1 #include <linux/init.h>
2
3 #include <linux/mm.h>
4 #include <linux/spinlock.h>
5 #include <linux/smp.h>
6 #include <linux/interrupt.h>
7 #include <linux/export.h>
8 #include <linux/cpu.h>
9 #include <linux/debugfs.h>
10
11 #include <asm/tlbflush.h>
12 #include <asm/mmu_context.h>
13 #include <asm/nospec-branch.h>
14 #include <asm/cache.h>
15 #include <asm/apic.h>
16 #include <asm/uv/uv.h>
17
18 /*
19 * TLB flushing, formerly SMP-only
20 * c/o Linus Torvalds.
21 *
22 * These mean you can really definitely utterly forget about
23 * writing to user space from interrupts. (Its not allowed anyway).
24 *
25 * Optimizations Manfred Spraul <manfred@colorfullife.com>
26 *
27 * More scalable flush, from Andi Kleen
28 *
29 * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
30 */
31
32 /*
33 * Use bit 0 to mangle the TIF_SPEC_IB state into the mm pointer which is
34 * stored in cpu_tlb_state.last_user_mm_ibpb.
35 */
36 #define LAST_USER_MM_IBPB 0x1UL
37
38 /*
39 * We get here when we do something requiring a TLB invalidation
40 * but could not go invalidate all of the contexts. We do the
41 * necessary invalidation by clearing out the 'ctx_id' which
42 * forces a TLB flush when the context is loaded.
43 */
clear_asid_other(void)44 void clear_asid_other(void)
45 {
46 u16 asid;
47
48 /*
49 * This is only expected to be set if we have disabled
50 * kernel _PAGE_GLOBAL pages.
51 */
52 if (!static_cpu_has(X86_FEATURE_PTI)) {
53 WARN_ON_ONCE(1);
54 return;
55 }
56
57 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
58 /* Do not need to flush the current asid */
59 if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
60 continue;
61 /*
62 * Make sure the next time we go to switch to
63 * this asid, we do a flush:
64 */
65 this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
66 }
67 this_cpu_write(cpu_tlbstate.invalidate_other, false);
68 }
69
70 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
71
72
choose_new_asid(struct mm_struct * next,u64 next_tlb_gen,u16 * new_asid,bool * need_flush)73 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
74 u16 *new_asid, bool *need_flush)
75 {
76 u16 asid;
77
78 if (!static_cpu_has(X86_FEATURE_PCID)) {
79 *new_asid = 0;
80 *need_flush = true;
81 return;
82 }
83
84 if (this_cpu_read(cpu_tlbstate.invalidate_other))
85 clear_asid_other();
86
87 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
88 if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
89 next->context.ctx_id)
90 continue;
91
92 *new_asid = asid;
93 *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
94 next_tlb_gen);
95 return;
96 }
97
98 /*
99 * We don't currently own an ASID slot on this CPU.
100 * Allocate a slot.
101 */
102 *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
103 if (*new_asid >= TLB_NR_DYN_ASIDS) {
104 *new_asid = 0;
105 this_cpu_write(cpu_tlbstate.next_asid, 1);
106 }
107 *need_flush = true;
108 }
109
load_new_mm_cr3(pgd_t * pgdir,u16 new_asid,bool need_flush)110 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush)
111 {
112 unsigned long new_mm_cr3;
113
114 if (need_flush) {
115 invalidate_user_asid(new_asid);
116 new_mm_cr3 = build_cr3(pgdir, new_asid);
117 } else {
118 new_mm_cr3 = build_cr3_noflush(pgdir, new_asid);
119 }
120
121 /*
122 * Caution: many callers of this function expect
123 * that load_cr3() is serializing and orders TLB
124 * fills with respect to the mm_cpumask writes.
125 */
126 write_cr3(new_mm_cr3);
127 }
128
leave_mm(int cpu)129 void leave_mm(int cpu)
130 {
131 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
132
133 /*
134 * It's plausible that we're in lazy TLB mode while our mm is init_mm.
135 * If so, our callers still expect us to flush the TLB, but there
136 * aren't any user TLB entries in init_mm to worry about.
137 *
138 * This needs to happen before any other sanity checks due to
139 * intel_idle's shenanigans.
140 */
141 if (loaded_mm == &init_mm)
142 return;
143
144 /* Warn if we're not lazy. */
145 WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy));
146
147 switch_mm(NULL, &init_mm, NULL);
148 }
149 EXPORT_SYMBOL_GPL(leave_mm);
150
switch_mm(struct mm_struct * prev,struct mm_struct * next,struct task_struct * tsk)151 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
152 struct task_struct *tsk)
153 {
154 unsigned long flags;
155
156 local_irq_save(flags);
157 switch_mm_irqs_off(prev, next, tsk);
158 local_irq_restore(flags);
159 }
160
sync_current_stack_to_mm(struct mm_struct * mm)161 static void sync_current_stack_to_mm(struct mm_struct *mm)
162 {
163 unsigned long sp = current_stack_pointer;
164 pgd_t *pgd = pgd_offset(mm, sp);
165
166 if (CONFIG_PGTABLE_LEVELS > 4) {
167 if (unlikely(pgd_none(*pgd))) {
168 pgd_t *pgd_ref = pgd_offset_k(sp);
169
170 set_pgd(pgd, *pgd_ref);
171 }
172 } else {
173 /*
174 * "pgd" is faked. The top level entries are "p4d"s, so sync
175 * the p4d. This compiles to approximately the same code as
176 * the 5-level case.
177 */
178 p4d_t *p4d = p4d_offset(pgd, sp);
179
180 if (unlikely(p4d_none(*p4d))) {
181 pgd_t *pgd_ref = pgd_offset_k(sp);
182 p4d_t *p4d_ref = p4d_offset(pgd_ref, sp);
183
184 set_p4d(p4d, *p4d_ref);
185 }
186 }
187 }
188
mm_mangle_tif_spec_ib(struct task_struct * next)189 static inline unsigned long mm_mangle_tif_spec_ib(struct task_struct *next)
190 {
191 unsigned long next_tif = task_thread_info(next)->flags;
192 unsigned long ibpb = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_IBPB;
193
194 return (unsigned long)next->mm | ibpb;
195 }
196
cond_ibpb(struct task_struct * next)197 static void cond_ibpb(struct task_struct *next)
198 {
199 if (!next || !next->mm)
200 return;
201
202 /*
203 * Both, the conditional and the always IBPB mode use the mm
204 * pointer to avoid the IBPB when switching between tasks of the
205 * same process. Using the mm pointer instead of mm->context.ctx_id
206 * opens a hypothetical hole vs. mm_struct reuse, which is more or
207 * less impossible to control by an attacker. Aside of that it
208 * would only affect the first schedule so the theoretically
209 * exposed data is not really interesting.
210 */
211 if (static_branch_likely(&switch_mm_cond_ibpb)) {
212 unsigned long prev_mm, next_mm;
213
214 /*
215 * This is a bit more complex than the always mode because
216 * it has to handle two cases:
217 *
218 * 1) Switch from a user space task (potential attacker)
219 * which has TIF_SPEC_IB set to a user space task
220 * (potential victim) which has TIF_SPEC_IB not set.
221 *
222 * 2) Switch from a user space task (potential attacker)
223 * which has TIF_SPEC_IB not set to a user space task
224 * (potential victim) which has TIF_SPEC_IB set.
225 *
226 * This could be done by unconditionally issuing IBPB when
227 * a task which has TIF_SPEC_IB set is either scheduled in
228 * or out. Though that results in two flushes when:
229 *
230 * - the same user space task is scheduled out and later
231 * scheduled in again and only a kernel thread ran in
232 * between.
233 *
234 * - a user space task belonging to the same process is
235 * scheduled in after a kernel thread ran in between
236 *
237 * - a user space task belonging to the same process is
238 * scheduled in immediately.
239 *
240 * Optimize this with reasonably small overhead for the
241 * above cases. Mangle the TIF_SPEC_IB bit into the mm
242 * pointer of the incoming task which is stored in
243 * cpu_tlbstate.last_user_mm_ibpb for comparison.
244 */
245 next_mm = mm_mangle_tif_spec_ib(next);
246 prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_ibpb);
247
248 /*
249 * Issue IBPB only if the mm's are different and one or
250 * both have the IBPB bit set.
251 */
252 if (next_mm != prev_mm &&
253 (next_mm | prev_mm) & LAST_USER_MM_IBPB)
254 indirect_branch_prediction_barrier();
255
256 this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, next_mm);
257 }
258
259 if (static_branch_unlikely(&switch_mm_always_ibpb)) {
260 /*
261 * Only flush when switching to a user space task with a
262 * different context than the user space task which ran
263 * last on this CPU.
264 */
265 if (this_cpu_read(cpu_tlbstate.last_user_mm) != next->mm) {
266 indirect_branch_prediction_barrier();
267 this_cpu_write(cpu_tlbstate.last_user_mm, next->mm);
268 }
269 }
270 }
271
switch_mm_irqs_off(struct mm_struct * prev,struct mm_struct * next,struct task_struct * tsk)272 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
273 struct task_struct *tsk)
274 {
275 struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
276 u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
277 unsigned cpu = smp_processor_id();
278 u64 next_tlb_gen;
279
280 /*
281 * NB: The scheduler will call us with prev == next when switching
282 * from lazy TLB mode to normal mode if active_mm isn't changing.
283 * When this happens, we don't assume that CR3 (and hence
284 * cpu_tlbstate.loaded_mm) matches next.
285 *
286 * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
287 */
288
289 /* We don't want flush_tlb_func_* to run concurrently with us. */
290 if (IS_ENABLED(CONFIG_PROVE_LOCKING))
291 WARN_ON_ONCE(!irqs_disabled());
292
293 /*
294 * Verify that CR3 is what we think it is. This will catch
295 * hypothetical buggy code that directly switches to swapper_pg_dir
296 * without going through leave_mm() / switch_mm_irqs_off() or that
297 * does something like write_cr3(read_cr3_pa()).
298 *
299 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
300 * isn't free.
301 */
302 #ifdef CONFIG_DEBUG_VM
303 if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) {
304 /*
305 * If we were to BUG here, we'd be very likely to kill
306 * the system so hard that we don't see the call trace.
307 * Try to recover instead by ignoring the error and doing
308 * a global flush to minimize the chance of corruption.
309 *
310 * (This is far from being a fully correct recovery.
311 * Architecturally, the CPU could prefetch something
312 * back into an incorrect ASID slot and leave it there
313 * to cause trouble down the road. It's better than
314 * nothing, though.)
315 */
316 __flush_tlb_all();
317 }
318 #endif
319 this_cpu_write(cpu_tlbstate.is_lazy, false);
320
321 if (real_prev == next) {
322 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
323 next->context.ctx_id);
324
325 /*
326 * We don't currently support having a real mm loaded without
327 * our cpu set in mm_cpumask(). We have all the bookkeeping
328 * in place to figure out whether we would need to flush
329 * if our cpu were cleared in mm_cpumask(), but we don't
330 * currently use it.
331 */
332 if (WARN_ON_ONCE(real_prev != &init_mm &&
333 !cpumask_test_cpu(cpu, mm_cpumask(next))))
334 cpumask_set_cpu(cpu, mm_cpumask(next));
335
336 return;
337 } else {
338 u16 new_asid;
339 bool need_flush;
340
341 /*
342 * Avoid user/user BTB poisoning by flushing the branch
343 * predictor when switching between processes. This stops
344 * one process from doing Spectre-v2 attacks on another.
345 */
346 cond_ibpb(tsk);
347
348 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
349 /*
350 * If our current stack is in vmalloc space and isn't
351 * mapped in the new pgd, we'll double-fault. Forcibly
352 * map it.
353 */
354 sync_current_stack_to_mm(next);
355 }
356
357 /* Stop remote flushes for the previous mm */
358 VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu, mm_cpumask(real_prev)) &&
359 real_prev != &init_mm);
360 cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
361
362 /*
363 * Start remote flushes and then read tlb_gen.
364 */
365 cpumask_set_cpu(cpu, mm_cpumask(next));
366 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
367
368 choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
369
370 /* Let nmi_uaccess_okay() know that we're changing CR3. */
371 this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
372 barrier();
373
374 if (need_flush) {
375 this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
376 this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
377 load_new_mm_cr3(next->pgd, new_asid, true);
378
379 /*
380 * NB: This gets called via leave_mm() in the idle path
381 * where RCU functions differently. Tracing normally
382 * uses RCU, so we need to use the _rcuidle variant.
383 *
384 * (There is no good reason for this. The idle code should
385 * be rearranged to call this before rcu_idle_enter().)
386 */
387 trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
388 } else {
389 /* The new ASID is already up to date. */
390 load_new_mm_cr3(next->pgd, new_asid, false);
391
392 /* See above wrt _rcuidle. */
393 trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, 0);
394 }
395
396 /* Make sure we write CR3 before loaded_mm. */
397 barrier();
398
399 this_cpu_write(cpu_tlbstate.loaded_mm, next);
400 this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
401 }
402
403 load_mm_cr4(next);
404 switch_ldt(real_prev, next);
405 }
406
407 /*
408 * Please ignore the name of this function. It should be called
409 * switch_to_kernel_thread().
410 *
411 * enter_lazy_tlb() is a hint from the scheduler that we are entering a
412 * kernel thread or other context without an mm. Acceptable implementations
413 * include doing nothing whatsoever, switching to init_mm, or various clever
414 * lazy tricks to try to minimize TLB flushes.
415 *
416 * The scheduler reserves the right to call enter_lazy_tlb() several times
417 * in a row. It will notify us that we're going back to a real mm by
418 * calling switch_mm_irqs_off().
419 */
enter_lazy_tlb(struct mm_struct * mm,struct task_struct * tsk)420 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
421 {
422 if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
423 return;
424
425 if (tlb_defer_switch_to_init_mm()) {
426 /*
427 * There's a significant optimization that may be possible
428 * here. We have accurate enough TLB flush tracking that we
429 * don't need to maintain coherence of TLB per se when we're
430 * lazy. We do, however, need to maintain coherence of
431 * paging-structure caches. We could, in principle, leave our
432 * old mm loaded and only switch to init_mm when
433 * tlb_remove_page() happens.
434 */
435 this_cpu_write(cpu_tlbstate.is_lazy, true);
436 } else {
437 switch_mm(NULL, &init_mm, NULL);
438 }
439 }
440
441 /*
442 * Call this when reinitializing a CPU. It fixes the following potential
443 * problems:
444 *
445 * - The ASID changed from what cpu_tlbstate thinks it is (most likely
446 * because the CPU was taken down and came back up with CR3's PCID
447 * bits clear. CPU hotplug can do this.
448 *
449 * - The TLB contains junk in slots corresponding to inactive ASIDs.
450 *
451 * - The CPU went so far out to lunch that it may have missed a TLB
452 * flush.
453 */
initialize_tlbstate_and_flush(void)454 void initialize_tlbstate_and_flush(void)
455 {
456 int i;
457 struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
458 u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
459 unsigned long cr3 = __read_cr3();
460
461 /* Assert that CR3 already references the right mm. */
462 WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
463
464 /*
465 * Assert that CR4.PCIDE is set if needed. (CR4.PCIDE initialization
466 * doesn't work like other CR4 bits because it can only be set from
467 * long mode.)
468 */
469 WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
470 !(cr4_read_shadow() & X86_CR4_PCIDE));
471
472 /* Force ASID 0 and force a TLB flush. */
473 write_cr3(build_cr3(mm->pgd, 0));
474
475 /* Reinitialize tlbstate. */
476 this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, LAST_USER_MM_IBPB);
477 this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
478 this_cpu_write(cpu_tlbstate.next_asid, 1);
479 this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
480 this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
481
482 for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
483 this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
484 }
485
486 /*
487 * flush_tlb_func_common()'s memory ordering requirement is that any
488 * TLB fills that happen after we flush the TLB are ordered after we
489 * read active_mm's tlb_gen. We don't need any explicit barriers
490 * because all x86 flush operations are serializing and the
491 * atomic64_read operation won't be reordered by the compiler.
492 */
flush_tlb_func_common(const struct flush_tlb_info * f,bool local,enum tlb_flush_reason reason)493 static void flush_tlb_func_common(const struct flush_tlb_info *f,
494 bool local, enum tlb_flush_reason reason)
495 {
496 /*
497 * We have three different tlb_gen values in here. They are:
498 *
499 * - mm_tlb_gen: the latest generation.
500 * - local_tlb_gen: the generation that this CPU has already caught
501 * up to.
502 * - f->new_tlb_gen: the generation that the requester of the flush
503 * wants us to catch up to.
504 */
505 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
506 u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
507 u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
508 u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
509
510 /* This code cannot presently handle being reentered. */
511 VM_WARN_ON(!irqs_disabled());
512
513 if (unlikely(loaded_mm == &init_mm))
514 return;
515
516 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
517 loaded_mm->context.ctx_id);
518
519 if (this_cpu_read(cpu_tlbstate.is_lazy)) {
520 /*
521 * We're in lazy mode. We need to at least flush our
522 * paging-structure cache to avoid speculatively reading
523 * garbage into our TLB. Since switching to init_mm is barely
524 * slower than a minimal flush, just switch to init_mm.
525 */
526 switch_mm_irqs_off(NULL, &init_mm, NULL);
527 return;
528 }
529
530 if (unlikely(local_tlb_gen == mm_tlb_gen)) {
531 /*
532 * There's nothing to do: we're already up to date. This can
533 * happen if two concurrent flushes happen -- the first flush to
534 * be handled can catch us all the way up, leaving no work for
535 * the second flush.
536 */
537 trace_tlb_flush(reason, 0);
538 return;
539 }
540
541 WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
542 WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
543
544 /*
545 * If we get to this point, we know that our TLB is out of date.
546 * This does not strictly imply that we need to flush (it's
547 * possible that f->new_tlb_gen <= local_tlb_gen), but we're
548 * going to need to flush in the very near future, so we might
549 * as well get it over with.
550 *
551 * The only question is whether to do a full or partial flush.
552 *
553 * We do a partial flush if requested and two extra conditions
554 * are met:
555 *
556 * 1. f->new_tlb_gen == local_tlb_gen + 1. We have an invariant that
557 * we've always done all needed flushes to catch up to
558 * local_tlb_gen. If, for example, local_tlb_gen == 2 and
559 * f->new_tlb_gen == 3, then we know that the flush needed to bring
560 * us up to date for tlb_gen 3 is the partial flush we're
561 * processing.
562 *
563 * As an example of why this check is needed, suppose that there
564 * are two concurrent flushes. The first is a full flush that
565 * changes context.tlb_gen from 1 to 2. The second is a partial
566 * flush that changes context.tlb_gen from 2 to 3. If they get
567 * processed on this CPU in reverse order, we'll see
568 * local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
569 * If we were to use __flush_tlb_one_user() and set local_tlb_gen to
570 * 3, we'd be break the invariant: we'd update local_tlb_gen above
571 * 1 without the full flush that's needed for tlb_gen 2.
572 *
573 * 2. f->new_tlb_gen == mm_tlb_gen. This is purely an optimiation.
574 * Partial TLB flushes are not all that much cheaper than full TLB
575 * flushes, so it seems unlikely that it would be a performance win
576 * to do a partial flush if that won't bring our TLB fully up to
577 * date. By doing a full flush instead, we can increase
578 * local_tlb_gen all the way to mm_tlb_gen and we can probably
579 * avoid another flush in the very near future.
580 */
581 if (f->end != TLB_FLUSH_ALL &&
582 f->new_tlb_gen == local_tlb_gen + 1 &&
583 f->new_tlb_gen == mm_tlb_gen) {
584 /* Partial flush */
585 unsigned long addr;
586 unsigned long nr_pages = (f->end - f->start) >> PAGE_SHIFT;
587
588 addr = f->start;
589 while (addr < f->end) {
590 __flush_tlb_one_user(addr);
591 addr += PAGE_SIZE;
592 }
593 if (local)
594 count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_pages);
595 trace_tlb_flush(reason, nr_pages);
596 } else {
597 /* Full flush. */
598 local_flush_tlb();
599 if (local)
600 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
601 trace_tlb_flush(reason, TLB_FLUSH_ALL);
602 }
603
604 /* Both paths above update our state to mm_tlb_gen. */
605 this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
606 }
607
flush_tlb_func_local(void * info,enum tlb_flush_reason reason)608 static void flush_tlb_func_local(void *info, enum tlb_flush_reason reason)
609 {
610 const struct flush_tlb_info *f = info;
611
612 flush_tlb_func_common(f, true, reason);
613 }
614
flush_tlb_func_remote(void * info)615 static void flush_tlb_func_remote(void *info)
616 {
617 const struct flush_tlb_info *f = info;
618
619 inc_irq_stat(irq_tlb_count);
620
621 if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
622 return;
623
624 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
625 flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
626 }
627
native_flush_tlb_others(const struct cpumask * cpumask,const struct flush_tlb_info * info)628 void native_flush_tlb_others(const struct cpumask *cpumask,
629 const struct flush_tlb_info *info)
630 {
631 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
632 if (info->end == TLB_FLUSH_ALL)
633 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
634 else
635 trace_tlb_flush(TLB_REMOTE_SEND_IPI,
636 (info->end - info->start) >> PAGE_SHIFT);
637
638 if (is_uv_system()) {
639 /*
640 * This whole special case is confused. UV has a "Broadcast
641 * Assist Unit", which seems to be a fancy way to send IPIs.
642 * Back when x86 used an explicit TLB flush IPI, UV was
643 * optimized to use its own mechanism. These days, x86 uses
644 * smp_call_function_many(), but UV still uses a manual IPI,
645 * and that IPI's action is out of date -- it does a manual
646 * flush instead of calling flush_tlb_func_remote(). This
647 * means that the percpu tlb_gen variables won't be updated
648 * and we'll do pointless flushes on future context switches.
649 *
650 * Rather than hooking native_flush_tlb_others() here, I think
651 * that UV should be updated so that smp_call_function_many(),
652 * etc, are optimal on UV.
653 */
654 cpumask = uv_flush_tlb_others(cpumask, info);
655 if (cpumask)
656 smp_call_function_many(cpumask, flush_tlb_func_remote,
657 (void *)info, 1);
658 return;
659 }
660 smp_call_function_many(cpumask, flush_tlb_func_remote,
661 (void *)info, 1);
662 }
663
664 /*
665 * See Documentation/x86/tlb.txt for details. We choose 33
666 * because it is large enough to cover the vast majority (at
667 * least 95%) of allocations, and is small enough that we are
668 * confident it will not cause too much overhead. Each single
669 * flush is about 100 ns, so this caps the maximum overhead at
670 * _about_ 3,000 ns.
671 *
672 * This is in units of pages.
673 */
674 static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
675
flush_tlb_mm_range(struct mm_struct * mm,unsigned long start,unsigned long end,unsigned long vmflag)676 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
677 unsigned long end, unsigned long vmflag)
678 {
679 int cpu;
680
681 struct flush_tlb_info info = {
682 .mm = mm,
683 };
684
685 cpu = get_cpu();
686
687 /* This is also a barrier that synchronizes with switch_mm(). */
688 info.new_tlb_gen = inc_mm_tlb_gen(mm);
689
690 /* Should we flush just the requested range? */
691 if ((end != TLB_FLUSH_ALL) &&
692 !(vmflag & VM_HUGETLB) &&
693 ((end - start) >> PAGE_SHIFT) <= tlb_single_page_flush_ceiling) {
694 info.start = start;
695 info.end = end;
696 } else {
697 info.start = 0UL;
698 info.end = TLB_FLUSH_ALL;
699 }
700
701 if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
702 VM_WARN_ON(irqs_disabled());
703 local_irq_disable();
704 flush_tlb_func_local(&info, TLB_LOCAL_MM_SHOOTDOWN);
705 local_irq_enable();
706 }
707
708 if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
709 flush_tlb_others(mm_cpumask(mm), &info);
710
711 put_cpu();
712 }
713
714
do_flush_tlb_all(void * info)715 static void do_flush_tlb_all(void *info)
716 {
717 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
718 __flush_tlb_all();
719 }
720
flush_tlb_all(void)721 void flush_tlb_all(void)
722 {
723 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
724 on_each_cpu(do_flush_tlb_all, NULL, 1);
725 }
726
do_kernel_range_flush(void * info)727 static void do_kernel_range_flush(void *info)
728 {
729 struct flush_tlb_info *f = info;
730 unsigned long addr;
731
732 /* flush range by one by one 'invlpg' */
733 for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
734 __flush_tlb_one_kernel(addr);
735 }
736
flush_tlb_kernel_range(unsigned long start,unsigned long end)737 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
738 {
739
740 /* Balance as user space task's flush, a bit conservative */
741 if (end == TLB_FLUSH_ALL ||
742 (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
743 on_each_cpu(do_flush_tlb_all, NULL, 1);
744 } else {
745 struct flush_tlb_info info;
746 info.start = start;
747 info.end = end;
748 on_each_cpu(do_kernel_range_flush, &info, 1);
749 }
750 }
751
arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch * batch)752 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
753 {
754 struct flush_tlb_info info = {
755 .mm = NULL,
756 .start = 0UL,
757 .end = TLB_FLUSH_ALL,
758 };
759
760 int cpu = get_cpu();
761
762 if (cpumask_test_cpu(cpu, &batch->cpumask)) {
763 VM_WARN_ON(irqs_disabled());
764 local_irq_disable();
765 flush_tlb_func_local(&info, TLB_LOCAL_SHOOTDOWN);
766 local_irq_enable();
767 }
768
769 if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
770 flush_tlb_others(&batch->cpumask, &info);
771
772 cpumask_clear(&batch->cpumask);
773
774 put_cpu();
775 }
776
tlbflush_read_file(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)777 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
778 size_t count, loff_t *ppos)
779 {
780 char buf[32];
781 unsigned int len;
782
783 len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
784 return simple_read_from_buffer(user_buf, count, ppos, buf, len);
785 }
786
tlbflush_write_file(struct file * file,const char __user * user_buf,size_t count,loff_t * ppos)787 static ssize_t tlbflush_write_file(struct file *file,
788 const char __user *user_buf, size_t count, loff_t *ppos)
789 {
790 char buf[32];
791 ssize_t len;
792 int ceiling;
793
794 len = min(count, sizeof(buf) - 1);
795 if (copy_from_user(buf, user_buf, len))
796 return -EFAULT;
797
798 buf[len] = '\0';
799 if (kstrtoint(buf, 0, &ceiling))
800 return -EINVAL;
801
802 if (ceiling < 0)
803 return -EINVAL;
804
805 tlb_single_page_flush_ceiling = ceiling;
806 return count;
807 }
808
809 static const struct file_operations fops_tlbflush = {
810 .read = tlbflush_read_file,
811 .write = tlbflush_write_file,
812 .llseek = default_llseek,
813 };
814
create_tlb_single_page_flush_ceiling(void)815 static int __init create_tlb_single_page_flush_ceiling(void)
816 {
817 debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
818 arch_debugfs_dir, NULL, &fops_tlbflush);
819 return 0;
820 }
821 late_initcall(create_tlb_single_page_flush_ceiling);
822