_KVM_XICS
1550 	case KVM_CAP_IRQ_XICS: {
1551 		struct fd f;
1552 		struct kvm_device *dev;
1553 
1554 		r = -EBADF;
1555 		f = fdget(cap->args[0]);
1556 		if (!f.file)
1557 			break;
1558 
1559 		r = -EPERM;
1560 		dev = kvm_device_from_filp(f.file);
1561 		if (dev) {
1562 			if (xive_enabled())
1563 				r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
1564 			else
1565 				r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1566 		}
1567 
1568 		fdput(f);
1569 		break;
1570 	}
1571 #endif /* CONFIG_KVM_XICS */
1572 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1573 	case KVM_CAP_PPC_FWNMI:
1574 		r = -EINVAL;
1575 		if (!is_kvmppc_hv_enabled(vcpu->kvm))
1576 			break;
1577 		r = 0;
1578 		vcpu->kvm->arch.fwnmi_enabled = true;
1579 		break;
1580 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1581 	default:
1582 		r = -EINVAL;
1583 		break;
1584 	}
1585 
1586 	if (!r)
1587 		r = kvmppc_sanity_check(vcpu);
1588 
1589 	return r;
1590 }
1591 
kvm_arch_intc_initialized(struct kvm * kvm)1592 bool kvm_arch_intc_initialized(struct kvm *kvm)
1593 {
1594 #ifdef CONFIG_KVM_MPIC
1595 	if (kvm->arch.mpic)
1596 		return true;
1597 #endif
1598 #ifdef CONFIG_KVM_XICS
1599 	if (kvm->arch.xics || kvm->arch.xive)
1600 		return true;
1601 #endif
1602 	return false;
1603 }
1604 
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)1605 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1606                                     struct kvm_mp_state *mp_state)
1607 {
1608 	return -EINVAL;
1609 }
1610 
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)1611 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1612                                     struct kvm_mp_state *mp_state)
1613 {
1614 	return -EINVAL;
1615 }
1616 
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1617 long kvm_arch_vcpu_ioctl(struct file *filp,
1618                          unsigned int ioctl, unsigned long arg)
1619 {
1620 	struct kvm_vcpu *vcpu = filp->private_data;
1621 	void __user *argp = (void __user *)arg;
1622 	long r;
1623 
1624 	switch (ioctl) {
1625 	case KVM_INTERRUPT: {
1626 		struct kvm_interrupt irq;
1627 		r = -EFAULT;
1628 		if (copy_from_user(&irq, argp, sizeof(irq)))
1629 			goto out;
1630 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1631 		goto out;
1632 	}
1633 
1634 	case KVM_ENABLE_CAP:
1635 	{
1636 		struct kvm_enable_cap cap;
1637 		r = -EFAULT;
1638 		if (copy_from_user(&cap, argp, sizeof(cap)))
1639 			goto out;
1640 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
1641 		break;
1642 	}
1643 
1644 	case KVM_SET_ONE_REG:
1645 	case KVM_GET_ONE_REG:
1646 	{
1647 		struct kvm_one_reg reg;
1648 		r = -EFAULT;
1649 		if (copy_from_user(&reg, argp, sizeof(reg)))
1650 			goto out;
1651 		if (ioctl == KVM_SET_ONE_REG)
1652 			r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
1653 		else
1654 			r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
1655 		break;
1656 	}
1657 
1658 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1659 	case KVM_DIRTY_TLB: {
1660 		struct kvm_dirty_tlb dirty;
1661 		r = -EFAULT;
1662 		if (copy_from_user(&dirty, argp, sizeof(dirty)))
1663 			goto out;
1664 		r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
1665 		break;
1666 	}
1667 #endif
1668 	default:
1669 		r = -EINVAL;
1670 	}
1671 
1672 out:
1673 	return r;
1674 }
1675 
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)1676 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1677 {
1678 	return VM_FAULT_SIGBUS;
1679 }
1680 
kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo * pvinfo)1681 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
1682 {
1683 	u32 inst_nop = 0x60000000;
1684 #ifdef CONFIG_KVM_BOOKE_HV
1685 	u32 inst_sc1 = 0x44000022;
1686 	pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
1687 	pvinfo->hcall[1] = cpu_to_be32(inst_nop);
1688 	pvinfo->hcall[2] = cpu_to_be32(inst_nop);
1689 	pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1690 #else
1691 	u32 inst_lis = 0x3c000000;
1692 	u32 inst_ori = 0x60000000;
1693 	u32 inst_sc = 0x44000002;
1694 	u32 inst_imm_mask = 0xffff;
1695 
1696 	/*
1697 	 * The hypercall to get into KVM from within guest context is as
1698 	 * follows:
1699 	 *
1700 	 *    lis r0, r0, KVM_SC_MAGIC_R0@h
1701 	 *    ori r0, KVM_SC_MAGIC_R0@l
1702 	 *    sc
1703 	 *    nop
1704 	 */
1705 	pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
1706 	pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
1707 	pvinfo->hcall[2] = cpu_to_be32(inst_sc);
1708 	pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1709 #endif
1710 
1711 	pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
1712 
1713 	return 0;
1714 }
1715 
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_event,bool line_status)1716 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
1717 			  bool line_status)
1718 {
1719 	if (!irqchip_in_kernel(kvm))
1720 		return -ENXIO;
1721 
1722 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
1723 					irq_event->irq, irq_event->level,
1724 					line_status);
1725 	return 0;
1726 }
1727 
1728 
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)1729 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1730 				   struct kvm_enable_cap *cap)
1731 {
1732 	int r;
1733 
1734 	if (cap->flags)
1735 		return -EINVAL;
1736 
1737 	switch (cap->cap) {
1738 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
1739 	case KVM_CAP_PPC_ENABLE_HCALL: {
1740 		unsigned long hcall = cap->args[0];
1741 
1742 		r = -EINVAL;
1743 		if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
1744 		    cap->args[1] > 1)
1745 			break;
1746 		if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
1747 			break;
1748 		if (cap->args[1])
1749 			set_bit(hcall / 4, kvm->arch.enabled_hcalls);
1750 		else
1751 			clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
1752 		r = 0;
1753 		break;
1754 	}
1755 	case KVM_CAP_PPC_SMT: {
1756 		unsigned long mode = cap->args[0];
1757 		unsigned long flags = cap->args[1];
1758 
1759 		r = -EINVAL;
1760 		if (kvm->arch.kvm_ops->set_smt_mode)
1761 			r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
1762 		break;
1763 	}
1764 #endif
1765 	default:
1766 		r = -EINVAL;
1767 		break;
1768 	}
1769 
1770 	return r;
1771 }
1772 
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1773 long kvm_arch_vm_ioctl(struct file *filp,
1774                        unsigned int ioctl, unsigned long arg)
1775 {
1776 	struct kvm *kvm __maybe_unused = filp->private_data;
1777 	void __user *argp = (void __user *)arg;
1778 	long r;
1779 
1780 	switch (ioctl) {
1781 	case KVM_PPC_GET_PVINFO: {
1782 		struct kvm_ppc_pvinfo pvinfo;
1783 		memset(&pvinfo, 0, sizeof(pvinfo));
1784 		r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
1785 		if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
1786 			r = -EFAULT;
1787 			goto out;
1788 		}
1789 
1790 		break;
1791 	}
1792 	case KVM_ENABLE_CAP:
1793 	{
1794 		struct kvm_enable_cap cap;
1795 		r = -EFAULT;
1796 		if (copy_from_user(&cap, argp, sizeof(cap)))
1797 			goto out;
1798 		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
1799 		break;
1800 	}
1801 #ifdef CONFIG_SPAPR_TCE_IOMMU
1802 	case KVM_CREATE_SPAPR_TCE_64: {
1803 		struct kvm_create_spapr_tce_64 create_tce_64;
1804 
1805 		r = -EFAULT;
1806 		if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
1807 			goto out;
1808 		if (create_tce_64.flags) {
1809 			r = -EINVAL;
1810 			goto out;
1811 		}
1812 		r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
1813 		goto out;
1814 	}
1815 	case KVM_CREATE_SPAPR_TCE: {
1816 		struct kvm_create_spapr_tce create_tce;
1817 		struct kvm_create_spapr_tce_64 create_tce_64;
1818 
1819 		r = -EFAULT;
1820 		if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
1821 			goto out;
1822 
1823 		create_tce_64.liobn = create_tce.liobn;
1824 		create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
1825 		create_tce_64.offset = 0;
1826 		create_tce_64.size = create_tce.window_size >>
1827 				IOMMU_PAGE_SHIFT_4K;
1828 		create_tce_64.flags = 0;
1829 		r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
1830 		goto out;
1831 	}
1832 #endif
1833 #ifdef CONFIG_PPC_BOOK3S_64
1834 	case KVM_PPC_GET_SMMU_INFO: {
1835 		struct kvm_ppc_smmu_info info;
1836 		struct kvm *kvm = filp->private_data;
1837 
1838 		memset(&info, 0, sizeof(info));
1839 		r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
1840 		if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
1841 			r = -EFAULT;
1842 		break;
1843 	}
1844 	case KVM_PPC_RTAS_DEFINE_TOKEN: {
1845 		struct kvm *kvm = filp->private_data;
1846 
1847 		r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
1848 		break;
1849 	}
1850 	case KVM_PPC_CONFIGURE_V3_MMU: {
1851 		struct kvm *kvm = filp->private_data;
1852 		struct kvm_ppc_mmuv3_cfg cfg;
1853 
1854 		r = -EINVAL;
1855 		if (!kvm->arch.kvm_ops->configure_mmu)
1856 			goto out;
1857 		r = -EFAULT;
1858 		if (copy_from_user(&cfg, argp, sizeof(cfg)))
1859 			goto out;
1860 		r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
1861 		break;
1862 	}
1863 	case KVM_PPC_GET_RMMU_INFO: {
1864 		struct kvm *kvm = filp->private_data;
1865 		struct kvm_ppc_rmmu_info info;
1866 
1867 		r = -EINVAL;
1868 		if (!kvm->arch.kvm_ops->get_rmmu_info)
1869 			goto out;
1870 		r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
1871 		if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
1872 			r = -EFAULT;
1873 		break;
1874 	}
1875 	default: {
1876 		struct kvm *kvm = filp->private_data;
1877 		r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
1878 	}
1879 #else /* CONFIG_PPC_BOOK3S_64 */
1880 	default:
1881 		r = -ENOTTY;
1882 #endif
1883 	}
1884 out:
1885 	return r;
1886 }
1887 
1888 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
1889 static unsigned long nr_lpids;
1890 
kvmppc_alloc_lpid(void)1891 long kvmppc_alloc_lpid(void)
1892 {
1893 	long lpid;
1894 
1895 	do {
1896 		lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
1897 		if (lpid >= nr_lpids) {
1898 			pr_err("%s: No LPIDs free\n", __func__);
1899 			return -ENOMEM;
1900 		}
1901 	} while (test_and_set_bit(lpid, lpid_inuse));
1902 
1903 	return lpid;
1904 }
1905 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
1906 
kvmppc_claim_lpid(long lpid)1907 void kvmppc_claim_lpid(long lpid)
1908 {
1909 	set_bit(lpid, lpid_inuse);
1910 }
1911 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
1912 
kvmppc_free_lpid(long lpid)1913 void kvmppc_free_lpid(long lpid)
1914 {
1915 	clear_bit(lpid, lpid_inuse);
1916 }
1917 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
1918 
kvmppc_init_lpid(unsigned long nr_lpids_param)1919 void kvmppc_init_lpid(unsigned long nr_lpids_param)
1920 {
1921 	nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
1922 	memset(lpid_inuse, 0, sizeof(lpid_inuse));
1923 }
1924 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
1925 
kvm_arch_init(void * opaque)1926 int kvm_arch_init(void *opaque)
1927 {
1928 	return 0;
1929 }
1930 
1931 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);
1932