1 /*
2 * GPL HEADER START
3 *
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License version 2 for more details (a copy is included
14 * in the LICENSE file that accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License
17 * version 2 along with this program; If not, see
18 * http://www.gnu.org/licenses/gpl-2.0.html
19 *
20 * GPL HEADER END
21 */
22 /*
23 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Use is subject to license terms.
25 *
26 * Copyright (c) 2011, 2012, Intel Corporation.
27 */
28 /*
29 * This file is part of Lustre, http://www.lustre.org/
30 * Lustre is a trademark of Sun Microsystems, Inc.
31 *
32 * lnet/lnet/nidstrings.c
33 *
34 * Author: Phil Schwan <phil@clusterfs.com>
35 */
36
37 #define DEBUG_SUBSYSTEM S_LNET
38
39 #include <linux/libcfs/libcfs.h>
40 #include <uapi/linux/lnet/nidstr.h>
41
42 /* max value for numeric network address */
43 #define MAX_NUMERIC_VALUE 0xffffffff
44
45 #define IPSTRING_LENGTH 16
46
47 /* CAVEAT VENDITOR! Keep the canonical string representation of nets/nids
48 * consistent in all conversion functions. Some code fragments are copied
49 * around for the sake of clarity...
50 */
51
52 /* CAVEAT EMPTOR! Racey temporary buffer allocation!
53 * Choose the number of nidstrings to support the MAXIMUM expected number of
54 * concurrent users. If there are more, the returned string will be volatile.
55 * NB this number must allow for a process to be descheduled for a timeslice
56 * between getting its string and using it.
57 */
58
59 static char libcfs_nidstrings[LNET_NIDSTR_COUNT][LNET_NIDSTR_SIZE];
60 static int libcfs_nidstring_idx;
61
62 static DEFINE_SPINLOCK(libcfs_nidstring_lock);
63
64 static struct netstrfns *libcfs_namenum2netstrfns(const char *name);
65
66 char *
libcfs_next_nidstring(void)67 libcfs_next_nidstring(void)
68 {
69 char *str;
70 unsigned long flags;
71
72 spin_lock_irqsave(&libcfs_nidstring_lock, flags);
73
74 str = libcfs_nidstrings[libcfs_nidstring_idx++];
75 if (libcfs_nidstring_idx == ARRAY_SIZE(libcfs_nidstrings))
76 libcfs_nidstring_idx = 0;
77
78 spin_unlock_irqrestore(&libcfs_nidstring_lock, flags);
79 return str;
80 }
81 EXPORT_SYMBOL(libcfs_next_nidstring);
82
83 /**
84 * Nid range list syntax.
85 * \verbatim
86 *
87 * <nidlist> :== <nidrange> [ ' ' <nidrange> ]
88 * <nidrange> :== <addrrange> '@' <net>
89 * <addrrange> :== '*' |
90 * <ipaddr_range> |
91 * <cfs_expr_list>
92 * <ipaddr_range> :== <cfs_expr_list>.<cfs_expr_list>.<cfs_expr_list>.
93 * <cfs_expr_list>
94 * <cfs_expr_list> :== <number> |
95 * <expr_list>
96 * <expr_list> :== '[' <range_expr> [ ',' <range_expr>] ']'
97 * <range_expr> :== <number> |
98 * <number> '-' <number> |
99 * <number> '-' <number> '/' <number>
100 * <net> :== <netname> | <netname><number>
101 * <netname> :== "lo" | "tcp" | "o2ib" | "cib" | "openib" | "iib" |
102 * "vib" | "ra" | "elan" | "mx" | "ptl"
103 * \endverbatim
104 */
105
106 /**
107 * Structure to represent \<nidrange\> token of the syntax.
108 *
109 * One of this is created for each \<net\> parsed.
110 */
111 struct nidrange {
112 /**
113 * Link to list of this structures which is built on nid range
114 * list parsing.
115 */
116 struct list_head nr_link;
117 /**
118 * List head for addrrange::ar_link.
119 */
120 struct list_head nr_addrranges;
121 /**
122 * Flag indicating that *@<net> is found.
123 */
124 int nr_all;
125 /**
126 * Pointer to corresponding element of libcfs_netstrfns.
127 */
128 struct netstrfns *nr_netstrfns;
129 /**
130 * Number of network. E.g. 5 if \<net\> is "elan5".
131 */
132 int nr_netnum;
133 };
134
135 /**
136 * Structure to represent \<addrrange\> token of the syntax.
137 */
138 struct addrrange {
139 /**
140 * Link to nidrange::nr_addrranges.
141 */
142 struct list_head ar_link;
143 /**
144 * List head for cfs_expr_list::el_list.
145 */
146 struct list_head ar_numaddr_ranges;
147 };
148
149 /**
150 * Parses \<addrrange\> token on the syntax.
151 *
152 * Allocates struct addrrange and links to \a nidrange via
153 * (nidrange::nr_addrranges)
154 *
155 * \retval 0 if \a src parses to '*' | \<ipaddr_range\> | \<cfs_expr_list\>
156 * \retval -errno otherwise
157 */
158 static int
parse_addrange(const struct cfs_lstr * src,struct nidrange * nidrange)159 parse_addrange(const struct cfs_lstr *src, struct nidrange *nidrange)
160 {
161 struct addrrange *addrrange;
162
163 if (src->ls_len == 1 && src->ls_str[0] == '*') {
164 nidrange->nr_all = 1;
165 return 0;
166 }
167
168 LIBCFS_ALLOC(addrrange, sizeof(struct addrrange));
169 if (!addrrange)
170 return -ENOMEM;
171 list_add_tail(&addrrange->ar_link, &nidrange->nr_addrranges);
172 INIT_LIST_HEAD(&addrrange->ar_numaddr_ranges);
173
174 return nidrange->nr_netstrfns->nf_parse_addrlist(src->ls_str,
175 src->ls_len,
176 &addrrange->ar_numaddr_ranges);
177 }
178
179 /**
180 * Finds or creates struct nidrange.
181 *
182 * Checks if \a src is a valid network name, looks for corresponding
183 * nidrange on the ist of nidranges (\a nidlist), creates new struct
184 * nidrange if it is not found.
185 *
186 * \retval pointer to struct nidrange matching network specified via \a src
187 * \retval NULL if \a src does not match any network
188 */
189 static struct nidrange *
add_nidrange(const struct cfs_lstr * src,struct list_head * nidlist)190 add_nidrange(const struct cfs_lstr *src,
191 struct list_head *nidlist)
192 {
193 struct netstrfns *nf;
194 struct nidrange *nr;
195 int endlen;
196 unsigned int netnum;
197
198 if (src->ls_len >= LNET_NIDSTR_SIZE)
199 return NULL;
200
201 nf = libcfs_namenum2netstrfns(src->ls_str);
202 if (!nf)
203 return NULL;
204 endlen = src->ls_len - strlen(nf->nf_name);
205 if (!endlen)
206 /* network name only, e.g. "elan" or "tcp" */
207 netnum = 0;
208 else {
209 /*
210 * e.g. "elan25" or "tcp23", refuse to parse if
211 * network name is not appended with decimal or
212 * hexadecimal number
213 */
214 if (!cfs_str2num_check(src->ls_str + strlen(nf->nf_name),
215 endlen, &netnum, 0, MAX_NUMERIC_VALUE))
216 return NULL;
217 }
218
219 list_for_each_entry(nr, nidlist, nr_link) {
220 if (nr->nr_netstrfns != nf)
221 continue;
222 if (nr->nr_netnum != netnum)
223 continue;
224 return nr;
225 }
226
227 LIBCFS_ALLOC(nr, sizeof(struct nidrange));
228 if (!nr)
229 return NULL;
230 list_add_tail(&nr->nr_link, nidlist);
231 INIT_LIST_HEAD(&nr->nr_addrranges);
232 nr->nr_netstrfns = nf;
233 nr->nr_all = 0;
234 nr->nr_netnum = netnum;
235
236 return nr;
237 }
238
239 /**
240 * Parses \<nidrange\> token of the syntax.
241 *
242 * \retval 1 if \a src parses to \<addrrange\> '@' \<net\>
243 * \retval 0 otherwise
244 */
245 static int
parse_nidrange(struct cfs_lstr * src,struct list_head * nidlist)246 parse_nidrange(struct cfs_lstr *src, struct list_head *nidlist)
247 {
248 struct cfs_lstr addrrange;
249 struct cfs_lstr net;
250 struct nidrange *nr;
251
252 if (!cfs_gettok(src, '@', &addrrange))
253 goto failed;
254
255 if (!cfs_gettok(src, '@', &net) || src->ls_str)
256 goto failed;
257
258 nr = add_nidrange(&net, nidlist);
259 if (!nr)
260 goto failed;
261
262 if (parse_addrange(&addrrange, nr))
263 goto failed;
264
265 return 1;
266 failed:
267 return 0;
268 }
269
270 /**
271 * Frees addrrange structures of \a list.
272 *
273 * For each struct addrrange structure found on \a list it frees
274 * cfs_expr_list list attached to it and frees the addrrange itself.
275 *
276 * \retval none
277 */
278 static void
free_addrranges(struct list_head * list)279 free_addrranges(struct list_head *list)
280 {
281 while (!list_empty(list)) {
282 struct addrrange *ar;
283
284 ar = list_entry(list->next, struct addrrange, ar_link);
285
286 cfs_expr_list_free_list(&ar->ar_numaddr_ranges);
287 list_del(&ar->ar_link);
288 LIBCFS_FREE(ar, sizeof(struct addrrange));
289 }
290 }
291
292 /**
293 * Frees nidrange strutures of \a list.
294 *
295 * For each struct nidrange structure found on \a list it frees
296 * addrrange list attached to it and frees the nidrange itself.
297 *
298 * \retval none
299 */
300 void
cfs_free_nidlist(struct list_head * list)301 cfs_free_nidlist(struct list_head *list)
302 {
303 struct list_head *pos, *next;
304 struct nidrange *nr;
305
306 list_for_each_safe(pos, next, list) {
307 nr = list_entry(pos, struct nidrange, nr_link);
308 free_addrranges(&nr->nr_addrranges);
309 list_del(pos);
310 LIBCFS_FREE(nr, sizeof(struct nidrange));
311 }
312 }
313 EXPORT_SYMBOL(cfs_free_nidlist);
314
315 /**
316 * Parses nid range list.
317 *
318 * Parses with rigorous syntax and overflow checking \a str into
319 * \<nidrange\> [ ' ' \<nidrange\> ], compiles \a str into set of
320 * structures and links that structure to \a nidlist. The resulting
321 * list can be used to match a NID againts set of NIDS defined by \a
322 * str.
323 * \see cfs_match_nid
324 *
325 * \retval 1 on success
326 * \retval 0 otherwise
327 */
328 int
cfs_parse_nidlist(char * str,int len,struct list_head * nidlist)329 cfs_parse_nidlist(char *str, int len, struct list_head *nidlist)
330 {
331 struct cfs_lstr src;
332 struct cfs_lstr res;
333 int rc;
334
335 src.ls_str = str;
336 src.ls_len = len;
337 INIT_LIST_HEAD(nidlist);
338 while (src.ls_str) {
339 rc = cfs_gettok(&src, ' ', &res);
340 if (!rc) {
341 cfs_free_nidlist(nidlist);
342 return 0;
343 }
344 rc = parse_nidrange(&res, nidlist);
345 if (!rc) {
346 cfs_free_nidlist(nidlist);
347 return 0;
348 }
349 }
350 return 1;
351 }
352 EXPORT_SYMBOL(cfs_parse_nidlist);
353
354 /**
355 * Matches a nid (\a nid) against the compiled list of nidranges (\a nidlist).
356 *
357 * \see cfs_parse_nidlist()
358 *
359 * \retval 1 on match
360 * \retval 0 otherwises
361 */
cfs_match_nid(lnet_nid_t nid,struct list_head * nidlist)362 int cfs_match_nid(lnet_nid_t nid, struct list_head *nidlist)
363 {
364 struct nidrange *nr;
365 struct addrrange *ar;
366
367 list_for_each_entry(nr, nidlist, nr_link) {
368 if (nr->nr_netstrfns->nf_type != LNET_NETTYP(LNET_NIDNET(nid)))
369 continue;
370 if (nr->nr_netnum != LNET_NETNUM(LNET_NIDNET(nid)))
371 continue;
372 if (nr->nr_all)
373 return 1;
374 list_for_each_entry(ar, &nr->nr_addrranges, ar_link)
375 if (nr->nr_netstrfns->nf_match_addr(LNET_NIDADDR(nid),
376 &ar->ar_numaddr_ranges))
377 return 1;
378 }
379 return 0;
380 }
381 EXPORT_SYMBOL(cfs_match_nid);
382
383 /**
384 * Print the network part of the nidrange \a nr into the specified \a buffer.
385 *
386 * \retval number of characters written
387 */
388 static int
cfs_print_network(char * buffer,int count,struct nidrange * nr)389 cfs_print_network(char *buffer, int count, struct nidrange *nr)
390 {
391 struct netstrfns *nf = nr->nr_netstrfns;
392
393 if (!nr->nr_netnum)
394 return scnprintf(buffer, count, "@%s", nf->nf_name);
395 else
396 return scnprintf(buffer, count, "@%s%u",
397 nf->nf_name, nr->nr_netnum);
398 }
399
400 /**
401 * Print a list of addrrange (\a addrranges) into the specified \a buffer.
402 * At max \a count characters can be printed into \a buffer.
403 *
404 * \retval number of characters written
405 */
406 static int
cfs_print_addrranges(char * buffer,int count,struct list_head * addrranges,struct nidrange * nr)407 cfs_print_addrranges(char *buffer, int count, struct list_head *addrranges,
408 struct nidrange *nr)
409 {
410 int i = 0;
411 struct addrrange *ar;
412 struct netstrfns *nf = nr->nr_netstrfns;
413
414 list_for_each_entry(ar, addrranges, ar_link) {
415 if (i)
416 i += scnprintf(buffer + i, count - i, " ");
417 i += nf->nf_print_addrlist(buffer + i, count - i,
418 &ar->ar_numaddr_ranges);
419 i += cfs_print_network(buffer + i, count - i, nr);
420 }
421 return i;
422 }
423
424 /**
425 * Print a list of nidranges (\a nidlist) into the specified \a buffer.
426 * At max \a count characters can be printed into \a buffer.
427 * Nidranges are separated by a space character.
428 *
429 * \retval number of characters written
430 */
cfs_print_nidlist(char * buffer,int count,struct list_head * nidlist)431 int cfs_print_nidlist(char *buffer, int count, struct list_head *nidlist)
432 {
433 int i = 0;
434 struct nidrange *nr;
435
436 if (count <= 0)
437 return 0;
438
439 list_for_each_entry(nr, nidlist, nr_link) {
440 if (i)
441 i += scnprintf(buffer + i, count - i, " ");
442
443 if (nr->nr_all) {
444 LASSERT(list_empty(&nr->nr_addrranges));
445 i += scnprintf(buffer + i, count - i, "*");
446 i += cfs_print_network(buffer + i, count - i, nr);
447 } else {
448 i += cfs_print_addrranges(buffer + i, count - i,
449 &nr->nr_addrranges, nr);
450 }
451 }
452 return i;
453 }
454 EXPORT_SYMBOL(cfs_print_nidlist);
455
456 /**
457 * Determines minimum and maximum addresses for a single
458 * numeric address range
459 *
460 * \param ar
461 * \param min_nid
462 * \param max_nid
463 */
cfs_ip_ar_min_max(struct addrrange * ar,__u32 * min_nid,__u32 * max_nid)464 static void cfs_ip_ar_min_max(struct addrrange *ar, __u32 *min_nid,
465 __u32 *max_nid)
466 {
467 struct cfs_expr_list *el;
468 struct cfs_range_expr *re;
469 __u32 tmp_ip_addr = 0;
470 unsigned int min_ip[4] = {0};
471 unsigned int max_ip[4] = {0};
472 int re_count = 0;
473
474 list_for_each_entry(el, &ar->ar_numaddr_ranges, el_link) {
475 list_for_each_entry(re, &el->el_exprs, re_link) {
476 min_ip[re_count] = re->re_lo;
477 max_ip[re_count] = re->re_hi;
478 re_count++;
479 }
480 }
481
482 tmp_ip_addr = ((min_ip[0] << 24) | (min_ip[1] << 16) |
483 (min_ip[2] << 8) | min_ip[3]);
484
485 if (min_nid)
486 *min_nid = tmp_ip_addr;
487
488 tmp_ip_addr = ((max_ip[0] << 24) | (max_ip[1] << 16) |
489 (max_ip[2] << 8) | max_ip[3]);
490
491 if (max_nid)
492 *max_nid = tmp_ip_addr;
493 }
494
495 /**
496 * Determines minimum and maximum addresses for a single
497 * numeric address range
498 *
499 * \param ar
500 * \param min_nid
501 * \param max_nid
502 */
cfs_num_ar_min_max(struct addrrange * ar,__u32 * min_nid,__u32 * max_nid)503 static void cfs_num_ar_min_max(struct addrrange *ar, __u32 *min_nid,
504 __u32 *max_nid)
505 {
506 struct cfs_expr_list *el;
507 struct cfs_range_expr *re;
508 unsigned int min_addr = 0;
509 unsigned int max_addr = 0;
510
511 list_for_each_entry(el, &ar->ar_numaddr_ranges, el_link) {
512 list_for_each_entry(re, &el->el_exprs, re_link) {
513 if (re->re_lo < min_addr || !min_addr)
514 min_addr = re->re_lo;
515 if (re->re_hi > max_addr)
516 max_addr = re->re_hi;
517 }
518 }
519
520 if (min_nid)
521 *min_nid = min_addr;
522 if (max_nid)
523 *max_nid = max_addr;
524 }
525
526 /**
527 * Determines whether an expression list in an nidrange contains exactly
528 * one contiguous address range. Calls the correct netstrfns for the LND
529 *
530 * \param *nidlist
531 *
532 * \retval true if contiguous
533 * \retval false if not contiguous
534 */
cfs_nidrange_is_contiguous(struct list_head * nidlist)535 bool cfs_nidrange_is_contiguous(struct list_head *nidlist)
536 {
537 struct nidrange *nr;
538 struct netstrfns *nf = NULL;
539 char *lndname = NULL;
540 int netnum = -1;
541
542 list_for_each_entry(nr, nidlist, nr_link) {
543 nf = nr->nr_netstrfns;
544 if (!lndname)
545 lndname = nf->nf_name;
546 if (netnum == -1)
547 netnum = nr->nr_netnum;
548
549 if (strcmp(lndname, nf->nf_name) ||
550 netnum != nr->nr_netnum)
551 return false;
552 }
553
554 if (!nf)
555 return false;
556
557 if (!nf->nf_is_contiguous(nidlist))
558 return false;
559
560 return true;
561 }
562 EXPORT_SYMBOL(cfs_nidrange_is_contiguous);
563
564 /**
565 * Determines whether an expression list in an num nidrange contains exactly
566 * one contiguous address range.
567 *
568 * \param *nidlist
569 *
570 * \retval true if contiguous
571 * \retval false if not contiguous
572 */
cfs_num_is_contiguous(struct list_head * nidlist)573 static bool cfs_num_is_contiguous(struct list_head *nidlist)
574 {
575 struct nidrange *nr;
576 struct addrrange *ar;
577 struct cfs_expr_list *el;
578 struct cfs_range_expr *re;
579 int last_hi = 0;
580 __u32 last_end_nid = 0;
581 __u32 current_start_nid = 0;
582 __u32 current_end_nid = 0;
583
584 list_for_each_entry(nr, nidlist, nr_link) {
585 list_for_each_entry(ar, &nr->nr_addrranges, ar_link) {
586 cfs_num_ar_min_max(ar, ¤t_start_nid,
587 ¤t_end_nid);
588 if (last_end_nid &&
589 (current_start_nid - last_end_nid != 1))
590 return false;
591 last_end_nid = current_end_nid;
592 list_for_each_entry(el, &ar->ar_numaddr_ranges,
593 el_link) {
594 list_for_each_entry(re, &el->el_exprs,
595 re_link) {
596 if (re->re_stride > 1)
597 return false;
598 else if (last_hi &&
599 re->re_hi - last_hi != 1)
600 return false;
601 last_hi = re->re_hi;
602 }
603 }
604 }
605 }
606
607 return true;
608 }
609
610 /**
611 * Determines whether an expression list in an ip nidrange contains exactly
612 * one contiguous address range.
613 *
614 * \param *nidlist
615 *
616 * \retval true if contiguous
617 * \retval false if not contiguous
618 */
cfs_ip_is_contiguous(struct list_head * nidlist)619 static bool cfs_ip_is_contiguous(struct list_head *nidlist)
620 {
621 struct nidrange *nr;
622 struct addrrange *ar;
623 struct cfs_expr_list *el;
624 struct cfs_range_expr *re;
625 int expr_count;
626 int last_hi = 255;
627 int last_diff = 0;
628 __u32 last_end_nid = 0;
629 __u32 current_start_nid = 0;
630 __u32 current_end_nid = 0;
631
632 list_for_each_entry(nr, nidlist, nr_link) {
633 list_for_each_entry(ar, &nr->nr_addrranges, ar_link) {
634 last_hi = 255;
635 last_diff = 0;
636 cfs_ip_ar_min_max(ar, ¤t_start_nid,
637 ¤t_end_nid);
638 if (last_end_nid &&
639 (current_start_nid - last_end_nid != 1))
640 return false;
641 last_end_nid = current_end_nid;
642 list_for_each_entry(el, &ar->ar_numaddr_ranges,
643 el_link) {
644 expr_count = 0;
645 list_for_each_entry(re, &el->el_exprs,
646 re_link) {
647 expr_count++;
648 if (re->re_stride > 1 ||
649 (last_diff > 0 && last_hi != 255) ||
650 (last_diff > 0 && last_hi == 255 &&
651 re->re_lo > 0))
652 return false;
653 last_hi = re->re_hi;
654 last_diff = re->re_hi - re->re_lo;
655 }
656 }
657 }
658 }
659
660 return true;
661 }
662
663 /**
664 * Takes a linked list of nidrange expressions, determines the minimum
665 * and maximum nid and creates appropriate nid structures
666 *
667 * \param *nidlist
668 * \param *min_nid
669 * \param *max_nid
670 */
cfs_nidrange_find_min_max(struct list_head * nidlist,char * min_nid,char * max_nid,size_t nidstr_length)671 void cfs_nidrange_find_min_max(struct list_head *nidlist, char *min_nid,
672 char *max_nid, size_t nidstr_length)
673 {
674 struct nidrange *nr;
675 struct netstrfns *nf = NULL;
676 int netnum = -1;
677 __u32 min_addr;
678 __u32 max_addr;
679 char *lndname = NULL;
680 char min_addr_str[IPSTRING_LENGTH];
681 char max_addr_str[IPSTRING_LENGTH];
682
683 list_for_each_entry(nr, nidlist, nr_link) {
684 nf = nr->nr_netstrfns;
685 lndname = nf->nf_name;
686 if (netnum == -1)
687 netnum = nr->nr_netnum;
688
689 nf->nf_min_max(nidlist, &min_addr, &max_addr);
690 }
691 nf->nf_addr2str(min_addr, min_addr_str, sizeof(min_addr_str));
692 nf->nf_addr2str(max_addr, max_addr_str, sizeof(max_addr_str));
693
694 snprintf(min_nid, nidstr_length, "%s@%s%d", min_addr_str, lndname,
695 netnum);
696 snprintf(max_nid, nidstr_length, "%s@%s%d", max_addr_str, lndname,
697 netnum);
698 }
699 EXPORT_SYMBOL(cfs_nidrange_find_min_max);
700
701 /**
702 * Determines the min and max NID values for num LNDs
703 *
704 * \param *nidlist
705 * \param *min_nid
706 * \param *max_nid
707 */
cfs_num_min_max(struct list_head * nidlist,__u32 * min_nid,__u32 * max_nid)708 static void cfs_num_min_max(struct list_head *nidlist, __u32 *min_nid,
709 __u32 *max_nid)
710 {
711 struct nidrange *nr;
712 struct addrrange *ar;
713 unsigned int tmp_min_addr = 0;
714 unsigned int tmp_max_addr = 0;
715 unsigned int min_addr = 0;
716 unsigned int max_addr = 0;
717
718 list_for_each_entry(nr, nidlist, nr_link) {
719 list_for_each_entry(ar, &nr->nr_addrranges, ar_link) {
720 cfs_num_ar_min_max(ar, &tmp_min_addr,
721 &tmp_max_addr);
722 if (tmp_min_addr < min_addr || !min_addr)
723 min_addr = tmp_min_addr;
724 if (tmp_max_addr > max_addr)
725 max_addr = tmp_min_addr;
726 }
727 }
728 *max_nid = max_addr;
729 *min_nid = min_addr;
730 }
731
732 /**
733 * Takes an nidlist and determines the minimum and maximum
734 * ip addresses.
735 *
736 * \param *nidlist
737 * \param *min_nid
738 * \param *max_nid
739 */
cfs_ip_min_max(struct list_head * nidlist,__u32 * min_nid,__u32 * max_nid)740 static void cfs_ip_min_max(struct list_head *nidlist, __u32 *min_nid,
741 __u32 *max_nid)
742 {
743 struct nidrange *nr;
744 struct addrrange *ar;
745 __u32 tmp_min_ip_addr = 0;
746 __u32 tmp_max_ip_addr = 0;
747 __u32 min_ip_addr = 0;
748 __u32 max_ip_addr = 0;
749
750 list_for_each_entry(nr, nidlist, nr_link) {
751 list_for_each_entry(ar, &nr->nr_addrranges, ar_link) {
752 cfs_ip_ar_min_max(ar, &tmp_min_ip_addr,
753 &tmp_max_ip_addr);
754 if (tmp_min_ip_addr < min_ip_addr || !min_ip_addr)
755 min_ip_addr = tmp_min_ip_addr;
756 if (tmp_max_ip_addr > max_ip_addr)
757 max_ip_addr = tmp_max_ip_addr;
758 }
759 }
760
761 if (min_nid)
762 *min_nid = min_ip_addr;
763 if (max_nid)
764 *max_nid = max_ip_addr;
765 }
766
767 static int
libcfs_lo_str2addr(const char * str,int nob,__u32 * addr)768 libcfs_lo_str2addr(const char *str, int nob, __u32 *addr)
769 {
770 *addr = 0;
771 return 1;
772 }
773
774 static void
libcfs_ip_addr2str(__u32 addr,char * str,size_t size)775 libcfs_ip_addr2str(__u32 addr, char *str, size_t size)
776 {
777 snprintf(str, size, "%u.%u.%u.%u",
778 (addr >> 24) & 0xff, (addr >> 16) & 0xff,
779 (addr >> 8) & 0xff, addr & 0xff);
780 }
781
782 /*
783 * CAVEAT EMPTOR XscanfX
784 * I use "%n" at the end of a sscanf format to detect trailing junk. However
785 * sscanf may return immediately if it sees the terminating '0' in a string, so
786 * I initialise the %n variable to the expected length. If sscanf sets it;
787 * fine, if it doesn't, then the scan ended at the end of the string, which is
788 * fine too :)
789 */
790 static int
libcfs_ip_str2addr(const char * str,int nob,__u32 * addr)791 libcfs_ip_str2addr(const char *str, int nob, __u32 *addr)
792 {
793 unsigned int a;
794 unsigned int b;
795 unsigned int c;
796 unsigned int d;
797 int n = nob; /* XscanfX */
798
799 /* numeric IP? */
800 if (sscanf(str, "%u.%u.%u.%u%n", &a, &b, &c, &d, &n) >= 4 &&
801 n == nob &&
802 !(a & ~0xff) && !(b & ~0xff) &&
803 !(c & ~0xff) && !(d & ~0xff)) {
804 *addr = ((a << 24) | (b << 16) | (c << 8) | d);
805 return 1;
806 }
807
808 return 0;
809 }
810
811 /* Used by lnet/config.c so it can't be static */
812 int
cfs_ip_addr_parse(char * str,int len,struct list_head * list)813 cfs_ip_addr_parse(char *str, int len, struct list_head *list)
814 {
815 struct cfs_expr_list *el;
816 struct cfs_lstr src;
817 int rc;
818 int i;
819
820 src.ls_str = str;
821 src.ls_len = len;
822 i = 0;
823
824 while (src.ls_str) {
825 struct cfs_lstr res;
826
827 if (!cfs_gettok(&src, '.', &res)) {
828 rc = -EINVAL;
829 goto out;
830 }
831
832 rc = cfs_expr_list_parse(res.ls_str, res.ls_len, 0, 255, &el);
833 if (rc)
834 goto out;
835
836 list_add_tail(&el->el_link, list);
837 i++;
838 }
839
840 if (i == 4)
841 return 0;
842
843 rc = -EINVAL;
844 out:
845 cfs_expr_list_free_list(list);
846
847 return rc;
848 }
849
850 static int
libcfs_ip_addr_range_print(char * buffer,int count,struct list_head * list)851 libcfs_ip_addr_range_print(char *buffer, int count, struct list_head *list)
852 {
853 int i = 0, j = 0;
854 struct cfs_expr_list *el;
855
856 list_for_each_entry(el, list, el_link) {
857 LASSERT(j++ < 4);
858 if (i)
859 i += scnprintf(buffer + i, count - i, ".");
860 i += cfs_expr_list_print(buffer + i, count - i, el);
861 }
862 return i;
863 }
864
865 /**
866 * Matches address (\a addr) against address set encoded in \a list.
867 *
868 * \retval 1 if \a addr matches
869 * \retval 0 otherwise
870 */
871 int
cfs_ip_addr_match(__u32 addr,struct list_head * list)872 cfs_ip_addr_match(__u32 addr, struct list_head *list)
873 {
874 struct cfs_expr_list *el;
875 int i = 0;
876
877 list_for_each_entry_reverse(el, list, el_link) {
878 if (!cfs_expr_list_match(addr & 0xff, el))
879 return 0;
880 addr >>= 8;
881 i++;
882 }
883
884 return i == 4;
885 }
886
887 static void
libcfs_decnum_addr2str(__u32 addr,char * str,size_t size)888 libcfs_decnum_addr2str(__u32 addr, char *str, size_t size)
889 {
890 snprintf(str, size, "%u", addr);
891 }
892
893 static int
libcfs_num_str2addr(const char * str,int nob,__u32 * addr)894 libcfs_num_str2addr(const char *str, int nob, __u32 *addr)
895 {
896 int n;
897
898 n = nob;
899 if (sscanf(str, "0x%x%n", addr, &n) >= 1 && n == nob)
900 return 1;
901
902 n = nob;
903 if (sscanf(str, "0X%x%n", addr, &n) >= 1 && n == nob)
904 return 1;
905
906 n = nob;
907 if (sscanf(str, "%u%n", addr, &n) >= 1 && n == nob)
908 return 1;
909
910 return 0;
911 }
912
913 /**
914 * Nf_parse_addrlist method for networks using numeric addresses.
915 *
916 * Examples of such networks are gm and elan.
917 *
918 * \retval 0 if \a str parsed to numeric address
919 * \retval errno otherwise
920 */
921 static int
libcfs_num_parse(char * str,int len,struct list_head * list)922 libcfs_num_parse(char *str, int len, struct list_head *list)
923 {
924 struct cfs_expr_list *el;
925 int rc;
926
927 rc = cfs_expr_list_parse(str, len, 0, MAX_NUMERIC_VALUE, &el);
928 if (!rc)
929 list_add_tail(&el->el_link, list);
930
931 return rc;
932 }
933
934 static int
libcfs_num_addr_range_print(char * buffer,int count,struct list_head * list)935 libcfs_num_addr_range_print(char *buffer, int count, struct list_head *list)
936 {
937 int i = 0, j = 0;
938 struct cfs_expr_list *el;
939
940 list_for_each_entry(el, list, el_link) {
941 LASSERT(j++ < 1);
942 i += cfs_expr_list_print(buffer + i, count - i, el);
943 }
944 return i;
945 }
946
947 /*
948 * Nf_match_addr method for networks using numeric addresses
949 *
950 * \retval 1 on match
951 * \retval 0 otherwise
952 */
953 static int
libcfs_num_match(__u32 addr,struct list_head * numaddr)954 libcfs_num_match(__u32 addr, struct list_head *numaddr)
955 {
956 struct cfs_expr_list *el;
957
958 LASSERT(!list_empty(numaddr));
959 el = list_entry(numaddr->next, struct cfs_expr_list, el_link);
960
961 return cfs_expr_list_match(addr, el);
962 }
963
964 static struct netstrfns libcfs_netstrfns[] = {
965 { .nf_type = LOLND,
966 .nf_name = "lo",
967 .nf_modname = "klolnd",
968 .nf_addr2str = libcfs_decnum_addr2str,
969 .nf_str2addr = libcfs_lo_str2addr,
970 .nf_parse_addrlist = libcfs_num_parse,
971 .nf_print_addrlist = libcfs_num_addr_range_print,
972 .nf_match_addr = libcfs_num_match,
973 .nf_is_contiguous = cfs_num_is_contiguous,
974 .nf_min_max = cfs_num_min_max },
975 { .nf_type = SOCKLND,
976 .nf_name = "tcp",
977 .nf_modname = "ksocklnd",
978 .nf_addr2str = libcfs_ip_addr2str,
979 .nf_str2addr = libcfs_ip_str2addr,
980 .nf_parse_addrlist = cfs_ip_addr_parse,
981 .nf_print_addrlist = libcfs_ip_addr_range_print,
982 .nf_match_addr = cfs_ip_addr_match,
983 .nf_is_contiguous = cfs_ip_is_contiguous,
984 .nf_min_max = cfs_ip_min_max },
985 { .nf_type = O2IBLND,
986 .nf_name = "o2ib",
987 .nf_modname = "ko2iblnd",
988 .nf_addr2str = libcfs_ip_addr2str,
989 .nf_str2addr = libcfs_ip_str2addr,
990 .nf_parse_addrlist = cfs_ip_addr_parse,
991 .nf_print_addrlist = libcfs_ip_addr_range_print,
992 .nf_match_addr = cfs_ip_addr_match,
993 .nf_is_contiguous = cfs_ip_is_contiguous,
994 .nf_min_max = cfs_ip_min_max },
995 { .nf_type = GNILND,
996 .nf_name = "gni",
997 .nf_modname = "kgnilnd",
998 .nf_addr2str = libcfs_decnum_addr2str,
999 .nf_str2addr = libcfs_num_str2addr,
1000 .nf_parse_addrlist = libcfs_num_parse,
1001 .nf_print_addrlist = libcfs_num_addr_range_print,
1002 .nf_match_addr = libcfs_num_match,
1003 .nf_is_contiguous = cfs_num_is_contiguous,
1004 .nf_min_max = cfs_num_min_max },
1005 { .nf_type = GNIIPLND,
1006 .nf_name = "gip",
1007 .nf_modname = "kgnilnd",
1008 .nf_addr2str = libcfs_ip_addr2str,
1009 .nf_str2addr = libcfs_ip_str2addr,
1010 .nf_parse_addrlist = cfs_ip_addr_parse,
1011 .nf_print_addrlist = libcfs_ip_addr_range_print,
1012 .nf_match_addr = cfs_ip_addr_match,
1013 .nf_is_contiguous = cfs_ip_is_contiguous,
1014 .nf_min_max = cfs_ip_min_max },
1015 };
1016
1017 static const size_t libcfs_nnetstrfns = ARRAY_SIZE(libcfs_netstrfns);
1018
1019 static struct netstrfns *
libcfs_lnd2netstrfns(__u32 lnd)1020 libcfs_lnd2netstrfns(__u32 lnd)
1021 {
1022 int i;
1023
1024 for (i = 0; i < libcfs_nnetstrfns; i++)
1025 if (lnd == libcfs_netstrfns[i].nf_type)
1026 return &libcfs_netstrfns[i];
1027
1028 return NULL;
1029 }
1030
1031 static struct netstrfns *
libcfs_namenum2netstrfns(const char * name)1032 libcfs_namenum2netstrfns(const char *name)
1033 {
1034 struct netstrfns *nf;
1035 int i;
1036
1037 for (i = 0; i < libcfs_nnetstrfns; i++) {
1038 nf = &libcfs_netstrfns[i];
1039 if (!strncmp(name, nf->nf_name, strlen(nf->nf_name)))
1040 return nf;
1041 }
1042 return NULL;
1043 }
1044
1045 static struct netstrfns *
libcfs_name2netstrfns(const char * name)1046 libcfs_name2netstrfns(const char *name)
1047 {
1048 int i;
1049
1050 for (i = 0; i < libcfs_nnetstrfns; i++)
1051 if (!strcmp(libcfs_netstrfns[i].nf_name, name))
1052 return &libcfs_netstrfns[i];
1053
1054 return NULL;
1055 }
1056
1057 int
libcfs_isknown_lnd(__u32 lnd)1058 libcfs_isknown_lnd(__u32 lnd)
1059 {
1060 return !!libcfs_lnd2netstrfns(lnd);
1061 }
1062 EXPORT_SYMBOL(libcfs_isknown_lnd);
1063
1064 char *
libcfs_lnd2modname(__u32 lnd)1065 libcfs_lnd2modname(__u32 lnd)
1066 {
1067 struct netstrfns *nf = libcfs_lnd2netstrfns(lnd);
1068
1069 return nf ? nf->nf_modname : NULL;
1070 }
1071 EXPORT_SYMBOL(libcfs_lnd2modname);
1072
1073 int
libcfs_str2lnd(const char * str)1074 libcfs_str2lnd(const char *str)
1075 {
1076 struct netstrfns *nf = libcfs_name2netstrfns(str);
1077
1078 if (nf)
1079 return nf->nf_type;
1080
1081 return -ENXIO;
1082 }
1083 EXPORT_SYMBOL(libcfs_str2lnd);
1084
1085 char *
libcfs_lnd2str_r(__u32 lnd,char * buf,size_t buf_size)1086 libcfs_lnd2str_r(__u32 lnd, char *buf, size_t buf_size)
1087 {
1088 struct netstrfns *nf;
1089
1090 nf = libcfs_lnd2netstrfns(lnd);
1091 if (!nf)
1092 snprintf(buf, buf_size, "?%u?", lnd);
1093 else
1094 snprintf(buf, buf_size, "%s", nf->nf_name);
1095
1096 return buf;
1097 }
1098 EXPORT_SYMBOL(libcfs_lnd2str_r);
1099
1100 char *
libcfs_net2str_r(__u32 net,char * buf,size_t buf_size)1101 libcfs_net2str_r(__u32 net, char *buf, size_t buf_size)
1102 {
1103 __u32 nnum = LNET_NETNUM(net);
1104 __u32 lnd = LNET_NETTYP(net);
1105 struct netstrfns *nf;
1106
1107 nf = libcfs_lnd2netstrfns(lnd);
1108 if (!nf)
1109 snprintf(buf, buf_size, "<%u:%u>", lnd, nnum);
1110 else if (!nnum)
1111 snprintf(buf, buf_size, "%s", nf->nf_name);
1112 else
1113 snprintf(buf, buf_size, "%s%u", nf->nf_name, nnum);
1114
1115 return buf;
1116 }
1117 EXPORT_SYMBOL(libcfs_net2str_r);
1118
1119 char *
libcfs_nid2str_r(lnet_nid_t nid,char * buf,size_t buf_size)1120 libcfs_nid2str_r(lnet_nid_t nid, char *buf, size_t buf_size)
1121 {
1122 __u32 addr = LNET_NIDADDR(nid);
1123 __u32 net = LNET_NIDNET(nid);
1124 __u32 nnum = LNET_NETNUM(net);
1125 __u32 lnd = LNET_NETTYP(net);
1126 struct netstrfns *nf;
1127
1128 if (nid == LNET_NID_ANY) {
1129 strncpy(buf, "<?>", buf_size);
1130 buf[buf_size - 1] = '\0';
1131 return buf;
1132 }
1133
1134 nf = libcfs_lnd2netstrfns(lnd);
1135 if (!nf) {
1136 snprintf(buf, buf_size, "%x@<%u:%u>", addr, lnd, nnum);
1137 } else {
1138 size_t addr_len;
1139
1140 nf->nf_addr2str(addr, buf, buf_size);
1141 addr_len = strlen(buf);
1142 if (!nnum)
1143 snprintf(buf + addr_len, buf_size - addr_len, "@%s",
1144 nf->nf_name);
1145 else
1146 snprintf(buf + addr_len, buf_size - addr_len, "@%s%u",
1147 nf->nf_name, nnum);
1148 }
1149
1150 return buf;
1151 }
1152 EXPORT_SYMBOL(libcfs_nid2str_r);
1153
1154 static struct netstrfns *
libcfs_str2net_internal(const char * str,__u32 * net)1155 libcfs_str2net_internal(const char *str, __u32 *net)
1156 {
1157 struct netstrfns *nf = NULL;
1158 int nob;
1159 unsigned int netnum;
1160 int i;
1161
1162 for (i = 0; i < libcfs_nnetstrfns; i++) {
1163 nf = &libcfs_netstrfns[i];
1164 if (!strncmp(str, nf->nf_name, strlen(nf->nf_name)))
1165 break;
1166 }
1167
1168 if (i == libcfs_nnetstrfns)
1169 return NULL;
1170
1171 nob = strlen(nf->nf_name);
1172
1173 if (strlen(str) == (unsigned int)nob) {
1174 netnum = 0;
1175 } else {
1176 if (nf->nf_type == LOLND) /* net number not allowed */
1177 return NULL;
1178
1179 str += nob;
1180 i = strlen(str);
1181 if (sscanf(str, "%u%n", &netnum, &i) < 1 ||
1182 i != (int)strlen(str))
1183 return NULL;
1184 }
1185
1186 *net = LNET_MKNET(nf->nf_type, netnum);
1187 return nf;
1188 }
1189
1190 __u32
libcfs_str2net(const char * str)1191 libcfs_str2net(const char *str)
1192 {
1193 __u32 net;
1194
1195 if (libcfs_str2net_internal(str, &net))
1196 return net;
1197
1198 return LNET_NIDNET(LNET_NID_ANY);
1199 }
1200 EXPORT_SYMBOL(libcfs_str2net);
1201
1202 lnet_nid_t
libcfs_str2nid(const char * str)1203 libcfs_str2nid(const char *str)
1204 {
1205 const char *sep = strchr(str, '@');
1206 struct netstrfns *nf;
1207 __u32 net;
1208 __u32 addr;
1209
1210 if (sep) {
1211 nf = libcfs_str2net_internal(sep + 1, &net);
1212 if (!nf)
1213 return LNET_NID_ANY;
1214 } else {
1215 sep = str + strlen(str);
1216 net = LNET_MKNET(SOCKLND, 0);
1217 nf = libcfs_lnd2netstrfns(SOCKLND);
1218 LASSERT(nf);
1219 }
1220
1221 if (!nf->nf_str2addr(str, (int)(sep - str), &addr))
1222 return LNET_NID_ANY;
1223
1224 return LNET_MKNID(net, addr);
1225 }
1226 EXPORT_SYMBOL(libcfs_str2nid);
1227
1228 char *
libcfs_id2str(struct lnet_process_id id)1229 libcfs_id2str(struct lnet_process_id id)
1230 {
1231 char *str = libcfs_next_nidstring();
1232
1233 if (id.pid == LNET_PID_ANY) {
1234 snprintf(str, LNET_NIDSTR_SIZE,
1235 "LNET_PID_ANY-%s", libcfs_nid2str(id.nid));
1236 return str;
1237 }
1238
1239 snprintf(str, LNET_NIDSTR_SIZE, "%s%u-%s",
1240 id.pid & LNET_PID_USERFLAG ? "U" : "",
1241 id.pid & ~LNET_PID_USERFLAG, libcfs_nid2str(id.nid));
1242 return str;
1243 }
1244 EXPORT_SYMBOL(libcfs_id2str);
1245
1246 int
libcfs_str2anynid(lnet_nid_t * nidp,const char * str)1247 libcfs_str2anynid(lnet_nid_t *nidp, const char *str)
1248 {
1249 if (!strcmp(str, "*")) {
1250 *nidp = LNET_NID_ANY;
1251 return 1;
1252 }
1253
1254 *nidp = libcfs_str2nid(str);
1255 return *nidp != LNET_NID_ANY;
1256 }
1257 EXPORT_SYMBOL(libcfs_str2anynid);
1258