• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include <linux/init.h>
2 
3 #include <linux/mm.h>
4 #include <linux/spinlock.h>
5 #include <linux/smp.h>
6 #include <linux/interrupt.h>
7 #include <linux/export.h>
8 #include <linux/cpu.h>
9 #include <linux/debugfs.h>
10 
11 #include <asm/tlbflush.h>
12 #include <asm/mmu_context.h>
13 #include <asm/nospec-branch.h>
14 #include <asm/cache.h>
15 #include <asm/apic.h>
16 #include <asm/uv/uv.h>
17 
18 /*
19  *	TLB flushing, formerly SMP-only
20  *		c/o Linus Torvalds.
21  *
22  *	These mean you can really definitely utterly forget about
23  *	writing to user space from interrupts. (Its not allowed anyway).
24  *
25  *	Optimizations Manfred Spraul <manfred@colorfullife.com>
26  *
27  *	More scalable flush, from Andi Kleen
28  *
29  *	Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
30  */
31 
32 /*
33  * Use bit 0 to mangle the TIF_SPEC_IB state into the mm pointer which is
34  * stored in cpu_tlb_state.last_user_mm_ibpb.
35  */
36 #define LAST_USER_MM_IBPB	0x1UL
37 
38 /*
39  * We get here when we do something requiring a TLB invalidation
40  * but could not go invalidate all of the contexts.  We do the
41  * necessary invalidation by clearing out the 'ctx_id' which
42  * forces a TLB flush when the context is loaded.
43  */
clear_asid_other(void)44 void clear_asid_other(void)
45 {
46 	u16 asid;
47 
48 	/*
49 	 * This is only expected to be set if we have disabled
50 	 * kernel _PAGE_GLOBAL pages.
51 	 */
52 	if (!static_cpu_has(X86_FEATURE_PTI)) {
53 		WARN_ON_ONCE(1);
54 		return;
55 	}
56 
57 	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
58 		/* Do not need to flush the current asid */
59 		if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
60 			continue;
61 		/*
62 		 * Make sure the next time we go to switch to
63 		 * this asid, we do a flush:
64 		 */
65 		this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
66 	}
67 	this_cpu_write(cpu_tlbstate.invalidate_other, false);
68 }
69 
70 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
71 
72 
choose_new_asid(struct mm_struct * next,u64 next_tlb_gen,u16 * new_asid,bool * need_flush)73 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
74 			    u16 *new_asid, bool *need_flush)
75 {
76 	u16 asid;
77 
78 	if (!static_cpu_has(X86_FEATURE_PCID)) {
79 		*new_asid = 0;
80 		*need_flush = true;
81 		return;
82 	}
83 
84 	if (this_cpu_read(cpu_tlbstate.invalidate_other))
85 		clear_asid_other();
86 
87 	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
88 		if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
89 		    next->context.ctx_id)
90 			continue;
91 
92 		*new_asid = asid;
93 		*need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
94 			       next_tlb_gen);
95 		return;
96 	}
97 
98 	/*
99 	 * We don't currently own an ASID slot on this CPU.
100 	 * Allocate a slot.
101 	 */
102 	*new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
103 	if (*new_asid >= TLB_NR_DYN_ASIDS) {
104 		*new_asid = 0;
105 		this_cpu_write(cpu_tlbstate.next_asid, 1);
106 	}
107 	*need_flush = true;
108 }
109 
load_new_mm_cr3(pgd_t * pgdir,u16 new_asid,bool need_flush)110 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush)
111 {
112 	unsigned long new_mm_cr3;
113 
114 	if (need_flush) {
115 		invalidate_user_asid(new_asid);
116 		new_mm_cr3 = build_cr3(pgdir, new_asid);
117 	} else {
118 		new_mm_cr3 = build_cr3_noflush(pgdir, new_asid);
119 	}
120 
121 	/*
122 	 * Caution: many callers of this function expect
123 	 * that load_cr3() is serializing and orders TLB
124 	 * fills with respect to the mm_cpumask writes.
125 	 */
126 	write_cr3(new_mm_cr3);
127 }
128 
leave_mm(int cpu)129 void leave_mm(int cpu)
130 {
131 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
132 
133 	/*
134 	 * It's plausible that we're in lazy TLB mode while our mm is init_mm.
135 	 * If so, our callers still expect us to flush the TLB, but there
136 	 * aren't any user TLB entries in init_mm to worry about.
137 	 *
138 	 * This needs to happen before any other sanity checks due to
139 	 * intel_idle's shenanigans.
140 	 */
141 	if (loaded_mm == &init_mm)
142 		return;
143 
144 	/* Warn if we're not lazy. */
145 	WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy));
146 
147 	switch_mm(NULL, &init_mm, NULL);
148 }
149 EXPORT_SYMBOL_GPL(leave_mm);
150 
switch_mm(struct mm_struct * prev,struct mm_struct * next,struct task_struct * tsk)151 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
152 	       struct task_struct *tsk)
153 {
154 	unsigned long flags;
155 
156 	local_irq_save(flags);
157 	switch_mm_irqs_off(prev, next, tsk);
158 	local_irq_restore(flags);
159 }
160 
sync_current_stack_to_mm(struct mm_struct * mm)161 static void sync_current_stack_to_mm(struct mm_struct *mm)
162 {
163 	unsigned long sp = current_stack_pointer;
164 	pgd_t *pgd = pgd_offset(mm, sp);
165 
166 	if (CONFIG_PGTABLE_LEVELS > 4) {
167 		if (unlikely(pgd_none(*pgd))) {
168 			pgd_t *pgd_ref = pgd_offset_k(sp);
169 
170 			set_pgd(pgd, *pgd_ref);
171 		}
172 	} else {
173 		/*
174 		 * "pgd" is faked.  The top level entries are "p4d"s, so sync
175 		 * the p4d.  This compiles to approximately the same code as
176 		 * the 5-level case.
177 		 */
178 		p4d_t *p4d = p4d_offset(pgd, sp);
179 
180 		if (unlikely(p4d_none(*p4d))) {
181 			pgd_t *pgd_ref = pgd_offset_k(sp);
182 			p4d_t *p4d_ref = p4d_offset(pgd_ref, sp);
183 
184 			set_p4d(p4d, *p4d_ref);
185 		}
186 	}
187 }
188 
mm_mangle_tif_spec_ib(struct task_struct * next)189 static inline unsigned long mm_mangle_tif_spec_ib(struct task_struct *next)
190 {
191 	unsigned long next_tif = task_thread_info(next)->flags;
192 	unsigned long ibpb = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_IBPB;
193 
194 	return (unsigned long)next->mm | ibpb;
195 }
196 
cond_ibpb(struct task_struct * next)197 static void cond_ibpb(struct task_struct *next)
198 {
199 	if (!next || !next->mm)
200 		return;
201 
202 	/*
203 	 * Both, the conditional and the always IBPB mode use the mm
204 	 * pointer to avoid the IBPB when switching between tasks of the
205 	 * same process. Using the mm pointer instead of mm->context.ctx_id
206 	 * opens a hypothetical hole vs. mm_struct reuse, which is more or
207 	 * less impossible to control by an attacker. Aside of that it
208 	 * would only affect the first schedule so the theoretically
209 	 * exposed data is not really interesting.
210 	 */
211 	if (static_branch_likely(&switch_mm_cond_ibpb)) {
212 		unsigned long prev_mm, next_mm;
213 
214 		/*
215 		 * This is a bit more complex than the always mode because
216 		 * it has to handle two cases:
217 		 *
218 		 * 1) Switch from a user space task (potential attacker)
219 		 *    which has TIF_SPEC_IB set to a user space task
220 		 *    (potential victim) which has TIF_SPEC_IB not set.
221 		 *
222 		 * 2) Switch from a user space task (potential attacker)
223 		 *    which has TIF_SPEC_IB not set to a user space task
224 		 *    (potential victim) which has TIF_SPEC_IB set.
225 		 *
226 		 * This could be done by unconditionally issuing IBPB when
227 		 * a task which has TIF_SPEC_IB set is either scheduled in
228 		 * or out. Though that results in two flushes when:
229 		 *
230 		 * - the same user space task is scheduled out and later
231 		 *   scheduled in again and only a kernel thread ran in
232 		 *   between.
233 		 *
234 		 * - a user space task belonging to the same process is
235 		 *   scheduled in after a kernel thread ran in between
236 		 *
237 		 * - a user space task belonging to the same process is
238 		 *   scheduled in immediately.
239 		 *
240 		 * Optimize this with reasonably small overhead for the
241 		 * above cases. Mangle the TIF_SPEC_IB bit into the mm
242 		 * pointer of the incoming task which is stored in
243 		 * cpu_tlbstate.last_user_mm_ibpb for comparison.
244 		 */
245 		next_mm = mm_mangle_tif_spec_ib(next);
246 		prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_ibpb);
247 
248 		/*
249 		 * Issue IBPB only if the mm's are different and one or
250 		 * both have the IBPB bit set.
251 		 */
252 		if (next_mm != prev_mm &&
253 		    (next_mm | prev_mm) & LAST_USER_MM_IBPB)
254 			indirect_branch_prediction_barrier();
255 
256 		this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, next_mm);
257 	}
258 
259 	if (static_branch_unlikely(&switch_mm_always_ibpb)) {
260 		/*
261 		 * Only flush when switching to a user space task with a
262 		 * different context than the user space task which ran
263 		 * last on this CPU.
264 		 */
265 		if (this_cpu_read(cpu_tlbstate.last_user_mm) != next->mm) {
266 			indirect_branch_prediction_barrier();
267 			this_cpu_write(cpu_tlbstate.last_user_mm, next->mm);
268 		}
269 	}
270 }
271 
switch_mm_irqs_off(struct mm_struct * prev,struct mm_struct * next,struct task_struct * tsk)272 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
273 			struct task_struct *tsk)
274 {
275 	struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
276 	u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
277 	unsigned cpu = smp_processor_id();
278 	u64 next_tlb_gen;
279 
280 	/*
281 	 * NB: The scheduler will call us with prev == next when switching
282 	 * from lazy TLB mode to normal mode if active_mm isn't changing.
283 	 * When this happens, we don't assume that CR3 (and hence
284 	 * cpu_tlbstate.loaded_mm) matches next.
285 	 *
286 	 * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
287 	 */
288 
289 	/* We don't want flush_tlb_func_* to run concurrently with us. */
290 	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
291 		WARN_ON_ONCE(!irqs_disabled());
292 
293 	/*
294 	 * Verify that CR3 is what we think it is.  This will catch
295 	 * hypothetical buggy code that directly switches to swapper_pg_dir
296 	 * without going through leave_mm() / switch_mm_irqs_off() or that
297 	 * does something like write_cr3(read_cr3_pa()).
298 	 *
299 	 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
300 	 * isn't free.
301 	 */
302 #ifdef CONFIG_DEBUG_VM
303 	if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) {
304 		/*
305 		 * If we were to BUG here, we'd be very likely to kill
306 		 * the system so hard that we don't see the call trace.
307 		 * Try to recover instead by ignoring the error and doing
308 		 * a global flush to minimize the chance of corruption.
309 		 *
310 		 * (This is far from being a fully correct recovery.
311 		 *  Architecturally, the CPU could prefetch something
312 		 *  back into an incorrect ASID slot and leave it there
313 		 *  to cause trouble down the road.  It's better than
314 		 *  nothing, though.)
315 		 */
316 		__flush_tlb_all();
317 	}
318 #endif
319 	this_cpu_write(cpu_tlbstate.is_lazy, false);
320 
321 	if (real_prev == next) {
322 		VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
323 			   next->context.ctx_id);
324 
325 		/*
326 		 * We don't currently support having a real mm loaded without
327 		 * our cpu set in mm_cpumask().  We have all the bookkeeping
328 		 * in place to figure out whether we would need to flush
329 		 * if our cpu were cleared in mm_cpumask(), but we don't
330 		 * currently use it.
331 		 */
332 		if (WARN_ON_ONCE(real_prev != &init_mm &&
333 				 !cpumask_test_cpu(cpu, mm_cpumask(next))))
334 			cpumask_set_cpu(cpu, mm_cpumask(next));
335 
336 		return;
337 	} else {
338 		u16 new_asid;
339 		bool need_flush;
340 
341 		/*
342 		 * Avoid user/user BTB poisoning by flushing the branch
343 		 * predictor when switching between processes. This stops
344 		 * one process from doing Spectre-v2 attacks on another.
345 		 */
346 		cond_ibpb(tsk);
347 
348 		if (IS_ENABLED(CONFIG_VMAP_STACK)) {
349 			/*
350 			 * If our current stack is in vmalloc space and isn't
351 			 * mapped in the new pgd, we'll double-fault.  Forcibly
352 			 * map it.
353 			 */
354 			sync_current_stack_to_mm(next);
355 		}
356 
357 		/* Stop remote flushes for the previous mm */
358 		VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu, mm_cpumask(real_prev)) &&
359 				real_prev != &init_mm);
360 		cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
361 
362 		/*
363 		 * Start remote flushes and then read tlb_gen.
364 		 */
365 		cpumask_set_cpu(cpu, mm_cpumask(next));
366 		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
367 
368 		choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
369 
370 		/* Let nmi_uaccess_okay() know that we're changing CR3. */
371 		this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
372 		barrier();
373 
374 		if (need_flush) {
375 			this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
376 			this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
377 			load_new_mm_cr3(next->pgd, new_asid, true);
378 
379 			/*
380 			 * NB: This gets called via leave_mm() in the idle path
381 			 * where RCU functions differently.  Tracing normally
382 			 * uses RCU, so we need to use the _rcuidle variant.
383 			 *
384 			 * (There is no good reason for this.  The idle code should
385 			 *  be rearranged to call this before rcu_idle_enter().)
386 			 */
387 			trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
388 		} else {
389 			/* The new ASID is already up to date. */
390 			load_new_mm_cr3(next->pgd, new_asid, false);
391 
392 			/* See above wrt _rcuidle. */
393 			trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, 0);
394 		}
395 
396 		/* Make sure we write CR3 before loaded_mm. */
397 		barrier();
398 
399 		this_cpu_write(cpu_tlbstate.loaded_mm, next);
400 		this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
401 	}
402 
403 	load_mm_cr4(next);
404 	switch_ldt(real_prev, next);
405 }
406 
407 /*
408  * Please ignore the name of this function.  It should be called
409  * switch_to_kernel_thread().
410  *
411  * enter_lazy_tlb() is a hint from the scheduler that we are entering a
412  * kernel thread or other context without an mm.  Acceptable implementations
413  * include doing nothing whatsoever, switching to init_mm, or various clever
414  * lazy tricks to try to minimize TLB flushes.
415  *
416  * The scheduler reserves the right to call enter_lazy_tlb() several times
417  * in a row.  It will notify us that we're going back to a real mm by
418  * calling switch_mm_irqs_off().
419  */
enter_lazy_tlb(struct mm_struct * mm,struct task_struct * tsk)420 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
421 {
422 	if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
423 		return;
424 
425 	if (tlb_defer_switch_to_init_mm()) {
426 		/*
427 		 * There's a significant optimization that may be possible
428 		 * here.  We have accurate enough TLB flush tracking that we
429 		 * don't need to maintain coherence of TLB per se when we're
430 		 * lazy.  We do, however, need to maintain coherence of
431 		 * paging-structure caches.  We could, in principle, leave our
432 		 * old mm loaded and only switch to init_mm when
433 		 * tlb_remove_page() happens.
434 		 */
435 		this_cpu_write(cpu_tlbstate.is_lazy, true);
436 	} else {
437 		switch_mm(NULL, &init_mm, NULL);
438 	}
439 }
440 
441 /*
442  * Call this when reinitializing a CPU.  It fixes the following potential
443  * problems:
444  *
445  * - The ASID changed from what cpu_tlbstate thinks it is (most likely
446  *   because the CPU was taken down and came back up with CR3's PCID
447  *   bits clear.  CPU hotplug can do this.
448  *
449  * - The TLB contains junk in slots corresponding to inactive ASIDs.
450  *
451  * - The CPU went so far out to lunch that it may have missed a TLB
452  *   flush.
453  */
initialize_tlbstate_and_flush(void)454 void initialize_tlbstate_and_flush(void)
455 {
456 	int i;
457 	struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
458 	u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
459 	unsigned long cr3 = __read_cr3();
460 
461 	/* Assert that CR3 already references the right mm. */
462 	WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
463 
464 	/*
465 	 * Assert that CR4.PCIDE is set if needed.  (CR4.PCIDE initialization
466 	 * doesn't work like other CR4 bits because it can only be set from
467 	 * long mode.)
468 	 */
469 	WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
470 		!(cr4_read_shadow() & X86_CR4_PCIDE));
471 
472 	/* Force ASID 0 and force a TLB flush. */
473 	write_cr3(build_cr3(mm->pgd, 0));
474 
475 	/* Reinitialize tlbstate. */
476 	this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, LAST_USER_MM_IBPB);
477 	this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
478 	this_cpu_write(cpu_tlbstate.next_asid, 1);
479 	this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
480 	this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
481 
482 	for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
483 		this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
484 }
485 
486 /*
487  * flush_tlb_func_common()'s memory ordering requirement is that any
488  * TLB fills that happen after we flush the TLB are ordered after we
489  * read active_mm's tlb_gen.  We don't need any explicit barriers
490  * because all x86 flush operations are serializing and the
491  * atomic64_read operation won't be reordered by the compiler.
492  */
flush_tlb_func_common(const struct flush_tlb_info * f,bool local,enum tlb_flush_reason reason)493 static void flush_tlb_func_common(const struct flush_tlb_info *f,
494 				  bool local, enum tlb_flush_reason reason)
495 {
496 	/*
497 	 * We have three different tlb_gen values in here.  They are:
498 	 *
499 	 * - mm_tlb_gen:     the latest generation.
500 	 * - local_tlb_gen:  the generation that this CPU has already caught
501 	 *                   up to.
502 	 * - f->new_tlb_gen: the generation that the requester of the flush
503 	 *                   wants us to catch up to.
504 	 */
505 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
506 	u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
507 	u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
508 	u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
509 
510 	/* This code cannot presently handle being reentered. */
511 	VM_WARN_ON(!irqs_disabled());
512 
513 	if (unlikely(loaded_mm == &init_mm))
514 		return;
515 
516 	VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
517 		   loaded_mm->context.ctx_id);
518 
519 	if (this_cpu_read(cpu_tlbstate.is_lazy)) {
520 		/*
521 		 * We're in lazy mode.  We need to at least flush our
522 		 * paging-structure cache to avoid speculatively reading
523 		 * garbage into our TLB.  Since switching to init_mm is barely
524 		 * slower than a minimal flush, just switch to init_mm.
525 		 */
526 		switch_mm_irqs_off(NULL, &init_mm, NULL);
527 		return;
528 	}
529 
530 	if (unlikely(local_tlb_gen == mm_tlb_gen)) {
531 		/*
532 		 * There's nothing to do: we're already up to date.  This can
533 		 * happen if two concurrent flushes happen -- the first flush to
534 		 * be handled can catch us all the way up, leaving no work for
535 		 * the second flush.
536 		 */
537 		trace_tlb_flush(reason, 0);
538 		return;
539 	}
540 
541 	WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
542 	WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
543 
544 	/*
545 	 * If we get to this point, we know that our TLB is out of date.
546 	 * This does not strictly imply that we need to flush (it's
547 	 * possible that f->new_tlb_gen <= local_tlb_gen), but we're
548 	 * going to need to flush in the very near future, so we might
549 	 * as well get it over with.
550 	 *
551 	 * The only question is whether to do a full or partial flush.
552 	 *
553 	 * We do a partial flush if requested and two extra conditions
554 	 * are met:
555 	 *
556 	 * 1. f->new_tlb_gen == local_tlb_gen + 1.  We have an invariant that
557 	 *    we've always done all needed flushes to catch up to
558 	 *    local_tlb_gen.  If, for example, local_tlb_gen == 2 and
559 	 *    f->new_tlb_gen == 3, then we know that the flush needed to bring
560 	 *    us up to date for tlb_gen 3 is the partial flush we're
561 	 *    processing.
562 	 *
563 	 *    As an example of why this check is needed, suppose that there
564 	 *    are two concurrent flushes.  The first is a full flush that
565 	 *    changes context.tlb_gen from 1 to 2.  The second is a partial
566 	 *    flush that changes context.tlb_gen from 2 to 3.  If they get
567 	 *    processed on this CPU in reverse order, we'll see
568 	 *     local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
569 	 *    If we were to use __flush_tlb_one_user() and set local_tlb_gen to
570 	 *    3, we'd be break the invariant: we'd update local_tlb_gen above
571 	 *    1 without the full flush that's needed for tlb_gen 2.
572 	 *
573 	 * 2. f->new_tlb_gen == mm_tlb_gen.  This is purely an optimiation.
574 	 *    Partial TLB flushes are not all that much cheaper than full TLB
575 	 *    flushes, so it seems unlikely that it would be a performance win
576 	 *    to do a partial flush if that won't bring our TLB fully up to
577 	 *    date.  By doing a full flush instead, we can increase
578 	 *    local_tlb_gen all the way to mm_tlb_gen and we can probably
579 	 *    avoid another flush in the very near future.
580 	 */
581 	if (f->end != TLB_FLUSH_ALL &&
582 	    f->new_tlb_gen == local_tlb_gen + 1 &&
583 	    f->new_tlb_gen == mm_tlb_gen) {
584 		/* Partial flush */
585 		unsigned long addr;
586 		unsigned long nr_pages = (f->end - f->start) >> PAGE_SHIFT;
587 
588 		addr = f->start;
589 		while (addr < f->end) {
590 			__flush_tlb_one_user(addr);
591 			addr += PAGE_SIZE;
592 		}
593 		if (local)
594 			count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_pages);
595 		trace_tlb_flush(reason, nr_pages);
596 	} else {
597 		/* Full flush. */
598 		local_flush_tlb();
599 		if (local)
600 			count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
601 		trace_tlb_flush(reason, TLB_FLUSH_ALL);
602 	}
603 
604 	/* Both paths above update our state to mm_tlb_gen. */
605 	this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
606 }
607 
flush_tlb_func_local(void * info,enum tlb_flush_reason reason)608 static void flush_tlb_func_local(void *info, enum tlb_flush_reason reason)
609 {
610 	const struct flush_tlb_info *f = info;
611 
612 	flush_tlb_func_common(f, true, reason);
613 }
614 
flush_tlb_func_remote(void * info)615 static void flush_tlb_func_remote(void *info)
616 {
617 	const struct flush_tlb_info *f = info;
618 
619 	inc_irq_stat(irq_tlb_count);
620 
621 	if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
622 		return;
623 
624 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
625 	flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
626 }
627 
native_flush_tlb_others(const struct cpumask * cpumask,const struct flush_tlb_info * info)628 void native_flush_tlb_others(const struct cpumask *cpumask,
629 			     const struct flush_tlb_info *info)
630 {
631 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
632 	if (info->end == TLB_FLUSH_ALL)
633 		trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
634 	else
635 		trace_tlb_flush(TLB_REMOTE_SEND_IPI,
636 				(info->end - info->start) >> PAGE_SHIFT);
637 
638 	if (is_uv_system()) {
639 		/*
640 		 * This whole special case is confused.  UV has a "Broadcast
641 		 * Assist Unit", which seems to be a fancy way to send IPIs.
642 		 * Back when x86 used an explicit TLB flush IPI, UV was
643 		 * optimized to use its own mechanism.  These days, x86 uses
644 		 * smp_call_function_many(), but UV still uses a manual IPI,
645 		 * and that IPI's action is out of date -- it does a manual
646 		 * flush instead of calling flush_tlb_func_remote().  This
647 		 * means that the percpu tlb_gen variables won't be updated
648 		 * and we'll do pointless flushes on future context switches.
649 		 *
650 		 * Rather than hooking native_flush_tlb_others() here, I think
651 		 * that UV should be updated so that smp_call_function_many(),
652 		 * etc, are optimal on UV.
653 		 */
654 		cpumask = uv_flush_tlb_others(cpumask, info);
655 		if (cpumask)
656 			smp_call_function_many(cpumask, flush_tlb_func_remote,
657 					       (void *)info, 1);
658 		return;
659 	}
660 	smp_call_function_many(cpumask, flush_tlb_func_remote,
661 			       (void *)info, 1);
662 }
663 
664 /*
665  * See Documentation/x86/tlb.txt for details.  We choose 33
666  * because it is large enough to cover the vast majority (at
667  * least 95%) of allocations, and is small enough that we are
668  * confident it will not cause too much overhead.  Each single
669  * flush is about 100 ns, so this caps the maximum overhead at
670  * _about_ 3,000 ns.
671  *
672  * This is in units of pages.
673  */
674 static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
675 
flush_tlb_mm_range(struct mm_struct * mm,unsigned long start,unsigned long end,unsigned long vmflag)676 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
677 				unsigned long end, unsigned long vmflag)
678 {
679 	int cpu;
680 
681 	struct flush_tlb_info info = {
682 		.mm = mm,
683 	};
684 
685 	cpu = get_cpu();
686 
687 	/* This is also a barrier that synchronizes with switch_mm(). */
688 	info.new_tlb_gen = inc_mm_tlb_gen(mm);
689 
690 	/* Should we flush just the requested range? */
691 	if ((end != TLB_FLUSH_ALL) &&
692 	    !(vmflag & VM_HUGETLB) &&
693 	    ((end - start) >> PAGE_SHIFT) <= tlb_single_page_flush_ceiling) {
694 		info.start = start;
695 		info.end = end;
696 	} else {
697 		info.start = 0UL;
698 		info.end = TLB_FLUSH_ALL;
699 	}
700 
701 	if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
702 		VM_WARN_ON(irqs_disabled());
703 		local_irq_disable();
704 		flush_tlb_func_local(&info, TLB_LOCAL_MM_SHOOTDOWN);
705 		local_irq_enable();
706 	}
707 
708 	if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
709 		flush_tlb_others(mm_cpumask(mm), &info);
710 
711 	put_cpu();
712 }
713 
714 
do_flush_tlb_all(void * info)715 static void do_flush_tlb_all(void *info)
716 {
717 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
718 	__flush_tlb_all();
719 }
720 
flush_tlb_all(void)721 void flush_tlb_all(void)
722 {
723 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
724 	on_each_cpu(do_flush_tlb_all, NULL, 1);
725 }
726 
do_kernel_range_flush(void * info)727 static void do_kernel_range_flush(void *info)
728 {
729 	struct flush_tlb_info *f = info;
730 	unsigned long addr;
731 
732 	/* flush range by one by one 'invlpg' */
733 	for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
734 		__flush_tlb_one_kernel(addr);
735 }
736 
flush_tlb_kernel_range(unsigned long start,unsigned long end)737 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
738 {
739 
740 	/* Balance as user space task's flush, a bit conservative */
741 	if (end == TLB_FLUSH_ALL ||
742 	    (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
743 		on_each_cpu(do_flush_tlb_all, NULL, 1);
744 	} else {
745 		struct flush_tlb_info info;
746 		info.start = start;
747 		info.end = end;
748 		on_each_cpu(do_kernel_range_flush, &info, 1);
749 	}
750 }
751 
arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch * batch)752 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
753 {
754 	struct flush_tlb_info info = {
755 		.mm = NULL,
756 		.start = 0UL,
757 		.end = TLB_FLUSH_ALL,
758 	};
759 
760 	int cpu = get_cpu();
761 
762 	if (cpumask_test_cpu(cpu, &batch->cpumask)) {
763 		VM_WARN_ON(irqs_disabled());
764 		local_irq_disable();
765 		flush_tlb_func_local(&info, TLB_LOCAL_SHOOTDOWN);
766 		local_irq_enable();
767 	}
768 
769 	if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
770 		flush_tlb_others(&batch->cpumask, &info);
771 
772 	cpumask_clear(&batch->cpumask);
773 
774 	put_cpu();
775 }
776 
tlbflush_read_file(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)777 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
778 			     size_t count, loff_t *ppos)
779 {
780 	char buf[32];
781 	unsigned int len;
782 
783 	len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
784 	return simple_read_from_buffer(user_buf, count, ppos, buf, len);
785 }
786 
tlbflush_write_file(struct file * file,const char __user * user_buf,size_t count,loff_t * ppos)787 static ssize_t tlbflush_write_file(struct file *file,
788 		 const char __user *user_buf, size_t count, loff_t *ppos)
789 {
790 	char buf[32];
791 	ssize_t len;
792 	int ceiling;
793 
794 	len = min(count, sizeof(buf) - 1);
795 	if (copy_from_user(buf, user_buf, len))
796 		return -EFAULT;
797 
798 	buf[len] = '\0';
799 	if (kstrtoint(buf, 0, &ceiling))
800 		return -EINVAL;
801 
802 	if (ceiling < 0)
803 		return -EINVAL;
804 
805 	tlb_single_page_flush_ceiling = ceiling;
806 	return count;
807 }
808 
809 static const struct file_operations fops_tlbflush = {
810 	.read = tlbflush_read_file,
811 	.write = tlbflush_write_file,
812 	.llseek = default_llseek,
813 };
814 
create_tlb_single_page_flush_ceiling(void)815 static int __init create_tlb_single_page_flush_ceiling(void)
816 {
817 	debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
818 			    arch_debugfs_dir, NULL, &fops_tlbflush);
819 	return 0;
820 }
821 late_initcall(create_tlb_single_page_flush_ceiling);
822