1
2 /*******************************************************************
3 * This file is part of the Emulex Linux Device Driver for *
4 * Fibre Channel Host Bus Adapters. *
5 * Copyright (C) 2017 Broadcom. All Rights Reserved. The term *
6 * “Broadcom” refers to Broadcom Limited and/or its subsidiaries. *
7 * Copyright (C) 2004-2016 Emulex. All rights reserved. *
8 * EMULEX and SLI are trademarks of Emulex. *
9 * www.broadcom.com *
10 * Portions Copyright (C) 2004-2005 Christoph Hellwig *
11 * *
12 * This program is free software; you can redistribute it and/or *
13 * modify it under the terms of version 2 of the GNU General *
14 * Public License as published by the Free Software Foundation. *
15 * This program is distributed in the hope that it will be useful. *
16 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND *
17 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, *
18 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE *
19 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
20 * TO BE LEGALLY INVALID. See the GNU General Public License for *
21 * more details, a copy of which can be found in the file COPYING *
22 * included with this package. *
23 *******************************************************************/
24
25 #include <linux/blkdev.h>
26 #include <linux/pci.h>
27 #include <linux/interrupt.h>
28 #include <linux/delay.h>
29 #include <linux/slab.h>
30 #include <linux/lockdep.h>
31
32 #include <scsi/scsi.h>
33 #include <scsi/scsi_cmnd.h>
34 #include <scsi/scsi_device.h>
35 #include <scsi/scsi_host.h>
36 #include <scsi/scsi_transport_fc.h>
37 #include <scsi/fc/fc_fs.h>
38 #include <linux/aer.h>
39
40 #include <linux/nvme-fc-driver.h>
41
42 #include "lpfc_hw4.h"
43 #include "lpfc_hw.h"
44 #include "lpfc_sli.h"
45 #include "lpfc_sli4.h"
46 #include "lpfc_nl.h"
47 #include "lpfc_disc.h"
48 #include "lpfc.h"
49 #include "lpfc_scsi.h"
50 #include "lpfc_nvme.h"
51 #include "lpfc_nvmet.h"
52 #include "lpfc_crtn.h"
53 #include "lpfc_logmsg.h"
54 #include "lpfc_compat.h"
55 #include "lpfc_debugfs.h"
56 #include "lpfc_vport.h"
57 #include "lpfc_version.h"
58
59 /* There are only four IOCB completion types. */
60 typedef enum _lpfc_iocb_type {
61 LPFC_UNKNOWN_IOCB,
62 LPFC_UNSOL_IOCB,
63 LPFC_SOL_IOCB,
64 LPFC_ABORT_IOCB
65 } lpfc_iocb_type;
66
67
68 /* Provide function prototypes local to this module. */
69 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *,
70 uint32_t);
71 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *,
72 uint8_t *, uint32_t *);
73 static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *,
74 struct lpfc_iocbq *);
75 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *,
76 struct hbq_dmabuf *);
77 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport,
78 struct hbq_dmabuf *dmabuf);
79 static int lpfc_sli4_fp_handle_cqe(struct lpfc_hba *, struct lpfc_queue *,
80 struct lpfc_cqe *);
81 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *,
82 int);
83 static int lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba,
84 struct lpfc_eqe *eqe, uint32_t qidx);
85 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba);
86 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba);
87 static int lpfc_sli4_abort_nvme_io(struct lpfc_hba *phba,
88 struct lpfc_sli_ring *pring,
89 struct lpfc_iocbq *cmdiocb);
90
91 static IOCB_t *
lpfc_get_iocb_from_iocbq(struct lpfc_iocbq * iocbq)92 lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq)
93 {
94 return &iocbq->iocb;
95 }
96
97 /**
98 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue
99 * @q: The Work Queue to operate on.
100 * @wqe: The work Queue Entry to put on the Work queue.
101 *
102 * This routine will copy the contents of @wqe to the next available entry on
103 * the @q. This function will then ring the Work Queue Doorbell to signal the
104 * HBA to start processing the Work Queue Entry. This function returns 0 if
105 * successful. If no entries are available on @q then this function will return
106 * -ENOMEM.
107 * The caller is expected to hold the hbalock when calling this routine.
108 **/
109 static int
lpfc_sli4_wq_put(struct lpfc_queue * q,union lpfc_wqe * wqe)110 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe *wqe)
111 {
112 union lpfc_wqe *temp_wqe;
113 struct lpfc_register doorbell;
114 uint32_t host_index;
115 uint32_t idx;
116
117 /* sanity check on queue memory */
118 if (unlikely(!q))
119 return -ENOMEM;
120 temp_wqe = q->qe[q->host_index].wqe;
121
122 /* If the host has not yet processed the next entry then we are done */
123 idx = ((q->host_index + 1) % q->entry_count);
124 if (idx == q->hba_index) {
125 q->WQ_overflow++;
126 return -EBUSY;
127 }
128 q->WQ_posted++;
129 /* set consumption flag every once in a while */
130 if (!((q->host_index + 1) % q->entry_repost))
131 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1);
132 else
133 bf_set(wqe_wqec, &wqe->generic.wqe_com, 0);
134 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED)
135 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id);
136 lpfc_sli_pcimem_bcopy(wqe, temp_wqe, q->entry_size);
137 /* ensure WQE bcopy flushed before doorbell write */
138 wmb();
139
140 /* Update the host index before invoking device */
141 host_index = q->host_index;
142
143 q->host_index = idx;
144
145 /* Ring Doorbell */
146 doorbell.word0 = 0;
147 if (q->db_format == LPFC_DB_LIST_FORMAT) {
148 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1);
149 bf_set(lpfc_wq_db_list_fm_index, &doorbell, host_index);
150 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id);
151 } else if (q->db_format == LPFC_DB_RING_FORMAT) {
152 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1);
153 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id);
154 } else {
155 return -EINVAL;
156 }
157 writel(doorbell.word0, q->db_regaddr);
158
159 return 0;
160 }
161
162 /**
163 * lpfc_sli4_wq_release - Updates internal hba index for WQ
164 * @q: The Work Queue to operate on.
165 * @index: The index to advance the hba index to.
166 *
167 * This routine will update the HBA index of a queue to reflect consumption of
168 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed
169 * an entry the host calls this function to update the queue's internal
170 * pointers. This routine returns the number of entries that were consumed by
171 * the HBA.
172 **/
173 static uint32_t
lpfc_sli4_wq_release(struct lpfc_queue * q,uint32_t index)174 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index)
175 {
176 uint32_t released = 0;
177
178 /* sanity check on queue memory */
179 if (unlikely(!q))
180 return 0;
181
182 if (q->hba_index == index)
183 return 0;
184 do {
185 q->hba_index = ((q->hba_index + 1) % q->entry_count);
186 released++;
187 } while (q->hba_index != index);
188 return released;
189 }
190
191 /**
192 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue
193 * @q: The Mailbox Queue to operate on.
194 * @wqe: The Mailbox Queue Entry to put on the Work queue.
195 *
196 * This routine will copy the contents of @mqe to the next available entry on
197 * the @q. This function will then ring the Work Queue Doorbell to signal the
198 * HBA to start processing the Work Queue Entry. This function returns 0 if
199 * successful. If no entries are available on @q then this function will return
200 * -ENOMEM.
201 * The caller is expected to hold the hbalock when calling this routine.
202 **/
203 static uint32_t
lpfc_sli4_mq_put(struct lpfc_queue * q,struct lpfc_mqe * mqe)204 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe)
205 {
206 struct lpfc_mqe *temp_mqe;
207 struct lpfc_register doorbell;
208
209 /* sanity check on queue memory */
210 if (unlikely(!q))
211 return -ENOMEM;
212 temp_mqe = q->qe[q->host_index].mqe;
213
214 /* If the host has not yet processed the next entry then we are done */
215 if (((q->host_index + 1) % q->entry_count) == q->hba_index)
216 return -ENOMEM;
217 lpfc_sli_pcimem_bcopy(mqe, temp_mqe, q->entry_size);
218 /* Save off the mailbox pointer for completion */
219 q->phba->mbox = (MAILBOX_t *)temp_mqe;
220
221 /* Update the host index before invoking device */
222 q->host_index = ((q->host_index + 1) % q->entry_count);
223
224 /* Ring Doorbell */
225 doorbell.word0 = 0;
226 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1);
227 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id);
228 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr);
229 return 0;
230 }
231
232 /**
233 * lpfc_sli4_mq_release - Updates internal hba index for MQ
234 * @q: The Mailbox Queue to operate on.
235 *
236 * This routine will update the HBA index of a queue to reflect consumption of
237 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed
238 * an entry the host calls this function to update the queue's internal
239 * pointers. This routine returns the number of entries that were consumed by
240 * the HBA.
241 **/
242 static uint32_t
lpfc_sli4_mq_release(struct lpfc_queue * q)243 lpfc_sli4_mq_release(struct lpfc_queue *q)
244 {
245 /* sanity check on queue memory */
246 if (unlikely(!q))
247 return 0;
248
249 /* Clear the mailbox pointer for completion */
250 q->phba->mbox = NULL;
251 q->hba_index = ((q->hba_index + 1) % q->entry_count);
252 return 1;
253 }
254
255 /**
256 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ
257 * @q: The Event Queue to get the first valid EQE from
258 *
259 * This routine will get the first valid Event Queue Entry from @q, update
260 * the queue's internal hba index, and return the EQE. If no valid EQEs are in
261 * the Queue (no more work to do), or the Queue is full of EQEs that have been
262 * processed, but not popped back to the HBA then this routine will return NULL.
263 **/
264 static struct lpfc_eqe *
lpfc_sli4_eq_get(struct lpfc_queue * q)265 lpfc_sli4_eq_get(struct lpfc_queue *q)
266 {
267 struct lpfc_eqe *eqe;
268 uint32_t idx;
269
270 /* sanity check on queue memory */
271 if (unlikely(!q))
272 return NULL;
273 eqe = q->qe[q->hba_index].eqe;
274
275 /* If the next EQE is not valid then we are done */
276 if (!bf_get_le32(lpfc_eqe_valid, eqe))
277 return NULL;
278 /* If the host has not yet processed the next entry then we are done */
279 idx = ((q->hba_index + 1) % q->entry_count);
280 if (idx == q->host_index)
281 return NULL;
282
283 q->hba_index = idx;
284
285 /*
286 * insert barrier for instruction interlock : data from the hardware
287 * must have the valid bit checked before it can be copied and acted
288 * upon. Speculative instructions were allowing a bcopy at the start
289 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately
290 * after our return, to copy data before the valid bit check above
291 * was done. As such, some of the copied data was stale. The barrier
292 * ensures the check is before any data is copied.
293 */
294 mb();
295 return eqe;
296 }
297
298 /**
299 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ
300 * @q: The Event Queue to disable interrupts
301 *
302 **/
303 static inline void
lpfc_sli4_eq_clr_intr(struct lpfc_queue * q)304 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q)
305 {
306 struct lpfc_register doorbell;
307
308 doorbell.word0 = 0;
309 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
310 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
311 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
312 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
313 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
314 writel(doorbell.word0, q->phba->sli4_hba.EQCQDBregaddr);
315 }
316
317 /**
318 * lpfc_sli4_eq_release - Indicates the host has finished processing an EQ
319 * @q: The Event Queue that the host has completed processing for.
320 * @arm: Indicates whether the host wants to arms this CQ.
321 *
322 * This routine will mark all Event Queue Entries on @q, from the last
323 * known completed entry to the last entry that was processed, as completed
324 * by clearing the valid bit for each completion queue entry. Then it will
325 * notify the HBA, by ringing the doorbell, that the EQEs have been processed.
326 * The internal host index in the @q will be updated by this routine to indicate
327 * that the host has finished processing the entries. The @arm parameter
328 * indicates that the queue should be rearmed when ringing the doorbell.
329 *
330 * This function will return the number of EQEs that were popped.
331 **/
332 uint32_t
lpfc_sli4_eq_release(struct lpfc_queue * q,bool arm)333 lpfc_sli4_eq_release(struct lpfc_queue *q, bool arm)
334 {
335 uint32_t released = 0;
336 struct lpfc_eqe *temp_eqe;
337 struct lpfc_register doorbell;
338
339 /* sanity check on queue memory */
340 if (unlikely(!q))
341 return 0;
342
343 /* while there are valid entries */
344 while (q->hba_index != q->host_index) {
345 temp_eqe = q->qe[q->host_index].eqe;
346 bf_set_le32(lpfc_eqe_valid, temp_eqe, 0);
347 released++;
348 q->host_index = ((q->host_index + 1) % q->entry_count);
349 }
350 if (unlikely(released == 0 && !arm))
351 return 0;
352
353 /* ring doorbell for number popped */
354 doorbell.word0 = 0;
355 if (arm) {
356 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
357 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
358 }
359 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, released);
360 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
361 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
362 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
363 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
364 writel(doorbell.word0, q->phba->sli4_hba.EQCQDBregaddr);
365 /* PCI read to flush PCI pipeline on re-arming for INTx mode */
366 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM))
367 readl(q->phba->sli4_hba.EQCQDBregaddr);
368 return released;
369 }
370
371 /**
372 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ
373 * @q: The Completion Queue to get the first valid CQE from
374 *
375 * This routine will get the first valid Completion Queue Entry from @q, update
376 * the queue's internal hba index, and return the CQE. If no valid CQEs are in
377 * the Queue (no more work to do), or the Queue is full of CQEs that have been
378 * processed, but not popped back to the HBA then this routine will return NULL.
379 **/
380 static struct lpfc_cqe *
lpfc_sli4_cq_get(struct lpfc_queue * q)381 lpfc_sli4_cq_get(struct lpfc_queue *q)
382 {
383 struct lpfc_cqe *cqe;
384 uint32_t idx;
385
386 /* sanity check on queue memory */
387 if (unlikely(!q))
388 return NULL;
389
390 /* If the next CQE is not valid then we are done */
391 if (!bf_get_le32(lpfc_cqe_valid, q->qe[q->hba_index].cqe))
392 return NULL;
393 /* If the host has not yet processed the next entry then we are done */
394 idx = ((q->hba_index + 1) % q->entry_count);
395 if (idx == q->host_index)
396 return NULL;
397
398 cqe = q->qe[q->hba_index].cqe;
399 q->hba_index = idx;
400
401 /*
402 * insert barrier for instruction interlock : data from the hardware
403 * must have the valid bit checked before it can be copied and acted
404 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative
405 * instructions allowing action on content before valid bit checked,
406 * add barrier here as well. May not be needed as "content" is a
407 * single 32-bit entity here (vs multi word structure for cq's).
408 */
409 mb();
410 return cqe;
411 }
412
413 /**
414 * lpfc_sli4_cq_release - Indicates the host has finished processing a CQ
415 * @q: The Completion Queue that the host has completed processing for.
416 * @arm: Indicates whether the host wants to arms this CQ.
417 *
418 * This routine will mark all Completion queue entries on @q, from the last
419 * known completed entry to the last entry that was processed, as completed
420 * by clearing the valid bit for each completion queue entry. Then it will
421 * notify the HBA, by ringing the doorbell, that the CQEs have been processed.
422 * The internal host index in the @q will be updated by this routine to indicate
423 * that the host has finished processing the entries. The @arm parameter
424 * indicates that the queue should be rearmed when ringing the doorbell.
425 *
426 * This function will return the number of CQEs that were released.
427 **/
428 uint32_t
lpfc_sli4_cq_release(struct lpfc_queue * q,bool arm)429 lpfc_sli4_cq_release(struct lpfc_queue *q, bool arm)
430 {
431 uint32_t released = 0;
432 struct lpfc_cqe *temp_qe;
433 struct lpfc_register doorbell;
434
435 /* sanity check on queue memory */
436 if (unlikely(!q))
437 return 0;
438 /* while there are valid entries */
439 while (q->hba_index != q->host_index) {
440 temp_qe = q->qe[q->host_index].cqe;
441 bf_set_le32(lpfc_cqe_valid, temp_qe, 0);
442 released++;
443 q->host_index = ((q->host_index + 1) % q->entry_count);
444 }
445 if (unlikely(released == 0 && !arm))
446 return 0;
447
448 /* ring doorbell for number popped */
449 doorbell.word0 = 0;
450 if (arm)
451 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
452 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, released);
453 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION);
454 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell,
455 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT));
456 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id);
457 writel(doorbell.word0, q->phba->sli4_hba.EQCQDBregaddr);
458 return released;
459 }
460
461 /**
462 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue
463 * @q: The Header Receive Queue to operate on.
464 * @wqe: The Receive Queue Entry to put on the Receive queue.
465 *
466 * This routine will copy the contents of @wqe to the next available entry on
467 * the @q. This function will then ring the Receive Queue Doorbell to signal the
468 * HBA to start processing the Receive Queue Entry. This function returns the
469 * index that the rqe was copied to if successful. If no entries are available
470 * on @q then this function will return -ENOMEM.
471 * The caller is expected to hold the hbalock when calling this routine.
472 **/
473 int
lpfc_sli4_rq_put(struct lpfc_queue * hq,struct lpfc_queue * dq,struct lpfc_rqe * hrqe,struct lpfc_rqe * drqe)474 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq,
475 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe)
476 {
477 struct lpfc_rqe *temp_hrqe;
478 struct lpfc_rqe *temp_drqe;
479 struct lpfc_register doorbell;
480 int put_index;
481
482 /* sanity check on queue memory */
483 if (unlikely(!hq) || unlikely(!dq))
484 return -ENOMEM;
485 put_index = hq->host_index;
486 temp_hrqe = hq->qe[put_index].rqe;
487 temp_drqe = dq->qe[dq->host_index].rqe;
488
489 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ)
490 return -EINVAL;
491 if (put_index != dq->host_index)
492 return -EINVAL;
493 /* If the host has not yet processed the next entry then we are done */
494 if (((put_index + 1) % hq->entry_count) == hq->hba_index)
495 return -EBUSY;
496 lpfc_sli_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size);
497 lpfc_sli_pcimem_bcopy(drqe, temp_drqe, dq->entry_size);
498
499 /* Update the host index to point to the next slot */
500 hq->host_index = ((put_index + 1) % hq->entry_count);
501 dq->host_index = ((dq->host_index + 1) % dq->entry_count);
502 hq->RQ_buf_posted++;
503
504 /* Ring The Header Receive Queue Doorbell */
505 if (!(hq->host_index % hq->entry_repost)) {
506 doorbell.word0 = 0;
507 if (hq->db_format == LPFC_DB_RING_FORMAT) {
508 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell,
509 hq->entry_repost);
510 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id);
511 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) {
512 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell,
513 hq->entry_repost);
514 bf_set(lpfc_rq_db_list_fm_index, &doorbell,
515 hq->host_index);
516 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id);
517 } else {
518 return -EINVAL;
519 }
520 writel(doorbell.word0, hq->db_regaddr);
521 }
522 return put_index;
523 }
524
525 /**
526 * lpfc_sli4_rq_release - Updates internal hba index for RQ
527 * @q: The Header Receive Queue to operate on.
528 *
529 * This routine will update the HBA index of a queue to reflect consumption of
530 * one Receive Queue Entry by the HBA. When the HBA indicates that it has
531 * consumed an entry the host calls this function to update the queue's
532 * internal pointers. This routine returns the number of entries that were
533 * consumed by the HBA.
534 **/
535 static uint32_t
lpfc_sli4_rq_release(struct lpfc_queue * hq,struct lpfc_queue * dq)536 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq)
537 {
538 /* sanity check on queue memory */
539 if (unlikely(!hq) || unlikely(!dq))
540 return 0;
541
542 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ))
543 return 0;
544 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count);
545 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count);
546 return 1;
547 }
548
549 /**
550 * lpfc_cmd_iocb - Get next command iocb entry in the ring
551 * @phba: Pointer to HBA context object.
552 * @pring: Pointer to driver SLI ring object.
553 *
554 * This function returns pointer to next command iocb entry
555 * in the command ring. The caller must hold hbalock to prevent
556 * other threads consume the next command iocb.
557 * SLI-2/SLI-3 provide different sized iocbs.
558 **/
559 static inline IOCB_t *
lpfc_cmd_iocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)560 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
561 {
562 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) +
563 pring->sli.sli3.cmdidx * phba->iocb_cmd_size);
564 }
565
566 /**
567 * lpfc_resp_iocb - Get next response iocb entry in the ring
568 * @phba: Pointer to HBA context object.
569 * @pring: Pointer to driver SLI ring object.
570 *
571 * This function returns pointer to next response iocb entry
572 * in the response ring. The caller must hold hbalock to make sure
573 * that no other thread consume the next response iocb.
574 * SLI-2/SLI-3 provide different sized iocbs.
575 **/
576 static inline IOCB_t *
lpfc_resp_iocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)577 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
578 {
579 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) +
580 pring->sli.sli3.rspidx * phba->iocb_rsp_size);
581 }
582
583 /**
584 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
585 * @phba: Pointer to HBA context object.
586 *
587 * This function is called with hbalock held. This function
588 * allocates a new driver iocb object from the iocb pool. If the
589 * allocation is successful, it returns pointer to the newly
590 * allocated iocb object else it returns NULL.
591 **/
592 struct lpfc_iocbq *
__lpfc_sli_get_iocbq(struct lpfc_hba * phba)593 __lpfc_sli_get_iocbq(struct lpfc_hba *phba)
594 {
595 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list;
596 struct lpfc_iocbq * iocbq = NULL;
597
598 lockdep_assert_held(&phba->hbalock);
599
600 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list);
601 if (iocbq)
602 phba->iocb_cnt++;
603 if (phba->iocb_cnt > phba->iocb_max)
604 phba->iocb_max = phba->iocb_cnt;
605 return iocbq;
606 }
607
608 /**
609 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI.
610 * @phba: Pointer to HBA context object.
611 * @xritag: XRI value.
612 *
613 * This function clears the sglq pointer from the array of acive
614 * sglq's. The xritag that is passed in is used to index into the
615 * array. Before the xritag can be used it needs to be adjusted
616 * by subtracting the xribase.
617 *
618 * Returns sglq ponter = success, NULL = Failure.
619 **/
620 struct lpfc_sglq *
__lpfc_clear_active_sglq(struct lpfc_hba * phba,uint16_t xritag)621 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
622 {
623 struct lpfc_sglq *sglq;
624
625 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag];
626 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL;
627 return sglq;
628 }
629
630 /**
631 * __lpfc_get_active_sglq - Get the active sglq for this XRI.
632 * @phba: Pointer to HBA context object.
633 * @xritag: XRI value.
634 *
635 * This function returns the sglq pointer from the array of acive
636 * sglq's. The xritag that is passed in is used to index into the
637 * array. Before the xritag can be used it needs to be adjusted
638 * by subtracting the xribase.
639 *
640 * Returns sglq ponter = success, NULL = Failure.
641 **/
642 struct lpfc_sglq *
__lpfc_get_active_sglq(struct lpfc_hba * phba,uint16_t xritag)643 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
644 {
645 struct lpfc_sglq *sglq;
646
647 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag];
648 return sglq;
649 }
650
651 /**
652 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap.
653 * @phba: Pointer to HBA context object.
654 * @xritag: xri used in this exchange.
655 * @rrq: The RRQ to be cleared.
656 *
657 **/
658 void
lpfc_clr_rrq_active(struct lpfc_hba * phba,uint16_t xritag,struct lpfc_node_rrq * rrq)659 lpfc_clr_rrq_active(struct lpfc_hba *phba,
660 uint16_t xritag,
661 struct lpfc_node_rrq *rrq)
662 {
663 struct lpfc_nodelist *ndlp = NULL;
664
665 if ((rrq->vport) && NLP_CHK_NODE_ACT(rrq->ndlp))
666 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID);
667
668 /* The target DID could have been swapped (cable swap)
669 * we should use the ndlp from the findnode if it is
670 * available.
671 */
672 if ((!ndlp) && rrq->ndlp)
673 ndlp = rrq->ndlp;
674
675 if (!ndlp)
676 goto out;
677
678 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) {
679 rrq->send_rrq = 0;
680 rrq->xritag = 0;
681 rrq->rrq_stop_time = 0;
682 }
683 out:
684 mempool_free(rrq, phba->rrq_pool);
685 }
686
687 /**
688 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV.
689 * @phba: Pointer to HBA context object.
690 *
691 * This function is called with hbalock held. This function
692 * Checks if stop_time (ratov from setting rrq active) has
693 * been reached, if it has and the send_rrq flag is set then
694 * it will call lpfc_send_rrq. If the send_rrq flag is not set
695 * then it will just call the routine to clear the rrq and
696 * free the rrq resource.
697 * The timer is set to the next rrq that is going to expire before
698 * leaving the routine.
699 *
700 **/
701 void
lpfc_handle_rrq_active(struct lpfc_hba * phba)702 lpfc_handle_rrq_active(struct lpfc_hba *phba)
703 {
704 struct lpfc_node_rrq *rrq;
705 struct lpfc_node_rrq *nextrrq;
706 unsigned long next_time;
707 unsigned long iflags;
708 LIST_HEAD(send_rrq);
709
710 spin_lock_irqsave(&phba->hbalock, iflags);
711 phba->hba_flag &= ~HBA_RRQ_ACTIVE;
712 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1));
713 list_for_each_entry_safe(rrq, nextrrq,
714 &phba->active_rrq_list, list) {
715 if (time_after(jiffies, rrq->rrq_stop_time))
716 list_move(&rrq->list, &send_rrq);
717 else if (time_before(rrq->rrq_stop_time, next_time))
718 next_time = rrq->rrq_stop_time;
719 }
720 spin_unlock_irqrestore(&phba->hbalock, iflags);
721 if ((!list_empty(&phba->active_rrq_list)) &&
722 (!(phba->pport->load_flag & FC_UNLOADING)))
723 mod_timer(&phba->rrq_tmr, next_time);
724 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) {
725 list_del(&rrq->list);
726 if (!rrq->send_rrq)
727 /* this call will free the rrq */
728 lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
729 else if (lpfc_send_rrq(phba, rrq)) {
730 /* if we send the rrq then the completion handler
731 * will clear the bit in the xribitmap.
732 */
733 lpfc_clr_rrq_active(phba, rrq->xritag,
734 rrq);
735 }
736 }
737 }
738
739 /**
740 * lpfc_get_active_rrq - Get the active RRQ for this exchange.
741 * @vport: Pointer to vport context object.
742 * @xri: The xri used in the exchange.
743 * @did: The targets DID for this exchange.
744 *
745 * returns NULL = rrq not found in the phba->active_rrq_list.
746 * rrq = rrq for this xri and target.
747 **/
748 struct lpfc_node_rrq *
lpfc_get_active_rrq(struct lpfc_vport * vport,uint16_t xri,uint32_t did)749 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did)
750 {
751 struct lpfc_hba *phba = vport->phba;
752 struct lpfc_node_rrq *rrq;
753 struct lpfc_node_rrq *nextrrq;
754 unsigned long iflags;
755
756 if (phba->sli_rev != LPFC_SLI_REV4)
757 return NULL;
758 spin_lock_irqsave(&phba->hbalock, iflags);
759 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) {
760 if (rrq->vport == vport && rrq->xritag == xri &&
761 rrq->nlp_DID == did){
762 list_del(&rrq->list);
763 spin_unlock_irqrestore(&phba->hbalock, iflags);
764 return rrq;
765 }
766 }
767 spin_unlock_irqrestore(&phba->hbalock, iflags);
768 return NULL;
769 }
770
771 /**
772 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport.
773 * @vport: Pointer to vport context object.
774 * @ndlp: Pointer to the lpfc_node_list structure.
775 * If ndlp is NULL Remove all active RRQs for this vport from the
776 * phba->active_rrq_list and clear the rrq.
777 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp.
778 **/
779 void
lpfc_cleanup_vports_rrqs(struct lpfc_vport * vport,struct lpfc_nodelist * ndlp)780 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp)
781
782 {
783 struct lpfc_hba *phba = vport->phba;
784 struct lpfc_node_rrq *rrq;
785 struct lpfc_node_rrq *nextrrq;
786 unsigned long iflags;
787 LIST_HEAD(rrq_list);
788
789 if (phba->sli_rev != LPFC_SLI_REV4)
790 return;
791 if (!ndlp) {
792 lpfc_sli4_vport_delete_els_xri_aborted(vport);
793 lpfc_sli4_vport_delete_fcp_xri_aborted(vport);
794 }
795 spin_lock_irqsave(&phba->hbalock, iflags);
796 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list)
797 if ((rrq->vport == vport) && (!ndlp || rrq->ndlp == ndlp))
798 list_move(&rrq->list, &rrq_list);
799 spin_unlock_irqrestore(&phba->hbalock, iflags);
800
801 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) {
802 list_del(&rrq->list);
803 lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
804 }
805 }
806
807 /**
808 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap.
809 * @phba: Pointer to HBA context object.
810 * @ndlp: Targets nodelist pointer for this exchange.
811 * @xritag the xri in the bitmap to test.
812 *
813 * This function is called with hbalock held. This function
814 * returns 0 = rrq not active for this xri
815 * 1 = rrq is valid for this xri.
816 **/
817 int
lpfc_test_rrq_active(struct lpfc_hba * phba,struct lpfc_nodelist * ndlp,uint16_t xritag)818 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
819 uint16_t xritag)
820 {
821 lockdep_assert_held(&phba->hbalock);
822 if (!ndlp)
823 return 0;
824 if (!ndlp->active_rrqs_xri_bitmap)
825 return 0;
826 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap))
827 return 1;
828 else
829 return 0;
830 }
831
832 /**
833 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap.
834 * @phba: Pointer to HBA context object.
835 * @ndlp: nodelist pointer for this target.
836 * @xritag: xri used in this exchange.
837 * @rxid: Remote Exchange ID.
838 * @send_rrq: Flag used to determine if we should send rrq els cmd.
839 *
840 * This function takes the hbalock.
841 * The active bit is always set in the active rrq xri_bitmap even
842 * if there is no slot avaiable for the other rrq information.
843 *
844 * returns 0 rrq actived for this xri
845 * < 0 No memory or invalid ndlp.
846 **/
847 int
lpfc_set_rrq_active(struct lpfc_hba * phba,struct lpfc_nodelist * ndlp,uint16_t xritag,uint16_t rxid,uint16_t send_rrq)848 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
849 uint16_t xritag, uint16_t rxid, uint16_t send_rrq)
850 {
851 unsigned long iflags;
852 struct lpfc_node_rrq *rrq;
853 int empty;
854
855 if (!ndlp)
856 return -EINVAL;
857
858 if (!phba->cfg_enable_rrq)
859 return -EINVAL;
860
861 spin_lock_irqsave(&phba->hbalock, iflags);
862 if (phba->pport->load_flag & FC_UNLOADING) {
863 phba->hba_flag &= ~HBA_RRQ_ACTIVE;
864 goto out;
865 }
866
867 /*
868 * set the active bit even if there is no mem available.
869 */
870 if (NLP_CHK_FREE_REQ(ndlp))
871 goto out;
872
873 if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING))
874 goto out;
875
876 if (!ndlp->active_rrqs_xri_bitmap)
877 goto out;
878
879 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap))
880 goto out;
881
882 spin_unlock_irqrestore(&phba->hbalock, iflags);
883 rrq = mempool_alloc(phba->rrq_pool, GFP_KERNEL);
884 if (!rrq) {
885 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
886 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x"
887 " DID:0x%x Send:%d\n",
888 xritag, rxid, ndlp->nlp_DID, send_rrq);
889 return -EINVAL;
890 }
891 if (phba->cfg_enable_rrq == 1)
892 rrq->send_rrq = send_rrq;
893 else
894 rrq->send_rrq = 0;
895 rrq->xritag = xritag;
896 rrq->rrq_stop_time = jiffies +
897 msecs_to_jiffies(1000 * (phba->fc_ratov + 1));
898 rrq->ndlp = ndlp;
899 rrq->nlp_DID = ndlp->nlp_DID;
900 rrq->vport = ndlp->vport;
901 rrq->rxid = rxid;
902 spin_lock_irqsave(&phba->hbalock, iflags);
903 empty = list_empty(&phba->active_rrq_list);
904 list_add_tail(&rrq->list, &phba->active_rrq_list);
905 phba->hba_flag |= HBA_RRQ_ACTIVE;
906 if (empty)
907 lpfc_worker_wake_up(phba);
908 spin_unlock_irqrestore(&phba->hbalock, iflags);
909 return 0;
910 out:
911 spin_unlock_irqrestore(&phba->hbalock, iflags);
912 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
913 "2921 Can't set rrq active xri:0x%x rxid:0x%x"
914 " DID:0x%x Send:%d\n",
915 xritag, rxid, ndlp->nlp_DID, send_rrq);
916 return -EINVAL;
917 }
918
919 /**
920 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool
921 * @phba: Pointer to HBA context object.
922 * @piocb: Pointer to the iocbq.
923 *
924 * This function is called with the ring lock held. This function
925 * gets a new driver sglq object from the sglq list. If the
926 * list is not empty then it is successful, it returns pointer to the newly
927 * allocated sglq object else it returns NULL.
928 **/
929 static struct lpfc_sglq *
__lpfc_sli_get_els_sglq(struct lpfc_hba * phba,struct lpfc_iocbq * piocbq)930 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
931 {
932 struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list;
933 struct lpfc_sglq *sglq = NULL;
934 struct lpfc_sglq *start_sglq = NULL;
935 struct lpfc_scsi_buf *lpfc_cmd;
936 struct lpfc_nodelist *ndlp;
937 int found = 0;
938
939 lockdep_assert_held(&phba->hbalock);
940
941 if (piocbq->iocb_flag & LPFC_IO_FCP) {
942 lpfc_cmd = (struct lpfc_scsi_buf *) piocbq->context1;
943 ndlp = lpfc_cmd->rdata->pnode;
944 } else if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) &&
945 !(piocbq->iocb_flag & LPFC_IO_LIBDFC)) {
946 ndlp = piocbq->context_un.ndlp;
947 } else if (piocbq->iocb_flag & LPFC_IO_LIBDFC) {
948 if (piocbq->iocb_flag & LPFC_IO_LOOPBACK)
949 ndlp = NULL;
950 else
951 ndlp = piocbq->context_un.ndlp;
952 } else {
953 ndlp = piocbq->context1;
954 }
955
956 spin_lock(&phba->sli4_hba.sgl_list_lock);
957 list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list);
958 start_sglq = sglq;
959 while (!found) {
960 if (!sglq)
961 break;
962 if (ndlp && ndlp->active_rrqs_xri_bitmap &&
963 test_bit(sglq->sli4_lxritag,
964 ndlp->active_rrqs_xri_bitmap)) {
965 /* This xri has an rrq outstanding for this DID.
966 * put it back in the list and get another xri.
967 */
968 list_add_tail(&sglq->list, lpfc_els_sgl_list);
969 sglq = NULL;
970 list_remove_head(lpfc_els_sgl_list, sglq,
971 struct lpfc_sglq, list);
972 if (sglq == start_sglq) {
973 list_add_tail(&sglq->list, lpfc_els_sgl_list);
974 sglq = NULL;
975 break;
976 } else
977 continue;
978 }
979 sglq->ndlp = ndlp;
980 found = 1;
981 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
982 sglq->state = SGL_ALLOCATED;
983 }
984 spin_unlock(&phba->sli4_hba.sgl_list_lock);
985 return sglq;
986 }
987
988 /**
989 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool
990 * @phba: Pointer to HBA context object.
991 * @piocb: Pointer to the iocbq.
992 *
993 * This function is called with the sgl_list lock held. This function
994 * gets a new driver sglq object from the sglq list. If the
995 * list is not empty then it is successful, it returns pointer to the newly
996 * allocated sglq object else it returns NULL.
997 **/
998 struct lpfc_sglq *
__lpfc_sli_get_nvmet_sglq(struct lpfc_hba * phba,struct lpfc_iocbq * piocbq)999 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
1000 {
1001 struct list_head *lpfc_nvmet_sgl_list;
1002 struct lpfc_sglq *sglq = NULL;
1003
1004 lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list;
1005
1006 lockdep_assert_held(&phba->sli4_hba.sgl_list_lock);
1007
1008 list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list);
1009 if (!sglq)
1010 return NULL;
1011 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
1012 sglq->state = SGL_ALLOCATED;
1013 return sglq;
1014 }
1015
1016 /**
1017 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
1018 * @phba: Pointer to HBA context object.
1019 *
1020 * This function is called with no lock held. This function
1021 * allocates a new driver iocb object from the iocb pool. If the
1022 * allocation is successful, it returns pointer to the newly
1023 * allocated iocb object else it returns NULL.
1024 **/
1025 struct lpfc_iocbq *
lpfc_sli_get_iocbq(struct lpfc_hba * phba)1026 lpfc_sli_get_iocbq(struct lpfc_hba *phba)
1027 {
1028 struct lpfc_iocbq * iocbq = NULL;
1029 unsigned long iflags;
1030
1031 spin_lock_irqsave(&phba->hbalock, iflags);
1032 iocbq = __lpfc_sli_get_iocbq(phba);
1033 spin_unlock_irqrestore(&phba->hbalock, iflags);
1034 return iocbq;
1035 }
1036
1037 /**
1038 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool
1039 * @phba: Pointer to HBA context object.
1040 * @iocbq: Pointer to driver iocb object.
1041 *
1042 * This function is called with hbalock held to release driver
1043 * iocb object to the iocb pool. The iotag in the iocb object
1044 * does not change for each use of the iocb object. This function
1045 * clears all other fields of the iocb object when it is freed.
1046 * The sqlq structure that holds the xritag and phys and virtual
1047 * mappings for the scatter gather list is retrieved from the
1048 * active array of sglq. The get of the sglq pointer also clears
1049 * the entry in the array. If the status of the IO indiactes that
1050 * this IO was aborted then the sglq entry it put on the
1051 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the
1052 * IO has good status or fails for any other reason then the sglq
1053 * entry is added to the free list (lpfc_els_sgl_list).
1054 **/
1055 static void
__lpfc_sli_release_iocbq_s4(struct lpfc_hba * phba,struct lpfc_iocbq * iocbq)1056 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1057 {
1058 struct lpfc_sglq *sglq;
1059 size_t start_clean = offsetof(struct lpfc_iocbq, iocb);
1060 unsigned long iflag = 0;
1061 struct lpfc_sli_ring *pring;
1062
1063 lockdep_assert_held(&phba->hbalock);
1064
1065 if (iocbq->sli4_xritag == NO_XRI)
1066 sglq = NULL;
1067 else
1068 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag);
1069
1070
1071 if (sglq) {
1072 if (iocbq->iocb_flag & LPFC_IO_NVMET) {
1073 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1074 iflag);
1075 sglq->state = SGL_FREED;
1076 sglq->ndlp = NULL;
1077 list_add_tail(&sglq->list,
1078 &phba->sli4_hba.lpfc_nvmet_sgl_list);
1079 spin_unlock_irqrestore(
1080 &phba->sli4_hba.sgl_list_lock, iflag);
1081 goto out;
1082 }
1083
1084 pring = phba->sli4_hba.els_wq->pring;
1085 if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) &&
1086 (sglq->state != SGL_XRI_ABORTED)) {
1087 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1088 iflag);
1089 list_add(&sglq->list,
1090 &phba->sli4_hba.lpfc_abts_els_sgl_list);
1091 spin_unlock_irqrestore(
1092 &phba->sli4_hba.sgl_list_lock, iflag);
1093 } else {
1094 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1095 iflag);
1096 sglq->state = SGL_FREED;
1097 sglq->ndlp = NULL;
1098 list_add_tail(&sglq->list,
1099 &phba->sli4_hba.lpfc_els_sgl_list);
1100 spin_unlock_irqrestore(
1101 &phba->sli4_hba.sgl_list_lock, iflag);
1102
1103 /* Check if TXQ queue needs to be serviced */
1104 if (!list_empty(&pring->txq))
1105 lpfc_worker_wake_up(phba);
1106 }
1107 }
1108
1109 out:
1110 /*
1111 * Clean all volatile data fields, preserve iotag and node struct.
1112 */
1113 memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean);
1114 iocbq->sli4_lxritag = NO_XRI;
1115 iocbq->sli4_xritag = NO_XRI;
1116 iocbq->iocb_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET |
1117 LPFC_IO_NVME_LS);
1118 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1119 }
1120
1121
1122 /**
1123 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool
1124 * @phba: Pointer to HBA context object.
1125 * @iocbq: Pointer to driver iocb object.
1126 *
1127 * This function is called with hbalock held to release driver
1128 * iocb object to the iocb pool. The iotag in the iocb object
1129 * does not change for each use of the iocb object. This function
1130 * clears all other fields of the iocb object when it is freed.
1131 **/
1132 static void
__lpfc_sli_release_iocbq_s3(struct lpfc_hba * phba,struct lpfc_iocbq * iocbq)1133 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1134 {
1135 size_t start_clean = offsetof(struct lpfc_iocbq, iocb);
1136
1137 lockdep_assert_held(&phba->hbalock);
1138
1139 /*
1140 * Clean all volatile data fields, preserve iotag and node struct.
1141 */
1142 memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean);
1143 iocbq->sli4_xritag = NO_XRI;
1144 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1145 }
1146
1147 /**
1148 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool
1149 * @phba: Pointer to HBA context object.
1150 * @iocbq: Pointer to driver iocb object.
1151 *
1152 * This function is called with hbalock held to release driver
1153 * iocb object to the iocb pool. The iotag in the iocb object
1154 * does not change for each use of the iocb object. This function
1155 * clears all other fields of the iocb object when it is freed.
1156 **/
1157 static void
__lpfc_sli_release_iocbq(struct lpfc_hba * phba,struct lpfc_iocbq * iocbq)1158 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1159 {
1160 lockdep_assert_held(&phba->hbalock);
1161
1162 phba->__lpfc_sli_release_iocbq(phba, iocbq);
1163 phba->iocb_cnt--;
1164 }
1165
1166 /**
1167 * lpfc_sli_release_iocbq - Release iocb to the iocb pool
1168 * @phba: Pointer to HBA context object.
1169 * @iocbq: Pointer to driver iocb object.
1170 *
1171 * This function is called with no lock held to release the iocb to
1172 * iocb pool.
1173 **/
1174 void
lpfc_sli_release_iocbq(struct lpfc_hba * phba,struct lpfc_iocbq * iocbq)1175 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1176 {
1177 unsigned long iflags;
1178
1179 /*
1180 * Clean all volatile data fields, preserve iotag and node struct.
1181 */
1182 spin_lock_irqsave(&phba->hbalock, iflags);
1183 __lpfc_sli_release_iocbq(phba, iocbq);
1184 spin_unlock_irqrestore(&phba->hbalock, iflags);
1185 }
1186
1187 /**
1188 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list.
1189 * @phba: Pointer to HBA context object.
1190 * @iocblist: List of IOCBs.
1191 * @ulpstatus: ULP status in IOCB command field.
1192 * @ulpWord4: ULP word-4 in IOCB command field.
1193 *
1194 * This function is called with a list of IOCBs to cancel. It cancels the IOCB
1195 * on the list by invoking the complete callback function associated with the
1196 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond
1197 * fields.
1198 **/
1199 void
lpfc_sli_cancel_iocbs(struct lpfc_hba * phba,struct list_head * iocblist,uint32_t ulpstatus,uint32_t ulpWord4)1200 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist,
1201 uint32_t ulpstatus, uint32_t ulpWord4)
1202 {
1203 struct lpfc_iocbq *piocb;
1204
1205 while (!list_empty(iocblist)) {
1206 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list);
1207 if (!piocb->iocb_cmpl)
1208 lpfc_sli_release_iocbq(phba, piocb);
1209 else {
1210 piocb->iocb.ulpStatus = ulpstatus;
1211 piocb->iocb.un.ulpWord[4] = ulpWord4;
1212 (piocb->iocb_cmpl) (phba, piocb, piocb);
1213 }
1214 }
1215 return;
1216 }
1217
1218 /**
1219 * lpfc_sli_iocb_cmd_type - Get the iocb type
1220 * @iocb_cmnd: iocb command code.
1221 *
1222 * This function is called by ring event handler function to get the iocb type.
1223 * This function translates the iocb command to an iocb command type used to
1224 * decide the final disposition of each completed IOCB.
1225 * The function returns
1226 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb
1227 * LPFC_SOL_IOCB if it is a solicited iocb completion
1228 * LPFC_ABORT_IOCB if it is an abort iocb
1229 * LPFC_UNSOL_IOCB if it is an unsolicited iocb
1230 *
1231 * The caller is not required to hold any lock.
1232 **/
1233 static lpfc_iocb_type
lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd)1234 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd)
1235 {
1236 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB;
1237
1238 if (iocb_cmnd > CMD_MAX_IOCB_CMD)
1239 return 0;
1240
1241 switch (iocb_cmnd) {
1242 case CMD_XMIT_SEQUENCE_CR:
1243 case CMD_XMIT_SEQUENCE_CX:
1244 case CMD_XMIT_BCAST_CN:
1245 case CMD_XMIT_BCAST_CX:
1246 case CMD_ELS_REQUEST_CR:
1247 case CMD_ELS_REQUEST_CX:
1248 case CMD_CREATE_XRI_CR:
1249 case CMD_CREATE_XRI_CX:
1250 case CMD_GET_RPI_CN:
1251 case CMD_XMIT_ELS_RSP_CX:
1252 case CMD_GET_RPI_CR:
1253 case CMD_FCP_IWRITE_CR:
1254 case CMD_FCP_IWRITE_CX:
1255 case CMD_FCP_IREAD_CR:
1256 case CMD_FCP_IREAD_CX:
1257 case CMD_FCP_ICMND_CR:
1258 case CMD_FCP_ICMND_CX:
1259 case CMD_FCP_TSEND_CX:
1260 case CMD_FCP_TRSP_CX:
1261 case CMD_FCP_TRECEIVE_CX:
1262 case CMD_FCP_AUTO_TRSP_CX:
1263 case CMD_ADAPTER_MSG:
1264 case CMD_ADAPTER_DUMP:
1265 case CMD_XMIT_SEQUENCE64_CR:
1266 case CMD_XMIT_SEQUENCE64_CX:
1267 case CMD_XMIT_BCAST64_CN:
1268 case CMD_XMIT_BCAST64_CX:
1269 case CMD_ELS_REQUEST64_CR:
1270 case CMD_ELS_REQUEST64_CX:
1271 case CMD_FCP_IWRITE64_CR:
1272 case CMD_FCP_IWRITE64_CX:
1273 case CMD_FCP_IREAD64_CR:
1274 case CMD_FCP_IREAD64_CX:
1275 case CMD_FCP_ICMND64_CR:
1276 case CMD_FCP_ICMND64_CX:
1277 case CMD_FCP_TSEND64_CX:
1278 case CMD_FCP_TRSP64_CX:
1279 case CMD_FCP_TRECEIVE64_CX:
1280 case CMD_GEN_REQUEST64_CR:
1281 case CMD_GEN_REQUEST64_CX:
1282 case CMD_XMIT_ELS_RSP64_CX:
1283 case DSSCMD_IWRITE64_CR:
1284 case DSSCMD_IWRITE64_CX:
1285 case DSSCMD_IREAD64_CR:
1286 case DSSCMD_IREAD64_CX:
1287 type = LPFC_SOL_IOCB;
1288 break;
1289 case CMD_ABORT_XRI_CN:
1290 case CMD_ABORT_XRI_CX:
1291 case CMD_CLOSE_XRI_CN:
1292 case CMD_CLOSE_XRI_CX:
1293 case CMD_XRI_ABORTED_CX:
1294 case CMD_ABORT_MXRI64_CN:
1295 case CMD_XMIT_BLS_RSP64_CX:
1296 type = LPFC_ABORT_IOCB;
1297 break;
1298 case CMD_RCV_SEQUENCE_CX:
1299 case CMD_RCV_ELS_REQ_CX:
1300 case CMD_RCV_SEQUENCE64_CX:
1301 case CMD_RCV_ELS_REQ64_CX:
1302 case CMD_ASYNC_STATUS:
1303 case CMD_IOCB_RCV_SEQ64_CX:
1304 case CMD_IOCB_RCV_ELS64_CX:
1305 case CMD_IOCB_RCV_CONT64_CX:
1306 case CMD_IOCB_RET_XRI64_CX:
1307 type = LPFC_UNSOL_IOCB;
1308 break;
1309 case CMD_IOCB_XMIT_MSEQ64_CR:
1310 case CMD_IOCB_XMIT_MSEQ64_CX:
1311 case CMD_IOCB_RCV_SEQ_LIST64_CX:
1312 case CMD_IOCB_RCV_ELS_LIST64_CX:
1313 case CMD_IOCB_CLOSE_EXTENDED_CN:
1314 case CMD_IOCB_ABORT_EXTENDED_CN:
1315 case CMD_IOCB_RET_HBQE64_CN:
1316 case CMD_IOCB_FCP_IBIDIR64_CR:
1317 case CMD_IOCB_FCP_IBIDIR64_CX:
1318 case CMD_IOCB_FCP_ITASKMGT64_CX:
1319 case CMD_IOCB_LOGENTRY_CN:
1320 case CMD_IOCB_LOGENTRY_ASYNC_CN:
1321 printk("%s - Unhandled SLI-3 Command x%x\n",
1322 __func__, iocb_cmnd);
1323 type = LPFC_UNKNOWN_IOCB;
1324 break;
1325 default:
1326 type = LPFC_UNKNOWN_IOCB;
1327 break;
1328 }
1329
1330 return type;
1331 }
1332
1333 /**
1334 * lpfc_sli_ring_map - Issue config_ring mbox for all rings
1335 * @phba: Pointer to HBA context object.
1336 *
1337 * This function is called from SLI initialization code
1338 * to configure every ring of the HBA's SLI interface. The
1339 * caller is not required to hold any lock. This function issues
1340 * a config_ring mailbox command for each ring.
1341 * This function returns zero if successful else returns a negative
1342 * error code.
1343 **/
1344 static int
lpfc_sli_ring_map(struct lpfc_hba * phba)1345 lpfc_sli_ring_map(struct lpfc_hba *phba)
1346 {
1347 struct lpfc_sli *psli = &phba->sli;
1348 LPFC_MBOXQ_t *pmb;
1349 MAILBOX_t *pmbox;
1350 int i, rc, ret = 0;
1351
1352 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
1353 if (!pmb)
1354 return -ENOMEM;
1355 pmbox = &pmb->u.mb;
1356 phba->link_state = LPFC_INIT_MBX_CMDS;
1357 for (i = 0; i < psli->num_rings; i++) {
1358 lpfc_config_ring(phba, i, pmb);
1359 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
1360 if (rc != MBX_SUCCESS) {
1361 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
1362 "0446 Adapter failed to init (%d), "
1363 "mbxCmd x%x CFG_RING, mbxStatus x%x, "
1364 "ring %d\n",
1365 rc, pmbox->mbxCommand,
1366 pmbox->mbxStatus, i);
1367 phba->link_state = LPFC_HBA_ERROR;
1368 ret = -ENXIO;
1369 break;
1370 }
1371 }
1372 mempool_free(pmb, phba->mbox_mem_pool);
1373 return ret;
1374 }
1375
1376 /**
1377 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq
1378 * @phba: Pointer to HBA context object.
1379 * @pring: Pointer to driver SLI ring object.
1380 * @piocb: Pointer to the driver iocb object.
1381 *
1382 * This function is called with hbalock held. The function adds the
1383 * new iocb to txcmplq of the given ring. This function always returns
1384 * 0. If this function is called for ELS ring, this function checks if
1385 * there is a vport associated with the ELS command. This function also
1386 * starts els_tmofunc timer if this is an ELS command.
1387 **/
1388 static int
lpfc_sli_ringtxcmpl_put(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * piocb)1389 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1390 struct lpfc_iocbq *piocb)
1391 {
1392 lockdep_assert_held(&phba->hbalock);
1393
1394 BUG_ON(!piocb);
1395
1396 list_add_tail(&piocb->list, &pring->txcmplq);
1397 piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ;
1398
1399 if ((unlikely(pring->ringno == LPFC_ELS_RING)) &&
1400 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) &&
1401 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) {
1402 BUG_ON(!piocb->vport);
1403 if (!(piocb->vport->load_flag & FC_UNLOADING))
1404 mod_timer(&piocb->vport->els_tmofunc,
1405 jiffies +
1406 msecs_to_jiffies(1000 * (phba->fc_ratov << 1)));
1407 }
1408
1409 return 0;
1410 }
1411
1412 /**
1413 * lpfc_sli_ringtx_get - Get first element of the txq
1414 * @phba: Pointer to HBA context object.
1415 * @pring: Pointer to driver SLI ring object.
1416 *
1417 * This function is called with hbalock held to get next
1418 * iocb in txq of the given ring. If there is any iocb in
1419 * the txq, the function returns first iocb in the list after
1420 * removing the iocb from the list, else it returns NULL.
1421 **/
1422 struct lpfc_iocbq *
lpfc_sli_ringtx_get(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)1423 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1424 {
1425 struct lpfc_iocbq *cmd_iocb;
1426
1427 lockdep_assert_held(&phba->hbalock);
1428
1429 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list);
1430 return cmd_iocb;
1431 }
1432
1433 /**
1434 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring
1435 * @phba: Pointer to HBA context object.
1436 * @pring: Pointer to driver SLI ring object.
1437 *
1438 * This function is called with hbalock held and the caller must post the
1439 * iocb without releasing the lock. If the caller releases the lock,
1440 * iocb slot returned by the function is not guaranteed to be available.
1441 * The function returns pointer to the next available iocb slot if there
1442 * is available slot in the ring, else it returns NULL.
1443 * If the get index of the ring is ahead of the put index, the function
1444 * will post an error attention event to the worker thread to take the
1445 * HBA to offline state.
1446 **/
1447 static IOCB_t *
lpfc_sli_next_iocb_slot(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)1448 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1449 {
1450 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
1451 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb;
1452
1453 lockdep_assert_held(&phba->hbalock);
1454
1455 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) &&
1456 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx))
1457 pring->sli.sli3.next_cmdidx = 0;
1458
1459 if (unlikely(pring->sli.sli3.local_getidx ==
1460 pring->sli.sli3.next_cmdidx)) {
1461
1462 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
1463
1464 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) {
1465 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
1466 "0315 Ring %d issue: portCmdGet %d "
1467 "is bigger than cmd ring %d\n",
1468 pring->ringno,
1469 pring->sli.sli3.local_getidx,
1470 max_cmd_idx);
1471
1472 phba->link_state = LPFC_HBA_ERROR;
1473 /*
1474 * All error attention handlers are posted to
1475 * worker thread
1476 */
1477 phba->work_ha |= HA_ERATT;
1478 phba->work_hs = HS_FFER3;
1479
1480 lpfc_worker_wake_up(phba);
1481
1482 return NULL;
1483 }
1484
1485 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx)
1486 return NULL;
1487 }
1488
1489 return lpfc_cmd_iocb(phba, pring);
1490 }
1491
1492 /**
1493 * lpfc_sli_next_iotag - Get an iotag for the iocb
1494 * @phba: Pointer to HBA context object.
1495 * @iocbq: Pointer to driver iocb object.
1496 *
1497 * This function gets an iotag for the iocb. If there is no unused iotag and
1498 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup
1499 * array and assigns a new iotag.
1500 * The function returns the allocated iotag if successful, else returns zero.
1501 * Zero is not a valid iotag.
1502 * The caller is not required to hold any lock.
1503 **/
1504 uint16_t
lpfc_sli_next_iotag(struct lpfc_hba * phba,struct lpfc_iocbq * iocbq)1505 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1506 {
1507 struct lpfc_iocbq **new_arr;
1508 struct lpfc_iocbq **old_arr;
1509 size_t new_len;
1510 struct lpfc_sli *psli = &phba->sli;
1511 uint16_t iotag;
1512
1513 spin_lock_irq(&phba->hbalock);
1514 iotag = psli->last_iotag;
1515 if(++iotag < psli->iocbq_lookup_len) {
1516 psli->last_iotag = iotag;
1517 psli->iocbq_lookup[iotag] = iocbq;
1518 spin_unlock_irq(&phba->hbalock);
1519 iocbq->iotag = iotag;
1520 return iotag;
1521 } else if (psli->iocbq_lookup_len < (0xffff
1522 - LPFC_IOCBQ_LOOKUP_INCREMENT)) {
1523 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT;
1524 spin_unlock_irq(&phba->hbalock);
1525 new_arr = kzalloc(new_len * sizeof (struct lpfc_iocbq *),
1526 GFP_KERNEL);
1527 if (new_arr) {
1528 spin_lock_irq(&phba->hbalock);
1529 old_arr = psli->iocbq_lookup;
1530 if (new_len <= psli->iocbq_lookup_len) {
1531 /* highly unprobable case */
1532 kfree(new_arr);
1533 iotag = psli->last_iotag;
1534 if(++iotag < psli->iocbq_lookup_len) {
1535 psli->last_iotag = iotag;
1536 psli->iocbq_lookup[iotag] = iocbq;
1537 spin_unlock_irq(&phba->hbalock);
1538 iocbq->iotag = iotag;
1539 return iotag;
1540 }
1541 spin_unlock_irq(&phba->hbalock);
1542 return 0;
1543 }
1544 if (psli->iocbq_lookup)
1545 memcpy(new_arr, old_arr,
1546 ((psli->last_iotag + 1) *
1547 sizeof (struct lpfc_iocbq *)));
1548 psli->iocbq_lookup = new_arr;
1549 psli->iocbq_lookup_len = new_len;
1550 psli->last_iotag = iotag;
1551 psli->iocbq_lookup[iotag] = iocbq;
1552 spin_unlock_irq(&phba->hbalock);
1553 iocbq->iotag = iotag;
1554 kfree(old_arr);
1555 return iotag;
1556 }
1557 } else
1558 spin_unlock_irq(&phba->hbalock);
1559
1560 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
1561 "0318 Failed to allocate IOTAG.last IOTAG is %d\n",
1562 psli->last_iotag);
1563
1564 return 0;
1565 }
1566
1567 /**
1568 * lpfc_sli_submit_iocb - Submit an iocb to the firmware
1569 * @phba: Pointer to HBA context object.
1570 * @pring: Pointer to driver SLI ring object.
1571 * @iocb: Pointer to iocb slot in the ring.
1572 * @nextiocb: Pointer to driver iocb object which need to be
1573 * posted to firmware.
1574 *
1575 * This function is called with hbalock held to post a new iocb to
1576 * the firmware. This function copies the new iocb to ring iocb slot and
1577 * updates the ring pointers. It adds the new iocb to txcmplq if there is
1578 * a completion call back for this iocb else the function will free the
1579 * iocb object.
1580 **/
1581 static void
lpfc_sli_submit_iocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,IOCB_t * iocb,struct lpfc_iocbq * nextiocb)1582 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1583 IOCB_t *iocb, struct lpfc_iocbq *nextiocb)
1584 {
1585 lockdep_assert_held(&phba->hbalock);
1586 /*
1587 * Set up an iotag
1588 */
1589 nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0;
1590
1591
1592 if (pring->ringno == LPFC_ELS_RING) {
1593 lpfc_debugfs_slow_ring_trc(phba,
1594 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x",
1595 *(((uint32_t *) &nextiocb->iocb) + 4),
1596 *(((uint32_t *) &nextiocb->iocb) + 6),
1597 *(((uint32_t *) &nextiocb->iocb) + 7));
1598 }
1599
1600 /*
1601 * Issue iocb command to adapter
1602 */
1603 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size);
1604 wmb();
1605 pring->stats.iocb_cmd++;
1606
1607 /*
1608 * If there is no completion routine to call, we can release the
1609 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF,
1610 * that have no rsp ring completion, iocb_cmpl MUST be NULL.
1611 */
1612 if (nextiocb->iocb_cmpl)
1613 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb);
1614 else
1615 __lpfc_sli_release_iocbq(phba, nextiocb);
1616
1617 /*
1618 * Let the HBA know what IOCB slot will be the next one the
1619 * driver will put a command into.
1620 */
1621 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx;
1622 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx);
1623 }
1624
1625 /**
1626 * lpfc_sli_update_full_ring - Update the chip attention register
1627 * @phba: Pointer to HBA context object.
1628 * @pring: Pointer to driver SLI ring object.
1629 *
1630 * The caller is not required to hold any lock for calling this function.
1631 * This function updates the chip attention bits for the ring to inform firmware
1632 * that there are pending work to be done for this ring and requests an
1633 * interrupt when there is space available in the ring. This function is
1634 * called when the driver is unable to post more iocbs to the ring due
1635 * to unavailability of space in the ring.
1636 **/
1637 static void
lpfc_sli_update_full_ring(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)1638 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1639 {
1640 int ringno = pring->ringno;
1641
1642 pring->flag |= LPFC_CALL_RING_AVAILABLE;
1643
1644 wmb();
1645
1646 /*
1647 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register.
1648 * The HBA will tell us when an IOCB entry is available.
1649 */
1650 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr);
1651 readl(phba->CAregaddr); /* flush */
1652
1653 pring->stats.iocb_cmd_full++;
1654 }
1655
1656 /**
1657 * lpfc_sli_update_ring - Update chip attention register
1658 * @phba: Pointer to HBA context object.
1659 * @pring: Pointer to driver SLI ring object.
1660 *
1661 * This function updates the chip attention register bit for the
1662 * given ring to inform HBA that there is more work to be done
1663 * in this ring. The caller is not required to hold any lock.
1664 **/
1665 static void
lpfc_sli_update_ring(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)1666 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1667 {
1668 int ringno = pring->ringno;
1669
1670 /*
1671 * Tell the HBA that there is work to do in this ring.
1672 */
1673 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) {
1674 wmb();
1675 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr);
1676 readl(phba->CAregaddr); /* flush */
1677 }
1678 }
1679
1680 /**
1681 * lpfc_sli_resume_iocb - Process iocbs in the txq
1682 * @phba: Pointer to HBA context object.
1683 * @pring: Pointer to driver SLI ring object.
1684 *
1685 * This function is called with hbalock held to post pending iocbs
1686 * in the txq to the firmware. This function is called when driver
1687 * detects space available in the ring.
1688 **/
1689 static void
lpfc_sli_resume_iocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)1690 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1691 {
1692 IOCB_t *iocb;
1693 struct lpfc_iocbq *nextiocb;
1694
1695 lockdep_assert_held(&phba->hbalock);
1696
1697 /*
1698 * Check to see if:
1699 * (a) there is anything on the txq to send
1700 * (b) link is up
1701 * (c) link attention events can be processed (fcp ring only)
1702 * (d) IOCB processing is not blocked by the outstanding mbox command.
1703 */
1704
1705 if (lpfc_is_link_up(phba) &&
1706 (!list_empty(&pring->txq)) &&
1707 (pring->ringno != LPFC_FCP_RING ||
1708 phba->sli.sli_flag & LPFC_PROCESS_LA)) {
1709
1710 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
1711 (nextiocb = lpfc_sli_ringtx_get(phba, pring)))
1712 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
1713
1714 if (iocb)
1715 lpfc_sli_update_ring(phba, pring);
1716 else
1717 lpfc_sli_update_full_ring(phba, pring);
1718 }
1719
1720 return;
1721 }
1722
1723 /**
1724 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ
1725 * @phba: Pointer to HBA context object.
1726 * @hbqno: HBQ number.
1727 *
1728 * This function is called with hbalock held to get the next
1729 * available slot for the given HBQ. If there is free slot
1730 * available for the HBQ it will return pointer to the next available
1731 * HBQ entry else it will return NULL.
1732 **/
1733 static struct lpfc_hbq_entry *
lpfc_sli_next_hbq_slot(struct lpfc_hba * phba,uint32_t hbqno)1734 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno)
1735 {
1736 struct hbq_s *hbqp = &phba->hbqs[hbqno];
1737
1738 lockdep_assert_held(&phba->hbalock);
1739
1740 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx &&
1741 ++hbqp->next_hbqPutIdx >= hbqp->entry_count)
1742 hbqp->next_hbqPutIdx = 0;
1743
1744 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) {
1745 uint32_t raw_index = phba->hbq_get[hbqno];
1746 uint32_t getidx = le32_to_cpu(raw_index);
1747
1748 hbqp->local_hbqGetIdx = getidx;
1749
1750 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) {
1751 lpfc_printf_log(phba, KERN_ERR,
1752 LOG_SLI | LOG_VPORT,
1753 "1802 HBQ %d: local_hbqGetIdx "
1754 "%u is > than hbqp->entry_count %u\n",
1755 hbqno, hbqp->local_hbqGetIdx,
1756 hbqp->entry_count);
1757
1758 phba->link_state = LPFC_HBA_ERROR;
1759 return NULL;
1760 }
1761
1762 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)
1763 return NULL;
1764 }
1765
1766 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt +
1767 hbqp->hbqPutIdx;
1768 }
1769
1770 /**
1771 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers
1772 * @phba: Pointer to HBA context object.
1773 *
1774 * This function is called with no lock held to free all the
1775 * hbq buffers while uninitializing the SLI interface. It also
1776 * frees the HBQ buffers returned by the firmware but not yet
1777 * processed by the upper layers.
1778 **/
1779 void
lpfc_sli_hbqbuf_free_all(struct lpfc_hba * phba)1780 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba)
1781 {
1782 struct lpfc_dmabuf *dmabuf, *next_dmabuf;
1783 struct hbq_dmabuf *hbq_buf;
1784 unsigned long flags;
1785 int i, hbq_count;
1786
1787 hbq_count = lpfc_sli_hbq_count();
1788 /* Return all memory used by all HBQs */
1789 spin_lock_irqsave(&phba->hbalock, flags);
1790 for (i = 0; i < hbq_count; ++i) {
1791 list_for_each_entry_safe(dmabuf, next_dmabuf,
1792 &phba->hbqs[i].hbq_buffer_list, list) {
1793 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf);
1794 list_del(&hbq_buf->dbuf.list);
1795 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf);
1796 }
1797 phba->hbqs[i].buffer_count = 0;
1798 }
1799
1800 /* Mark the HBQs not in use */
1801 phba->hbq_in_use = 0;
1802 spin_unlock_irqrestore(&phba->hbalock, flags);
1803 }
1804
1805 /**
1806 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware
1807 * @phba: Pointer to HBA context object.
1808 * @hbqno: HBQ number.
1809 * @hbq_buf: Pointer to HBQ buffer.
1810 *
1811 * This function is called with the hbalock held to post a
1812 * hbq buffer to the firmware. If the function finds an empty
1813 * slot in the HBQ, it will post the buffer. The function will return
1814 * pointer to the hbq entry if it successfully post the buffer
1815 * else it will return NULL.
1816 **/
1817 static int
lpfc_sli_hbq_to_firmware(struct lpfc_hba * phba,uint32_t hbqno,struct hbq_dmabuf * hbq_buf)1818 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno,
1819 struct hbq_dmabuf *hbq_buf)
1820 {
1821 lockdep_assert_held(&phba->hbalock);
1822 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf);
1823 }
1824
1825 /**
1826 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware
1827 * @phba: Pointer to HBA context object.
1828 * @hbqno: HBQ number.
1829 * @hbq_buf: Pointer to HBQ buffer.
1830 *
1831 * This function is called with the hbalock held to post a hbq buffer to the
1832 * firmware. If the function finds an empty slot in the HBQ, it will post the
1833 * buffer and place it on the hbq_buffer_list. The function will return zero if
1834 * it successfully post the buffer else it will return an error.
1835 **/
1836 static int
lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba * phba,uint32_t hbqno,struct hbq_dmabuf * hbq_buf)1837 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno,
1838 struct hbq_dmabuf *hbq_buf)
1839 {
1840 struct lpfc_hbq_entry *hbqe;
1841 dma_addr_t physaddr = hbq_buf->dbuf.phys;
1842
1843 lockdep_assert_held(&phba->hbalock);
1844 /* Get next HBQ entry slot to use */
1845 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno);
1846 if (hbqe) {
1847 struct hbq_s *hbqp = &phba->hbqs[hbqno];
1848
1849 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr));
1850 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr));
1851 hbqe->bde.tus.f.bdeSize = hbq_buf->total_size;
1852 hbqe->bde.tus.f.bdeFlags = 0;
1853 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w);
1854 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag);
1855 /* Sync SLIM */
1856 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx;
1857 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno);
1858 /* flush */
1859 readl(phba->hbq_put + hbqno);
1860 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list);
1861 return 0;
1862 } else
1863 return -ENOMEM;
1864 }
1865
1866 /**
1867 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware
1868 * @phba: Pointer to HBA context object.
1869 * @hbqno: HBQ number.
1870 * @hbq_buf: Pointer to HBQ buffer.
1871 *
1872 * This function is called with the hbalock held to post an RQE to the SLI4
1873 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to
1874 * the hbq_buffer_list and return zero, otherwise it will return an error.
1875 **/
1876 static int
lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba * phba,uint32_t hbqno,struct hbq_dmabuf * hbq_buf)1877 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno,
1878 struct hbq_dmabuf *hbq_buf)
1879 {
1880 int rc;
1881 struct lpfc_rqe hrqe;
1882 struct lpfc_rqe drqe;
1883 struct lpfc_queue *hrq;
1884 struct lpfc_queue *drq;
1885
1886 if (hbqno != LPFC_ELS_HBQ)
1887 return 1;
1888 hrq = phba->sli4_hba.hdr_rq;
1889 drq = phba->sli4_hba.dat_rq;
1890
1891 lockdep_assert_held(&phba->hbalock);
1892 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys);
1893 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys);
1894 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys);
1895 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys);
1896 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe);
1897 if (rc < 0)
1898 return rc;
1899 hbq_buf->tag = (rc | (hbqno << 16));
1900 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list);
1901 return 0;
1902 }
1903
1904 /* HBQ for ELS and CT traffic. */
1905 static struct lpfc_hbq_init lpfc_els_hbq = {
1906 .rn = 1,
1907 .entry_count = 256,
1908 .mask_count = 0,
1909 .profile = 0,
1910 .ring_mask = (1 << LPFC_ELS_RING),
1911 .buffer_count = 0,
1912 .init_count = 40,
1913 .add_count = 40,
1914 };
1915
1916 /* Array of HBQs */
1917 struct lpfc_hbq_init *lpfc_hbq_defs[] = {
1918 &lpfc_els_hbq,
1919 };
1920
1921 /**
1922 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ
1923 * @phba: Pointer to HBA context object.
1924 * @hbqno: HBQ number.
1925 * @count: Number of HBQ buffers to be posted.
1926 *
1927 * This function is called with no lock held to post more hbq buffers to the
1928 * given HBQ. The function returns the number of HBQ buffers successfully
1929 * posted.
1930 **/
1931 static int
lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba * phba,uint32_t hbqno,uint32_t count)1932 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count)
1933 {
1934 uint32_t i, posted = 0;
1935 unsigned long flags;
1936 struct hbq_dmabuf *hbq_buffer;
1937 LIST_HEAD(hbq_buf_list);
1938 if (!phba->hbqs[hbqno].hbq_alloc_buffer)
1939 return 0;
1940
1941 if ((phba->hbqs[hbqno].buffer_count + count) >
1942 lpfc_hbq_defs[hbqno]->entry_count)
1943 count = lpfc_hbq_defs[hbqno]->entry_count -
1944 phba->hbqs[hbqno].buffer_count;
1945 if (!count)
1946 return 0;
1947 /* Allocate HBQ entries */
1948 for (i = 0; i < count; i++) {
1949 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba);
1950 if (!hbq_buffer)
1951 break;
1952 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list);
1953 }
1954 /* Check whether HBQ is still in use */
1955 spin_lock_irqsave(&phba->hbalock, flags);
1956 if (!phba->hbq_in_use)
1957 goto err;
1958 while (!list_empty(&hbq_buf_list)) {
1959 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
1960 dbuf.list);
1961 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count |
1962 (hbqno << 16));
1963 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) {
1964 phba->hbqs[hbqno].buffer_count++;
1965 posted++;
1966 } else
1967 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
1968 }
1969 spin_unlock_irqrestore(&phba->hbalock, flags);
1970 return posted;
1971 err:
1972 spin_unlock_irqrestore(&phba->hbalock, flags);
1973 while (!list_empty(&hbq_buf_list)) {
1974 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
1975 dbuf.list);
1976 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
1977 }
1978 return 0;
1979 }
1980
1981 /**
1982 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware
1983 * @phba: Pointer to HBA context object.
1984 * @qno: HBQ number.
1985 *
1986 * This function posts more buffers to the HBQ. This function
1987 * is called with no lock held. The function returns the number of HBQ entries
1988 * successfully allocated.
1989 **/
1990 int
lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba * phba,uint32_t qno)1991 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno)
1992 {
1993 if (phba->sli_rev == LPFC_SLI_REV4)
1994 return 0;
1995 else
1996 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
1997 lpfc_hbq_defs[qno]->add_count);
1998 }
1999
2000 /**
2001 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ
2002 * @phba: Pointer to HBA context object.
2003 * @qno: HBQ queue number.
2004 *
2005 * This function is called from SLI initialization code path with
2006 * no lock held to post initial HBQ buffers to firmware. The
2007 * function returns the number of HBQ entries successfully allocated.
2008 **/
2009 static int
lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba * phba,uint32_t qno)2010 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno)
2011 {
2012 if (phba->sli_rev == LPFC_SLI_REV4)
2013 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2014 lpfc_hbq_defs[qno]->entry_count);
2015 else
2016 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2017 lpfc_hbq_defs[qno]->init_count);
2018 }
2019
2020 /**
2021 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list
2022 * @phba: Pointer to HBA context object.
2023 * @hbqno: HBQ number.
2024 *
2025 * This function removes the first hbq buffer on an hbq list and returns a
2026 * pointer to that buffer. If it finds no buffers on the list it returns NULL.
2027 **/
2028 static struct hbq_dmabuf *
lpfc_sli_hbqbuf_get(struct list_head * rb_list)2029 lpfc_sli_hbqbuf_get(struct list_head *rb_list)
2030 {
2031 struct lpfc_dmabuf *d_buf;
2032
2033 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list);
2034 if (!d_buf)
2035 return NULL;
2036 return container_of(d_buf, struct hbq_dmabuf, dbuf);
2037 }
2038
2039 /**
2040 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list
2041 * @phba: Pointer to HBA context object.
2042 * @hbqno: HBQ number.
2043 *
2044 * This function removes the first RQ buffer on an RQ buffer list and returns a
2045 * pointer to that buffer. If it finds no buffers on the list it returns NULL.
2046 **/
2047 static struct rqb_dmabuf *
lpfc_sli_rqbuf_get(struct lpfc_hba * phba,struct lpfc_queue * hrq)2048 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq)
2049 {
2050 struct lpfc_dmabuf *h_buf;
2051 struct lpfc_rqb *rqbp;
2052
2053 rqbp = hrq->rqbp;
2054 list_remove_head(&rqbp->rqb_buffer_list, h_buf,
2055 struct lpfc_dmabuf, list);
2056 if (!h_buf)
2057 return NULL;
2058 rqbp->buffer_count--;
2059 return container_of(h_buf, struct rqb_dmabuf, hbuf);
2060 }
2061
2062 /**
2063 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag
2064 * @phba: Pointer to HBA context object.
2065 * @tag: Tag of the hbq buffer.
2066 *
2067 * This function searches for the hbq buffer associated with the given tag in
2068 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer
2069 * otherwise it returns NULL.
2070 **/
2071 static struct hbq_dmabuf *
lpfc_sli_hbqbuf_find(struct lpfc_hba * phba,uint32_t tag)2072 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag)
2073 {
2074 struct lpfc_dmabuf *d_buf;
2075 struct hbq_dmabuf *hbq_buf;
2076 uint32_t hbqno;
2077
2078 hbqno = tag >> 16;
2079 if (hbqno >= LPFC_MAX_HBQS)
2080 return NULL;
2081
2082 spin_lock_irq(&phba->hbalock);
2083 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) {
2084 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
2085 if (hbq_buf->tag == tag) {
2086 spin_unlock_irq(&phba->hbalock);
2087 return hbq_buf;
2088 }
2089 }
2090 spin_unlock_irq(&phba->hbalock);
2091 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_VPORT,
2092 "1803 Bad hbq tag. Data: x%x x%x\n",
2093 tag, phba->hbqs[tag >> 16].buffer_count);
2094 return NULL;
2095 }
2096
2097 /**
2098 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware
2099 * @phba: Pointer to HBA context object.
2100 * @hbq_buffer: Pointer to HBQ buffer.
2101 *
2102 * This function is called with hbalock. This function gives back
2103 * the hbq buffer to firmware. If the HBQ does not have space to
2104 * post the buffer, it will free the buffer.
2105 **/
2106 void
lpfc_sli_free_hbq(struct lpfc_hba * phba,struct hbq_dmabuf * hbq_buffer)2107 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer)
2108 {
2109 uint32_t hbqno;
2110
2111 if (hbq_buffer) {
2112 hbqno = hbq_buffer->tag >> 16;
2113 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer))
2114 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2115 }
2116 }
2117
2118 /**
2119 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox
2120 * @mbxCommand: mailbox command code.
2121 *
2122 * This function is called by the mailbox event handler function to verify
2123 * that the completed mailbox command is a legitimate mailbox command. If the
2124 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN
2125 * and the mailbox event handler will take the HBA offline.
2126 **/
2127 static int
lpfc_sli_chk_mbx_command(uint8_t mbxCommand)2128 lpfc_sli_chk_mbx_command(uint8_t mbxCommand)
2129 {
2130 uint8_t ret;
2131
2132 switch (mbxCommand) {
2133 case MBX_LOAD_SM:
2134 case MBX_READ_NV:
2135 case MBX_WRITE_NV:
2136 case MBX_WRITE_VPARMS:
2137 case MBX_RUN_BIU_DIAG:
2138 case MBX_INIT_LINK:
2139 case MBX_DOWN_LINK:
2140 case MBX_CONFIG_LINK:
2141 case MBX_CONFIG_RING:
2142 case MBX_RESET_RING:
2143 case MBX_READ_CONFIG:
2144 case MBX_READ_RCONFIG:
2145 case MBX_READ_SPARM:
2146 case MBX_READ_STATUS:
2147 case MBX_READ_RPI:
2148 case MBX_READ_XRI:
2149 case MBX_READ_REV:
2150 case MBX_READ_LNK_STAT:
2151 case MBX_REG_LOGIN:
2152 case MBX_UNREG_LOGIN:
2153 case MBX_CLEAR_LA:
2154 case MBX_DUMP_MEMORY:
2155 case MBX_DUMP_CONTEXT:
2156 case MBX_RUN_DIAGS:
2157 case MBX_RESTART:
2158 case MBX_UPDATE_CFG:
2159 case MBX_DOWN_LOAD:
2160 case MBX_DEL_LD_ENTRY:
2161 case MBX_RUN_PROGRAM:
2162 case MBX_SET_MASK:
2163 case MBX_SET_VARIABLE:
2164 case MBX_UNREG_D_ID:
2165 case MBX_KILL_BOARD:
2166 case MBX_CONFIG_FARP:
2167 case MBX_BEACON:
2168 case MBX_LOAD_AREA:
2169 case MBX_RUN_BIU_DIAG64:
2170 case MBX_CONFIG_PORT:
2171 case MBX_READ_SPARM64:
2172 case MBX_READ_RPI64:
2173 case MBX_REG_LOGIN64:
2174 case MBX_READ_TOPOLOGY:
2175 case MBX_WRITE_WWN:
2176 case MBX_SET_DEBUG:
2177 case MBX_LOAD_EXP_ROM:
2178 case MBX_ASYNCEVT_ENABLE:
2179 case MBX_REG_VPI:
2180 case MBX_UNREG_VPI:
2181 case MBX_HEARTBEAT:
2182 case MBX_PORT_CAPABILITIES:
2183 case MBX_PORT_IOV_CONTROL:
2184 case MBX_SLI4_CONFIG:
2185 case MBX_SLI4_REQ_FTRS:
2186 case MBX_REG_FCFI:
2187 case MBX_UNREG_FCFI:
2188 case MBX_REG_VFI:
2189 case MBX_UNREG_VFI:
2190 case MBX_INIT_VPI:
2191 case MBX_INIT_VFI:
2192 case MBX_RESUME_RPI:
2193 case MBX_READ_EVENT_LOG_STATUS:
2194 case MBX_READ_EVENT_LOG:
2195 case MBX_SECURITY_MGMT:
2196 case MBX_AUTH_PORT:
2197 case MBX_ACCESS_VDATA:
2198 ret = mbxCommand;
2199 break;
2200 default:
2201 ret = MBX_SHUTDOWN;
2202 break;
2203 }
2204 return ret;
2205 }
2206
2207 /**
2208 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler
2209 * @phba: Pointer to HBA context object.
2210 * @pmboxq: Pointer to mailbox command.
2211 *
2212 * This is completion handler function for mailbox commands issued from
2213 * lpfc_sli_issue_mbox_wait function. This function is called by the
2214 * mailbox event handler function with no lock held. This function
2215 * will wake up thread waiting on the wait queue pointed by context1
2216 * of the mailbox.
2217 **/
2218 void
lpfc_sli_wake_mbox_wait(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmboxq)2219 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq)
2220 {
2221 wait_queue_head_t *pdone_q;
2222 unsigned long drvr_flag;
2223
2224 /*
2225 * If pdone_q is empty, the driver thread gave up waiting and
2226 * continued running.
2227 */
2228 pmboxq->mbox_flag |= LPFC_MBX_WAKE;
2229 spin_lock_irqsave(&phba->hbalock, drvr_flag);
2230 pdone_q = (wait_queue_head_t *) pmboxq->context1;
2231 if (pdone_q)
2232 wake_up_interruptible(pdone_q);
2233 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
2234 return;
2235 }
2236
2237
2238 /**
2239 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler
2240 * @phba: Pointer to HBA context object.
2241 * @pmb: Pointer to mailbox object.
2242 *
2243 * This function is the default mailbox completion handler. It
2244 * frees the memory resources associated with the completed mailbox
2245 * command. If the completed command is a REG_LOGIN mailbox command,
2246 * this function will issue a UREG_LOGIN to re-claim the RPI.
2247 **/
2248 void
lpfc_sli_def_mbox_cmpl(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmb)2249 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2250 {
2251 struct lpfc_vport *vport = pmb->vport;
2252 struct lpfc_dmabuf *mp;
2253 struct lpfc_nodelist *ndlp;
2254 struct Scsi_Host *shost;
2255 uint16_t rpi, vpi;
2256 int rc;
2257
2258 mp = (struct lpfc_dmabuf *) (pmb->context1);
2259
2260 if (mp) {
2261 lpfc_mbuf_free(phba, mp->virt, mp->phys);
2262 kfree(mp);
2263 }
2264
2265 /*
2266 * If a REG_LOGIN succeeded after node is destroyed or node
2267 * is in re-discovery driver need to cleanup the RPI.
2268 */
2269 if (!(phba->pport->load_flag & FC_UNLOADING) &&
2270 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 &&
2271 !pmb->u.mb.mbxStatus) {
2272 rpi = pmb->u.mb.un.varWords[0];
2273 vpi = pmb->u.mb.un.varRegLogin.vpi;
2274 lpfc_unreg_login(phba, vpi, rpi, pmb);
2275 pmb->vport = vport;
2276 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
2277 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
2278 if (rc != MBX_NOT_FINISHED)
2279 return;
2280 }
2281
2282 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) &&
2283 !(phba->pport->load_flag & FC_UNLOADING) &&
2284 !pmb->u.mb.mbxStatus) {
2285 shost = lpfc_shost_from_vport(vport);
2286 spin_lock_irq(shost->host_lock);
2287 vport->vpi_state |= LPFC_VPI_REGISTERED;
2288 vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI;
2289 spin_unlock_irq(shost->host_lock);
2290 }
2291
2292 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
2293 ndlp = (struct lpfc_nodelist *)pmb->context2;
2294 lpfc_nlp_put(ndlp);
2295 pmb->context2 = NULL;
2296 }
2297
2298 /* Check security permission status on INIT_LINK mailbox command */
2299 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) &&
2300 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION))
2301 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
2302 "2860 SLI authentication is required "
2303 "for INIT_LINK but has not done yet\n");
2304
2305 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG)
2306 lpfc_sli4_mbox_cmd_free(phba, pmb);
2307 else
2308 mempool_free(pmb, phba->mbox_mem_pool);
2309 }
2310 /**
2311 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler
2312 * @phba: Pointer to HBA context object.
2313 * @pmb: Pointer to mailbox object.
2314 *
2315 * This function is the unreg rpi mailbox completion handler. It
2316 * frees the memory resources associated with the completed mailbox
2317 * command. An additional refrenece is put on the ndlp to prevent
2318 * lpfc_nlp_release from freeing the rpi bit in the bitmask before
2319 * the unreg mailbox command completes, this routine puts the
2320 * reference back.
2321 *
2322 **/
2323 void
lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmb)2324 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2325 {
2326 struct lpfc_vport *vport = pmb->vport;
2327 struct lpfc_nodelist *ndlp;
2328
2329 ndlp = pmb->context1;
2330 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) {
2331 if (phba->sli_rev == LPFC_SLI_REV4 &&
2332 (bf_get(lpfc_sli_intf_if_type,
2333 &phba->sli4_hba.sli_intf) ==
2334 LPFC_SLI_INTF_IF_TYPE_2)) {
2335 if (ndlp) {
2336 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI,
2337 "0010 UNREG_LOGIN vpi:%x "
2338 "rpi:%x DID:%x map:%x %p\n",
2339 vport->vpi, ndlp->nlp_rpi,
2340 ndlp->nlp_DID,
2341 ndlp->nlp_usg_map, ndlp);
2342 ndlp->nlp_flag &= ~NLP_LOGO_ACC;
2343 lpfc_nlp_put(ndlp);
2344 }
2345 }
2346 }
2347
2348 mempool_free(pmb, phba->mbox_mem_pool);
2349 }
2350
2351 /**
2352 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware
2353 * @phba: Pointer to HBA context object.
2354 *
2355 * This function is called with no lock held. This function processes all
2356 * the completed mailbox commands and gives it to upper layers. The interrupt
2357 * service routine processes mailbox completion interrupt and adds completed
2358 * mailbox commands to the mboxq_cmpl queue and signals the worker thread.
2359 * Worker thread call lpfc_sli_handle_mb_event, which will return the
2360 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This
2361 * function returns the mailbox commands to the upper layer by calling the
2362 * completion handler function of each mailbox.
2363 **/
2364 int
lpfc_sli_handle_mb_event(struct lpfc_hba * phba)2365 lpfc_sli_handle_mb_event(struct lpfc_hba *phba)
2366 {
2367 MAILBOX_t *pmbox;
2368 LPFC_MBOXQ_t *pmb;
2369 int rc;
2370 LIST_HEAD(cmplq);
2371
2372 phba->sli.slistat.mbox_event++;
2373
2374 /* Get all completed mailboxe buffers into the cmplq */
2375 spin_lock_irq(&phba->hbalock);
2376 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq);
2377 spin_unlock_irq(&phba->hbalock);
2378
2379 /* Get a Mailbox buffer to setup mailbox commands for callback */
2380 do {
2381 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list);
2382 if (pmb == NULL)
2383 break;
2384
2385 pmbox = &pmb->u.mb;
2386
2387 if (pmbox->mbxCommand != MBX_HEARTBEAT) {
2388 if (pmb->vport) {
2389 lpfc_debugfs_disc_trc(pmb->vport,
2390 LPFC_DISC_TRC_MBOX_VPORT,
2391 "MBOX cmpl vport: cmd:x%x mb:x%x x%x",
2392 (uint32_t)pmbox->mbxCommand,
2393 pmbox->un.varWords[0],
2394 pmbox->un.varWords[1]);
2395 }
2396 else {
2397 lpfc_debugfs_disc_trc(phba->pport,
2398 LPFC_DISC_TRC_MBOX,
2399 "MBOX cmpl: cmd:x%x mb:x%x x%x",
2400 (uint32_t)pmbox->mbxCommand,
2401 pmbox->un.varWords[0],
2402 pmbox->un.varWords[1]);
2403 }
2404 }
2405
2406 /*
2407 * It is a fatal error if unknown mbox command completion.
2408 */
2409 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) ==
2410 MBX_SHUTDOWN) {
2411 /* Unknown mailbox command compl */
2412 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
2413 "(%d):0323 Unknown Mailbox command "
2414 "x%x (x%x/x%x) Cmpl\n",
2415 pmb->vport ? pmb->vport->vpi : 0,
2416 pmbox->mbxCommand,
2417 lpfc_sli_config_mbox_subsys_get(phba,
2418 pmb),
2419 lpfc_sli_config_mbox_opcode_get(phba,
2420 pmb));
2421 phba->link_state = LPFC_HBA_ERROR;
2422 phba->work_hs = HS_FFER3;
2423 lpfc_handle_eratt(phba);
2424 continue;
2425 }
2426
2427 if (pmbox->mbxStatus) {
2428 phba->sli.slistat.mbox_stat_err++;
2429 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) {
2430 /* Mbox cmd cmpl error - RETRYing */
2431 lpfc_printf_log(phba, KERN_INFO,
2432 LOG_MBOX | LOG_SLI,
2433 "(%d):0305 Mbox cmd cmpl "
2434 "error - RETRYing Data: x%x "
2435 "(x%x/x%x) x%x x%x x%x\n",
2436 pmb->vport ? pmb->vport->vpi : 0,
2437 pmbox->mbxCommand,
2438 lpfc_sli_config_mbox_subsys_get(phba,
2439 pmb),
2440 lpfc_sli_config_mbox_opcode_get(phba,
2441 pmb),
2442 pmbox->mbxStatus,
2443 pmbox->un.varWords[0],
2444 pmb->vport->port_state);
2445 pmbox->mbxStatus = 0;
2446 pmbox->mbxOwner = OWN_HOST;
2447 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
2448 if (rc != MBX_NOT_FINISHED)
2449 continue;
2450 }
2451 }
2452
2453 /* Mailbox cmd <cmd> Cmpl <cmpl> */
2454 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
2455 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl x%p "
2456 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
2457 "x%x x%x x%x\n",
2458 pmb->vport ? pmb->vport->vpi : 0,
2459 pmbox->mbxCommand,
2460 lpfc_sli_config_mbox_subsys_get(phba, pmb),
2461 lpfc_sli_config_mbox_opcode_get(phba, pmb),
2462 pmb->mbox_cmpl,
2463 *((uint32_t *) pmbox),
2464 pmbox->un.varWords[0],
2465 pmbox->un.varWords[1],
2466 pmbox->un.varWords[2],
2467 pmbox->un.varWords[3],
2468 pmbox->un.varWords[4],
2469 pmbox->un.varWords[5],
2470 pmbox->un.varWords[6],
2471 pmbox->un.varWords[7],
2472 pmbox->un.varWords[8],
2473 pmbox->un.varWords[9],
2474 pmbox->un.varWords[10]);
2475
2476 if (pmb->mbox_cmpl)
2477 pmb->mbox_cmpl(phba,pmb);
2478 } while (1);
2479 return 0;
2480 }
2481
2482 /**
2483 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag
2484 * @phba: Pointer to HBA context object.
2485 * @pring: Pointer to driver SLI ring object.
2486 * @tag: buffer tag.
2487 *
2488 * This function is called with no lock held. When QUE_BUFTAG_BIT bit
2489 * is set in the tag the buffer is posted for a particular exchange,
2490 * the function will return the buffer without replacing the buffer.
2491 * If the buffer is for unsolicited ELS or CT traffic, this function
2492 * returns the buffer and also posts another buffer to the firmware.
2493 **/
2494 static struct lpfc_dmabuf *
lpfc_sli_get_buff(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,uint32_t tag)2495 lpfc_sli_get_buff(struct lpfc_hba *phba,
2496 struct lpfc_sli_ring *pring,
2497 uint32_t tag)
2498 {
2499 struct hbq_dmabuf *hbq_entry;
2500
2501 if (tag & QUE_BUFTAG_BIT)
2502 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag);
2503 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag);
2504 if (!hbq_entry)
2505 return NULL;
2506 return &hbq_entry->dbuf;
2507 }
2508
2509 /**
2510 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence
2511 * @phba: Pointer to HBA context object.
2512 * @pring: Pointer to driver SLI ring object.
2513 * @saveq: Pointer to the iocbq struct representing the sequence starting frame.
2514 * @fch_r_ctl: the r_ctl for the first frame of the sequence.
2515 * @fch_type: the type for the first frame of the sequence.
2516 *
2517 * This function is called with no lock held. This function uses the r_ctl and
2518 * type of the received sequence to find the correct callback function to call
2519 * to process the sequence.
2520 **/
2521 static int
lpfc_complete_unsol_iocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * saveq,uint32_t fch_r_ctl,uint32_t fch_type)2522 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
2523 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl,
2524 uint32_t fch_type)
2525 {
2526 int i;
2527
2528 switch (fch_type) {
2529 case FC_TYPE_NVME:
2530 lpfc_nvmet_unsol_ls_event(phba, pring, saveq);
2531 return 1;
2532 default:
2533 break;
2534 }
2535
2536 /* unSolicited Responses */
2537 if (pring->prt[0].profile) {
2538 if (pring->prt[0].lpfc_sli_rcv_unsol_event)
2539 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring,
2540 saveq);
2541 return 1;
2542 }
2543 /* We must search, based on rctl / type
2544 for the right routine */
2545 for (i = 0; i < pring->num_mask; i++) {
2546 if ((pring->prt[i].rctl == fch_r_ctl) &&
2547 (pring->prt[i].type == fch_type)) {
2548 if (pring->prt[i].lpfc_sli_rcv_unsol_event)
2549 (pring->prt[i].lpfc_sli_rcv_unsol_event)
2550 (phba, pring, saveq);
2551 return 1;
2552 }
2553 }
2554 return 0;
2555 }
2556
2557 /**
2558 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler
2559 * @phba: Pointer to HBA context object.
2560 * @pring: Pointer to driver SLI ring object.
2561 * @saveq: Pointer to the unsolicited iocb.
2562 *
2563 * This function is called with no lock held by the ring event handler
2564 * when there is an unsolicited iocb posted to the response ring by the
2565 * firmware. This function gets the buffer associated with the iocbs
2566 * and calls the event handler for the ring. This function handles both
2567 * qring buffers and hbq buffers.
2568 * When the function returns 1 the caller can free the iocb object otherwise
2569 * upper layer functions will free the iocb objects.
2570 **/
2571 static int
lpfc_sli_process_unsol_iocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * saveq)2572 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
2573 struct lpfc_iocbq *saveq)
2574 {
2575 IOCB_t * irsp;
2576 WORD5 * w5p;
2577 uint32_t Rctl, Type;
2578 struct lpfc_iocbq *iocbq;
2579 struct lpfc_dmabuf *dmzbuf;
2580
2581 irsp = &(saveq->iocb);
2582
2583 if (irsp->ulpCommand == CMD_ASYNC_STATUS) {
2584 if (pring->lpfc_sli_rcv_async_status)
2585 pring->lpfc_sli_rcv_async_status(phba, pring, saveq);
2586 else
2587 lpfc_printf_log(phba,
2588 KERN_WARNING,
2589 LOG_SLI,
2590 "0316 Ring %d handler: unexpected "
2591 "ASYNC_STATUS iocb received evt_code "
2592 "0x%x\n",
2593 pring->ringno,
2594 irsp->un.asyncstat.evt_code);
2595 return 1;
2596 }
2597
2598 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) &&
2599 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) {
2600 if (irsp->ulpBdeCount > 0) {
2601 dmzbuf = lpfc_sli_get_buff(phba, pring,
2602 irsp->un.ulpWord[3]);
2603 lpfc_in_buf_free(phba, dmzbuf);
2604 }
2605
2606 if (irsp->ulpBdeCount > 1) {
2607 dmzbuf = lpfc_sli_get_buff(phba, pring,
2608 irsp->unsli3.sli3Words[3]);
2609 lpfc_in_buf_free(phba, dmzbuf);
2610 }
2611
2612 if (irsp->ulpBdeCount > 2) {
2613 dmzbuf = lpfc_sli_get_buff(phba, pring,
2614 irsp->unsli3.sli3Words[7]);
2615 lpfc_in_buf_free(phba, dmzbuf);
2616 }
2617
2618 return 1;
2619 }
2620
2621 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
2622 if (irsp->ulpBdeCount != 0) {
2623 saveq->context2 = lpfc_sli_get_buff(phba, pring,
2624 irsp->un.ulpWord[3]);
2625 if (!saveq->context2)
2626 lpfc_printf_log(phba,
2627 KERN_ERR,
2628 LOG_SLI,
2629 "0341 Ring %d Cannot find buffer for "
2630 "an unsolicited iocb. tag 0x%x\n",
2631 pring->ringno,
2632 irsp->un.ulpWord[3]);
2633 }
2634 if (irsp->ulpBdeCount == 2) {
2635 saveq->context3 = lpfc_sli_get_buff(phba, pring,
2636 irsp->unsli3.sli3Words[7]);
2637 if (!saveq->context3)
2638 lpfc_printf_log(phba,
2639 KERN_ERR,
2640 LOG_SLI,
2641 "0342 Ring %d Cannot find buffer for an"
2642 " unsolicited iocb. tag 0x%x\n",
2643 pring->ringno,
2644 irsp->unsli3.sli3Words[7]);
2645 }
2646 list_for_each_entry(iocbq, &saveq->list, list) {
2647 irsp = &(iocbq->iocb);
2648 if (irsp->ulpBdeCount != 0) {
2649 iocbq->context2 = lpfc_sli_get_buff(phba, pring,
2650 irsp->un.ulpWord[3]);
2651 if (!iocbq->context2)
2652 lpfc_printf_log(phba,
2653 KERN_ERR,
2654 LOG_SLI,
2655 "0343 Ring %d Cannot find "
2656 "buffer for an unsolicited iocb"
2657 ". tag 0x%x\n", pring->ringno,
2658 irsp->un.ulpWord[3]);
2659 }
2660 if (irsp->ulpBdeCount == 2) {
2661 iocbq->context3 = lpfc_sli_get_buff(phba, pring,
2662 irsp->unsli3.sli3Words[7]);
2663 if (!iocbq->context3)
2664 lpfc_printf_log(phba,
2665 KERN_ERR,
2666 LOG_SLI,
2667 "0344 Ring %d Cannot find "
2668 "buffer for an unsolicited "
2669 "iocb. tag 0x%x\n",
2670 pring->ringno,
2671 irsp->unsli3.sli3Words[7]);
2672 }
2673 }
2674 }
2675 if (irsp->ulpBdeCount != 0 &&
2676 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX ||
2677 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) {
2678 int found = 0;
2679
2680 /* search continue save q for same XRI */
2681 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) {
2682 if (iocbq->iocb.unsli3.rcvsli3.ox_id ==
2683 saveq->iocb.unsli3.rcvsli3.ox_id) {
2684 list_add_tail(&saveq->list, &iocbq->list);
2685 found = 1;
2686 break;
2687 }
2688 }
2689 if (!found)
2690 list_add_tail(&saveq->clist,
2691 &pring->iocb_continue_saveq);
2692 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) {
2693 list_del_init(&iocbq->clist);
2694 saveq = iocbq;
2695 irsp = &(saveq->iocb);
2696 } else
2697 return 0;
2698 }
2699 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) ||
2700 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) ||
2701 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) {
2702 Rctl = FC_RCTL_ELS_REQ;
2703 Type = FC_TYPE_ELS;
2704 } else {
2705 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]);
2706 Rctl = w5p->hcsw.Rctl;
2707 Type = w5p->hcsw.Type;
2708
2709 /* Firmware Workaround */
2710 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) &&
2711 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX ||
2712 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) {
2713 Rctl = FC_RCTL_ELS_REQ;
2714 Type = FC_TYPE_ELS;
2715 w5p->hcsw.Rctl = Rctl;
2716 w5p->hcsw.Type = Type;
2717 }
2718 }
2719
2720 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type))
2721 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
2722 "0313 Ring %d handler: unexpected Rctl x%x "
2723 "Type x%x received\n",
2724 pring->ringno, Rctl, Type);
2725
2726 return 1;
2727 }
2728
2729 /**
2730 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb
2731 * @phba: Pointer to HBA context object.
2732 * @pring: Pointer to driver SLI ring object.
2733 * @prspiocb: Pointer to response iocb object.
2734 *
2735 * This function looks up the iocb_lookup table to get the command iocb
2736 * corresponding to the given response iocb using the iotag of the
2737 * response iocb. This function is called with the hbalock held.
2738 * This function returns the command iocb object if it finds the command
2739 * iocb else returns NULL.
2740 **/
2741 static struct lpfc_iocbq *
lpfc_sli_iocbq_lookup(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * prspiocb)2742 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba,
2743 struct lpfc_sli_ring *pring,
2744 struct lpfc_iocbq *prspiocb)
2745 {
2746 struct lpfc_iocbq *cmd_iocb = NULL;
2747 uint16_t iotag;
2748 lockdep_assert_held(&phba->hbalock);
2749
2750 iotag = prspiocb->iocb.ulpIoTag;
2751
2752 if (iotag != 0 && iotag <= phba->sli.last_iotag) {
2753 cmd_iocb = phba->sli.iocbq_lookup[iotag];
2754 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) {
2755 /* remove from txcmpl queue list */
2756 list_del_init(&cmd_iocb->list);
2757 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
2758 return cmd_iocb;
2759 }
2760 }
2761
2762 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
2763 "0317 iotag x%x is out of "
2764 "range: max iotag x%x wd0 x%x\n",
2765 iotag, phba->sli.last_iotag,
2766 *(((uint32_t *) &prspiocb->iocb) + 7));
2767 return NULL;
2768 }
2769
2770 /**
2771 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag
2772 * @phba: Pointer to HBA context object.
2773 * @pring: Pointer to driver SLI ring object.
2774 * @iotag: IOCB tag.
2775 *
2776 * This function looks up the iocb_lookup table to get the command iocb
2777 * corresponding to the given iotag. This function is called with the
2778 * hbalock held.
2779 * This function returns the command iocb object if it finds the command
2780 * iocb else returns NULL.
2781 **/
2782 static struct lpfc_iocbq *
lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,uint16_t iotag)2783 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba,
2784 struct lpfc_sli_ring *pring, uint16_t iotag)
2785 {
2786 struct lpfc_iocbq *cmd_iocb = NULL;
2787
2788 lockdep_assert_held(&phba->hbalock);
2789 if (iotag != 0 && iotag <= phba->sli.last_iotag) {
2790 cmd_iocb = phba->sli.iocbq_lookup[iotag];
2791 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) {
2792 /* remove from txcmpl queue list */
2793 list_del_init(&cmd_iocb->list);
2794 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
2795 return cmd_iocb;
2796 }
2797 }
2798
2799 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
2800 "0372 iotag x%x lookup error: max iotag (x%x) "
2801 "iocb_flag x%x\n",
2802 iotag, phba->sli.last_iotag,
2803 cmd_iocb ? cmd_iocb->iocb_flag : 0xffff);
2804 return NULL;
2805 }
2806
2807 /**
2808 * lpfc_sli_process_sol_iocb - process solicited iocb completion
2809 * @phba: Pointer to HBA context object.
2810 * @pring: Pointer to driver SLI ring object.
2811 * @saveq: Pointer to the response iocb to be processed.
2812 *
2813 * This function is called by the ring event handler for non-fcp
2814 * rings when there is a new response iocb in the response ring.
2815 * The caller is not required to hold any locks. This function
2816 * gets the command iocb associated with the response iocb and
2817 * calls the completion handler for the command iocb. If there
2818 * is no completion handler, the function will free the resources
2819 * associated with command iocb. If the response iocb is for
2820 * an already aborted command iocb, the status of the completion
2821 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED.
2822 * This function always returns 1.
2823 **/
2824 static int
lpfc_sli_process_sol_iocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * saveq)2825 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
2826 struct lpfc_iocbq *saveq)
2827 {
2828 struct lpfc_iocbq *cmdiocbp;
2829 int rc = 1;
2830 unsigned long iflag;
2831
2832 /* Based on the iotag field, get the cmd IOCB from the txcmplq */
2833 spin_lock_irqsave(&phba->hbalock, iflag);
2834 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq);
2835 spin_unlock_irqrestore(&phba->hbalock, iflag);
2836
2837 if (cmdiocbp) {
2838 if (cmdiocbp->iocb_cmpl) {
2839 /*
2840 * If an ELS command failed send an event to mgmt
2841 * application.
2842 */
2843 if (saveq->iocb.ulpStatus &&
2844 (pring->ringno == LPFC_ELS_RING) &&
2845 (cmdiocbp->iocb.ulpCommand ==
2846 CMD_ELS_REQUEST64_CR))
2847 lpfc_send_els_failure_event(phba,
2848 cmdiocbp, saveq);
2849
2850 /*
2851 * Post all ELS completions to the worker thread.
2852 * All other are passed to the completion callback.
2853 */
2854 if (pring->ringno == LPFC_ELS_RING) {
2855 if ((phba->sli_rev < LPFC_SLI_REV4) &&
2856 (cmdiocbp->iocb_flag &
2857 LPFC_DRIVER_ABORTED)) {
2858 spin_lock_irqsave(&phba->hbalock,
2859 iflag);
2860 cmdiocbp->iocb_flag &=
2861 ~LPFC_DRIVER_ABORTED;
2862 spin_unlock_irqrestore(&phba->hbalock,
2863 iflag);
2864 saveq->iocb.ulpStatus =
2865 IOSTAT_LOCAL_REJECT;
2866 saveq->iocb.un.ulpWord[4] =
2867 IOERR_SLI_ABORTED;
2868
2869 /* Firmware could still be in progress
2870 * of DMAing payload, so don't free data
2871 * buffer till after a hbeat.
2872 */
2873 spin_lock_irqsave(&phba->hbalock,
2874 iflag);
2875 saveq->iocb_flag |= LPFC_DELAY_MEM_FREE;
2876 spin_unlock_irqrestore(&phba->hbalock,
2877 iflag);
2878 }
2879 if (phba->sli_rev == LPFC_SLI_REV4) {
2880 if (saveq->iocb_flag &
2881 LPFC_EXCHANGE_BUSY) {
2882 /* Set cmdiocb flag for the
2883 * exchange busy so sgl (xri)
2884 * will not be released until
2885 * the abort xri is received
2886 * from hba.
2887 */
2888 spin_lock_irqsave(
2889 &phba->hbalock, iflag);
2890 cmdiocbp->iocb_flag |=
2891 LPFC_EXCHANGE_BUSY;
2892 spin_unlock_irqrestore(
2893 &phba->hbalock, iflag);
2894 }
2895 if (cmdiocbp->iocb_flag &
2896 LPFC_DRIVER_ABORTED) {
2897 /*
2898 * Clear LPFC_DRIVER_ABORTED
2899 * bit in case it was driver
2900 * initiated abort.
2901 */
2902 spin_lock_irqsave(
2903 &phba->hbalock, iflag);
2904 cmdiocbp->iocb_flag &=
2905 ~LPFC_DRIVER_ABORTED;
2906 spin_unlock_irqrestore(
2907 &phba->hbalock, iflag);
2908 cmdiocbp->iocb.ulpStatus =
2909 IOSTAT_LOCAL_REJECT;
2910 cmdiocbp->iocb.un.ulpWord[4] =
2911 IOERR_ABORT_REQUESTED;
2912 /*
2913 * For SLI4, irsiocb contains
2914 * NO_XRI in sli_xritag, it
2915 * shall not affect releasing
2916 * sgl (xri) process.
2917 */
2918 saveq->iocb.ulpStatus =
2919 IOSTAT_LOCAL_REJECT;
2920 saveq->iocb.un.ulpWord[4] =
2921 IOERR_SLI_ABORTED;
2922 spin_lock_irqsave(
2923 &phba->hbalock, iflag);
2924 saveq->iocb_flag |=
2925 LPFC_DELAY_MEM_FREE;
2926 spin_unlock_irqrestore(
2927 &phba->hbalock, iflag);
2928 }
2929 }
2930 }
2931 (cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq);
2932 } else
2933 lpfc_sli_release_iocbq(phba, cmdiocbp);
2934 } else {
2935 /*
2936 * Unknown initiating command based on the response iotag.
2937 * This could be the case on the ELS ring because of
2938 * lpfc_els_abort().
2939 */
2940 if (pring->ringno != LPFC_ELS_RING) {
2941 /*
2942 * Ring <ringno> handler: unexpected completion IoTag
2943 * <IoTag>
2944 */
2945 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
2946 "0322 Ring %d handler: "
2947 "unexpected completion IoTag x%x "
2948 "Data: x%x x%x x%x x%x\n",
2949 pring->ringno,
2950 saveq->iocb.ulpIoTag,
2951 saveq->iocb.ulpStatus,
2952 saveq->iocb.un.ulpWord[4],
2953 saveq->iocb.ulpCommand,
2954 saveq->iocb.ulpContext);
2955 }
2956 }
2957
2958 return rc;
2959 }
2960
2961 /**
2962 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler
2963 * @phba: Pointer to HBA context object.
2964 * @pring: Pointer to driver SLI ring object.
2965 *
2966 * This function is called from the iocb ring event handlers when
2967 * put pointer is ahead of the get pointer for a ring. This function signal
2968 * an error attention condition to the worker thread and the worker
2969 * thread will transition the HBA to offline state.
2970 **/
2971 static void
lpfc_sli_rsp_pointers_error(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)2972 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
2973 {
2974 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
2975 /*
2976 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
2977 * rsp ring <portRspMax>
2978 */
2979 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
2980 "0312 Ring %d handler: portRspPut %d "
2981 "is bigger than rsp ring %d\n",
2982 pring->ringno, le32_to_cpu(pgp->rspPutInx),
2983 pring->sli.sli3.numRiocb);
2984
2985 phba->link_state = LPFC_HBA_ERROR;
2986
2987 /*
2988 * All error attention handlers are posted to
2989 * worker thread
2990 */
2991 phba->work_ha |= HA_ERATT;
2992 phba->work_hs = HS_FFER3;
2993
2994 lpfc_worker_wake_up(phba);
2995
2996 return;
2997 }
2998
2999 /**
3000 * lpfc_poll_eratt - Error attention polling timer timeout handler
3001 * @ptr: Pointer to address of HBA context object.
3002 *
3003 * This function is invoked by the Error Attention polling timer when the
3004 * timer times out. It will check the SLI Error Attention register for
3005 * possible attention events. If so, it will post an Error Attention event
3006 * and wake up worker thread to process it. Otherwise, it will set up the
3007 * Error Attention polling timer for the next poll.
3008 **/
lpfc_poll_eratt(unsigned long ptr)3009 void lpfc_poll_eratt(unsigned long ptr)
3010 {
3011 struct lpfc_hba *phba;
3012 uint32_t eratt = 0;
3013 uint64_t sli_intr, cnt;
3014
3015 phba = (struct lpfc_hba *)ptr;
3016
3017 /* Here we will also keep track of interrupts per sec of the hba */
3018 sli_intr = phba->sli.slistat.sli_intr;
3019
3020 if (phba->sli.slistat.sli_prev_intr > sli_intr)
3021 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) +
3022 sli_intr);
3023 else
3024 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr);
3025
3026 /* 64-bit integer division not supported on 32-bit x86 - use do_div */
3027 do_div(cnt, phba->eratt_poll_interval);
3028 phba->sli.slistat.sli_ips = cnt;
3029
3030 phba->sli.slistat.sli_prev_intr = sli_intr;
3031
3032 /* Check chip HA register for error event */
3033 eratt = lpfc_sli_check_eratt(phba);
3034
3035 if (eratt)
3036 /* Tell the worker thread there is work to do */
3037 lpfc_worker_wake_up(phba);
3038 else
3039 /* Restart the timer for next eratt poll */
3040 mod_timer(&phba->eratt_poll,
3041 jiffies +
3042 msecs_to_jiffies(1000 * phba->eratt_poll_interval));
3043 return;
3044 }
3045
3046
3047 /**
3048 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring
3049 * @phba: Pointer to HBA context object.
3050 * @pring: Pointer to driver SLI ring object.
3051 * @mask: Host attention register mask for this ring.
3052 *
3053 * This function is called from the interrupt context when there is a ring
3054 * event for the fcp ring. The caller does not hold any lock.
3055 * The function processes each response iocb in the response ring until it
3056 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with
3057 * LE bit set. The function will call the completion handler of the command iocb
3058 * if the response iocb indicates a completion for a command iocb or it is
3059 * an abort completion. The function will call lpfc_sli_process_unsol_iocb
3060 * function if this is an unsolicited iocb.
3061 * This routine presumes LPFC_FCP_RING handling and doesn't bother
3062 * to check it explicitly.
3063 */
3064 int
lpfc_sli_handle_fast_ring_event(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,uint32_t mask)3065 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba,
3066 struct lpfc_sli_ring *pring, uint32_t mask)
3067 {
3068 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
3069 IOCB_t *irsp = NULL;
3070 IOCB_t *entry = NULL;
3071 struct lpfc_iocbq *cmdiocbq = NULL;
3072 struct lpfc_iocbq rspiocbq;
3073 uint32_t status;
3074 uint32_t portRspPut, portRspMax;
3075 int rc = 1;
3076 lpfc_iocb_type type;
3077 unsigned long iflag;
3078 uint32_t rsp_cmpl = 0;
3079
3080 spin_lock_irqsave(&phba->hbalock, iflag);
3081 pring->stats.iocb_event++;
3082
3083 /*
3084 * The next available response entry should never exceed the maximum
3085 * entries. If it does, treat it as an adapter hardware error.
3086 */
3087 portRspMax = pring->sli.sli3.numRiocb;
3088 portRspPut = le32_to_cpu(pgp->rspPutInx);
3089 if (unlikely(portRspPut >= portRspMax)) {
3090 lpfc_sli_rsp_pointers_error(phba, pring);
3091 spin_unlock_irqrestore(&phba->hbalock, iflag);
3092 return 1;
3093 }
3094 if (phba->fcp_ring_in_use) {
3095 spin_unlock_irqrestore(&phba->hbalock, iflag);
3096 return 1;
3097 } else
3098 phba->fcp_ring_in_use = 1;
3099
3100 rmb();
3101 while (pring->sli.sli3.rspidx != portRspPut) {
3102 /*
3103 * Fetch an entry off the ring and copy it into a local data
3104 * structure. The copy involves a byte-swap since the
3105 * network byte order and pci byte orders are different.
3106 */
3107 entry = lpfc_resp_iocb(phba, pring);
3108 phba->last_completion_time = jiffies;
3109
3110 if (++pring->sli.sli3.rspidx >= portRspMax)
3111 pring->sli.sli3.rspidx = 0;
3112
3113 lpfc_sli_pcimem_bcopy((uint32_t *) entry,
3114 (uint32_t *) &rspiocbq.iocb,
3115 phba->iocb_rsp_size);
3116 INIT_LIST_HEAD(&(rspiocbq.list));
3117 irsp = &rspiocbq.iocb;
3118
3119 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK);
3120 pring->stats.iocb_rsp++;
3121 rsp_cmpl++;
3122
3123 if (unlikely(irsp->ulpStatus)) {
3124 /*
3125 * If resource errors reported from HBA, reduce
3126 * queuedepths of the SCSI device.
3127 */
3128 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) &&
3129 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) ==
3130 IOERR_NO_RESOURCES)) {
3131 spin_unlock_irqrestore(&phba->hbalock, iflag);
3132 phba->lpfc_rampdown_queue_depth(phba);
3133 spin_lock_irqsave(&phba->hbalock, iflag);
3134 }
3135
3136 /* Rsp ring <ringno> error: IOCB */
3137 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3138 "0336 Rsp Ring %d error: IOCB Data: "
3139 "x%x x%x x%x x%x x%x x%x x%x x%x\n",
3140 pring->ringno,
3141 irsp->un.ulpWord[0],
3142 irsp->un.ulpWord[1],
3143 irsp->un.ulpWord[2],
3144 irsp->un.ulpWord[3],
3145 irsp->un.ulpWord[4],
3146 irsp->un.ulpWord[5],
3147 *(uint32_t *)&irsp->un1,
3148 *((uint32_t *)&irsp->un1 + 1));
3149 }
3150
3151 switch (type) {
3152 case LPFC_ABORT_IOCB:
3153 case LPFC_SOL_IOCB:
3154 /*
3155 * Idle exchange closed via ABTS from port. No iocb
3156 * resources need to be recovered.
3157 */
3158 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) {
3159 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
3160 "0333 IOCB cmd 0x%x"
3161 " processed. Skipping"
3162 " completion\n",
3163 irsp->ulpCommand);
3164 break;
3165 }
3166
3167 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring,
3168 &rspiocbq);
3169 if (unlikely(!cmdiocbq))
3170 break;
3171 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED)
3172 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
3173 if (cmdiocbq->iocb_cmpl) {
3174 spin_unlock_irqrestore(&phba->hbalock, iflag);
3175 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq,
3176 &rspiocbq);
3177 spin_lock_irqsave(&phba->hbalock, iflag);
3178 }
3179 break;
3180 case LPFC_UNSOL_IOCB:
3181 spin_unlock_irqrestore(&phba->hbalock, iflag);
3182 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq);
3183 spin_lock_irqsave(&phba->hbalock, iflag);
3184 break;
3185 default:
3186 if (irsp->ulpCommand == CMD_ADAPTER_MSG) {
3187 char adaptermsg[LPFC_MAX_ADPTMSG];
3188 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
3189 memcpy(&adaptermsg[0], (uint8_t *) irsp,
3190 MAX_MSG_DATA);
3191 dev_warn(&((phba->pcidev)->dev),
3192 "lpfc%d: %s\n",
3193 phba->brd_no, adaptermsg);
3194 } else {
3195 /* Unknown IOCB command */
3196 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3197 "0334 Unknown IOCB command "
3198 "Data: x%x, x%x x%x x%x x%x\n",
3199 type, irsp->ulpCommand,
3200 irsp->ulpStatus,
3201 irsp->ulpIoTag,
3202 irsp->ulpContext);
3203 }
3204 break;
3205 }
3206
3207 /*
3208 * The response IOCB has been processed. Update the ring
3209 * pointer in SLIM. If the port response put pointer has not
3210 * been updated, sync the pgp->rspPutInx and fetch the new port
3211 * response put pointer.
3212 */
3213 writel(pring->sli.sli3.rspidx,
3214 &phba->host_gp[pring->ringno].rspGetInx);
3215
3216 if (pring->sli.sli3.rspidx == portRspPut)
3217 portRspPut = le32_to_cpu(pgp->rspPutInx);
3218 }
3219
3220 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) {
3221 pring->stats.iocb_rsp_full++;
3222 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
3223 writel(status, phba->CAregaddr);
3224 readl(phba->CAregaddr);
3225 }
3226 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
3227 pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
3228 pring->stats.iocb_cmd_empty++;
3229
3230 /* Force update of the local copy of cmdGetInx */
3231 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
3232 lpfc_sli_resume_iocb(phba, pring);
3233
3234 if ((pring->lpfc_sli_cmd_available))
3235 (pring->lpfc_sli_cmd_available) (phba, pring);
3236
3237 }
3238
3239 phba->fcp_ring_in_use = 0;
3240 spin_unlock_irqrestore(&phba->hbalock, iflag);
3241 return rc;
3242 }
3243
3244 /**
3245 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb
3246 * @phba: Pointer to HBA context object.
3247 * @pring: Pointer to driver SLI ring object.
3248 * @rspiocbp: Pointer to driver response IOCB object.
3249 *
3250 * This function is called from the worker thread when there is a slow-path
3251 * response IOCB to process. This function chains all the response iocbs until
3252 * seeing the iocb with the LE bit set. The function will call
3253 * lpfc_sli_process_sol_iocb function if the response iocb indicates a
3254 * completion of a command iocb. The function will call the
3255 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb.
3256 * The function frees the resources or calls the completion handler if this
3257 * iocb is an abort completion. The function returns NULL when the response
3258 * iocb has the LE bit set and all the chained iocbs are processed, otherwise
3259 * this function shall chain the iocb on to the iocb_continueq and return the
3260 * response iocb passed in.
3261 **/
3262 static struct lpfc_iocbq *
lpfc_sli_sp_handle_rspiocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * rspiocbp)3263 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3264 struct lpfc_iocbq *rspiocbp)
3265 {
3266 struct lpfc_iocbq *saveq;
3267 struct lpfc_iocbq *cmdiocbp;
3268 struct lpfc_iocbq *next_iocb;
3269 IOCB_t *irsp = NULL;
3270 uint32_t free_saveq;
3271 uint8_t iocb_cmd_type;
3272 lpfc_iocb_type type;
3273 unsigned long iflag;
3274 int rc;
3275
3276 spin_lock_irqsave(&phba->hbalock, iflag);
3277 /* First add the response iocb to the countinueq list */
3278 list_add_tail(&rspiocbp->list, &(pring->iocb_continueq));
3279 pring->iocb_continueq_cnt++;
3280
3281 /* Now, determine whether the list is completed for processing */
3282 irsp = &rspiocbp->iocb;
3283 if (irsp->ulpLe) {
3284 /*
3285 * By default, the driver expects to free all resources
3286 * associated with this iocb completion.
3287 */
3288 free_saveq = 1;
3289 saveq = list_get_first(&pring->iocb_continueq,
3290 struct lpfc_iocbq, list);
3291 irsp = &(saveq->iocb);
3292 list_del_init(&pring->iocb_continueq);
3293 pring->iocb_continueq_cnt = 0;
3294
3295 pring->stats.iocb_rsp++;
3296
3297 /*
3298 * If resource errors reported from HBA, reduce
3299 * queuedepths of the SCSI device.
3300 */
3301 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) &&
3302 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) ==
3303 IOERR_NO_RESOURCES)) {
3304 spin_unlock_irqrestore(&phba->hbalock, iflag);
3305 phba->lpfc_rampdown_queue_depth(phba);
3306 spin_lock_irqsave(&phba->hbalock, iflag);
3307 }
3308
3309 if (irsp->ulpStatus) {
3310 /* Rsp ring <ringno> error: IOCB */
3311 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3312 "0328 Rsp Ring %d error: "
3313 "IOCB Data: "
3314 "x%x x%x x%x x%x "
3315 "x%x x%x x%x x%x "
3316 "x%x x%x x%x x%x "
3317 "x%x x%x x%x x%x\n",
3318 pring->ringno,
3319 irsp->un.ulpWord[0],
3320 irsp->un.ulpWord[1],
3321 irsp->un.ulpWord[2],
3322 irsp->un.ulpWord[3],
3323 irsp->un.ulpWord[4],
3324 irsp->un.ulpWord[5],
3325 *(((uint32_t *) irsp) + 6),
3326 *(((uint32_t *) irsp) + 7),
3327 *(((uint32_t *) irsp) + 8),
3328 *(((uint32_t *) irsp) + 9),
3329 *(((uint32_t *) irsp) + 10),
3330 *(((uint32_t *) irsp) + 11),
3331 *(((uint32_t *) irsp) + 12),
3332 *(((uint32_t *) irsp) + 13),
3333 *(((uint32_t *) irsp) + 14),
3334 *(((uint32_t *) irsp) + 15));
3335 }
3336
3337 /*
3338 * Fetch the IOCB command type and call the correct completion
3339 * routine. Solicited and Unsolicited IOCBs on the ELS ring
3340 * get freed back to the lpfc_iocb_list by the discovery
3341 * kernel thread.
3342 */
3343 iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK;
3344 type = lpfc_sli_iocb_cmd_type(iocb_cmd_type);
3345 switch (type) {
3346 case LPFC_SOL_IOCB:
3347 spin_unlock_irqrestore(&phba->hbalock, iflag);
3348 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq);
3349 spin_lock_irqsave(&phba->hbalock, iflag);
3350 break;
3351
3352 case LPFC_UNSOL_IOCB:
3353 spin_unlock_irqrestore(&phba->hbalock, iflag);
3354 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq);
3355 spin_lock_irqsave(&phba->hbalock, iflag);
3356 if (!rc)
3357 free_saveq = 0;
3358 break;
3359
3360 case LPFC_ABORT_IOCB:
3361 cmdiocbp = NULL;
3362 if (irsp->ulpCommand != CMD_XRI_ABORTED_CX)
3363 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring,
3364 saveq);
3365 if (cmdiocbp) {
3366 /* Call the specified completion routine */
3367 if (cmdiocbp->iocb_cmpl) {
3368 spin_unlock_irqrestore(&phba->hbalock,
3369 iflag);
3370 (cmdiocbp->iocb_cmpl)(phba, cmdiocbp,
3371 saveq);
3372 spin_lock_irqsave(&phba->hbalock,
3373 iflag);
3374 } else
3375 __lpfc_sli_release_iocbq(phba,
3376 cmdiocbp);
3377 }
3378 break;
3379
3380 case LPFC_UNKNOWN_IOCB:
3381 if (irsp->ulpCommand == CMD_ADAPTER_MSG) {
3382 char adaptermsg[LPFC_MAX_ADPTMSG];
3383 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
3384 memcpy(&adaptermsg[0], (uint8_t *)irsp,
3385 MAX_MSG_DATA);
3386 dev_warn(&((phba->pcidev)->dev),
3387 "lpfc%d: %s\n",
3388 phba->brd_no, adaptermsg);
3389 } else {
3390 /* Unknown IOCB command */
3391 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3392 "0335 Unknown IOCB "
3393 "command Data: x%x "
3394 "x%x x%x x%x\n",
3395 irsp->ulpCommand,
3396 irsp->ulpStatus,
3397 irsp->ulpIoTag,
3398 irsp->ulpContext);
3399 }
3400 break;
3401 }
3402
3403 if (free_saveq) {
3404 list_for_each_entry_safe(rspiocbp, next_iocb,
3405 &saveq->list, list) {
3406 list_del_init(&rspiocbp->list);
3407 __lpfc_sli_release_iocbq(phba, rspiocbp);
3408 }
3409 __lpfc_sli_release_iocbq(phba, saveq);
3410 }
3411 rspiocbp = NULL;
3412 }
3413 spin_unlock_irqrestore(&phba->hbalock, iflag);
3414 return rspiocbp;
3415 }
3416
3417 /**
3418 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs
3419 * @phba: Pointer to HBA context object.
3420 * @pring: Pointer to driver SLI ring object.
3421 * @mask: Host attention register mask for this ring.
3422 *
3423 * This routine wraps the actual slow_ring event process routine from the
3424 * API jump table function pointer from the lpfc_hba struct.
3425 **/
3426 void
lpfc_sli_handle_slow_ring_event(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,uint32_t mask)3427 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba,
3428 struct lpfc_sli_ring *pring, uint32_t mask)
3429 {
3430 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask);
3431 }
3432
3433 /**
3434 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings
3435 * @phba: Pointer to HBA context object.
3436 * @pring: Pointer to driver SLI ring object.
3437 * @mask: Host attention register mask for this ring.
3438 *
3439 * This function is called from the worker thread when there is a ring event
3440 * for non-fcp rings. The caller does not hold any lock. The function will
3441 * remove each response iocb in the response ring and calls the handle
3442 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
3443 **/
3444 static void
lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,uint32_t mask)3445 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba,
3446 struct lpfc_sli_ring *pring, uint32_t mask)
3447 {
3448 struct lpfc_pgp *pgp;
3449 IOCB_t *entry;
3450 IOCB_t *irsp = NULL;
3451 struct lpfc_iocbq *rspiocbp = NULL;
3452 uint32_t portRspPut, portRspMax;
3453 unsigned long iflag;
3454 uint32_t status;
3455
3456 pgp = &phba->port_gp[pring->ringno];
3457 spin_lock_irqsave(&phba->hbalock, iflag);
3458 pring->stats.iocb_event++;
3459
3460 /*
3461 * The next available response entry should never exceed the maximum
3462 * entries. If it does, treat it as an adapter hardware error.
3463 */
3464 portRspMax = pring->sli.sli3.numRiocb;
3465 portRspPut = le32_to_cpu(pgp->rspPutInx);
3466 if (portRspPut >= portRspMax) {
3467 /*
3468 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
3469 * rsp ring <portRspMax>
3470 */
3471 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3472 "0303 Ring %d handler: portRspPut %d "
3473 "is bigger than rsp ring %d\n",
3474 pring->ringno, portRspPut, portRspMax);
3475
3476 phba->link_state = LPFC_HBA_ERROR;
3477 spin_unlock_irqrestore(&phba->hbalock, iflag);
3478
3479 phba->work_hs = HS_FFER3;
3480 lpfc_handle_eratt(phba);
3481
3482 return;
3483 }
3484
3485 rmb();
3486 while (pring->sli.sli3.rspidx != portRspPut) {
3487 /*
3488 * Build a completion list and call the appropriate handler.
3489 * The process is to get the next available response iocb, get
3490 * a free iocb from the list, copy the response data into the
3491 * free iocb, insert to the continuation list, and update the
3492 * next response index to slim. This process makes response
3493 * iocb's in the ring available to DMA as fast as possible but
3494 * pays a penalty for a copy operation. Since the iocb is
3495 * only 32 bytes, this penalty is considered small relative to
3496 * the PCI reads for register values and a slim write. When
3497 * the ulpLe field is set, the entire Command has been
3498 * received.
3499 */
3500 entry = lpfc_resp_iocb(phba, pring);
3501
3502 phba->last_completion_time = jiffies;
3503 rspiocbp = __lpfc_sli_get_iocbq(phba);
3504 if (rspiocbp == NULL) {
3505 printk(KERN_ERR "%s: out of buffers! Failing "
3506 "completion.\n", __func__);
3507 break;
3508 }
3509
3510 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb,
3511 phba->iocb_rsp_size);
3512 irsp = &rspiocbp->iocb;
3513
3514 if (++pring->sli.sli3.rspidx >= portRspMax)
3515 pring->sli.sli3.rspidx = 0;
3516
3517 if (pring->ringno == LPFC_ELS_RING) {
3518 lpfc_debugfs_slow_ring_trc(phba,
3519 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x",
3520 *(((uint32_t *) irsp) + 4),
3521 *(((uint32_t *) irsp) + 6),
3522 *(((uint32_t *) irsp) + 7));
3523 }
3524
3525 writel(pring->sli.sli3.rspidx,
3526 &phba->host_gp[pring->ringno].rspGetInx);
3527
3528 spin_unlock_irqrestore(&phba->hbalock, iflag);
3529 /* Handle the response IOCB */
3530 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp);
3531 spin_lock_irqsave(&phba->hbalock, iflag);
3532
3533 /*
3534 * If the port response put pointer has not been updated, sync
3535 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port
3536 * response put pointer.
3537 */
3538 if (pring->sli.sli3.rspidx == portRspPut) {
3539 portRspPut = le32_to_cpu(pgp->rspPutInx);
3540 }
3541 } /* while (pring->sli.sli3.rspidx != portRspPut) */
3542
3543 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) {
3544 /* At least one response entry has been freed */
3545 pring->stats.iocb_rsp_full++;
3546 /* SET RxRE_RSP in Chip Att register */
3547 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
3548 writel(status, phba->CAregaddr);
3549 readl(phba->CAregaddr); /* flush */
3550 }
3551 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
3552 pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
3553 pring->stats.iocb_cmd_empty++;
3554
3555 /* Force update of the local copy of cmdGetInx */
3556 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
3557 lpfc_sli_resume_iocb(phba, pring);
3558
3559 if ((pring->lpfc_sli_cmd_available))
3560 (pring->lpfc_sli_cmd_available) (phba, pring);
3561
3562 }
3563
3564 spin_unlock_irqrestore(&phba->hbalock, iflag);
3565 return;
3566 }
3567
3568 /**
3569 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events
3570 * @phba: Pointer to HBA context object.
3571 * @pring: Pointer to driver SLI ring object.
3572 * @mask: Host attention register mask for this ring.
3573 *
3574 * This function is called from the worker thread when there is a pending
3575 * ELS response iocb on the driver internal slow-path response iocb worker
3576 * queue. The caller does not hold any lock. The function will remove each
3577 * response iocb from the response worker queue and calls the handle
3578 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
3579 **/
3580 static void
lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,uint32_t mask)3581 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba,
3582 struct lpfc_sli_ring *pring, uint32_t mask)
3583 {
3584 struct lpfc_iocbq *irspiocbq;
3585 struct hbq_dmabuf *dmabuf;
3586 struct lpfc_cq_event *cq_event;
3587 unsigned long iflag;
3588 int count = 0;
3589
3590 spin_lock_irqsave(&phba->hbalock, iflag);
3591 phba->hba_flag &= ~HBA_SP_QUEUE_EVT;
3592 spin_unlock_irqrestore(&phba->hbalock, iflag);
3593 while (!list_empty(&phba->sli4_hba.sp_queue_event)) {
3594 /* Get the response iocb from the head of work queue */
3595 spin_lock_irqsave(&phba->hbalock, iflag);
3596 list_remove_head(&phba->sli4_hba.sp_queue_event,
3597 cq_event, struct lpfc_cq_event, list);
3598 spin_unlock_irqrestore(&phba->hbalock, iflag);
3599
3600 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) {
3601 case CQE_CODE_COMPL_WQE:
3602 irspiocbq = container_of(cq_event, struct lpfc_iocbq,
3603 cq_event);
3604 /* Translate ELS WCQE to response IOCBQ */
3605 irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba,
3606 irspiocbq);
3607 if (irspiocbq)
3608 lpfc_sli_sp_handle_rspiocb(phba, pring,
3609 irspiocbq);
3610 count++;
3611 break;
3612 case CQE_CODE_RECEIVE:
3613 case CQE_CODE_RECEIVE_V1:
3614 dmabuf = container_of(cq_event, struct hbq_dmabuf,
3615 cq_event);
3616 lpfc_sli4_handle_received_buffer(phba, dmabuf);
3617 count++;
3618 break;
3619 default:
3620 break;
3621 }
3622
3623 /* Limit the number of events to 64 to avoid soft lockups */
3624 if (count == 64)
3625 break;
3626 }
3627 }
3628
3629 /**
3630 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring
3631 * @phba: Pointer to HBA context object.
3632 * @pring: Pointer to driver SLI ring object.
3633 *
3634 * This function aborts all iocbs in the given ring and frees all the iocb
3635 * objects in txq. This function issues an abort iocb for all the iocb commands
3636 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
3637 * the return of this function. The caller is not required to hold any locks.
3638 **/
3639 void
lpfc_sli_abort_iocb_ring(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)3640 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
3641 {
3642 LIST_HEAD(completions);
3643 struct lpfc_iocbq *iocb, *next_iocb;
3644
3645 if (pring->ringno == LPFC_ELS_RING) {
3646 lpfc_fabric_abort_hba(phba);
3647 }
3648
3649 /* Error everything on txq and txcmplq
3650 * First do the txq.
3651 */
3652 if (phba->sli_rev >= LPFC_SLI_REV4) {
3653 spin_lock_irq(&pring->ring_lock);
3654 list_splice_init(&pring->txq, &completions);
3655 pring->txq_cnt = 0;
3656 spin_unlock_irq(&pring->ring_lock);
3657
3658 spin_lock_irq(&phba->hbalock);
3659 /* Next issue ABTS for everything on the txcmplq */
3660 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
3661 lpfc_sli_issue_abort_iotag(phba, pring, iocb);
3662 spin_unlock_irq(&phba->hbalock);
3663 } else {
3664 spin_lock_irq(&phba->hbalock);
3665 list_splice_init(&pring->txq, &completions);
3666 pring->txq_cnt = 0;
3667
3668 /* Next issue ABTS for everything on the txcmplq */
3669 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
3670 lpfc_sli_issue_abort_iotag(phba, pring, iocb);
3671 spin_unlock_irq(&phba->hbalock);
3672 }
3673
3674 /* Cancel all the IOCBs from the completions list */
3675 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
3676 IOERR_SLI_ABORTED);
3677 }
3678
3679 /**
3680 * lpfc_sli_abort_wqe_ring - Abort all iocbs in the ring
3681 * @phba: Pointer to HBA context object.
3682 * @pring: Pointer to driver SLI ring object.
3683 *
3684 * This function aborts all iocbs in the given ring and frees all the iocb
3685 * objects in txq. This function issues an abort iocb for all the iocb commands
3686 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
3687 * the return of this function. The caller is not required to hold any locks.
3688 **/
3689 void
lpfc_sli_abort_wqe_ring(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)3690 lpfc_sli_abort_wqe_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
3691 {
3692 LIST_HEAD(completions);
3693 struct lpfc_iocbq *iocb, *next_iocb;
3694
3695 if (pring->ringno == LPFC_ELS_RING)
3696 lpfc_fabric_abort_hba(phba);
3697
3698 spin_lock_irq(&phba->hbalock);
3699 /* Next issue ABTS for everything on the txcmplq */
3700 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
3701 lpfc_sli4_abort_nvme_io(phba, pring, iocb);
3702 spin_unlock_irq(&phba->hbalock);
3703 }
3704
3705
3706 /**
3707 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings
3708 * @phba: Pointer to HBA context object.
3709 * @pring: Pointer to driver SLI ring object.
3710 *
3711 * This function aborts all iocbs in FCP rings and frees all the iocb
3712 * objects in txq. This function issues an abort iocb for all the iocb commands
3713 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
3714 * the return of this function. The caller is not required to hold any locks.
3715 **/
3716 void
lpfc_sli_abort_fcp_rings(struct lpfc_hba * phba)3717 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba)
3718 {
3719 struct lpfc_sli *psli = &phba->sli;
3720 struct lpfc_sli_ring *pring;
3721 uint32_t i;
3722
3723 /* Look on all the FCP Rings for the iotag */
3724 if (phba->sli_rev >= LPFC_SLI_REV4) {
3725 for (i = 0; i < phba->cfg_fcp_io_channel; i++) {
3726 pring = phba->sli4_hba.fcp_wq[i]->pring;
3727 lpfc_sli_abort_iocb_ring(phba, pring);
3728 }
3729 } else {
3730 pring = &psli->sli3_ring[LPFC_FCP_RING];
3731 lpfc_sli_abort_iocb_ring(phba, pring);
3732 }
3733 }
3734
3735 /**
3736 * lpfc_sli_abort_nvme_rings - Abort all wqes in all NVME rings
3737 * @phba: Pointer to HBA context object.
3738 *
3739 * This function aborts all wqes in NVME rings. This function issues an
3740 * abort wqe for all the outstanding IO commands in txcmplq. The iocbs in
3741 * the txcmplq is not guaranteed to complete before the return of this
3742 * function. The caller is not required to hold any locks.
3743 **/
3744 void
lpfc_sli_abort_nvme_rings(struct lpfc_hba * phba)3745 lpfc_sli_abort_nvme_rings(struct lpfc_hba *phba)
3746 {
3747 struct lpfc_sli_ring *pring;
3748 uint32_t i;
3749
3750 if (phba->sli_rev < LPFC_SLI_REV4)
3751 return;
3752
3753 /* Abort all IO on each NVME ring. */
3754 for (i = 0; i < phba->cfg_nvme_io_channel; i++) {
3755 pring = phba->sli4_hba.nvme_wq[i]->pring;
3756 lpfc_sli_abort_wqe_ring(phba, pring);
3757 }
3758 }
3759
3760
3761 /**
3762 * lpfc_sli_flush_fcp_rings - flush all iocbs in the fcp ring
3763 * @phba: Pointer to HBA context object.
3764 *
3765 * This function flushes all iocbs in the fcp ring and frees all the iocb
3766 * objects in txq and txcmplq. This function will not issue abort iocbs
3767 * for all the iocb commands in txcmplq, they will just be returned with
3768 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI
3769 * slot has been permanently disabled.
3770 **/
3771 void
lpfc_sli_flush_fcp_rings(struct lpfc_hba * phba)3772 lpfc_sli_flush_fcp_rings(struct lpfc_hba *phba)
3773 {
3774 LIST_HEAD(txq);
3775 LIST_HEAD(txcmplq);
3776 struct lpfc_sli *psli = &phba->sli;
3777 struct lpfc_sli_ring *pring;
3778 uint32_t i;
3779
3780 spin_lock_irq(&phba->hbalock);
3781 /* Indicate the I/O queues are flushed */
3782 phba->hba_flag |= HBA_FCP_IOQ_FLUSH;
3783 spin_unlock_irq(&phba->hbalock);
3784
3785 /* Look on all the FCP Rings for the iotag */
3786 if (phba->sli_rev >= LPFC_SLI_REV4) {
3787 for (i = 0; i < phba->cfg_fcp_io_channel; i++) {
3788 pring = phba->sli4_hba.fcp_wq[i]->pring;
3789
3790 spin_lock_irq(&pring->ring_lock);
3791 /* Retrieve everything on txq */
3792 list_splice_init(&pring->txq, &txq);
3793 /* Retrieve everything on the txcmplq */
3794 list_splice_init(&pring->txcmplq, &txcmplq);
3795 pring->txq_cnt = 0;
3796 pring->txcmplq_cnt = 0;
3797 spin_unlock_irq(&pring->ring_lock);
3798
3799 /* Flush the txq */
3800 lpfc_sli_cancel_iocbs(phba, &txq,
3801 IOSTAT_LOCAL_REJECT,
3802 IOERR_SLI_DOWN);
3803 /* Flush the txcmpq */
3804 lpfc_sli_cancel_iocbs(phba, &txcmplq,
3805 IOSTAT_LOCAL_REJECT,
3806 IOERR_SLI_DOWN);
3807 }
3808 } else {
3809 pring = &psli->sli3_ring[LPFC_FCP_RING];
3810
3811 spin_lock_irq(&phba->hbalock);
3812 /* Retrieve everything on txq */
3813 list_splice_init(&pring->txq, &txq);
3814 /* Retrieve everything on the txcmplq */
3815 list_splice_init(&pring->txcmplq, &txcmplq);
3816 pring->txq_cnt = 0;
3817 pring->txcmplq_cnt = 0;
3818 spin_unlock_irq(&phba->hbalock);
3819
3820 /* Flush the txq */
3821 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT,
3822 IOERR_SLI_DOWN);
3823 /* Flush the txcmpq */
3824 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT,
3825 IOERR_SLI_DOWN);
3826 }
3827 }
3828
3829 /**
3830 * lpfc_sli_flush_nvme_rings - flush all wqes in the nvme rings
3831 * @phba: Pointer to HBA context object.
3832 *
3833 * This function flushes all wqes in the nvme rings and frees all resources
3834 * in the txcmplq. This function does not issue abort wqes for the IO
3835 * commands in txcmplq, they will just be returned with
3836 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI
3837 * slot has been permanently disabled.
3838 **/
3839 void
lpfc_sli_flush_nvme_rings(struct lpfc_hba * phba)3840 lpfc_sli_flush_nvme_rings(struct lpfc_hba *phba)
3841 {
3842 LIST_HEAD(txcmplq);
3843 struct lpfc_sli_ring *pring;
3844 uint32_t i;
3845
3846 if (phba->sli_rev < LPFC_SLI_REV4)
3847 return;
3848
3849 /* Hint to other driver operations that a flush is in progress. */
3850 spin_lock_irq(&phba->hbalock);
3851 phba->hba_flag |= HBA_NVME_IOQ_FLUSH;
3852 spin_unlock_irq(&phba->hbalock);
3853
3854 /* Cycle through all NVME rings and complete each IO with
3855 * a local driver reason code. This is a flush so no
3856 * abort exchange to FW.
3857 */
3858 for (i = 0; i < phba->cfg_nvme_io_channel; i++) {
3859 pring = phba->sli4_hba.nvme_wq[i]->pring;
3860
3861 /* Retrieve everything on the txcmplq */
3862 spin_lock_irq(&pring->ring_lock);
3863 list_splice_init(&pring->txcmplq, &txcmplq);
3864 pring->txcmplq_cnt = 0;
3865 spin_unlock_irq(&pring->ring_lock);
3866
3867 /* Flush the txcmpq &&&PAE */
3868 lpfc_sli_cancel_iocbs(phba, &txcmplq,
3869 IOSTAT_LOCAL_REJECT,
3870 IOERR_SLI_DOWN);
3871 }
3872 }
3873
3874 /**
3875 * lpfc_sli_brdready_s3 - Check for sli3 host ready status
3876 * @phba: Pointer to HBA context object.
3877 * @mask: Bit mask to be checked.
3878 *
3879 * This function reads the host status register and compares
3880 * with the provided bit mask to check if HBA completed
3881 * the restart. This function will wait in a loop for the
3882 * HBA to complete restart. If the HBA does not restart within
3883 * 15 iterations, the function will reset the HBA again. The
3884 * function returns 1 when HBA fail to restart otherwise returns
3885 * zero.
3886 **/
3887 static int
lpfc_sli_brdready_s3(struct lpfc_hba * phba,uint32_t mask)3888 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask)
3889 {
3890 uint32_t status;
3891 int i = 0;
3892 int retval = 0;
3893
3894 /* Read the HBA Host Status Register */
3895 if (lpfc_readl(phba->HSregaddr, &status))
3896 return 1;
3897
3898 /*
3899 * Check status register every 100ms for 5 retries, then every
3900 * 500ms for 5, then every 2.5 sec for 5, then reset board and
3901 * every 2.5 sec for 4.
3902 * Break our of the loop if errors occurred during init.
3903 */
3904 while (((status & mask) != mask) &&
3905 !(status & HS_FFERM) &&
3906 i++ < 20) {
3907
3908 if (i <= 5)
3909 msleep(10);
3910 else if (i <= 10)
3911 msleep(500);
3912 else
3913 msleep(2500);
3914
3915 if (i == 15) {
3916 /* Do post */
3917 phba->pport->port_state = LPFC_VPORT_UNKNOWN;
3918 lpfc_sli_brdrestart(phba);
3919 }
3920 /* Read the HBA Host Status Register */
3921 if (lpfc_readl(phba->HSregaddr, &status)) {
3922 retval = 1;
3923 break;
3924 }
3925 }
3926
3927 /* Check to see if any errors occurred during init */
3928 if ((status & HS_FFERM) || (i >= 20)) {
3929 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
3930 "2751 Adapter failed to restart, "
3931 "status reg x%x, FW Data: A8 x%x AC x%x\n",
3932 status,
3933 readl(phba->MBslimaddr + 0xa8),
3934 readl(phba->MBslimaddr + 0xac));
3935 phba->link_state = LPFC_HBA_ERROR;
3936 retval = 1;
3937 }
3938
3939 return retval;
3940 }
3941
3942 /**
3943 * lpfc_sli_brdready_s4 - Check for sli4 host ready status
3944 * @phba: Pointer to HBA context object.
3945 * @mask: Bit mask to be checked.
3946 *
3947 * This function checks the host status register to check if HBA is
3948 * ready. This function will wait in a loop for the HBA to be ready
3949 * If the HBA is not ready , the function will will reset the HBA PCI
3950 * function again. The function returns 1 when HBA fail to be ready
3951 * otherwise returns zero.
3952 **/
3953 static int
lpfc_sli_brdready_s4(struct lpfc_hba * phba,uint32_t mask)3954 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask)
3955 {
3956 uint32_t status;
3957 int retval = 0;
3958
3959 /* Read the HBA Host Status Register */
3960 status = lpfc_sli4_post_status_check(phba);
3961
3962 if (status) {
3963 phba->pport->port_state = LPFC_VPORT_UNKNOWN;
3964 lpfc_sli_brdrestart(phba);
3965 status = lpfc_sli4_post_status_check(phba);
3966 }
3967
3968 /* Check to see if any errors occurred during init */
3969 if (status) {
3970 phba->link_state = LPFC_HBA_ERROR;
3971 retval = 1;
3972 } else
3973 phba->sli4_hba.intr_enable = 0;
3974
3975 return retval;
3976 }
3977
3978 /**
3979 * lpfc_sli_brdready - Wrapper func for checking the hba readyness
3980 * @phba: Pointer to HBA context object.
3981 * @mask: Bit mask to be checked.
3982 *
3983 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine
3984 * from the API jump table function pointer from the lpfc_hba struct.
3985 **/
3986 int
lpfc_sli_brdready(struct lpfc_hba * phba,uint32_t mask)3987 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask)
3988 {
3989 return phba->lpfc_sli_brdready(phba, mask);
3990 }
3991
3992 #define BARRIER_TEST_PATTERN (0xdeadbeef)
3993
3994 /**
3995 * lpfc_reset_barrier - Make HBA ready for HBA reset
3996 * @phba: Pointer to HBA context object.
3997 *
3998 * This function is called before resetting an HBA. This function is called
3999 * with hbalock held and requests HBA to quiesce DMAs before a reset.
4000 **/
lpfc_reset_barrier(struct lpfc_hba * phba)4001 void lpfc_reset_barrier(struct lpfc_hba *phba)
4002 {
4003 uint32_t __iomem *resp_buf;
4004 uint32_t __iomem *mbox_buf;
4005 volatile uint32_t mbox;
4006 uint32_t hc_copy, ha_copy, resp_data;
4007 int i;
4008 uint8_t hdrtype;
4009
4010 lockdep_assert_held(&phba->hbalock);
4011
4012 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype);
4013 if (hdrtype != 0x80 ||
4014 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID &&
4015 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID))
4016 return;
4017
4018 /*
4019 * Tell the other part of the chip to suspend temporarily all
4020 * its DMA activity.
4021 */
4022 resp_buf = phba->MBslimaddr;
4023
4024 /* Disable the error attention */
4025 if (lpfc_readl(phba->HCregaddr, &hc_copy))
4026 return;
4027 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr);
4028 readl(phba->HCregaddr); /* flush */
4029 phba->link_flag |= LS_IGNORE_ERATT;
4030
4031 if (lpfc_readl(phba->HAregaddr, &ha_copy))
4032 return;
4033 if (ha_copy & HA_ERATT) {
4034 /* Clear Chip error bit */
4035 writel(HA_ERATT, phba->HAregaddr);
4036 phba->pport->stopped = 1;
4037 }
4038
4039 mbox = 0;
4040 ((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD;
4041 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP;
4042
4043 writel(BARRIER_TEST_PATTERN, (resp_buf + 1));
4044 mbox_buf = phba->MBslimaddr;
4045 writel(mbox, mbox_buf);
4046
4047 for (i = 0; i < 50; i++) {
4048 if (lpfc_readl((resp_buf + 1), &resp_data))
4049 return;
4050 if (resp_data != ~(BARRIER_TEST_PATTERN))
4051 mdelay(1);
4052 else
4053 break;
4054 }
4055 resp_data = 0;
4056 if (lpfc_readl((resp_buf + 1), &resp_data))
4057 return;
4058 if (resp_data != ~(BARRIER_TEST_PATTERN)) {
4059 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE ||
4060 phba->pport->stopped)
4061 goto restore_hc;
4062 else
4063 goto clear_errat;
4064 }
4065
4066 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST;
4067 resp_data = 0;
4068 for (i = 0; i < 500; i++) {
4069 if (lpfc_readl(resp_buf, &resp_data))
4070 return;
4071 if (resp_data != mbox)
4072 mdelay(1);
4073 else
4074 break;
4075 }
4076
4077 clear_errat:
4078
4079 while (++i < 500) {
4080 if (lpfc_readl(phba->HAregaddr, &ha_copy))
4081 return;
4082 if (!(ha_copy & HA_ERATT))
4083 mdelay(1);
4084 else
4085 break;
4086 }
4087
4088 if (readl(phba->HAregaddr) & HA_ERATT) {
4089 writel(HA_ERATT, phba->HAregaddr);
4090 phba->pport->stopped = 1;
4091 }
4092
4093 restore_hc:
4094 phba->link_flag &= ~LS_IGNORE_ERATT;
4095 writel(hc_copy, phba->HCregaddr);
4096 readl(phba->HCregaddr); /* flush */
4097 }
4098
4099 /**
4100 * lpfc_sli_brdkill - Issue a kill_board mailbox command
4101 * @phba: Pointer to HBA context object.
4102 *
4103 * This function issues a kill_board mailbox command and waits for
4104 * the error attention interrupt. This function is called for stopping
4105 * the firmware processing. The caller is not required to hold any
4106 * locks. This function calls lpfc_hba_down_post function to free
4107 * any pending commands after the kill. The function will return 1 when it
4108 * fails to kill the board else will return 0.
4109 **/
4110 int
lpfc_sli_brdkill(struct lpfc_hba * phba)4111 lpfc_sli_brdkill(struct lpfc_hba *phba)
4112 {
4113 struct lpfc_sli *psli;
4114 LPFC_MBOXQ_t *pmb;
4115 uint32_t status;
4116 uint32_t ha_copy;
4117 int retval;
4118 int i = 0;
4119
4120 psli = &phba->sli;
4121
4122 /* Kill HBA */
4123 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4124 "0329 Kill HBA Data: x%x x%x\n",
4125 phba->pport->port_state, psli->sli_flag);
4126
4127 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4128 if (!pmb)
4129 return 1;
4130
4131 /* Disable the error attention */
4132 spin_lock_irq(&phba->hbalock);
4133 if (lpfc_readl(phba->HCregaddr, &status)) {
4134 spin_unlock_irq(&phba->hbalock);
4135 mempool_free(pmb, phba->mbox_mem_pool);
4136 return 1;
4137 }
4138 status &= ~HC_ERINT_ENA;
4139 writel(status, phba->HCregaddr);
4140 readl(phba->HCregaddr); /* flush */
4141 phba->link_flag |= LS_IGNORE_ERATT;
4142 spin_unlock_irq(&phba->hbalock);
4143
4144 lpfc_kill_board(phba, pmb);
4145 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
4146 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
4147
4148 if (retval != MBX_SUCCESS) {
4149 if (retval != MBX_BUSY)
4150 mempool_free(pmb, phba->mbox_mem_pool);
4151 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
4152 "2752 KILL_BOARD command failed retval %d\n",
4153 retval);
4154 spin_lock_irq(&phba->hbalock);
4155 phba->link_flag &= ~LS_IGNORE_ERATT;
4156 spin_unlock_irq(&phba->hbalock);
4157 return 1;
4158 }
4159
4160 spin_lock_irq(&phba->hbalock);
4161 psli->sli_flag &= ~LPFC_SLI_ACTIVE;
4162 spin_unlock_irq(&phba->hbalock);
4163
4164 mempool_free(pmb, phba->mbox_mem_pool);
4165
4166 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error
4167 * attention every 100ms for 3 seconds. If we don't get ERATT after
4168 * 3 seconds we still set HBA_ERROR state because the status of the
4169 * board is now undefined.
4170 */
4171 if (lpfc_readl(phba->HAregaddr, &ha_copy))
4172 return 1;
4173 while ((i++ < 30) && !(ha_copy & HA_ERATT)) {
4174 mdelay(100);
4175 if (lpfc_readl(phba->HAregaddr, &ha_copy))
4176 return 1;
4177 }
4178
4179 del_timer_sync(&psli->mbox_tmo);
4180 if (ha_copy & HA_ERATT) {
4181 writel(HA_ERATT, phba->HAregaddr);
4182 phba->pport->stopped = 1;
4183 }
4184 spin_lock_irq(&phba->hbalock);
4185 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
4186 psli->mbox_active = NULL;
4187 phba->link_flag &= ~LS_IGNORE_ERATT;
4188 spin_unlock_irq(&phba->hbalock);
4189
4190 lpfc_hba_down_post(phba);
4191 phba->link_state = LPFC_HBA_ERROR;
4192
4193 return ha_copy & HA_ERATT ? 0 : 1;
4194 }
4195
4196 /**
4197 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA
4198 * @phba: Pointer to HBA context object.
4199 *
4200 * This function resets the HBA by writing HC_INITFF to the control
4201 * register. After the HBA resets, this function resets all the iocb ring
4202 * indices. This function disables PCI layer parity checking during
4203 * the reset.
4204 * This function returns 0 always.
4205 * The caller is not required to hold any locks.
4206 **/
4207 int
lpfc_sli_brdreset(struct lpfc_hba * phba)4208 lpfc_sli_brdreset(struct lpfc_hba *phba)
4209 {
4210 struct lpfc_sli *psli;
4211 struct lpfc_sli_ring *pring;
4212 uint16_t cfg_value;
4213 int i;
4214
4215 psli = &phba->sli;
4216
4217 /* Reset HBA */
4218 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4219 "0325 Reset HBA Data: x%x x%x\n",
4220 (phba->pport) ? phba->pport->port_state : 0,
4221 psli->sli_flag);
4222
4223 /* perform board reset */
4224 phba->fc_eventTag = 0;
4225 phba->link_events = 0;
4226 if (phba->pport) {
4227 phba->pport->fc_myDID = 0;
4228 phba->pport->fc_prevDID = 0;
4229 }
4230
4231 /* Turn off parity checking and serr during the physical reset */
4232 pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value);
4233 pci_write_config_word(phba->pcidev, PCI_COMMAND,
4234 (cfg_value &
4235 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
4236
4237 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA);
4238
4239 /* Now toggle INITFF bit in the Host Control Register */
4240 writel(HC_INITFF, phba->HCregaddr);
4241 mdelay(1);
4242 readl(phba->HCregaddr); /* flush */
4243 writel(0, phba->HCregaddr);
4244 readl(phba->HCregaddr); /* flush */
4245
4246 /* Restore PCI cmd register */
4247 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
4248
4249 /* Initialize relevant SLI info */
4250 for (i = 0; i < psli->num_rings; i++) {
4251 pring = &psli->sli3_ring[i];
4252 pring->flag = 0;
4253 pring->sli.sli3.rspidx = 0;
4254 pring->sli.sli3.next_cmdidx = 0;
4255 pring->sli.sli3.local_getidx = 0;
4256 pring->sli.sli3.cmdidx = 0;
4257 pring->missbufcnt = 0;
4258 }
4259
4260 phba->link_state = LPFC_WARM_START;
4261 return 0;
4262 }
4263
4264 /**
4265 * lpfc_sli4_brdreset - Reset a sli-4 HBA
4266 * @phba: Pointer to HBA context object.
4267 *
4268 * This function resets a SLI4 HBA. This function disables PCI layer parity
4269 * checking during resets the device. The caller is not required to hold
4270 * any locks.
4271 *
4272 * This function returns 0 always.
4273 **/
4274 int
lpfc_sli4_brdreset(struct lpfc_hba * phba)4275 lpfc_sli4_brdreset(struct lpfc_hba *phba)
4276 {
4277 struct lpfc_sli *psli = &phba->sli;
4278 uint16_t cfg_value;
4279 int rc = 0;
4280
4281 /* Reset HBA */
4282 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4283 "0295 Reset HBA Data: x%x x%x x%x\n",
4284 phba->pport->port_state, psli->sli_flag,
4285 phba->hba_flag);
4286
4287 /* perform board reset */
4288 phba->fc_eventTag = 0;
4289 phba->link_events = 0;
4290 phba->pport->fc_myDID = 0;
4291 phba->pport->fc_prevDID = 0;
4292
4293 spin_lock_irq(&phba->hbalock);
4294 psli->sli_flag &= ~(LPFC_PROCESS_LA);
4295 phba->fcf.fcf_flag = 0;
4296 spin_unlock_irq(&phba->hbalock);
4297
4298 /* SLI4 INTF 2: if FW dump is being taken skip INIT_PORT */
4299 if (phba->hba_flag & HBA_FW_DUMP_OP) {
4300 phba->hba_flag &= ~HBA_FW_DUMP_OP;
4301 return rc;
4302 }
4303
4304 /* Now physically reset the device */
4305 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4306 "0389 Performing PCI function reset!\n");
4307
4308 /* Turn off parity checking and serr during the physical reset */
4309 pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value);
4310 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value &
4311 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
4312
4313 /* Perform FCoE PCI function reset before freeing queue memory */
4314 rc = lpfc_pci_function_reset(phba);
4315
4316 /* Restore PCI cmd register */
4317 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
4318
4319 return rc;
4320 }
4321
4322 /**
4323 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba
4324 * @phba: Pointer to HBA context object.
4325 *
4326 * This function is called in the SLI initialization code path to
4327 * restart the HBA. The caller is not required to hold any lock.
4328 * This function writes MBX_RESTART mailbox command to the SLIM and
4329 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post
4330 * function to free any pending commands. The function enables
4331 * POST only during the first initialization. The function returns zero.
4332 * The function does not guarantee completion of MBX_RESTART mailbox
4333 * command before the return of this function.
4334 **/
4335 static int
lpfc_sli_brdrestart_s3(struct lpfc_hba * phba)4336 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba)
4337 {
4338 MAILBOX_t *mb;
4339 struct lpfc_sli *psli;
4340 volatile uint32_t word0;
4341 void __iomem *to_slim;
4342 uint32_t hba_aer_enabled;
4343
4344 spin_lock_irq(&phba->hbalock);
4345
4346 /* Take PCIe device Advanced Error Reporting (AER) state */
4347 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED;
4348
4349 psli = &phba->sli;
4350
4351 /* Restart HBA */
4352 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4353 "0337 Restart HBA Data: x%x x%x\n",
4354 (phba->pport) ? phba->pport->port_state : 0,
4355 psli->sli_flag);
4356
4357 word0 = 0;
4358 mb = (MAILBOX_t *) &word0;
4359 mb->mbxCommand = MBX_RESTART;
4360 mb->mbxHc = 1;
4361
4362 lpfc_reset_barrier(phba);
4363
4364 to_slim = phba->MBslimaddr;
4365 writel(*(uint32_t *) mb, to_slim);
4366 readl(to_slim); /* flush */
4367
4368 /* Only skip post after fc_ffinit is completed */
4369 if (phba->pport && phba->pport->port_state)
4370 word0 = 1; /* This is really setting up word1 */
4371 else
4372 word0 = 0; /* This is really setting up word1 */
4373 to_slim = phba->MBslimaddr + sizeof (uint32_t);
4374 writel(*(uint32_t *) mb, to_slim);
4375 readl(to_slim); /* flush */
4376
4377 lpfc_sli_brdreset(phba);
4378 if (phba->pport)
4379 phba->pport->stopped = 0;
4380 phba->link_state = LPFC_INIT_START;
4381 phba->hba_flag = 0;
4382 spin_unlock_irq(&phba->hbalock);
4383
4384 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
4385 psli->stats_start = get_seconds();
4386
4387 /* Give the INITFF and Post time to settle. */
4388 mdelay(100);
4389
4390 /* Reset HBA AER if it was enabled, note hba_flag was reset above */
4391 if (hba_aer_enabled)
4392 pci_disable_pcie_error_reporting(phba->pcidev);
4393
4394 lpfc_hba_down_post(phba);
4395
4396 return 0;
4397 }
4398
4399 /**
4400 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba
4401 * @phba: Pointer to HBA context object.
4402 *
4403 * This function is called in the SLI initialization code path to restart
4404 * a SLI4 HBA. The caller is not required to hold any lock.
4405 * At the end of the function, it calls lpfc_hba_down_post function to
4406 * free any pending commands.
4407 **/
4408 static int
lpfc_sli_brdrestart_s4(struct lpfc_hba * phba)4409 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba)
4410 {
4411 struct lpfc_sli *psli = &phba->sli;
4412 uint32_t hba_aer_enabled;
4413 int rc;
4414
4415 /* Restart HBA */
4416 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4417 "0296 Restart HBA Data: x%x x%x\n",
4418 phba->pport->port_state, psli->sli_flag);
4419
4420 /* Take PCIe device Advanced Error Reporting (AER) state */
4421 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED;
4422
4423 rc = lpfc_sli4_brdreset(phba);
4424 if (rc)
4425 return rc;
4426
4427 spin_lock_irq(&phba->hbalock);
4428 phba->pport->stopped = 0;
4429 phba->link_state = LPFC_INIT_START;
4430 phba->hba_flag = 0;
4431 spin_unlock_irq(&phba->hbalock);
4432
4433 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
4434 psli->stats_start = get_seconds();
4435
4436 /* Reset HBA AER if it was enabled, note hba_flag was reset above */
4437 if (hba_aer_enabled)
4438 pci_disable_pcie_error_reporting(phba->pcidev);
4439
4440 lpfc_hba_down_post(phba);
4441 lpfc_sli4_queue_destroy(phba);
4442
4443 return rc;
4444 }
4445
4446 /**
4447 * lpfc_sli_brdrestart - Wrapper func for restarting hba
4448 * @phba: Pointer to HBA context object.
4449 *
4450 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the
4451 * API jump table function pointer from the lpfc_hba struct.
4452 **/
4453 int
lpfc_sli_brdrestart(struct lpfc_hba * phba)4454 lpfc_sli_brdrestart(struct lpfc_hba *phba)
4455 {
4456 return phba->lpfc_sli_brdrestart(phba);
4457 }
4458
4459 /**
4460 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart
4461 * @phba: Pointer to HBA context object.
4462 *
4463 * This function is called after a HBA restart to wait for successful
4464 * restart of the HBA. Successful restart of the HBA is indicated by
4465 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15
4466 * iteration, the function will restart the HBA again. The function returns
4467 * zero if HBA successfully restarted else returns negative error code.
4468 **/
4469 int
lpfc_sli_chipset_init(struct lpfc_hba * phba)4470 lpfc_sli_chipset_init(struct lpfc_hba *phba)
4471 {
4472 uint32_t status, i = 0;
4473
4474 /* Read the HBA Host Status Register */
4475 if (lpfc_readl(phba->HSregaddr, &status))
4476 return -EIO;
4477
4478 /* Check status register to see what current state is */
4479 i = 0;
4480 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) {
4481
4482 /* Check every 10ms for 10 retries, then every 100ms for 90
4483 * retries, then every 1 sec for 50 retires for a total of
4484 * ~60 seconds before reset the board again and check every
4485 * 1 sec for 50 retries. The up to 60 seconds before the
4486 * board ready is required by the Falcon FIPS zeroization
4487 * complete, and any reset the board in between shall cause
4488 * restart of zeroization, further delay the board ready.
4489 */
4490 if (i++ >= 200) {
4491 /* Adapter failed to init, timeout, status reg
4492 <status> */
4493 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4494 "0436 Adapter failed to init, "
4495 "timeout, status reg x%x, "
4496 "FW Data: A8 x%x AC x%x\n", status,
4497 readl(phba->MBslimaddr + 0xa8),
4498 readl(phba->MBslimaddr + 0xac));
4499 phba->link_state = LPFC_HBA_ERROR;
4500 return -ETIMEDOUT;
4501 }
4502
4503 /* Check to see if any errors occurred during init */
4504 if (status & HS_FFERM) {
4505 /* ERROR: During chipset initialization */
4506 /* Adapter failed to init, chipset, status reg
4507 <status> */
4508 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4509 "0437 Adapter failed to init, "
4510 "chipset, status reg x%x, "
4511 "FW Data: A8 x%x AC x%x\n", status,
4512 readl(phba->MBslimaddr + 0xa8),
4513 readl(phba->MBslimaddr + 0xac));
4514 phba->link_state = LPFC_HBA_ERROR;
4515 return -EIO;
4516 }
4517
4518 if (i <= 10)
4519 msleep(10);
4520 else if (i <= 100)
4521 msleep(100);
4522 else
4523 msleep(1000);
4524
4525 if (i == 150) {
4526 /* Do post */
4527 phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4528 lpfc_sli_brdrestart(phba);
4529 }
4530 /* Read the HBA Host Status Register */
4531 if (lpfc_readl(phba->HSregaddr, &status))
4532 return -EIO;
4533 }
4534
4535 /* Check to see if any errors occurred during init */
4536 if (status & HS_FFERM) {
4537 /* ERROR: During chipset initialization */
4538 /* Adapter failed to init, chipset, status reg <status> */
4539 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4540 "0438 Adapter failed to init, chipset, "
4541 "status reg x%x, "
4542 "FW Data: A8 x%x AC x%x\n", status,
4543 readl(phba->MBslimaddr + 0xa8),
4544 readl(phba->MBslimaddr + 0xac));
4545 phba->link_state = LPFC_HBA_ERROR;
4546 return -EIO;
4547 }
4548
4549 /* Clear all interrupt enable conditions */
4550 writel(0, phba->HCregaddr);
4551 readl(phba->HCregaddr); /* flush */
4552
4553 /* setup host attn register */
4554 writel(0xffffffff, phba->HAregaddr);
4555 readl(phba->HAregaddr); /* flush */
4556 return 0;
4557 }
4558
4559 /**
4560 * lpfc_sli_hbq_count - Get the number of HBQs to be configured
4561 *
4562 * This function calculates and returns the number of HBQs required to be
4563 * configured.
4564 **/
4565 int
lpfc_sli_hbq_count(void)4566 lpfc_sli_hbq_count(void)
4567 {
4568 return ARRAY_SIZE(lpfc_hbq_defs);
4569 }
4570
4571 /**
4572 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries
4573 *
4574 * This function adds the number of hbq entries in every HBQ to get
4575 * the total number of hbq entries required for the HBA and returns
4576 * the total count.
4577 **/
4578 static int
lpfc_sli_hbq_entry_count(void)4579 lpfc_sli_hbq_entry_count(void)
4580 {
4581 int hbq_count = lpfc_sli_hbq_count();
4582 int count = 0;
4583 int i;
4584
4585 for (i = 0; i < hbq_count; ++i)
4586 count += lpfc_hbq_defs[i]->entry_count;
4587 return count;
4588 }
4589
4590 /**
4591 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries
4592 *
4593 * This function calculates amount of memory required for all hbq entries
4594 * to be configured and returns the total memory required.
4595 **/
4596 int
lpfc_sli_hbq_size(void)4597 lpfc_sli_hbq_size(void)
4598 {
4599 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry);
4600 }
4601
4602 /**
4603 * lpfc_sli_hbq_setup - configure and initialize HBQs
4604 * @phba: Pointer to HBA context object.
4605 *
4606 * This function is called during the SLI initialization to configure
4607 * all the HBQs and post buffers to the HBQ. The caller is not
4608 * required to hold any locks. This function will return zero if successful
4609 * else it will return negative error code.
4610 **/
4611 static int
lpfc_sli_hbq_setup(struct lpfc_hba * phba)4612 lpfc_sli_hbq_setup(struct lpfc_hba *phba)
4613 {
4614 int hbq_count = lpfc_sli_hbq_count();
4615 LPFC_MBOXQ_t *pmb;
4616 MAILBOX_t *pmbox;
4617 uint32_t hbqno;
4618 uint32_t hbq_entry_index;
4619
4620 /* Get a Mailbox buffer to setup mailbox
4621 * commands for HBA initialization
4622 */
4623 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4624
4625 if (!pmb)
4626 return -ENOMEM;
4627
4628 pmbox = &pmb->u.mb;
4629
4630 /* Initialize the struct lpfc_sli_hbq structure for each hbq */
4631 phba->link_state = LPFC_INIT_MBX_CMDS;
4632 phba->hbq_in_use = 1;
4633
4634 hbq_entry_index = 0;
4635 for (hbqno = 0; hbqno < hbq_count; ++hbqno) {
4636 phba->hbqs[hbqno].next_hbqPutIdx = 0;
4637 phba->hbqs[hbqno].hbqPutIdx = 0;
4638 phba->hbqs[hbqno].local_hbqGetIdx = 0;
4639 phba->hbqs[hbqno].entry_count =
4640 lpfc_hbq_defs[hbqno]->entry_count;
4641 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno],
4642 hbq_entry_index, pmb);
4643 hbq_entry_index += phba->hbqs[hbqno].entry_count;
4644
4645 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
4646 /* Adapter failed to init, mbxCmd <cmd> CFG_RING,
4647 mbxStatus <status>, ring <num> */
4648
4649 lpfc_printf_log(phba, KERN_ERR,
4650 LOG_SLI | LOG_VPORT,
4651 "1805 Adapter failed to init. "
4652 "Data: x%x x%x x%x\n",
4653 pmbox->mbxCommand,
4654 pmbox->mbxStatus, hbqno);
4655
4656 phba->link_state = LPFC_HBA_ERROR;
4657 mempool_free(pmb, phba->mbox_mem_pool);
4658 return -ENXIO;
4659 }
4660 }
4661 phba->hbq_count = hbq_count;
4662
4663 mempool_free(pmb, phba->mbox_mem_pool);
4664
4665 /* Initially populate or replenish the HBQs */
4666 for (hbqno = 0; hbqno < hbq_count; ++hbqno)
4667 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno);
4668 return 0;
4669 }
4670
4671 /**
4672 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA
4673 * @phba: Pointer to HBA context object.
4674 *
4675 * This function is called during the SLI initialization to configure
4676 * all the HBQs and post buffers to the HBQ. The caller is not
4677 * required to hold any locks. This function will return zero if successful
4678 * else it will return negative error code.
4679 **/
4680 static int
lpfc_sli4_rb_setup(struct lpfc_hba * phba)4681 lpfc_sli4_rb_setup(struct lpfc_hba *phba)
4682 {
4683 phba->hbq_in_use = 1;
4684 phba->hbqs[LPFC_ELS_HBQ].entry_count =
4685 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count;
4686 phba->hbq_count = 1;
4687 lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ);
4688 /* Initially populate or replenish the HBQs */
4689 return 0;
4690 }
4691
4692 /**
4693 * lpfc_sli_config_port - Issue config port mailbox command
4694 * @phba: Pointer to HBA context object.
4695 * @sli_mode: sli mode - 2/3
4696 *
4697 * This function is called by the sli initialization code path
4698 * to issue config_port mailbox command. This function restarts the
4699 * HBA firmware and issues a config_port mailbox command to configure
4700 * the SLI interface in the sli mode specified by sli_mode
4701 * variable. The caller is not required to hold any locks.
4702 * The function returns 0 if successful, else returns negative error
4703 * code.
4704 **/
4705 int
lpfc_sli_config_port(struct lpfc_hba * phba,int sli_mode)4706 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode)
4707 {
4708 LPFC_MBOXQ_t *pmb;
4709 uint32_t resetcount = 0, rc = 0, done = 0;
4710
4711 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4712 if (!pmb) {
4713 phba->link_state = LPFC_HBA_ERROR;
4714 return -ENOMEM;
4715 }
4716
4717 phba->sli_rev = sli_mode;
4718 while (resetcount < 2 && !done) {
4719 spin_lock_irq(&phba->hbalock);
4720 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE;
4721 spin_unlock_irq(&phba->hbalock);
4722 phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4723 lpfc_sli_brdrestart(phba);
4724 rc = lpfc_sli_chipset_init(phba);
4725 if (rc)
4726 break;
4727
4728 spin_lock_irq(&phba->hbalock);
4729 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
4730 spin_unlock_irq(&phba->hbalock);
4731 resetcount++;
4732
4733 /* Call pre CONFIG_PORT mailbox command initialization. A
4734 * value of 0 means the call was successful. Any other
4735 * nonzero value is a failure, but if ERESTART is returned,
4736 * the driver may reset the HBA and try again.
4737 */
4738 rc = lpfc_config_port_prep(phba);
4739 if (rc == -ERESTART) {
4740 phba->link_state = LPFC_LINK_UNKNOWN;
4741 continue;
4742 } else if (rc)
4743 break;
4744
4745 phba->link_state = LPFC_INIT_MBX_CMDS;
4746 lpfc_config_port(phba, pmb);
4747 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
4748 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED |
4749 LPFC_SLI3_HBQ_ENABLED |
4750 LPFC_SLI3_CRP_ENABLED |
4751 LPFC_SLI3_BG_ENABLED |
4752 LPFC_SLI3_DSS_ENABLED);
4753 if (rc != MBX_SUCCESS) {
4754 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4755 "0442 Adapter failed to init, mbxCmd x%x "
4756 "CONFIG_PORT, mbxStatus x%x Data: x%x\n",
4757 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0);
4758 spin_lock_irq(&phba->hbalock);
4759 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE;
4760 spin_unlock_irq(&phba->hbalock);
4761 rc = -ENXIO;
4762 } else {
4763 /* Allow asynchronous mailbox command to go through */
4764 spin_lock_irq(&phba->hbalock);
4765 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
4766 spin_unlock_irq(&phba->hbalock);
4767 done = 1;
4768
4769 if ((pmb->u.mb.un.varCfgPort.casabt == 1) &&
4770 (pmb->u.mb.un.varCfgPort.gasabt == 0))
4771 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
4772 "3110 Port did not grant ASABT\n");
4773 }
4774 }
4775 if (!done) {
4776 rc = -EINVAL;
4777 goto do_prep_failed;
4778 }
4779 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) {
4780 if (!pmb->u.mb.un.varCfgPort.cMA) {
4781 rc = -ENXIO;
4782 goto do_prep_failed;
4783 }
4784 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) {
4785 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED;
4786 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi;
4787 phba->max_vports = (phba->max_vpi > phba->max_vports) ?
4788 phba->max_vpi : phba->max_vports;
4789
4790 } else
4791 phba->max_vpi = 0;
4792 phba->fips_level = 0;
4793 phba->fips_spec_rev = 0;
4794 if (pmb->u.mb.un.varCfgPort.gdss) {
4795 phba->sli3_options |= LPFC_SLI3_DSS_ENABLED;
4796 phba->fips_level = pmb->u.mb.un.varCfgPort.fips_level;
4797 phba->fips_spec_rev = pmb->u.mb.un.varCfgPort.fips_rev;
4798 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4799 "2850 Security Crypto Active. FIPS x%d "
4800 "(Spec Rev: x%d)",
4801 phba->fips_level, phba->fips_spec_rev);
4802 }
4803 if (pmb->u.mb.un.varCfgPort.sec_err) {
4804 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4805 "2856 Config Port Security Crypto "
4806 "Error: x%x ",
4807 pmb->u.mb.un.varCfgPort.sec_err);
4808 }
4809 if (pmb->u.mb.un.varCfgPort.gerbm)
4810 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED;
4811 if (pmb->u.mb.un.varCfgPort.gcrp)
4812 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED;
4813
4814 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get;
4815 phba->port_gp = phba->mbox->us.s3_pgp.port;
4816
4817 if (phba->cfg_enable_bg) {
4818 if (pmb->u.mb.un.varCfgPort.gbg)
4819 phba->sli3_options |= LPFC_SLI3_BG_ENABLED;
4820 else
4821 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4822 "0443 Adapter did not grant "
4823 "BlockGuard\n");
4824 }
4825 } else {
4826 phba->hbq_get = NULL;
4827 phba->port_gp = phba->mbox->us.s2.port;
4828 phba->max_vpi = 0;
4829 }
4830 do_prep_failed:
4831 mempool_free(pmb, phba->mbox_mem_pool);
4832 return rc;
4833 }
4834
4835
4836 /**
4837 * lpfc_sli_hba_setup - SLI initialization function
4838 * @phba: Pointer to HBA context object.
4839 *
4840 * This function is the main SLI initialization function. This function
4841 * is called by the HBA initialization code, HBA reset code and HBA
4842 * error attention handler code. Caller is not required to hold any
4843 * locks. This function issues config_port mailbox command to configure
4844 * the SLI, setup iocb rings and HBQ rings. In the end the function
4845 * calls the config_port_post function to issue init_link mailbox
4846 * command and to start the discovery. The function will return zero
4847 * if successful, else it will return negative error code.
4848 **/
4849 int
lpfc_sli_hba_setup(struct lpfc_hba * phba)4850 lpfc_sli_hba_setup(struct lpfc_hba *phba)
4851 {
4852 uint32_t rc;
4853 int mode = 3, i;
4854 int longs;
4855
4856 switch (phba->cfg_sli_mode) {
4857 case 2:
4858 if (phba->cfg_enable_npiv) {
4859 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT,
4860 "1824 NPIV enabled: Override sli_mode "
4861 "parameter (%d) to auto (0).\n",
4862 phba->cfg_sli_mode);
4863 break;
4864 }
4865 mode = 2;
4866 break;
4867 case 0:
4868 case 3:
4869 break;
4870 default:
4871 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT,
4872 "1819 Unrecognized sli_mode parameter: %d.\n",
4873 phba->cfg_sli_mode);
4874
4875 break;
4876 }
4877 phba->fcp_embed_io = 0; /* SLI4 FC support only */
4878
4879 rc = lpfc_sli_config_port(phba, mode);
4880
4881 if (rc && phba->cfg_sli_mode == 3)
4882 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT,
4883 "1820 Unable to select SLI-3. "
4884 "Not supported by adapter.\n");
4885 if (rc && mode != 2)
4886 rc = lpfc_sli_config_port(phba, 2);
4887 else if (rc && mode == 2)
4888 rc = lpfc_sli_config_port(phba, 3);
4889 if (rc)
4890 goto lpfc_sli_hba_setup_error;
4891
4892 /* Enable PCIe device Advanced Error Reporting (AER) if configured */
4893 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) {
4894 rc = pci_enable_pcie_error_reporting(phba->pcidev);
4895 if (!rc) {
4896 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4897 "2709 This device supports "
4898 "Advanced Error Reporting (AER)\n");
4899 spin_lock_irq(&phba->hbalock);
4900 phba->hba_flag |= HBA_AER_ENABLED;
4901 spin_unlock_irq(&phba->hbalock);
4902 } else {
4903 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4904 "2708 This device does not support "
4905 "Advanced Error Reporting (AER): %d\n",
4906 rc);
4907 phba->cfg_aer_support = 0;
4908 }
4909 }
4910
4911 if (phba->sli_rev == 3) {
4912 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE;
4913 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE;
4914 } else {
4915 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE;
4916 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE;
4917 phba->sli3_options = 0;
4918 }
4919
4920 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4921 "0444 Firmware in SLI %x mode. Max_vpi %d\n",
4922 phba->sli_rev, phba->max_vpi);
4923 rc = lpfc_sli_ring_map(phba);
4924
4925 if (rc)
4926 goto lpfc_sli_hba_setup_error;
4927
4928 /* Initialize VPIs. */
4929 if (phba->sli_rev == LPFC_SLI_REV3) {
4930 /*
4931 * The VPI bitmask and physical ID array are allocated
4932 * and initialized once only - at driver load. A port
4933 * reset doesn't need to reinitialize this memory.
4934 */
4935 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) {
4936 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG;
4937 phba->vpi_bmask = kzalloc(longs * sizeof(unsigned long),
4938 GFP_KERNEL);
4939 if (!phba->vpi_bmask) {
4940 rc = -ENOMEM;
4941 goto lpfc_sli_hba_setup_error;
4942 }
4943
4944 phba->vpi_ids = kzalloc(
4945 (phba->max_vpi+1) * sizeof(uint16_t),
4946 GFP_KERNEL);
4947 if (!phba->vpi_ids) {
4948 kfree(phba->vpi_bmask);
4949 rc = -ENOMEM;
4950 goto lpfc_sli_hba_setup_error;
4951 }
4952 for (i = 0; i < phba->max_vpi; i++)
4953 phba->vpi_ids[i] = i;
4954 }
4955 }
4956
4957 /* Init HBQs */
4958 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
4959 rc = lpfc_sli_hbq_setup(phba);
4960 if (rc)
4961 goto lpfc_sli_hba_setup_error;
4962 }
4963 spin_lock_irq(&phba->hbalock);
4964 phba->sli.sli_flag |= LPFC_PROCESS_LA;
4965 spin_unlock_irq(&phba->hbalock);
4966
4967 rc = lpfc_config_port_post(phba);
4968 if (rc)
4969 goto lpfc_sli_hba_setup_error;
4970
4971 return rc;
4972
4973 lpfc_sli_hba_setup_error:
4974 phba->link_state = LPFC_HBA_ERROR;
4975 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4976 "0445 Firmware initialization failed\n");
4977 return rc;
4978 }
4979
4980 /**
4981 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region
4982 * @phba: Pointer to HBA context object.
4983 * @mboxq: mailbox pointer.
4984 * This function issue a dump mailbox command to read config region
4985 * 23 and parse the records in the region and populate driver
4986 * data structure.
4987 **/
4988 static int
lpfc_sli4_read_fcoe_params(struct lpfc_hba * phba)4989 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba)
4990 {
4991 LPFC_MBOXQ_t *mboxq;
4992 struct lpfc_dmabuf *mp;
4993 struct lpfc_mqe *mqe;
4994 uint32_t data_length;
4995 int rc;
4996
4997 /* Program the default value of vlan_id and fc_map */
4998 phba->valid_vlan = 0;
4999 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0;
5000 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1;
5001 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2;
5002
5003 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5004 if (!mboxq)
5005 return -ENOMEM;
5006
5007 mqe = &mboxq->u.mqe;
5008 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) {
5009 rc = -ENOMEM;
5010 goto out_free_mboxq;
5011 }
5012
5013 mp = (struct lpfc_dmabuf *) mboxq->context1;
5014 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5015
5016 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
5017 "(%d):2571 Mailbox cmd x%x Status x%x "
5018 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
5019 "x%x x%x x%x x%x x%x x%x x%x x%x x%x "
5020 "CQ: x%x x%x x%x x%x\n",
5021 mboxq->vport ? mboxq->vport->vpi : 0,
5022 bf_get(lpfc_mqe_command, mqe),
5023 bf_get(lpfc_mqe_status, mqe),
5024 mqe->un.mb_words[0], mqe->un.mb_words[1],
5025 mqe->un.mb_words[2], mqe->un.mb_words[3],
5026 mqe->un.mb_words[4], mqe->un.mb_words[5],
5027 mqe->un.mb_words[6], mqe->un.mb_words[7],
5028 mqe->un.mb_words[8], mqe->un.mb_words[9],
5029 mqe->un.mb_words[10], mqe->un.mb_words[11],
5030 mqe->un.mb_words[12], mqe->un.mb_words[13],
5031 mqe->un.mb_words[14], mqe->un.mb_words[15],
5032 mqe->un.mb_words[16], mqe->un.mb_words[50],
5033 mboxq->mcqe.word0,
5034 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1,
5035 mboxq->mcqe.trailer);
5036
5037 if (rc) {
5038 lpfc_mbuf_free(phba, mp->virt, mp->phys);
5039 kfree(mp);
5040 rc = -EIO;
5041 goto out_free_mboxq;
5042 }
5043 data_length = mqe->un.mb_words[5];
5044 if (data_length > DMP_RGN23_SIZE) {
5045 lpfc_mbuf_free(phba, mp->virt, mp->phys);
5046 kfree(mp);
5047 rc = -EIO;
5048 goto out_free_mboxq;
5049 }
5050
5051 lpfc_parse_fcoe_conf(phba, mp->virt, data_length);
5052 lpfc_mbuf_free(phba, mp->virt, mp->phys);
5053 kfree(mp);
5054 rc = 0;
5055
5056 out_free_mboxq:
5057 mempool_free(mboxq, phba->mbox_mem_pool);
5058 return rc;
5059 }
5060
5061 /**
5062 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data
5063 * @phba: pointer to lpfc hba data structure.
5064 * @mboxq: pointer to the LPFC_MBOXQ_t structure.
5065 * @vpd: pointer to the memory to hold resulting port vpd data.
5066 * @vpd_size: On input, the number of bytes allocated to @vpd.
5067 * On output, the number of data bytes in @vpd.
5068 *
5069 * This routine executes a READ_REV SLI4 mailbox command. In
5070 * addition, this routine gets the port vpd data.
5071 *
5072 * Return codes
5073 * 0 - successful
5074 * -ENOMEM - could not allocated memory.
5075 **/
5076 static int
lpfc_sli4_read_rev(struct lpfc_hba * phba,LPFC_MBOXQ_t * mboxq,uint8_t * vpd,uint32_t * vpd_size)5077 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
5078 uint8_t *vpd, uint32_t *vpd_size)
5079 {
5080 int rc = 0;
5081 uint32_t dma_size;
5082 struct lpfc_dmabuf *dmabuf;
5083 struct lpfc_mqe *mqe;
5084
5085 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
5086 if (!dmabuf)
5087 return -ENOMEM;
5088
5089 /*
5090 * Get a DMA buffer for the vpd data resulting from the READ_REV
5091 * mailbox command.
5092 */
5093 dma_size = *vpd_size;
5094 dmabuf->virt = dma_zalloc_coherent(&phba->pcidev->dev, dma_size,
5095 &dmabuf->phys, GFP_KERNEL);
5096 if (!dmabuf->virt) {
5097 kfree(dmabuf);
5098 return -ENOMEM;
5099 }
5100
5101 /*
5102 * The SLI4 implementation of READ_REV conflicts at word1,
5103 * bits 31:16 and SLI4 adds vpd functionality not present
5104 * in SLI3. This code corrects the conflicts.
5105 */
5106 lpfc_read_rev(phba, mboxq);
5107 mqe = &mboxq->u.mqe;
5108 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys);
5109 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys);
5110 mqe->un.read_rev.word1 &= 0x0000FFFF;
5111 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1);
5112 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size);
5113
5114 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5115 if (rc) {
5116 dma_free_coherent(&phba->pcidev->dev, dma_size,
5117 dmabuf->virt, dmabuf->phys);
5118 kfree(dmabuf);
5119 return -EIO;
5120 }
5121
5122 /*
5123 * The available vpd length cannot be bigger than the
5124 * DMA buffer passed to the port. Catch the less than
5125 * case and update the caller's size.
5126 */
5127 if (mqe->un.read_rev.avail_vpd_len < *vpd_size)
5128 *vpd_size = mqe->un.read_rev.avail_vpd_len;
5129
5130 memcpy(vpd, dmabuf->virt, *vpd_size);
5131
5132 dma_free_coherent(&phba->pcidev->dev, dma_size,
5133 dmabuf->virt, dmabuf->phys);
5134 kfree(dmabuf);
5135 return 0;
5136 }
5137
5138 /**
5139 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name
5140 * @phba: pointer to lpfc hba data structure.
5141 *
5142 * This routine retrieves SLI4 device physical port name this PCI function
5143 * is attached to.
5144 *
5145 * Return codes
5146 * 0 - successful
5147 * otherwise - failed to retrieve physical port name
5148 **/
5149 static int
lpfc_sli4_retrieve_pport_name(struct lpfc_hba * phba)5150 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba)
5151 {
5152 LPFC_MBOXQ_t *mboxq;
5153 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr;
5154 struct lpfc_controller_attribute *cntl_attr;
5155 struct lpfc_mbx_get_port_name *get_port_name;
5156 void *virtaddr = NULL;
5157 uint32_t alloclen, reqlen;
5158 uint32_t shdr_status, shdr_add_status;
5159 union lpfc_sli4_cfg_shdr *shdr;
5160 char cport_name = 0;
5161 int rc;
5162
5163 /* We assume nothing at this point */
5164 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
5165 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON;
5166
5167 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5168 if (!mboxq)
5169 return -ENOMEM;
5170 /* obtain link type and link number via READ_CONFIG */
5171 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
5172 lpfc_sli4_read_config(phba);
5173 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL)
5174 goto retrieve_ppname;
5175
5176 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */
5177 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes);
5178 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
5179 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen,
5180 LPFC_SLI4_MBX_NEMBED);
5181 if (alloclen < reqlen) {
5182 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
5183 "3084 Allocated DMA memory size (%d) is "
5184 "less than the requested DMA memory size "
5185 "(%d)\n", alloclen, reqlen);
5186 rc = -ENOMEM;
5187 goto out_free_mboxq;
5188 }
5189 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5190 virtaddr = mboxq->sge_array->addr[0];
5191 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr;
5192 shdr = &mbx_cntl_attr->cfg_shdr;
5193 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
5194 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
5195 if (shdr_status || shdr_add_status || rc) {
5196 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
5197 "3085 Mailbox x%x (x%x/x%x) failed, "
5198 "rc:x%x, status:x%x, add_status:x%x\n",
5199 bf_get(lpfc_mqe_command, &mboxq->u.mqe),
5200 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
5201 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
5202 rc, shdr_status, shdr_add_status);
5203 rc = -ENXIO;
5204 goto out_free_mboxq;
5205 }
5206 cntl_attr = &mbx_cntl_attr->cntl_attr;
5207 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL;
5208 phba->sli4_hba.lnk_info.lnk_tp =
5209 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr);
5210 phba->sli4_hba.lnk_info.lnk_no =
5211 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr);
5212 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5213 "3086 lnk_type:%d, lnk_numb:%d\n",
5214 phba->sli4_hba.lnk_info.lnk_tp,
5215 phba->sli4_hba.lnk_info.lnk_no);
5216
5217 retrieve_ppname:
5218 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
5219 LPFC_MBOX_OPCODE_GET_PORT_NAME,
5220 sizeof(struct lpfc_mbx_get_port_name) -
5221 sizeof(struct lpfc_sli4_cfg_mhdr),
5222 LPFC_SLI4_MBX_EMBED);
5223 get_port_name = &mboxq->u.mqe.un.get_port_name;
5224 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr;
5225 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1);
5226 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request,
5227 phba->sli4_hba.lnk_info.lnk_tp);
5228 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5229 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
5230 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
5231 if (shdr_status || shdr_add_status || rc) {
5232 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
5233 "3087 Mailbox x%x (x%x/x%x) failed: "
5234 "rc:x%x, status:x%x, add_status:x%x\n",
5235 bf_get(lpfc_mqe_command, &mboxq->u.mqe),
5236 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
5237 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
5238 rc, shdr_status, shdr_add_status);
5239 rc = -ENXIO;
5240 goto out_free_mboxq;
5241 }
5242 switch (phba->sli4_hba.lnk_info.lnk_no) {
5243 case LPFC_LINK_NUMBER_0:
5244 cport_name = bf_get(lpfc_mbx_get_port_name_name0,
5245 &get_port_name->u.response);
5246 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5247 break;
5248 case LPFC_LINK_NUMBER_1:
5249 cport_name = bf_get(lpfc_mbx_get_port_name_name1,
5250 &get_port_name->u.response);
5251 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5252 break;
5253 case LPFC_LINK_NUMBER_2:
5254 cport_name = bf_get(lpfc_mbx_get_port_name_name2,
5255 &get_port_name->u.response);
5256 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5257 break;
5258 case LPFC_LINK_NUMBER_3:
5259 cport_name = bf_get(lpfc_mbx_get_port_name_name3,
5260 &get_port_name->u.response);
5261 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5262 break;
5263 default:
5264 break;
5265 }
5266
5267 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) {
5268 phba->Port[0] = cport_name;
5269 phba->Port[1] = '\0';
5270 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5271 "3091 SLI get port name: %s\n", phba->Port);
5272 }
5273
5274 out_free_mboxq:
5275 if (rc != MBX_TIMEOUT) {
5276 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG)
5277 lpfc_sli4_mbox_cmd_free(phba, mboxq);
5278 else
5279 mempool_free(mboxq, phba->mbox_mem_pool);
5280 }
5281 return rc;
5282 }
5283
5284 /**
5285 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues
5286 * @phba: pointer to lpfc hba data structure.
5287 *
5288 * This routine is called to explicitly arm the SLI4 device's completion and
5289 * event queues
5290 **/
5291 static void
lpfc_sli4_arm_cqeq_intr(struct lpfc_hba * phba)5292 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba)
5293 {
5294 int qidx;
5295
5296 lpfc_sli4_cq_release(phba->sli4_hba.mbx_cq, LPFC_QUEUE_REARM);
5297 lpfc_sli4_cq_release(phba->sli4_hba.els_cq, LPFC_QUEUE_REARM);
5298 if (phba->sli4_hba.nvmels_cq)
5299 lpfc_sli4_cq_release(phba->sli4_hba.nvmels_cq,
5300 LPFC_QUEUE_REARM);
5301
5302 if (phba->sli4_hba.fcp_cq)
5303 for (qidx = 0; qidx < phba->cfg_fcp_io_channel; qidx++)
5304 lpfc_sli4_cq_release(phba->sli4_hba.fcp_cq[qidx],
5305 LPFC_QUEUE_REARM);
5306
5307 if (phba->sli4_hba.nvme_cq)
5308 for (qidx = 0; qidx < phba->cfg_nvme_io_channel; qidx++)
5309 lpfc_sli4_cq_release(phba->sli4_hba.nvme_cq[qidx],
5310 LPFC_QUEUE_REARM);
5311
5312 if (phba->cfg_fof)
5313 lpfc_sli4_cq_release(phba->sli4_hba.oas_cq, LPFC_QUEUE_REARM);
5314
5315 if (phba->sli4_hba.hba_eq)
5316 for (qidx = 0; qidx < phba->io_channel_irqs; qidx++)
5317 lpfc_sli4_eq_release(phba->sli4_hba.hba_eq[qidx],
5318 LPFC_QUEUE_REARM);
5319
5320 if (phba->nvmet_support) {
5321 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) {
5322 lpfc_sli4_cq_release(
5323 phba->sli4_hba.nvmet_cqset[qidx],
5324 LPFC_QUEUE_REARM);
5325 }
5326 }
5327
5328 if (phba->cfg_fof)
5329 lpfc_sli4_eq_release(phba->sli4_hba.fof_eq, LPFC_QUEUE_REARM);
5330 }
5331
5332 /**
5333 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count.
5334 * @phba: Pointer to HBA context object.
5335 * @type: The resource extent type.
5336 * @extnt_count: buffer to hold port available extent count.
5337 * @extnt_size: buffer to hold element count per extent.
5338 *
5339 * This function calls the port and retrievs the number of available
5340 * extents and their size for a particular extent type.
5341 *
5342 * Returns: 0 if successful. Nonzero otherwise.
5343 **/
5344 int
lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba * phba,uint16_t type,uint16_t * extnt_count,uint16_t * extnt_size)5345 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type,
5346 uint16_t *extnt_count, uint16_t *extnt_size)
5347 {
5348 int rc = 0;
5349 uint32_t length;
5350 uint32_t mbox_tmo;
5351 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info;
5352 LPFC_MBOXQ_t *mbox;
5353
5354 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5355 if (!mbox)
5356 return -ENOMEM;
5357
5358 /* Find out how many extents are available for this resource type */
5359 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) -
5360 sizeof(struct lpfc_sli4_cfg_mhdr));
5361 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
5362 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO,
5363 length, LPFC_SLI4_MBX_EMBED);
5364
5365 /* Send an extents count of 0 - the GET doesn't use it. */
5366 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
5367 LPFC_SLI4_MBX_EMBED);
5368 if (unlikely(rc)) {
5369 rc = -EIO;
5370 goto err_exit;
5371 }
5372
5373 if (!phba->sli4_hba.intr_enable)
5374 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
5375 else {
5376 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
5377 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
5378 }
5379 if (unlikely(rc)) {
5380 rc = -EIO;
5381 goto err_exit;
5382 }
5383
5384 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info;
5385 if (bf_get(lpfc_mbox_hdr_status,
5386 &rsrc_info->header.cfg_shdr.response)) {
5387 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
5388 "2930 Failed to get resource extents "
5389 "Status 0x%x Add'l Status 0x%x\n",
5390 bf_get(lpfc_mbox_hdr_status,
5391 &rsrc_info->header.cfg_shdr.response),
5392 bf_get(lpfc_mbox_hdr_add_status,
5393 &rsrc_info->header.cfg_shdr.response));
5394 rc = -EIO;
5395 goto err_exit;
5396 }
5397
5398 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt,
5399 &rsrc_info->u.rsp);
5400 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size,
5401 &rsrc_info->u.rsp);
5402
5403 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5404 "3162 Retrieved extents type-%d from port: count:%d, "
5405 "size:%d\n", type, *extnt_count, *extnt_size);
5406
5407 err_exit:
5408 mempool_free(mbox, phba->mbox_mem_pool);
5409 return rc;
5410 }
5411
5412 /**
5413 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents.
5414 * @phba: Pointer to HBA context object.
5415 * @type: The extent type to check.
5416 *
5417 * This function reads the current available extents from the port and checks
5418 * if the extent count or extent size has changed since the last access.
5419 * Callers use this routine post port reset to understand if there is a
5420 * extent reprovisioning requirement.
5421 *
5422 * Returns:
5423 * -Error: error indicates problem.
5424 * 1: Extent count or size has changed.
5425 * 0: No changes.
5426 **/
5427 static int
lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba * phba,uint16_t type)5428 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type)
5429 {
5430 uint16_t curr_ext_cnt, rsrc_ext_cnt;
5431 uint16_t size_diff, rsrc_ext_size;
5432 int rc = 0;
5433 struct lpfc_rsrc_blks *rsrc_entry;
5434 struct list_head *rsrc_blk_list = NULL;
5435
5436 size_diff = 0;
5437 curr_ext_cnt = 0;
5438 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
5439 &rsrc_ext_cnt,
5440 &rsrc_ext_size);
5441 if (unlikely(rc))
5442 return -EIO;
5443
5444 switch (type) {
5445 case LPFC_RSC_TYPE_FCOE_RPI:
5446 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
5447 break;
5448 case LPFC_RSC_TYPE_FCOE_VPI:
5449 rsrc_blk_list = &phba->lpfc_vpi_blk_list;
5450 break;
5451 case LPFC_RSC_TYPE_FCOE_XRI:
5452 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
5453 break;
5454 case LPFC_RSC_TYPE_FCOE_VFI:
5455 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
5456 break;
5457 default:
5458 break;
5459 }
5460
5461 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) {
5462 curr_ext_cnt++;
5463 if (rsrc_entry->rsrc_size != rsrc_ext_size)
5464 size_diff++;
5465 }
5466
5467 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0)
5468 rc = 1;
5469
5470 return rc;
5471 }
5472
5473 /**
5474 * lpfc_sli4_cfg_post_extnts -
5475 * @phba: Pointer to HBA context object.
5476 * @extnt_cnt - number of available extents.
5477 * @type - the extent type (rpi, xri, vfi, vpi).
5478 * @emb - buffer to hold either MBX_EMBED or MBX_NEMBED operation.
5479 * @mbox - pointer to the caller's allocated mailbox structure.
5480 *
5481 * This function executes the extents allocation request. It also
5482 * takes care of the amount of memory needed to allocate or get the
5483 * allocated extents. It is the caller's responsibility to evaluate
5484 * the response.
5485 *
5486 * Returns:
5487 * -Error: Error value describes the condition found.
5488 * 0: if successful
5489 **/
5490 static int
lpfc_sli4_cfg_post_extnts(struct lpfc_hba * phba,uint16_t extnt_cnt,uint16_t type,bool * emb,LPFC_MBOXQ_t * mbox)5491 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt,
5492 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox)
5493 {
5494 int rc = 0;
5495 uint32_t req_len;
5496 uint32_t emb_len;
5497 uint32_t alloc_len, mbox_tmo;
5498
5499 /* Calculate the total requested length of the dma memory */
5500 req_len = extnt_cnt * sizeof(uint16_t);
5501
5502 /*
5503 * Calculate the size of an embedded mailbox. The uint32_t
5504 * accounts for extents-specific word.
5505 */
5506 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
5507 sizeof(uint32_t);
5508
5509 /*
5510 * Presume the allocation and response will fit into an embedded
5511 * mailbox. If not true, reconfigure to a non-embedded mailbox.
5512 */
5513 *emb = LPFC_SLI4_MBX_EMBED;
5514 if (req_len > emb_len) {
5515 req_len = extnt_cnt * sizeof(uint16_t) +
5516 sizeof(union lpfc_sli4_cfg_shdr) +
5517 sizeof(uint32_t);
5518 *emb = LPFC_SLI4_MBX_NEMBED;
5519 }
5520
5521 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
5522 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT,
5523 req_len, *emb);
5524 if (alloc_len < req_len) {
5525 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5526 "2982 Allocated DMA memory size (x%x) is "
5527 "less than the requested DMA memory "
5528 "size (x%x)\n", alloc_len, req_len);
5529 return -ENOMEM;
5530 }
5531 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb);
5532 if (unlikely(rc))
5533 return -EIO;
5534
5535 if (!phba->sli4_hba.intr_enable)
5536 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
5537 else {
5538 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
5539 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
5540 }
5541
5542 if (unlikely(rc))
5543 rc = -EIO;
5544 return rc;
5545 }
5546
5547 /**
5548 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent.
5549 * @phba: Pointer to HBA context object.
5550 * @type: The resource extent type to allocate.
5551 *
5552 * This function allocates the number of elements for the specified
5553 * resource type.
5554 **/
5555 static int
lpfc_sli4_alloc_extent(struct lpfc_hba * phba,uint16_t type)5556 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type)
5557 {
5558 bool emb = false;
5559 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size;
5560 uint16_t rsrc_id, rsrc_start, j, k;
5561 uint16_t *ids;
5562 int i, rc;
5563 unsigned long longs;
5564 unsigned long *bmask;
5565 struct lpfc_rsrc_blks *rsrc_blks;
5566 LPFC_MBOXQ_t *mbox;
5567 uint32_t length;
5568 struct lpfc_id_range *id_array = NULL;
5569 void *virtaddr = NULL;
5570 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
5571 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
5572 struct list_head *ext_blk_list;
5573
5574 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
5575 &rsrc_cnt,
5576 &rsrc_size);
5577 if (unlikely(rc))
5578 return -EIO;
5579
5580 if ((rsrc_cnt == 0) || (rsrc_size == 0)) {
5581 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
5582 "3009 No available Resource Extents "
5583 "for resource type 0x%x: Count: 0x%x, "
5584 "Size 0x%x\n", type, rsrc_cnt,
5585 rsrc_size);
5586 return -ENOMEM;
5587 }
5588
5589 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI,
5590 "2903 Post resource extents type-0x%x: "
5591 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size);
5592
5593 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5594 if (!mbox)
5595 return -ENOMEM;
5596
5597 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox);
5598 if (unlikely(rc)) {
5599 rc = -EIO;
5600 goto err_exit;
5601 }
5602
5603 /*
5604 * Figure out where the response is located. Then get local pointers
5605 * to the response data. The port does not guarantee to respond to
5606 * all extents counts request so update the local variable with the
5607 * allocated count from the port.
5608 */
5609 if (emb == LPFC_SLI4_MBX_EMBED) {
5610 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
5611 id_array = &rsrc_ext->u.rsp.id[0];
5612 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
5613 } else {
5614 virtaddr = mbox->sge_array->addr[0];
5615 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
5616 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
5617 id_array = &n_rsrc->id;
5618 }
5619
5620 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG;
5621 rsrc_id_cnt = rsrc_cnt * rsrc_size;
5622
5623 /*
5624 * Based on the resource size and count, correct the base and max
5625 * resource values.
5626 */
5627 length = sizeof(struct lpfc_rsrc_blks);
5628 switch (type) {
5629 case LPFC_RSC_TYPE_FCOE_RPI:
5630 phba->sli4_hba.rpi_bmask = kzalloc(longs *
5631 sizeof(unsigned long),
5632 GFP_KERNEL);
5633 if (unlikely(!phba->sli4_hba.rpi_bmask)) {
5634 rc = -ENOMEM;
5635 goto err_exit;
5636 }
5637 phba->sli4_hba.rpi_ids = kzalloc(rsrc_id_cnt *
5638 sizeof(uint16_t),
5639 GFP_KERNEL);
5640 if (unlikely(!phba->sli4_hba.rpi_ids)) {
5641 kfree(phba->sli4_hba.rpi_bmask);
5642 rc = -ENOMEM;
5643 goto err_exit;
5644 }
5645
5646 /*
5647 * The next_rpi was initialized with the maximum available
5648 * count but the port may allocate a smaller number. Catch
5649 * that case and update the next_rpi.
5650 */
5651 phba->sli4_hba.next_rpi = rsrc_id_cnt;
5652
5653 /* Initialize local ptrs for common extent processing later. */
5654 bmask = phba->sli4_hba.rpi_bmask;
5655 ids = phba->sli4_hba.rpi_ids;
5656 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
5657 break;
5658 case LPFC_RSC_TYPE_FCOE_VPI:
5659 phba->vpi_bmask = kzalloc(longs *
5660 sizeof(unsigned long),
5661 GFP_KERNEL);
5662 if (unlikely(!phba->vpi_bmask)) {
5663 rc = -ENOMEM;
5664 goto err_exit;
5665 }
5666 phba->vpi_ids = kzalloc(rsrc_id_cnt *
5667 sizeof(uint16_t),
5668 GFP_KERNEL);
5669 if (unlikely(!phba->vpi_ids)) {
5670 kfree(phba->vpi_bmask);
5671 rc = -ENOMEM;
5672 goto err_exit;
5673 }
5674
5675 /* Initialize local ptrs for common extent processing later. */
5676 bmask = phba->vpi_bmask;
5677 ids = phba->vpi_ids;
5678 ext_blk_list = &phba->lpfc_vpi_blk_list;
5679 break;
5680 case LPFC_RSC_TYPE_FCOE_XRI:
5681 phba->sli4_hba.xri_bmask = kzalloc(longs *
5682 sizeof(unsigned long),
5683 GFP_KERNEL);
5684 if (unlikely(!phba->sli4_hba.xri_bmask)) {
5685 rc = -ENOMEM;
5686 goto err_exit;
5687 }
5688 phba->sli4_hba.max_cfg_param.xri_used = 0;
5689 phba->sli4_hba.xri_ids = kzalloc(rsrc_id_cnt *
5690 sizeof(uint16_t),
5691 GFP_KERNEL);
5692 if (unlikely(!phba->sli4_hba.xri_ids)) {
5693 kfree(phba->sli4_hba.xri_bmask);
5694 rc = -ENOMEM;
5695 goto err_exit;
5696 }
5697
5698 /* Initialize local ptrs for common extent processing later. */
5699 bmask = phba->sli4_hba.xri_bmask;
5700 ids = phba->sli4_hba.xri_ids;
5701 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
5702 break;
5703 case LPFC_RSC_TYPE_FCOE_VFI:
5704 phba->sli4_hba.vfi_bmask = kzalloc(longs *
5705 sizeof(unsigned long),
5706 GFP_KERNEL);
5707 if (unlikely(!phba->sli4_hba.vfi_bmask)) {
5708 rc = -ENOMEM;
5709 goto err_exit;
5710 }
5711 phba->sli4_hba.vfi_ids = kzalloc(rsrc_id_cnt *
5712 sizeof(uint16_t),
5713 GFP_KERNEL);
5714 if (unlikely(!phba->sli4_hba.vfi_ids)) {
5715 kfree(phba->sli4_hba.vfi_bmask);
5716 rc = -ENOMEM;
5717 goto err_exit;
5718 }
5719
5720 /* Initialize local ptrs for common extent processing later. */
5721 bmask = phba->sli4_hba.vfi_bmask;
5722 ids = phba->sli4_hba.vfi_ids;
5723 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
5724 break;
5725 default:
5726 /* Unsupported Opcode. Fail call. */
5727 id_array = NULL;
5728 bmask = NULL;
5729 ids = NULL;
5730 ext_blk_list = NULL;
5731 goto err_exit;
5732 }
5733
5734 /*
5735 * Complete initializing the extent configuration with the
5736 * allocated ids assigned to this function. The bitmask serves
5737 * as an index into the array and manages the available ids. The
5738 * array just stores the ids communicated to the port via the wqes.
5739 */
5740 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) {
5741 if ((i % 2) == 0)
5742 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0,
5743 &id_array[k]);
5744 else
5745 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1,
5746 &id_array[k]);
5747
5748 rsrc_blks = kzalloc(length, GFP_KERNEL);
5749 if (unlikely(!rsrc_blks)) {
5750 rc = -ENOMEM;
5751 kfree(bmask);
5752 kfree(ids);
5753 goto err_exit;
5754 }
5755 rsrc_blks->rsrc_start = rsrc_id;
5756 rsrc_blks->rsrc_size = rsrc_size;
5757 list_add_tail(&rsrc_blks->list, ext_blk_list);
5758 rsrc_start = rsrc_id;
5759 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) {
5760 phba->sli4_hba.scsi_xri_start = rsrc_start +
5761 lpfc_sli4_get_iocb_cnt(phba);
5762 phba->sli4_hba.nvme_xri_start =
5763 phba->sli4_hba.scsi_xri_start +
5764 phba->sli4_hba.scsi_xri_max;
5765 }
5766
5767 while (rsrc_id < (rsrc_start + rsrc_size)) {
5768 ids[j] = rsrc_id;
5769 rsrc_id++;
5770 j++;
5771 }
5772 /* Entire word processed. Get next word.*/
5773 if ((i % 2) == 1)
5774 k++;
5775 }
5776 err_exit:
5777 lpfc_sli4_mbox_cmd_free(phba, mbox);
5778 return rc;
5779 }
5780
5781
5782
5783 /**
5784 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent.
5785 * @phba: Pointer to HBA context object.
5786 * @type: the extent's type.
5787 *
5788 * This function deallocates all extents of a particular resource type.
5789 * SLI4 does not allow for deallocating a particular extent range. It
5790 * is the caller's responsibility to release all kernel memory resources.
5791 **/
5792 static int
lpfc_sli4_dealloc_extent(struct lpfc_hba * phba,uint16_t type)5793 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type)
5794 {
5795 int rc;
5796 uint32_t length, mbox_tmo = 0;
5797 LPFC_MBOXQ_t *mbox;
5798 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc;
5799 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next;
5800
5801 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5802 if (!mbox)
5803 return -ENOMEM;
5804
5805 /*
5806 * This function sends an embedded mailbox because it only sends the
5807 * the resource type. All extents of this type are released by the
5808 * port.
5809 */
5810 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) -
5811 sizeof(struct lpfc_sli4_cfg_mhdr));
5812 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
5813 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT,
5814 length, LPFC_SLI4_MBX_EMBED);
5815
5816 /* Send an extents count of 0 - the dealloc doesn't use it. */
5817 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
5818 LPFC_SLI4_MBX_EMBED);
5819 if (unlikely(rc)) {
5820 rc = -EIO;
5821 goto out_free_mbox;
5822 }
5823 if (!phba->sli4_hba.intr_enable)
5824 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
5825 else {
5826 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
5827 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
5828 }
5829 if (unlikely(rc)) {
5830 rc = -EIO;
5831 goto out_free_mbox;
5832 }
5833
5834 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents;
5835 if (bf_get(lpfc_mbox_hdr_status,
5836 &dealloc_rsrc->header.cfg_shdr.response)) {
5837 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
5838 "2919 Failed to release resource extents "
5839 "for type %d - Status 0x%x Add'l Status 0x%x. "
5840 "Resource memory not released.\n",
5841 type,
5842 bf_get(lpfc_mbox_hdr_status,
5843 &dealloc_rsrc->header.cfg_shdr.response),
5844 bf_get(lpfc_mbox_hdr_add_status,
5845 &dealloc_rsrc->header.cfg_shdr.response));
5846 rc = -EIO;
5847 goto out_free_mbox;
5848 }
5849
5850 /* Release kernel memory resources for the specific type. */
5851 switch (type) {
5852 case LPFC_RSC_TYPE_FCOE_VPI:
5853 kfree(phba->vpi_bmask);
5854 kfree(phba->vpi_ids);
5855 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
5856 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
5857 &phba->lpfc_vpi_blk_list, list) {
5858 list_del_init(&rsrc_blk->list);
5859 kfree(rsrc_blk);
5860 }
5861 phba->sli4_hba.max_cfg_param.vpi_used = 0;
5862 break;
5863 case LPFC_RSC_TYPE_FCOE_XRI:
5864 kfree(phba->sli4_hba.xri_bmask);
5865 kfree(phba->sli4_hba.xri_ids);
5866 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
5867 &phba->sli4_hba.lpfc_xri_blk_list, list) {
5868 list_del_init(&rsrc_blk->list);
5869 kfree(rsrc_blk);
5870 }
5871 break;
5872 case LPFC_RSC_TYPE_FCOE_VFI:
5873 kfree(phba->sli4_hba.vfi_bmask);
5874 kfree(phba->sli4_hba.vfi_ids);
5875 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
5876 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
5877 &phba->sli4_hba.lpfc_vfi_blk_list, list) {
5878 list_del_init(&rsrc_blk->list);
5879 kfree(rsrc_blk);
5880 }
5881 break;
5882 case LPFC_RSC_TYPE_FCOE_RPI:
5883 /* RPI bitmask and physical id array are cleaned up earlier. */
5884 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
5885 &phba->sli4_hba.lpfc_rpi_blk_list, list) {
5886 list_del_init(&rsrc_blk->list);
5887 kfree(rsrc_blk);
5888 }
5889 break;
5890 default:
5891 break;
5892 }
5893
5894 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
5895
5896 out_free_mbox:
5897 mempool_free(mbox, phba->mbox_mem_pool);
5898 return rc;
5899 }
5900
5901 static void
lpfc_set_features(struct lpfc_hba * phba,LPFC_MBOXQ_t * mbox,uint32_t feature)5902 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox,
5903 uint32_t feature)
5904 {
5905 uint32_t len;
5906
5907 len = sizeof(struct lpfc_mbx_set_feature) -
5908 sizeof(struct lpfc_sli4_cfg_mhdr);
5909 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
5910 LPFC_MBOX_OPCODE_SET_FEATURES, len,
5911 LPFC_SLI4_MBX_EMBED);
5912
5913 switch (feature) {
5914 case LPFC_SET_UE_RECOVERY:
5915 bf_set(lpfc_mbx_set_feature_UER,
5916 &mbox->u.mqe.un.set_feature, 1);
5917 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY;
5918 mbox->u.mqe.un.set_feature.param_len = 8;
5919 break;
5920 case LPFC_SET_MDS_DIAGS:
5921 bf_set(lpfc_mbx_set_feature_mds,
5922 &mbox->u.mqe.un.set_feature, 1);
5923 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk,
5924 &mbox->u.mqe.un.set_feature, 1);
5925 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS;
5926 mbox->u.mqe.un.set_feature.param_len = 8;
5927 break;
5928 }
5929
5930 return;
5931 }
5932
5933 /**
5934 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents.
5935 * @phba: Pointer to HBA context object.
5936 *
5937 * This function allocates all SLI4 resource identifiers.
5938 **/
5939 int
lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba * phba)5940 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba)
5941 {
5942 int i, rc, error = 0;
5943 uint16_t count, base;
5944 unsigned long longs;
5945
5946 if (!phba->sli4_hba.rpi_hdrs_in_use)
5947 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
5948 if (phba->sli4_hba.extents_in_use) {
5949 /*
5950 * The port supports resource extents. The XRI, VPI, VFI, RPI
5951 * resource extent count must be read and allocated before
5952 * provisioning the resource id arrays.
5953 */
5954 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
5955 LPFC_IDX_RSRC_RDY) {
5956 /*
5957 * Extent-based resources are set - the driver could
5958 * be in a port reset. Figure out if any corrective
5959 * actions need to be taken.
5960 */
5961 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
5962 LPFC_RSC_TYPE_FCOE_VFI);
5963 if (rc != 0)
5964 error++;
5965 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
5966 LPFC_RSC_TYPE_FCOE_VPI);
5967 if (rc != 0)
5968 error++;
5969 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
5970 LPFC_RSC_TYPE_FCOE_XRI);
5971 if (rc != 0)
5972 error++;
5973 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
5974 LPFC_RSC_TYPE_FCOE_RPI);
5975 if (rc != 0)
5976 error++;
5977
5978 /*
5979 * It's possible that the number of resources
5980 * provided to this port instance changed between
5981 * resets. Detect this condition and reallocate
5982 * resources. Otherwise, there is no action.
5983 */
5984 if (error) {
5985 lpfc_printf_log(phba, KERN_INFO,
5986 LOG_MBOX | LOG_INIT,
5987 "2931 Detected extent resource "
5988 "change. Reallocating all "
5989 "extents.\n");
5990 rc = lpfc_sli4_dealloc_extent(phba,
5991 LPFC_RSC_TYPE_FCOE_VFI);
5992 rc = lpfc_sli4_dealloc_extent(phba,
5993 LPFC_RSC_TYPE_FCOE_VPI);
5994 rc = lpfc_sli4_dealloc_extent(phba,
5995 LPFC_RSC_TYPE_FCOE_XRI);
5996 rc = lpfc_sli4_dealloc_extent(phba,
5997 LPFC_RSC_TYPE_FCOE_RPI);
5998 } else
5999 return 0;
6000 }
6001
6002 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
6003 if (unlikely(rc))
6004 goto err_exit;
6005
6006 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
6007 if (unlikely(rc))
6008 goto err_exit;
6009
6010 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
6011 if (unlikely(rc))
6012 goto err_exit;
6013
6014 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
6015 if (unlikely(rc))
6016 goto err_exit;
6017 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
6018 LPFC_IDX_RSRC_RDY);
6019 return rc;
6020 } else {
6021 /*
6022 * The port does not support resource extents. The XRI, VPI,
6023 * VFI, RPI resource ids were determined from READ_CONFIG.
6024 * Just allocate the bitmasks and provision the resource id
6025 * arrays. If a port reset is active, the resources don't
6026 * need any action - just exit.
6027 */
6028 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
6029 LPFC_IDX_RSRC_RDY) {
6030 lpfc_sli4_dealloc_resource_identifiers(phba);
6031 lpfc_sli4_remove_rpis(phba);
6032 }
6033 /* RPIs. */
6034 count = phba->sli4_hba.max_cfg_param.max_rpi;
6035 if (count <= 0) {
6036 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6037 "3279 Invalid provisioning of "
6038 "rpi:%d\n", count);
6039 rc = -EINVAL;
6040 goto err_exit;
6041 }
6042 base = phba->sli4_hba.max_cfg_param.rpi_base;
6043 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6044 phba->sli4_hba.rpi_bmask = kzalloc(longs *
6045 sizeof(unsigned long),
6046 GFP_KERNEL);
6047 if (unlikely(!phba->sli4_hba.rpi_bmask)) {
6048 rc = -ENOMEM;
6049 goto err_exit;
6050 }
6051 phba->sli4_hba.rpi_ids = kzalloc(count *
6052 sizeof(uint16_t),
6053 GFP_KERNEL);
6054 if (unlikely(!phba->sli4_hba.rpi_ids)) {
6055 rc = -ENOMEM;
6056 goto free_rpi_bmask;
6057 }
6058
6059 for (i = 0; i < count; i++)
6060 phba->sli4_hba.rpi_ids[i] = base + i;
6061
6062 /* VPIs. */
6063 count = phba->sli4_hba.max_cfg_param.max_vpi;
6064 if (count <= 0) {
6065 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6066 "3280 Invalid provisioning of "
6067 "vpi:%d\n", count);
6068 rc = -EINVAL;
6069 goto free_rpi_ids;
6070 }
6071 base = phba->sli4_hba.max_cfg_param.vpi_base;
6072 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6073 phba->vpi_bmask = kzalloc(longs *
6074 sizeof(unsigned long),
6075 GFP_KERNEL);
6076 if (unlikely(!phba->vpi_bmask)) {
6077 rc = -ENOMEM;
6078 goto free_rpi_ids;
6079 }
6080 phba->vpi_ids = kzalloc(count *
6081 sizeof(uint16_t),
6082 GFP_KERNEL);
6083 if (unlikely(!phba->vpi_ids)) {
6084 rc = -ENOMEM;
6085 goto free_vpi_bmask;
6086 }
6087
6088 for (i = 0; i < count; i++)
6089 phba->vpi_ids[i] = base + i;
6090
6091 /* XRIs. */
6092 count = phba->sli4_hba.max_cfg_param.max_xri;
6093 if (count <= 0) {
6094 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6095 "3281 Invalid provisioning of "
6096 "xri:%d\n", count);
6097 rc = -EINVAL;
6098 goto free_vpi_ids;
6099 }
6100 base = phba->sli4_hba.max_cfg_param.xri_base;
6101 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6102 phba->sli4_hba.xri_bmask = kzalloc(longs *
6103 sizeof(unsigned long),
6104 GFP_KERNEL);
6105 if (unlikely(!phba->sli4_hba.xri_bmask)) {
6106 rc = -ENOMEM;
6107 goto free_vpi_ids;
6108 }
6109 phba->sli4_hba.max_cfg_param.xri_used = 0;
6110 phba->sli4_hba.xri_ids = kzalloc(count *
6111 sizeof(uint16_t),
6112 GFP_KERNEL);
6113 if (unlikely(!phba->sli4_hba.xri_ids)) {
6114 rc = -ENOMEM;
6115 goto free_xri_bmask;
6116 }
6117
6118 for (i = 0; i < count; i++)
6119 phba->sli4_hba.xri_ids[i] = base + i;
6120
6121 /* VFIs. */
6122 count = phba->sli4_hba.max_cfg_param.max_vfi;
6123 if (count <= 0) {
6124 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6125 "3282 Invalid provisioning of "
6126 "vfi:%d\n", count);
6127 rc = -EINVAL;
6128 goto free_xri_ids;
6129 }
6130 base = phba->sli4_hba.max_cfg_param.vfi_base;
6131 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6132 phba->sli4_hba.vfi_bmask = kzalloc(longs *
6133 sizeof(unsigned long),
6134 GFP_KERNEL);
6135 if (unlikely(!phba->sli4_hba.vfi_bmask)) {
6136 rc = -ENOMEM;
6137 goto free_xri_ids;
6138 }
6139 phba->sli4_hba.vfi_ids = kzalloc(count *
6140 sizeof(uint16_t),
6141 GFP_KERNEL);
6142 if (unlikely(!phba->sli4_hba.vfi_ids)) {
6143 rc = -ENOMEM;
6144 goto free_vfi_bmask;
6145 }
6146
6147 for (i = 0; i < count; i++)
6148 phba->sli4_hba.vfi_ids[i] = base + i;
6149
6150 /*
6151 * Mark all resources ready. An HBA reset doesn't need
6152 * to reset the initialization.
6153 */
6154 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
6155 LPFC_IDX_RSRC_RDY);
6156 return 0;
6157 }
6158
6159 free_vfi_bmask:
6160 kfree(phba->sli4_hba.vfi_bmask);
6161 phba->sli4_hba.vfi_bmask = NULL;
6162 free_xri_ids:
6163 kfree(phba->sli4_hba.xri_ids);
6164 phba->sli4_hba.xri_ids = NULL;
6165 free_xri_bmask:
6166 kfree(phba->sli4_hba.xri_bmask);
6167 phba->sli4_hba.xri_bmask = NULL;
6168 free_vpi_ids:
6169 kfree(phba->vpi_ids);
6170 phba->vpi_ids = NULL;
6171 free_vpi_bmask:
6172 kfree(phba->vpi_bmask);
6173 phba->vpi_bmask = NULL;
6174 free_rpi_ids:
6175 kfree(phba->sli4_hba.rpi_ids);
6176 phba->sli4_hba.rpi_ids = NULL;
6177 free_rpi_bmask:
6178 kfree(phba->sli4_hba.rpi_bmask);
6179 phba->sli4_hba.rpi_bmask = NULL;
6180 err_exit:
6181 return rc;
6182 }
6183
6184 /**
6185 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents.
6186 * @phba: Pointer to HBA context object.
6187 *
6188 * This function allocates the number of elements for the specified
6189 * resource type.
6190 **/
6191 int
lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba * phba)6192 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba)
6193 {
6194 if (phba->sli4_hba.extents_in_use) {
6195 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
6196 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
6197 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
6198 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
6199 } else {
6200 kfree(phba->vpi_bmask);
6201 phba->sli4_hba.max_cfg_param.vpi_used = 0;
6202 kfree(phba->vpi_ids);
6203 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6204 kfree(phba->sli4_hba.xri_bmask);
6205 kfree(phba->sli4_hba.xri_ids);
6206 kfree(phba->sli4_hba.vfi_bmask);
6207 kfree(phba->sli4_hba.vfi_ids);
6208 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6209 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6210 }
6211
6212 return 0;
6213 }
6214
6215 /**
6216 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents.
6217 * @phba: Pointer to HBA context object.
6218 * @type: The resource extent type.
6219 * @extnt_count: buffer to hold port extent count response
6220 * @extnt_size: buffer to hold port extent size response.
6221 *
6222 * This function calls the port to read the host allocated extents
6223 * for a particular type.
6224 **/
6225 int
lpfc_sli4_get_allocated_extnts(struct lpfc_hba * phba,uint16_t type,uint16_t * extnt_cnt,uint16_t * extnt_size)6226 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type,
6227 uint16_t *extnt_cnt, uint16_t *extnt_size)
6228 {
6229 bool emb;
6230 int rc = 0;
6231 uint16_t curr_blks = 0;
6232 uint32_t req_len, emb_len;
6233 uint32_t alloc_len, mbox_tmo;
6234 struct list_head *blk_list_head;
6235 struct lpfc_rsrc_blks *rsrc_blk;
6236 LPFC_MBOXQ_t *mbox;
6237 void *virtaddr = NULL;
6238 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
6239 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
6240 union lpfc_sli4_cfg_shdr *shdr;
6241
6242 switch (type) {
6243 case LPFC_RSC_TYPE_FCOE_VPI:
6244 blk_list_head = &phba->lpfc_vpi_blk_list;
6245 break;
6246 case LPFC_RSC_TYPE_FCOE_XRI:
6247 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list;
6248 break;
6249 case LPFC_RSC_TYPE_FCOE_VFI:
6250 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list;
6251 break;
6252 case LPFC_RSC_TYPE_FCOE_RPI:
6253 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list;
6254 break;
6255 default:
6256 return -EIO;
6257 }
6258
6259 /* Count the number of extents currently allocatd for this type. */
6260 list_for_each_entry(rsrc_blk, blk_list_head, list) {
6261 if (curr_blks == 0) {
6262 /*
6263 * The GET_ALLOCATED mailbox does not return the size,
6264 * just the count. The size should be just the size
6265 * stored in the current allocated block and all sizes
6266 * for an extent type are the same so set the return
6267 * value now.
6268 */
6269 *extnt_size = rsrc_blk->rsrc_size;
6270 }
6271 curr_blks++;
6272 }
6273
6274 /*
6275 * Calculate the size of an embedded mailbox. The uint32_t
6276 * accounts for extents-specific word.
6277 */
6278 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
6279 sizeof(uint32_t);
6280
6281 /*
6282 * Presume the allocation and response will fit into an embedded
6283 * mailbox. If not true, reconfigure to a non-embedded mailbox.
6284 */
6285 emb = LPFC_SLI4_MBX_EMBED;
6286 req_len = emb_len;
6287 if (req_len > emb_len) {
6288 req_len = curr_blks * sizeof(uint16_t) +
6289 sizeof(union lpfc_sli4_cfg_shdr) +
6290 sizeof(uint32_t);
6291 emb = LPFC_SLI4_MBX_NEMBED;
6292 }
6293
6294 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6295 if (!mbox)
6296 return -ENOMEM;
6297 memset(mbox, 0, sizeof(LPFC_MBOXQ_t));
6298
6299 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6300 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT,
6301 req_len, emb);
6302 if (alloc_len < req_len) {
6303 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
6304 "2983 Allocated DMA memory size (x%x) is "
6305 "less than the requested DMA memory "
6306 "size (x%x)\n", alloc_len, req_len);
6307 rc = -ENOMEM;
6308 goto err_exit;
6309 }
6310 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb);
6311 if (unlikely(rc)) {
6312 rc = -EIO;
6313 goto err_exit;
6314 }
6315
6316 if (!phba->sli4_hba.intr_enable)
6317 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6318 else {
6319 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6320 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6321 }
6322
6323 if (unlikely(rc)) {
6324 rc = -EIO;
6325 goto err_exit;
6326 }
6327
6328 /*
6329 * Figure out where the response is located. Then get local pointers
6330 * to the response data. The port does not guarantee to respond to
6331 * all extents counts request so update the local variable with the
6332 * allocated count from the port.
6333 */
6334 if (emb == LPFC_SLI4_MBX_EMBED) {
6335 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
6336 shdr = &rsrc_ext->header.cfg_shdr;
6337 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
6338 } else {
6339 virtaddr = mbox->sge_array->addr[0];
6340 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
6341 shdr = &n_rsrc->cfg_shdr;
6342 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
6343 }
6344
6345 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) {
6346 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
6347 "2984 Failed to read allocated resources "
6348 "for type %d - Status 0x%x Add'l Status 0x%x.\n",
6349 type,
6350 bf_get(lpfc_mbox_hdr_status, &shdr->response),
6351 bf_get(lpfc_mbox_hdr_add_status, &shdr->response));
6352 rc = -EIO;
6353 goto err_exit;
6354 }
6355 err_exit:
6356 lpfc_sli4_mbox_cmd_free(phba, mbox);
6357 return rc;
6358 }
6359
6360 /**
6361 * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block
6362 * @phba: pointer to lpfc hba data structure.
6363 * @pring: Pointer to driver SLI ring object.
6364 * @sgl_list: linked link of sgl buffers to post
6365 * @cnt: number of linked list buffers
6366 *
6367 * This routine walks the list of buffers that have been allocated and
6368 * repost them to the port by using SGL block post. This is needed after a
6369 * pci_function_reset/warm_start or start. It attempts to construct blocks
6370 * of buffer sgls which contains contiguous xris and uses the non-embedded
6371 * SGL block post mailbox commands to post them to the port. For single
6372 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post
6373 * mailbox command for posting.
6374 *
6375 * Returns: 0 = success, non-zero failure.
6376 **/
6377 static int
lpfc_sli4_repost_sgl_list(struct lpfc_hba * phba,struct list_head * sgl_list,int cnt)6378 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba,
6379 struct list_head *sgl_list, int cnt)
6380 {
6381 struct lpfc_sglq *sglq_entry = NULL;
6382 struct lpfc_sglq *sglq_entry_next = NULL;
6383 struct lpfc_sglq *sglq_entry_first = NULL;
6384 int status, total_cnt;
6385 int post_cnt = 0, num_posted = 0, block_cnt = 0;
6386 int last_xritag = NO_XRI;
6387 LIST_HEAD(prep_sgl_list);
6388 LIST_HEAD(blck_sgl_list);
6389 LIST_HEAD(allc_sgl_list);
6390 LIST_HEAD(post_sgl_list);
6391 LIST_HEAD(free_sgl_list);
6392
6393 spin_lock_irq(&phba->hbalock);
6394 spin_lock(&phba->sli4_hba.sgl_list_lock);
6395 list_splice_init(sgl_list, &allc_sgl_list);
6396 spin_unlock(&phba->sli4_hba.sgl_list_lock);
6397 spin_unlock_irq(&phba->hbalock);
6398
6399 total_cnt = cnt;
6400 list_for_each_entry_safe(sglq_entry, sglq_entry_next,
6401 &allc_sgl_list, list) {
6402 list_del_init(&sglq_entry->list);
6403 block_cnt++;
6404 if ((last_xritag != NO_XRI) &&
6405 (sglq_entry->sli4_xritag != last_xritag + 1)) {
6406 /* a hole in xri block, form a sgl posting block */
6407 list_splice_init(&prep_sgl_list, &blck_sgl_list);
6408 post_cnt = block_cnt - 1;
6409 /* prepare list for next posting block */
6410 list_add_tail(&sglq_entry->list, &prep_sgl_list);
6411 block_cnt = 1;
6412 } else {
6413 /* prepare list for next posting block */
6414 list_add_tail(&sglq_entry->list, &prep_sgl_list);
6415 /* enough sgls for non-embed sgl mbox command */
6416 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) {
6417 list_splice_init(&prep_sgl_list,
6418 &blck_sgl_list);
6419 post_cnt = block_cnt;
6420 block_cnt = 0;
6421 }
6422 }
6423 num_posted++;
6424
6425 /* keep track of last sgl's xritag */
6426 last_xritag = sglq_entry->sli4_xritag;
6427
6428 /* end of repost sgl list condition for buffers */
6429 if (num_posted == total_cnt) {
6430 if (post_cnt == 0) {
6431 list_splice_init(&prep_sgl_list,
6432 &blck_sgl_list);
6433 post_cnt = block_cnt;
6434 } else if (block_cnt == 1) {
6435 status = lpfc_sli4_post_sgl(phba,
6436 sglq_entry->phys, 0,
6437 sglq_entry->sli4_xritag);
6438 if (!status) {
6439 /* successful, put sgl to posted list */
6440 list_add_tail(&sglq_entry->list,
6441 &post_sgl_list);
6442 } else {
6443 /* Failure, put sgl to free list */
6444 lpfc_printf_log(phba, KERN_WARNING,
6445 LOG_SLI,
6446 "3159 Failed to post "
6447 "sgl, xritag:x%x\n",
6448 sglq_entry->sli4_xritag);
6449 list_add_tail(&sglq_entry->list,
6450 &free_sgl_list);
6451 total_cnt--;
6452 }
6453 }
6454 }
6455
6456 /* continue until a nembed page worth of sgls */
6457 if (post_cnt == 0)
6458 continue;
6459
6460 /* post the buffer list sgls as a block */
6461 status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list,
6462 post_cnt);
6463
6464 if (!status) {
6465 /* success, put sgl list to posted sgl list */
6466 list_splice_init(&blck_sgl_list, &post_sgl_list);
6467 } else {
6468 /* Failure, put sgl list to free sgl list */
6469 sglq_entry_first = list_first_entry(&blck_sgl_list,
6470 struct lpfc_sglq,
6471 list);
6472 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
6473 "3160 Failed to post sgl-list, "
6474 "xritag:x%x-x%x\n",
6475 sglq_entry_first->sli4_xritag,
6476 (sglq_entry_first->sli4_xritag +
6477 post_cnt - 1));
6478 list_splice_init(&blck_sgl_list, &free_sgl_list);
6479 total_cnt -= post_cnt;
6480 }
6481
6482 /* don't reset xirtag due to hole in xri block */
6483 if (block_cnt == 0)
6484 last_xritag = NO_XRI;
6485
6486 /* reset sgl post count for next round of posting */
6487 post_cnt = 0;
6488 }
6489
6490 /* free the sgls failed to post */
6491 lpfc_free_sgl_list(phba, &free_sgl_list);
6492
6493 /* push sgls posted to the available list */
6494 if (!list_empty(&post_sgl_list)) {
6495 spin_lock_irq(&phba->hbalock);
6496 spin_lock(&phba->sli4_hba.sgl_list_lock);
6497 list_splice_init(&post_sgl_list, sgl_list);
6498 spin_unlock(&phba->sli4_hba.sgl_list_lock);
6499 spin_unlock_irq(&phba->hbalock);
6500 } else {
6501 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6502 "3161 Failure to post sgl to port.\n");
6503 return -EIO;
6504 }
6505
6506 /* return the number of XRIs actually posted */
6507 return total_cnt;
6508 }
6509
6510 void
lpfc_set_host_data(struct lpfc_hba * phba,LPFC_MBOXQ_t * mbox)6511 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
6512 {
6513 uint32_t len;
6514
6515 len = sizeof(struct lpfc_mbx_set_host_data) -
6516 sizeof(struct lpfc_sli4_cfg_mhdr);
6517 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6518 LPFC_MBOX_OPCODE_SET_HOST_DATA, len,
6519 LPFC_SLI4_MBX_EMBED);
6520
6521 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION;
6522 mbox->u.mqe.un.set_host_data.param_len =
6523 LPFC_HOST_OS_DRIVER_VERSION_SIZE;
6524 snprintf(mbox->u.mqe.un.set_host_data.data,
6525 LPFC_HOST_OS_DRIVER_VERSION_SIZE,
6526 "Linux %s v"LPFC_DRIVER_VERSION,
6527 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC");
6528 }
6529
6530 int
lpfc_post_rq_buffer(struct lpfc_hba * phba,struct lpfc_queue * hrq,struct lpfc_queue * drq,int count,int idx)6531 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq,
6532 struct lpfc_queue *drq, int count, int idx)
6533 {
6534 int rc, i;
6535 struct lpfc_rqe hrqe;
6536 struct lpfc_rqe drqe;
6537 struct lpfc_rqb *rqbp;
6538 struct rqb_dmabuf *rqb_buffer;
6539 LIST_HEAD(rqb_buf_list);
6540
6541 rqbp = hrq->rqbp;
6542 for (i = 0; i < count; i++) {
6543 /* IF RQ is already full, don't bother */
6544 if (rqbp->buffer_count + i >= rqbp->entry_count - 1)
6545 break;
6546 rqb_buffer = rqbp->rqb_alloc_buffer(phba);
6547 if (!rqb_buffer)
6548 break;
6549 rqb_buffer->hrq = hrq;
6550 rqb_buffer->drq = drq;
6551 rqb_buffer->idx = idx;
6552 list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list);
6553 }
6554 while (!list_empty(&rqb_buf_list)) {
6555 list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf,
6556 hbuf.list);
6557
6558 hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys);
6559 hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys);
6560 drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys);
6561 drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys);
6562 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe);
6563 if (rc < 0) {
6564 rqbp->rqb_free_buffer(phba, rqb_buffer);
6565 } else {
6566 list_add_tail(&rqb_buffer->hbuf.list,
6567 &rqbp->rqb_buffer_list);
6568 rqbp->buffer_count++;
6569 }
6570 }
6571 return 1;
6572 }
6573
6574 /**
6575 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function
6576 * @phba: Pointer to HBA context object.
6577 *
6578 * This function is the main SLI4 device initialization PCI function. This
6579 * function is called by the HBA initialization code, HBA reset code and
6580 * HBA error attention handler code. Caller is not required to hold any
6581 * locks.
6582 **/
6583 int
lpfc_sli4_hba_setup(struct lpfc_hba * phba)6584 lpfc_sli4_hba_setup(struct lpfc_hba *phba)
6585 {
6586 int rc, i, cnt;
6587 LPFC_MBOXQ_t *mboxq;
6588 struct lpfc_mqe *mqe;
6589 uint8_t *vpd;
6590 uint32_t vpd_size;
6591 uint32_t ftr_rsp = 0;
6592 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport);
6593 struct lpfc_vport *vport = phba->pport;
6594 struct lpfc_dmabuf *mp;
6595 struct lpfc_rqb *rqbp;
6596
6597 /* Perform a PCI function reset to start from clean */
6598 rc = lpfc_pci_function_reset(phba);
6599 if (unlikely(rc))
6600 return -ENODEV;
6601
6602 /* Check the HBA Host Status Register for readyness */
6603 rc = lpfc_sli4_post_status_check(phba);
6604 if (unlikely(rc))
6605 return -ENODEV;
6606 else {
6607 spin_lock_irq(&phba->hbalock);
6608 phba->sli.sli_flag |= LPFC_SLI_ACTIVE;
6609 spin_unlock_irq(&phba->hbalock);
6610 }
6611
6612 /*
6613 * Allocate a single mailbox container for initializing the
6614 * port.
6615 */
6616 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6617 if (!mboxq)
6618 return -ENOMEM;
6619
6620 /* Issue READ_REV to collect vpd and FW information. */
6621 vpd_size = SLI4_PAGE_SIZE;
6622 vpd = kzalloc(vpd_size, GFP_KERNEL);
6623 if (!vpd) {
6624 rc = -ENOMEM;
6625 goto out_free_mbox;
6626 }
6627
6628 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size);
6629 if (unlikely(rc)) {
6630 kfree(vpd);
6631 goto out_free_mbox;
6632 }
6633
6634 mqe = &mboxq->u.mqe;
6635 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev);
6636 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) {
6637 phba->hba_flag |= HBA_FCOE_MODE;
6638 phba->fcp_embed_io = 0; /* SLI4 FC support only */
6639 } else {
6640 phba->hba_flag &= ~HBA_FCOE_MODE;
6641 }
6642
6643 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) ==
6644 LPFC_DCBX_CEE_MODE)
6645 phba->hba_flag |= HBA_FIP_SUPPORT;
6646 else
6647 phba->hba_flag &= ~HBA_FIP_SUPPORT;
6648
6649 phba->hba_flag &= ~HBA_FCP_IOQ_FLUSH;
6650
6651 if (phba->sli_rev != LPFC_SLI_REV4) {
6652 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6653 "0376 READ_REV Error. SLI Level %d "
6654 "FCoE enabled %d\n",
6655 phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE);
6656 rc = -EIO;
6657 kfree(vpd);
6658 goto out_free_mbox;
6659 }
6660
6661 /*
6662 * Continue initialization with default values even if driver failed
6663 * to read FCoE param config regions, only read parameters if the
6664 * board is FCoE
6665 */
6666 if (phba->hba_flag & HBA_FCOE_MODE &&
6667 lpfc_sli4_read_fcoe_params(phba))
6668 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT,
6669 "2570 Failed to read FCoE parameters\n");
6670
6671 /*
6672 * Retrieve sli4 device physical port name, failure of doing it
6673 * is considered as non-fatal.
6674 */
6675 rc = lpfc_sli4_retrieve_pport_name(phba);
6676 if (!rc)
6677 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
6678 "3080 Successful retrieving SLI4 device "
6679 "physical port name: %s.\n", phba->Port);
6680
6681 /*
6682 * Evaluate the read rev and vpd data. Populate the driver
6683 * state with the results. If this routine fails, the failure
6684 * is not fatal as the driver will use generic values.
6685 */
6686 rc = lpfc_parse_vpd(phba, vpd, vpd_size);
6687 if (unlikely(!rc)) {
6688 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6689 "0377 Error %d parsing vpd. "
6690 "Using defaults.\n", rc);
6691 rc = 0;
6692 }
6693 kfree(vpd);
6694
6695 /* Save information as VPD data */
6696 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev;
6697 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev;
6698 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev;
6699 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high,
6700 &mqe->un.read_rev);
6701 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low,
6702 &mqe->un.read_rev);
6703 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high,
6704 &mqe->un.read_rev);
6705 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low,
6706 &mqe->un.read_rev);
6707 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev;
6708 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16);
6709 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev;
6710 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16);
6711 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev;
6712 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16);
6713 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
6714 "(%d):0380 READ_REV Status x%x "
6715 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n",
6716 mboxq->vport ? mboxq->vport->vpi : 0,
6717 bf_get(lpfc_mqe_status, mqe),
6718 phba->vpd.rev.opFwName,
6719 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow,
6720 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow);
6721
6722 /* Reset the DFT_LUN_Q_DEPTH to (max xri >> 3) */
6723 rc = (phba->sli4_hba.max_cfg_param.max_xri >> 3);
6724 if (phba->pport->cfg_lun_queue_depth > rc) {
6725 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6726 "3362 LUN queue depth changed from %d to %d\n",
6727 phba->pport->cfg_lun_queue_depth, rc);
6728 phba->pport->cfg_lun_queue_depth = rc;
6729 }
6730
6731 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
6732 LPFC_SLI_INTF_IF_TYPE_0) {
6733 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY);
6734 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
6735 if (rc == MBX_SUCCESS) {
6736 phba->hba_flag |= HBA_RECOVERABLE_UE;
6737 /* Set 1Sec interval to detect UE */
6738 phba->eratt_poll_interval = 1;
6739 phba->sli4_hba.ue_to_sr = bf_get(
6740 lpfc_mbx_set_feature_UESR,
6741 &mboxq->u.mqe.un.set_feature);
6742 phba->sli4_hba.ue_to_rp = bf_get(
6743 lpfc_mbx_set_feature_UERP,
6744 &mboxq->u.mqe.un.set_feature);
6745 }
6746 }
6747
6748 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) {
6749 /* Enable MDS Diagnostics only if the SLI Port supports it */
6750 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS);
6751 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
6752 if (rc != MBX_SUCCESS)
6753 phba->mds_diags_support = 0;
6754 }
6755
6756 /*
6757 * Discover the port's supported feature set and match it against the
6758 * hosts requests.
6759 */
6760 lpfc_request_features(phba, mboxq);
6761 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
6762 if (unlikely(rc)) {
6763 rc = -EIO;
6764 goto out_free_mbox;
6765 }
6766
6767 /*
6768 * The port must support FCP initiator mode as this is the
6769 * only mode running in the host.
6770 */
6771 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) {
6772 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
6773 "0378 No support for fcpi mode.\n");
6774 ftr_rsp++;
6775 }
6776 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs))
6777 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED;
6778 else
6779 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED;
6780 /*
6781 * If the port cannot support the host's requested features
6782 * then turn off the global config parameters to disable the
6783 * feature in the driver. This is not a fatal error.
6784 */
6785 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED;
6786 if (phba->cfg_enable_bg) {
6787 if (bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))
6788 phba->sli3_options |= LPFC_SLI3_BG_ENABLED;
6789 else
6790 ftr_rsp++;
6791 }
6792
6793 if (phba->max_vpi && phba->cfg_enable_npiv &&
6794 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
6795 ftr_rsp++;
6796
6797 if (ftr_rsp) {
6798 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
6799 "0379 Feature Mismatch Data: x%08x %08x "
6800 "x%x x%x x%x\n", mqe->un.req_ftrs.word2,
6801 mqe->un.req_ftrs.word3, phba->cfg_enable_bg,
6802 phba->cfg_enable_npiv, phba->max_vpi);
6803 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs)))
6804 phba->cfg_enable_bg = 0;
6805 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
6806 phba->cfg_enable_npiv = 0;
6807 }
6808
6809 /* These SLI3 features are assumed in SLI4 */
6810 spin_lock_irq(&phba->hbalock);
6811 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED);
6812 spin_unlock_irq(&phba->hbalock);
6813
6814 /*
6815 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent
6816 * calls depends on these resources to complete port setup.
6817 */
6818 rc = lpfc_sli4_alloc_resource_identifiers(phba);
6819 if (rc) {
6820 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6821 "2920 Failed to alloc Resource IDs "
6822 "rc = x%x\n", rc);
6823 goto out_free_mbox;
6824 }
6825
6826 lpfc_set_host_data(phba, mboxq);
6827
6828 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
6829 if (rc) {
6830 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
6831 "2134 Failed to set host os driver version %x",
6832 rc);
6833 }
6834
6835 /* Read the port's service parameters. */
6836 rc = lpfc_read_sparam(phba, mboxq, vport->vpi);
6837 if (rc) {
6838 phba->link_state = LPFC_HBA_ERROR;
6839 rc = -ENOMEM;
6840 goto out_free_mbox;
6841 }
6842
6843 mboxq->vport = vport;
6844 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
6845 mp = (struct lpfc_dmabuf *) mboxq->context1;
6846 if (rc == MBX_SUCCESS) {
6847 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm));
6848 rc = 0;
6849 }
6850
6851 /*
6852 * This memory was allocated by the lpfc_read_sparam routine. Release
6853 * it to the mbuf pool.
6854 */
6855 lpfc_mbuf_free(phba, mp->virt, mp->phys);
6856 kfree(mp);
6857 mboxq->context1 = NULL;
6858 if (unlikely(rc)) {
6859 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6860 "0382 READ_SPARAM command failed "
6861 "status %d, mbxStatus x%x\n",
6862 rc, bf_get(lpfc_mqe_status, mqe));
6863 phba->link_state = LPFC_HBA_ERROR;
6864 rc = -EIO;
6865 goto out_free_mbox;
6866 }
6867
6868 lpfc_update_vport_wwn(vport);
6869
6870 /* Update the fc_host data structures with new wwn. */
6871 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
6872 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
6873
6874 /* Create all the SLI4 queues */
6875 rc = lpfc_sli4_queue_create(phba);
6876 if (rc) {
6877 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
6878 "3089 Failed to allocate queues\n");
6879 rc = -ENODEV;
6880 goto out_free_mbox;
6881 }
6882 /* Set up all the queues to the device */
6883 rc = lpfc_sli4_queue_setup(phba);
6884 if (unlikely(rc)) {
6885 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6886 "0381 Error %d during queue setup.\n ", rc);
6887 goto out_stop_timers;
6888 }
6889 /* Initialize the driver internal SLI layer lists. */
6890 lpfc_sli4_setup(phba);
6891 lpfc_sli4_queue_init(phba);
6892
6893 /* update host els xri-sgl sizes and mappings */
6894 rc = lpfc_sli4_els_sgl_update(phba);
6895 if (unlikely(rc)) {
6896 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6897 "1400 Failed to update xri-sgl size and "
6898 "mapping: %d\n", rc);
6899 goto out_destroy_queue;
6900 }
6901
6902 /* register the els sgl pool to the port */
6903 rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list,
6904 phba->sli4_hba.els_xri_cnt);
6905 if (unlikely(rc < 0)) {
6906 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6907 "0582 Error %d during els sgl post "
6908 "operation\n", rc);
6909 rc = -ENODEV;
6910 goto out_destroy_queue;
6911 }
6912 phba->sli4_hba.els_xri_cnt = rc;
6913
6914 if (phba->nvmet_support) {
6915 /* update host nvmet xri-sgl sizes and mappings */
6916 rc = lpfc_sli4_nvmet_sgl_update(phba);
6917 if (unlikely(rc)) {
6918 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6919 "6308 Failed to update nvmet-sgl size "
6920 "and mapping: %d\n", rc);
6921 goto out_destroy_queue;
6922 }
6923
6924 /* register the nvmet sgl pool to the port */
6925 rc = lpfc_sli4_repost_sgl_list(
6926 phba,
6927 &phba->sli4_hba.lpfc_nvmet_sgl_list,
6928 phba->sli4_hba.nvmet_xri_cnt);
6929 if (unlikely(rc < 0)) {
6930 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6931 "3117 Error %d during nvmet "
6932 "sgl post\n", rc);
6933 rc = -ENODEV;
6934 goto out_destroy_queue;
6935 }
6936 phba->sli4_hba.nvmet_xri_cnt = rc;
6937
6938 cnt = phba->cfg_iocb_cnt * 1024;
6939 /* We need 1 iocbq for every SGL, for IO processing */
6940 cnt += phba->sli4_hba.nvmet_xri_cnt;
6941 } else {
6942 /* update host scsi xri-sgl sizes and mappings */
6943 rc = lpfc_sli4_scsi_sgl_update(phba);
6944 if (unlikely(rc)) {
6945 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6946 "6309 Failed to update scsi-sgl size "
6947 "and mapping: %d\n", rc);
6948 goto out_destroy_queue;
6949 }
6950
6951 /* update host nvme xri-sgl sizes and mappings */
6952 rc = lpfc_sli4_nvme_sgl_update(phba);
6953 if (unlikely(rc)) {
6954 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6955 "6082 Failed to update nvme-sgl size "
6956 "and mapping: %d\n", rc);
6957 goto out_destroy_queue;
6958 }
6959
6960 cnt = phba->cfg_iocb_cnt * 1024;
6961 }
6962
6963 if (!phba->sli.iocbq_lookup) {
6964 /* Initialize and populate the iocb list per host */
6965 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
6966 "2821 initialize iocb list %d total %d\n",
6967 phba->cfg_iocb_cnt, cnt);
6968 rc = lpfc_init_iocb_list(phba, cnt);
6969 if (rc) {
6970 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
6971 "1413 Failed to init iocb list.\n");
6972 goto out_destroy_queue;
6973 }
6974 }
6975
6976 if (phba->nvmet_support)
6977 lpfc_nvmet_create_targetport(phba);
6978
6979 if (phba->nvmet_support && phba->cfg_nvmet_mrq) {
6980 /* Post initial buffers to all RQs created */
6981 for (i = 0; i < phba->cfg_nvmet_mrq; i++) {
6982 rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp;
6983 INIT_LIST_HEAD(&rqbp->rqb_buffer_list);
6984 rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc;
6985 rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free;
6986 rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT;
6987 rqbp->buffer_count = 0;
6988
6989 lpfc_post_rq_buffer(
6990 phba, phba->sli4_hba.nvmet_mrq_hdr[i],
6991 phba->sli4_hba.nvmet_mrq_data[i],
6992 LPFC_NVMET_RQE_DEF_COUNT, i);
6993 }
6994 }
6995
6996 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) {
6997 /* register the allocated scsi sgl pool to the port */
6998 rc = lpfc_sli4_repost_scsi_sgl_list(phba);
6999 if (unlikely(rc)) {
7000 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7001 "0383 Error %d during scsi sgl post "
7002 "operation\n", rc);
7003 /* Some Scsi buffers were moved to abort scsi list */
7004 /* A pci function reset will repost them */
7005 rc = -ENODEV;
7006 goto out_destroy_queue;
7007 }
7008 }
7009
7010 if ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) &&
7011 (phba->nvmet_support == 0)) {
7012
7013 /* register the allocated nvme sgl pool to the port */
7014 rc = lpfc_repost_nvme_sgl_list(phba);
7015 if (unlikely(rc)) {
7016 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7017 "6116 Error %d during nvme sgl post "
7018 "operation\n", rc);
7019 /* Some NVME buffers were moved to abort nvme list */
7020 /* A pci function reset will repost them */
7021 rc = -ENODEV;
7022 goto out_destroy_queue;
7023 }
7024 }
7025
7026 /* Post the rpi header region to the device. */
7027 rc = lpfc_sli4_post_all_rpi_hdrs(phba);
7028 if (unlikely(rc)) {
7029 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7030 "0393 Error %d during rpi post operation\n",
7031 rc);
7032 rc = -ENODEV;
7033 goto out_destroy_queue;
7034 }
7035 lpfc_sli4_node_prep(phba);
7036
7037 if (!(phba->hba_flag & HBA_FCOE_MODE)) {
7038 if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) {
7039 /*
7040 * The FC Port needs to register FCFI (index 0)
7041 */
7042 lpfc_reg_fcfi(phba, mboxq);
7043 mboxq->vport = phba->pport;
7044 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7045 if (rc != MBX_SUCCESS)
7046 goto out_unset_queue;
7047 rc = 0;
7048 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi,
7049 &mboxq->u.mqe.un.reg_fcfi);
7050 } else {
7051 /* We are a NVME Target mode with MRQ > 1 */
7052
7053 /* First register the FCFI */
7054 lpfc_reg_fcfi_mrq(phba, mboxq, 0);
7055 mboxq->vport = phba->pport;
7056 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7057 if (rc != MBX_SUCCESS)
7058 goto out_unset_queue;
7059 rc = 0;
7060 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi,
7061 &mboxq->u.mqe.un.reg_fcfi_mrq);
7062
7063 /* Next register the MRQs */
7064 lpfc_reg_fcfi_mrq(phba, mboxq, 1);
7065 mboxq->vport = phba->pport;
7066 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7067 if (rc != MBX_SUCCESS)
7068 goto out_unset_queue;
7069 rc = 0;
7070 }
7071 /* Check if the port is configured to be disabled */
7072 lpfc_sli_read_link_ste(phba);
7073 }
7074
7075 /* Arm the CQs and then EQs on device */
7076 lpfc_sli4_arm_cqeq_intr(phba);
7077
7078 /* Indicate device interrupt mode */
7079 phba->sli4_hba.intr_enable = 1;
7080
7081 /* Allow asynchronous mailbox command to go through */
7082 spin_lock_irq(&phba->hbalock);
7083 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
7084 spin_unlock_irq(&phba->hbalock);
7085
7086 /* Post receive buffers to the device */
7087 lpfc_sli4_rb_setup(phba);
7088
7089 /* Reset HBA FCF states after HBA reset */
7090 phba->fcf.fcf_flag = 0;
7091 phba->fcf.current_rec.flag = 0;
7092
7093 /* Start the ELS watchdog timer */
7094 mod_timer(&vport->els_tmofunc,
7095 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2)));
7096
7097 /* Start heart beat timer */
7098 mod_timer(&phba->hb_tmofunc,
7099 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
7100 phba->hb_outstanding = 0;
7101 phba->last_completion_time = jiffies;
7102
7103 /* Start error attention (ERATT) polling timer */
7104 mod_timer(&phba->eratt_poll,
7105 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval));
7106
7107 /* Enable PCIe device Advanced Error Reporting (AER) if configured */
7108 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) {
7109 rc = pci_enable_pcie_error_reporting(phba->pcidev);
7110 if (!rc) {
7111 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7112 "2829 This device supports "
7113 "Advanced Error Reporting (AER)\n");
7114 spin_lock_irq(&phba->hbalock);
7115 phba->hba_flag |= HBA_AER_ENABLED;
7116 spin_unlock_irq(&phba->hbalock);
7117 } else {
7118 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7119 "2830 This device does not support "
7120 "Advanced Error Reporting (AER)\n");
7121 phba->cfg_aer_support = 0;
7122 }
7123 rc = 0;
7124 }
7125
7126 /*
7127 * The port is ready, set the host's link state to LINK_DOWN
7128 * in preparation for link interrupts.
7129 */
7130 spin_lock_irq(&phba->hbalock);
7131 phba->link_state = LPFC_LINK_DOWN;
7132 spin_unlock_irq(&phba->hbalock);
7133 if (!(phba->hba_flag & HBA_FCOE_MODE) &&
7134 (phba->hba_flag & LINK_DISABLED)) {
7135 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI,
7136 "3103 Adapter Link is disabled.\n");
7137 lpfc_down_link(phba, mboxq);
7138 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7139 if (rc != MBX_SUCCESS) {
7140 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI,
7141 "3104 Adapter failed to issue "
7142 "DOWN_LINK mbox cmd, rc:x%x\n", rc);
7143 goto out_unset_queue;
7144 }
7145 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) {
7146 /* don't perform init_link on SLI4 FC port loopback test */
7147 if (!(phba->link_flag & LS_LOOPBACK_MODE)) {
7148 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT);
7149 if (rc)
7150 goto out_unset_queue;
7151 }
7152 }
7153 mempool_free(mboxq, phba->mbox_mem_pool);
7154 return rc;
7155 out_unset_queue:
7156 /* Unset all the queues set up in this routine when error out */
7157 lpfc_sli4_queue_unset(phba);
7158 out_destroy_queue:
7159 lpfc_free_iocb_list(phba);
7160 lpfc_sli4_queue_destroy(phba);
7161 out_stop_timers:
7162 lpfc_stop_hba_timers(phba);
7163 out_free_mbox:
7164 mempool_free(mboxq, phba->mbox_mem_pool);
7165 return rc;
7166 }
7167
7168 /**
7169 * lpfc_mbox_timeout - Timeout call back function for mbox timer
7170 * @ptr: context object - pointer to hba structure.
7171 *
7172 * This is the callback function for mailbox timer. The mailbox
7173 * timer is armed when a new mailbox command is issued and the timer
7174 * is deleted when the mailbox complete. The function is called by
7175 * the kernel timer code when a mailbox does not complete within
7176 * expected time. This function wakes up the worker thread to
7177 * process the mailbox timeout and returns. All the processing is
7178 * done by the worker thread function lpfc_mbox_timeout_handler.
7179 **/
7180 void
lpfc_mbox_timeout(unsigned long ptr)7181 lpfc_mbox_timeout(unsigned long ptr)
7182 {
7183 struct lpfc_hba *phba = (struct lpfc_hba *) ptr;
7184 unsigned long iflag;
7185 uint32_t tmo_posted;
7186
7187 spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
7188 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO;
7189 if (!tmo_posted)
7190 phba->pport->work_port_events |= WORKER_MBOX_TMO;
7191 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
7192
7193 if (!tmo_posted)
7194 lpfc_worker_wake_up(phba);
7195 return;
7196 }
7197
7198 /**
7199 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions
7200 * are pending
7201 * @phba: Pointer to HBA context object.
7202 *
7203 * This function checks if any mailbox completions are present on the mailbox
7204 * completion queue.
7205 **/
7206 static bool
lpfc_sli4_mbox_completions_pending(struct lpfc_hba * phba)7207 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba)
7208 {
7209
7210 uint32_t idx;
7211 struct lpfc_queue *mcq;
7212 struct lpfc_mcqe *mcqe;
7213 bool pending_completions = false;
7214
7215 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
7216 return false;
7217
7218 /* Check for completions on mailbox completion queue */
7219
7220 mcq = phba->sli4_hba.mbx_cq;
7221 idx = mcq->hba_index;
7222 while (bf_get_le32(lpfc_cqe_valid, mcq->qe[idx].cqe)) {
7223 mcqe = (struct lpfc_mcqe *)mcq->qe[idx].cqe;
7224 if (bf_get_le32(lpfc_trailer_completed, mcqe) &&
7225 (!bf_get_le32(lpfc_trailer_async, mcqe))) {
7226 pending_completions = true;
7227 break;
7228 }
7229 idx = (idx + 1) % mcq->entry_count;
7230 if (mcq->hba_index == idx)
7231 break;
7232 }
7233 return pending_completions;
7234
7235 }
7236
7237 /**
7238 * lpfc_sli4_process_missed_mbox_completions - process mbox completions
7239 * that were missed.
7240 * @phba: Pointer to HBA context object.
7241 *
7242 * For sli4, it is possible to miss an interrupt. As such mbox completions
7243 * maybe missed causing erroneous mailbox timeouts to occur. This function
7244 * checks to see if mbox completions are on the mailbox completion queue
7245 * and will process all the completions associated with the eq for the
7246 * mailbox completion queue.
7247 **/
7248 bool
lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba * phba)7249 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba)
7250 {
7251
7252 uint32_t eqidx;
7253 struct lpfc_queue *fpeq = NULL;
7254 struct lpfc_eqe *eqe;
7255 bool mbox_pending;
7256
7257 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
7258 return false;
7259
7260 /* Find the eq associated with the mcq */
7261
7262 if (phba->sli4_hba.hba_eq)
7263 for (eqidx = 0; eqidx < phba->io_channel_irqs; eqidx++)
7264 if (phba->sli4_hba.hba_eq[eqidx]->queue_id ==
7265 phba->sli4_hba.mbx_cq->assoc_qid) {
7266 fpeq = phba->sli4_hba.hba_eq[eqidx];
7267 break;
7268 }
7269 if (!fpeq)
7270 return false;
7271
7272 /* Turn off interrupts from this EQ */
7273
7274 lpfc_sli4_eq_clr_intr(fpeq);
7275
7276 /* Check to see if a mbox completion is pending */
7277
7278 mbox_pending = lpfc_sli4_mbox_completions_pending(phba);
7279
7280 /*
7281 * If a mbox completion is pending, process all the events on EQ
7282 * associated with the mbox completion queue (this could include
7283 * mailbox commands, async events, els commands, receive queue data
7284 * and fcp commands)
7285 */
7286
7287 if (mbox_pending)
7288 while ((eqe = lpfc_sli4_eq_get(fpeq))) {
7289 lpfc_sli4_hba_handle_eqe(phba, eqe, eqidx);
7290 fpeq->EQ_processed++;
7291 }
7292
7293 /* Always clear and re-arm the EQ */
7294
7295 lpfc_sli4_eq_release(fpeq, LPFC_QUEUE_REARM);
7296
7297 return mbox_pending;
7298
7299 }
7300
7301 /**
7302 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout
7303 * @phba: Pointer to HBA context object.
7304 *
7305 * This function is called from worker thread when a mailbox command times out.
7306 * The caller is not required to hold any locks. This function will reset the
7307 * HBA and recover all the pending commands.
7308 **/
7309 void
lpfc_mbox_timeout_handler(struct lpfc_hba * phba)7310 lpfc_mbox_timeout_handler(struct lpfc_hba *phba)
7311 {
7312 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active;
7313 MAILBOX_t *mb = NULL;
7314
7315 struct lpfc_sli *psli = &phba->sli;
7316
7317 /* If the mailbox completed, process the completion and return */
7318 if (lpfc_sli4_process_missed_mbox_completions(phba))
7319 return;
7320
7321 if (pmbox != NULL)
7322 mb = &pmbox->u.mb;
7323 /* Check the pmbox pointer first. There is a race condition
7324 * between the mbox timeout handler getting executed in the
7325 * worklist and the mailbox actually completing. When this
7326 * race condition occurs, the mbox_active will be NULL.
7327 */
7328 spin_lock_irq(&phba->hbalock);
7329 if (pmbox == NULL) {
7330 lpfc_printf_log(phba, KERN_WARNING,
7331 LOG_MBOX | LOG_SLI,
7332 "0353 Active Mailbox cleared - mailbox timeout "
7333 "exiting\n");
7334 spin_unlock_irq(&phba->hbalock);
7335 return;
7336 }
7337
7338 /* Mbox cmd <mbxCommand> timeout */
7339 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7340 "0310 Mailbox command x%x timeout Data: x%x x%x x%p\n",
7341 mb->mbxCommand,
7342 phba->pport->port_state,
7343 phba->sli.sli_flag,
7344 phba->sli.mbox_active);
7345 spin_unlock_irq(&phba->hbalock);
7346
7347 /* Setting state unknown so lpfc_sli_abort_iocb_ring
7348 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing
7349 * it to fail all outstanding SCSI IO.
7350 */
7351 spin_lock_irq(&phba->pport->work_port_lock);
7352 phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
7353 spin_unlock_irq(&phba->pport->work_port_lock);
7354 spin_lock_irq(&phba->hbalock);
7355 phba->link_state = LPFC_LINK_UNKNOWN;
7356 psli->sli_flag &= ~LPFC_SLI_ACTIVE;
7357 spin_unlock_irq(&phba->hbalock);
7358
7359 lpfc_sli_abort_fcp_rings(phba);
7360
7361 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7362 "0345 Resetting board due to mailbox timeout\n");
7363
7364 /* Reset the HBA device */
7365 lpfc_reset_hba(phba);
7366 }
7367
7368 /**
7369 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware
7370 * @phba: Pointer to HBA context object.
7371 * @pmbox: Pointer to mailbox object.
7372 * @flag: Flag indicating how the mailbox need to be processed.
7373 *
7374 * This function is called by discovery code and HBA management code
7375 * to submit a mailbox command to firmware with SLI-3 interface spec. This
7376 * function gets the hbalock to protect the data structures.
7377 * The mailbox command can be submitted in polling mode, in which case
7378 * this function will wait in a polling loop for the completion of the
7379 * mailbox.
7380 * If the mailbox is submitted in no_wait mode (not polling) the
7381 * function will submit the command and returns immediately without waiting
7382 * for the mailbox completion. The no_wait is supported only when HBA
7383 * is in SLI2/SLI3 mode - interrupts are enabled.
7384 * The SLI interface allows only one mailbox pending at a time. If the
7385 * mailbox is issued in polling mode and there is already a mailbox
7386 * pending, then the function will return an error. If the mailbox is issued
7387 * in NO_WAIT mode and there is a mailbox pending already, the function
7388 * will return MBX_BUSY after queuing the mailbox into mailbox queue.
7389 * The sli layer owns the mailbox object until the completion of mailbox
7390 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other
7391 * return codes the caller owns the mailbox command after the return of
7392 * the function.
7393 **/
7394 static int
lpfc_sli_issue_mbox_s3(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmbox,uint32_t flag)7395 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox,
7396 uint32_t flag)
7397 {
7398 MAILBOX_t *mbx;
7399 struct lpfc_sli *psli = &phba->sli;
7400 uint32_t status, evtctr;
7401 uint32_t ha_copy, hc_copy;
7402 int i;
7403 unsigned long timeout;
7404 unsigned long drvr_flag = 0;
7405 uint32_t word0, ldata;
7406 void __iomem *to_slim;
7407 int processing_queue = 0;
7408
7409 spin_lock_irqsave(&phba->hbalock, drvr_flag);
7410 if (!pmbox) {
7411 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
7412 /* processing mbox queue from intr_handler */
7413 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
7414 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7415 return MBX_SUCCESS;
7416 }
7417 processing_queue = 1;
7418 pmbox = lpfc_mbox_get(phba);
7419 if (!pmbox) {
7420 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7421 return MBX_SUCCESS;
7422 }
7423 }
7424
7425 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl &&
7426 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) {
7427 if(!pmbox->vport) {
7428 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7429 lpfc_printf_log(phba, KERN_ERR,
7430 LOG_MBOX | LOG_VPORT,
7431 "1806 Mbox x%x failed. No vport\n",
7432 pmbox->u.mb.mbxCommand);
7433 dump_stack();
7434 goto out_not_finished;
7435 }
7436 }
7437
7438 /* If the PCI channel is in offline state, do not post mbox. */
7439 if (unlikely(pci_channel_offline(phba->pcidev))) {
7440 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7441 goto out_not_finished;
7442 }
7443
7444 /* If HBA has a deferred error attention, fail the iocb. */
7445 if (unlikely(phba->hba_flag & DEFER_ERATT)) {
7446 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7447 goto out_not_finished;
7448 }
7449
7450 psli = &phba->sli;
7451
7452 mbx = &pmbox->u.mb;
7453 status = MBX_SUCCESS;
7454
7455 if (phba->link_state == LPFC_HBA_ERROR) {
7456 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7457
7458 /* Mbox command <mbxCommand> cannot issue */
7459 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7460 "(%d):0311 Mailbox command x%x cannot "
7461 "issue Data: x%x x%x\n",
7462 pmbox->vport ? pmbox->vport->vpi : 0,
7463 pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
7464 goto out_not_finished;
7465 }
7466
7467 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) {
7468 if (lpfc_readl(phba->HCregaddr, &hc_copy) ||
7469 !(hc_copy & HC_MBINT_ENA)) {
7470 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7471 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7472 "(%d):2528 Mailbox command x%x cannot "
7473 "issue Data: x%x x%x\n",
7474 pmbox->vport ? pmbox->vport->vpi : 0,
7475 pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
7476 goto out_not_finished;
7477 }
7478 }
7479
7480 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
7481 /* Polling for a mbox command when another one is already active
7482 * is not allowed in SLI. Also, the driver must have established
7483 * SLI2 mode to queue and process multiple mbox commands.
7484 */
7485
7486 if (flag & MBX_POLL) {
7487 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7488
7489 /* Mbox command <mbxCommand> cannot issue */
7490 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7491 "(%d):2529 Mailbox command x%x "
7492 "cannot issue Data: x%x x%x\n",
7493 pmbox->vport ? pmbox->vport->vpi : 0,
7494 pmbox->u.mb.mbxCommand,
7495 psli->sli_flag, flag);
7496 goto out_not_finished;
7497 }
7498
7499 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) {
7500 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7501 /* Mbox command <mbxCommand> cannot issue */
7502 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7503 "(%d):2530 Mailbox command x%x "
7504 "cannot issue Data: x%x x%x\n",
7505 pmbox->vport ? pmbox->vport->vpi : 0,
7506 pmbox->u.mb.mbxCommand,
7507 psli->sli_flag, flag);
7508 goto out_not_finished;
7509 }
7510
7511 /* Another mailbox command is still being processed, queue this
7512 * command to be processed later.
7513 */
7514 lpfc_mbox_put(phba, pmbox);
7515
7516 /* Mbox cmd issue - BUSY */
7517 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7518 "(%d):0308 Mbox cmd issue - BUSY Data: "
7519 "x%x x%x x%x x%x\n",
7520 pmbox->vport ? pmbox->vport->vpi : 0xffffff,
7521 mbx->mbxCommand,
7522 phba->pport ? phba->pport->port_state : 0xff,
7523 psli->sli_flag, flag);
7524
7525 psli->slistat.mbox_busy++;
7526 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7527
7528 if (pmbox->vport) {
7529 lpfc_debugfs_disc_trc(pmbox->vport,
7530 LPFC_DISC_TRC_MBOX_VPORT,
7531 "MBOX Bsy vport: cmd:x%x mb:x%x x%x",
7532 (uint32_t)mbx->mbxCommand,
7533 mbx->un.varWords[0], mbx->un.varWords[1]);
7534 }
7535 else {
7536 lpfc_debugfs_disc_trc(phba->pport,
7537 LPFC_DISC_TRC_MBOX,
7538 "MBOX Bsy: cmd:x%x mb:x%x x%x",
7539 (uint32_t)mbx->mbxCommand,
7540 mbx->un.varWords[0], mbx->un.varWords[1]);
7541 }
7542
7543 return MBX_BUSY;
7544 }
7545
7546 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
7547
7548 /* If we are not polling, we MUST be in SLI2 mode */
7549 if (flag != MBX_POLL) {
7550 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) &&
7551 (mbx->mbxCommand != MBX_KILL_BOARD)) {
7552 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
7553 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7554 /* Mbox command <mbxCommand> cannot issue */
7555 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7556 "(%d):2531 Mailbox command x%x "
7557 "cannot issue Data: x%x x%x\n",
7558 pmbox->vport ? pmbox->vport->vpi : 0,
7559 pmbox->u.mb.mbxCommand,
7560 psli->sli_flag, flag);
7561 goto out_not_finished;
7562 }
7563 /* timeout active mbox command */
7564 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) *
7565 1000);
7566 mod_timer(&psli->mbox_tmo, jiffies + timeout);
7567 }
7568
7569 /* Mailbox cmd <cmd> issue */
7570 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7571 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x "
7572 "x%x\n",
7573 pmbox->vport ? pmbox->vport->vpi : 0,
7574 mbx->mbxCommand,
7575 phba->pport ? phba->pport->port_state : 0xff,
7576 psli->sli_flag, flag);
7577
7578 if (mbx->mbxCommand != MBX_HEARTBEAT) {
7579 if (pmbox->vport) {
7580 lpfc_debugfs_disc_trc(pmbox->vport,
7581 LPFC_DISC_TRC_MBOX_VPORT,
7582 "MBOX Send vport: cmd:x%x mb:x%x x%x",
7583 (uint32_t)mbx->mbxCommand,
7584 mbx->un.varWords[0], mbx->un.varWords[1]);
7585 }
7586 else {
7587 lpfc_debugfs_disc_trc(phba->pport,
7588 LPFC_DISC_TRC_MBOX,
7589 "MBOX Send: cmd:x%x mb:x%x x%x",
7590 (uint32_t)mbx->mbxCommand,
7591 mbx->un.varWords[0], mbx->un.varWords[1]);
7592 }
7593 }
7594
7595 psli->slistat.mbox_cmd++;
7596 evtctr = psli->slistat.mbox_event;
7597
7598 /* next set own bit for the adapter and copy over command word */
7599 mbx->mbxOwner = OWN_CHIP;
7600
7601 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
7602 /* Populate mbox extension offset word. */
7603 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) {
7604 *(((uint32_t *)mbx) + pmbox->mbox_offset_word)
7605 = (uint8_t *)phba->mbox_ext
7606 - (uint8_t *)phba->mbox;
7607 }
7608
7609 /* Copy the mailbox extension data */
7610 if (pmbox->in_ext_byte_len && pmbox->context2) {
7611 lpfc_sli_pcimem_bcopy(pmbox->context2,
7612 (uint8_t *)phba->mbox_ext,
7613 pmbox->in_ext_byte_len);
7614 }
7615 /* Copy command data to host SLIM area */
7616 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE);
7617 } else {
7618 /* Populate mbox extension offset word. */
7619 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len)
7620 *(((uint32_t *)mbx) + pmbox->mbox_offset_word)
7621 = MAILBOX_HBA_EXT_OFFSET;
7622
7623 /* Copy the mailbox extension data */
7624 if (pmbox->in_ext_byte_len && pmbox->context2)
7625 lpfc_memcpy_to_slim(phba->MBslimaddr +
7626 MAILBOX_HBA_EXT_OFFSET,
7627 pmbox->context2, pmbox->in_ext_byte_len);
7628
7629 if (mbx->mbxCommand == MBX_CONFIG_PORT)
7630 /* copy command data into host mbox for cmpl */
7631 lpfc_sli_pcimem_bcopy(mbx, phba->mbox,
7632 MAILBOX_CMD_SIZE);
7633
7634 /* First copy mbox command data to HBA SLIM, skip past first
7635 word */
7636 to_slim = phba->MBslimaddr + sizeof (uint32_t);
7637 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0],
7638 MAILBOX_CMD_SIZE - sizeof (uint32_t));
7639
7640 /* Next copy over first word, with mbxOwner set */
7641 ldata = *((uint32_t *)mbx);
7642 to_slim = phba->MBslimaddr;
7643 writel(ldata, to_slim);
7644 readl(to_slim); /* flush */
7645
7646 if (mbx->mbxCommand == MBX_CONFIG_PORT)
7647 /* switch over to host mailbox */
7648 psli->sli_flag |= LPFC_SLI_ACTIVE;
7649 }
7650
7651 wmb();
7652
7653 switch (flag) {
7654 case MBX_NOWAIT:
7655 /* Set up reference to mailbox command */
7656 psli->mbox_active = pmbox;
7657 /* Interrupt board to do it */
7658 writel(CA_MBATT, phba->CAregaddr);
7659 readl(phba->CAregaddr); /* flush */
7660 /* Don't wait for it to finish, just return */
7661 break;
7662
7663 case MBX_POLL:
7664 /* Set up null reference to mailbox command */
7665 psli->mbox_active = NULL;
7666 /* Interrupt board to do it */
7667 writel(CA_MBATT, phba->CAregaddr);
7668 readl(phba->CAregaddr); /* flush */
7669
7670 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
7671 /* First read mbox status word */
7672 word0 = *((uint32_t *)phba->mbox);
7673 word0 = le32_to_cpu(word0);
7674 } else {
7675 /* First read mbox status word */
7676 if (lpfc_readl(phba->MBslimaddr, &word0)) {
7677 spin_unlock_irqrestore(&phba->hbalock,
7678 drvr_flag);
7679 goto out_not_finished;
7680 }
7681 }
7682
7683 /* Read the HBA Host Attention Register */
7684 if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
7685 spin_unlock_irqrestore(&phba->hbalock,
7686 drvr_flag);
7687 goto out_not_finished;
7688 }
7689 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) *
7690 1000) + jiffies;
7691 i = 0;
7692 /* Wait for command to complete */
7693 while (((word0 & OWN_CHIP) == OWN_CHIP) ||
7694 (!(ha_copy & HA_MBATT) &&
7695 (phba->link_state > LPFC_WARM_START))) {
7696 if (time_after(jiffies, timeout)) {
7697 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
7698 spin_unlock_irqrestore(&phba->hbalock,
7699 drvr_flag);
7700 goto out_not_finished;
7701 }
7702
7703 /* Check if we took a mbox interrupt while we were
7704 polling */
7705 if (((word0 & OWN_CHIP) != OWN_CHIP)
7706 && (evtctr != psli->slistat.mbox_event))
7707 break;
7708
7709 if (i++ > 10) {
7710 spin_unlock_irqrestore(&phba->hbalock,
7711 drvr_flag);
7712 msleep(1);
7713 spin_lock_irqsave(&phba->hbalock, drvr_flag);
7714 }
7715
7716 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
7717 /* First copy command data */
7718 word0 = *((uint32_t *)phba->mbox);
7719 word0 = le32_to_cpu(word0);
7720 if (mbx->mbxCommand == MBX_CONFIG_PORT) {
7721 MAILBOX_t *slimmb;
7722 uint32_t slimword0;
7723 /* Check real SLIM for any errors */
7724 slimword0 = readl(phba->MBslimaddr);
7725 slimmb = (MAILBOX_t *) & slimword0;
7726 if (((slimword0 & OWN_CHIP) != OWN_CHIP)
7727 && slimmb->mbxStatus) {
7728 psli->sli_flag &=
7729 ~LPFC_SLI_ACTIVE;
7730 word0 = slimword0;
7731 }
7732 }
7733 } else {
7734 /* First copy command data */
7735 word0 = readl(phba->MBslimaddr);
7736 }
7737 /* Read the HBA Host Attention Register */
7738 if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
7739 spin_unlock_irqrestore(&phba->hbalock,
7740 drvr_flag);
7741 goto out_not_finished;
7742 }
7743 }
7744
7745 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
7746 /* copy results back to user */
7747 lpfc_sli_pcimem_bcopy(phba->mbox, mbx,
7748 MAILBOX_CMD_SIZE);
7749 /* Copy the mailbox extension data */
7750 if (pmbox->out_ext_byte_len && pmbox->context2) {
7751 lpfc_sli_pcimem_bcopy(phba->mbox_ext,
7752 pmbox->context2,
7753 pmbox->out_ext_byte_len);
7754 }
7755 } else {
7756 /* First copy command data */
7757 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr,
7758 MAILBOX_CMD_SIZE);
7759 /* Copy the mailbox extension data */
7760 if (pmbox->out_ext_byte_len && pmbox->context2) {
7761 lpfc_memcpy_from_slim(pmbox->context2,
7762 phba->MBslimaddr +
7763 MAILBOX_HBA_EXT_OFFSET,
7764 pmbox->out_ext_byte_len);
7765 }
7766 }
7767
7768 writel(HA_MBATT, phba->HAregaddr);
7769 readl(phba->HAregaddr); /* flush */
7770
7771 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
7772 status = mbx->mbxStatus;
7773 }
7774
7775 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7776 return status;
7777
7778 out_not_finished:
7779 if (processing_queue) {
7780 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED;
7781 lpfc_mbox_cmpl_put(phba, pmbox);
7782 }
7783 return MBX_NOT_FINISHED;
7784 }
7785
7786 /**
7787 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command
7788 * @phba: Pointer to HBA context object.
7789 *
7790 * The function blocks the posting of SLI4 asynchronous mailbox commands from
7791 * the driver internal pending mailbox queue. It will then try to wait out the
7792 * possible outstanding mailbox command before return.
7793 *
7794 * Returns:
7795 * 0 - the outstanding mailbox command completed; otherwise, the wait for
7796 * the outstanding mailbox command timed out.
7797 **/
7798 static int
lpfc_sli4_async_mbox_block(struct lpfc_hba * phba)7799 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba)
7800 {
7801 struct lpfc_sli *psli = &phba->sli;
7802 int rc = 0;
7803 unsigned long timeout = 0;
7804
7805 /* Mark the asynchronous mailbox command posting as blocked */
7806 spin_lock_irq(&phba->hbalock);
7807 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
7808 /* Determine how long we might wait for the active mailbox
7809 * command to be gracefully completed by firmware.
7810 */
7811 if (phba->sli.mbox_active)
7812 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
7813 phba->sli.mbox_active) *
7814 1000) + jiffies;
7815 spin_unlock_irq(&phba->hbalock);
7816
7817 /* Make sure the mailbox is really active */
7818 if (timeout)
7819 lpfc_sli4_process_missed_mbox_completions(phba);
7820
7821 /* Wait for the outstnading mailbox command to complete */
7822 while (phba->sli.mbox_active) {
7823 /* Check active mailbox complete status every 2ms */
7824 msleep(2);
7825 if (time_after(jiffies, timeout)) {
7826 /* Timeout, marked the outstanding cmd not complete */
7827 rc = 1;
7828 break;
7829 }
7830 }
7831
7832 /* Can not cleanly block async mailbox command, fails it */
7833 if (rc) {
7834 spin_lock_irq(&phba->hbalock);
7835 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
7836 spin_unlock_irq(&phba->hbalock);
7837 }
7838 return rc;
7839 }
7840
7841 /**
7842 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command
7843 * @phba: Pointer to HBA context object.
7844 *
7845 * The function unblocks and resume posting of SLI4 asynchronous mailbox
7846 * commands from the driver internal pending mailbox queue. It makes sure
7847 * that there is no outstanding mailbox command before resuming posting
7848 * asynchronous mailbox commands. If, for any reason, there is outstanding
7849 * mailbox command, it will try to wait it out before resuming asynchronous
7850 * mailbox command posting.
7851 **/
7852 static void
lpfc_sli4_async_mbox_unblock(struct lpfc_hba * phba)7853 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba)
7854 {
7855 struct lpfc_sli *psli = &phba->sli;
7856
7857 spin_lock_irq(&phba->hbalock);
7858 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
7859 /* Asynchronous mailbox posting is not blocked, do nothing */
7860 spin_unlock_irq(&phba->hbalock);
7861 return;
7862 }
7863
7864 /* Outstanding synchronous mailbox command is guaranteed to be done,
7865 * successful or timeout, after timing-out the outstanding mailbox
7866 * command shall always be removed, so just unblock posting async
7867 * mailbox command and resume
7868 */
7869 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
7870 spin_unlock_irq(&phba->hbalock);
7871
7872 /* wake up worker thread to post asynchronlous mailbox command */
7873 lpfc_worker_wake_up(phba);
7874 }
7875
7876 /**
7877 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready
7878 * @phba: Pointer to HBA context object.
7879 * @mboxq: Pointer to mailbox object.
7880 *
7881 * The function waits for the bootstrap mailbox register ready bit from
7882 * port for twice the regular mailbox command timeout value.
7883 *
7884 * 0 - no timeout on waiting for bootstrap mailbox register ready.
7885 * MBXERR_ERROR - wait for bootstrap mailbox register timed out.
7886 **/
7887 static int
lpfc_sli4_wait_bmbx_ready(struct lpfc_hba * phba,LPFC_MBOXQ_t * mboxq)7888 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
7889 {
7890 uint32_t db_ready;
7891 unsigned long timeout;
7892 struct lpfc_register bmbx_reg;
7893
7894 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq)
7895 * 1000) + jiffies;
7896
7897 do {
7898 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr);
7899 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg);
7900 if (!db_ready)
7901 msleep(2);
7902
7903 if (time_after(jiffies, timeout))
7904 return MBXERR_ERROR;
7905 } while (!db_ready);
7906
7907 return 0;
7908 }
7909
7910 /**
7911 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox
7912 * @phba: Pointer to HBA context object.
7913 * @mboxq: Pointer to mailbox object.
7914 *
7915 * The function posts a mailbox to the port. The mailbox is expected
7916 * to be comletely filled in and ready for the port to operate on it.
7917 * This routine executes a synchronous completion operation on the
7918 * mailbox by polling for its completion.
7919 *
7920 * The caller must not be holding any locks when calling this routine.
7921 *
7922 * Returns:
7923 * MBX_SUCCESS - mailbox posted successfully
7924 * Any of the MBX error values.
7925 **/
7926 static int
lpfc_sli4_post_sync_mbox(struct lpfc_hba * phba,LPFC_MBOXQ_t * mboxq)7927 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
7928 {
7929 int rc = MBX_SUCCESS;
7930 unsigned long iflag;
7931 uint32_t mcqe_status;
7932 uint32_t mbx_cmnd;
7933 struct lpfc_sli *psli = &phba->sli;
7934 struct lpfc_mqe *mb = &mboxq->u.mqe;
7935 struct lpfc_bmbx_create *mbox_rgn;
7936 struct dma_address *dma_address;
7937
7938 /*
7939 * Only one mailbox can be active to the bootstrap mailbox region
7940 * at a time and there is no queueing provided.
7941 */
7942 spin_lock_irqsave(&phba->hbalock, iflag);
7943 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
7944 spin_unlock_irqrestore(&phba->hbalock, iflag);
7945 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7946 "(%d):2532 Mailbox command x%x (x%x/x%x) "
7947 "cannot issue Data: x%x x%x\n",
7948 mboxq->vport ? mboxq->vport->vpi : 0,
7949 mboxq->u.mb.mbxCommand,
7950 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
7951 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
7952 psli->sli_flag, MBX_POLL);
7953 return MBXERR_ERROR;
7954 }
7955 /* The server grabs the token and owns it until release */
7956 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
7957 phba->sli.mbox_active = mboxq;
7958 spin_unlock_irqrestore(&phba->hbalock, iflag);
7959
7960 /* wait for bootstrap mbox register for readyness */
7961 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
7962 if (rc)
7963 goto exit;
7964
7965 /*
7966 * Initialize the bootstrap memory region to avoid stale data areas
7967 * in the mailbox post. Then copy the caller's mailbox contents to
7968 * the bmbx mailbox region.
7969 */
7970 mbx_cmnd = bf_get(lpfc_mqe_command, mb);
7971 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create));
7972 lpfc_sli_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt,
7973 sizeof(struct lpfc_mqe));
7974
7975 /* Post the high mailbox dma address to the port and wait for ready. */
7976 dma_address = &phba->sli4_hba.bmbx.dma_address;
7977 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr);
7978
7979 /* wait for bootstrap mbox register for hi-address write done */
7980 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
7981 if (rc)
7982 goto exit;
7983
7984 /* Post the low mailbox dma address to the port. */
7985 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr);
7986
7987 /* wait for bootstrap mbox register for low address write done */
7988 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
7989 if (rc)
7990 goto exit;
7991
7992 /*
7993 * Read the CQ to ensure the mailbox has completed.
7994 * If so, update the mailbox status so that the upper layers
7995 * can complete the request normally.
7996 */
7997 lpfc_sli_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb,
7998 sizeof(struct lpfc_mqe));
7999 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt;
8000 lpfc_sli_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe,
8001 sizeof(struct lpfc_mcqe));
8002 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe);
8003 /*
8004 * When the CQE status indicates a failure and the mailbox status
8005 * indicates success then copy the CQE status into the mailbox status
8006 * (and prefix it with x4000).
8007 */
8008 if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
8009 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS)
8010 bf_set(lpfc_mqe_status, mb,
8011 (LPFC_MBX_ERROR_RANGE | mcqe_status));
8012 rc = MBXERR_ERROR;
8013 } else
8014 lpfc_sli4_swap_str(phba, mboxq);
8015
8016 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8017 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x "
8018 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x"
8019 " x%x x%x CQ: x%x x%x x%x x%x\n",
8020 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
8021 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8022 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8023 bf_get(lpfc_mqe_status, mb),
8024 mb->un.mb_words[0], mb->un.mb_words[1],
8025 mb->un.mb_words[2], mb->un.mb_words[3],
8026 mb->un.mb_words[4], mb->un.mb_words[5],
8027 mb->un.mb_words[6], mb->un.mb_words[7],
8028 mb->un.mb_words[8], mb->un.mb_words[9],
8029 mb->un.mb_words[10], mb->un.mb_words[11],
8030 mb->un.mb_words[12], mboxq->mcqe.word0,
8031 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1,
8032 mboxq->mcqe.trailer);
8033 exit:
8034 /* We are holding the token, no needed for lock when release */
8035 spin_lock_irqsave(&phba->hbalock, iflag);
8036 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8037 phba->sli.mbox_active = NULL;
8038 spin_unlock_irqrestore(&phba->hbalock, iflag);
8039 return rc;
8040 }
8041
8042 /**
8043 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware
8044 * @phba: Pointer to HBA context object.
8045 * @pmbox: Pointer to mailbox object.
8046 * @flag: Flag indicating how the mailbox need to be processed.
8047 *
8048 * This function is called by discovery code and HBA management code to submit
8049 * a mailbox command to firmware with SLI-4 interface spec.
8050 *
8051 * Return codes the caller owns the mailbox command after the return of the
8052 * function.
8053 **/
8054 static int
lpfc_sli_issue_mbox_s4(struct lpfc_hba * phba,LPFC_MBOXQ_t * mboxq,uint32_t flag)8055 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
8056 uint32_t flag)
8057 {
8058 struct lpfc_sli *psli = &phba->sli;
8059 unsigned long iflags;
8060 int rc;
8061
8062 /* dump from issue mailbox command if setup */
8063 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb);
8064
8065 rc = lpfc_mbox_dev_check(phba);
8066 if (unlikely(rc)) {
8067 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8068 "(%d):2544 Mailbox command x%x (x%x/x%x) "
8069 "cannot issue Data: x%x x%x\n",
8070 mboxq->vport ? mboxq->vport->vpi : 0,
8071 mboxq->u.mb.mbxCommand,
8072 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8073 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8074 psli->sli_flag, flag);
8075 goto out_not_finished;
8076 }
8077
8078 /* Detect polling mode and jump to a handler */
8079 if (!phba->sli4_hba.intr_enable) {
8080 if (flag == MBX_POLL)
8081 rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
8082 else
8083 rc = -EIO;
8084 if (rc != MBX_SUCCESS)
8085 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
8086 "(%d):2541 Mailbox command x%x "
8087 "(x%x/x%x) failure: "
8088 "mqe_sta: x%x mcqe_sta: x%x/x%x "
8089 "Data: x%x x%x\n,",
8090 mboxq->vport ? mboxq->vport->vpi : 0,
8091 mboxq->u.mb.mbxCommand,
8092 lpfc_sli_config_mbox_subsys_get(phba,
8093 mboxq),
8094 lpfc_sli_config_mbox_opcode_get(phba,
8095 mboxq),
8096 bf_get(lpfc_mqe_status, &mboxq->u.mqe),
8097 bf_get(lpfc_mcqe_status, &mboxq->mcqe),
8098 bf_get(lpfc_mcqe_ext_status,
8099 &mboxq->mcqe),
8100 psli->sli_flag, flag);
8101 return rc;
8102 } else if (flag == MBX_POLL) {
8103 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
8104 "(%d):2542 Try to issue mailbox command "
8105 "x%x (x%x/x%x) synchronously ahead of async"
8106 "mailbox command queue: x%x x%x\n",
8107 mboxq->vport ? mboxq->vport->vpi : 0,
8108 mboxq->u.mb.mbxCommand,
8109 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8110 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8111 psli->sli_flag, flag);
8112 /* Try to block the asynchronous mailbox posting */
8113 rc = lpfc_sli4_async_mbox_block(phba);
8114 if (!rc) {
8115 /* Successfully blocked, now issue sync mbox cmd */
8116 rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
8117 if (rc != MBX_SUCCESS)
8118 lpfc_printf_log(phba, KERN_WARNING,
8119 LOG_MBOX | LOG_SLI,
8120 "(%d):2597 Sync Mailbox command "
8121 "x%x (x%x/x%x) failure: "
8122 "mqe_sta: x%x mcqe_sta: x%x/x%x "
8123 "Data: x%x x%x\n,",
8124 mboxq->vport ? mboxq->vport->vpi : 0,
8125 mboxq->u.mb.mbxCommand,
8126 lpfc_sli_config_mbox_subsys_get(phba,
8127 mboxq),
8128 lpfc_sli_config_mbox_opcode_get(phba,
8129 mboxq),
8130 bf_get(lpfc_mqe_status, &mboxq->u.mqe),
8131 bf_get(lpfc_mcqe_status, &mboxq->mcqe),
8132 bf_get(lpfc_mcqe_ext_status,
8133 &mboxq->mcqe),
8134 psli->sli_flag, flag);
8135 /* Unblock the async mailbox posting afterward */
8136 lpfc_sli4_async_mbox_unblock(phba);
8137 }
8138 return rc;
8139 }
8140
8141 /* Now, interrupt mode asynchrous mailbox command */
8142 rc = lpfc_mbox_cmd_check(phba, mboxq);
8143 if (rc) {
8144 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8145 "(%d):2543 Mailbox command x%x (x%x/x%x) "
8146 "cannot issue Data: x%x x%x\n",
8147 mboxq->vport ? mboxq->vport->vpi : 0,
8148 mboxq->u.mb.mbxCommand,
8149 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8150 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8151 psli->sli_flag, flag);
8152 goto out_not_finished;
8153 }
8154
8155 /* Put the mailbox command to the driver internal FIFO */
8156 psli->slistat.mbox_busy++;
8157 spin_lock_irqsave(&phba->hbalock, iflags);
8158 lpfc_mbox_put(phba, mboxq);
8159 spin_unlock_irqrestore(&phba->hbalock, iflags);
8160 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8161 "(%d):0354 Mbox cmd issue - Enqueue Data: "
8162 "x%x (x%x/x%x) x%x x%x x%x\n",
8163 mboxq->vport ? mboxq->vport->vpi : 0xffffff,
8164 bf_get(lpfc_mqe_command, &mboxq->u.mqe),
8165 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8166 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8167 phba->pport->port_state,
8168 psli->sli_flag, MBX_NOWAIT);
8169 /* Wake up worker thread to transport mailbox command from head */
8170 lpfc_worker_wake_up(phba);
8171
8172 return MBX_BUSY;
8173
8174 out_not_finished:
8175 return MBX_NOT_FINISHED;
8176 }
8177
8178 /**
8179 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device
8180 * @phba: Pointer to HBA context object.
8181 *
8182 * This function is called by worker thread to send a mailbox command to
8183 * SLI4 HBA firmware.
8184 *
8185 **/
8186 int
lpfc_sli4_post_async_mbox(struct lpfc_hba * phba)8187 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba)
8188 {
8189 struct lpfc_sli *psli = &phba->sli;
8190 LPFC_MBOXQ_t *mboxq;
8191 int rc = MBX_SUCCESS;
8192 unsigned long iflags;
8193 struct lpfc_mqe *mqe;
8194 uint32_t mbx_cmnd;
8195
8196 /* Check interrupt mode before post async mailbox command */
8197 if (unlikely(!phba->sli4_hba.intr_enable))
8198 return MBX_NOT_FINISHED;
8199
8200 /* Check for mailbox command service token */
8201 spin_lock_irqsave(&phba->hbalock, iflags);
8202 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
8203 spin_unlock_irqrestore(&phba->hbalock, iflags);
8204 return MBX_NOT_FINISHED;
8205 }
8206 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
8207 spin_unlock_irqrestore(&phba->hbalock, iflags);
8208 return MBX_NOT_FINISHED;
8209 }
8210 if (unlikely(phba->sli.mbox_active)) {
8211 spin_unlock_irqrestore(&phba->hbalock, iflags);
8212 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8213 "0384 There is pending active mailbox cmd\n");
8214 return MBX_NOT_FINISHED;
8215 }
8216 /* Take the mailbox command service token */
8217 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
8218
8219 /* Get the next mailbox command from head of queue */
8220 mboxq = lpfc_mbox_get(phba);
8221
8222 /* If no more mailbox command waiting for post, we're done */
8223 if (!mboxq) {
8224 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8225 spin_unlock_irqrestore(&phba->hbalock, iflags);
8226 return MBX_SUCCESS;
8227 }
8228 phba->sli.mbox_active = mboxq;
8229 spin_unlock_irqrestore(&phba->hbalock, iflags);
8230
8231 /* Check device readiness for posting mailbox command */
8232 rc = lpfc_mbox_dev_check(phba);
8233 if (unlikely(rc))
8234 /* Driver clean routine will clean up pending mailbox */
8235 goto out_not_finished;
8236
8237 /* Prepare the mbox command to be posted */
8238 mqe = &mboxq->u.mqe;
8239 mbx_cmnd = bf_get(lpfc_mqe_command, mqe);
8240
8241 /* Start timer for the mbox_tmo and log some mailbox post messages */
8242 mod_timer(&psli->mbox_tmo, (jiffies +
8243 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq))));
8244
8245 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8246 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: "
8247 "x%x x%x\n",
8248 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
8249 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8250 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8251 phba->pport->port_state, psli->sli_flag);
8252
8253 if (mbx_cmnd != MBX_HEARTBEAT) {
8254 if (mboxq->vport) {
8255 lpfc_debugfs_disc_trc(mboxq->vport,
8256 LPFC_DISC_TRC_MBOX_VPORT,
8257 "MBOX Send vport: cmd:x%x mb:x%x x%x",
8258 mbx_cmnd, mqe->un.mb_words[0],
8259 mqe->un.mb_words[1]);
8260 } else {
8261 lpfc_debugfs_disc_trc(phba->pport,
8262 LPFC_DISC_TRC_MBOX,
8263 "MBOX Send: cmd:x%x mb:x%x x%x",
8264 mbx_cmnd, mqe->un.mb_words[0],
8265 mqe->un.mb_words[1]);
8266 }
8267 }
8268 psli->slistat.mbox_cmd++;
8269
8270 /* Post the mailbox command to the port */
8271 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe);
8272 if (rc != MBX_SUCCESS) {
8273 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8274 "(%d):2533 Mailbox command x%x (x%x/x%x) "
8275 "cannot issue Data: x%x x%x\n",
8276 mboxq->vport ? mboxq->vport->vpi : 0,
8277 mboxq->u.mb.mbxCommand,
8278 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8279 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8280 psli->sli_flag, MBX_NOWAIT);
8281 goto out_not_finished;
8282 }
8283
8284 return rc;
8285
8286 out_not_finished:
8287 spin_lock_irqsave(&phba->hbalock, iflags);
8288 if (phba->sli.mbox_active) {
8289 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
8290 __lpfc_mbox_cmpl_put(phba, mboxq);
8291 /* Release the token */
8292 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8293 phba->sli.mbox_active = NULL;
8294 }
8295 spin_unlock_irqrestore(&phba->hbalock, iflags);
8296
8297 return MBX_NOT_FINISHED;
8298 }
8299
8300 /**
8301 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command
8302 * @phba: Pointer to HBA context object.
8303 * @pmbox: Pointer to mailbox object.
8304 * @flag: Flag indicating how the mailbox need to be processed.
8305 *
8306 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from
8307 * the API jump table function pointer from the lpfc_hba struct.
8308 *
8309 * Return codes the caller owns the mailbox command after the return of the
8310 * function.
8311 **/
8312 int
lpfc_sli_issue_mbox(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmbox,uint32_t flag)8313 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag)
8314 {
8315 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag);
8316 }
8317
8318 /**
8319 * lpfc_mbox_api_table_setup - Set up mbox api function jump table
8320 * @phba: The hba struct for which this call is being executed.
8321 * @dev_grp: The HBA PCI-Device group number.
8322 *
8323 * This routine sets up the mbox interface API function jump table in @phba
8324 * struct.
8325 * Returns: 0 - success, -ENODEV - failure.
8326 **/
8327 int
lpfc_mbox_api_table_setup(struct lpfc_hba * phba,uint8_t dev_grp)8328 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
8329 {
8330
8331 switch (dev_grp) {
8332 case LPFC_PCI_DEV_LP:
8333 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3;
8334 phba->lpfc_sli_handle_slow_ring_event =
8335 lpfc_sli_handle_slow_ring_event_s3;
8336 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3;
8337 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3;
8338 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3;
8339 break;
8340 case LPFC_PCI_DEV_OC:
8341 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4;
8342 phba->lpfc_sli_handle_slow_ring_event =
8343 lpfc_sli_handle_slow_ring_event_s4;
8344 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4;
8345 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4;
8346 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4;
8347 break;
8348 default:
8349 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
8350 "1420 Invalid HBA PCI-device group: 0x%x\n",
8351 dev_grp);
8352 return -ENODEV;
8353 break;
8354 }
8355 return 0;
8356 }
8357
8358 /**
8359 * __lpfc_sli_ringtx_put - Add an iocb to the txq
8360 * @phba: Pointer to HBA context object.
8361 * @pring: Pointer to driver SLI ring object.
8362 * @piocb: Pointer to address of newly added command iocb.
8363 *
8364 * This function is called with hbalock held to add a command
8365 * iocb to the txq when SLI layer cannot submit the command iocb
8366 * to the ring.
8367 **/
8368 void
__lpfc_sli_ringtx_put(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * piocb)8369 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
8370 struct lpfc_iocbq *piocb)
8371 {
8372 lockdep_assert_held(&phba->hbalock);
8373 /* Insert the caller's iocb in the txq tail for later processing. */
8374 list_add_tail(&piocb->list, &pring->txq);
8375 }
8376
8377 /**
8378 * lpfc_sli_next_iocb - Get the next iocb in the txq
8379 * @phba: Pointer to HBA context object.
8380 * @pring: Pointer to driver SLI ring object.
8381 * @piocb: Pointer to address of newly added command iocb.
8382 *
8383 * This function is called with hbalock held before a new
8384 * iocb is submitted to the firmware. This function checks
8385 * txq to flush the iocbs in txq to Firmware before
8386 * submitting new iocbs to the Firmware.
8387 * If there are iocbs in the txq which need to be submitted
8388 * to firmware, lpfc_sli_next_iocb returns the first element
8389 * of the txq after dequeuing it from txq.
8390 * If there is no iocb in the txq then the function will return
8391 * *piocb and *piocb is set to NULL. Caller needs to check
8392 * *piocb to find if there are more commands in the txq.
8393 **/
8394 static struct lpfc_iocbq *
lpfc_sli_next_iocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq ** piocb)8395 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
8396 struct lpfc_iocbq **piocb)
8397 {
8398 struct lpfc_iocbq * nextiocb;
8399
8400 lockdep_assert_held(&phba->hbalock);
8401
8402 nextiocb = lpfc_sli_ringtx_get(phba, pring);
8403 if (!nextiocb) {
8404 nextiocb = *piocb;
8405 *piocb = NULL;
8406 }
8407
8408 return nextiocb;
8409 }
8410
8411 /**
8412 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb
8413 * @phba: Pointer to HBA context object.
8414 * @ring_number: SLI ring number to issue iocb on.
8415 * @piocb: Pointer to command iocb.
8416 * @flag: Flag indicating if this command can be put into txq.
8417 *
8418 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue
8419 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is
8420 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT
8421 * flag is turned on, the function returns IOCB_ERROR. When the link is down,
8422 * this function allows only iocbs for posting buffers. This function finds
8423 * next available slot in the command ring and posts the command to the
8424 * available slot and writes the port attention register to request HBA start
8425 * processing new iocb. If there is no slot available in the ring and
8426 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise
8427 * the function returns IOCB_BUSY.
8428 *
8429 * This function is called with hbalock held. The function will return success
8430 * after it successfully submit the iocb to firmware or after adding to the
8431 * txq.
8432 **/
8433 static int
__lpfc_sli_issue_iocb_s3(struct lpfc_hba * phba,uint32_t ring_number,struct lpfc_iocbq * piocb,uint32_t flag)8434 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number,
8435 struct lpfc_iocbq *piocb, uint32_t flag)
8436 {
8437 struct lpfc_iocbq *nextiocb;
8438 IOCB_t *iocb;
8439 struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number];
8440
8441 lockdep_assert_held(&phba->hbalock);
8442
8443 if (piocb->iocb_cmpl && (!piocb->vport) &&
8444 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) &&
8445 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) {
8446 lpfc_printf_log(phba, KERN_ERR,
8447 LOG_SLI | LOG_VPORT,
8448 "1807 IOCB x%x failed. No vport\n",
8449 piocb->iocb.ulpCommand);
8450 dump_stack();
8451 return IOCB_ERROR;
8452 }
8453
8454
8455 /* If the PCI channel is in offline state, do not post iocbs. */
8456 if (unlikely(pci_channel_offline(phba->pcidev)))
8457 return IOCB_ERROR;
8458
8459 /* If HBA has a deferred error attention, fail the iocb. */
8460 if (unlikely(phba->hba_flag & DEFER_ERATT))
8461 return IOCB_ERROR;
8462
8463 /*
8464 * We should never get an IOCB if we are in a < LINK_DOWN state
8465 */
8466 if (unlikely(phba->link_state < LPFC_LINK_DOWN))
8467 return IOCB_ERROR;
8468
8469 /*
8470 * Check to see if we are blocking IOCB processing because of a
8471 * outstanding event.
8472 */
8473 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT))
8474 goto iocb_busy;
8475
8476 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) {
8477 /*
8478 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF
8479 * can be issued if the link is not up.
8480 */
8481 switch (piocb->iocb.ulpCommand) {
8482 case CMD_GEN_REQUEST64_CR:
8483 case CMD_GEN_REQUEST64_CX:
8484 if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) ||
8485 (piocb->iocb.un.genreq64.w5.hcsw.Rctl !=
8486 FC_RCTL_DD_UNSOL_CMD) ||
8487 (piocb->iocb.un.genreq64.w5.hcsw.Type !=
8488 MENLO_TRANSPORT_TYPE))
8489
8490 goto iocb_busy;
8491 break;
8492 case CMD_QUE_RING_BUF_CN:
8493 case CMD_QUE_RING_BUF64_CN:
8494 /*
8495 * For IOCBs, like QUE_RING_BUF, that have no rsp ring
8496 * completion, iocb_cmpl MUST be 0.
8497 */
8498 if (piocb->iocb_cmpl)
8499 piocb->iocb_cmpl = NULL;
8500 /*FALLTHROUGH*/
8501 case CMD_CREATE_XRI_CR:
8502 case CMD_CLOSE_XRI_CN:
8503 case CMD_CLOSE_XRI_CX:
8504 break;
8505 default:
8506 goto iocb_busy;
8507 }
8508
8509 /*
8510 * For FCP commands, we must be in a state where we can process link
8511 * attention events.
8512 */
8513 } else if (unlikely(pring->ringno == LPFC_FCP_RING &&
8514 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) {
8515 goto iocb_busy;
8516 }
8517
8518 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
8519 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb)))
8520 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
8521
8522 if (iocb)
8523 lpfc_sli_update_ring(phba, pring);
8524 else
8525 lpfc_sli_update_full_ring(phba, pring);
8526
8527 if (!piocb)
8528 return IOCB_SUCCESS;
8529
8530 goto out_busy;
8531
8532 iocb_busy:
8533 pring->stats.iocb_cmd_delay++;
8534
8535 out_busy:
8536
8537 if (!(flag & SLI_IOCB_RET_IOCB)) {
8538 __lpfc_sli_ringtx_put(phba, pring, piocb);
8539 return IOCB_SUCCESS;
8540 }
8541
8542 return IOCB_BUSY;
8543 }
8544
8545 /**
8546 * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl.
8547 * @phba: Pointer to HBA context object.
8548 * @piocb: Pointer to command iocb.
8549 * @sglq: Pointer to the scatter gather queue object.
8550 *
8551 * This routine converts the bpl or bde that is in the IOCB
8552 * to a sgl list for the sli4 hardware. The physical address
8553 * of the bpl/bde is converted back to a virtual address.
8554 * If the IOCB contains a BPL then the list of BDE's is
8555 * converted to sli4_sge's. If the IOCB contains a single
8556 * BDE then it is converted to a single sli_sge.
8557 * The IOCB is still in cpu endianess so the contents of
8558 * the bpl can be used without byte swapping.
8559 *
8560 * Returns valid XRI = Success, NO_XRI = Failure.
8561 **/
8562 static uint16_t
lpfc_sli4_bpl2sgl(struct lpfc_hba * phba,struct lpfc_iocbq * piocbq,struct lpfc_sglq * sglq)8563 lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq,
8564 struct lpfc_sglq *sglq)
8565 {
8566 uint16_t xritag = NO_XRI;
8567 struct ulp_bde64 *bpl = NULL;
8568 struct ulp_bde64 bde;
8569 struct sli4_sge *sgl = NULL;
8570 struct lpfc_dmabuf *dmabuf;
8571 IOCB_t *icmd;
8572 int numBdes = 0;
8573 int i = 0;
8574 uint32_t offset = 0; /* accumulated offset in the sg request list */
8575 int inbound = 0; /* number of sg reply entries inbound from firmware */
8576
8577 if (!piocbq || !sglq)
8578 return xritag;
8579
8580 sgl = (struct sli4_sge *)sglq->sgl;
8581 icmd = &piocbq->iocb;
8582 if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX)
8583 return sglq->sli4_xritag;
8584 if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) {
8585 numBdes = icmd->un.genreq64.bdl.bdeSize /
8586 sizeof(struct ulp_bde64);
8587 /* The addrHigh and addrLow fields within the IOCB
8588 * have not been byteswapped yet so there is no
8589 * need to swap them back.
8590 */
8591 if (piocbq->context3)
8592 dmabuf = (struct lpfc_dmabuf *)piocbq->context3;
8593 else
8594 return xritag;
8595
8596 bpl = (struct ulp_bde64 *)dmabuf->virt;
8597 if (!bpl)
8598 return xritag;
8599
8600 for (i = 0; i < numBdes; i++) {
8601 /* Should already be byte swapped. */
8602 sgl->addr_hi = bpl->addrHigh;
8603 sgl->addr_lo = bpl->addrLow;
8604
8605 sgl->word2 = le32_to_cpu(sgl->word2);
8606 if ((i+1) == numBdes)
8607 bf_set(lpfc_sli4_sge_last, sgl, 1);
8608 else
8609 bf_set(lpfc_sli4_sge_last, sgl, 0);
8610 /* swap the size field back to the cpu so we
8611 * can assign it to the sgl.
8612 */
8613 bde.tus.w = le32_to_cpu(bpl->tus.w);
8614 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize);
8615 /* The offsets in the sgl need to be accumulated
8616 * separately for the request and reply lists.
8617 * The request is always first, the reply follows.
8618 */
8619 if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) {
8620 /* add up the reply sg entries */
8621 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I)
8622 inbound++;
8623 /* first inbound? reset the offset */
8624 if (inbound == 1)
8625 offset = 0;
8626 bf_set(lpfc_sli4_sge_offset, sgl, offset);
8627 bf_set(lpfc_sli4_sge_type, sgl,
8628 LPFC_SGE_TYPE_DATA);
8629 offset += bde.tus.f.bdeSize;
8630 }
8631 sgl->word2 = cpu_to_le32(sgl->word2);
8632 bpl++;
8633 sgl++;
8634 }
8635 } else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) {
8636 /* The addrHigh and addrLow fields of the BDE have not
8637 * been byteswapped yet so they need to be swapped
8638 * before putting them in the sgl.
8639 */
8640 sgl->addr_hi =
8641 cpu_to_le32(icmd->un.genreq64.bdl.addrHigh);
8642 sgl->addr_lo =
8643 cpu_to_le32(icmd->un.genreq64.bdl.addrLow);
8644 sgl->word2 = le32_to_cpu(sgl->word2);
8645 bf_set(lpfc_sli4_sge_last, sgl, 1);
8646 sgl->word2 = cpu_to_le32(sgl->word2);
8647 sgl->sge_len =
8648 cpu_to_le32(icmd->un.genreq64.bdl.bdeSize);
8649 }
8650 return sglq->sli4_xritag;
8651 }
8652
8653 /**
8654 * lpfc_sli_iocb2wqe - Convert the IOCB to a work queue entry.
8655 * @phba: Pointer to HBA context object.
8656 * @piocb: Pointer to command iocb.
8657 * @wqe: Pointer to the work queue entry.
8658 *
8659 * This routine converts the iocb command to its Work Queue Entry
8660 * equivalent. The wqe pointer should not have any fields set when
8661 * this routine is called because it will memcpy over them.
8662 * This routine does not set the CQ_ID or the WQEC bits in the
8663 * wqe.
8664 *
8665 * Returns: 0 = Success, IOCB_ERROR = Failure.
8666 **/
8667 static int
lpfc_sli4_iocb2wqe(struct lpfc_hba * phba,struct lpfc_iocbq * iocbq,union lpfc_wqe * wqe)8668 lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq,
8669 union lpfc_wqe *wqe)
8670 {
8671 uint32_t xmit_len = 0, total_len = 0;
8672 uint8_t ct = 0;
8673 uint32_t fip;
8674 uint32_t abort_tag;
8675 uint8_t command_type = ELS_COMMAND_NON_FIP;
8676 uint8_t cmnd;
8677 uint16_t xritag;
8678 uint16_t abrt_iotag;
8679 struct lpfc_iocbq *abrtiocbq;
8680 struct ulp_bde64 *bpl = NULL;
8681 uint32_t els_id = LPFC_ELS_ID_DEFAULT;
8682 int numBdes, i;
8683 struct ulp_bde64 bde;
8684 struct lpfc_nodelist *ndlp;
8685 uint32_t *pcmd;
8686 uint32_t if_type;
8687
8688 fip = phba->hba_flag & HBA_FIP_SUPPORT;
8689 /* The fcp commands will set command type */
8690 if (iocbq->iocb_flag & LPFC_IO_FCP)
8691 command_type = FCP_COMMAND;
8692 else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK))
8693 command_type = ELS_COMMAND_FIP;
8694 else
8695 command_type = ELS_COMMAND_NON_FIP;
8696
8697 if (phba->fcp_embed_io)
8698 memset(wqe, 0, sizeof(union lpfc_wqe128));
8699 /* Some of the fields are in the right position already */
8700 memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe));
8701 if (iocbq->iocb.ulpCommand != CMD_SEND_FRAME) {
8702 /* The ct field has moved so reset */
8703 wqe->generic.wqe_com.word7 = 0;
8704 wqe->generic.wqe_com.word10 = 0;
8705 }
8706
8707 abort_tag = (uint32_t) iocbq->iotag;
8708 xritag = iocbq->sli4_xritag;
8709 /* words0-2 bpl convert bde */
8710 if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) {
8711 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize /
8712 sizeof(struct ulp_bde64);
8713 bpl = (struct ulp_bde64 *)
8714 ((struct lpfc_dmabuf *)iocbq->context3)->virt;
8715 if (!bpl)
8716 return IOCB_ERROR;
8717
8718 /* Should already be byte swapped. */
8719 wqe->generic.bde.addrHigh = le32_to_cpu(bpl->addrHigh);
8720 wqe->generic.bde.addrLow = le32_to_cpu(bpl->addrLow);
8721 /* swap the size field back to the cpu so we
8722 * can assign it to the sgl.
8723 */
8724 wqe->generic.bde.tus.w = le32_to_cpu(bpl->tus.w);
8725 xmit_len = wqe->generic.bde.tus.f.bdeSize;
8726 total_len = 0;
8727 for (i = 0; i < numBdes; i++) {
8728 bde.tus.w = le32_to_cpu(bpl[i].tus.w);
8729 total_len += bde.tus.f.bdeSize;
8730 }
8731 } else
8732 xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize;
8733
8734 iocbq->iocb.ulpIoTag = iocbq->iotag;
8735 cmnd = iocbq->iocb.ulpCommand;
8736
8737 switch (iocbq->iocb.ulpCommand) {
8738 case CMD_ELS_REQUEST64_CR:
8739 if (iocbq->iocb_flag & LPFC_IO_LIBDFC)
8740 ndlp = iocbq->context_un.ndlp;
8741 else
8742 ndlp = (struct lpfc_nodelist *)iocbq->context1;
8743 if (!iocbq->iocb.ulpLe) {
8744 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
8745 "2007 Only Limited Edition cmd Format"
8746 " supported 0x%x\n",
8747 iocbq->iocb.ulpCommand);
8748 return IOCB_ERROR;
8749 }
8750
8751 wqe->els_req.payload_len = xmit_len;
8752 /* Els_reguest64 has a TMO */
8753 bf_set(wqe_tmo, &wqe->els_req.wqe_com,
8754 iocbq->iocb.ulpTimeout);
8755 /* Need a VF for word 4 set the vf bit*/
8756 bf_set(els_req64_vf, &wqe->els_req, 0);
8757 /* And a VFID for word 12 */
8758 bf_set(els_req64_vfid, &wqe->els_req, 0);
8759 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l);
8760 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
8761 iocbq->iocb.ulpContext);
8762 bf_set(wqe_ct, &wqe->els_req.wqe_com, ct);
8763 bf_set(wqe_pu, &wqe->els_req.wqe_com, 0);
8764 /* CCP CCPE PV PRI in word10 were set in the memcpy */
8765 if (command_type == ELS_COMMAND_FIP)
8766 els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)
8767 >> LPFC_FIP_ELS_ID_SHIFT);
8768 pcmd = (uint32_t *) (((struct lpfc_dmabuf *)
8769 iocbq->context2)->virt);
8770 if_type = bf_get(lpfc_sli_intf_if_type,
8771 &phba->sli4_hba.sli_intf);
8772 if (if_type == LPFC_SLI_INTF_IF_TYPE_2) {
8773 if (pcmd && (*pcmd == ELS_CMD_FLOGI ||
8774 *pcmd == ELS_CMD_SCR ||
8775 *pcmd == ELS_CMD_FDISC ||
8776 *pcmd == ELS_CMD_LOGO ||
8777 *pcmd == ELS_CMD_PLOGI)) {
8778 bf_set(els_req64_sp, &wqe->els_req, 1);
8779 bf_set(els_req64_sid, &wqe->els_req,
8780 iocbq->vport->fc_myDID);
8781 if ((*pcmd == ELS_CMD_FLOGI) &&
8782 !(phba->fc_topology ==
8783 LPFC_TOPOLOGY_LOOP))
8784 bf_set(els_req64_sid, &wqe->els_req, 0);
8785 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1);
8786 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
8787 phba->vpi_ids[iocbq->vport->vpi]);
8788 } else if (pcmd && iocbq->context1) {
8789 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0);
8790 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
8791 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
8792 }
8793 }
8794 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com,
8795 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
8796 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id);
8797 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1);
8798 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ);
8799 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1);
8800 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE);
8801 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0);
8802 wqe->els_req.max_response_payload_len = total_len - xmit_len;
8803 break;
8804 case CMD_XMIT_SEQUENCE64_CX:
8805 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com,
8806 iocbq->iocb.un.ulpWord[3]);
8807 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com,
8808 iocbq->iocb.unsli3.rcvsli3.ox_id);
8809 /* The entire sequence is transmitted for this IOCB */
8810 xmit_len = total_len;
8811 cmnd = CMD_XMIT_SEQUENCE64_CR;
8812 if (phba->link_flag & LS_LOOPBACK_MODE)
8813 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1);
8814 case CMD_XMIT_SEQUENCE64_CR:
8815 /* word3 iocb=io_tag32 wqe=reserved */
8816 wqe->xmit_sequence.rsvd3 = 0;
8817 /* word4 relative_offset memcpy */
8818 /* word5 r_ctl/df_ctl memcpy */
8819 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0);
8820 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1);
8821 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com,
8822 LPFC_WQE_IOD_WRITE);
8823 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com,
8824 LPFC_WQE_LENLOC_WORD12);
8825 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0);
8826 wqe->xmit_sequence.xmit_len = xmit_len;
8827 command_type = OTHER_COMMAND;
8828 break;
8829 case CMD_XMIT_BCAST64_CN:
8830 /* word3 iocb=iotag32 wqe=seq_payload_len */
8831 wqe->xmit_bcast64.seq_payload_len = xmit_len;
8832 /* word4 iocb=rsvd wqe=rsvd */
8833 /* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */
8834 /* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */
8835 bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com,
8836 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
8837 bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1);
8838 bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE);
8839 bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com,
8840 LPFC_WQE_LENLOC_WORD3);
8841 bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0);
8842 break;
8843 case CMD_FCP_IWRITE64_CR:
8844 command_type = FCP_COMMAND_DATA_OUT;
8845 /* word3 iocb=iotag wqe=payload_offset_len */
8846 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */
8847 bf_set(payload_offset_len, &wqe->fcp_iwrite,
8848 xmit_len + sizeof(struct fcp_rsp));
8849 bf_set(cmd_buff_len, &wqe->fcp_iwrite,
8850 0);
8851 /* word4 iocb=parameter wqe=total_xfer_length memcpy */
8852 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */
8853 bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com,
8854 iocbq->iocb.ulpFCP2Rcvy);
8855 bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS);
8856 /* Always open the exchange */
8857 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE);
8858 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com,
8859 LPFC_WQE_LENLOC_WORD4);
8860 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU);
8861 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1);
8862 if (iocbq->iocb_flag & LPFC_IO_OAS) {
8863 bf_set(wqe_oas, &wqe->fcp_iwrite.wqe_com, 1);
8864 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1);
8865 if (iocbq->priority) {
8866 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com,
8867 (iocbq->priority << 1));
8868 } else {
8869 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com,
8870 (phba->cfg_XLanePriority << 1));
8871 }
8872 }
8873 /* Note, word 10 is already initialized to 0 */
8874
8875 if (phba->fcp_embed_io) {
8876 struct lpfc_scsi_buf *lpfc_cmd;
8877 struct sli4_sge *sgl;
8878 union lpfc_wqe128 *wqe128;
8879 struct fcp_cmnd *fcp_cmnd;
8880 uint32_t *ptr;
8881
8882 /* 128 byte wqe support here */
8883 wqe128 = (union lpfc_wqe128 *)wqe;
8884
8885 lpfc_cmd = iocbq->context1;
8886 sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl;
8887 fcp_cmnd = lpfc_cmd->fcp_cmnd;
8888
8889 /* Word 0-2 - FCP_CMND */
8890 wqe128->generic.bde.tus.f.bdeFlags =
8891 BUFF_TYPE_BDE_IMMED;
8892 wqe128->generic.bde.tus.f.bdeSize = sgl->sge_len;
8893 wqe128->generic.bde.addrHigh = 0;
8894 wqe128->generic.bde.addrLow = 88; /* Word 22 */
8895
8896 bf_set(wqe_wqes, &wqe128->fcp_iwrite.wqe_com, 1);
8897
8898 /* Word 22-29 FCP CMND Payload */
8899 ptr = &wqe128->words[22];
8900 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
8901 }
8902 break;
8903 case CMD_FCP_IREAD64_CR:
8904 /* word3 iocb=iotag wqe=payload_offset_len */
8905 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */
8906 bf_set(payload_offset_len, &wqe->fcp_iread,
8907 xmit_len + sizeof(struct fcp_rsp));
8908 bf_set(cmd_buff_len, &wqe->fcp_iread,
8909 0);
8910 /* word4 iocb=parameter wqe=total_xfer_length memcpy */
8911 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */
8912 bf_set(wqe_erp, &wqe->fcp_iread.wqe_com,
8913 iocbq->iocb.ulpFCP2Rcvy);
8914 bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS);
8915 /* Always open the exchange */
8916 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ);
8917 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com,
8918 LPFC_WQE_LENLOC_WORD4);
8919 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU);
8920 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1);
8921 if (iocbq->iocb_flag & LPFC_IO_OAS) {
8922 bf_set(wqe_oas, &wqe->fcp_iread.wqe_com, 1);
8923 bf_set(wqe_ccpe, &wqe->fcp_iread.wqe_com, 1);
8924 if (iocbq->priority) {
8925 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com,
8926 (iocbq->priority << 1));
8927 } else {
8928 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com,
8929 (phba->cfg_XLanePriority << 1));
8930 }
8931 }
8932 /* Note, word 10 is already initialized to 0 */
8933
8934 if (phba->fcp_embed_io) {
8935 struct lpfc_scsi_buf *lpfc_cmd;
8936 struct sli4_sge *sgl;
8937 union lpfc_wqe128 *wqe128;
8938 struct fcp_cmnd *fcp_cmnd;
8939 uint32_t *ptr;
8940
8941 /* 128 byte wqe support here */
8942 wqe128 = (union lpfc_wqe128 *)wqe;
8943
8944 lpfc_cmd = iocbq->context1;
8945 sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl;
8946 fcp_cmnd = lpfc_cmd->fcp_cmnd;
8947
8948 /* Word 0-2 - FCP_CMND */
8949 wqe128->generic.bde.tus.f.bdeFlags =
8950 BUFF_TYPE_BDE_IMMED;
8951 wqe128->generic.bde.tus.f.bdeSize = sgl->sge_len;
8952 wqe128->generic.bde.addrHigh = 0;
8953 wqe128->generic.bde.addrLow = 88; /* Word 22 */
8954
8955 bf_set(wqe_wqes, &wqe128->fcp_iread.wqe_com, 1);
8956
8957 /* Word 22-29 FCP CMND Payload */
8958 ptr = &wqe128->words[22];
8959 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
8960 }
8961 break;
8962 case CMD_FCP_ICMND64_CR:
8963 /* word3 iocb=iotag wqe=payload_offset_len */
8964 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */
8965 bf_set(payload_offset_len, &wqe->fcp_icmd,
8966 xmit_len + sizeof(struct fcp_rsp));
8967 bf_set(cmd_buff_len, &wqe->fcp_icmd,
8968 0);
8969 /* word3 iocb=IO_TAG wqe=reserved */
8970 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0);
8971 /* Always open the exchange */
8972 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1);
8973 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE);
8974 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1);
8975 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com,
8976 LPFC_WQE_LENLOC_NONE);
8977 bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com,
8978 iocbq->iocb.ulpFCP2Rcvy);
8979 if (iocbq->iocb_flag & LPFC_IO_OAS) {
8980 bf_set(wqe_oas, &wqe->fcp_icmd.wqe_com, 1);
8981 bf_set(wqe_ccpe, &wqe->fcp_icmd.wqe_com, 1);
8982 if (iocbq->priority) {
8983 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com,
8984 (iocbq->priority << 1));
8985 } else {
8986 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com,
8987 (phba->cfg_XLanePriority << 1));
8988 }
8989 }
8990 /* Note, word 10 is already initialized to 0 */
8991
8992 if (phba->fcp_embed_io) {
8993 struct lpfc_scsi_buf *lpfc_cmd;
8994 struct sli4_sge *sgl;
8995 union lpfc_wqe128 *wqe128;
8996 struct fcp_cmnd *fcp_cmnd;
8997 uint32_t *ptr;
8998
8999 /* 128 byte wqe support here */
9000 wqe128 = (union lpfc_wqe128 *)wqe;
9001
9002 lpfc_cmd = iocbq->context1;
9003 sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl;
9004 fcp_cmnd = lpfc_cmd->fcp_cmnd;
9005
9006 /* Word 0-2 - FCP_CMND */
9007 wqe128->generic.bde.tus.f.bdeFlags =
9008 BUFF_TYPE_BDE_IMMED;
9009 wqe128->generic.bde.tus.f.bdeSize = sgl->sge_len;
9010 wqe128->generic.bde.addrHigh = 0;
9011 wqe128->generic.bde.addrLow = 88; /* Word 22 */
9012
9013 bf_set(wqe_wqes, &wqe128->fcp_icmd.wqe_com, 1);
9014
9015 /* Word 22-29 FCP CMND Payload */
9016 ptr = &wqe128->words[22];
9017 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
9018 }
9019 break;
9020 case CMD_GEN_REQUEST64_CR:
9021 /* For this command calculate the xmit length of the
9022 * request bde.
9023 */
9024 xmit_len = 0;
9025 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize /
9026 sizeof(struct ulp_bde64);
9027 for (i = 0; i < numBdes; i++) {
9028 bde.tus.w = le32_to_cpu(bpl[i].tus.w);
9029 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64)
9030 break;
9031 xmit_len += bde.tus.f.bdeSize;
9032 }
9033 /* word3 iocb=IO_TAG wqe=request_payload_len */
9034 wqe->gen_req.request_payload_len = xmit_len;
9035 /* word4 iocb=parameter wqe=relative_offset memcpy */
9036 /* word5 [rctl, type, df_ctl, la] copied in memcpy */
9037 /* word6 context tag copied in memcpy */
9038 if (iocbq->iocb.ulpCt_h || iocbq->iocb.ulpCt_l) {
9039 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l);
9040 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9041 "2015 Invalid CT %x command 0x%x\n",
9042 ct, iocbq->iocb.ulpCommand);
9043 return IOCB_ERROR;
9044 }
9045 bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0);
9046 bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout);
9047 bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU);
9048 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1);
9049 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ);
9050 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1);
9051 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE);
9052 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0);
9053 wqe->gen_req.max_response_payload_len = total_len - xmit_len;
9054 command_type = OTHER_COMMAND;
9055 break;
9056 case CMD_XMIT_ELS_RSP64_CX:
9057 ndlp = (struct lpfc_nodelist *)iocbq->context1;
9058 /* words0-2 BDE memcpy */
9059 /* word3 iocb=iotag32 wqe=response_payload_len */
9060 wqe->xmit_els_rsp.response_payload_len = xmit_len;
9061 /* word4 */
9062 wqe->xmit_els_rsp.word4 = 0;
9063 /* word5 iocb=rsvd wge=did */
9064 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest,
9065 iocbq->iocb.un.xseq64.xmit_els_remoteID);
9066
9067 if_type = bf_get(lpfc_sli_intf_if_type,
9068 &phba->sli4_hba.sli_intf);
9069 if (if_type == LPFC_SLI_INTF_IF_TYPE_2) {
9070 if (iocbq->vport->fc_flag & FC_PT2PT) {
9071 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
9072 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
9073 iocbq->vport->fc_myDID);
9074 if (iocbq->vport->fc_myDID == Fabric_DID) {
9075 bf_set(wqe_els_did,
9076 &wqe->xmit_els_rsp.wqe_dest, 0);
9077 }
9078 }
9079 }
9080 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com,
9081 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
9082 bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU);
9083 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com,
9084 iocbq->iocb.unsli3.rcvsli3.ox_id);
9085 if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l)
9086 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com,
9087 phba->vpi_ids[iocbq->vport->vpi]);
9088 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1);
9089 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE);
9090 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1);
9091 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com,
9092 LPFC_WQE_LENLOC_WORD3);
9093 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0);
9094 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp,
9095 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
9096 pcmd = (uint32_t *) (((struct lpfc_dmabuf *)
9097 iocbq->context2)->virt);
9098 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) {
9099 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
9100 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
9101 iocbq->vport->fc_myDID);
9102 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1);
9103 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com,
9104 phba->vpi_ids[phba->pport->vpi]);
9105 }
9106 command_type = OTHER_COMMAND;
9107 break;
9108 case CMD_CLOSE_XRI_CN:
9109 case CMD_ABORT_XRI_CN:
9110 case CMD_ABORT_XRI_CX:
9111 /* words 0-2 memcpy should be 0 rserved */
9112 /* port will send abts */
9113 abrt_iotag = iocbq->iocb.un.acxri.abortContextTag;
9114 if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) {
9115 abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag];
9116 fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK;
9117 } else
9118 fip = 0;
9119
9120 if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip)
9121 /*
9122 * The link is down, or the command was ELS_FIP
9123 * so the fw does not need to send abts
9124 * on the wire.
9125 */
9126 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1);
9127 else
9128 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0);
9129 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG);
9130 /* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */
9131 wqe->abort_cmd.rsrvd5 = 0;
9132 bf_set(wqe_ct, &wqe->abort_cmd.wqe_com,
9133 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
9134 abort_tag = iocbq->iocb.un.acxri.abortIoTag;
9135 /*
9136 * The abort handler will send us CMD_ABORT_XRI_CN or
9137 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX
9138 */
9139 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX);
9140 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1);
9141 bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com,
9142 LPFC_WQE_LENLOC_NONE);
9143 cmnd = CMD_ABORT_XRI_CX;
9144 command_type = OTHER_COMMAND;
9145 xritag = 0;
9146 break;
9147 case CMD_XMIT_BLS_RSP64_CX:
9148 ndlp = (struct lpfc_nodelist *)iocbq->context1;
9149 /* As BLS ABTS RSP WQE is very different from other WQEs,
9150 * we re-construct this WQE here based on information in
9151 * iocbq from scratch.
9152 */
9153 memset(wqe, 0, sizeof(union lpfc_wqe));
9154 /* OX_ID is invariable to who sent ABTS to CT exchange */
9155 bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp,
9156 bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp));
9157 if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) ==
9158 LPFC_ABTS_UNSOL_INT) {
9159 /* ABTS sent by initiator to CT exchange, the
9160 * RX_ID field will be filled with the newly
9161 * allocated responder XRI.
9162 */
9163 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp,
9164 iocbq->sli4_xritag);
9165 } else {
9166 /* ABTS sent by responder to CT exchange, the
9167 * RX_ID field will be filled with the responder
9168 * RX_ID from ABTS.
9169 */
9170 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp,
9171 bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp));
9172 }
9173 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff);
9174 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1);
9175
9176 /* Use CT=VPI */
9177 bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest,
9178 ndlp->nlp_DID);
9179 bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp,
9180 iocbq->iocb.ulpContext);
9181 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1);
9182 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com,
9183 phba->vpi_ids[phba->pport->vpi]);
9184 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1);
9185 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com,
9186 LPFC_WQE_LENLOC_NONE);
9187 /* Overwrite the pre-set comnd type with OTHER_COMMAND */
9188 command_type = OTHER_COMMAND;
9189 if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) {
9190 bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp,
9191 bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp));
9192 bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp,
9193 bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp));
9194 bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp,
9195 bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp));
9196 }
9197
9198 break;
9199 case CMD_SEND_FRAME:
9200 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag);
9201 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag);
9202 return 0;
9203 case CMD_XRI_ABORTED_CX:
9204 case CMD_CREATE_XRI_CR: /* Do we expect to use this? */
9205 case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */
9206 case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */
9207 case CMD_FCP_TRSP64_CX: /* Target mode rcv */
9208 case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */
9209 default:
9210 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9211 "2014 Invalid command 0x%x\n",
9212 iocbq->iocb.ulpCommand);
9213 return IOCB_ERROR;
9214 break;
9215 }
9216
9217 if (iocbq->iocb_flag & LPFC_IO_DIF_PASS)
9218 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU);
9219 else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP)
9220 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP);
9221 else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT)
9222 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT);
9223 iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP |
9224 LPFC_IO_DIF_INSERT);
9225 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag);
9226 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag);
9227 wqe->generic.wqe_com.abort_tag = abort_tag;
9228 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type);
9229 bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd);
9230 bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass);
9231 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
9232 return 0;
9233 }
9234
9235 /**
9236 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb
9237 * @phba: Pointer to HBA context object.
9238 * @ring_number: SLI ring number to issue iocb on.
9239 * @piocb: Pointer to command iocb.
9240 * @flag: Flag indicating if this command can be put into txq.
9241 *
9242 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue
9243 * an iocb command to an HBA with SLI-4 interface spec.
9244 *
9245 * This function is called with hbalock held. The function will return success
9246 * after it successfully submit the iocb to firmware or after adding to the
9247 * txq.
9248 **/
9249 static int
__lpfc_sli_issue_iocb_s4(struct lpfc_hba * phba,uint32_t ring_number,struct lpfc_iocbq * piocb,uint32_t flag)9250 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number,
9251 struct lpfc_iocbq *piocb, uint32_t flag)
9252 {
9253 struct lpfc_sglq *sglq;
9254 union lpfc_wqe *wqe;
9255 union lpfc_wqe128 wqe128;
9256 struct lpfc_queue *wq;
9257 struct lpfc_sli_ring *pring;
9258
9259 /* Get the WQ */
9260 if ((piocb->iocb_flag & LPFC_IO_FCP) ||
9261 (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) {
9262 if (!phba->cfg_fof || (!(piocb->iocb_flag & LPFC_IO_OAS)))
9263 wq = phba->sli4_hba.fcp_wq[piocb->hba_wqidx];
9264 else
9265 wq = phba->sli4_hba.oas_wq;
9266 } else {
9267 wq = phba->sli4_hba.els_wq;
9268 }
9269
9270 /* Get corresponding ring */
9271 pring = wq->pring;
9272
9273 /*
9274 * The WQE can be either 64 or 128 bytes,
9275 * so allocate space on the stack assuming the largest.
9276 */
9277 wqe = (union lpfc_wqe *)&wqe128;
9278
9279 lockdep_assert_held(&phba->hbalock);
9280
9281 if (piocb->sli4_xritag == NO_XRI) {
9282 if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN ||
9283 piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN)
9284 sglq = NULL;
9285 else {
9286 if (!list_empty(&pring->txq)) {
9287 if (!(flag & SLI_IOCB_RET_IOCB)) {
9288 __lpfc_sli_ringtx_put(phba,
9289 pring, piocb);
9290 return IOCB_SUCCESS;
9291 } else {
9292 return IOCB_BUSY;
9293 }
9294 } else {
9295 sglq = __lpfc_sli_get_els_sglq(phba, piocb);
9296 if (!sglq) {
9297 if (!(flag & SLI_IOCB_RET_IOCB)) {
9298 __lpfc_sli_ringtx_put(phba,
9299 pring,
9300 piocb);
9301 return IOCB_SUCCESS;
9302 } else
9303 return IOCB_BUSY;
9304 }
9305 }
9306 }
9307 } else if (piocb->iocb_flag & LPFC_IO_FCP)
9308 /* These IO's already have an XRI and a mapped sgl. */
9309 sglq = NULL;
9310 else {
9311 /*
9312 * This is a continuation of a commandi,(CX) so this
9313 * sglq is on the active list
9314 */
9315 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag);
9316 if (!sglq)
9317 return IOCB_ERROR;
9318 }
9319
9320 if (sglq) {
9321 piocb->sli4_lxritag = sglq->sli4_lxritag;
9322 piocb->sli4_xritag = sglq->sli4_xritag;
9323 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq))
9324 return IOCB_ERROR;
9325 }
9326
9327 if (lpfc_sli4_iocb2wqe(phba, piocb, wqe))
9328 return IOCB_ERROR;
9329
9330 if (lpfc_sli4_wq_put(wq, wqe))
9331 return IOCB_ERROR;
9332 lpfc_sli_ringtxcmpl_put(phba, pring, piocb);
9333
9334 return 0;
9335 }
9336
9337 /**
9338 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb
9339 *
9340 * This routine wraps the actual lockless version for issusing IOCB function
9341 * pointer from the lpfc_hba struct.
9342 *
9343 * Return codes:
9344 * IOCB_ERROR - Error
9345 * IOCB_SUCCESS - Success
9346 * IOCB_BUSY - Busy
9347 **/
9348 int
__lpfc_sli_issue_iocb(struct lpfc_hba * phba,uint32_t ring_number,struct lpfc_iocbq * piocb,uint32_t flag)9349 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
9350 struct lpfc_iocbq *piocb, uint32_t flag)
9351 {
9352 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
9353 }
9354
9355 /**
9356 * lpfc_sli_api_table_setup - Set up sli api function jump table
9357 * @phba: The hba struct for which this call is being executed.
9358 * @dev_grp: The HBA PCI-Device group number.
9359 *
9360 * This routine sets up the SLI interface API function jump table in @phba
9361 * struct.
9362 * Returns: 0 - success, -ENODEV - failure.
9363 **/
9364 int
lpfc_sli_api_table_setup(struct lpfc_hba * phba,uint8_t dev_grp)9365 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
9366 {
9367
9368 switch (dev_grp) {
9369 case LPFC_PCI_DEV_LP:
9370 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3;
9371 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3;
9372 break;
9373 case LPFC_PCI_DEV_OC:
9374 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4;
9375 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4;
9376 break;
9377 default:
9378 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
9379 "1419 Invalid HBA PCI-device group: 0x%x\n",
9380 dev_grp);
9381 return -ENODEV;
9382 break;
9383 }
9384 phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq;
9385 return 0;
9386 }
9387
9388 /**
9389 * lpfc_sli4_calc_ring - Calculates which ring to use
9390 * @phba: Pointer to HBA context object.
9391 * @piocb: Pointer to command iocb.
9392 *
9393 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on
9394 * hba_wqidx, thus we need to calculate the corresponding ring.
9395 * Since ABORTS must go on the same WQ of the command they are
9396 * aborting, we use command's hba_wqidx.
9397 */
9398 struct lpfc_sli_ring *
lpfc_sli4_calc_ring(struct lpfc_hba * phba,struct lpfc_iocbq * piocb)9399 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb)
9400 {
9401 if (piocb->iocb_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) {
9402 if (!(phba->cfg_fof) ||
9403 (!(piocb->iocb_flag & LPFC_IO_FOF))) {
9404 if (unlikely(!phba->sli4_hba.fcp_wq))
9405 return NULL;
9406 /*
9407 * for abort iocb hba_wqidx should already
9408 * be setup based on what work queue we used.
9409 */
9410 if (!(piocb->iocb_flag & LPFC_USE_FCPWQIDX)) {
9411 piocb->hba_wqidx =
9412 lpfc_sli4_scmd_to_wqidx_distr(phba,
9413 piocb->context1);
9414 piocb->hba_wqidx = piocb->hba_wqidx %
9415 phba->cfg_fcp_io_channel;
9416 }
9417 return phba->sli4_hba.fcp_wq[piocb->hba_wqidx]->pring;
9418 } else {
9419 if (unlikely(!phba->sli4_hba.oas_wq))
9420 return NULL;
9421 piocb->hba_wqidx = 0;
9422 return phba->sli4_hba.oas_wq->pring;
9423 }
9424 } else {
9425 if (unlikely(!phba->sli4_hba.els_wq))
9426 return NULL;
9427 piocb->hba_wqidx = 0;
9428 return phba->sli4_hba.els_wq->pring;
9429 }
9430 }
9431
9432 /**
9433 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb
9434 * @phba: Pointer to HBA context object.
9435 * @pring: Pointer to driver SLI ring object.
9436 * @piocb: Pointer to command iocb.
9437 * @flag: Flag indicating if this command can be put into txq.
9438 *
9439 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb
9440 * function. This function gets the hbalock and calls
9441 * __lpfc_sli_issue_iocb function and will return the error returned
9442 * by __lpfc_sli_issue_iocb function. This wrapper is used by
9443 * functions which do not hold hbalock.
9444 **/
9445 int
lpfc_sli_issue_iocb(struct lpfc_hba * phba,uint32_t ring_number,struct lpfc_iocbq * piocb,uint32_t flag)9446 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
9447 struct lpfc_iocbq *piocb, uint32_t flag)
9448 {
9449 struct lpfc_hba_eq_hdl *hba_eq_hdl;
9450 struct lpfc_sli_ring *pring;
9451 struct lpfc_queue *fpeq;
9452 struct lpfc_eqe *eqe;
9453 unsigned long iflags;
9454 int rc, idx;
9455
9456 if (phba->sli_rev == LPFC_SLI_REV4) {
9457 pring = lpfc_sli4_calc_ring(phba, piocb);
9458 if (unlikely(pring == NULL))
9459 return IOCB_ERROR;
9460
9461 spin_lock_irqsave(&pring->ring_lock, iflags);
9462 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
9463 spin_unlock_irqrestore(&pring->ring_lock, iflags);
9464
9465 if (lpfc_fcp_look_ahead && (piocb->iocb_flag & LPFC_IO_FCP)) {
9466 idx = piocb->hba_wqidx;
9467 hba_eq_hdl = &phba->sli4_hba.hba_eq_hdl[idx];
9468
9469 if (atomic_dec_and_test(&hba_eq_hdl->hba_eq_in_use)) {
9470
9471 /* Get associated EQ with this index */
9472 fpeq = phba->sli4_hba.hba_eq[idx];
9473
9474 /* Turn off interrupts from this EQ */
9475 lpfc_sli4_eq_clr_intr(fpeq);
9476
9477 /*
9478 * Process all the events on FCP EQ
9479 */
9480 while ((eqe = lpfc_sli4_eq_get(fpeq))) {
9481 lpfc_sli4_hba_handle_eqe(phba,
9482 eqe, idx);
9483 fpeq->EQ_processed++;
9484 }
9485
9486 /* Always clear and re-arm the EQ */
9487 lpfc_sli4_eq_release(fpeq,
9488 LPFC_QUEUE_REARM);
9489 }
9490 atomic_inc(&hba_eq_hdl->hba_eq_in_use);
9491 }
9492 } else {
9493 /* For now, SLI2/3 will still use hbalock */
9494 spin_lock_irqsave(&phba->hbalock, iflags);
9495 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
9496 spin_unlock_irqrestore(&phba->hbalock, iflags);
9497 }
9498 return rc;
9499 }
9500
9501 /**
9502 * lpfc_extra_ring_setup - Extra ring setup function
9503 * @phba: Pointer to HBA context object.
9504 *
9505 * This function is called while driver attaches with the
9506 * HBA to setup the extra ring. The extra ring is used
9507 * only when driver needs to support target mode functionality
9508 * or IP over FC functionalities.
9509 *
9510 * This function is called with no lock held. SLI3 only.
9511 **/
9512 static int
lpfc_extra_ring_setup(struct lpfc_hba * phba)9513 lpfc_extra_ring_setup( struct lpfc_hba *phba)
9514 {
9515 struct lpfc_sli *psli;
9516 struct lpfc_sli_ring *pring;
9517
9518 psli = &phba->sli;
9519
9520 /* Adjust cmd/rsp ring iocb entries more evenly */
9521
9522 /* Take some away from the FCP ring */
9523 pring = &psli->sli3_ring[LPFC_FCP_RING];
9524 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES;
9525 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES;
9526 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES;
9527 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES;
9528
9529 /* and give them to the extra ring */
9530 pring = &psli->sli3_ring[LPFC_EXTRA_RING];
9531
9532 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES;
9533 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES;
9534 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES;
9535 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES;
9536
9537 /* Setup default profile for this ring */
9538 pring->iotag_max = 4096;
9539 pring->num_mask = 1;
9540 pring->prt[0].profile = 0; /* Mask 0 */
9541 pring->prt[0].rctl = phba->cfg_multi_ring_rctl;
9542 pring->prt[0].type = phba->cfg_multi_ring_type;
9543 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL;
9544 return 0;
9545 }
9546
9547 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port.
9548 * @phba: Pointer to HBA context object.
9549 * @iocbq: Pointer to iocb object.
9550 *
9551 * The async_event handler calls this routine when it receives
9552 * an ASYNC_STATUS_CN event from the port. The port generates
9553 * this event when an Abort Sequence request to an rport fails
9554 * twice in succession. The abort could be originated by the
9555 * driver or by the port. The ABTS could have been for an ELS
9556 * or FCP IO. The port only generates this event when an ABTS
9557 * fails to complete after one retry.
9558 */
9559 static void
lpfc_sli_abts_err_handler(struct lpfc_hba * phba,struct lpfc_iocbq * iocbq)9560 lpfc_sli_abts_err_handler(struct lpfc_hba *phba,
9561 struct lpfc_iocbq *iocbq)
9562 {
9563 struct lpfc_nodelist *ndlp = NULL;
9564 uint16_t rpi = 0, vpi = 0;
9565 struct lpfc_vport *vport = NULL;
9566
9567 /* The rpi in the ulpContext is vport-sensitive. */
9568 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag;
9569 rpi = iocbq->iocb.ulpContext;
9570
9571 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9572 "3092 Port generated ABTS async event "
9573 "on vpi %d rpi %d status 0x%x\n",
9574 vpi, rpi, iocbq->iocb.ulpStatus);
9575
9576 vport = lpfc_find_vport_by_vpid(phba, vpi);
9577 if (!vport)
9578 goto err_exit;
9579 ndlp = lpfc_findnode_rpi(vport, rpi);
9580 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp))
9581 goto err_exit;
9582
9583 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT)
9584 lpfc_sli_abts_recover_port(vport, ndlp);
9585 return;
9586
9587 err_exit:
9588 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9589 "3095 Event Context not found, no "
9590 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n",
9591 iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus,
9592 vpi, rpi);
9593 }
9594
9595 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port.
9596 * @phba: pointer to HBA context object.
9597 * @ndlp: nodelist pointer for the impacted rport.
9598 * @axri: pointer to the wcqe containing the failed exchange.
9599 *
9600 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the
9601 * port. The port generates this event when an abort exchange request to an
9602 * rport fails twice in succession with no reply. The abort could be originated
9603 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO.
9604 */
9605 void
lpfc_sli4_abts_err_handler(struct lpfc_hba * phba,struct lpfc_nodelist * ndlp,struct sli4_wcqe_xri_aborted * axri)9606 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba,
9607 struct lpfc_nodelist *ndlp,
9608 struct sli4_wcqe_xri_aborted *axri)
9609 {
9610 struct lpfc_vport *vport;
9611 uint32_t ext_status = 0;
9612
9613 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) {
9614 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9615 "3115 Node Context not found, driver "
9616 "ignoring abts err event\n");
9617 return;
9618 }
9619
9620 vport = ndlp->vport;
9621 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9622 "3116 Port generated FCP XRI ABORT event on "
9623 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n",
9624 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi],
9625 bf_get(lpfc_wcqe_xa_xri, axri),
9626 bf_get(lpfc_wcqe_xa_status, axri),
9627 axri->parameter);
9628
9629 /*
9630 * Catch the ABTS protocol failure case. Older OCe FW releases returned
9631 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and
9632 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT.
9633 */
9634 ext_status = axri->parameter & IOERR_PARAM_MASK;
9635 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) &&
9636 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0)))
9637 lpfc_sli_abts_recover_port(vport, ndlp);
9638 }
9639
9640 /**
9641 * lpfc_sli_async_event_handler - ASYNC iocb handler function
9642 * @phba: Pointer to HBA context object.
9643 * @pring: Pointer to driver SLI ring object.
9644 * @iocbq: Pointer to iocb object.
9645 *
9646 * This function is called by the slow ring event handler
9647 * function when there is an ASYNC event iocb in the ring.
9648 * This function is called with no lock held.
9649 * Currently this function handles only temperature related
9650 * ASYNC events. The function decodes the temperature sensor
9651 * event message and posts events for the management applications.
9652 **/
9653 static void
lpfc_sli_async_event_handler(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * iocbq)9654 lpfc_sli_async_event_handler(struct lpfc_hba * phba,
9655 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq)
9656 {
9657 IOCB_t *icmd;
9658 uint16_t evt_code;
9659 struct temp_event temp_event_data;
9660 struct Scsi_Host *shost;
9661 uint32_t *iocb_w;
9662
9663 icmd = &iocbq->iocb;
9664 evt_code = icmd->un.asyncstat.evt_code;
9665
9666 switch (evt_code) {
9667 case ASYNC_TEMP_WARN:
9668 case ASYNC_TEMP_SAFE:
9669 temp_event_data.data = (uint32_t) icmd->ulpContext;
9670 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
9671 if (evt_code == ASYNC_TEMP_WARN) {
9672 temp_event_data.event_code = LPFC_THRESHOLD_TEMP;
9673 lpfc_printf_log(phba, KERN_ERR, LOG_TEMP,
9674 "0347 Adapter is very hot, please take "
9675 "corrective action. temperature : %d Celsius\n",
9676 (uint32_t) icmd->ulpContext);
9677 } else {
9678 temp_event_data.event_code = LPFC_NORMAL_TEMP;
9679 lpfc_printf_log(phba, KERN_ERR, LOG_TEMP,
9680 "0340 Adapter temperature is OK now. "
9681 "temperature : %d Celsius\n",
9682 (uint32_t) icmd->ulpContext);
9683 }
9684
9685 /* Send temperature change event to applications */
9686 shost = lpfc_shost_from_vport(phba->pport);
9687 fc_host_post_vendor_event(shost, fc_get_event_number(),
9688 sizeof(temp_event_data), (char *) &temp_event_data,
9689 LPFC_NL_VENDOR_ID);
9690 break;
9691 case ASYNC_STATUS_CN:
9692 lpfc_sli_abts_err_handler(phba, iocbq);
9693 break;
9694 default:
9695 iocb_w = (uint32_t *) icmd;
9696 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9697 "0346 Ring %d handler: unexpected ASYNC_STATUS"
9698 " evt_code 0x%x\n"
9699 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n"
9700 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n"
9701 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n"
9702 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n",
9703 pring->ringno, icmd->un.asyncstat.evt_code,
9704 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3],
9705 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7],
9706 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11],
9707 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]);
9708
9709 break;
9710 }
9711 }
9712
9713
9714 /**
9715 * lpfc_sli4_setup - SLI ring setup function
9716 * @phba: Pointer to HBA context object.
9717 *
9718 * lpfc_sli_setup sets up rings of the SLI interface with
9719 * number of iocbs per ring and iotags. This function is
9720 * called while driver attach to the HBA and before the
9721 * interrupts are enabled. So there is no need for locking.
9722 *
9723 * This function always returns 0.
9724 **/
9725 int
lpfc_sli4_setup(struct lpfc_hba * phba)9726 lpfc_sli4_setup(struct lpfc_hba *phba)
9727 {
9728 struct lpfc_sli_ring *pring;
9729
9730 pring = phba->sli4_hba.els_wq->pring;
9731 pring->num_mask = LPFC_MAX_RING_MASK;
9732 pring->prt[0].profile = 0; /* Mask 0 */
9733 pring->prt[0].rctl = FC_RCTL_ELS_REQ;
9734 pring->prt[0].type = FC_TYPE_ELS;
9735 pring->prt[0].lpfc_sli_rcv_unsol_event =
9736 lpfc_els_unsol_event;
9737 pring->prt[1].profile = 0; /* Mask 1 */
9738 pring->prt[1].rctl = FC_RCTL_ELS_REP;
9739 pring->prt[1].type = FC_TYPE_ELS;
9740 pring->prt[1].lpfc_sli_rcv_unsol_event =
9741 lpfc_els_unsol_event;
9742 pring->prt[2].profile = 0; /* Mask 2 */
9743 /* NameServer Inquiry */
9744 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
9745 /* NameServer */
9746 pring->prt[2].type = FC_TYPE_CT;
9747 pring->prt[2].lpfc_sli_rcv_unsol_event =
9748 lpfc_ct_unsol_event;
9749 pring->prt[3].profile = 0; /* Mask 3 */
9750 /* NameServer response */
9751 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
9752 /* NameServer */
9753 pring->prt[3].type = FC_TYPE_CT;
9754 pring->prt[3].lpfc_sli_rcv_unsol_event =
9755 lpfc_ct_unsol_event;
9756 return 0;
9757 }
9758
9759 /**
9760 * lpfc_sli_setup - SLI ring setup function
9761 * @phba: Pointer to HBA context object.
9762 *
9763 * lpfc_sli_setup sets up rings of the SLI interface with
9764 * number of iocbs per ring and iotags. This function is
9765 * called while driver attach to the HBA and before the
9766 * interrupts are enabled. So there is no need for locking.
9767 *
9768 * This function always returns 0. SLI3 only.
9769 **/
9770 int
lpfc_sli_setup(struct lpfc_hba * phba)9771 lpfc_sli_setup(struct lpfc_hba *phba)
9772 {
9773 int i, totiocbsize = 0;
9774 struct lpfc_sli *psli = &phba->sli;
9775 struct lpfc_sli_ring *pring;
9776
9777 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS;
9778 psli->sli_flag = 0;
9779
9780 psli->iocbq_lookup = NULL;
9781 psli->iocbq_lookup_len = 0;
9782 psli->last_iotag = 0;
9783
9784 for (i = 0; i < psli->num_rings; i++) {
9785 pring = &psli->sli3_ring[i];
9786 switch (i) {
9787 case LPFC_FCP_RING: /* ring 0 - FCP */
9788 /* numCiocb and numRiocb are used in config_port */
9789 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES;
9790 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES;
9791 pring->sli.sli3.numCiocb +=
9792 SLI2_IOCB_CMD_R1XTRA_ENTRIES;
9793 pring->sli.sli3.numRiocb +=
9794 SLI2_IOCB_RSP_R1XTRA_ENTRIES;
9795 pring->sli.sli3.numCiocb +=
9796 SLI2_IOCB_CMD_R3XTRA_ENTRIES;
9797 pring->sli.sli3.numRiocb +=
9798 SLI2_IOCB_RSP_R3XTRA_ENTRIES;
9799 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
9800 SLI3_IOCB_CMD_SIZE :
9801 SLI2_IOCB_CMD_SIZE;
9802 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
9803 SLI3_IOCB_RSP_SIZE :
9804 SLI2_IOCB_RSP_SIZE;
9805 pring->iotag_ctr = 0;
9806 pring->iotag_max =
9807 (phba->cfg_hba_queue_depth * 2);
9808 pring->fast_iotag = pring->iotag_max;
9809 pring->num_mask = 0;
9810 break;
9811 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */
9812 /* numCiocb and numRiocb are used in config_port */
9813 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES;
9814 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES;
9815 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
9816 SLI3_IOCB_CMD_SIZE :
9817 SLI2_IOCB_CMD_SIZE;
9818 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
9819 SLI3_IOCB_RSP_SIZE :
9820 SLI2_IOCB_RSP_SIZE;
9821 pring->iotag_max = phba->cfg_hba_queue_depth;
9822 pring->num_mask = 0;
9823 break;
9824 case LPFC_ELS_RING: /* ring 2 - ELS / CT */
9825 /* numCiocb and numRiocb are used in config_port */
9826 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES;
9827 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES;
9828 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
9829 SLI3_IOCB_CMD_SIZE :
9830 SLI2_IOCB_CMD_SIZE;
9831 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
9832 SLI3_IOCB_RSP_SIZE :
9833 SLI2_IOCB_RSP_SIZE;
9834 pring->fast_iotag = 0;
9835 pring->iotag_ctr = 0;
9836 pring->iotag_max = 4096;
9837 pring->lpfc_sli_rcv_async_status =
9838 lpfc_sli_async_event_handler;
9839 pring->num_mask = LPFC_MAX_RING_MASK;
9840 pring->prt[0].profile = 0; /* Mask 0 */
9841 pring->prt[0].rctl = FC_RCTL_ELS_REQ;
9842 pring->prt[0].type = FC_TYPE_ELS;
9843 pring->prt[0].lpfc_sli_rcv_unsol_event =
9844 lpfc_els_unsol_event;
9845 pring->prt[1].profile = 0; /* Mask 1 */
9846 pring->prt[1].rctl = FC_RCTL_ELS_REP;
9847 pring->prt[1].type = FC_TYPE_ELS;
9848 pring->prt[1].lpfc_sli_rcv_unsol_event =
9849 lpfc_els_unsol_event;
9850 pring->prt[2].profile = 0; /* Mask 2 */
9851 /* NameServer Inquiry */
9852 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
9853 /* NameServer */
9854 pring->prt[2].type = FC_TYPE_CT;
9855 pring->prt[2].lpfc_sli_rcv_unsol_event =
9856 lpfc_ct_unsol_event;
9857 pring->prt[3].profile = 0; /* Mask 3 */
9858 /* NameServer response */
9859 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
9860 /* NameServer */
9861 pring->prt[3].type = FC_TYPE_CT;
9862 pring->prt[3].lpfc_sli_rcv_unsol_event =
9863 lpfc_ct_unsol_event;
9864 break;
9865 }
9866 totiocbsize += (pring->sli.sli3.numCiocb *
9867 pring->sli.sli3.sizeCiocb) +
9868 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb);
9869 }
9870 if (totiocbsize > MAX_SLIM_IOCB_SIZE) {
9871 /* Too many cmd / rsp ring entries in SLI2 SLIM */
9872 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in "
9873 "SLI2 SLIM Data: x%x x%lx\n",
9874 phba->brd_no, totiocbsize,
9875 (unsigned long) MAX_SLIM_IOCB_SIZE);
9876 }
9877 if (phba->cfg_multi_ring_support == 2)
9878 lpfc_extra_ring_setup(phba);
9879
9880 return 0;
9881 }
9882
9883 /**
9884 * lpfc_sli4_queue_init - Queue initialization function
9885 * @phba: Pointer to HBA context object.
9886 *
9887 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each
9888 * ring. This function also initializes ring indices of each ring.
9889 * This function is called during the initialization of the SLI
9890 * interface of an HBA.
9891 * This function is called with no lock held and always returns
9892 * 1.
9893 **/
9894 void
lpfc_sli4_queue_init(struct lpfc_hba * phba)9895 lpfc_sli4_queue_init(struct lpfc_hba *phba)
9896 {
9897 struct lpfc_sli *psli;
9898 struct lpfc_sli_ring *pring;
9899 int i;
9900
9901 psli = &phba->sli;
9902 spin_lock_irq(&phba->hbalock);
9903 INIT_LIST_HEAD(&psli->mboxq);
9904 INIT_LIST_HEAD(&psli->mboxq_cmpl);
9905 /* Initialize list headers for txq and txcmplq as double linked lists */
9906 for (i = 0; i < phba->cfg_fcp_io_channel; i++) {
9907 pring = phba->sli4_hba.fcp_wq[i]->pring;
9908 pring->flag = 0;
9909 pring->ringno = LPFC_FCP_RING;
9910 INIT_LIST_HEAD(&pring->txq);
9911 INIT_LIST_HEAD(&pring->txcmplq);
9912 INIT_LIST_HEAD(&pring->iocb_continueq);
9913 spin_lock_init(&pring->ring_lock);
9914 }
9915 for (i = 0; i < phba->cfg_nvme_io_channel; i++) {
9916 pring = phba->sli4_hba.nvme_wq[i]->pring;
9917 pring->flag = 0;
9918 pring->ringno = LPFC_FCP_RING;
9919 INIT_LIST_HEAD(&pring->txq);
9920 INIT_LIST_HEAD(&pring->txcmplq);
9921 INIT_LIST_HEAD(&pring->iocb_continueq);
9922 spin_lock_init(&pring->ring_lock);
9923 }
9924 pring = phba->sli4_hba.els_wq->pring;
9925 pring->flag = 0;
9926 pring->ringno = LPFC_ELS_RING;
9927 INIT_LIST_HEAD(&pring->txq);
9928 INIT_LIST_HEAD(&pring->txcmplq);
9929 INIT_LIST_HEAD(&pring->iocb_continueq);
9930 spin_lock_init(&pring->ring_lock);
9931
9932 if (phba->cfg_nvme_io_channel) {
9933 pring = phba->sli4_hba.nvmels_wq->pring;
9934 pring->flag = 0;
9935 pring->ringno = LPFC_ELS_RING;
9936 INIT_LIST_HEAD(&pring->txq);
9937 INIT_LIST_HEAD(&pring->txcmplq);
9938 INIT_LIST_HEAD(&pring->iocb_continueq);
9939 spin_lock_init(&pring->ring_lock);
9940 }
9941
9942 if (phba->cfg_fof) {
9943 pring = phba->sli4_hba.oas_wq->pring;
9944 pring->flag = 0;
9945 pring->ringno = LPFC_FCP_RING;
9946 INIT_LIST_HEAD(&pring->txq);
9947 INIT_LIST_HEAD(&pring->txcmplq);
9948 INIT_LIST_HEAD(&pring->iocb_continueq);
9949 spin_lock_init(&pring->ring_lock);
9950 }
9951
9952 spin_unlock_irq(&phba->hbalock);
9953 }
9954
9955 /**
9956 * lpfc_sli_queue_init - Queue initialization function
9957 * @phba: Pointer to HBA context object.
9958 *
9959 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each
9960 * ring. This function also initializes ring indices of each ring.
9961 * This function is called during the initialization of the SLI
9962 * interface of an HBA.
9963 * This function is called with no lock held and always returns
9964 * 1.
9965 **/
9966 void
lpfc_sli_queue_init(struct lpfc_hba * phba)9967 lpfc_sli_queue_init(struct lpfc_hba *phba)
9968 {
9969 struct lpfc_sli *psli;
9970 struct lpfc_sli_ring *pring;
9971 int i;
9972
9973 psli = &phba->sli;
9974 spin_lock_irq(&phba->hbalock);
9975 INIT_LIST_HEAD(&psli->mboxq);
9976 INIT_LIST_HEAD(&psli->mboxq_cmpl);
9977 /* Initialize list headers for txq and txcmplq as double linked lists */
9978 for (i = 0; i < psli->num_rings; i++) {
9979 pring = &psli->sli3_ring[i];
9980 pring->ringno = i;
9981 pring->sli.sli3.next_cmdidx = 0;
9982 pring->sli.sli3.local_getidx = 0;
9983 pring->sli.sli3.cmdidx = 0;
9984 INIT_LIST_HEAD(&pring->iocb_continueq);
9985 INIT_LIST_HEAD(&pring->iocb_continue_saveq);
9986 INIT_LIST_HEAD(&pring->postbufq);
9987 pring->flag = 0;
9988 INIT_LIST_HEAD(&pring->txq);
9989 INIT_LIST_HEAD(&pring->txcmplq);
9990 spin_lock_init(&pring->ring_lock);
9991 }
9992 spin_unlock_irq(&phba->hbalock);
9993 }
9994
9995 /**
9996 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system
9997 * @phba: Pointer to HBA context object.
9998 *
9999 * This routine flushes the mailbox command subsystem. It will unconditionally
10000 * flush all the mailbox commands in the three possible stages in the mailbox
10001 * command sub-system: pending mailbox command queue; the outstanding mailbox
10002 * command; and completed mailbox command queue. It is caller's responsibility
10003 * to make sure that the driver is in the proper state to flush the mailbox
10004 * command sub-system. Namely, the posting of mailbox commands into the
10005 * pending mailbox command queue from the various clients must be stopped;
10006 * either the HBA is in a state that it will never works on the outstanding
10007 * mailbox command (such as in EEH or ERATT conditions) or the outstanding
10008 * mailbox command has been completed.
10009 **/
10010 static void
lpfc_sli_mbox_sys_flush(struct lpfc_hba * phba)10011 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba)
10012 {
10013 LIST_HEAD(completions);
10014 struct lpfc_sli *psli = &phba->sli;
10015 LPFC_MBOXQ_t *pmb;
10016 unsigned long iflag;
10017
10018 /* Flush all the mailbox commands in the mbox system */
10019 spin_lock_irqsave(&phba->hbalock, iflag);
10020 /* The pending mailbox command queue */
10021 list_splice_init(&phba->sli.mboxq, &completions);
10022 /* The outstanding active mailbox command */
10023 if (psli->mbox_active) {
10024 list_add_tail(&psli->mbox_active->list, &completions);
10025 psli->mbox_active = NULL;
10026 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
10027 }
10028 /* The completed mailbox command queue */
10029 list_splice_init(&phba->sli.mboxq_cmpl, &completions);
10030 spin_unlock_irqrestore(&phba->hbalock, iflag);
10031
10032 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */
10033 while (!list_empty(&completions)) {
10034 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list);
10035 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED;
10036 if (pmb->mbox_cmpl)
10037 pmb->mbox_cmpl(phba, pmb);
10038 }
10039 }
10040
10041 /**
10042 * lpfc_sli_host_down - Vport cleanup function
10043 * @vport: Pointer to virtual port object.
10044 *
10045 * lpfc_sli_host_down is called to clean up the resources
10046 * associated with a vport before destroying virtual
10047 * port data structures.
10048 * This function does following operations:
10049 * - Free discovery resources associated with this virtual
10050 * port.
10051 * - Free iocbs associated with this virtual port in
10052 * the txq.
10053 * - Send abort for all iocb commands associated with this
10054 * vport in txcmplq.
10055 *
10056 * This function is called with no lock held and always returns 1.
10057 **/
10058 int
lpfc_sli_host_down(struct lpfc_vport * vport)10059 lpfc_sli_host_down(struct lpfc_vport *vport)
10060 {
10061 LIST_HEAD(completions);
10062 struct lpfc_hba *phba = vport->phba;
10063 struct lpfc_sli *psli = &phba->sli;
10064 struct lpfc_queue *qp = NULL;
10065 struct lpfc_sli_ring *pring;
10066 struct lpfc_iocbq *iocb, *next_iocb;
10067 int i;
10068 unsigned long flags = 0;
10069 uint16_t prev_pring_flag;
10070
10071 lpfc_cleanup_discovery_resources(vport);
10072
10073 spin_lock_irqsave(&phba->hbalock, flags);
10074
10075 /*
10076 * Error everything on the txq since these iocbs
10077 * have not been given to the FW yet.
10078 * Also issue ABTS for everything on the txcmplq
10079 */
10080 if (phba->sli_rev != LPFC_SLI_REV4) {
10081 for (i = 0; i < psli->num_rings; i++) {
10082 pring = &psli->sli3_ring[i];
10083 prev_pring_flag = pring->flag;
10084 /* Only slow rings */
10085 if (pring->ringno == LPFC_ELS_RING) {
10086 pring->flag |= LPFC_DEFERRED_RING_EVENT;
10087 /* Set the lpfc data pending flag */
10088 set_bit(LPFC_DATA_READY, &phba->data_flags);
10089 }
10090 list_for_each_entry_safe(iocb, next_iocb,
10091 &pring->txq, list) {
10092 if (iocb->vport != vport)
10093 continue;
10094 list_move_tail(&iocb->list, &completions);
10095 }
10096 list_for_each_entry_safe(iocb, next_iocb,
10097 &pring->txcmplq, list) {
10098 if (iocb->vport != vport)
10099 continue;
10100 lpfc_sli_issue_abort_iotag(phba, pring, iocb);
10101 }
10102 pring->flag = prev_pring_flag;
10103 }
10104 } else {
10105 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
10106 pring = qp->pring;
10107 if (!pring)
10108 continue;
10109 if (pring == phba->sli4_hba.els_wq->pring) {
10110 pring->flag |= LPFC_DEFERRED_RING_EVENT;
10111 /* Set the lpfc data pending flag */
10112 set_bit(LPFC_DATA_READY, &phba->data_flags);
10113 }
10114 prev_pring_flag = pring->flag;
10115 spin_lock_irq(&pring->ring_lock);
10116 list_for_each_entry_safe(iocb, next_iocb,
10117 &pring->txq, list) {
10118 if (iocb->vport != vport)
10119 continue;
10120 list_move_tail(&iocb->list, &completions);
10121 }
10122 spin_unlock_irq(&pring->ring_lock);
10123 list_for_each_entry_safe(iocb, next_iocb,
10124 &pring->txcmplq, list) {
10125 if (iocb->vport != vport)
10126 continue;
10127 lpfc_sli_issue_abort_iotag(phba, pring, iocb);
10128 }
10129 pring->flag = prev_pring_flag;
10130 }
10131 }
10132 spin_unlock_irqrestore(&phba->hbalock, flags);
10133
10134 /* Cancel all the IOCBs from the completions list */
10135 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
10136 IOERR_SLI_DOWN);
10137 return 1;
10138 }
10139
10140 /**
10141 * lpfc_sli_hba_down - Resource cleanup function for the HBA
10142 * @phba: Pointer to HBA context object.
10143 *
10144 * This function cleans up all iocb, buffers, mailbox commands
10145 * while shutting down the HBA. This function is called with no
10146 * lock held and always returns 1.
10147 * This function does the following to cleanup driver resources:
10148 * - Free discovery resources for each virtual port
10149 * - Cleanup any pending fabric iocbs
10150 * - Iterate through the iocb txq and free each entry
10151 * in the list.
10152 * - Free up any buffer posted to the HBA
10153 * - Free mailbox commands in the mailbox queue.
10154 **/
10155 int
lpfc_sli_hba_down(struct lpfc_hba * phba)10156 lpfc_sli_hba_down(struct lpfc_hba *phba)
10157 {
10158 LIST_HEAD(completions);
10159 struct lpfc_sli *psli = &phba->sli;
10160 struct lpfc_queue *qp = NULL;
10161 struct lpfc_sli_ring *pring;
10162 struct lpfc_dmabuf *buf_ptr;
10163 unsigned long flags = 0;
10164 int i;
10165
10166 /* Shutdown the mailbox command sub-system */
10167 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT);
10168
10169 lpfc_hba_down_prep(phba);
10170
10171 lpfc_fabric_abort_hba(phba);
10172
10173 spin_lock_irqsave(&phba->hbalock, flags);
10174
10175 /*
10176 * Error everything on the txq since these iocbs
10177 * have not been given to the FW yet.
10178 */
10179 if (phba->sli_rev != LPFC_SLI_REV4) {
10180 for (i = 0; i < psli->num_rings; i++) {
10181 pring = &psli->sli3_ring[i];
10182 /* Only slow rings */
10183 if (pring->ringno == LPFC_ELS_RING) {
10184 pring->flag |= LPFC_DEFERRED_RING_EVENT;
10185 /* Set the lpfc data pending flag */
10186 set_bit(LPFC_DATA_READY, &phba->data_flags);
10187 }
10188 list_splice_init(&pring->txq, &completions);
10189 }
10190 } else {
10191 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
10192 pring = qp->pring;
10193 if (!pring)
10194 continue;
10195 spin_lock_irq(&pring->ring_lock);
10196 list_splice_init(&pring->txq, &completions);
10197 spin_unlock_irq(&pring->ring_lock);
10198 if (pring == phba->sli4_hba.els_wq->pring) {
10199 pring->flag |= LPFC_DEFERRED_RING_EVENT;
10200 /* Set the lpfc data pending flag */
10201 set_bit(LPFC_DATA_READY, &phba->data_flags);
10202 }
10203 }
10204 }
10205 spin_unlock_irqrestore(&phba->hbalock, flags);
10206
10207 /* Cancel all the IOCBs from the completions list */
10208 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
10209 IOERR_SLI_DOWN);
10210
10211 spin_lock_irqsave(&phba->hbalock, flags);
10212 list_splice_init(&phba->elsbuf, &completions);
10213 phba->elsbuf_cnt = 0;
10214 phba->elsbuf_prev_cnt = 0;
10215 spin_unlock_irqrestore(&phba->hbalock, flags);
10216
10217 while (!list_empty(&completions)) {
10218 list_remove_head(&completions, buf_ptr,
10219 struct lpfc_dmabuf, list);
10220 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys);
10221 kfree(buf_ptr);
10222 }
10223
10224 /* Return any active mbox cmds */
10225 del_timer_sync(&psli->mbox_tmo);
10226
10227 spin_lock_irqsave(&phba->pport->work_port_lock, flags);
10228 phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
10229 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags);
10230
10231 return 1;
10232 }
10233
10234 /**
10235 * lpfc_sli_pcimem_bcopy - SLI memory copy function
10236 * @srcp: Source memory pointer.
10237 * @destp: Destination memory pointer.
10238 * @cnt: Number of words required to be copied.
10239 *
10240 * This function is used for copying data between driver memory
10241 * and the SLI memory. This function also changes the endianness
10242 * of each word if native endianness is different from SLI
10243 * endianness. This function can be called with or without
10244 * lock.
10245 **/
10246 void
lpfc_sli_pcimem_bcopy(void * srcp,void * destp,uint32_t cnt)10247 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt)
10248 {
10249 uint32_t *src = srcp;
10250 uint32_t *dest = destp;
10251 uint32_t ldata;
10252 int i;
10253
10254 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) {
10255 ldata = *src;
10256 ldata = le32_to_cpu(ldata);
10257 *dest = ldata;
10258 src++;
10259 dest++;
10260 }
10261 }
10262
10263
10264 /**
10265 * lpfc_sli_bemem_bcopy - SLI memory copy function
10266 * @srcp: Source memory pointer.
10267 * @destp: Destination memory pointer.
10268 * @cnt: Number of words required to be copied.
10269 *
10270 * This function is used for copying data between a data structure
10271 * with big endian representation to local endianness.
10272 * This function can be called with or without lock.
10273 **/
10274 void
lpfc_sli_bemem_bcopy(void * srcp,void * destp,uint32_t cnt)10275 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt)
10276 {
10277 uint32_t *src = srcp;
10278 uint32_t *dest = destp;
10279 uint32_t ldata;
10280 int i;
10281
10282 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) {
10283 ldata = *src;
10284 ldata = be32_to_cpu(ldata);
10285 *dest = ldata;
10286 src++;
10287 dest++;
10288 }
10289 }
10290
10291 /**
10292 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq
10293 * @phba: Pointer to HBA context object.
10294 * @pring: Pointer to driver SLI ring object.
10295 * @mp: Pointer to driver buffer object.
10296 *
10297 * This function is called with no lock held.
10298 * It always return zero after adding the buffer to the postbufq
10299 * buffer list.
10300 **/
10301 int
lpfc_sli_ringpostbuf_put(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_dmabuf * mp)10302 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10303 struct lpfc_dmabuf *mp)
10304 {
10305 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up
10306 later */
10307 spin_lock_irq(&phba->hbalock);
10308 list_add_tail(&mp->list, &pring->postbufq);
10309 pring->postbufq_cnt++;
10310 spin_unlock_irq(&phba->hbalock);
10311 return 0;
10312 }
10313
10314 /**
10315 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer
10316 * @phba: Pointer to HBA context object.
10317 *
10318 * When HBQ is enabled, buffers are searched based on tags. This function
10319 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The
10320 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag
10321 * does not conflict with tags of buffer posted for unsolicited events.
10322 * The function returns the allocated tag. The function is called with
10323 * no locks held.
10324 **/
10325 uint32_t
lpfc_sli_get_buffer_tag(struct lpfc_hba * phba)10326 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba)
10327 {
10328 spin_lock_irq(&phba->hbalock);
10329 phba->buffer_tag_count++;
10330 /*
10331 * Always set the QUE_BUFTAG_BIT to distiguish between
10332 * a tag assigned by HBQ.
10333 */
10334 phba->buffer_tag_count |= QUE_BUFTAG_BIT;
10335 spin_unlock_irq(&phba->hbalock);
10336 return phba->buffer_tag_count;
10337 }
10338
10339 /**
10340 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag
10341 * @phba: Pointer to HBA context object.
10342 * @pring: Pointer to driver SLI ring object.
10343 * @tag: Buffer tag.
10344 *
10345 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq
10346 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX
10347 * iocb is posted to the response ring with the tag of the buffer.
10348 * This function searches the pring->postbufq list using the tag
10349 * to find buffer associated with CMD_IOCB_RET_XRI64_CX
10350 * iocb. If the buffer is found then lpfc_dmabuf object of the
10351 * buffer is returned to the caller else NULL is returned.
10352 * This function is called with no lock held.
10353 **/
10354 struct lpfc_dmabuf *
lpfc_sli_ring_taggedbuf_get(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,uint32_t tag)10355 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10356 uint32_t tag)
10357 {
10358 struct lpfc_dmabuf *mp, *next_mp;
10359 struct list_head *slp = &pring->postbufq;
10360
10361 /* Search postbufq, from the beginning, looking for a match on tag */
10362 spin_lock_irq(&phba->hbalock);
10363 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
10364 if (mp->buffer_tag == tag) {
10365 list_del_init(&mp->list);
10366 pring->postbufq_cnt--;
10367 spin_unlock_irq(&phba->hbalock);
10368 return mp;
10369 }
10370 }
10371
10372 spin_unlock_irq(&phba->hbalock);
10373 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10374 "0402 Cannot find virtual addr for buffer tag on "
10375 "ring %d Data x%lx x%p x%p x%x\n",
10376 pring->ringno, (unsigned long) tag,
10377 slp->next, slp->prev, pring->postbufq_cnt);
10378
10379 return NULL;
10380 }
10381
10382 /**
10383 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events
10384 * @phba: Pointer to HBA context object.
10385 * @pring: Pointer to driver SLI ring object.
10386 * @phys: DMA address of the buffer.
10387 *
10388 * This function searches the buffer list using the dma_address
10389 * of unsolicited event to find the driver's lpfc_dmabuf object
10390 * corresponding to the dma_address. The function returns the
10391 * lpfc_dmabuf object if a buffer is found else it returns NULL.
10392 * This function is called by the ct and els unsolicited event
10393 * handlers to get the buffer associated with the unsolicited
10394 * event.
10395 *
10396 * This function is called with no lock held.
10397 **/
10398 struct lpfc_dmabuf *
lpfc_sli_ringpostbuf_get(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,dma_addr_t phys)10399 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10400 dma_addr_t phys)
10401 {
10402 struct lpfc_dmabuf *mp, *next_mp;
10403 struct list_head *slp = &pring->postbufq;
10404
10405 /* Search postbufq, from the beginning, looking for a match on phys */
10406 spin_lock_irq(&phba->hbalock);
10407 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
10408 if (mp->phys == phys) {
10409 list_del_init(&mp->list);
10410 pring->postbufq_cnt--;
10411 spin_unlock_irq(&phba->hbalock);
10412 return mp;
10413 }
10414 }
10415
10416 spin_unlock_irq(&phba->hbalock);
10417 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10418 "0410 Cannot find virtual addr for mapped buf on "
10419 "ring %d Data x%llx x%p x%p x%x\n",
10420 pring->ringno, (unsigned long long)phys,
10421 slp->next, slp->prev, pring->postbufq_cnt);
10422 return NULL;
10423 }
10424
10425 /**
10426 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs
10427 * @phba: Pointer to HBA context object.
10428 * @cmdiocb: Pointer to driver command iocb object.
10429 * @rspiocb: Pointer to driver response iocb object.
10430 *
10431 * This function is the completion handler for the abort iocbs for
10432 * ELS commands. This function is called from the ELS ring event
10433 * handler with no lock held. This function frees memory resources
10434 * associated with the abort iocb.
10435 **/
10436 static void
lpfc_sli_abort_els_cmpl(struct lpfc_hba * phba,struct lpfc_iocbq * cmdiocb,struct lpfc_iocbq * rspiocb)10437 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
10438 struct lpfc_iocbq *rspiocb)
10439 {
10440 IOCB_t *irsp = &rspiocb->iocb;
10441 uint16_t abort_iotag, abort_context;
10442 struct lpfc_iocbq *abort_iocb = NULL;
10443
10444 if (irsp->ulpStatus) {
10445
10446 /*
10447 * Assume that the port already completed and returned, or
10448 * will return the iocb. Just Log the message.
10449 */
10450 abort_context = cmdiocb->iocb.un.acxri.abortContextTag;
10451 abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag;
10452
10453 spin_lock_irq(&phba->hbalock);
10454 if (phba->sli_rev < LPFC_SLI_REV4) {
10455 if (abort_iotag != 0 &&
10456 abort_iotag <= phba->sli.last_iotag)
10457 abort_iocb =
10458 phba->sli.iocbq_lookup[abort_iotag];
10459 } else
10460 /* For sli4 the abort_tag is the XRI,
10461 * so the abort routine puts the iotag of the iocb
10462 * being aborted in the context field of the abort
10463 * IOCB.
10464 */
10465 abort_iocb = phba->sli.iocbq_lookup[abort_context];
10466
10467 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI,
10468 "0327 Cannot abort els iocb %p "
10469 "with tag %x context %x, abort status %x, "
10470 "abort code %x\n",
10471 abort_iocb, abort_iotag, abort_context,
10472 irsp->ulpStatus, irsp->un.ulpWord[4]);
10473
10474 spin_unlock_irq(&phba->hbalock);
10475 }
10476 lpfc_sli_release_iocbq(phba, cmdiocb);
10477 return;
10478 }
10479
10480 /**
10481 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command
10482 * @phba: Pointer to HBA context object.
10483 * @cmdiocb: Pointer to driver command iocb object.
10484 * @rspiocb: Pointer to driver response iocb object.
10485 *
10486 * The function is called from SLI ring event handler with no
10487 * lock held. This function is the completion handler for ELS commands
10488 * which are aborted. The function frees memory resources used for
10489 * the aborted ELS commands.
10490 **/
10491 static void
lpfc_ignore_els_cmpl(struct lpfc_hba * phba,struct lpfc_iocbq * cmdiocb,struct lpfc_iocbq * rspiocb)10492 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
10493 struct lpfc_iocbq *rspiocb)
10494 {
10495 IOCB_t *irsp = &rspiocb->iocb;
10496
10497 /* ELS cmd tag <ulpIoTag> completes */
10498 lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
10499 "0139 Ignoring ELS cmd tag x%x completion Data: "
10500 "x%x x%x x%x\n",
10501 irsp->ulpIoTag, irsp->ulpStatus,
10502 irsp->un.ulpWord[4], irsp->ulpTimeout);
10503 if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR)
10504 lpfc_ct_free_iocb(phba, cmdiocb);
10505 else
10506 lpfc_els_free_iocb(phba, cmdiocb);
10507 return;
10508 }
10509
10510 /**
10511 * lpfc_sli_abort_iotag_issue - Issue abort for a command iocb
10512 * @phba: Pointer to HBA context object.
10513 * @pring: Pointer to driver SLI ring object.
10514 * @cmdiocb: Pointer to driver command iocb object.
10515 *
10516 * This function issues an abort iocb for the provided command iocb down to
10517 * the port. Other than the case the outstanding command iocb is an abort
10518 * request, this function issues abort out unconditionally. This function is
10519 * called with hbalock held. The function returns 0 when it fails due to
10520 * memory allocation failure or when the command iocb is an abort request.
10521 **/
10522 static int
lpfc_sli_abort_iotag_issue(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * cmdiocb)10523 lpfc_sli_abort_iotag_issue(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10524 struct lpfc_iocbq *cmdiocb)
10525 {
10526 struct lpfc_vport *vport = cmdiocb->vport;
10527 struct lpfc_iocbq *abtsiocbp;
10528 IOCB_t *icmd = NULL;
10529 IOCB_t *iabt = NULL;
10530 int retval;
10531 unsigned long iflags;
10532
10533 lockdep_assert_held(&phba->hbalock);
10534
10535 /*
10536 * There are certain command types we don't want to abort. And we
10537 * don't want to abort commands that are already in the process of
10538 * being aborted.
10539 */
10540 icmd = &cmdiocb->iocb;
10541 if (icmd->ulpCommand == CMD_ABORT_XRI_CN ||
10542 icmd->ulpCommand == CMD_CLOSE_XRI_CN ||
10543 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0)
10544 return 0;
10545
10546 /* issue ABTS for this IOCB based on iotag */
10547 abtsiocbp = __lpfc_sli_get_iocbq(phba);
10548 if (abtsiocbp == NULL)
10549 return 0;
10550
10551 /* This signals the response to set the correct status
10552 * before calling the completion handler
10553 */
10554 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED;
10555
10556 iabt = &abtsiocbp->iocb;
10557 iabt->un.acxri.abortType = ABORT_TYPE_ABTS;
10558 iabt->un.acxri.abortContextTag = icmd->ulpContext;
10559 if (phba->sli_rev == LPFC_SLI_REV4) {
10560 iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag;
10561 iabt->un.acxri.abortContextTag = cmdiocb->iotag;
10562 }
10563 else
10564 iabt->un.acxri.abortIoTag = icmd->ulpIoTag;
10565 iabt->ulpLe = 1;
10566 iabt->ulpClass = icmd->ulpClass;
10567
10568 /* ABTS WQE must go to the same WQ as the WQE to be aborted */
10569 abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx;
10570 if (cmdiocb->iocb_flag & LPFC_IO_FCP)
10571 abtsiocbp->iocb_flag |= LPFC_USE_FCPWQIDX;
10572 if (cmdiocb->iocb_flag & LPFC_IO_FOF)
10573 abtsiocbp->iocb_flag |= LPFC_IO_FOF;
10574
10575 if (phba->link_state >= LPFC_LINK_UP)
10576 iabt->ulpCommand = CMD_ABORT_XRI_CN;
10577 else
10578 iabt->ulpCommand = CMD_CLOSE_XRI_CN;
10579
10580 abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl;
10581 abtsiocbp->vport = vport;
10582
10583 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI,
10584 "0339 Abort xri x%x, original iotag x%x, "
10585 "abort cmd iotag x%x\n",
10586 iabt->un.acxri.abortIoTag,
10587 iabt->un.acxri.abortContextTag,
10588 abtsiocbp->iotag);
10589
10590 if (phba->sli_rev == LPFC_SLI_REV4) {
10591 pring = lpfc_sli4_calc_ring(phba, abtsiocbp);
10592 if (unlikely(pring == NULL))
10593 return 0;
10594 /* Note: both hbalock and ring_lock need to be set here */
10595 spin_lock_irqsave(&pring->ring_lock, iflags);
10596 retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
10597 abtsiocbp, 0);
10598 spin_unlock_irqrestore(&pring->ring_lock, iflags);
10599 } else {
10600 retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
10601 abtsiocbp, 0);
10602 }
10603
10604 if (retval)
10605 __lpfc_sli_release_iocbq(phba, abtsiocbp);
10606
10607 /*
10608 * Caller to this routine should check for IOCB_ERROR
10609 * and handle it properly. This routine no longer removes
10610 * iocb off txcmplq and call compl in case of IOCB_ERROR.
10611 */
10612 return retval;
10613 }
10614
10615 /**
10616 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb
10617 * @phba: Pointer to HBA context object.
10618 * @pring: Pointer to driver SLI ring object.
10619 * @cmdiocb: Pointer to driver command iocb object.
10620 *
10621 * This function issues an abort iocb for the provided command iocb. In case
10622 * of unloading, the abort iocb will not be issued to commands on the ELS
10623 * ring. Instead, the callback function shall be changed to those commands
10624 * so that nothing happens when them finishes. This function is called with
10625 * hbalock held. The function returns 0 when the command iocb is an abort
10626 * request.
10627 **/
10628 int
lpfc_sli_issue_abort_iotag(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * cmdiocb)10629 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10630 struct lpfc_iocbq *cmdiocb)
10631 {
10632 struct lpfc_vport *vport = cmdiocb->vport;
10633 int retval = IOCB_ERROR;
10634 IOCB_t *icmd = NULL;
10635
10636 lockdep_assert_held(&phba->hbalock);
10637
10638 /*
10639 * There are certain command types we don't want to abort. And we
10640 * don't want to abort commands that are already in the process of
10641 * being aborted.
10642 */
10643 icmd = &cmdiocb->iocb;
10644 if (icmd->ulpCommand == CMD_ABORT_XRI_CN ||
10645 icmd->ulpCommand == CMD_CLOSE_XRI_CN ||
10646 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0)
10647 return 0;
10648
10649 if (!pring) {
10650 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC)
10651 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl;
10652 else
10653 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl;
10654 goto abort_iotag_exit;
10655 }
10656
10657 /*
10658 * If we're unloading, don't abort iocb on the ELS ring, but change
10659 * the callback so that nothing happens when it finishes.
10660 */
10661 if ((vport->load_flag & FC_UNLOADING) &&
10662 (pring->ringno == LPFC_ELS_RING)) {
10663 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC)
10664 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl;
10665 else
10666 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl;
10667 goto abort_iotag_exit;
10668 }
10669
10670 /* Now, we try to issue the abort to the cmdiocb out */
10671 retval = lpfc_sli_abort_iotag_issue(phba, pring, cmdiocb);
10672
10673 abort_iotag_exit:
10674 /*
10675 * Caller to this routine should check for IOCB_ERROR
10676 * and handle it properly. This routine no longer removes
10677 * iocb off txcmplq and call compl in case of IOCB_ERROR.
10678 */
10679 return retval;
10680 }
10681
10682 /**
10683 * lpfc_sli4_abort_nvme_io - Issue abort for a command iocb
10684 * @phba: Pointer to HBA context object.
10685 * @pring: Pointer to driver SLI ring object.
10686 * @cmdiocb: Pointer to driver command iocb object.
10687 *
10688 * This function issues an abort iocb for the provided command iocb down to
10689 * the port. Other than the case the outstanding command iocb is an abort
10690 * request, this function issues abort out unconditionally. This function is
10691 * called with hbalock held. The function returns 0 when it fails due to
10692 * memory allocation failure or when the command iocb is an abort request.
10693 **/
10694 static int
lpfc_sli4_abort_nvme_io(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * cmdiocb)10695 lpfc_sli4_abort_nvme_io(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10696 struct lpfc_iocbq *cmdiocb)
10697 {
10698 struct lpfc_vport *vport = cmdiocb->vport;
10699 struct lpfc_iocbq *abtsiocbp;
10700 union lpfc_wqe *abts_wqe;
10701 int retval;
10702
10703 /*
10704 * There are certain command types we don't want to abort. And we
10705 * don't want to abort commands that are already in the process of
10706 * being aborted.
10707 */
10708 if (cmdiocb->iocb.ulpCommand == CMD_ABORT_XRI_CN ||
10709 cmdiocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN ||
10710 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0)
10711 return 0;
10712
10713 /* issue ABTS for this io based on iotag */
10714 abtsiocbp = __lpfc_sli_get_iocbq(phba);
10715 if (abtsiocbp == NULL)
10716 return 0;
10717
10718 /* This signals the response to set the correct status
10719 * before calling the completion handler
10720 */
10721 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED;
10722
10723 /* Complete prepping the abort wqe and issue to the FW. */
10724 abts_wqe = &abtsiocbp->wqe;
10725
10726 /* Clear any stale WQE contents */
10727 memset(abts_wqe, 0, sizeof(union lpfc_wqe));
10728 bf_set(abort_cmd_criteria, &abts_wqe->abort_cmd, T_XRI_TAG);
10729
10730 /* word 7 */
10731 bf_set(wqe_cmnd, &abts_wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX);
10732 bf_set(wqe_class, &abts_wqe->abort_cmd.wqe_com,
10733 cmdiocb->iocb.ulpClass);
10734
10735 /* word 8 - tell the FW to abort the IO associated with this
10736 * outstanding exchange ID.
10737 */
10738 abts_wqe->abort_cmd.wqe_com.abort_tag = cmdiocb->sli4_xritag;
10739
10740 /* word 9 - this is the iotag for the abts_wqe completion. */
10741 bf_set(wqe_reqtag, &abts_wqe->abort_cmd.wqe_com,
10742 abtsiocbp->iotag);
10743
10744 /* word 10 */
10745 bf_set(wqe_qosd, &abts_wqe->abort_cmd.wqe_com, 1);
10746 bf_set(wqe_lenloc, &abts_wqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE);
10747
10748 /* word 11 */
10749 bf_set(wqe_cmd_type, &abts_wqe->abort_cmd.wqe_com, OTHER_COMMAND);
10750 bf_set(wqe_wqec, &abts_wqe->abort_cmd.wqe_com, 1);
10751 bf_set(wqe_cqid, &abts_wqe->abort_cmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
10752
10753 /* ABTS WQE must go to the same WQ as the WQE to be aborted */
10754 abtsiocbp->iocb_flag |= LPFC_IO_NVME;
10755 abtsiocbp->vport = vport;
10756 abtsiocbp->wqe_cmpl = lpfc_nvme_abort_fcreq_cmpl;
10757 retval = lpfc_sli4_issue_wqe(phba, LPFC_FCP_RING, abtsiocbp);
10758 if (retval) {
10759 lpfc_printf_vlog(vport, KERN_ERR, LOG_NVME,
10760 "6147 Failed abts issue_wqe with status x%x "
10761 "for oxid x%x\n",
10762 retval, cmdiocb->sli4_xritag);
10763 lpfc_sli_release_iocbq(phba, abtsiocbp);
10764 return retval;
10765 }
10766
10767 lpfc_printf_vlog(vport, KERN_ERR, LOG_NVME,
10768 "6148 Drv Abort NVME Request Issued for "
10769 "ox_id x%x on reqtag x%x\n",
10770 cmdiocb->sli4_xritag,
10771 abtsiocbp->iotag);
10772
10773 return retval;
10774 }
10775
10776 /**
10777 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba.
10778 * @phba: pointer to lpfc HBA data structure.
10779 *
10780 * This routine will abort all pending and outstanding iocbs to an HBA.
10781 **/
10782 void
lpfc_sli_hba_iocb_abort(struct lpfc_hba * phba)10783 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba)
10784 {
10785 struct lpfc_sli *psli = &phba->sli;
10786 struct lpfc_sli_ring *pring;
10787 struct lpfc_queue *qp = NULL;
10788 int i;
10789
10790 if (phba->sli_rev != LPFC_SLI_REV4) {
10791 for (i = 0; i < psli->num_rings; i++) {
10792 pring = &psli->sli3_ring[i];
10793 lpfc_sli_abort_iocb_ring(phba, pring);
10794 }
10795 return;
10796 }
10797 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
10798 pring = qp->pring;
10799 if (!pring)
10800 continue;
10801 lpfc_sli_abort_iocb_ring(phba, pring);
10802 }
10803 }
10804
10805 /**
10806 * lpfc_sli_validate_fcp_iocb - find commands associated with a vport or LUN
10807 * @iocbq: Pointer to driver iocb object.
10808 * @vport: Pointer to driver virtual port object.
10809 * @tgt_id: SCSI ID of the target.
10810 * @lun_id: LUN ID of the scsi device.
10811 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST
10812 *
10813 * This function acts as an iocb filter for functions which abort or count
10814 * all FCP iocbs pending on a lun/SCSI target/SCSI host. It will return
10815 * 0 if the filtering criteria is met for the given iocb and will return
10816 * 1 if the filtering criteria is not met.
10817 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the
10818 * given iocb is for the SCSI device specified by vport, tgt_id and
10819 * lun_id parameter.
10820 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the
10821 * given iocb is for the SCSI target specified by vport and tgt_id
10822 * parameters.
10823 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the
10824 * given iocb is for the SCSI host associated with the given vport.
10825 * This function is called with no locks held.
10826 **/
10827 static int
lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq * iocbq,struct lpfc_vport * vport,uint16_t tgt_id,uint64_t lun_id,lpfc_ctx_cmd ctx_cmd)10828 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport,
10829 uint16_t tgt_id, uint64_t lun_id,
10830 lpfc_ctx_cmd ctx_cmd)
10831 {
10832 struct lpfc_scsi_buf *lpfc_cmd;
10833 int rc = 1;
10834
10835 if (!(iocbq->iocb_flag & LPFC_IO_FCP))
10836 return rc;
10837
10838 if (iocbq->vport != vport)
10839 return rc;
10840
10841 lpfc_cmd = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq);
10842
10843 if (lpfc_cmd->pCmd == NULL)
10844 return rc;
10845
10846 switch (ctx_cmd) {
10847 case LPFC_CTX_LUN:
10848 if ((lpfc_cmd->rdata->pnode) &&
10849 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) &&
10850 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id))
10851 rc = 0;
10852 break;
10853 case LPFC_CTX_TGT:
10854 if ((lpfc_cmd->rdata->pnode) &&
10855 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id))
10856 rc = 0;
10857 break;
10858 case LPFC_CTX_HOST:
10859 rc = 0;
10860 break;
10861 default:
10862 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n",
10863 __func__, ctx_cmd);
10864 break;
10865 }
10866
10867 return rc;
10868 }
10869
10870 /**
10871 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending
10872 * @vport: Pointer to virtual port.
10873 * @tgt_id: SCSI ID of the target.
10874 * @lun_id: LUN ID of the scsi device.
10875 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
10876 *
10877 * This function returns number of FCP commands pending for the vport.
10878 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP
10879 * commands pending on the vport associated with SCSI device specified
10880 * by tgt_id and lun_id parameters.
10881 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP
10882 * commands pending on the vport associated with SCSI target specified
10883 * by tgt_id parameter.
10884 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP
10885 * commands pending on the vport.
10886 * This function returns the number of iocbs which satisfy the filter.
10887 * This function is called without any lock held.
10888 **/
10889 int
lpfc_sli_sum_iocb(struct lpfc_vport * vport,uint16_t tgt_id,uint64_t lun_id,lpfc_ctx_cmd ctx_cmd)10890 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id,
10891 lpfc_ctx_cmd ctx_cmd)
10892 {
10893 struct lpfc_hba *phba = vport->phba;
10894 struct lpfc_iocbq *iocbq;
10895 int sum, i;
10896
10897 spin_lock_irq(&phba->hbalock);
10898 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) {
10899 iocbq = phba->sli.iocbq_lookup[i];
10900
10901 if (lpfc_sli_validate_fcp_iocb (iocbq, vport, tgt_id, lun_id,
10902 ctx_cmd) == 0)
10903 sum++;
10904 }
10905 spin_unlock_irq(&phba->hbalock);
10906
10907 return sum;
10908 }
10909
10910 /**
10911 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs
10912 * @phba: Pointer to HBA context object
10913 * @cmdiocb: Pointer to command iocb object.
10914 * @rspiocb: Pointer to response iocb object.
10915 *
10916 * This function is called when an aborted FCP iocb completes. This
10917 * function is called by the ring event handler with no lock held.
10918 * This function frees the iocb.
10919 **/
10920 void
lpfc_sli_abort_fcp_cmpl(struct lpfc_hba * phba,struct lpfc_iocbq * cmdiocb,struct lpfc_iocbq * rspiocb)10921 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
10922 struct lpfc_iocbq *rspiocb)
10923 {
10924 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10925 "3096 ABORT_XRI_CN completing on rpi x%x "
10926 "original iotag x%x, abort cmd iotag x%x "
10927 "status 0x%x, reason 0x%x\n",
10928 cmdiocb->iocb.un.acxri.abortContextTag,
10929 cmdiocb->iocb.un.acxri.abortIoTag,
10930 cmdiocb->iotag, rspiocb->iocb.ulpStatus,
10931 rspiocb->iocb.un.ulpWord[4]);
10932 lpfc_sli_release_iocbq(phba, cmdiocb);
10933 return;
10934 }
10935
10936 /**
10937 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN
10938 * @vport: Pointer to virtual port.
10939 * @pring: Pointer to driver SLI ring object.
10940 * @tgt_id: SCSI ID of the target.
10941 * @lun_id: LUN ID of the scsi device.
10942 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
10943 *
10944 * This function sends an abort command for every SCSI command
10945 * associated with the given virtual port pending on the ring
10946 * filtered by lpfc_sli_validate_fcp_iocb function.
10947 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the
10948 * FCP iocbs associated with lun specified by tgt_id and lun_id
10949 * parameters
10950 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the
10951 * FCP iocbs associated with SCSI target specified by tgt_id parameter.
10952 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all
10953 * FCP iocbs associated with virtual port.
10954 * This function returns number of iocbs it failed to abort.
10955 * This function is called with no locks held.
10956 **/
10957 int
lpfc_sli_abort_iocb(struct lpfc_vport * vport,struct lpfc_sli_ring * pring,uint16_t tgt_id,uint64_t lun_id,lpfc_ctx_cmd abort_cmd)10958 lpfc_sli_abort_iocb(struct lpfc_vport *vport, struct lpfc_sli_ring *pring,
10959 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd abort_cmd)
10960 {
10961 struct lpfc_hba *phba = vport->phba;
10962 struct lpfc_iocbq *iocbq;
10963 struct lpfc_iocbq *abtsiocb;
10964 struct lpfc_sli_ring *pring_s4;
10965 IOCB_t *cmd = NULL;
10966 int errcnt = 0, ret_val = 0;
10967 int i;
10968
10969 for (i = 1; i <= phba->sli.last_iotag; i++) {
10970 iocbq = phba->sli.iocbq_lookup[i];
10971
10972 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
10973 abort_cmd) != 0)
10974 continue;
10975
10976 /*
10977 * If the iocbq is already being aborted, don't take a second
10978 * action, but do count it.
10979 */
10980 if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED)
10981 continue;
10982
10983 /* issue ABTS for this IOCB based on iotag */
10984 abtsiocb = lpfc_sli_get_iocbq(phba);
10985 if (abtsiocb == NULL) {
10986 errcnt++;
10987 continue;
10988 }
10989
10990 /* indicate the IO is being aborted by the driver. */
10991 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED;
10992
10993 cmd = &iocbq->iocb;
10994 abtsiocb->iocb.un.acxri.abortType = ABORT_TYPE_ABTS;
10995 abtsiocb->iocb.un.acxri.abortContextTag = cmd->ulpContext;
10996 if (phba->sli_rev == LPFC_SLI_REV4)
10997 abtsiocb->iocb.un.acxri.abortIoTag = iocbq->sli4_xritag;
10998 else
10999 abtsiocb->iocb.un.acxri.abortIoTag = cmd->ulpIoTag;
11000 abtsiocb->iocb.ulpLe = 1;
11001 abtsiocb->iocb.ulpClass = cmd->ulpClass;
11002 abtsiocb->vport = vport;
11003
11004 /* ABTS WQE must go to the same WQ as the WQE to be aborted */
11005 abtsiocb->hba_wqidx = iocbq->hba_wqidx;
11006 if (iocbq->iocb_flag & LPFC_IO_FCP)
11007 abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX;
11008 if (iocbq->iocb_flag & LPFC_IO_FOF)
11009 abtsiocb->iocb_flag |= LPFC_IO_FOF;
11010
11011 if (lpfc_is_link_up(phba))
11012 abtsiocb->iocb.ulpCommand = CMD_ABORT_XRI_CN;
11013 else
11014 abtsiocb->iocb.ulpCommand = CMD_CLOSE_XRI_CN;
11015
11016 /* Setup callback routine and issue the command. */
11017 abtsiocb->iocb_cmpl = lpfc_sli_abort_fcp_cmpl;
11018 if (phba->sli_rev == LPFC_SLI_REV4) {
11019 pring_s4 = lpfc_sli4_calc_ring(phba, iocbq);
11020 if (!pring_s4)
11021 continue;
11022 ret_val = lpfc_sli_issue_iocb(phba, pring_s4->ringno,
11023 abtsiocb, 0);
11024 } else
11025 ret_val = lpfc_sli_issue_iocb(phba, pring->ringno,
11026 abtsiocb, 0);
11027 if (ret_val == IOCB_ERROR) {
11028 lpfc_sli_release_iocbq(phba, abtsiocb);
11029 errcnt++;
11030 continue;
11031 }
11032 }
11033
11034 return errcnt;
11035 }
11036
11037 /**
11038 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN
11039 * @vport: Pointer to virtual port.
11040 * @pring: Pointer to driver SLI ring object.
11041 * @tgt_id: SCSI ID of the target.
11042 * @lun_id: LUN ID of the scsi device.
11043 * @taskmgmt_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
11044 *
11045 * This function sends an abort command for every SCSI command
11046 * associated with the given virtual port pending on the ring
11047 * filtered by lpfc_sli_validate_fcp_iocb function.
11048 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the
11049 * FCP iocbs associated with lun specified by tgt_id and lun_id
11050 * parameters
11051 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the
11052 * FCP iocbs associated with SCSI target specified by tgt_id parameter.
11053 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all
11054 * FCP iocbs associated with virtual port.
11055 * This function returns number of iocbs it aborted .
11056 * This function is called with no locks held right after a taskmgmt
11057 * command is sent.
11058 **/
11059 int
lpfc_sli_abort_taskmgmt(struct lpfc_vport * vport,struct lpfc_sli_ring * pring,uint16_t tgt_id,uint64_t lun_id,lpfc_ctx_cmd cmd)11060 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring,
11061 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd)
11062 {
11063 struct lpfc_hba *phba = vport->phba;
11064 struct lpfc_scsi_buf *lpfc_cmd;
11065 struct lpfc_iocbq *abtsiocbq;
11066 struct lpfc_nodelist *ndlp;
11067 struct lpfc_iocbq *iocbq;
11068 IOCB_t *icmd;
11069 int sum, i, ret_val;
11070 unsigned long iflags;
11071 struct lpfc_sli_ring *pring_s4;
11072
11073 spin_lock_irq(&phba->hbalock);
11074
11075 /* all I/Os are in process of being flushed */
11076 if (phba->hba_flag & HBA_FCP_IOQ_FLUSH) {
11077 spin_unlock_irq(&phba->hbalock);
11078 return 0;
11079 }
11080 sum = 0;
11081
11082 for (i = 1; i <= phba->sli.last_iotag; i++) {
11083 iocbq = phba->sli.iocbq_lookup[i];
11084
11085 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
11086 cmd) != 0)
11087 continue;
11088
11089 /*
11090 * If the iocbq is already being aborted, don't take a second
11091 * action, but do count it.
11092 */
11093 if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED)
11094 continue;
11095
11096 /* issue ABTS for this IOCB based on iotag */
11097 abtsiocbq = __lpfc_sli_get_iocbq(phba);
11098 if (abtsiocbq == NULL)
11099 continue;
11100
11101 icmd = &iocbq->iocb;
11102 abtsiocbq->iocb.un.acxri.abortType = ABORT_TYPE_ABTS;
11103 abtsiocbq->iocb.un.acxri.abortContextTag = icmd->ulpContext;
11104 if (phba->sli_rev == LPFC_SLI_REV4)
11105 abtsiocbq->iocb.un.acxri.abortIoTag =
11106 iocbq->sli4_xritag;
11107 else
11108 abtsiocbq->iocb.un.acxri.abortIoTag = icmd->ulpIoTag;
11109 abtsiocbq->iocb.ulpLe = 1;
11110 abtsiocbq->iocb.ulpClass = icmd->ulpClass;
11111 abtsiocbq->vport = vport;
11112
11113 /* ABTS WQE must go to the same WQ as the WQE to be aborted */
11114 abtsiocbq->hba_wqidx = iocbq->hba_wqidx;
11115 if (iocbq->iocb_flag & LPFC_IO_FCP)
11116 abtsiocbq->iocb_flag |= LPFC_USE_FCPWQIDX;
11117 if (iocbq->iocb_flag & LPFC_IO_FOF)
11118 abtsiocbq->iocb_flag |= LPFC_IO_FOF;
11119
11120 lpfc_cmd = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq);
11121 ndlp = lpfc_cmd->rdata->pnode;
11122
11123 if (lpfc_is_link_up(phba) &&
11124 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE))
11125 abtsiocbq->iocb.ulpCommand = CMD_ABORT_XRI_CN;
11126 else
11127 abtsiocbq->iocb.ulpCommand = CMD_CLOSE_XRI_CN;
11128
11129 /* Setup callback routine and issue the command. */
11130 abtsiocbq->iocb_cmpl = lpfc_sli_abort_fcp_cmpl;
11131
11132 /*
11133 * Indicate the IO is being aborted by the driver and set
11134 * the caller's flag into the aborted IO.
11135 */
11136 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED;
11137
11138 if (phba->sli_rev == LPFC_SLI_REV4) {
11139 pring_s4 = lpfc_sli4_calc_ring(phba, iocbq);
11140 if (pring_s4 == NULL)
11141 continue;
11142 /* Note: both hbalock and ring_lock must be set here */
11143 spin_lock_irqsave(&pring_s4->ring_lock, iflags);
11144 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno,
11145 abtsiocbq, 0);
11146 spin_unlock_irqrestore(&pring_s4->ring_lock, iflags);
11147 } else {
11148 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno,
11149 abtsiocbq, 0);
11150 }
11151
11152
11153 if (ret_val == IOCB_ERROR)
11154 __lpfc_sli_release_iocbq(phba, abtsiocbq);
11155 else
11156 sum++;
11157 }
11158 spin_unlock_irq(&phba->hbalock);
11159 return sum;
11160 }
11161
11162 /**
11163 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler
11164 * @phba: Pointer to HBA context object.
11165 * @cmdiocbq: Pointer to command iocb.
11166 * @rspiocbq: Pointer to response iocb.
11167 *
11168 * This function is the completion handler for iocbs issued using
11169 * lpfc_sli_issue_iocb_wait function. This function is called by the
11170 * ring event handler function without any lock held. This function
11171 * can be called from both worker thread context and interrupt
11172 * context. This function also can be called from other thread which
11173 * cleans up the SLI layer objects.
11174 * This function copy the contents of the response iocb to the
11175 * response iocb memory object provided by the caller of
11176 * lpfc_sli_issue_iocb_wait and then wakes up the thread which
11177 * sleeps for the iocb completion.
11178 **/
11179 static void
lpfc_sli_wake_iocb_wait(struct lpfc_hba * phba,struct lpfc_iocbq * cmdiocbq,struct lpfc_iocbq * rspiocbq)11180 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba,
11181 struct lpfc_iocbq *cmdiocbq,
11182 struct lpfc_iocbq *rspiocbq)
11183 {
11184 wait_queue_head_t *pdone_q;
11185 unsigned long iflags;
11186 struct lpfc_scsi_buf *lpfc_cmd;
11187
11188 spin_lock_irqsave(&phba->hbalock, iflags);
11189 if (cmdiocbq->iocb_flag & LPFC_IO_WAKE_TMO) {
11190
11191 /*
11192 * A time out has occurred for the iocb. If a time out
11193 * completion handler has been supplied, call it. Otherwise,
11194 * just free the iocbq.
11195 */
11196
11197 spin_unlock_irqrestore(&phba->hbalock, iflags);
11198 cmdiocbq->iocb_cmpl = cmdiocbq->wait_iocb_cmpl;
11199 cmdiocbq->wait_iocb_cmpl = NULL;
11200 if (cmdiocbq->iocb_cmpl)
11201 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, NULL);
11202 else
11203 lpfc_sli_release_iocbq(phba, cmdiocbq);
11204 return;
11205 }
11206
11207 cmdiocbq->iocb_flag |= LPFC_IO_WAKE;
11208 if (cmdiocbq->context2 && rspiocbq)
11209 memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb,
11210 &rspiocbq->iocb, sizeof(IOCB_t));
11211
11212 /* Set the exchange busy flag for task management commands */
11213 if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) &&
11214 !(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) {
11215 lpfc_cmd = container_of(cmdiocbq, struct lpfc_scsi_buf,
11216 cur_iocbq);
11217 lpfc_cmd->exch_busy = rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY;
11218 }
11219
11220 pdone_q = cmdiocbq->context_un.wait_queue;
11221 if (pdone_q)
11222 wake_up(pdone_q);
11223 spin_unlock_irqrestore(&phba->hbalock, iflags);
11224 return;
11225 }
11226
11227 /**
11228 * lpfc_chk_iocb_flg - Test IOCB flag with lock held.
11229 * @phba: Pointer to HBA context object..
11230 * @piocbq: Pointer to command iocb.
11231 * @flag: Flag to test.
11232 *
11233 * This routine grabs the hbalock and then test the iocb_flag to
11234 * see if the passed in flag is set.
11235 * Returns:
11236 * 1 if flag is set.
11237 * 0 if flag is not set.
11238 **/
11239 static int
lpfc_chk_iocb_flg(struct lpfc_hba * phba,struct lpfc_iocbq * piocbq,uint32_t flag)11240 lpfc_chk_iocb_flg(struct lpfc_hba *phba,
11241 struct lpfc_iocbq *piocbq, uint32_t flag)
11242 {
11243 unsigned long iflags;
11244 int ret;
11245
11246 spin_lock_irqsave(&phba->hbalock, iflags);
11247 ret = piocbq->iocb_flag & flag;
11248 spin_unlock_irqrestore(&phba->hbalock, iflags);
11249 return ret;
11250
11251 }
11252
11253 /**
11254 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands
11255 * @phba: Pointer to HBA context object..
11256 * @pring: Pointer to sli ring.
11257 * @piocb: Pointer to command iocb.
11258 * @prspiocbq: Pointer to response iocb.
11259 * @timeout: Timeout in number of seconds.
11260 *
11261 * This function issues the iocb to firmware and waits for the
11262 * iocb to complete. The iocb_cmpl field of the shall be used
11263 * to handle iocbs which time out. If the field is NULL, the
11264 * function shall free the iocbq structure. If more clean up is
11265 * needed, the caller is expected to provide a completion function
11266 * that will provide the needed clean up. If the iocb command is
11267 * not completed within timeout seconds, the function will either
11268 * free the iocbq structure (if iocb_cmpl == NULL) or execute the
11269 * completion function set in the iocb_cmpl field and then return
11270 * a status of IOCB_TIMEDOUT. The caller should not free the iocb
11271 * resources if this function returns IOCB_TIMEDOUT.
11272 * The function waits for the iocb completion using an
11273 * non-interruptible wait.
11274 * This function will sleep while waiting for iocb completion.
11275 * So, this function should not be called from any context which
11276 * does not allow sleeping. Due to the same reason, this function
11277 * cannot be called with interrupt disabled.
11278 * This function assumes that the iocb completions occur while
11279 * this function sleep. So, this function cannot be called from
11280 * the thread which process iocb completion for this ring.
11281 * This function clears the iocb_flag of the iocb object before
11282 * issuing the iocb and the iocb completion handler sets this
11283 * flag and wakes this thread when the iocb completes.
11284 * The contents of the response iocb will be copied to prspiocbq
11285 * by the completion handler when the command completes.
11286 * This function returns IOCB_SUCCESS when success.
11287 * This function is called with no lock held.
11288 **/
11289 int
lpfc_sli_issue_iocb_wait(struct lpfc_hba * phba,uint32_t ring_number,struct lpfc_iocbq * piocb,struct lpfc_iocbq * prspiocbq,uint32_t timeout)11290 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba,
11291 uint32_t ring_number,
11292 struct lpfc_iocbq *piocb,
11293 struct lpfc_iocbq *prspiocbq,
11294 uint32_t timeout)
11295 {
11296 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q);
11297 long timeleft, timeout_req = 0;
11298 int retval = IOCB_SUCCESS;
11299 uint32_t creg_val;
11300 struct lpfc_iocbq *iocb;
11301 int txq_cnt = 0;
11302 int txcmplq_cnt = 0;
11303 struct lpfc_sli_ring *pring;
11304 unsigned long iflags;
11305 bool iocb_completed = true;
11306
11307 if (phba->sli_rev >= LPFC_SLI_REV4)
11308 pring = lpfc_sli4_calc_ring(phba, piocb);
11309 else
11310 pring = &phba->sli.sli3_ring[ring_number];
11311 /*
11312 * If the caller has provided a response iocbq buffer, then context2
11313 * is NULL or its an error.
11314 */
11315 if (prspiocbq) {
11316 if (piocb->context2)
11317 return IOCB_ERROR;
11318 piocb->context2 = prspiocbq;
11319 }
11320
11321 piocb->wait_iocb_cmpl = piocb->iocb_cmpl;
11322 piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait;
11323 piocb->context_un.wait_queue = &done_q;
11324 piocb->iocb_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO);
11325
11326 if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
11327 if (lpfc_readl(phba->HCregaddr, &creg_val))
11328 return IOCB_ERROR;
11329 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING);
11330 writel(creg_val, phba->HCregaddr);
11331 readl(phba->HCregaddr); /* flush */
11332 }
11333
11334 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb,
11335 SLI_IOCB_RET_IOCB);
11336 if (retval == IOCB_SUCCESS) {
11337 timeout_req = msecs_to_jiffies(timeout * 1000);
11338 timeleft = wait_event_timeout(done_q,
11339 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE),
11340 timeout_req);
11341 spin_lock_irqsave(&phba->hbalock, iflags);
11342 if (!(piocb->iocb_flag & LPFC_IO_WAKE)) {
11343
11344 /*
11345 * IOCB timed out. Inform the wake iocb wait
11346 * completion function and set local status
11347 */
11348
11349 iocb_completed = false;
11350 piocb->iocb_flag |= LPFC_IO_WAKE_TMO;
11351 }
11352 spin_unlock_irqrestore(&phba->hbalock, iflags);
11353 if (iocb_completed) {
11354 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11355 "0331 IOCB wake signaled\n");
11356 /* Note: we are not indicating if the IOCB has a success
11357 * status or not - that's for the caller to check.
11358 * IOCB_SUCCESS means just that the command was sent and
11359 * completed. Not that it completed successfully.
11360 * */
11361 } else if (timeleft == 0) {
11362 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
11363 "0338 IOCB wait timeout error - no "
11364 "wake response Data x%x\n", timeout);
11365 retval = IOCB_TIMEDOUT;
11366 } else {
11367 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
11368 "0330 IOCB wake NOT set, "
11369 "Data x%x x%lx\n",
11370 timeout, (timeleft / jiffies));
11371 retval = IOCB_TIMEDOUT;
11372 }
11373 } else if (retval == IOCB_BUSY) {
11374 if (phba->cfg_log_verbose & LOG_SLI) {
11375 list_for_each_entry(iocb, &pring->txq, list) {
11376 txq_cnt++;
11377 }
11378 list_for_each_entry(iocb, &pring->txcmplq, list) {
11379 txcmplq_cnt++;
11380 }
11381 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11382 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n",
11383 phba->iocb_cnt, txq_cnt, txcmplq_cnt);
11384 }
11385 return retval;
11386 } else {
11387 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11388 "0332 IOCB wait issue failed, Data x%x\n",
11389 retval);
11390 retval = IOCB_ERROR;
11391 }
11392
11393 if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
11394 if (lpfc_readl(phba->HCregaddr, &creg_val))
11395 return IOCB_ERROR;
11396 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING);
11397 writel(creg_val, phba->HCregaddr);
11398 readl(phba->HCregaddr); /* flush */
11399 }
11400
11401 if (prspiocbq)
11402 piocb->context2 = NULL;
11403
11404 piocb->context_un.wait_queue = NULL;
11405 piocb->iocb_cmpl = NULL;
11406 return retval;
11407 }
11408
11409 /**
11410 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox
11411 * @phba: Pointer to HBA context object.
11412 * @pmboxq: Pointer to driver mailbox object.
11413 * @timeout: Timeout in number of seconds.
11414 *
11415 * This function issues the mailbox to firmware and waits for the
11416 * mailbox command to complete. If the mailbox command is not
11417 * completed within timeout seconds, it returns MBX_TIMEOUT.
11418 * The function waits for the mailbox completion using an
11419 * interruptible wait. If the thread is woken up due to a
11420 * signal, MBX_TIMEOUT error is returned to the caller. Caller
11421 * should not free the mailbox resources, if this function returns
11422 * MBX_TIMEOUT.
11423 * This function will sleep while waiting for mailbox completion.
11424 * So, this function should not be called from any context which
11425 * does not allow sleeping. Due to the same reason, this function
11426 * cannot be called with interrupt disabled.
11427 * This function assumes that the mailbox completion occurs while
11428 * this function sleep. So, this function cannot be called from
11429 * the worker thread which processes mailbox completion.
11430 * This function is called in the context of HBA management
11431 * applications.
11432 * This function returns MBX_SUCCESS when successful.
11433 * This function is called with no lock held.
11434 **/
11435 int
lpfc_sli_issue_mbox_wait(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmboxq,uint32_t timeout)11436 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq,
11437 uint32_t timeout)
11438 {
11439 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q);
11440 MAILBOX_t *mb = NULL;
11441 int retval;
11442 unsigned long flag;
11443
11444 /* The caller might set context1 for extended buffer */
11445 if (pmboxq->context1)
11446 mb = (MAILBOX_t *)pmboxq->context1;
11447
11448 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE;
11449 /* setup wake call as IOCB callback */
11450 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait;
11451 /* setup context field to pass wait_queue pointer to wake function */
11452 pmboxq->context1 = &done_q;
11453
11454 /* now issue the command */
11455 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT);
11456 if (retval == MBX_BUSY || retval == MBX_SUCCESS) {
11457 wait_event_interruptible_timeout(done_q,
11458 pmboxq->mbox_flag & LPFC_MBX_WAKE,
11459 msecs_to_jiffies(timeout * 1000));
11460
11461 spin_lock_irqsave(&phba->hbalock, flag);
11462 /* restore the possible extended buffer for free resource */
11463 pmboxq->context1 = (uint8_t *)mb;
11464 /*
11465 * if LPFC_MBX_WAKE flag is set the mailbox is completed
11466 * else do not free the resources.
11467 */
11468 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) {
11469 retval = MBX_SUCCESS;
11470 } else {
11471 retval = MBX_TIMEOUT;
11472 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
11473 }
11474 spin_unlock_irqrestore(&phba->hbalock, flag);
11475 } else {
11476 /* restore the possible extended buffer for free resource */
11477 pmboxq->context1 = (uint8_t *)mb;
11478 }
11479
11480 return retval;
11481 }
11482
11483 /**
11484 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system
11485 * @phba: Pointer to HBA context.
11486 *
11487 * This function is called to shutdown the driver's mailbox sub-system.
11488 * It first marks the mailbox sub-system is in a block state to prevent
11489 * the asynchronous mailbox command from issued off the pending mailbox
11490 * command queue. If the mailbox command sub-system shutdown is due to
11491 * HBA error conditions such as EEH or ERATT, this routine shall invoke
11492 * the mailbox sub-system flush routine to forcefully bring down the
11493 * mailbox sub-system. Otherwise, if it is due to normal condition (such
11494 * as with offline or HBA function reset), this routine will wait for the
11495 * outstanding mailbox command to complete before invoking the mailbox
11496 * sub-system flush routine to gracefully bring down mailbox sub-system.
11497 **/
11498 void
lpfc_sli_mbox_sys_shutdown(struct lpfc_hba * phba,int mbx_action)11499 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action)
11500 {
11501 struct lpfc_sli *psli = &phba->sli;
11502 unsigned long timeout;
11503
11504 if (mbx_action == LPFC_MBX_NO_WAIT) {
11505 /* delay 100ms for port state */
11506 msleep(100);
11507 lpfc_sli_mbox_sys_flush(phba);
11508 return;
11509 }
11510 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies;
11511
11512 spin_lock_irq(&phba->hbalock);
11513 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
11514
11515 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
11516 /* Determine how long we might wait for the active mailbox
11517 * command to be gracefully completed by firmware.
11518 */
11519 if (phba->sli.mbox_active)
11520 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
11521 phba->sli.mbox_active) *
11522 1000) + jiffies;
11523 spin_unlock_irq(&phba->hbalock);
11524
11525 while (phba->sli.mbox_active) {
11526 /* Check active mailbox complete status every 2ms */
11527 msleep(2);
11528 if (time_after(jiffies, timeout))
11529 /* Timeout, let the mailbox flush routine to
11530 * forcefully release active mailbox command
11531 */
11532 break;
11533 }
11534 } else
11535 spin_unlock_irq(&phba->hbalock);
11536
11537 lpfc_sli_mbox_sys_flush(phba);
11538 }
11539
11540 /**
11541 * lpfc_sli_eratt_read - read sli-3 error attention events
11542 * @phba: Pointer to HBA context.
11543 *
11544 * This function is called to read the SLI3 device error attention registers
11545 * for possible error attention events. The caller must hold the hostlock
11546 * with spin_lock_irq().
11547 *
11548 * This function returns 1 when there is Error Attention in the Host Attention
11549 * Register and returns 0 otherwise.
11550 **/
11551 static int
lpfc_sli_eratt_read(struct lpfc_hba * phba)11552 lpfc_sli_eratt_read(struct lpfc_hba *phba)
11553 {
11554 uint32_t ha_copy;
11555
11556 /* Read chip Host Attention (HA) register */
11557 if (lpfc_readl(phba->HAregaddr, &ha_copy))
11558 goto unplug_err;
11559
11560 if (ha_copy & HA_ERATT) {
11561 /* Read host status register to retrieve error event */
11562 if (lpfc_sli_read_hs(phba))
11563 goto unplug_err;
11564
11565 /* Check if there is a deferred error condition is active */
11566 if ((HS_FFER1 & phba->work_hs) &&
11567 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
11568 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) {
11569 phba->hba_flag |= DEFER_ERATT;
11570 /* Clear all interrupt enable conditions */
11571 writel(0, phba->HCregaddr);
11572 readl(phba->HCregaddr);
11573 }
11574
11575 /* Set the driver HA work bitmap */
11576 phba->work_ha |= HA_ERATT;
11577 /* Indicate polling handles this ERATT */
11578 phba->hba_flag |= HBA_ERATT_HANDLED;
11579 return 1;
11580 }
11581 return 0;
11582
11583 unplug_err:
11584 /* Set the driver HS work bitmap */
11585 phba->work_hs |= UNPLUG_ERR;
11586 /* Set the driver HA work bitmap */
11587 phba->work_ha |= HA_ERATT;
11588 /* Indicate polling handles this ERATT */
11589 phba->hba_flag |= HBA_ERATT_HANDLED;
11590 return 1;
11591 }
11592
11593 /**
11594 * lpfc_sli4_eratt_read - read sli-4 error attention events
11595 * @phba: Pointer to HBA context.
11596 *
11597 * This function is called to read the SLI4 device error attention registers
11598 * for possible error attention events. The caller must hold the hostlock
11599 * with spin_lock_irq().
11600 *
11601 * This function returns 1 when there is Error Attention in the Host Attention
11602 * Register and returns 0 otherwise.
11603 **/
11604 static int
lpfc_sli4_eratt_read(struct lpfc_hba * phba)11605 lpfc_sli4_eratt_read(struct lpfc_hba *phba)
11606 {
11607 uint32_t uerr_sta_hi, uerr_sta_lo;
11608 uint32_t if_type, portsmphr;
11609 struct lpfc_register portstat_reg;
11610
11611 /*
11612 * For now, use the SLI4 device internal unrecoverable error
11613 * registers for error attention. This can be changed later.
11614 */
11615 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
11616 switch (if_type) {
11617 case LPFC_SLI_INTF_IF_TYPE_0:
11618 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr,
11619 &uerr_sta_lo) ||
11620 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr,
11621 &uerr_sta_hi)) {
11622 phba->work_hs |= UNPLUG_ERR;
11623 phba->work_ha |= HA_ERATT;
11624 phba->hba_flag |= HBA_ERATT_HANDLED;
11625 return 1;
11626 }
11627 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) ||
11628 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) {
11629 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
11630 "1423 HBA Unrecoverable error: "
11631 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, "
11632 "ue_mask_lo_reg=0x%x, "
11633 "ue_mask_hi_reg=0x%x\n",
11634 uerr_sta_lo, uerr_sta_hi,
11635 phba->sli4_hba.ue_mask_lo,
11636 phba->sli4_hba.ue_mask_hi);
11637 phba->work_status[0] = uerr_sta_lo;
11638 phba->work_status[1] = uerr_sta_hi;
11639 phba->work_ha |= HA_ERATT;
11640 phba->hba_flag |= HBA_ERATT_HANDLED;
11641 return 1;
11642 }
11643 break;
11644 case LPFC_SLI_INTF_IF_TYPE_2:
11645 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
11646 &portstat_reg.word0) ||
11647 lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
11648 &portsmphr)){
11649 phba->work_hs |= UNPLUG_ERR;
11650 phba->work_ha |= HA_ERATT;
11651 phba->hba_flag |= HBA_ERATT_HANDLED;
11652 return 1;
11653 }
11654 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) {
11655 phba->work_status[0] =
11656 readl(phba->sli4_hba.u.if_type2.ERR1regaddr);
11657 phba->work_status[1] =
11658 readl(phba->sli4_hba.u.if_type2.ERR2regaddr);
11659 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
11660 "2885 Port Status Event: "
11661 "port status reg 0x%x, "
11662 "port smphr reg 0x%x, "
11663 "error 1=0x%x, error 2=0x%x\n",
11664 portstat_reg.word0,
11665 portsmphr,
11666 phba->work_status[0],
11667 phba->work_status[1]);
11668 phba->work_ha |= HA_ERATT;
11669 phba->hba_flag |= HBA_ERATT_HANDLED;
11670 return 1;
11671 }
11672 break;
11673 case LPFC_SLI_INTF_IF_TYPE_1:
11674 default:
11675 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
11676 "2886 HBA Error Attention on unsupported "
11677 "if type %d.", if_type);
11678 return 1;
11679 }
11680
11681 return 0;
11682 }
11683
11684 /**
11685 * lpfc_sli_check_eratt - check error attention events
11686 * @phba: Pointer to HBA context.
11687 *
11688 * This function is called from timer soft interrupt context to check HBA's
11689 * error attention register bit for error attention events.
11690 *
11691 * This function returns 1 when there is Error Attention in the Host Attention
11692 * Register and returns 0 otherwise.
11693 **/
11694 int
lpfc_sli_check_eratt(struct lpfc_hba * phba)11695 lpfc_sli_check_eratt(struct lpfc_hba *phba)
11696 {
11697 uint32_t ha_copy;
11698
11699 /* If somebody is waiting to handle an eratt, don't process it
11700 * here. The brdkill function will do this.
11701 */
11702 if (phba->link_flag & LS_IGNORE_ERATT)
11703 return 0;
11704
11705 /* Check if interrupt handler handles this ERATT */
11706 spin_lock_irq(&phba->hbalock);
11707 if (phba->hba_flag & HBA_ERATT_HANDLED) {
11708 /* Interrupt handler has handled ERATT */
11709 spin_unlock_irq(&phba->hbalock);
11710 return 0;
11711 }
11712
11713 /*
11714 * If there is deferred error attention, do not check for error
11715 * attention
11716 */
11717 if (unlikely(phba->hba_flag & DEFER_ERATT)) {
11718 spin_unlock_irq(&phba->hbalock);
11719 return 0;
11720 }
11721
11722 /* If PCI channel is offline, don't process it */
11723 if (unlikely(pci_channel_offline(phba->pcidev))) {
11724 spin_unlock_irq(&phba->hbalock);
11725 return 0;
11726 }
11727
11728 switch (phba->sli_rev) {
11729 case LPFC_SLI_REV2:
11730 case LPFC_SLI_REV3:
11731 /* Read chip Host Attention (HA) register */
11732 ha_copy = lpfc_sli_eratt_read(phba);
11733 break;
11734 case LPFC_SLI_REV4:
11735 /* Read device Uncoverable Error (UERR) registers */
11736 ha_copy = lpfc_sli4_eratt_read(phba);
11737 break;
11738 default:
11739 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
11740 "0299 Invalid SLI revision (%d)\n",
11741 phba->sli_rev);
11742 ha_copy = 0;
11743 break;
11744 }
11745 spin_unlock_irq(&phba->hbalock);
11746
11747 return ha_copy;
11748 }
11749
11750 /**
11751 * lpfc_intr_state_check - Check device state for interrupt handling
11752 * @phba: Pointer to HBA context.
11753 *
11754 * This inline routine checks whether a device or its PCI slot is in a state
11755 * that the interrupt should be handled.
11756 *
11757 * This function returns 0 if the device or the PCI slot is in a state that
11758 * interrupt should be handled, otherwise -EIO.
11759 */
11760 static inline int
lpfc_intr_state_check(struct lpfc_hba * phba)11761 lpfc_intr_state_check(struct lpfc_hba *phba)
11762 {
11763 /* If the pci channel is offline, ignore all the interrupts */
11764 if (unlikely(pci_channel_offline(phba->pcidev)))
11765 return -EIO;
11766
11767 /* Update device level interrupt statistics */
11768 phba->sli.slistat.sli_intr++;
11769
11770 /* Ignore all interrupts during initialization. */
11771 if (unlikely(phba->link_state < LPFC_LINK_DOWN))
11772 return -EIO;
11773
11774 return 0;
11775 }
11776
11777 /**
11778 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device
11779 * @irq: Interrupt number.
11780 * @dev_id: The device context pointer.
11781 *
11782 * This function is directly called from the PCI layer as an interrupt
11783 * service routine when device with SLI-3 interface spec is enabled with
11784 * MSI-X multi-message interrupt mode and there are slow-path events in
11785 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ
11786 * interrupt mode, this function is called as part of the device-level
11787 * interrupt handler. When the PCI slot is in error recovery or the HBA
11788 * is undergoing initialization, the interrupt handler will not process
11789 * the interrupt. The link attention and ELS ring attention events are
11790 * handled by the worker thread. The interrupt handler signals the worker
11791 * thread and returns for these events. This function is called without
11792 * any lock held. It gets the hbalock to access and update SLI data
11793 * structures.
11794 *
11795 * This function returns IRQ_HANDLED when interrupt is handled else it
11796 * returns IRQ_NONE.
11797 **/
11798 irqreturn_t
lpfc_sli_sp_intr_handler(int irq,void * dev_id)11799 lpfc_sli_sp_intr_handler(int irq, void *dev_id)
11800 {
11801 struct lpfc_hba *phba;
11802 uint32_t ha_copy, hc_copy;
11803 uint32_t work_ha_copy;
11804 unsigned long status;
11805 unsigned long iflag;
11806 uint32_t control;
11807
11808 MAILBOX_t *mbox, *pmbox;
11809 struct lpfc_vport *vport;
11810 struct lpfc_nodelist *ndlp;
11811 struct lpfc_dmabuf *mp;
11812 LPFC_MBOXQ_t *pmb;
11813 int rc;
11814
11815 /*
11816 * Get the driver's phba structure from the dev_id and
11817 * assume the HBA is not interrupting.
11818 */
11819 phba = (struct lpfc_hba *)dev_id;
11820
11821 if (unlikely(!phba))
11822 return IRQ_NONE;
11823
11824 /*
11825 * Stuff needs to be attented to when this function is invoked as an
11826 * individual interrupt handler in MSI-X multi-message interrupt mode
11827 */
11828 if (phba->intr_type == MSIX) {
11829 /* Check device state for handling interrupt */
11830 if (lpfc_intr_state_check(phba))
11831 return IRQ_NONE;
11832 /* Need to read HA REG for slow-path events */
11833 spin_lock_irqsave(&phba->hbalock, iflag);
11834 if (lpfc_readl(phba->HAregaddr, &ha_copy))
11835 goto unplug_error;
11836 /* If somebody is waiting to handle an eratt don't process it
11837 * here. The brdkill function will do this.
11838 */
11839 if (phba->link_flag & LS_IGNORE_ERATT)
11840 ha_copy &= ~HA_ERATT;
11841 /* Check the need for handling ERATT in interrupt handler */
11842 if (ha_copy & HA_ERATT) {
11843 if (phba->hba_flag & HBA_ERATT_HANDLED)
11844 /* ERATT polling has handled ERATT */
11845 ha_copy &= ~HA_ERATT;
11846 else
11847 /* Indicate interrupt handler handles ERATT */
11848 phba->hba_flag |= HBA_ERATT_HANDLED;
11849 }
11850
11851 /*
11852 * If there is deferred error attention, do not check for any
11853 * interrupt.
11854 */
11855 if (unlikely(phba->hba_flag & DEFER_ERATT)) {
11856 spin_unlock_irqrestore(&phba->hbalock, iflag);
11857 return IRQ_NONE;
11858 }
11859
11860 /* Clear up only attention source related to slow-path */
11861 if (lpfc_readl(phba->HCregaddr, &hc_copy))
11862 goto unplug_error;
11863
11864 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA |
11865 HC_LAINT_ENA | HC_ERINT_ENA),
11866 phba->HCregaddr);
11867 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)),
11868 phba->HAregaddr);
11869 writel(hc_copy, phba->HCregaddr);
11870 readl(phba->HAregaddr); /* flush */
11871 spin_unlock_irqrestore(&phba->hbalock, iflag);
11872 } else
11873 ha_copy = phba->ha_copy;
11874
11875 work_ha_copy = ha_copy & phba->work_ha_mask;
11876
11877 if (work_ha_copy) {
11878 if (work_ha_copy & HA_LATT) {
11879 if (phba->sli.sli_flag & LPFC_PROCESS_LA) {
11880 /*
11881 * Turn off Link Attention interrupts
11882 * until CLEAR_LA done
11883 */
11884 spin_lock_irqsave(&phba->hbalock, iflag);
11885 phba->sli.sli_flag &= ~LPFC_PROCESS_LA;
11886 if (lpfc_readl(phba->HCregaddr, &control))
11887 goto unplug_error;
11888 control &= ~HC_LAINT_ENA;
11889 writel(control, phba->HCregaddr);
11890 readl(phba->HCregaddr); /* flush */
11891 spin_unlock_irqrestore(&phba->hbalock, iflag);
11892 }
11893 else
11894 work_ha_copy &= ~HA_LATT;
11895 }
11896
11897 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) {
11898 /*
11899 * Turn off Slow Rings interrupts, LPFC_ELS_RING is
11900 * the only slow ring.
11901 */
11902 status = (work_ha_copy &
11903 (HA_RXMASK << (4*LPFC_ELS_RING)));
11904 status >>= (4*LPFC_ELS_RING);
11905 if (status & HA_RXMASK) {
11906 spin_lock_irqsave(&phba->hbalock, iflag);
11907 if (lpfc_readl(phba->HCregaddr, &control))
11908 goto unplug_error;
11909
11910 lpfc_debugfs_slow_ring_trc(phba,
11911 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x",
11912 control, status,
11913 (uint32_t)phba->sli.slistat.sli_intr);
11914
11915 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) {
11916 lpfc_debugfs_slow_ring_trc(phba,
11917 "ISR Disable ring:"
11918 "pwork:x%x hawork:x%x wait:x%x",
11919 phba->work_ha, work_ha_copy,
11920 (uint32_t)((unsigned long)
11921 &phba->work_waitq));
11922
11923 control &=
11924 ~(HC_R0INT_ENA << LPFC_ELS_RING);
11925 writel(control, phba->HCregaddr);
11926 readl(phba->HCregaddr); /* flush */
11927 }
11928 else {
11929 lpfc_debugfs_slow_ring_trc(phba,
11930 "ISR slow ring: pwork:"
11931 "x%x hawork:x%x wait:x%x",
11932 phba->work_ha, work_ha_copy,
11933 (uint32_t)((unsigned long)
11934 &phba->work_waitq));
11935 }
11936 spin_unlock_irqrestore(&phba->hbalock, iflag);
11937 }
11938 }
11939 spin_lock_irqsave(&phba->hbalock, iflag);
11940 if (work_ha_copy & HA_ERATT) {
11941 if (lpfc_sli_read_hs(phba))
11942 goto unplug_error;
11943 /*
11944 * Check if there is a deferred error condition
11945 * is active
11946 */
11947 if ((HS_FFER1 & phba->work_hs) &&
11948 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
11949 HS_FFER6 | HS_FFER7 | HS_FFER8) &
11950 phba->work_hs)) {
11951 phba->hba_flag |= DEFER_ERATT;
11952 /* Clear all interrupt enable conditions */
11953 writel(0, phba->HCregaddr);
11954 readl(phba->HCregaddr);
11955 }
11956 }
11957
11958 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) {
11959 pmb = phba->sli.mbox_active;
11960 pmbox = &pmb->u.mb;
11961 mbox = phba->mbox;
11962 vport = pmb->vport;
11963
11964 /* First check out the status word */
11965 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t));
11966 if (pmbox->mbxOwner != OWN_HOST) {
11967 spin_unlock_irqrestore(&phba->hbalock, iflag);
11968 /*
11969 * Stray Mailbox Interrupt, mbxCommand <cmd>
11970 * mbxStatus <status>
11971 */
11972 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX |
11973 LOG_SLI,
11974 "(%d):0304 Stray Mailbox "
11975 "Interrupt mbxCommand x%x "
11976 "mbxStatus x%x\n",
11977 (vport ? vport->vpi : 0),
11978 pmbox->mbxCommand,
11979 pmbox->mbxStatus);
11980 /* clear mailbox attention bit */
11981 work_ha_copy &= ~HA_MBATT;
11982 } else {
11983 phba->sli.mbox_active = NULL;
11984 spin_unlock_irqrestore(&phba->hbalock, iflag);
11985 phba->last_completion_time = jiffies;
11986 del_timer(&phba->sli.mbox_tmo);
11987 if (pmb->mbox_cmpl) {
11988 lpfc_sli_pcimem_bcopy(mbox, pmbox,
11989 MAILBOX_CMD_SIZE);
11990 if (pmb->out_ext_byte_len &&
11991 pmb->context2)
11992 lpfc_sli_pcimem_bcopy(
11993 phba->mbox_ext,
11994 pmb->context2,
11995 pmb->out_ext_byte_len);
11996 }
11997 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
11998 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
11999
12000 lpfc_debugfs_disc_trc(vport,
12001 LPFC_DISC_TRC_MBOX_VPORT,
12002 "MBOX dflt rpi: : "
12003 "status:x%x rpi:x%x",
12004 (uint32_t)pmbox->mbxStatus,
12005 pmbox->un.varWords[0], 0);
12006
12007 if (!pmbox->mbxStatus) {
12008 mp = (struct lpfc_dmabuf *)
12009 (pmb->context1);
12010 ndlp = (struct lpfc_nodelist *)
12011 pmb->context2;
12012
12013 /* Reg_LOGIN of dflt RPI was
12014 * successful. new lets get
12015 * rid of the RPI using the
12016 * same mbox buffer.
12017 */
12018 lpfc_unreg_login(phba,
12019 vport->vpi,
12020 pmbox->un.varWords[0],
12021 pmb);
12022 pmb->mbox_cmpl =
12023 lpfc_mbx_cmpl_dflt_rpi;
12024 pmb->context1 = mp;
12025 pmb->context2 = ndlp;
12026 pmb->vport = vport;
12027 rc = lpfc_sli_issue_mbox(phba,
12028 pmb,
12029 MBX_NOWAIT);
12030 if (rc != MBX_BUSY)
12031 lpfc_printf_log(phba,
12032 KERN_ERR,
12033 LOG_MBOX | LOG_SLI,
12034 "0350 rc should have"
12035 "been MBX_BUSY\n");
12036 if (rc != MBX_NOT_FINISHED)
12037 goto send_current_mbox;
12038 }
12039 }
12040 spin_lock_irqsave(
12041 &phba->pport->work_port_lock,
12042 iflag);
12043 phba->pport->work_port_events &=
12044 ~WORKER_MBOX_TMO;
12045 spin_unlock_irqrestore(
12046 &phba->pport->work_port_lock,
12047 iflag);
12048 lpfc_mbox_cmpl_put(phba, pmb);
12049 }
12050 } else
12051 spin_unlock_irqrestore(&phba->hbalock, iflag);
12052
12053 if ((work_ha_copy & HA_MBATT) &&
12054 (phba->sli.mbox_active == NULL)) {
12055 send_current_mbox:
12056 /* Process next mailbox command if there is one */
12057 do {
12058 rc = lpfc_sli_issue_mbox(phba, NULL,
12059 MBX_NOWAIT);
12060 } while (rc == MBX_NOT_FINISHED);
12061 if (rc != MBX_SUCCESS)
12062 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX |
12063 LOG_SLI, "0349 rc should be "
12064 "MBX_SUCCESS\n");
12065 }
12066
12067 spin_lock_irqsave(&phba->hbalock, iflag);
12068 phba->work_ha |= work_ha_copy;
12069 spin_unlock_irqrestore(&phba->hbalock, iflag);
12070 lpfc_worker_wake_up(phba);
12071 }
12072 return IRQ_HANDLED;
12073 unplug_error:
12074 spin_unlock_irqrestore(&phba->hbalock, iflag);
12075 return IRQ_HANDLED;
12076
12077 } /* lpfc_sli_sp_intr_handler */
12078
12079 /**
12080 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device.
12081 * @irq: Interrupt number.
12082 * @dev_id: The device context pointer.
12083 *
12084 * This function is directly called from the PCI layer as an interrupt
12085 * service routine when device with SLI-3 interface spec is enabled with
12086 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
12087 * ring event in the HBA. However, when the device is enabled with either
12088 * MSI or Pin-IRQ interrupt mode, this function is called as part of the
12089 * device-level interrupt handler. When the PCI slot is in error recovery
12090 * or the HBA is undergoing initialization, the interrupt handler will not
12091 * process the interrupt. The SCSI FCP fast-path ring event are handled in
12092 * the intrrupt context. This function is called without any lock held.
12093 * It gets the hbalock to access and update SLI data structures.
12094 *
12095 * This function returns IRQ_HANDLED when interrupt is handled else it
12096 * returns IRQ_NONE.
12097 **/
12098 irqreturn_t
lpfc_sli_fp_intr_handler(int irq,void * dev_id)12099 lpfc_sli_fp_intr_handler(int irq, void *dev_id)
12100 {
12101 struct lpfc_hba *phba;
12102 uint32_t ha_copy;
12103 unsigned long status;
12104 unsigned long iflag;
12105 struct lpfc_sli_ring *pring;
12106
12107 /* Get the driver's phba structure from the dev_id and
12108 * assume the HBA is not interrupting.
12109 */
12110 phba = (struct lpfc_hba *) dev_id;
12111
12112 if (unlikely(!phba))
12113 return IRQ_NONE;
12114
12115 /*
12116 * Stuff needs to be attented to when this function is invoked as an
12117 * individual interrupt handler in MSI-X multi-message interrupt mode
12118 */
12119 if (phba->intr_type == MSIX) {
12120 /* Check device state for handling interrupt */
12121 if (lpfc_intr_state_check(phba))
12122 return IRQ_NONE;
12123 /* Need to read HA REG for FCP ring and other ring events */
12124 if (lpfc_readl(phba->HAregaddr, &ha_copy))
12125 return IRQ_HANDLED;
12126 /* Clear up only attention source related to fast-path */
12127 spin_lock_irqsave(&phba->hbalock, iflag);
12128 /*
12129 * If there is deferred error attention, do not check for
12130 * any interrupt.
12131 */
12132 if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12133 spin_unlock_irqrestore(&phba->hbalock, iflag);
12134 return IRQ_NONE;
12135 }
12136 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)),
12137 phba->HAregaddr);
12138 readl(phba->HAregaddr); /* flush */
12139 spin_unlock_irqrestore(&phba->hbalock, iflag);
12140 } else
12141 ha_copy = phba->ha_copy;
12142
12143 /*
12144 * Process all events on FCP ring. Take the optimized path for FCP IO.
12145 */
12146 ha_copy &= ~(phba->work_ha_mask);
12147
12148 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
12149 status >>= (4*LPFC_FCP_RING);
12150 pring = &phba->sli.sli3_ring[LPFC_FCP_RING];
12151 if (status & HA_RXMASK)
12152 lpfc_sli_handle_fast_ring_event(phba, pring, status);
12153
12154 if (phba->cfg_multi_ring_support == 2) {
12155 /*
12156 * Process all events on extra ring. Take the optimized path
12157 * for extra ring IO.
12158 */
12159 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
12160 status >>= (4*LPFC_EXTRA_RING);
12161 if (status & HA_RXMASK) {
12162 lpfc_sli_handle_fast_ring_event(phba,
12163 &phba->sli.sli3_ring[LPFC_EXTRA_RING],
12164 status);
12165 }
12166 }
12167 return IRQ_HANDLED;
12168 } /* lpfc_sli_fp_intr_handler */
12169
12170 /**
12171 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device
12172 * @irq: Interrupt number.
12173 * @dev_id: The device context pointer.
12174 *
12175 * This function is the HBA device-level interrupt handler to device with
12176 * SLI-3 interface spec, called from the PCI layer when either MSI or
12177 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which
12178 * requires driver attention. This function invokes the slow-path interrupt
12179 * attention handling function and fast-path interrupt attention handling
12180 * function in turn to process the relevant HBA attention events. This
12181 * function is called without any lock held. It gets the hbalock to access
12182 * and update SLI data structures.
12183 *
12184 * This function returns IRQ_HANDLED when interrupt is handled, else it
12185 * returns IRQ_NONE.
12186 **/
12187 irqreturn_t
lpfc_sli_intr_handler(int irq,void * dev_id)12188 lpfc_sli_intr_handler(int irq, void *dev_id)
12189 {
12190 struct lpfc_hba *phba;
12191 irqreturn_t sp_irq_rc, fp_irq_rc;
12192 unsigned long status1, status2;
12193 uint32_t hc_copy;
12194
12195 /*
12196 * Get the driver's phba structure from the dev_id and
12197 * assume the HBA is not interrupting.
12198 */
12199 phba = (struct lpfc_hba *) dev_id;
12200
12201 if (unlikely(!phba))
12202 return IRQ_NONE;
12203
12204 /* Check device state for handling interrupt */
12205 if (lpfc_intr_state_check(phba))
12206 return IRQ_NONE;
12207
12208 spin_lock(&phba->hbalock);
12209 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) {
12210 spin_unlock(&phba->hbalock);
12211 return IRQ_HANDLED;
12212 }
12213
12214 if (unlikely(!phba->ha_copy)) {
12215 spin_unlock(&phba->hbalock);
12216 return IRQ_NONE;
12217 } else if (phba->ha_copy & HA_ERATT) {
12218 if (phba->hba_flag & HBA_ERATT_HANDLED)
12219 /* ERATT polling has handled ERATT */
12220 phba->ha_copy &= ~HA_ERATT;
12221 else
12222 /* Indicate interrupt handler handles ERATT */
12223 phba->hba_flag |= HBA_ERATT_HANDLED;
12224 }
12225
12226 /*
12227 * If there is deferred error attention, do not check for any interrupt.
12228 */
12229 if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12230 spin_unlock(&phba->hbalock);
12231 return IRQ_NONE;
12232 }
12233
12234 /* Clear attention sources except link and error attentions */
12235 if (lpfc_readl(phba->HCregaddr, &hc_copy)) {
12236 spin_unlock(&phba->hbalock);
12237 return IRQ_HANDLED;
12238 }
12239 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA
12240 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA),
12241 phba->HCregaddr);
12242 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr);
12243 writel(hc_copy, phba->HCregaddr);
12244 readl(phba->HAregaddr); /* flush */
12245 spin_unlock(&phba->hbalock);
12246
12247 /*
12248 * Invokes slow-path host attention interrupt handling as appropriate.
12249 */
12250
12251 /* status of events with mailbox and link attention */
12252 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT);
12253
12254 /* status of events with ELS ring */
12255 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING)));
12256 status2 >>= (4*LPFC_ELS_RING);
12257
12258 if (status1 || (status2 & HA_RXMASK))
12259 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id);
12260 else
12261 sp_irq_rc = IRQ_NONE;
12262
12263 /*
12264 * Invoke fast-path host attention interrupt handling as appropriate.
12265 */
12266
12267 /* status of events with FCP ring */
12268 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
12269 status1 >>= (4*LPFC_FCP_RING);
12270
12271 /* status of events with extra ring */
12272 if (phba->cfg_multi_ring_support == 2) {
12273 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
12274 status2 >>= (4*LPFC_EXTRA_RING);
12275 } else
12276 status2 = 0;
12277
12278 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK))
12279 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id);
12280 else
12281 fp_irq_rc = IRQ_NONE;
12282
12283 /* Return device-level interrupt handling status */
12284 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc;
12285 } /* lpfc_sli_intr_handler */
12286
12287 /**
12288 * lpfc_sli4_fcp_xri_abort_event_proc - Process fcp xri abort event
12289 * @phba: pointer to lpfc hba data structure.
12290 *
12291 * This routine is invoked by the worker thread to process all the pending
12292 * SLI4 FCP abort XRI events.
12293 **/
lpfc_sli4_fcp_xri_abort_event_proc(struct lpfc_hba * phba)12294 void lpfc_sli4_fcp_xri_abort_event_proc(struct lpfc_hba *phba)
12295 {
12296 struct lpfc_cq_event *cq_event;
12297
12298 /* First, declare the fcp xri abort event has been handled */
12299 spin_lock_irq(&phba->hbalock);
12300 phba->hba_flag &= ~FCP_XRI_ABORT_EVENT;
12301 spin_unlock_irq(&phba->hbalock);
12302 /* Now, handle all the fcp xri abort events */
12303 while (!list_empty(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue)) {
12304 /* Get the first event from the head of the event queue */
12305 spin_lock_irq(&phba->hbalock);
12306 list_remove_head(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue,
12307 cq_event, struct lpfc_cq_event, list);
12308 spin_unlock_irq(&phba->hbalock);
12309 /* Notify aborted XRI for FCP work queue */
12310 lpfc_sli4_fcp_xri_aborted(phba, &cq_event->cqe.wcqe_axri);
12311 /* Free the event processed back to the free pool */
12312 lpfc_sli4_cq_event_release(phba, cq_event);
12313 }
12314 }
12315
12316 /**
12317 * lpfc_sli4_nvme_xri_abort_event_proc - Process nvme xri abort event
12318 * @phba: pointer to lpfc hba data structure.
12319 *
12320 * This routine is invoked by the worker thread to process all the pending
12321 * SLI4 NVME abort XRI events.
12322 **/
lpfc_sli4_nvme_xri_abort_event_proc(struct lpfc_hba * phba)12323 void lpfc_sli4_nvme_xri_abort_event_proc(struct lpfc_hba *phba)
12324 {
12325 struct lpfc_cq_event *cq_event;
12326
12327 /* First, declare the fcp xri abort event has been handled */
12328 spin_lock_irq(&phba->hbalock);
12329 phba->hba_flag &= ~NVME_XRI_ABORT_EVENT;
12330 spin_unlock_irq(&phba->hbalock);
12331 /* Now, handle all the fcp xri abort events */
12332 while (!list_empty(&phba->sli4_hba.sp_nvme_xri_aborted_work_queue)) {
12333 /* Get the first event from the head of the event queue */
12334 spin_lock_irq(&phba->hbalock);
12335 list_remove_head(&phba->sli4_hba.sp_nvme_xri_aborted_work_queue,
12336 cq_event, struct lpfc_cq_event, list);
12337 spin_unlock_irq(&phba->hbalock);
12338 /* Notify aborted XRI for NVME work queue */
12339 if (phba->nvmet_support) {
12340 lpfc_sli4_nvmet_xri_aborted(phba,
12341 &cq_event->cqe.wcqe_axri);
12342 } else {
12343 lpfc_sli4_nvme_xri_aborted(phba,
12344 &cq_event->cqe.wcqe_axri);
12345 }
12346 /* Free the event processed back to the free pool */
12347 lpfc_sli4_cq_event_release(phba, cq_event);
12348 }
12349 }
12350
12351 /**
12352 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event
12353 * @phba: pointer to lpfc hba data structure.
12354 *
12355 * This routine is invoked by the worker thread to process all the pending
12356 * SLI4 els abort xri events.
12357 **/
lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba * phba)12358 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba)
12359 {
12360 struct lpfc_cq_event *cq_event;
12361
12362 /* First, declare the els xri abort event has been handled */
12363 spin_lock_irq(&phba->hbalock);
12364 phba->hba_flag &= ~ELS_XRI_ABORT_EVENT;
12365 spin_unlock_irq(&phba->hbalock);
12366 /* Now, handle all the els xri abort events */
12367 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) {
12368 /* Get the first event from the head of the event queue */
12369 spin_lock_irq(&phba->hbalock);
12370 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue,
12371 cq_event, struct lpfc_cq_event, list);
12372 spin_unlock_irq(&phba->hbalock);
12373 /* Notify aborted XRI for ELS work queue */
12374 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri);
12375 /* Free the event processed back to the free pool */
12376 lpfc_sli4_cq_event_release(phba, cq_event);
12377 }
12378 }
12379
12380 /**
12381 * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn
12382 * @phba: pointer to lpfc hba data structure
12383 * @pIocbIn: pointer to the rspiocbq
12384 * @pIocbOut: pointer to the cmdiocbq
12385 * @wcqe: pointer to the complete wcqe
12386 *
12387 * This routine transfers the fields of a command iocbq to a response iocbq
12388 * by copying all the IOCB fields from command iocbq and transferring the
12389 * completion status information from the complete wcqe.
12390 **/
12391 static void
lpfc_sli4_iocb_param_transfer(struct lpfc_hba * phba,struct lpfc_iocbq * pIocbIn,struct lpfc_iocbq * pIocbOut,struct lpfc_wcqe_complete * wcqe)12392 lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba,
12393 struct lpfc_iocbq *pIocbIn,
12394 struct lpfc_iocbq *pIocbOut,
12395 struct lpfc_wcqe_complete *wcqe)
12396 {
12397 int numBdes, i;
12398 unsigned long iflags;
12399 uint32_t status, max_response;
12400 struct lpfc_dmabuf *dmabuf;
12401 struct ulp_bde64 *bpl, bde;
12402 size_t offset = offsetof(struct lpfc_iocbq, iocb);
12403
12404 memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset,
12405 sizeof(struct lpfc_iocbq) - offset);
12406 /* Map WCQE parameters into irspiocb parameters */
12407 status = bf_get(lpfc_wcqe_c_status, wcqe);
12408 pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK);
12409 if (pIocbOut->iocb_flag & LPFC_IO_FCP)
12410 if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR)
12411 pIocbIn->iocb.un.fcpi.fcpi_parm =
12412 pIocbOut->iocb.un.fcpi.fcpi_parm -
12413 wcqe->total_data_placed;
12414 else
12415 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter;
12416 else {
12417 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter;
12418 switch (pIocbOut->iocb.ulpCommand) {
12419 case CMD_ELS_REQUEST64_CR:
12420 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3;
12421 bpl = (struct ulp_bde64 *)dmabuf->virt;
12422 bde.tus.w = le32_to_cpu(bpl[1].tus.w);
12423 max_response = bde.tus.f.bdeSize;
12424 break;
12425 case CMD_GEN_REQUEST64_CR:
12426 max_response = 0;
12427 if (!pIocbOut->context3)
12428 break;
12429 numBdes = pIocbOut->iocb.un.genreq64.bdl.bdeSize/
12430 sizeof(struct ulp_bde64);
12431 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3;
12432 bpl = (struct ulp_bde64 *)dmabuf->virt;
12433 for (i = 0; i < numBdes; i++) {
12434 bde.tus.w = le32_to_cpu(bpl[i].tus.w);
12435 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64)
12436 max_response += bde.tus.f.bdeSize;
12437 }
12438 break;
12439 default:
12440 max_response = wcqe->total_data_placed;
12441 break;
12442 }
12443 if (max_response < wcqe->total_data_placed)
12444 pIocbIn->iocb.un.genreq64.bdl.bdeSize = max_response;
12445 else
12446 pIocbIn->iocb.un.genreq64.bdl.bdeSize =
12447 wcqe->total_data_placed;
12448 }
12449
12450 /* Convert BG errors for completion status */
12451 if (status == CQE_STATUS_DI_ERROR) {
12452 pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT;
12453
12454 if (bf_get(lpfc_wcqe_c_bg_edir, wcqe))
12455 pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED;
12456 else
12457 pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED;
12458
12459 pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0;
12460 if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */
12461 pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
12462 BGS_GUARD_ERR_MASK;
12463 if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */
12464 pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
12465 BGS_APPTAG_ERR_MASK;
12466 if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */
12467 pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
12468 BGS_REFTAG_ERR_MASK;
12469
12470 /* Check to see if there was any good data before the error */
12471 if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) {
12472 pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
12473 BGS_HI_WATER_MARK_PRESENT_MASK;
12474 pIocbIn->iocb.unsli3.sli3_bg.bghm =
12475 wcqe->total_data_placed;
12476 }
12477
12478 /*
12479 * Set ALL the error bits to indicate we don't know what
12480 * type of error it is.
12481 */
12482 if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat)
12483 pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
12484 (BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK |
12485 BGS_GUARD_ERR_MASK);
12486 }
12487
12488 /* Pick up HBA exchange busy condition */
12489 if (bf_get(lpfc_wcqe_c_xb, wcqe)) {
12490 spin_lock_irqsave(&phba->hbalock, iflags);
12491 pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY;
12492 spin_unlock_irqrestore(&phba->hbalock, iflags);
12493 }
12494 }
12495
12496 /**
12497 * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe
12498 * @phba: Pointer to HBA context object.
12499 * @wcqe: Pointer to work-queue completion queue entry.
12500 *
12501 * This routine handles an ELS work-queue completion event and construct
12502 * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common
12503 * discovery engine to handle.
12504 *
12505 * Return: Pointer to the receive IOCBQ, NULL otherwise.
12506 **/
12507 static struct lpfc_iocbq *
lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba * phba,struct lpfc_iocbq * irspiocbq)12508 lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba,
12509 struct lpfc_iocbq *irspiocbq)
12510 {
12511 struct lpfc_sli_ring *pring;
12512 struct lpfc_iocbq *cmdiocbq;
12513 struct lpfc_wcqe_complete *wcqe;
12514 unsigned long iflags;
12515
12516 pring = lpfc_phba_elsring(phba);
12517 if (unlikely(!pring))
12518 return NULL;
12519
12520 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl;
12521 spin_lock_irqsave(&pring->ring_lock, iflags);
12522 pring->stats.iocb_event++;
12523 /* Look up the ELS command IOCB and create pseudo response IOCB */
12524 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
12525 bf_get(lpfc_wcqe_c_request_tag, wcqe));
12526 if (unlikely(!cmdiocbq)) {
12527 spin_unlock_irqrestore(&pring->ring_lock, iflags);
12528 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
12529 "0386 ELS complete with no corresponding "
12530 "cmdiocb: 0x%x 0x%x 0x%x 0x%x\n",
12531 wcqe->word0, wcqe->total_data_placed,
12532 wcqe->parameter, wcqe->word3);
12533 lpfc_sli_release_iocbq(phba, irspiocbq);
12534 return NULL;
12535 }
12536
12537 /* Put the iocb back on the txcmplq */
12538 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq);
12539 spin_unlock_irqrestore(&pring->ring_lock, iflags);
12540
12541 /* Fake the irspiocbq and copy necessary response information */
12542 lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe);
12543
12544 return irspiocbq;
12545 }
12546
12547 /**
12548 * lpfc_sli4_sp_handle_async_event - Handle an asynchroous event
12549 * @phba: Pointer to HBA context object.
12550 * @cqe: Pointer to mailbox completion queue entry.
12551 *
12552 * This routine process a mailbox completion queue entry with asynchrous
12553 * event.
12554 *
12555 * Return: true if work posted to worker thread, otherwise false.
12556 **/
12557 static bool
lpfc_sli4_sp_handle_async_event(struct lpfc_hba * phba,struct lpfc_mcqe * mcqe)12558 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
12559 {
12560 struct lpfc_cq_event *cq_event;
12561 unsigned long iflags;
12562
12563 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
12564 "0392 Async Event: word0:x%x, word1:x%x, "
12565 "word2:x%x, word3:x%x\n", mcqe->word0,
12566 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer);
12567
12568 /* Allocate a new internal CQ_EVENT entry */
12569 cq_event = lpfc_sli4_cq_event_alloc(phba);
12570 if (!cq_event) {
12571 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12572 "0394 Failed to allocate CQ_EVENT entry\n");
12573 return false;
12574 }
12575
12576 /* Move the CQE into an asynchronous event entry */
12577 memcpy(&cq_event->cqe, mcqe, sizeof(struct lpfc_mcqe));
12578 spin_lock_irqsave(&phba->hbalock, iflags);
12579 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue);
12580 /* Set the async event flag */
12581 phba->hba_flag |= ASYNC_EVENT;
12582 spin_unlock_irqrestore(&phba->hbalock, iflags);
12583
12584 return true;
12585 }
12586
12587 /**
12588 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event
12589 * @phba: Pointer to HBA context object.
12590 * @cqe: Pointer to mailbox completion queue entry.
12591 *
12592 * This routine process a mailbox completion queue entry with mailbox
12593 * completion event.
12594 *
12595 * Return: true if work posted to worker thread, otherwise false.
12596 **/
12597 static bool
lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba * phba,struct lpfc_mcqe * mcqe)12598 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
12599 {
12600 uint32_t mcqe_status;
12601 MAILBOX_t *mbox, *pmbox;
12602 struct lpfc_mqe *mqe;
12603 struct lpfc_vport *vport;
12604 struct lpfc_nodelist *ndlp;
12605 struct lpfc_dmabuf *mp;
12606 unsigned long iflags;
12607 LPFC_MBOXQ_t *pmb;
12608 bool workposted = false;
12609 int rc;
12610
12611 /* If not a mailbox complete MCQE, out by checking mailbox consume */
12612 if (!bf_get(lpfc_trailer_completed, mcqe))
12613 goto out_no_mqe_complete;
12614
12615 /* Get the reference to the active mbox command */
12616 spin_lock_irqsave(&phba->hbalock, iflags);
12617 pmb = phba->sli.mbox_active;
12618 if (unlikely(!pmb)) {
12619 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX,
12620 "1832 No pending MBOX command to handle\n");
12621 spin_unlock_irqrestore(&phba->hbalock, iflags);
12622 goto out_no_mqe_complete;
12623 }
12624 spin_unlock_irqrestore(&phba->hbalock, iflags);
12625 mqe = &pmb->u.mqe;
12626 pmbox = (MAILBOX_t *)&pmb->u.mqe;
12627 mbox = phba->mbox;
12628 vport = pmb->vport;
12629
12630 /* Reset heartbeat timer */
12631 phba->last_completion_time = jiffies;
12632 del_timer(&phba->sli.mbox_tmo);
12633
12634 /* Move mbox data to caller's mailbox region, do endian swapping */
12635 if (pmb->mbox_cmpl && mbox)
12636 lpfc_sli_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe));
12637
12638 /*
12639 * For mcqe errors, conditionally move a modified error code to
12640 * the mbox so that the error will not be missed.
12641 */
12642 mcqe_status = bf_get(lpfc_mcqe_status, mcqe);
12643 if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
12644 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS)
12645 bf_set(lpfc_mqe_status, mqe,
12646 (LPFC_MBX_ERROR_RANGE | mcqe_status));
12647 }
12648 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
12649 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
12650 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT,
12651 "MBOX dflt rpi: status:x%x rpi:x%x",
12652 mcqe_status,
12653 pmbox->un.varWords[0], 0);
12654 if (mcqe_status == MB_CQE_STATUS_SUCCESS) {
12655 mp = (struct lpfc_dmabuf *)(pmb->context1);
12656 ndlp = (struct lpfc_nodelist *)pmb->context2;
12657 /* Reg_LOGIN of dflt RPI was successful. Now lets get
12658 * RID of the PPI using the same mbox buffer.
12659 */
12660 lpfc_unreg_login(phba, vport->vpi,
12661 pmbox->un.varWords[0], pmb);
12662 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi;
12663 pmb->context1 = mp;
12664 pmb->context2 = ndlp;
12665 pmb->vport = vport;
12666 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
12667 if (rc != MBX_BUSY)
12668 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX |
12669 LOG_SLI, "0385 rc should "
12670 "have been MBX_BUSY\n");
12671 if (rc != MBX_NOT_FINISHED)
12672 goto send_current_mbox;
12673 }
12674 }
12675 spin_lock_irqsave(&phba->pport->work_port_lock, iflags);
12676 phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
12677 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags);
12678
12679 /* There is mailbox completion work to do */
12680 spin_lock_irqsave(&phba->hbalock, iflags);
12681 __lpfc_mbox_cmpl_put(phba, pmb);
12682 phba->work_ha |= HA_MBATT;
12683 spin_unlock_irqrestore(&phba->hbalock, iflags);
12684 workposted = true;
12685
12686 send_current_mbox:
12687 spin_lock_irqsave(&phba->hbalock, iflags);
12688 /* Release the mailbox command posting token */
12689 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
12690 /* Setting active mailbox pointer need to be in sync to flag clear */
12691 phba->sli.mbox_active = NULL;
12692 if (bf_get(lpfc_trailer_consumed, mcqe))
12693 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
12694 spin_unlock_irqrestore(&phba->hbalock, iflags);
12695 /* Wake up worker thread to post the next pending mailbox command */
12696 lpfc_worker_wake_up(phba);
12697 return workposted;
12698
12699 out_no_mqe_complete:
12700 spin_lock_irqsave(&phba->hbalock, iflags);
12701 if (bf_get(lpfc_trailer_consumed, mcqe))
12702 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
12703 spin_unlock_irqrestore(&phba->hbalock, iflags);
12704 return false;
12705 }
12706
12707 /**
12708 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry
12709 * @phba: Pointer to HBA context object.
12710 * @cqe: Pointer to mailbox completion queue entry.
12711 *
12712 * This routine process a mailbox completion queue entry, it invokes the
12713 * proper mailbox complete handling or asynchrous event handling routine
12714 * according to the MCQE's async bit.
12715 *
12716 * Return: true if work posted to worker thread, otherwise false.
12717 **/
12718 static bool
lpfc_sli4_sp_handle_mcqe(struct lpfc_hba * phba,struct lpfc_cqe * cqe)12719 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_cqe *cqe)
12720 {
12721 struct lpfc_mcqe mcqe;
12722 bool workposted;
12723
12724 /* Copy the mailbox MCQE and convert endian order as needed */
12725 lpfc_sli_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe));
12726
12727 /* Invoke the proper event handling routine */
12728 if (!bf_get(lpfc_trailer_async, &mcqe))
12729 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe);
12730 else
12731 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe);
12732 return workposted;
12733 }
12734
12735 /**
12736 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event
12737 * @phba: Pointer to HBA context object.
12738 * @cq: Pointer to associated CQ
12739 * @wcqe: Pointer to work-queue completion queue entry.
12740 *
12741 * This routine handles an ELS work-queue completion event.
12742 *
12743 * Return: true if work posted to worker thread, otherwise false.
12744 **/
12745 static bool
lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba * phba,struct lpfc_queue * cq,struct lpfc_wcqe_complete * wcqe)12746 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
12747 struct lpfc_wcqe_complete *wcqe)
12748 {
12749 struct lpfc_iocbq *irspiocbq;
12750 unsigned long iflags;
12751 struct lpfc_sli_ring *pring = cq->pring;
12752 int txq_cnt = 0;
12753 int txcmplq_cnt = 0;
12754 int fcp_txcmplq_cnt = 0;
12755
12756 /* Get an irspiocbq for later ELS response processing use */
12757 irspiocbq = lpfc_sli_get_iocbq(phba);
12758 if (!irspiocbq) {
12759 if (!list_empty(&pring->txq))
12760 txq_cnt++;
12761 if (!list_empty(&pring->txcmplq))
12762 txcmplq_cnt++;
12763 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12764 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d "
12765 "fcp_txcmplq_cnt=%d, els_txcmplq_cnt=%d\n",
12766 txq_cnt, phba->iocb_cnt,
12767 fcp_txcmplq_cnt,
12768 txcmplq_cnt);
12769 return false;
12770 }
12771
12772 /* Save off the slow-path queue event for work thread to process */
12773 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe));
12774 spin_lock_irqsave(&phba->hbalock, iflags);
12775 list_add_tail(&irspiocbq->cq_event.list,
12776 &phba->sli4_hba.sp_queue_event);
12777 phba->hba_flag |= HBA_SP_QUEUE_EVT;
12778 spin_unlock_irqrestore(&phba->hbalock, iflags);
12779
12780 return true;
12781 }
12782
12783 /**
12784 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event
12785 * @phba: Pointer to HBA context object.
12786 * @wcqe: Pointer to work-queue completion queue entry.
12787 *
12788 * This routine handles slow-path WQ entry consumed event by invoking the
12789 * proper WQ release routine to the slow-path WQ.
12790 **/
12791 static void
lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba * phba,struct lpfc_wcqe_release * wcqe)12792 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba,
12793 struct lpfc_wcqe_release *wcqe)
12794 {
12795 /* sanity check on queue memory */
12796 if (unlikely(!phba->sli4_hba.els_wq))
12797 return;
12798 /* Check for the slow-path ELS work queue */
12799 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id)
12800 lpfc_sli4_wq_release(phba->sli4_hba.els_wq,
12801 bf_get(lpfc_wcqe_r_wqe_index, wcqe));
12802 else
12803 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
12804 "2579 Slow-path wqe consume event carries "
12805 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n",
12806 bf_get(lpfc_wcqe_r_wqe_index, wcqe),
12807 phba->sli4_hba.els_wq->queue_id);
12808 }
12809
12810 /**
12811 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event
12812 * @phba: Pointer to HBA context object.
12813 * @cq: Pointer to a WQ completion queue.
12814 * @wcqe: Pointer to work-queue completion queue entry.
12815 *
12816 * This routine handles an XRI abort event.
12817 *
12818 * Return: true if work posted to worker thread, otherwise false.
12819 **/
12820 static bool
lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba * phba,struct lpfc_queue * cq,struct sli4_wcqe_xri_aborted * wcqe)12821 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba,
12822 struct lpfc_queue *cq,
12823 struct sli4_wcqe_xri_aborted *wcqe)
12824 {
12825 bool workposted = false;
12826 struct lpfc_cq_event *cq_event;
12827 unsigned long iflags;
12828
12829 /* Allocate a new internal CQ_EVENT entry */
12830 cq_event = lpfc_sli4_cq_event_alloc(phba);
12831 if (!cq_event) {
12832 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12833 "0602 Failed to allocate CQ_EVENT entry\n");
12834 return false;
12835 }
12836
12837 /* Move the CQE into the proper xri abort event list */
12838 memcpy(&cq_event->cqe, wcqe, sizeof(struct sli4_wcqe_xri_aborted));
12839 switch (cq->subtype) {
12840 case LPFC_FCP:
12841 spin_lock_irqsave(&phba->hbalock, iflags);
12842 list_add_tail(&cq_event->list,
12843 &phba->sli4_hba.sp_fcp_xri_aborted_work_queue);
12844 /* Set the fcp xri abort event flag */
12845 phba->hba_flag |= FCP_XRI_ABORT_EVENT;
12846 spin_unlock_irqrestore(&phba->hbalock, iflags);
12847 workposted = true;
12848 break;
12849 case LPFC_ELS:
12850 spin_lock_irqsave(&phba->hbalock, iflags);
12851 list_add_tail(&cq_event->list,
12852 &phba->sli4_hba.sp_els_xri_aborted_work_queue);
12853 /* Set the els xri abort event flag */
12854 phba->hba_flag |= ELS_XRI_ABORT_EVENT;
12855 spin_unlock_irqrestore(&phba->hbalock, iflags);
12856 workposted = true;
12857 break;
12858 case LPFC_NVME:
12859 spin_lock_irqsave(&phba->hbalock, iflags);
12860 list_add_tail(&cq_event->list,
12861 &phba->sli4_hba.sp_nvme_xri_aborted_work_queue);
12862 /* Set the nvme xri abort event flag */
12863 phba->hba_flag |= NVME_XRI_ABORT_EVENT;
12864 spin_unlock_irqrestore(&phba->hbalock, iflags);
12865 workposted = true;
12866 break;
12867 default:
12868 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12869 "0603 Invalid CQ subtype %d: "
12870 "%08x %08x %08x %08x\n",
12871 cq->subtype, wcqe->word0, wcqe->parameter,
12872 wcqe->word2, wcqe->word3);
12873 lpfc_sli4_cq_event_release(phba, cq_event);
12874 workposted = false;
12875 break;
12876 }
12877 return workposted;
12878 }
12879
12880 /**
12881 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry
12882 * @phba: Pointer to HBA context object.
12883 * @rcqe: Pointer to receive-queue completion queue entry.
12884 *
12885 * This routine process a receive-queue completion queue entry.
12886 *
12887 * Return: true if work posted to worker thread, otherwise false.
12888 **/
12889 static bool
lpfc_sli4_sp_handle_rcqe(struct lpfc_hba * phba,struct lpfc_rcqe * rcqe)12890 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe)
12891 {
12892 bool workposted = false;
12893 struct fc_frame_header *fc_hdr;
12894 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq;
12895 struct lpfc_queue *drq = phba->sli4_hba.dat_rq;
12896 struct lpfc_nvmet_tgtport *tgtp;
12897 struct hbq_dmabuf *dma_buf;
12898 uint32_t status, rq_id;
12899 unsigned long iflags;
12900
12901 /* sanity check on queue memory */
12902 if (unlikely(!hrq) || unlikely(!drq))
12903 return workposted;
12904
12905 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
12906 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
12907 else
12908 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
12909 if (rq_id != hrq->queue_id)
12910 goto out;
12911
12912 status = bf_get(lpfc_rcqe_status, rcqe);
12913 switch (status) {
12914 case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
12915 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12916 "2537 Receive Frame Truncated!!\n");
12917 case FC_STATUS_RQ_SUCCESS:
12918 lpfc_sli4_rq_release(hrq, drq);
12919 spin_lock_irqsave(&phba->hbalock, iflags);
12920 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list);
12921 if (!dma_buf) {
12922 hrq->RQ_no_buf_found++;
12923 spin_unlock_irqrestore(&phba->hbalock, iflags);
12924 goto out;
12925 }
12926 hrq->RQ_rcv_buf++;
12927 hrq->RQ_buf_posted--;
12928 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe));
12929
12930 /* If a NVME LS event (type 0x28), treat it as Fast path */
12931 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt;
12932
12933 /* save off the frame for the word thread to process */
12934 list_add_tail(&dma_buf->cq_event.list,
12935 &phba->sli4_hba.sp_queue_event);
12936 /* Frame received */
12937 phba->hba_flag |= HBA_SP_QUEUE_EVT;
12938 spin_unlock_irqrestore(&phba->hbalock, iflags);
12939 workposted = true;
12940 break;
12941 case FC_STATUS_INSUFF_BUF_FRM_DISC:
12942 if (phba->nvmet_support) {
12943 tgtp = phba->targetport->private;
12944 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_NVME,
12945 "6402 RQE Error x%x, posted %d err_cnt "
12946 "%d: %x %x %x\n",
12947 status, hrq->RQ_buf_posted,
12948 hrq->RQ_no_posted_buf,
12949 atomic_read(&tgtp->rcv_fcp_cmd_in),
12950 atomic_read(&tgtp->rcv_fcp_cmd_out),
12951 atomic_read(&tgtp->xmt_fcp_release));
12952 }
12953 /* fallthrough */
12954
12955 case FC_STATUS_INSUFF_BUF_NEED_BUF:
12956 hrq->RQ_no_posted_buf++;
12957 /* Post more buffers if possible */
12958 spin_lock_irqsave(&phba->hbalock, iflags);
12959 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER;
12960 spin_unlock_irqrestore(&phba->hbalock, iflags);
12961 workposted = true;
12962 break;
12963 }
12964 out:
12965 return workposted;
12966 }
12967
12968 /**
12969 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry
12970 * @phba: Pointer to HBA context object.
12971 * @cq: Pointer to the completion queue.
12972 * @wcqe: Pointer to a completion queue entry.
12973 *
12974 * This routine process a slow-path work-queue or receive queue completion queue
12975 * entry.
12976 *
12977 * Return: true if work posted to worker thread, otherwise false.
12978 **/
12979 static bool
lpfc_sli4_sp_handle_cqe(struct lpfc_hba * phba,struct lpfc_queue * cq,struct lpfc_cqe * cqe)12980 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
12981 struct lpfc_cqe *cqe)
12982 {
12983 struct lpfc_cqe cqevt;
12984 bool workposted = false;
12985
12986 /* Copy the work queue CQE and convert endian order if needed */
12987 lpfc_sli_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe));
12988
12989 /* Check and process for different type of WCQE and dispatch */
12990 switch (bf_get(lpfc_cqe_code, &cqevt)) {
12991 case CQE_CODE_COMPL_WQE:
12992 /* Process the WQ/RQ complete event */
12993 phba->last_completion_time = jiffies;
12994 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq,
12995 (struct lpfc_wcqe_complete *)&cqevt);
12996 break;
12997 case CQE_CODE_RELEASE_WQE:
12998 /* Process the WQ release event */
12999 lpfc_sli4_sp_handle_rel_wcqe(phba,
13000 (struct lpfc_wcqe_release *)&cqevt);
13001 break;
13002 case CQE_CODE_XRI_ABORTED:
13003 /* Process the WQ XRI abort event */
13004 phba->last_completion_time = jiffies;
13005 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
13006 (struct sli4_wcqe_xri_aborted *)&cqevt);
13007 break;
13008 case CQE_CODE_RECEIVE:
13009 case CQE_CODE_RECEIVE_V1:
13010 /* Process the RQ event */
13011 phba->last_completion_time = jiffies;
13012 workposted = lpfc_sli4_sp_handle_rcqe(phba,
13013 (struct lpfc_rcqe *)&cqevt);
13014 break;
13015 default:
13016 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13017 "0388 Not a valid WCQE code: x%x\n",
13018 bf_get(lpfc_cqe_code, &cqevt));
13019 break;
13020 }
13021 return workposted;
13022 }
13023
13024 /**
13025 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry
13026 * @phba: Pointer to HBA context object.
13027 * @eqe: Pointer to fast-path event queue entry.
13028 *
13029 * This routine process a event queue entry from the slow-path event queue.
13030 * It will check the MajorCode and MinorCode to determine this is for a
13031 * completion event on a completion queue, if not, an error shall be logged
13032 * and just return. Otherwise, it will get to the corresponding completion
13033 * queue and process all the entries on that completion queue, rearm the
13034 * completion queue, and then return.
13035 *
13036 **/
13037 static int
lpfc_sli4_sp_handle_eqe(struct lpfc_hba * phba,struct lpfc_eqe * eqe,struct lpfc_queue * speq)13038 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe,
13039 struct lpfc_queue *speq)
13040 {
13041 struct lpfc_queue *cq = NULL, *childq;
13042 struct lpfc_cqe *cqe;
13043 bool workposted = false;
13044 int ecount = 0;
13045 uint16_t cqid;
13046
13047 /* Get the reference to the corresponding CQ */
13048 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
13049
13050 list_for_each_entry(childq, &speq->child_list, list) {
13051 if (childq->queue_id == cqid) {
13052 cq = childq;
13053 break;
13054 }
13055 }
13056 if (unlikely(!cq)) {
13057 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE)
13058 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13059 "0365 Slow-path CQ identifier "
13060 "(%d) does not exist\n", cqid);
13061 return 0;
13062 }
13063
13064 /* Save EQ associated with this CQ */
13065 cq->assoc_qp = speq;
13066
13067 /* Process all the entries to the CQ */
13068 switch (cq->type) {
13069 case LPFC_MCQ:
13070 while ((cqe = lpfc_sli4_cq_get(cq))) {
13071 workposted |= lpfc_sli4_sp_handle_mcqe(phba, cqe);
13072 if (!(++ecount % cq->entry_repost))
13073 break;
13074 cq->CQ_mbox++;
13075 }
13076 break;
13077 case LPFC_WCQ:
13078 while ((cqe = lpfc_sli4_cq_get(cq))) {
13079 if ((cq->subtype == LPFC_FCP) ||
13080 (cq->subtype == LPFC_NVME))
13081 workposted |= lpfc_sli4_fp_handle_cqe(phba, cq,
13082 cqe);
13083 else
13084 workposted |= lpfc_sli4_sp_handle_cqe(phba, cq,
13085 cqe);
13086 if (!(++ecount % cq->entry_repost))
13087 break;
13088 }
13089
13090 /* Track the max number of CQEs processed in 1 EQ */
13091 if (ecount > cq->CQ_max_cqe)
13092 cq->CQ_max_cqe = ecount;
13093 break;
13094 default:
13095 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13096 "0370 Invalid completion queue type (%d)\n",
13097 cq->type);
13098 return 0;
13099 }
13100
13101 /* Catch the no cq entry condition, log an error */
13102 if (unlikely(ecount == 0))
13103 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13104 "0371 No entry from the CQ: identifier "
13105 "(x%x), type (%d)\n", cq->queue_id, cq->type);
13106
13107 /* In any case, flash and re-arm the RCQ */
13108 lpfc_sli4_cq_release(cq, LPFC_QUEUE_REARM);
13109
13110 /* wake up worker thread if there are works to be done */
13111 if (workposted)
13112 lpfc_worker_wake_up(phba);
13113
13114 return ecount;
13115 }
13116
13117 /**
13118 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry
13119 * @phba: Pointer to HBA context object.
13120 * @cq: Pointer to associated CQ
13121 * @wcqe: Pointer to work-queue completion queue entry.
13122 *
13123 * This routine process a fast-path work queue completion entry from fast-path
13124 * event queue for FCP command response completion.
13125 **/
13126 static void
lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba * phba,struct lpfc_queue * cq,struct lpfc_wcqe_complete * wcqe)13127 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13128 struct lpfc_wcqe_complete *wcqe)
13129 {
13130 struct lpfc_sli_ring *pring = cq->pring;
13131 struct lpfc_iocbq *cmdiocbq;
13132 struct lpfc_iocbq irspiocbq;
13133 unsigned long iflags;
13134
13135 /* Check for response status */
13136 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) {
13137 /* If resource errors reported from HBA, reduce queue
13138 * depth of the SCSI device.
13139 */
13140 if (((bf_get(lpfc_wcqe_c_status, wcqe) ==
13141 IOSTAT_LOCAL_REJECT)) &&
13142 ((wcqe->parameter & IOERR_PARAM_MASK) ==
13143 IOERR_NO_RESOURCES))
13144 phba->lpfc_rampdown_queue_depth(phba);
13145
13146 /* Log the error status */
13147 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13148 "0373 FCP complete error: status=x%x, "
13149 "hw_status=x%x, total_data_specified=%d, "
13150 "parameter=x%x, word3=x%x\n",
13151 bf_get(lpfc_wcqe_c_status, wcqe),
13152 bf_get(lpfc_wcqe_c_hw_status, wcqe),
13153 wcqe->total_data_placed, wcqe->parameter,
13154 wcqe->word3);
13155 }
13156
13157 /* Look up the FCP command IOCB and create pseudo response IOCB */
13158 spin_lock_irqsave(&pring->ring_lock, iflags);
13159 pring->stats.iocb_event++;
13160 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
13161 bf_get(lpfc_wcqe_c_request_tag, wcqe));
13162 spin_unlock_irqrestore(&pring->ring_lock, iflags);
13163 if (unlikely(!cmdiocbq)) {
13164 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13165 "0374 FCP complete with no corresponding "
13166 "cmdiocb: iotag (%d)\n",
13167 bf_get(lpfc_wcqe_c_request_tag, wcqe));
13168 return;
13169 }
13170
13171 if (cq->assoc_qp)
13172 cmdiocbq->isr_timestamp =
13173 cq->assoc_qp->isr_timestamp;
13174
13175 if (cmdiocbq->iocb_cmpl == NULL) {
13176 if (cmdiocbq->wqe_cmpl) {
13177 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) {
13178 spin_lock_irqsave(&phba->hbalock, iflags);
13179 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
13180 spin_unlock_irqrestore(&phba->hbalock, iflags);
13181 }
13182
13183 /* Pass the cmd_iocb and the wcqe to the upper layer */
13184 (cmdiocbq->wqe_cmpl)(phba, cmdiocbq, wcqe);
13185 return;
13186 }
13187 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13188 "0375 FCP cmdiocb not callback function "
13189 "iotag: (%d)\n",
13190 bf_get(lpfc_wcqe_c_request_tag, wcqe));
13191 return;
13192 }
13193
13194 /* Fake the irspiocb and copy necessary response information */
13195 lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe);
13196
13197 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) {
13198 spin_lock_irqsave(&phba->hbalock, iflags);
13199 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
13200 spin_unlock_irqrestore(&phba->hbalock, iflags);
13201 }
13202
13203 /* Pass the cmd_iocb and the rsp state to the upper layer */
13204 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq);
13205 }
13206
13207 /**
13208 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event
13209 * @phba: Pointer to HBA context object.
13210 * @cq: Pointer to completion queue.
13211 * @wcqe: Pointer to work-queue completion queue entry.
13212 *
13213 * This routine handles an fast-path WQ entry consumed event by invoking the
13214 * proper WQ release routine to the slow-path WQ.
13215 **/
13216 static void
lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba * phba,struct lpfc_queue * cq,struct lpfc_wcqe_release * wcqe)13217 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13218 struct lpfc_wcqe_release *wcqe)
13219 {
13220 struct lpfc_queue *childwq;
13221 bool wqid_matched = false;
13222 uint16_t hba_wqid;
13223
13224 /* Check for fast-path FCP work queue release */
13225 hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe);
13226 list_for_each_entry(childwq, &cq->child_list, list) {
13227 if (childwq->queue_id == hba_wqid) {
13228 lpfc_sli4_wq_release(childwq,
13229 bf_get(lpfc_wcqe_r_wqe_index, wcqe));
13230 wqid_matched = true;
13231 break;
13232 }
13233 }
13234 /* Report warning log message if no match found */
13235 if (wqid_matched != true)
13236 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13237 "2580 Fast-path wqe consume event carries "
13238 "miss-matched qid: wcqe-qid=x%x\n", hba_wqid);
13239 }
13240
13241 /**
13242 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry
13243 * @phba: Pointer to HBA context object.
13244 * @rcqe: Pointer to receive-queue completion queue entry.
13245 *
13246 * This routine process a receive-queue completion queue entry.
13247 *
13248 * Return: true if work posted to worker thread, otherwise false.
13249 **/
13250 static bool
lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba * phba,struct lpfc_queue * cq,struct lpfc_rcqe * rcqe)13251 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13252 struct lpfc_rcqe *rcqe)
13253 {
13254 bool workposted = false;
13255 struct lpfc_queue *hrq;
13256 struct lpfc_queue *drq;
13257 struct rqb_dmabuf *dma_buf;
13258 struct fc_frame_header *fc_hdr;
13259 struct lpfc_nvmet_tgtport *tgtp;
13260 uint32_t status, rq_id;
13261 unsigned long iflags;
13262 uint32_t fctl, idx;
13263
13264 if ((phba->nvmet_support == 0) ||
13265 (phba->sli4_hba.nvmet_cqset == NULL))
13266 return workposted;
13267
13268 idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id;
13269 hrq = phba->sli4_hba.nvmet_mrq_hdr[idx];
13270 drq = phba->sli4_hba.nvmet_mrq_data[idx];
13271
13272 /* sanity check on queue memory */
13273 if (unlikely(!hrq) || unlikely(!drq))
13274 return workposted;
13275
13276 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
13277 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
13278 else
13279 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
13280
13281 if ((phba->nvmet_support == 0) ||
13282 (rq_id != hrq->queue_id))
13283 return workposted;
13284
13285 status = bf_get(lpfc_rcqe_status, rcqe);
13286 switch (status) {
13287 case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
13288 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13289 "6126 Receive Frame Truncated!!\n");
13290 /* Drop thru */
13291 case FC_STATUS_RQ_SUCCESS:
13292 lpfc_sli4_rq_release(hrq, drq);
13293 spin_lock_irqsave(&phba->hbalock, iflags);
13294 dma_buf = lpfc_sli_rqbuf_get(phba, hrq);
13295 if (!dma_buf) {
13296 hrq->RQ_no_buf_found++;
13297 spin_unlock_irqrestore(&phba->hbalock, iflags);
13298 goto out;
13299 }
13300 spin_unlock_irqrestore(&phba->hbalock, iflags);
13301 hrq->RQ_rcv_buf++;
13302 hrq->RQ_buf_posted--;
13303 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt;
13304
13305 /* Just some basic sanity checks on FCP Command frame */
13306 fctl = (fc_hdr->fh_f_ctl[0] << 16 |
13307 fc_hdr->fh_f_ctl[1] << 8 |
13308 fc_hdr->fh_f_ctl[2]);
13309 if (((fctl &
13310 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) !=
13311 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) ||
13312 (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */
13313 goto drop;
13314
13315 if (fc_hdr->fh_type == FC_TYPE_FCP) {
13316 dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe);
13317 lpfc_nvmet_unsol_fcp_event(
13318 phba, idx, dma_buf,
13319 cq->assoc_qp->isr_timestamp);
13320 return false;
13321 }
13322 drop:
13323 lpfc_in_buf_free(phba, &dma_buf->dbuf);
13324 break;
13325 case FC_STATUS_INSUFF_BUF_FRM_DISC:
13326 if (phba->nvmet_support) {
13327 tgtp = phba->targetport->private;
13328 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_NVME,
13329 "6401 RQE Error x%x, posted %d err_cnt "
13330 "%d: %x %x %x\n",
13331 status, hrq->RQ_buf_posted,
13332 hrq->RQ_no_posted_buf,
13333 atomic_read(&tgtp->rcv_fcp_cmd_in),
13334 atomic_read(&tgtp->rcv_fcp_cmd_out),
13335 atomic_read(&tgtp->xmt_fcp_release));
13336 }
13337 /* fallthrough */
13338
13339 case FC_STATUS_INSUFF_BUF_NEED_BUF:
13340 hrq->RQ_no_posted_buf++;
13341 /* Post more buffers if possible */
13342 break;
13343 }
13344 out:
13345 return workposted;
13346 }
13347
13348 /**
13349 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry
13350 * @cq: Pointer to the completion queue.
13351 * @eqe: Pointer to fast-path completion queue entry.
13352 *
13353 * This routine process a fast-path work queue completion entry from fast-path
13354 * event queue for FCP command response completion.
13355 **/
13356 static int
lpfc_sli4_fp_handle_cqe(struct lpfc_hba * phba,struct lpfc_queue * cq,struct lpfc_cqe * cqe)13357 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13358 struct lpfc_cqe *cqe)
13359 {
13360 struct lpfc_wcqe_release wcqe;
13361 bool workposted = false;
13362
13363 /* Copy the work queue CQE and convert endian order if needed */
13364 lpfc_sli_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe));
13365
13366 /* Check and process for different type of WCQE and dispatch */
13367 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) {
13368 case CQE_CODE_COMPL_WQE:
13369 case CQE_CODE_NVME_ERSP:
13370 cq->CQ_wq++;
13371 /* Process the WQ complete event */
13372 phba->last_completion_time = jiffies;
13373 if ((cq->subtype == LPFC_FCP) || (cq->subtype == LPFC_NVME))
13374 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq,
13375 (struct lpfc_wcqe_complete *)&wcqe);
13376 if (cq->subtype == LPFC_NVME_LS)
13377 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq,
13378 (struct lpfc_wcqe_complete *)&wcqe);
13379 break;
13380 case CQE_CODE_RELEASE_WQE:
13381 cq->CQ_release_wqe++;
13382 /* Process the WQ release event */
13383 lpfc_sli4_fp_handle_rel_wcqe(phba, cq,
13384 (struct lpfc_wcqe_release *)&wcqe);
13385 break;
13386 case CQE_CODE_XRI_ABORTED:
13387 cq->CQ_xri_aborted++;
13388 /* Process the WQ XRI abort event */
13389 phba->last_completion_time = jiffies;
13390 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
13391 (struct sli4_wcqe_xri_aborted *)&wcqe);
13392 break;
13393 case CQE_CODE_RECEIVE_V1:
13394 case CQE_CODE_RECEIVE:
13395 phba->last_completion_time = jiffies;
13396 if (cq->subtype == LPFC_NVMET) {
13397 workposted = lpfc_sli4_nvmet_handle_rcqe(
13398 phba, cq, (struct lpfc_rcqe *)&wcqe);
13399 }
13400 break;
13401 default:
13402 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13403 "0144 Not a valid CQE code: x%x\n",
13404 bf_get(lpfc_wcqe_c_code, &wcqe));
13405 break;
13406 }
13407 return workposted;
13408 }
13409
13410 /**
13411 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry
13412 * @phba: Pointer to HBA context object.
13413 * @eqe: Pointer to fast-path event queue entry.
13414 *
13415 * This routine process a event queue entry from the fast-path event queue.
13416 * It will check the MajorCode and MinorCode to determine this is for a
13417 * completion event on a completion queue, if not, an error shall be logged
13418 * and just return. Otherwise, it will get to the corresponding completion
13419 * queue and process all the entries on the completion queue, rearm the
13420 * completion queue, and then return.
13421 **/
13422 static int
lpfc_sli4_hba_handle_eqe(struct lpfc_hba * phba,struct lpfc_eqe * eqe,uint32_t qidx)13423 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe,
13424 uint32_t qidx)
13425 {
13426 struct lpfc_queue *cq = NULL;
13427 struct lpfc_cqe *cqe;
13428 bool workposted = false;
13429 uint16_t cqid, id;
13430 int ecount = 0;
13431
13432 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) {
13433 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13434 "0366 Not a valid completion "
13435 "event: majorcode=x%x, minorcode=x%x\n",
13436 bf_get_le32(lpfc_eqe_major_code, eqe),
13437 bf_get_le32(lpfc_eqe_minor_code, eqe));
13438 return 0;
13439 }
13440
13441 /* Get the reference to the corresponding CQ */
13442 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
13443
13444 if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) {
13445 id = phba->sli4_hba.nvmet_cqset[0]->queue_id;
13446 if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) {
13447 /* Process NVMET unsol rcv */
13448 cq = phba->sli4_hba.nvmet_cqset[cqid - id];
13449 goto process_cq;
13450 }
13451 }
13452
13453 if (phba->sli4_hba.nvme_cq_map &&
13454 (cqid == phba->sli4_hba.nvme_cq_map[qidx])) {
13455 /* Process NVME / NVMET command completion */
13456 cq = phba->sli4_hba.nvme_cq[qidx];
13457 goto process_cq;
13458 }
13459
13460 if (phba->sli4_hba.fcp_cq_map &&
13461 (cqid == phba->sli4_hba.fcp_cq_map[qidx])) {
13462 /* Process FCP command completion */
13463 cq = phba->sli4_hba.fcp_cq[qidx];
13464 goto process_cq;
13465 }
13466
13467 if (phba->sli4_hba.nvmels_cq &&
13468 (cqid == phba->sli4_hba.nvmels_cq->queue_id)) {
13469 /* Process NVME unsol rcv */
13470 cq = phba->sli4_hba.nvmels_cq;
13471 }
13472
13473 /* Otherwise this is a Slow path event */
13474 if (cq == NULL) {
13475 ecount = lpfc_sli4_sp_handle_eqe(phba, eqe,
13476 phba->sli4_hba.hba_eq[qidx]);
13477 return ecount;
13478 }
13479
13480 process_cq:
13481 if (unlikely(cqid != cq->queue_id)) {
13482 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13483 "0368 Miss-matched fast-path completion "
13484 "queue identifier: eqcqid=%d, fcpcqid=%d\n",
13485 cqid, cq->queue_id);
13486 return 0;
13487 }
13488
13489 /* Save EQ associated with this CQ */
13490 cq->assoc_qp = phba->sli4_hba.hba_eq[qidx];
13491
13492 /* Process all the entries to the CQ */
13493 while ((cqe = lpfc_sli4_cq_get(cq))) {
13494 workposted |= lpfc_sli4_fp_handle_cqe(phba, cq, cqe);
13495 if (!(++ecount % cq->entry_repost))
13496 break;
13497 }
13498
13499 /* Track the max number of CQEs processed in 1 EQ */
13500 if (ecount > cq->CQ_max_cqe)
13501 cq->CQ_max_cqe = ecount;
13502 cq->assoc_qp->EQ_cqe_cnt += ecount;
13503
13504 /* Catch the no cq entry condition */
13505 if (unlikely(ecount == 0))
13506 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13507 "0369 No entry from fast-path completion "
13508 "queue fcpcqid=%d\n", cq->queue_id);
13509
13510 /* In any case, flash and re-arm the CQ */
13511 lpfc_sli4_cq_release(cq, LPFC_QUEUE_REARM);
13512
13513 /* wake up worker thread if there are works to be done */
13514 if (workposted)
13515 lpfc_worker_wake_up(phba);
13516
13517 return ecount;
13518 }
13519
13520 static void
lpfc_sli4_eq_flush(struct lpfc_hba * phba,struct lpfc_queue * eq)13521 lpfc_sli4_eq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq)
13522 {
13523 struct lpfc_eqe *eqe;
13524
13525 /* walk all the EQ entries and drop on the floor */
13526 while ((eqe = lpfc_sli4_eq_get(eq)))
13527 ;
13528
13529 /* Clear and re-arm the EQ */
13530 lpfc_sli4_eq_release(eq, LPFC_QUEUE_REARM);
13531 }
13532
13533
13534 /**
13535 * lpfc_sli4_fof_handle_eqe - Process a Flash Optimized Fabric event queue
13536 * entry
13537 * @phba: Pointer to HBA context object.
13538 * @eqe: Pointer to fast-path event queue entry.
13539 *
13540 * This routine process a event queue entry from the Flash Optimized Fabric
13541 * event queue. It will check the MajorCode and MinorCode to determine this
13542 * is for a completion event on a completion queue, if not, an error shall be
13543 * logged and just return. Otherwise, it will get to the corresponding
13544 * completion queue and process all the entries on the completion queue, rearm
13545 * the completion queue, and then return.
13546 **/
13547 static void
lpfc_sli4_fof_handle_eqe(struct lpfc_hba * phba,struct lpfc_eqe * eqe)13548 lpfc_sli4_fof_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe)
13549 {
13550 struct lpfc_queue *cq;
13551 struct lpfc_cqe *cqe;
13552 bool workposted = false;
13553 uint16_t cqid;
13554 int ecount = 0;
13555
13556 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) {
13557 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13558 "9147 Not a valid completion "
13559 "event: majorcode=x%x, minorcode=x%x\n",
13560 bf_get_le32(lpfc_eqe_major_code, eqe),
13561 bf_get_le32(lpfc_eqe_minor_code, eqe));
13562 return;
13563 }
13564
13565 /* Get the reference to the corresponding CQ */
13566 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
13567
13568 /* Next check for OAS */
13569 cq = phba->sli4_hba.oas_cq;
13570 if (unlikely(!cq)) {
13571 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE)
13572 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13573 "9148 OAS completion queue "
13574 "does not exist\n");
13575 return;
13576 }
13577
13578 if (unlikely(cqid != cq->queue_id)) {
13579 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13580 "9149 Miss-matched fast-path compl "
13581 "queue id: eqcqid=%d, fcpcqid=%d\n",
13582 cqid, cq->queue_id);
13583 return;
13584 }
13585
13586 /* Save EQ associated with this CQ */
13587 cq->assoc_qp = phba->sli4_hba.fof_eq;
13588
13589 /* Process all the entries to the OAS CQ */
13590 while ((cqe = lpfc_sli4_cq_get(cq))) {
13591 workposted |= lpfc_sli4_fp_handle_cqe(phba, cq, cqe);
13592 if (!(++ecount % cq->entry_repost))
13593 break;
13594 }
13595
13596 /* Track the max number of CQEs processed in 1 EQ */
13597 if (ecount > cq->CQ_max_cqe)
13598 cq->CQ_max_cqe = ecount;
13599 cq->assoc_qp->EQ_cqe_cnt += ecount;
13600
13601 /* Catch the no cq entry condition */
13602 if (unlikely(ecount == 0))
13603 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13604 "9153 No entry from fast-path completion "
13605 "queue fcpcqid=%d\n", cq->queue_id);
13606
13607 /* In any case, flash and re-arm the CQ */
13608 lpfc_sli4_cq_release(cq, LPFC_QUEUE_REARM);
13609
13610 /* wake up worker thread if there are works to be done */
13611 if (workposted)
13612 lpfc_worker_wake_up(phba);
13613 }
13614
13615 /**
13616 * lpfc_sli4_fof_intr_handler - HBA interrupt handler to SLI-4 device
13617 * @irq: Interrupt number.
13618 * @dev_id: The device context pointer.
13619 *
13620 * This function is directly called from the PCI layer as an interrupt
13621 * service routine when device with SLI-4 interface spec is enabled with
13622 * MSI-X multi-message interrupt mode and there is a Flash Optimized Fabric
13623 * IOCB ring event in the HBA. However, when the device is enabled with either
13624 * MSI or Pin-IRQ interrupt mode, this function is called as part of the
13625 * device-level interrupt handler. When the PCI slot is in error recovery
13626 * or the HBA is undergoing initialization, the interrupt handler will not
13627 * process the interrupt. The Flash Optimized Fabric ring event are handled in
13628 * the intrrupt context. This function is called without any lock held.
13629 * It gets the hbalock to access and update SLI data structures. Note that,
13630 * the EQ to CQ are one-to-one map such that the EQ index is
13631 * equal to that of CQ index.
13632 *
13633 * This function returns IRQ_HANDLED when interrupt is handled else it
13634 * returns IRQ_NONE.
13635 **/
13636 irqreturn_t
lpfc_sli4_fof_intr_handler(int irq,void * dev_id)13637 lpfc_sli4_fof_intr_handler(int irq, void *dev_id)
13638 {
13639 struct lpfc_hba *phba;
13640 struct lpfc_hba_eq_hdl *hba_eq_hdl;
13641 struct lpfc_queue *eq;
13642 struct lpfc_eqe *eqe;
13643 unsigned long iflag;
13644 int ecount = 0;
13645
13646 /* Get the driver's phba structure from the dev_id */
13647 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id;
13648 phba = hba_eq_hdl->phba;
13649
13650 if (unlikely(!phba))
13651 return IRQ_NONE;
13652
13653 /* Get to the EQ struct associated with this vector */
13654 eq = phba->sli4_hba.fof_eq;
13655 if (unlikely(!eq))
13656 return IRQ_NONE;
13657
13658 /* Check device state for handling interrupt */
13659 if (unlikely(lpfc_intr_state_check(phba))) {
13660 /* Check again for link_state with lock held */
13661 spin_lock_irqsave(&phba->hbalock, iflag);
13662 if (phba->link_state < LPFC_LINK_DOWN)
13663 /* Flush, clear interrupt, and rearm the EQ */
13664 lpfc_sli4_eq_flush(phba, eq);
13665 spin_unlock_irqrestore(&phba->hbalock, iflag);
13666 return IRQ_NONE;
13667 }
13668
13669 /*
13670 * Process all the event on FCP fast-path EQ
13671 */
13672 while ((eqe = lpfc_sli4_eq_get(eq))) {
13673 lpfc_sli4_fof_handle_eqe(phba, eqe);
13674 if (!(++ecount % eq->entry_repost))
13675 break;
13676 eq->EQ_processed++;
13677 }
13678
13679 /* Track the max number of EQEs processed in 1 intr */
13680 if (ecount > eq->EQ_max_eqe)
13681 eq->EQ_max_eqe = ecount;
13682
13683
13684 if (unlikely(ecount == 0)) {
13685 eq->EQ_no_entry++;
13686
13687 if (phba->intr_type == MSIX)
13688 /* MSI-X treated interrupt served as no EQ share INT */
13689 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13690 "9145 MSI-X interrupt with no EQE\n");
13691 else {
13692 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13693 "9146 ISR interrupt with no EQE\n");
13694 /* Non MSI-X treated on interrupt as EQ share INT */
13695 return IRQ_NONE;
13696 }
13697 }
13698 /* Always clear and re-arm the fast-path EQ */
13699 lpfc_sli4_eq_release(eq, LPFC_QUEUE_REARM);
13700 return IRQ_HANDLED;
13701 }
13702
13703 /**
13704 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device
13705 * @irq: Interrupt number.
13706 * @dev_id: The device context pointer.
13707 *
13708 * This function is directly called from the PCI layer as an interrupt
13709 * service routine when device with SLI-4 interface spec is enabled with
13710 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
13711 * ring event in the HBA. However, when the device is enabled with either
13712 * MSI or Pin-IRQ interrupt mode, this function is called as part of the
13713 * device-level interrupt handler. When the PCI slot is in error recovery
13714 * or the HBA is undergoing initialization, the interrupt handler will not
13715 * process the interrupt. The SCSI FCP fast-path ring event are handled in
13716 * the intrrupt context. This function is called without any lock held.
13717 * It gets the hbalock to access and update SLI data structures. Note that,
13718 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is
13719 * equal to that of FCP CQ index.
13720 *
13721 * The link attention and ELS ring attention events are handled
13722 * by the worker thread. The interrupt handler signals the worker thread
13723 * and returns for these events. This function is called without any lock
13724 * held. It gets the hbalock to access and update SLI data structures.
13725 *
13726 * This function returns IRQ_HANDLED when interrupt is handled else it
13727 * returns IRQ_NONE.
13728 **/
13729 irqreturn_t
lpfc_sli4_hba_intr_handler(int irq,void * dev_id)13730 lpfc_sli4_hba_intr_handler(int irq, void *dev_id)
13731 {
13732 struct lpfc_hba *phba;
13733 struct lpfc_hba_eq_hdl *hba_eq_hdl;
13734 struct lpfc_queue *fpeq;
13735 struct lpfc_eqe *eqe;
13736 unsigned long iflag;
13737 int ecount = 0;
13738 int ccount = 0;
13739 int hba_eqidx;
13740
13741 /* Get the driver's phba structure from the dev_id */
13742 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id;
13743 phba = hba_eq_hdl->phba;
13744 hba_eqidx = hba_eq_hdl->idx;
13745
13746 if (unlikely(!phba))
13747 return IRQ_NONE;
13748 if (unlikely(!phba->sli4_hba.hba_eq))
13749 return IRQ_NONE;
13750
13751 /* Get to the EQ struct associated with this vector */
13752 fpeq = phba->sli4_hba.hba_eq[hba_eqidx];
13753 if (unlikely(!fpeq))
13754 return IRQ_NONE;
13755
13756 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
13757 if (phba->ktime_on)
13758 fpeq->isr_timestamp = ktime_get_ns();
13759 #endif
13760
13761 if (lpfc_fcp_look_ahead) {
13762 if (atomic_dec_and_test(&hba_eq_hdl->hba_eq_in_use))
13763 lpfc_sli4_eq_clr_intr(fpeq);
13764 else {
13765 atomic_inc(&hba_eq_hdl->hba_eq_in_use);
13766 return IRQ_NONE;
13767 }
13768 }
13769
13770 /* Check device state for handling interrupt */
13771 if (unlikely(lpfc_intr_state_check(phba))) {
13772 /* Check again for link_state with lock held */
13773 spin_lock_irqsave(&phba->hbalock, iflag);
13774 if (phba->link_state < LPFC_LINK_DOWN)
13775 /* Flush, clear interrupt, and rearm the EQ */
13776 lpfc_sli4_eq_flush(phba, fpeq);
13777 spin_unlock_irqrestore(&phba->hbalock, iflag);
13778 if (lpfc_fcp_look_ahead)
13779 atomic_inc(&hba_eq_hdl->hba_eq_in_use);
13780 return IRQ_NONE;
13781 }
13782
13783 /*
13784 * Process all the event on FCP fast-path EQ
13785 */
13786 while ((eqe = lpfc_sli4_eq_get(fpeq))) {
13787 if (eqe == NULL)
13788 break;
13789
13790 ccount += lpfc_sli4_hba_handle_eqe(phba, eqe, hba_eqidx);
13791 if (!(++ecount % fpeq->entry_repost) ||
13792 ccount > LPFC_MAX_ISR_CQE)
13793 break;
13794 fpeq->EQ_processed++;
13795 }
13796
13797 /* Track the max number of EQEs processed in 1 intr */
13798 if (ecount > fpeq->EQ_max_eqe)
13799 fpeq->EQ_max_eqe = ecount;
13800
13801 /* Always clear and re-arm the fast-path EQ */
13802 lpfc_sli4_eq_release(fpeq, LPFC_QUEUE_REARM);
13803
13804 if (unlikely(ecount == 0)) {
13805 fpeq->EQ_no_entry++;
13806
13807 if (lpfc_fcp_look_ahead) {
13808 atomic_inc(&hba_eq_hdl->hba_eq_in_use);
13809 return IRQ_NONE;
13810 }
13811
13812 if (phba->intr_type == MSIX)
13813 /* MSI-X treated interrupt served as no EQ share INT */
13814 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13815 "0358 MSI-X interrupt with no EQE\n");
13816 else
13817 /* Non MSI-X treated on interrupt as EQ share INT */
13818 return IRQ_NONE;
13819 }
13820
13821 if (lpfc_fcp_look_ahead)
13822 atomic_inc(&hba_eq_hdl->hba_eq_in_use);
13823
13824 return IRQ_HANDLED;
13825 } /* lpfc_sli4_fp_intr_handler */
13826
13827 /**
13828 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device
13829 * @irq: Interrupt number.
13830 * @dev_id: The device context pointer.
13831 *
13832 * This function is the device-level interrupt handler to device with SLI-4
13833 * interface spec, called from the PCI layer when either MSI or Pin-IRQ
13834 * interrupt mode is enabled and there is an event in the HBA which requires
13835 * driver attention. This function invokes the slow-path interrupt attention
13836 * handling function and fast-path interrupt attention handling function in
13837 * turn to process the relevant HBA attention events. This function is called
13838 * without any lock held. It gets the hbalock to access and update SLI data
13839 * structures.
13840 *
13841 * This function returns IRQ_HANDLED when interrupt is handled, else it
13842 * returns IRQ_NONE.
13843 **/
13844 irqreturn_t
lpfc_sli4_intr_handler(int irq,void * dev_id)13845 lpfc_sli4_intr_handler(int irq, void *dev_id)
13846 {
13847 struct lpfc_hba *phba;
13848 irqreturn_t hba_irq_rc;
13849 bool hba_handled = false;
13850 int qidx;
13851
13852 /* Get the driver's phba structure from the dev_id */
13853 phba = (struct lpfc_hba *)dev_id;
13854
13855 if (unlikely(!phba))
13856 return IRQ_NONE;
13857
13858 /*
13859 * Invoke fast-path host attention interrupt handling as appropriate.
13860 */
13861 for (qidx = 0; qidx < phba->io_channel_irqs; qidx++) {
13862 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq,
13863 &phba->sli4_hba.hba_eq_hdl[qidx]);
13864 if (hba_irq_rc == IRQ_HANDLED)
13865 hba_handled |= true;
13866 }
13867
13868 if (phba->cfg_fof) {
13869 hba_irq_rc = lpfc_sli4_fof_intr_handler(irq,
13870 &phba->sli4_hba.hba_eq_hdl[qidx]);
13871 if (hba_irq_rc == IRQ_HANDLED)
13872 hba_handled |= true;
13873 }
13874
13875 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE;
13876 } /* lpfc_sli4_intr_handler */
13877
13878 /**
13879 * lpfc_sli4_queue_free - free a queue structure and associated memory
13880 * @queue: The queue structure to free.
13881 *
13882 * This function frees a queue structure and the DMAable memory used for
13883 * the host resident queue. This function must be called after destroying the
13884 * queue on the HBA.
13885 **/
13886 void
lpfc_sli4_queue_free(struct lpfc_queue * queue)13887 lpfc_sli4_queue_free(struct lpfc_queue *queue)
13888 {
13889 struct lpfc_dmabuf *dmabuf;
13890
13891 if (!queue)
13892 return;
13893
13894 while (!list_empty(&queue->page_list)) {
13895 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf,
13896 list);
13897 dma_free_coherent(&queue->phba->pcidev->dev, SLI4_PAGE_SIZE,
13898 dmabuf->virt, dmabuf->phys);
13899 kfree(dmabuf);
13900 }
13901 if (queue->rqbp) {
13902 lpfc_free_rq_buffer(queue->phba, queue);
13903 kfree(queue->rqbp);
13904 }
13905
13906 if (!list_empty(&queue->wq_list))
13907 list_del(&queue->wq_list);
13908
13909 kfree(queue);
13910 return;
13911 }
13912
13913 /**
13914 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure
13915 * @phba: The HBA that this queue is being created on.
13916 * @entry_size: The size of each queue entry for this queue.
13917 * @entry count: The number of entries that this queue will handle.
13918 *
13919 * This function allocates a queue structure and the DMAable memory used for
13920 * the host resident queue. This function must be called before creating the
13921 * queue on the HBA.
13922 **/
13923 struct lpfc_queue *
lpfc_sli4_queue_alloc(struct lpfc_hba * phba,uint32_t entry_size,uint32_t entry_count)13924 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t entry_size,
13925 uint32_t entry_count)
13926 {
13927 struct lpfc_queue *queue;
13928 struct lpfc_dmabuf *dmabuf;
13929 int x, total_qe_count;
13930 void *dma_pointer;
13931 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
13932
13933 if (!phba->sli4_hba.pc_sli4_params.supported)
13934 hw_page_size = SLI4_PAGE_SIZE;
13935
13936 queue = kzalloc(sizeof(struct lpfc_queue) +
13937 (sizeof(union sli4_qe) * entry_count), GFP_KERNEL);
13938 if (!queue)
13939 return NULL;
13940 queue->page_count = (ALIGN(entry_size * entry_count,
13941 hw_page_size))/hw_page_size;
13942
13943 /* If needed, Adjust page count to match the max the adapter supports */
13944 if (phba->sli4_hba.pc_sli4_params.wqpcnt &&
13945 (queue->page_count > phba->sli4_hba.pc_sli4_params.wqpcnt))
13946 queue->page_count = phba->sli4_hba.pc_sli4_params.wqpcnt;
13947
13948 INIT_LIST_HEAD(&queue->list);
13949 INIT_LIST_HEAD(&queue->wq_list);
13950 INIT_LIST_HEAD(&queue->page_list);
13951 INIT_LIST_HEAD(&queue->child_list);
13952 for (x = 0, total_qe_count = 0; x < queue->page_count; x++) {
13953 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
13954 if (!dmabuf)
13955 goto out_fail;
13956 dmabuf->virt = dma_zalloc_coherent(&phba->pcidev->dev,
13957 hw_page_size, &dmabuf->phys,
13958 GFP_KERNEL);
13959 if (!dmabuf->virt) {
13960 kfree(dmabuf);
13961 goto out_fail;
13962 }
13963 dmabuf->buffer_tag = x;
13964 list_add_tail(&dmabuf->list, &queue->page_list);
13965 /* initialize queue's entry array */
13966 dma_pointer = dmabuf->virt;
13967 for (; total_qe_count < entry_count &&
13968 dma_pointer < (hw_page_size + dmabuf->virt);
13969 total_qe_count++, dma_pointer += entry_size) {
13970 queue->qe[total_qe_count].address = dma_pointer;
13971 }
13972 }
13973 queue->entry_size = entry_size;
13974 queue->entry_count = entry_count;
13975 queue->phba = phba;
13976
13977 /* entry_repost will be set during q creation */
13978
13979 return queue;
13980 out_fail:
13981 lpfc_sli4_queue_free(queue);
13982 return NULL;
13983 }
13984
13985 /**
13986 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory
13987 * @phba: HBA structure that indicates port to create a queue on.
13988 * @pci_barset: PCI BAR set flag.
13989 *
13990 * This function shall perform iomap of the specified PCI BAR address to host
13991 * memory address if not already done so and return it. The returned host
13992 * memory address can be NULL.
13993 */
13994 static void __iomem *
lpfc_dual_chute_pci_bar_map(struct lpfc_hba * phba,uint16_t pci_barset)13995 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset)
13996 {
13997 if (!phba->pcidev)
13998 return NULL;
13999
14000 switch (pci_barset) {
14001 case WQ_PCI_BAR_0_AND_1:
14002 return phba->pci_bar0_memmap_p;
14003 case WQ_PCI_BAR_2_AND_3:
14004 return phba->pci_bar2_memmap_p;
14005 case WQ_PCI_BAR_4_AND_5:
14006 return phba->pci_bar4_memmap_p;
14007 default:
14008 break;
14009 }
14010 return NULL;
14011 }
14012
14013 /**
14014 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on FCP EQs
14015 * @phba: HBA structure that indicates port to create a queue on.
14016 * @startq: The starting FCP EQ to modify
14017 *
14018 * This function sends an MODIFY_EQ_DELAY mailbox command to the HBA.
14019 * The command allows up to LPFC_MAX_EQ_DELAY_EQID_CNT EQ ID's to be
14020 * updated in one mailbox command.
14021 *
14022 * The @phba struct is used to send mailbox command to HBA. The @startq
14023 * is used to get the starting FCP EQ to change.
14024 * This function is asynchronous and will wait for the mailbox
14025 * command to finish before continuing.
14026 *
14027 * On success this function will return a zero. If unable to allocate enough
14028 * memory this function will return -ENOMEM. If the queue create mailbox command
14029 * fails this function will return -ENXIO.
14030 **/
14031 int
lpfc_modify_hba_eq_delay(struct lpfc_hba * phba,uint32_t startq,uint32_t numq,uint32_t imax)14032 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq,
14033 uint32_t numq, uint32_t imax)
14034 {
14035 struct lpfc_mbx_modify_eq_delay *eq_delay;
14036 LPFC_MBOXQ_t *mbox;
14037 struct lpfc_queue *eq;
14038 int cnt, rc, length, status = 0;
14039 uint32_t shdr_status, shdr_add_status;
14040 uint32_t result, val;
14041 int qidx;
14042 union lpfc_sli4_cfg_shdr *shdr;
14043 uint16_t dmult;
14044
14045 if (startq >= phba->io_channel_irqs)
14046 return 0;
14047
14048 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14049 if (!mbox)
14050 return -ENOMEM;
14051 length = (sizeof(struct lpfc_mbx_modify_eq_delay) -
14052 sizeof(struct lpfc_sli4_cfg_mhdr));
14053 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
14054 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY,
14055 length, LPFC_SLI4_MBX_EMBED);
14056 eq_delay = &mbox->u.mqe.un.eq_delay;
14057
14058 /* Calculate delay multiper from maximum interrupt per second */
14059 result = imax / phba->io_channel_irqs;
14060 if (result > LPFC_DMULT_CONST || result == 0)
14061 dmult = 0;
14062 else
14063 dmult = LPFC_DMULT_CONST/result - 1;
14064 if (dmult > LPFC_DMULT_MAX)
14065 dmult = LPFC_DMULT_MAX;
14066
14067 cnt = 0;
14068 for (qidx = startq; qidx < phba->io_channel_irqs; qidx++) {
14069 eq = phba->sli4_hba.hba_eq[qidx];
14070 if (!eq)
14071 continue;
14072 eq->q_mode = imax;
14073 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id;
14074 eq_delay->u.request.eq[cnt].phase = 0;
14075 eq_delay->u.request.eq[cnt].delay_multi = dmult;
14076 cnt++;
14077
14078 /* q_mode is only used for auto_imax */
14079 if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) {
14080 /* Use EQ Delay Register method for q_mode */
14081
14082 /* Convert for EQ Delay register */
14083 val = phba->cfg_fcp_imax;
14084 if (val) {
14085 /* First, interrupts per sec per EQ */
14086 val = phba->cfg_fcp_imax /
14087 phba->io_channel_irqs;
14088
14089 /* us delay between each interrupt */
14090 val = LPFC_SEC_TO_USEC / val;
14091 }
14092 eq->q_mode = val;
14093 } else {
14094 eq->q_mode = imax;
14095 }
14096
14097 if (cnt >= numq)
14098 break;
14099 }
14100 eq_delay->u.request.num_eq = cnt;
14101
14102 mbox->vport = phba->pport;
14103 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
14104 mbox->context1 = NULL;
14105 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
14106 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr;
14107 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14108 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14109 if (shdr_status || shdr_add_status || rc) {
14110 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14111 "2512 MODIFY_EQ_DELAY mailbox failed with "
14112 "status x%x add_status x%x, mbx status x%x\n",
14113 shdr_status, shdr_add_status, rc);
14114 status = -ENXIO;
14115 }
14116 mempool_free(mbox, phba->mbox_mem_pool);
14117 return status;
14118 }
14119
14120 /**
14121 * lpfc_eq_create - Create an Event Queue on the HBA
14122 * @phba: HBA structure that indicates port to create a queue on.
14123 * @eq: The queue structure to use to create the event queue.
14124 * @imax: The maximum interrupt per second limit.
14125 *
14126 * This function creates an event queue, as detailed in @eq, on a port,
14127 * described by @phba by sending an EQ_CREATE mailbox command to the HBA.
14128 *
14129 * The @phba struct is used to send mailbox command to HBA. The @eq struct
14130 * is used to get the entry count and entry size that are necessary to
14131 * determine the number of pages to allocate and use for this queue. This
14132 * function will send the EQ_CREATE mailbox command to the HBA to setup the
14133 * event queue. This function is asynchronous and will wait for the mailbox
14134 * command to finish before continuing.
14135 *
14136 * On success this function will return a zero. If unable to allocate enough
14137 * memory this function will return -ENOMEM. If the queue create mailbox command
14138 * fails this function will return -ENXIO.
14139 **/
14140 int
lpfc_eq_create(struct lpfc_hba * phba,struct lpfc_queue * eq,uint32_t imax)14141 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax)
14142 {
14143 struct lpfc_mbx_eq_create *eq_create;
14144 LPFC_MBOXQ_t *mbox;
14145 int rc, length, status = 0;
14146 struct lpfc_dmabuf *dmabuf;
14147 uint32_t shdr_status, shdr_add_status;
14148 union lpfc_sli4_cfg_shdr *shdr;
14149 uint16_t dmult;
14150 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
14151
14152 /* sanity check on queue memory */
14153 if (!eq)
14154 return -ENODEV;
14155 if (!phba->sli4_hba.pc_sli4_params.supported)
14156 hw_page_size = SLI4_PAGE_SIZE;
14157
14158 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14159 if (!mbox)
14160 return -ENOMEM;
14161 length = (sizeof(struct lpfc_mbx_eq_create) -
14162 sizeof(struct lpfc_sli4_cfg_mhdr));
14163 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
14164 LPFC_MBOX_OPCODE_EQ_CREATE,
14165 length, LPFC_SLI4_MBX_EMBED);
14166 eq_create = &mbox->u.mqe.un.eq_create;
14167 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request,
14168 eq->page_count);
14169 bf_set(lpfc_eq_context_size, &eq_create->u.request.context,
14170 LPFC_EQE_SIZE);
14171 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1);
14172 /* don't setup delay multiplier using EQ_CREATE */
14173 dmult = 0;
14174 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context,
14175 dmult);
14176 switch (eq->entry_count) {
14177 default:
14178 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14179 "0360 Unsupported EQ count. (%d)\n",
14180 eq->entry_count);
14181 if (eq->entry_count < 256)
14182 return -EINVAL;
14183 /* otherwise default to smallest count (drop through) */
14184 case 256:
14185 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14186 LPFC_EQ_CNT_256);
14187 break;
14188 case 512:
14189 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14190 LPFC_EQ_CNT_512);
14191 break;
14192 case 1024:
14193 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14194 LPFC_EQ_CNT_1024);
14195 break;
14196 case 2048:
14197 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14198 LPFC_EQ_CNT_2048);
14199 break;
14200 case 4096:
14201 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14202 LPFC_EQ_CNT_4096);
14203 break;
14204 }
14205 list_for_each_entry(dmabuf, &eq->page_list, list) {
14206 memset(dmabuf->virt, 0, hw_page_size);
14207 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
14208 putPaddrLow(dmabuf->phys);
14209 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
14210 putPaddrHigh(dmabuf->phys);
14211 }
14212 mbox->vport = phba->pport;
14213 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
14214 mbox->context1 = NULL;
14215 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
14216 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr;
14217 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14218 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14219 if (shdr_status || shdr_add_status || rc) {
14220 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14221 "2500 EQ_CREATE mailbox failed with "
14222 "status x%x add_status x%x, mbx status x%x\n",
14223 shdr_status, shdr_add_status, rc);
14224 status = -ENXIO;
14225 }
14226 eq->type = LPFC_EQ;
14227 eq->subtype = LPFC_NONE;
14228 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response);
14229 if (eq->queue_id == 0xFFFF)
14230 status = -ENXIO;
14231 eq->host_index = 0;
14232 eq->hba_index = 0;
14233 eq->entry_repost = LPFC_EQ_REPOST;
14234
14235 mempool_free(mbox, phba->mbox_mem_pool);
14236 return status;
14237 }
14238
14239 /**
14240 * lpfc_cq_create - Create a Completion Queue on the HBA
14241 * @phba: HBA structure that indicates port to create a queue on.
14242 * @cq: The queue structure to use to create the completion queue.
14243 * @eq: The event queue to bind this completion queue to.
14244 *
14245 * This function creates a completion queue, as detailed in @wq, on a port,
14246 * described by @phba by sending a CQ_CREATE mailbox command to the HBA.
14247 *
14248 * The @phba struct is used to send mailbox command to HBA. The @cq struct
14249 * is used to get the entry count and entry size that are necessary to
14250 * determine the number of pages to allocate and use for this queue. The @eq
14251 * is used to indicate which event queue to bind this completion queue to. This
14252 * function will send the CQ_CREATE mailbox command to the HBA to setup the
14253 * completion queue. This function is asynchronous and will wait for the mailbox
14254 * command to finish before continuing.
14255 *
14256 * On success this function will return a zero. If unable to allocate enough
14257 * memory this function will return -ENOMEM. If the queue create mailbox command
14258 * fails this function will return -ENXIO.
14259 **/
14260 int
lpfc_cq_create(struct lpfc_hba * phba,struct lpfc_queue * cq,struct lpfc_queue * eq,uint32_t type,uint32_t subtype)14261 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq,
14262 struct lpfc_queue *eq, uint32_t type, uint32_t subtype)
14263 {
14264 struct lpfc_mbx_cq_create *cq_create;
14265 struct lpfc_dmabuf *dmabuf;
14266 LPFC_MBOXQ_t *mbox;
14267 int rc, length, status = 0;
14268 uint32_t shdr_status, shdr_add_status;
14269 union lpfc_sli4_cfg_shdr *shdr;
14270 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
14271
14272 /* sanity check on queue memory */
14273 if (!cq || !eq)
14274 return -ENODEV;
14275 if (!phba->sli4_hba.pc_sli4_params.supported)
14276 hw_page_size = SLI4_PAGE_SIZE;
14277
14278 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14279 if (!mbox)
14280 return -ENOMEM;
14281 length = (sizeof(struct lpfc_mbx_cq_create) -
14282 sizeof(struct lpfc_sli4_cfg_mhdr));
14283 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
14284 LPFC_MBOX_OPCODE_CQ_CREATE,
14285 length, LPFC_SLI4_MBX_EMBED);
14286 cq_create = &mbox->u.mqe.un.cq_create;
14287 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr;
14288 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request,
14289 cq->page_count);
14290 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1);
14291 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1);
14292 bf_set(lpfc_mbox_hdr_version, &shdr->request,
14293 phba->sli4_hba.pc_sli4_params.cqv);
14294 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) {
14295 /* FW only supports 1. Should be PAGE_SIZE/SLI4_PAGE_SIZE */
14296 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 1);
14297 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context,
14298 eq->queue_id);
14299 } else {
14300 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context,
14301 eq->queue_id);
14302 }
14303 switch (cq->entry_count) {
14304 default:
14305 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14306 "0361 Unsupported CQ count: "
14307 "entry cnt %d sz %d pg cnt %d\n",
14308 cq->entry_count, cq->entry_size,
14309 cq->page_count);
14310 if (cq->entry_count < 256) {
14311 status = -EINVAL;
14312 goto out;
14313 }
14314 /* otherwise default to smallest count (drop through) */
14315 case 256:
14316 bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
14317 LPFC_CQ_CNT_256);
14318 break;
14319 case 512:
14320 bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
14321 LPFC_CQ_CNT_512);
14322 break;
14323 case 1024:
14324 bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
14325 LPFC_CQ_CNT_1024);
14326 break;
14327 }
14328 list_for_each_entry(dmabuf, &cq->page_list, list) {
14329 memset(dmabuf->virt, 0, hw_page_size);
14330 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
14331 putPaddrLow(dmabuf->phys);
14332 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
14333 putPaddrHigh(dmabuf->phys);
14334 }
14335 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
14336
14337 /* The IOCTL status is embedded in the mailbox subheader. */
14338 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14339 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14340 if (shdr_status || shdr_add_status || rc) {
14341 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14342 "2501 CQ_CREATE mailbox failed with "
14343 "status x%x add_status x%x, mbx status x%x\n",
14344 shdr_status, shdr_add_status, rc);
14345 status = -ENXIO;
14346 goto out;
14347 }
14348 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
14349 if (cq->queue_id == 0xFFFF) {
14350 status = -ENXIO;
14351 goto out;
14352 }
14353 /* link the cq onto the parent eq child list */
14354 list_add_tail(&cq->list, &eq->child_list);
14355 /* Set up completion queue's type and subtype */
14356 cq->type = type;
14357 cq->subtype = subtype;
14358 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
14359 cq->assoc_qid = eq->queue_id;
14360 cq->host_index = 0;
14361 cq->hba_index = 0;
14362 cq->entry_repost = LPFC_CQ_REPOST;
14363
14364 out:
14365 mempool_free(mbox, phba->mbox_mem_pool);
14366 return status;
14367 }
14368
14369 /**
14370 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ
14371 * @phba: HBA structure that indicates port to create a queue on.
14372 * @cqp: The queue structure array to use to create the completion queues.
14373 * @eqp: The event queue array to bind these completion queues to.
14374 *
14375 * This function creates a set of completion queue, s to support MRQ
14376 * as detailed in @cqp, on a port,
14377 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA.
14378 *
14379 * The @phba struct is used to send mailbox command to HBA. The @cq struct
14380 * is used to get the entry count and entry size that are necessary to
14381 * determine the number of pages to allocate and use for this queue. The @eq
14382 * is used to indicate which event queue to bind this completion queue to. This
14383 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the
14384 * completion queue. This function is asynchronous and will wait for the mailbox
14385 * command to finish before continuing.
14386 *
14387 * On success this function will return a zero. If unable to allocate enough
14388 * memory this function will return -ENOMEM. If the queue create mailbox command
14389 * fails this function will return -ENXIO.
14390 **/
14391 int
lpfc_cq_create_set(struct lpfc_hba * phba,struct lpfc_queue ** cqp,struct lpfc_queue ** eqp,uint32_t type,uint32_t subtype)14392 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp,
14393 struct lpfc_queue **eqp, uint32_t type, uint32_t subtype)
14394 {
14395 struct lpfc_queue *cq;
14396 struct lpfc_queue *eq;
14397 struct lpfc_mbx_cq_create_set *cq_set;
14398 struct lpfc_dmabuf *dmabuf;
14399 LPFC_MBOXQ_t *mbox;
14400 int rc, length, alloclen, status = 0;
14401 int cnt, idx, numcq, page_idx = 0;
14402 uint32_t shdr_status, shdr_add_status;
14403 union lpfc_sli4_cfg_shdr *shdr;
14404 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
14405
14406 /* sanity check on queue memory */
14407 numcq = phba->cfg_nvmet_mrq;
14408 if (!cqp || !eqp || !numcq)
14409 return -ENODEV;
14410 if (!phba->sli4_hba.pc_sli4_params.supported)
14411 hw_page_size = SLI4_PAGE_SIZE;
14412
14413 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14414 if (!mbox)
14415 return -ENOMEM;
14416
14417 length = sizeof(struct lpfc_mbx_cq_create_set);
14418 length += ((numcq * cqp[0]->page_count) *
14419 sizeof(struct dma_address));
14420 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
14421 LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length,
14422 LPFC_SLI4_MBX_NEMBED);
14423 if (alloclen < length) {
14424 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14425 "3098 Allocated DMA memory size (%d) is "
14426 "less than the requested DMA memory size "
14427 "(%d)\n", alloclen, length);
14428 status = -ENOMEM;
14429 goto out;
14430 }
14431 cq_set = mbox->sge_array->addr[0];
14432 shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr;
14433 bf_set(lpfc_mbox_hdr_version, &shdr->request, 0);
14434
14435 for (idx = 0; idx < numcq; idx++) {
14436 cq = cqp[idx];
14437 eq = eqp[idx];
14438 if (!cq || !eq) {
14439 status = -ENOMEM;
14440 goto out;
14441 }
14442
14443 switch (idx) {
14444 case 0:
14445 bf_set(lpfc_mbx_cq_create_set_page_size,
14446 &cq_set->u.request,
14447 (hw_page_size / SLI4_PAGE_SIZE));
14448 bf_set(lpfc_mbx_cq_create_set_num_pages,
14449 &cq_set->u.request, cq->page_count);
14450 bf_set(lpfc_mbx_cq_create_set_evt,
14451 &cq_set->u.request, 1);
14452 bf_set(lpfc_mbx_cq_create_set_valid,
14453 &cq_set->u.request, 1);
14454 bf_set(lpfc_mbx_cq_create_set_cqe_size,
14455 &cq_set->u.request, 0);
14456 bf_set(lpfc_mbx_cq_create_set_num_cq,
14457 &cq_set->u.request, numcq);
14458 switch (cq->entry_count) {
14459 default:
14460 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14461 "3118 Bad CQ count. (%d)\n",
14462 cq->entry_count);
14463 if (cq->entry_count < 256) {
14464 status = -EINVAL;
14465 goto out;
14466 }
14467 /* otherwise default to smallest (drop thru) */
14468 case 256:
14469 bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
14470 &cq_set->u.request, LPFC_CQ_CNT_256);
14471 break;
14472 case 512:
14473 bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
14474 &cq_set->u.request, LPFC_CQ_CNT_512);
14475 break;
14476 case 1024:
14477 bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
14478 &cq_set->u.request, LPFC_CQ_CNT_1024);
14479 break;
14480 }
14481 bf_set(lpfc_mbx_cq_create_set_eq_id0,
14482 &cq_set->u.request, eq->queue_id);
14483 break;
14484 case 1:
14485 bf_set(lpfc_mbx_cq_create_set_eq_id1,
14486 &cq_set->u.request, eq->queue_id);
14487 break;
14488 case 2:
14489 bf_set(lpfc_mbx_cq_create_set_eq_id2,
14490 &cq_set->u.request, eq->queue_id);
14491 break;
14492 case 3:
14493 bf_set(lpfc_mbx_cq_create_set_eq_id3,
14494 &cq_set->u.request, eq->queue_id);
14495 break;
14496 case 4:
14497 bf_set(lpfc_mbx_cq_create_set_eq_id4,
14498 &cq_set->u.request, eq->queue_id);
14499 break;
14500 case 5:
14501 bf_set(lpfc_mbx_cq_create_set_eq_id5,
14502 &cq_set->u.request, eq->queue_id);
14503 break;
14504 case 6:
14505 bf_set(lpfc_mbx_cq_create_set_eq_id6,
14506 &cq_set->u.request, eq->queue_id);
14507 break;
14508 case 7:
14509 bf_set(lpfc_mbx_cq_create_set_eq_id7,
14510 &cq_set->u.request, eq->queue_id);
14511 break;
14512 case 8:
14513 bf_set(lpfc_mbx_cq_create_set_eq_id8,
14514 &cq_set->u.request, eq->queue_id);
14515 break;
14516 case 9:
14517 bf_set(lpfc_mbx_cq_create_set_eq_id9,
14518 &cq_set->u.request, eq->queue_id);
14519 break;
14520 case 10:
14521 bf_set(lpfc_mbx_cq_create_set_eq_id10,
14522 &cq_set->u.request, eq->queue_id);
14523 break;
14524 case 11:
14525 bf_set(lpfc_mbx_cq_create_set_eq_id11,
14526 &cq_set->u.request, eq->queue_id);
14527 break;
14528 case 12:
14529 bf_set(lpfc_mbx_cq_create_set_eq_id12,
14530 &cq_set->u.request, eq->queue_id);
14531 break;
14532 case 13:
14533 bf_set(lpfc_mbx_cq_create_set_eq_id13,
14534 &cq_set->u.request, eq->queue_id);
14535 break;
14536 case 14:
14537 bf_set(lpfc_mbx_cq_create_set_eq_id14,
14538 &cq_set->u.request, eq->queue_id);
14539 break;
14540 case 15:
14541 bf_set(lpfc_mbx_cq_create_set_eq_id15,
14542 &cq_set->u.request, eq->queue_id);
14543 break;
14544 }
14545
14546 /* link the cq onto the parent eq child list */
14547 list_add_tail(&cq->list, &eq->child_list);
14548 /* Set up completion queue's type and subtype */
14549 cq->type = type;
14550 cq->subtype = subtype;
14551 cq->assoc_qid = eq->queue_id;
14552 cq->host_index = 0;
14553 cq->hba_index = 0;
14554 cq->entry_repost = LPFC_CQ_REPOST;
14555
14556 rc = 0;
14557 list_for_each_entry(dmabuf, &cq->page_list, list) {
14558 memset(dmabuf->virt, 0, hw_page_size);
14559 cnt = page_idx + dmabuf->buffer_tag;
14560 cq_set->u.request.page[cnt].addr_lo =
14561 putPaddrLow(dmabuf->phys);
14562 cq_set->u.request.page[cnt].addr_hi =
14563 putPaddrHigh(dmabuf->phys);
14564 rc++;
14565 }
14566 page_idx += rc;
14567 }
14568
14569 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
14570
14571 /* The IOCTL status is embedded in the mailbox subheader. */
14572 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14573 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14574 if (shdr_status || shdr_add_status || rc) {
14575 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14576 "3119 CQ_CREATE_SET mailbox failed with "
14577 "status x%x add_status x%x, mbx status x%x\n",
14578 shdr_status, shdr_add_status, rc);
14579 status = -ENXIO;
14580 goto out;
14581 }
14582 rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response);
14583 if (rc == 0xFFFF) {
14584 status = -ENXIO;
14585 goto out;
14586 }
14587
14588 for (idx = 0; idx < numcq; idx++) {
14589 cq = cqp[idx];
14590 cq->queue_id = rc + idx;
14591 }
14592
14593 out:
14594 lpfc_sli4_mbox_cmd_free(phba, mbox);
14595 return status;
14596 }
14597
14598 /**
14599 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration
14600 * @phba: HBA structure that indicates port to create a queue on.
14601 * @mq: The queue structure to use to create the mailbox queue.
14602 * @mbox: An allocated pointer to type LPFC_MBOXQ_t
14603 * @cq: The completion queue to associate with this cq.
14604 *
14605 * This function provides failback (fb) functionality when the
14606 * mq_create_ext fails on older FW generations. It's purpose is identical
14607 * to mq_create_ext otherwise.
14608 *
14609 * This routine cannot fail as all attributes were previously accessed and
14610 * initialized in mq_create_ext.
14611 **/
14612 static void
lpfc_mq_create_fb_init(struct lpfc_hba * phba,struct lpfc_queue * mq,LPFC_MBOXQ_t * mbox,struct lpfc_queue * cq)14613 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq,
14614 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq)
14615 {
14616 struct lpfc_mbx_mq_create *mq_create;
14617 struct lpfc_dmabuf *dmabuf;
14618 int length;
14619
14620 length = (sizeof(struct lpfc_mbx_mq_create) -
14621 sizeof(struct lpfc_sli4_cfg_mhdr));
14622 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
14623 LPFC_MBOX_OPCODE_MQ_CREATE,
14624 length, LPFC_SLI4_MBX_EMBED);
14625 mq_create = &mbox->u.mqe.un.mq_create;
14626 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request,
14627 mq->page_count);
14628 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context,
14629 cq->queue_id);
14630 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1);
14631 switch (mq->entry_count) {
14632 case 16:
14633 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
14634 LPFC_MQ_RING_SIZE_16);
14635 break;
14636 case 32:
14637 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
14638 LPFC_MQ_RING_SIZE_32);
14639 break;
14640 case 64:
14641 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
14642 LPFC_MQ_RING_SIZE_64);
14643 break;
14644 case 128:
14645 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
14646 LPFC_MQ_RING_SIZE_128);
14647 break;
14648 }
14649 list_for_each_entry(dmabuf, &mq->page_list, list) {
14650 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
14651 putPaddrLow(dmabuf->phys);
14652 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
14653 putPaddrHigh(dmabuf->phys);
14654 }
14655 }
14656
14657 /**
14658 * lpfc_mq_create - Create a mailbox Queue on the HBA
14659 * @phba: HBA structure that indicates port to create a queue on.
14660 * @mq: The queue structure to use to create the mailbox queue.
14661 * @cq: The completion queue to associate with this cq.
14662 * @subtype: The queue's subtype.
14663 *
14664 * This function creates a mailbox queue, as detailed in @mq, on a port,
14665 * described by @phba by sending a MQ_CREATE mailbox command to the HBA.
14666 *
14667 * The @phba struct is used to send mailbox command to HBA. The @cq struct
14668 * is used to get the entry count and entry size that are necessary to
14669 * determine the number of pages to allocate and use for this queue. This
14670 * function will send the MQ_CREATE mailbox command to the HBA to setup the
14671 * mailbox queue. This function is asynchronous and will wait for the mailbox
14672 * command to finish before continuing.
14673 *
14674 * On success this function will return a zero. If unable to allocate enough
14675 * memory this function will return -ENOMEM. If the queue create mailbox command
14676 * fails this function will return -ENXIO.
14677 **/
14678 int32_t
lpfc_mq_create(struct lpfc_hba * phba,struct lpfc_queue * mq,struct lpfc_queue * cq,uint32_t subtype)14679 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq,
14680 struct lpfc_queue *cq, uint32_t subtype)
14681 {
14682 struct lpfc_mbx_mq_create *mq_create;
14683 struct lpfc_mbx_mq_create_ext *mq_create_ext;
14684 struct lpfc_dmabuf *dmabuf;
14685 LPFC_MBOXQ_t *mbox;
14686 int rc, length, status = 0;
14687 uint32_t shdr_status, shdr_add_status;
14688 union lpfc_sli4_cfg_shdr *shdr;
14689 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
14690
14691 /* sanity check on queue memory */
14692 if (!mq || !cq)
14693 return -ENODEV;
14694 if (!phba->sli4_hba.pc_sli4_params.supported)
14695 hw_page_size = SLI4_PAGE_SIZE;
14696
14697 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14698 if (!mbox)
14699 return -ENOMEM;
14700 length = (sizeof(struct lpfc_mbx_mq_create_ext) -
14701 sizeof(struct lpfc_sli4_cfg_mhdr));
14702 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
14703 LPFC_MBOX_OPCODE_MQ_CREATE_EXT,
14704 length, LPFC_SLI4_MBX_EMBED);
14705
14706 mq_create_ext = &mbox->u.mqe.un.mq_create_ext;
14707 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr;
14708 bf_set(lpfc_mbx_mq_create_ext_num_pages,
14709 &mq_create_ext->u.request, mq->page_count);
14710 bf_set(lpfc_mbx_mq_create_ext_async_evt_link,
14711 &mq_create_ext->u.request, 1);
14712 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip,
14713 &mq_create_ext->u.request, 1);
14714 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5,
14715 &mq_create_ext->u.request, 1);
14716 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc,
14717 &mq_create_ext->u.request, 1);
14718 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli,
14719 &mq_create_ext->u.request, 1);
14720 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1);
14721 bf_set(lpfc_mbox_hdr_version, &shdr->request,
14722 phba->sli4_hba.pc_sli4_params.mqv);
14723 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1)
14724 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request,
14725 cq->queue_id);
14726 else
14727 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context,
14728 cq->queue_id);
14729 switch (mq->entry_count) {
14730 default:
14731 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14732 "0362 Unsupported MQ count. (%d)\n",
14733 mq->entry_count);
14734 if (mq->entry_count < 16) {
14735 status = -EINVAL;
14736 goto out;
14737 }
14738 /* otherwise default to smallest count (drop through) */
14739 case 16:
14740 bf_set(lpfc_mq_context_ring_size,
14741 &mq_create_ext->u.request.context,
14742 LPFC_MQ_RING_SIZE_16);
14743 break;
14744 case 32:
14745 bf_set(lpfc_mq_context_ring_size,
14746 &mq_create_ext->u.request.context,
14747 LPFC_MQ_RING_SIZE_32);
14748 break;
14749 case 64:
14750 bf_set(lpfc_mq_context_ring_size,
14751 &mq_create_ext->u.request.context,
14752 LPFC_MQ_RING_SIZE_64);
14753 break;
14754 case 128:
14755 bf_set(lpfc_mq_context_ring_size,
14756 &mq_create_ext->u.request.context,
14757 LPFC_MQ_RING_SIZE_128);
14758 break;
14759 }
14760 list_for_each_entry(dmabuf, &mq->page_list, list) {
14761 memset(dmabuf->virt, 0, hw_page_size);
14762 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo =
14763 putPaddrLow(dmabuf->phys);
14764 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi =
14765 putPaddrHigh(dmabuf->phys);
14766 }
14767 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
14768 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
14769 &mq_create_ext->u.response);
14770 if (rc != MBX_SUCCESS) {
14771 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14772 "2795 MQ_CREATE_EXT failed with "
14773 "status x%x. Failback to MQ_CREATE.\n",
14774 rc);
14775 lpfc_mq_create_fb_init(phba, mq, mbox, cq);
14776 mq_create = &mbox->u.mqe.un.mq_create;
14777 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
14778 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr;
14779 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
14780 &mq_create->u.response);
14781 }
14782
14783 /* The IOCTL status is embedded in the mailbox subheader. */
14784 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14785 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14786 if (shdr_status || shdr_add_status || rc) {
14787 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14788 "2502 MQ_CREATE mailbox failed with "
14789 "status x%x add_status x%x, mbx status x%x\n",
14790 shdr_status, shdr_add_status, rc);
14791 status = -ENXIO;
14792 goto out;
14793 }
14794 if (mq->queue_id == 0xFFFF) {
14795 status = -ENXIO;
14796 goto out;
14797 }
14798 mq->type = LPFC_MQ;
14799 mq->assoc_qid = cq->queue_id;
14800 mq->subtype = subtype;
14801 mq->host_index = 0;
14802 mq->hba_index = 0;
14803 mq->entry_repost = LPFC_MQ_REPOST;
14804
14805 /* link the mq onto the parent cq child list */
14806 list_add_tail(&mq->list, &cq->child_list);
14807 out:
14808 mempool_free(mbox, phba->mbox_mem_pool);
14809 return status;
14810 }
14811
14812 /**
14813 * lpfc_wq_create - Create a Work Queue on the HBA
14814 * @phba: HBA structure that indicates port to create a queue on.
14815 * @wq: The queue structure to use to create the work queue.
14816 * @cq: The completion queue to bind this work queue to.
14817 * @subtype: The subtype of the work queue indicating its functionality.
14818 *
14819 * This function creates a work queue, as detailed in @wq, on a port, described
14820 * by @phba by sending a WQ_CREATE mailbox command to the HBA.
14821 *
14822 * The @phba struct is used to send mailbox command to HBA. The @wq struct
14823 * is used to get the entry count and entry size that are necessary to
14824 * determine the number of pages to allocate and use for this queue. The @cq
14825 * is used to indicate which completion queue to bind this work queue to. This
14826 * function will send the WQ_CREATE mailbox command to the HBA to setup the
14827 * work queue. This function is asynchronous and will wait for the mailbox
14828 * command to finish before continuing.
14829 *
14830 * On success this function will return a zero. If unable to allocate enough
14831 * memory this function will return -ENOMEM. If the queue create mailbox command
14832 * fails this function will return -ENXIO.
14833 **/
14834 int
lpfc_wq_create(struct lpfc_hba * phba,struct lpfc_queue * wq,struct lpfc_queue * cq,uint32_t subtype)14835 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq,
14836 struct lpfc_queue *cq, uint32_t subtype)
14837 {
14838 struct lpfc_mbx_wq_create *wq_create;
14839 struct lpfc_dmabuf *dmabuf;
14840 LPFC_MBOXQ_t *mbox;
14841 int rc, length, status = 0;
14842 uint32_t shdr_status, shdr_add_status;
14843 union lpfc_sli4_cfg_shdr *shdr;
14844 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
14845 struct dma_address *page;
14846 void __iomem *bar_memmap_p;
14847 uint32_t db_offset;
14848 uint16_t pci_barset;
14849
14850 /* sanity check on queue memory */
14851 if (!wq || !cq)
14852 return -ENODEV;
14853 if (!phba->sli4_hba.pc_sli4_params.supported)
14854 hw_page_size = SLI4_PAGE_SIZE;
14855
14856 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14857 if (!mbox)
14858 return -ENOMEM;
14859 length = (sizeof(struct lpfc_mbx_wq_create) -
14860 sizeof(struct lpfc_sli4_cfg_mhdr));
14861 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
14862 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE,
14863 length, LPFC_SLI4_MBX_EMBED);
14864 wq_create = &mbox->u.mqe.un.wq_create;
14865 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr;
14866 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request,
14867 wq->page_count);
14868 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request,
14869 cq->queue_id);
14870
14871 /* wqv is the earliest version supported, NOT the latest */
14872 bf_set(lpfc_mbox_hdr_version, &shdr->request,
14873 phba->sli4_hba.pc_sli4_params.wqv);
14874
14875 switch (phba->sli4_hba.pc_sli4_params.wqv) {
14876 case LPFC_Q_CREATE_VERSION_0:
14877 switch (wq->entry_size) {
14878 default:
14879 case 64:
14880 /* Nothing to do, version 0 ONLY supports 64 byte */
14881 page = wq_create->u.request.page;
14882 break;
14883 case 128:
14884 if (!(phba->sli4_hba.pc_sli4_params.wqsize &
14885 LPFC_WQ_SZ128_SUPPORT)) {
14886 status = -ERANGE;
14887 goto out;
14888 }
14889 /* If we get here the HBA MUST also support V1 and
14890 * we MUST use it
14891 */
14892 bf_set(lpfc_mbox_hdr_version, &shdr->request,
14893 LPFC_Q_CREATE_VERSION_1);
14894
14895 bf_set(lpfc_mbx_wq_create_wqe_count,
14896 &wq_create->u.request_1, wq->entry_count);
14897 bf_set(lpfc_mbx_wq_create_wqe_size,
14898 &wq_create->u.request_1,
14899 LPFC_WQ_WQE_SIZE_128);
14900 bf_set(lpfc_mbx_wq_create_page_size,
14901 &wq_create->u.request_1,
14902 LPFC_WQ_PAGE_SIZE_4096);
14903 page = wq_create->u.request_1.page;
14904 break;
14905 }
14906 break;
14907 case LPFC_Q_CREATE_VERSION_1:
14908 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1,
14909 wq->entry_count);
14910 bf_set(lpfc_mbox_hdr_version, &shdr->request,
14911 LPFC_Q_CREATE_VERSION_1);
14912
14913 switch (wq->entry_size) {
14914 default:
14915 case 64:
14916 bf_set(lpfc_mbx_wq_create_wqe_size,
14917 &wq_create->u.request_1,
14918 LPFC_WQ_WQE_SIZE_64);
14919 break;
14920 case 128:
14921 if (!(phba->sli4_hba.pc_sli4_params.wqsize &
14922 LPFC_WQ_SZ128_SUPPORT)) {
14923 status = -ERANGE;
14924 goto out;
14925 }
14926 bf_set(lpfc_mbx_wq_create_wqe_size,
14927 &wq_create->u.request_1,
14928 LPFC_WQ_WQE_SIZE_128);
14929 break;
14930 }
14931 bf_set(lpfc_mbx_wq_create_page_size,
14932 &wq_create->u.request_1,
14933 LPFC_WQ_PAGE_SIZE_4096);
14934 page = wq_create->u.request_1.page;
14935 break;
14936 default:
14937 status = -ERANGE;
14938 goto out;
14939 }
14940
14941 list_for_each_entry(dmabuf, &wq->page_list, list) {
14942 memset(dmabuf->virt, 0, hw_page_size);
14943 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys);
14944 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys);
14945 }
14946
14947 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
14948 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1);
14949
14950 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
14951 /* The IOCTL status is embedded in the mailbox subheader. */
14952 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14953 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14954 if (shdr_status || shdr_add_status || rc) {
14955 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14956 "2503 WQ_CREATE mailbox failed with "
14957 "status x%x add_status x%x, mbx status x%x\n",
14958 shdr_status, shdr_add_status, rc);
14959 status = -ENXIO;
14960 goto out;
14961 }
14962 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, &wq_create->u.response);
14963 if (wq->queue_id == 0xFFFF) {
14964 status = -ENXIO;
14965 goto out;
14966 }
14967 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
14968 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format,
14969 &wq_create->u.response);
14970 if ((wq->db_format != LPFC_DB_LIST_FORMAT) &&
14971 (wq->db_format != LPFC_DB_RING_FORMAT)) {
14972 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14973 "3265 WQ[%d] doorbell format not "
14974 "supported: x%x\n", wq->queue_id,
14975 wq->db_format);
14976 status = -EINVAL;
14977 goto out;
14978 }
14979 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set,
14980 &wq_create->u.response);
14981 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset);
14982 if (!bar_memmap_p) {
14983 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14984 "3263 WQ[%d] failed to memmap pci "
14985 "barset:x%x\n", wq->queue_id,
14986 pci_barset);
14987 status = -ENOMEM;
14988 goto out;
14989 }
14990 db_offset = wq_create->u.response.doorbell_offset;
14991 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) &&
14992 (db_offset != LPFC_ULP1_WQ_DOORBELL)) {
14993 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14994 "3252 WQ[%d] doorbell offset not "
14995 "supported: x%x\n", wq->queue_id,
14996 db_offset);
14997 status = -EINVAL;
14998 goto out;
14999 }
15000 wq->db_regaddr = bar_memmap_p + db_offset;
15001 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15002 "3264 WQ[%d]: barset:x%x, offset:x%x, "
15003 "format:x%x\n", wq->queue_id, pci_barset,
15004 db_offset, wq->db_format);
15005 } else {
15006 wq->db_format = LPFC_DB_LIST_FORMAT;
15007 wq->db_regaddr = phba->sli4_hba.WQDBregaddr;
15008 }
15009 wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL);
15010 if (wq->pring == NULL) {
15011 status = -ENOMEM;
15012 goto out;
15013 }
15014 wq->type = LPFC_WQ;
15015 wq->assoc_qid = cq->queue_id;
15016 wq->subtype = subtype;
15017 wq->host_index = 0;
15018 wq->hba_index = 0;
15019 wq->entry_repost = LPFC_RELEASE_NOTIFICATION_INTERVAL;
15020
15021 /* link the wq onto the parent cq child list */
15022 list_add_tail(&wq->list, &cq->child_list);
15023 out:
15024 mempool_free(mbox, phba->mbox_mem_pool);
15025 return status;
15026 }
15027
15028 /**
15029 * lpfc_rq_create - Create a Receive Queue on the HBA
15030 * @phba: HBA structure that indicates port to create a queue on.
15031 * @hrq: The queue structure to use to create the header receive queue.
15032 * @drq: The queue structure to use to create the data receive queue.
15033 * @cq: The completion queue to bind this work queue to.
15034 *
15035 * This function creates a receive buffer queue pair , as detailed in @hrq and
15036 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
15037 * to the HBA.
15038 *
15039 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
15040 * struct is used to get the entry count that is necessary to determine the
15041 * number of pages to use for this queue. The @cq is used to indicate which
15042 * completion queue to bind received buffers that are posted to these queues to.
15043 * This function will send the RQ_CREATE mailbox command to the HBA to setup the
15044 * receive queue pair. This function is asynchronous and will wait for the
15045 * mailbox command to finish before continuing.
15046 *
15047 * On success this function will return a zero. If unable to allocate enough
15048 * memory this function will return -ENOMEM. If the queue create mailbox command
15049 * fails this function will return -ENXIO.
15050 **/
15051 int
lpfc_rq_create(struct lpfc_hba * phba,struct lpfc_queue * hrq,struct lpfc_queue * drq,struct lpfc_queue * cq,uint32_t subtype)15052 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq,
15053 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype)
15054 {
15055 struct lpfc_mbx_rq_create *rq_create;
15056 struct lpfc_dmabuf *dmabuf;
15057 LPFC_MBOXQ_t *mbox;
15058 int rc, length, status = 0;
15059 uint32_t shdr_status, shdr_add_status;
15060 union lpfc_sli4_cfg_shdr *shdr;
15061 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15062 void __iomem *bar_memmap_p;
15063 uint32_t db_offset;
15064 uint16_t pci_barset;
15065
15066 /* sanity check on queue memory */
15067 if (!hrq || !drq || !cq)
15068 return -ENODEV;
15069 if (!phba->sli4_hba.pc_sli4_params.supported)
15070 hw_page_size = SLI4_PAGE_SIZE;
15071
15072 if (hrq->entry_count != drq->entry_count)
15073 return -EINVAL;
15074 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15075 if (!mbox)
15076 return -ENOMEM;
15077 length = (sizeof(struct lpfc_mbx_rq_create) -
15078 sizeof(struct lpfc_sli4_cfg_mhdr));
15079 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15080 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
15081 length, LPFC_SLI4_MBX_EMBED);
15082 rq_create = &mbox->u.mqe.un.rq_create;
15083 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
15084 bf_set(lpfc_mbox_hdr_version, &shdr->request,
15085 phba->sli4_hba.pc_sli4_params.rqv);
15086 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
15087 bf_set(lpfc_rq_context_rqe_count_1,
15088 &rq_create->u.request.context,
15089 hrq->entry_count);
15090 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE;
15091 bf_set(lpfc_rq_context_rqe_size,
15092 &rq_create->u.request.context,
15093 LPFC_RQE_SIZE_8);
15094 bf_set(lpfc_rq_context_page_size,
15095 &rq_create->u.request.context,
15096 LPFC_RQ_PAGE_SIZE_4096);
15097 } else {
15098 switch (hrq->entry_count) {
15099 default:
15100 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15101 "2535 Unsupported RQ count. (%d)\n",
15102 hrq->entry_count);
15103 if (hrq->entry_count < 512) {
15104 status = -EINVAL;
15105 goto out;
15106 }
15107 /* otherwise default to smallest count (drop through) */
15108 case 512:
15109 bf_set(lpfc_rq_context_rqe_count,
15110 &rq_create->u.request.context,
15111 LPFC_RQ_RING_SIZE_512);
15112 break;
15113 case 1024:
15114 bf_set(lpfc_rq_context_rqe_count,
15115 &rq_create->u.request.context,
15116 LPFC_RQ_RING_SIZE_1024);
15117 break;
15118 case 2048:
15119 bf_set(lpfc_rq_context_rqe_count,
15120 &rq_create->u.request.context,
15121 LPFC_RQ_RING_SIZE_2048);
15122 break;
15123 case 4096:
15124 bf_set(lpfc_rq_context_rqe_count,
15125 &rq_create->u.request.context,
15126 LPFC_RQ_RING_SIZE_4096);
15127 break;
15128 }
15129 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context,
15130 LPFC_HDR_BUF_SIZE);
15131 }
15132 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
15133 cq->queue_id);
15134 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
15135 hrq->page_count);
15136 list_for_each_entry(dmabuf, &hrq->page_list, list) {
15137 memset(dmabuf->virt, 0, hw_page_size);
15138 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
15139 putPaddrLow(dmabuf->phys);
15140 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
15141 putPaddrHigh(dmabuf->phys);
15142 }
15143 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
15144 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
15145
15146 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15147 /* The IOCTL status is embedded in the mailbox subheader. */
15148 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15149 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15150 if (shdr_status || shdr_add_status || rc) {
15151 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15152 "2504 RQ_CREATE mailbox failed with "
15153 "status x%x add_status x%x, mbx status x%x\n",
15154 shdr_status, shdr_add_status, rc);
15155 status = -ENXIO;
15156 goto out;
15157 }
15158 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
15159 if (hrq->queue_id == 0xFFFF) {
15160 status = -ENXIO;
15161 goto out;
15162 }
15163
15164 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
15165 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format,
15166 &rq_create->u.response);
15167 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) &&
15168 (hrq->db_format != LPFC_DB_RING_FORMAT)) {
15169 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15170 "3262 RQ [%d] doorbell format not "
15171 "supported: x%x\n", hrq->queue_id,
15172 hrq->db_format);
15173 status = -EINVAL;
15174 goto out;
15175 }
15176
15177 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set,
15178 &rq_create->u.response);
15179 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset);
15180 if (!bar_memmap_p) {
15181 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15182 "3269 RQ[%d] failed to memmap pci "
15183 "barset:x%x\n", hrq->queue_id,
15184 pci_barset);
15185 status = -ENOMEM;
15186 goto out;
15187 }
15188
15189 db_offset = rq_create->u.response.doorbell_offset;
15190 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) &&
15191 (db_offset != LPFC_ULP1_RQ_DOORBELL)) {
15192 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15193 "3270 RQ[%d] doorbell offset not "
15194 "supported: x%x\n", hrq->queue_id,
15195 db_offset);
15196 status = -EINVAL;
15197 goto out;
15198 }
15199 hrq->db_regaddr = bar_memmap_p + db_offset;
15200 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15201 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, "
15202 "format:x%x\n", hrq->queue_id, pci_barset,
15203 db_offset, hrq->db_format);
15204 } else {
15205 hrq->db_format = LPFC_DB_RING_FORMAT;
15206 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
15207 }
15208 hrq->type = LPFC_HRQ;
15209 hrq->assoc_qid = cq->queue_id;
15210 hrq->subtype = subtype;
15211 hrq->host_index = 0;
15212 hrq->hba_index = 0;
15213 hrq->entry_repost = LPFC_RQ_REPOST;
15214
15215 /* now create the data queue */
15216 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15217 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
15218 length, LPFC_SLI4_MBX_EMBED);
15219 bf_set(lpfc_mbox_hdr_version, &shdr->request,
15220 phba->sli4_hba.pc_sli4_params.rqv);
15221 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
15222 bf_set(lpfc_rq_context_rqe_count_1,
15223 &rq_create->u.request.context, hrq->entry_count);
15224 if (subtype == LPFC_NVMET)
15225 rq_create->u.request.context.buffer_size =
15226 LPFC_NVMET_DATA_BUF_SIZE;
15227 else
15228 rq_create->u.request.context.buffer_size =
15229 LPFC_DATA_BUF_SIZE;
15230 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context,
15231 LPFC_RQE_SIZE_8);
15232 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context,
15233 (PAGE_SIZE/SLI4_PAGE_SIZE));
15234 } else {
15235 switch (drq->entry_count) {
15236 default:
15237 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15238 "2536 Unsupported RQ count. (%d)\n",
15239 drq->entry_count);
15240 if (drq->entry_count < 512) {
15241 status = -EINVAL;
15242 goto out;
15243 }
15244 /* otherwise default to smallest count (drop through) */
15245 case 512:
15246 bf_set(lpfc_rq_context_rqe_count,
15247 &rq_create->u.request.context,
15248 LPFC_RQ_RING_SIZE_512);
15249 break;
15250 case 1024:
15251 bf_set(lpfc_rq_context_rqe_count,
15252 &rq_create->u.request.context,
15253 LPFC_RQ_RING_SIZE_1024);
15254 break;
15255 case 2048:
15256 bf_set(lpfc_rq_context_rqe_count,
15257 &rq_create->u.request.context,
15258 LPFC_RQ_RING_SIZE_2048);
15259 break;
15260 case 4096:
15261 bf_set(lpfc_rq_context_rqe_count,
15262 &rq_create->u.request.context,
15263 LPFC_RQ_RING_SIZE_4096);
15264 break;
15265 }
15266 if (subtype == LPFC_NVMET)
15267 bf_set(lpfc_rq_context_buf_size,
15268 &rq_create->u.request.context,
15269 LPFC_NVMET_DATA_BUF_SIZE);
15270 else
15271 bf_set(lpfc_rq_context_buf_size,
15272 &rq_create->u.request.context,
15273 LPFC_DATA_BUF_SIZE);
15274 }
15275 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
15276 cq->queue_id);
15277 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
15278 drq->page_count);
15279 list_for_each_entry(dmabuf, &drq->page_list, list) {
15280 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
15281 putPaddrLow(dmabuf->phys);
15282 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
15283 putPaddrHigh(dmabuf->phys);
15284 }
15285 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
15286 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
15287 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15288 /* The IOCTL status is embedded in the mailbox subheader. */
15289 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
15290 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15291 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15292 if (shdr_status || shdr_add_status || rc) {
15293 status = -ENXIO;
15294 goto out;
15295 }
15296 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
15297 if (drq->queue_id == 0xFFFF) {
15298 status = -ENXIO;
15299 goto out;
15300 }
15301 drq->type = LPFC_DRQ;
15302 drq->assoc_qid = cq->queue_id;
15303 drq->subtype = subtype;
15304 drq->host_index = 0;
15305 drq->hba_index = 0;
15306 drq->entry_repost = LPFC_RQ_REPOST;
15307
15308 /* link the header and data RQs onto the parent cq child list */
15309 list_add_tail(&hrq->list, &cq->child_list);
15310 list_add_tail(&drq->list, &cq->child_list);
15311
15312 out:
15313 mempool_free(mbox, phba->mbox_mem_pool);
15314 return status;
15315 }
15316
15317 /**
15318 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA
15319 * @phba: HBA structure that indicates port to create a queue on.
15320 * @hrqp: The queue structure array to use to create the header receive queues.
15321 * @drqp: The queue structure array to use to create the data receive queues.
15322 * @cqp: The completion queue array to bind these receive queues to.
15323 *
15324 * This function creates a receive buffer queue pair , as detailed in @hrq and
15325 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
15326 * to the HBA.
15327 *
15328 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
15329 * struct is used to get the entry count that is necessary to determine the
15330 * number of pages to use for this queue. The @cq is used to indicate which
15331 * completion queue to bind received buffers that are posted to these queues to.
15332 * This function will send the RQ_CREATE mailbox command to the HBA to setup the
15333 * receive queue pair. This function is asynchronous and will wait for the
15334 * mailbox command to finish before continuing.
15335 *
15336 * On success this function will return a zero. If unable to allocate enough
15337 * memory this function will return -ENOMEM. If the queue create mailbox command
15338 * fails this function will return -ENXIO.
15339 **/
15340 int
lpfc_mrq_create(struct lpfc_hba * phba,struct lpfc_queue ** hrqp,struct lpfc_queue ** drqp,struct lpfc_queue ** cqp,uint32_t subtype)15341 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp,
15342 struct lpfc_queue **drqp, struct lpfc_queue **cqp,
15343 uint32_t subtype)
15344 {
15345 struct lpfc_queue *hrq, *drq, *cq;
15346 struct lpfc_mbx_rq_create_v2 *rq_create;
15347 struct lpfc_dmabuf *dmabuf;
15348 LPFC_MBOXQ_t *mbox;
15349 int rc, length, alloclen, status = 0;
15350 int cnt, idx, numrq, page_idx = 0;
15351 uint32_t shdr_status, shdr_add_status;
15352 union lpfc_sli4_cfg_shdr *shdr;
15353 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15354
15355 numrq = phba->cfg_nvmet_mrq;
15356 /* sanity check on array memory */
15357 if (!hrqp || !drqp || !cqp || !numrq)
15358 return -ENODEV;
15359 if (!phba->sli4_hba.pc_sli4_params.supported)
15360 hw_page_size = SLI4_PAGE_SIZE;
15361
15362 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15363 if (!mbox)
15364 return -ENOMEM;
15365
15366 length = sizeof(struct lpfc_mbx_rq_create_v2);
15367 length += ((2 * numrq * hrqp[0]->page_count) *
15368 sizeof(struct dma_address));
15369
15370 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15371 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length,
15372 LPFC_SLI4_MBX_NEMBED);
15373 if (alloclen < length) {
15374 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15375 "3099 Allocated DMA memory size (%d) is "
15376 "less than the requested DMA memory size "
15377 "(%d)\n", alloclen, length);
15378 status = -ENOMEM;
15379 goto out;
15380 }
15381
15382
15383
15384 rq_create = mbox->sge_array->addr[0];
15385 shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr;
15386
15387 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2);
15388 cnt = 0;
15389
15390 for (idx = 0; idx < numrq; idx++) {
15391 hrq = hrqp[idx];
15392 drq = drqp[idx];
15393 cq = cqp[idx];
15394
15395 /* sanity check on queue memory */
15396 if (!hrq || !drq || !cq) {
15397 status = -ENODEV;
15398 goto out;
15399 }
15400
15401 if (hrq->entry_count != drq->entry_count) {
15402 status = -EINVAL;
15403 goto out;
15404 }
15405
15406 if (idx == 0) {
15407 bf_set(lpfc_mbx_rq_create_num_pages,
15408 &rq_create->u.request,
15409 hrq->page_count);
15410 bf_set(lpfc_mbx_rq_create_rq_cnt,
15411 &rq_create->u.request, (numrq * 2));
15412 bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request,
15413 1);
15414 bf_set(lpfc_rq_context_base_cq,
15415 &rq_create->u.request.context,
15416 cq->queue_id);
15417 bf_set(lpfc_rq_context_data_size,
15418 &rq_create->u.request.context,
15419 LPFC_NVMET_DATA_BUF_SIZE);
15420 bf_set(lpfc_rq_context_hdr_size,
15421 &rq_create->u.request.context,
15422 LPFC_HDR_BUF_SIZE);
15423 bf_set(lpfc_rq_context_rqe_count_1,
15424 &rq_create->u.request.context,
15425 hrq->entry_count);
15426 bf_set(lpfc_rq_context_rqe_size,
15427 &rq_create->u.request.context,
15428 LPFC_RQE_SIZE_8);
15429 bf_set(lpfc_rq_context_page_size,
15430 &rq_create->u.request.context,
15431 (PAGE_SIZE/SLI4_PAGE_SIZE));
15432 }
15433 rc = 0;
15434 list_for_each_entry(dmabuf, &hrq->page_list, list) {
15435 memset(dmabuf->virt, 0, hw_page_size);
15436 cnt = page_idx + dmabuf->buffer_tag;
15437 rq_create->u.request.page[cnt].addr_lo =
15438 putPaddrLow(dmabuf->phys);
15439 rq_create->u.request.page[cnt].addr_hi =
15440 putPaddrHigh(dmabuf->phys);
15441 rc++;
15442 }
15443 page_idx += rc;
15444
15445 rc = 0;
15446 list_for_each_entry(dmabuf, &drq->page_list, list) {
15447 memset(dmabuf->virt, 0, hw_page_size);
15448 cnt = page_idx + dmabuf->buffer_tag;
15449 rq_create->u.request.page[cnt].addr_lo =
15450 putPaddrLow(dmabuf->phys);
15451 rq_create->u.request.page[cnt].addr_hi =
15452 putPaddrHigh(dmabuf->phys);
15453 rc++;
15454 }
15455 page_idx += rc;
15456
15457 hrq->db_format = LPFC_DB_RING_FORMAT;
15458 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
15459 hrq->type = LPFC_HRQ;
15460 hrq->assoc_qid = cq->queue_id;
15461 hrq->subtype = subtype;
15462 hrq->host_index = 0;
15463 hrq->hba_index = 0;
15464 hrq->entry_repost = LPFC_RQ_REPOST;
15465
15466 drq->db_format = LPFC_DB_RING_FORMAT;
15467 drq->db_regaddr = phba->sli4_hba.RQDBregaddr;
15468 drq->type = LPFC_DRQ;
15469 drq->assoc_qid = cq->queue_id;
15470 drq->subtype = subtype;
15471 drq->host_index = 0;
15472 drq->hba_index = 0;
15473 drq->entry_repost = LPFC_RQ_REPOST;
15474
15475 list_add_tail(&hrq->list, &cq->child_list);
15476 list_add_tail(&drq->list, &cq->child_list);
15477 }
15478
15479 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15480 /* The IOCTL status is embedded in the mailbox subheader. */
15481 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15482 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15483 if (shdr_status || shdr_add_status || rc) {
15484 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15485 "3120 RQ_CREATE mailbox failed with "
15486 "status x%x add_status x%x, mbx status x%x\n",
15487 shdr_status, shdr_add_status, rc);
15488 status = -ENXIO;
15489 goto out;
15490 }
15491 rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
15492 if (rc == 0xFFFF) {
15493 status = -ENXIO;
15494 goto out;
15495 }
15496
15497 /* Initialize all RQs with associated queue id */
15498 for (idx = 0; idx < numrq; idx++) {
15499 hrq = hrqp[idx];
15500 hrq->queue_id = rc + (2 * idx);
15501 drq = drqp[idx];
15502 drq->queue_id = rc + (2 * idx) + 1;
15503 }
15504
15505 out:
15506 lpfc_sli4_mbox_cmd_free(phba, mbox);
15507 return status;
15508 }
15509
15510 /**
15511 * lpfc_eq_destroy - Destroy an event Queue on the HBA
15512 * @eq: The queue structure associated with the queue to destroy.
15513 *
15514 * This function destroys a queue, as detailed in @eq by sending an mailbox
15515 * command, specific to the type of queue, to the HBA.
15516 *
15517 * The @eq struct is used to get the queue ID of the queue to destroy.
15518 *
15519 * On success this function will return a zero. If the queue destroy mailbox
15520 * command fails this function will return -ENXIO.
15521 **/
15522 int
lpfc_eq_destroy(struct lpfc_hba * phba,struct lpfc_queue * eq)15523 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq)
15524 {
15525 LPFC_MBOXQ_t *mbox;
15526 int rc, length, status = 0;
15527 uint32_t shdr_status, shdr_add_status;
15528 union lpfc_sli4_cfg_shdr *shdr;
15529
15530 /* sanity check on queue memory */
15531 if (!eq)
15532 return -ENODEV;
15533 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL);
15534 if (!mbox)
15535 return -ENOMEM;
15536 length = (sizeof(struct lpfc_mbx_eq_destroy) -
15537 sizeof(struct lpfc_sli4_cfg_mhdr));
15538 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15539 LPFC_MBOX_OPCODE_EQ_DESTROY,
15540 length, LPFC_SLI4_MBX_EMBED);
15541 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request,
15542 eq->queue_id);
15543 mbox->vport = eq->phba->pport;
15544 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
15545
15546 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL);
15547 /* The IOCTL status is embedded in the mailbox subheader. */
15548 shdr = (union lpfc_sli4_cfg_shdr *)
15549 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr;
15550 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15551 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15552 if (shdr_status || shdr_add_status || rc) {
15553 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15554 "2505 EQ_DESTROY mailbox failed with "
15555 "status x%x add_status x%x, mbx status x%x\n",
15556 shdr_status, shdr_add_status, rc);
15557 status = -ENXIO;
15558 }
15559
15560 /* Remove eq from any list */
15561 list_del_init(&eq->list);
15562 mempool_free(mbox, eq->phba->mbox_mem_pool);
15563 return status;
15564 }
15565
15566 /**
15567 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA
15568 * @cq: The queue structure associated with the queue to destroy.
15569 *
15570 * This function destroys a queue, as detailed in @cq by sending an mailbox
15571 * command, specific to the type of queue, to the HBA.
15572 *
15573 * The @cq struct is used to get the queue ID of the queue to destroy.
15574 *
15575 * On success this function will return a zero. If the queue destroy mailbox
15576 * command fails this function will return -ENXIO.
15577 **/
15578 int
lpfc_cq_destroy(struct lpfc_hba * phba,struct lpfc_queue * cq)15579 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq)
15580 {
15581 LPFC_MBOXQ_t *mbox;
15582 int rc, length, status = 0;
15583 uint32_t shdr_status, shdr_add_status;
15584 union lpfc_sli4_cfg_shdr *shdr;
15585
15586 /* sanity check on queue memory */
15587 if (!cq)
15588 return -ENODEV;
15589 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL);
15590 if (!mbox)
15591 return -ENOMEM;
15592 length = (sizeof(struct lpfc_mbx_cq_destroy) -
15593 sizeof(struct lpfc_sli4_cfg_mhdr));
15594 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15595 LPFC_MBOX_OPCODE_CQ_DESTROY,
15596 length, LPFC_SLI4_MBX_EMBED);
15597 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request,
15598 cq->queue_id);
15599 mbox->vport = cq->phba->pport;
15600 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
15601 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL);
15602 /* The IOCTL status is embedded in the mailbox subheader. */
15603 shdr = (union lpfc_sli4_cfg_shdr *)
15604 &mbox->u.mqe.un.wq_create.header.cfg_shdr;
15605 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15606 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15607 if (shdr_status || shdr_add_status || rc) {
15608 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15609 "2506 CQ_DESTROY mailbox failed with "
15610 "status x%x add_status x%x, mbx status x%x\n",
15611 shdr_status, shdr_add_status, rc);
15612 status = -ENXIO;
15613 }
15614 /* Remove cq from any list */
15615 list_del_init(&cq->list);
15616 mempool_free(mbox, cq->phba->mbox_mem_pool);
15617 return status;
15618 }
15619
15620 /**
15621 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA
15622 * @qm: The queue structure associated with the queue to destroy.
15623 *
15624 * This function destroys a queue, as detailed in @mq by sending an mailbox
15625 * command, specific to the type of queue, to the HBA.
15626 *
15627 * The @mq struct is used to get the queue ID of the queue to destroy.
15628 *
15629 * On success this function will return a zero. If the queue destroy mailbox
15630 * command fails this function will return -ENXIO.
15631 **/
15632 int
lpfc_mq_destroy(struct lpfc_hba * phba,struct lpfc_queue * mq)15633 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq)
15634 {
15635 LPFC_MBOXQ_t *mbox;
15636 int rc, length, status = 0;
15637 uint32_t shdr_status, shdr_add_status;
15638 union lpfc_sli4_cfg_shdr *shdr;
15639
15640 /* sanity check on queue memory */
15641 if (!mq)
15642 return -ENODEV;
15643 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL);
15644 if (!mbox)
15645 return -ENOMEM;
15646 length = (sizeof(struct lpfc_mbx_mq_destroy) -
15647 sizeof(struct lpfc_sli4_cfg_mhdr));
15648 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15649 LPFC_MBOX_OPCODE_MQ_DESTROY,
15650 length, LPFC_SLI4_MBX_EMBED);
15651 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request,
15652 mq->queue_id);
15653 mbox->vport = mq->phba->pport;
15654 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
15655 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL);
15656 /* The IOCTL status is embedded in the mailbox subheader. */
15657 shdr = (union lpfc_sli4_cfg_shdr *)
15658 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr;
15659 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15660 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15661 if (shdr_status || shdr_add_status || rc) {
15662 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15663 "2507 MQ_DESTROY mailbox failed with "
15664 "status x%x add_status x%x, mbx status x%x\n",
15665 shdr_status, shdr_add_status, rc);
15666 status = -ENXIO;
15667 }
15668 /* Remove mq from any list */
15669 list_del_init(&mq->list);
15670 mempool_free(mbox, mq->phba->mbox_mem_pool);
15671 return status;
15672 }
15673
15674 /**
15675 * lpfc_wq_destroy - Destroy a Work Queue on the HBA
15676 * @wq: The queue structure associated with the queue to destroy.
15677 *
15678 * This function destroys a queue, as detailed in @wq by sending an mailbox
15679 * command, specific to the type of queue, to the HBA.
15680 *
15681 * The @wq struct is used to get the queue ID of the queue to destroy.
15682 *
15683 * On success this function will return a zero. If the queue destroy mailbox
15684 * command fails this function will return -ENXIO.
15685 **/
15686 int
lpfc_wq_destroy(struct lpfc_hba * phba,struct lpfc_queue * wq)15687 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq)
15688 {
15689 LPFC_MBOXQ_t *mbox;
15690 int rc, length, status = 0;
15691 uint32_t shdr_status, shdr_add_status;
15692 union lpfc_sli4_cfg_shdr *shdr;
15693
15694 /* sanity check on queue memory */
15695 if (!wq)
15696 return -ENODEV;
15697 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL);
15698 if (!mbox)
15699 return -ENOMEM;
15700 length = (sizeof(struct lpfc_mbx_wq_destroy) -
15701 sizeof(struct lpfc_sli4_cfg_mhdr));
15702 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15703 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY,
15704 length, LPFC_SLI4_MBX_EMBED);
15705 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request,
15706 wq->queue_id);
15707 mbox->vport = wq->phba->pport;
15708 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
15709 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL);
15710 shdr = (union lpfc_sli4_cfg_shdr *)
15711 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr;
15712 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15713 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15714 if (shdr_status || shdr_add_status || rc) {
15715 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15716 "2508 WQ_DESTROY mailbox failed with "
15717 "status x%x add_status x%x, mbx status x%x\n",
15718 shdr_status, shdr_add_status, rc);
15719 status = -ENXIO;
15720 }
15721 /* Remove wq from any list */
15722 list_del_init(&wq->list);
15723 kfree(wq->pring);
15724 wq->pring = NULL;
15725 mempool_free(mbox, wq->phba->mbox_mem_pool);
15726 return status;
15727 }
15728
15729 /**
15730 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA
15731 * @rq: The queue structure associated with the queue to destroy.
15732 *
15733 * This function destroys a queue, as detailed in @rq by sending an mailbox
15734 * command, specific to the type of queue, to the HBA.
15735 *
15736 * The @rq struct is used to get the queue ID of the queue to destroy.
15737 *
15738 * On success this function will return a zero. If the queue destroy mailbox
15739 * command fails this function will return -ENXIO.
15740 **/
15741 int
lpfc_rq_destroy(struct lpfc_hba * phba,struct lpfc_queue * hrq,struct lpfc_queue * drq)15742 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq,
15743 struct lpfc_queue *drq)
15744 {
15745 LPFC_MBOXQ_t *mbox;
15746 int rc, length, status = 0;
15747 uint32_t shdr_status, shdr_add_status;
15748 union lpfc_sli4_cfg_shdr *shdr;
15749
15750 /* sanity check on queue memory */
15751 if (!hrq || !drq)
15752 return -ENODEV;
15753 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL);
15754 if (!mbox)
15755 return -ENOMEM;
15756 length = (sizeof(struct lpfc_mbx_rq_destroy) -
15757 sizeof(struct lpfc_sli4_cfg_mhdr));
15758 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15759 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY,
15760 length, LPFC_SLI4_MBX_EMBED);
15761 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
15762 hrq->queue_id);
15763 mbox->vport = hrq->phba->pport;
15764 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
15765 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL);
15766 /* The IOCTL status is embedded in the mailbox subheader. */
15767 shdr = (union lpfc_sli4_cfg_shdr *)
15768 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
15769 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15770 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15771 if (shdr_status || shdr_add_status || rc) {
15772 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15773 "2509 RQ_DESTROY mailbox failed with "
15774 "status x%x add_status x%x, mbx status x%x\n",
15775 shdr_status, shdr_add_status, rc);
15776 if (rc != MBX_TIMEOUT)
15777 mempool_free(mbox, hrq->phba->mbox_mem_pool);
15778 return -ENXIO;
15779 }
15780 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
15781 drq->queue_id);
15782 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL);
15783 shdr = (union lpfc_sli4_cfg_shdr *)
15784 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
15785 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15786 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15787 if (shdr_status || shdr_add_status || rc) {
15788 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15789 "2510 RQ_DESTROY mailbox failed with "
15790 "status x%x add_status x%x, mbx status x%x\n",
15791 shdr_status, shdr_add_status, rc);
15792 status = -ENXIO;
15793 }
15794 list_del_init(&hrq->list);
15795 list_del_init(&drq->list);
15796 mempool_free(mbox, hrq->phba->mbox_mem_pool);
15797 return status;
15798 }
15799
15800 /**
15801 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA
15802 * @phba: The virtual port for which this call being executed.
15803 * @pdma_phys_addr0: Physical address of the 1st SGL page.
15804 * @pdma_phys_addr1: Physical address of the 2nd SGL page.
15805 * @xritag: the xritag that ties this io to the SGL pages.
15806 *
15807 * This routine will post the sgl pages for the IO that has the xritag
15808 * that is in the iocbq structure. The xritag is assigned during iocbq
15809 * creation and persists for as long as the driver is loaded.
15810 * if the caller has fewer than 256 scatter gather segments to map then
15811 * pdma_phys_addr1 should be 0.
15812 * If the caller needs to map more than 256 scatter gather segment then
15813 * pdma_phys_addr1 should be a valid physical address.
15814 * physical address for SGLs must be 64 byte aligned.
15815 * If you are going to map 2 SGL's then the first one must have 256 entries
15816 * the second sgl can have between 1 and 256 entries.
15817 *
15818 * Return codes:
15819 * 0 - Success
15820 * -ENXIO, -ENOMEM - Failure
15821 **/
15822 int
lpfc_sli4_post_sgl(struct lpfc_hba * phba,dma_addr_t pdma_phys_addr0,dma_addr_t pdma_phys_addr1,uint16_t xritag)15823 lpfc_sli4_post_sgl(struct lpfc_hba *phba,
15824 dma_addr_t pdma_phys_addr0,
15825 dma_addr_t pdma_phys_addr1,
15826 uint16_t xritag)
15827 {
15828 struct lpfc_mbx_post_sgl_pages *post_sgl_pages;
15829 LPFC_MBOXQ_t *mbox;
15830 int rc;
15831 uint32_t shdr_status, shdr_add_status;
15832 uint32_t mbox_tmo;
15833 union lpfc_sli4_cfg_shdr *shdr;
15834
15835 if (xritag == NO_XRI) {
15836 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15837 "0364 Invalid param:\n");
15838 return -EINVAL;
15839 }
15840
15841 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15842 if (!mbox)
15843 return -ENOMEM;
15844
15845 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15846 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES,
15847 sizeof(struct lpfc_mbx_post_sgl_pages) -
15848 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
15849
15850 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *)
15851 &mbox->u.mqe.un.post_sgl_pages;
15852 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag);
15853 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1);
15854
15855 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo =
15856 cpu_to_le32(putPaddrLow(pdma_phys_addr0));
15857 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi =
15858 cpu_to_le32(putPaddrHigh(pdma_phys_addr0));
15859
15860 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo =
15861 cpu_to_le32(putPaddrLow(pdma_phys_addr1));
15862 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi =
15863 cpu_to_le32(putPaddrHigh(pdma_phys_addr1));
15864 if (!phba->sli4_hba.intr_enable)
15865 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15866 else {
15867 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
15868 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
15869 }
15870 /* The IOCTL status is embedded in the mailbox subheader. */
15871 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr;
15872 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15873 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15874 if (rc != MBX_TIMEOUT)
15875 mempool_free(mbox, phba->mbox_mem_pool);
15876 if (shdr_status || shdr_add_status || rc) {
15877 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15878 "2511 POST_SGL mailbox failed with "
15879 "status x%x add_status x%x, mbx status x%x\n",
15880 shdr_status, shdr_add_status, rc);
15881 }
15882 return 0;
15883 }
15884
15885 /**
15886 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range
15887 * @phba: pointer to lpfc hba data structure.
15888 *
15889 * This routine is invoked to post rpi header templates to the
15890 * HBA consistent with the SLI-4 interface spec. This routine
15891 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
15892 * SLI4_PAGE_SIZE modulo 64 rpi context headers.
15893 *
15894 * Returns
15895 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
15896 * LPFC_RPI_ALLOC_ERROR if no rpis are available.
15897 **/
15898 static uint16_t
lpfc_sli4_alloc_xri(struct lpfc_hba * phba)15899 lpfc_sli4_alloc_xri(struct lpfc_hba *phba)
15900 {
15901 unsigned long xri;
15902
15903 /*
15904 * Fetch the next logical xri. Because this index is logical,
15905 * the driver starts at 0 each time.
15906 */
15907 spin_lock_irq(&phba->hbalock);
15908 xri = find_next_zero_bit(phba->sli4_hba.xri_bmask,
15909 phba->sli4_hba.max_cfg_param.max_xri, 0);
15910 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) {
15911 spin_unlock_irq(&phba->hbalock);
15912 return NO_XRI;
15913 } else {
15914 set_bit(xri, phba->sli4_hba.xri_bmask);
15915 phba->sli4_hba.max_cfg_param.xri_used++;
15916 }
15917 spin_unlock_irq(&phba->hbalock);
15918 return xri;
15919 }
15920
15921 /**
15922 * lpfc_sli4_free_xri - Release an xri for reuse.
15923 * @phba: pointer to lpfc hba data structure.
15924 *
15925 * This routine is invoked to release an xri to the pool of
15926 * available rpis maintained by the driver.
15927 **/
15928 static void
__lpfc_sli4_free_xri(struct lpfc_hba * phba,int xri)15929 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
15930 {
15931 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) {
15932 phba->sli4_hba.max_cfg_param.xri_used--;
15933 }
15934 }
15935
15936 /**
15937 * lpfc_sli4_free_xri - Release an xri for reuse.
15938 * @phba: pointer to lpfc hba data structure.
15939 *
15940 * This routine is invoked to release an xri to the pool of
15941 * available rpis maintained by the driver.
15942 **/
15943 void
lpfc_sli4_free_xri(struct lpfc_hba * phba,int xri)15944 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
15945 {
15946 spin_lock_irq(&phba->hbalock);
15947 __lpfc_sli4_free_xri(phba, xri);
15948 spin_unlock_irq(&phba->hbalock);
15949 }
15950
15951 /**
15952 * lpfc_sli4_next_xritag - Get an xritag for the io
15953 * @phba: Pointer to HBA context object.
15954 *
15955 * This function gets an xritag for the iocb. If there is no unused xritag
15956 * it will return 0xffff.
15957 * The function returns the allocated xritag if successful, else returns zero.
15958 * Zero is not a valid xritag.
15959 * The caller is not required to hold any lock.
15960 **/
15961 uint16_t
lpfc_sli4_next_xritag(struct lpfc_hba * phba)15962 lpfc_sli4_next_xritag(struct lpfc_hba *phba)
15963 {
15964 uint16_t xri_index;
15965
15966 xri_index = lpfc_sli4_alloc_xri(phba);
15967 if (xri_index == NO_XRI)
15968 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
15969 "2004 Failed to allocate XRI.last XRITAG is %d"
15970 " Max XRI is %d, Used XRI is %d\n",
15971 xri_index,
15972 phba->sli4_hba.max_cfg_param.max_xri,
15973 phba->sli4_hba.max_cfg_param.xri_used);
15974 return xri_index;
15975 }
15976
15977 /**
15978 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port.
15979 * @phba: pointer to lpfc hba data structure.
15980 * @post_sgl_list: pointer to els sgl entry list.
15981 * @count: number of els sgl entries on the list.
15982 *
15983 * This routine is invoked to post a block of driver's sgl pages to the
15984 * HBA using non-embedded mailbox command. No Lock is held. This routine
15985 * is only called when the driver is loading and after all IO has been
15986 * stopped.
15987 **/
15988 static int
lpfc_sli4_post_sgl_list(struct lpfc_hba * phba,struct list_head * post_sgl_list,int post_cnt)15989 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba,
15990 struct list_head *post_sgl_list,
15991 int post_cnt)
15992 {
15993 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
15994 struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
15995 struct sgl_page_pairs *sgl_pg_pairs;
15996 void *viraddr;
15997 LPFC_MBOXQ_t *mbox;
15998 uint32_t reqlen, alloclen, pg_pairs;
15999 uint32_t mbox_tmo;
16000 uint16_t xritag_start = 0;
16001 int rc = 0;
16002 uint32_t shdr_status, shdr_add_status;
16003 union lpfc_sli4_cfg_shdr *shdr;
16004
16005 reqlen = post_cnt * sizeof(struct sgl_page_pairs) +
16006 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
16007 if (reqlen > SLI4_PAGE_SIZE) {
16008 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16009 "2559 Block sgl registration required DMA "
16010 "size (%d) great than a page\n", reqlen);
16011 return -ENOMEM;
16012 }
16013
16014 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16015 if (!mbox)
16016 return -ENOMEM;
16017
16018 /* Allocate DMA memory and set up the non-embedded mailbox command */
16019 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16020 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen,
16021 LPFC_SLI4_MBX_NEMBED);
16022
16023 if (alloclen < reqlen) {
16024 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16025 "0285 Allocated DMA memory size (%d) is "
16026 "less than the requested DMA memory "
16027 "size (%d)\n", alloclen, reqlen);
16028 lpfc_sli4_mbox_cmd_free(phba, mbox);
16029 return -ENOMEM;
16030 }
16031 /* Set up the SGL pages in the non-embedded DMA pages */
16032 viraddr = mbox->sge_array->addr[0];
16033 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
16034 sgl_pg_pairs = &sgl->sgl_pg_pairs;
16035
16036 pg_pairs = 0;
16037 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) {
16038 /* Set up the sge entry */
16039 sgl_pg_pairs->sgl_pg0_addr_lo =
16040 cpu_to_le32(putPaddrLow(sglq_entry->phys));
16041 sgl_pg_pairs->sgl_pg0_addr_hi =
16042 cpu_to_le32(putPaddrHigh(sglq_entry->phys));
16043 sgl_pg_pairs->sgl_pg1_addr_lo =
16044 cpu_to_le32(putPaddrLow(0));
16045 sgl_pg_pairs->sgl_pg1_addr_hi =
16046 cpu_to_le32(putPaddrHigh(0));
16047
16048 /* Keep the first xritag on the list */
16049 if (pg_pairs == 0)
16050 xritag_start = sglq_entry->sli4_xritag;
16051 sgl_pg_pairs++;
16052 pg_pairs++;
16053 }
16054
16055 /* Complete initialization and perform endian conversion. */
16056 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
16057 bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt);
16058 sgl->word0 = cpu_to_le32(sgl->word0);
16059
16060 if (!phba->sli4_hba.intr_enable)
16061 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16062 else {
16063 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
16064 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
16065 }
16066 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr;
16067 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16068 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16069 if (rc != MBX_TIMEOUT)
16070 lpfc_sli4_mbox_cmd_free(phba, mbox);
16071 if (shdr_status || shdr_add_status || rc) {
16072 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16073 "2513 POST_SGL_BLOCK mailbox command failed "
16074 "status x%x add_status x%x mbx status x%x\n",
16075 shdr_status, shdr_add_status, rc);
16076 rc = -ENXIO;
16077 }
16078 return rc;
16079 }
16080
16081 /**
16082 * lpfc_sli4_post_scsi_sgl_block - post a block of scsi sgl list to firmware
16083 * @phba: pointer to lpfc hba data structure.
16084 * @sblist: pointer to scsi buffer list.
16085 * @count: number of scsi buffers on the list.
16086 *
16087 * This routine is invoked to post a block of @count scsi sgl pages from a
16088 * SCSI buffer list @sblist to the HBA using non-embedded mailbox command.
16089 * No Lock is held.
16090 *
16091 **/
16092 int
lpfc_sli4_post_scsi_sgl_block(struct lpfc_hba * phba,struct list_head * sblist,int count)16093 lpfc_sli4_post_scsi_sgl_block(struct lpfc_hba *phba,
16094 struct list_head *sblist,
16095 int count)
16096 {
16097 struct lpfc_scsi_buf *psb;
16098 struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
16099 struct sgl_page_pairs *sgl_pg_pairs;
16100 void *viraddr;
16101 LPFC_MBOXQ_t *mbox;
16102 uint32_t reqlen, alloclen, pg_pairs;
16103 uint32_t mbox_tmo;
16104 uint16_t xritag_start = 0;
16105 int rc = 0;
16106 uint32_t shdr_status, shdr_add_status;
16107 dma_addr_t pdma_phys_bpl1;
16108 union lpfc_sli4_cfg_shdr *shdr;
16109
16110 /* Calculate the requested length of the dma memory */
16111 reqlen = count * sizeof(struct sgl_page_pairs) +
16112 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
16113 if (reqlen > SLI4_PAGE_SIZE) {
16114 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
16115 "0217 Block sgl registration required DMA "
16116 "size (%d) great than a page\n", reqlen);
16117 return -ENOMEM;
16118 }
16119 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16120 if (!mbox) {
16121 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16122 "0283 Failed to allocate mbox cmd memory\n");
16123 return -ENOMEM;
16124 }
16125
16126 /* Allocate DMA memory and set up the non-embedded mailbox command */
16127 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16128 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen,
16129 LPFC_SLI4_MBX_NEMBED);
16130
16131 if (alloclen < reqlen) {
16132 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16133 "2561 Allocated DMA memory size (%d) is "
16134 "less than the requested DMA memory "
16135 "size (%d)\n", alloclen, reqlen);
16136 lpfc_sli4_mbox_cmd_free(phba, mbox);
16137 return -ENOMEM;
16138 }
16139
16140 /* Get the first SGE entry from the non-embedded DMA memory */
16141 viraddr = mbox->sge_array->addr[0];
16142
16143 /* Set up the SGL pages in the non-embedded DMA pages */
16144 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
16145 sgl_pg_pairs = &sgl->sgl_pg_pairs;
16146
16147 pg_pairs = 0;
16148 list_for_each_entry(psb, sblist, list) {
16149 /* Set up the sge entry */
16150 sgl_pg_pairs->sgl_pg0_addr_lo =
16151 cpu_to_le32(putPaddrLow(psb->dma_phys_bpl));
16152 sgl_pg_pairs->sgl_pg0_addr_hi =
16153 cpu_to_le32(putPaddrHigh(psb->dma_phys_bpl));
16154 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE)
16155 pdma_phys_bpl1 = psb->dma_phys_bpl + SGL_PAGE_SIZE;
16156 else
16157 pdma_phys_bpl1 = 0;
16158 sgl_pg_pairs->sgl_pg1_addr_lo =
16159 cpu_to_le32(putPaddrLow(pdma_phys_bpl1));
16160 sgl_pg_pairs->sgl_pg1_addr_hi =
16161 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1));
16162 /* Keep the first xritag on the list */
16163 if (pg_pairs == 0)
16164 xritag_start = psb->cur_iocbq.sli4_xritag;
16165 sgl_pg_pairs++;
16166 pg_pairs++;
16167 }
16168 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
16169 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs);
16170 /* Perform endian conversion if necessary */
16171 sgl->word0 = cpu_to_le32(sgl->word0);
16172
16173 if (!phba->sli4_hba.intr_enable)
16174 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16175 else {
16176 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
16177 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
16178 }
16179 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr;
16180 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16181 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16182 if (rc != MBX_TIMEOUT)
16183 lpfc_sli4_mbox_cmd_free(phba, mbox);
16184 if (shdr_status || shdr_add_status || rc) {
16185 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16186 "2564 POST_SGL_BLOCK mailbox command failed "
16187 "status x%x add_status x%x mbx status x%x\n",
16188 shdr_status, shdr_add_status, rc);
16189 rc = -ENXIO;
16190 }
16191 return rc;
16192 }
16193
16194 /**
16195 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle
16196 * @phba: pointer to lpfc_hba struct that the frame was received on
16197 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
16198 *
16199 * This function checks the fields in the @fc_hdr to see if the FC frame is a
16200 * valid type of frame that the LPFC driver will handle. This function will
16201 * return a zero if the frame is a valid frame or a non zero value when the
16202 * frame does not pass the check.
16203 **/
16204 static int
lpfc_fc_frame_check(struct lpfc_hba * phba,struct fc_frame_header * fc_hdr)16205 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr)
16206 {
16207 /* make rctl_names static to save stack space */
16208 struct fc_vft_header *fc_vft_hdr;
16209 uint32_t *header = (uint32_t *) fc_hdr;
16210
16211 #define FC_RCTL_MDS_DIAGS 0xF4
16212
16213 switch (fc_hdr->fh_r_ctl) {
16214 case FC_RCTL_DD_UNCAT: /* uncategorized information */
16215 case FC_RCTL_DD_SOL_DATA: /* solicited data */
16216 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */
16217 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */
16218 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */
16219 case FC_RCTL_DD_DATA_DESC: /* data descriptor */
16220 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */
16221 case FC_RCTL_DD_CMD_STATUS: /* command status */
16222 case FC_RCTL_ELS_REQ: /* extended link services request */
16223 case FC_RCTL_ELS_REP: /* extended link services reply */
16224 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */
16225 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */
16226 case FC_RCTL_BA_NOP: /* basic link service NOP */
16227 case FC_RCTL_BA_ABTS: /* basic link service abort */
16228 case FC_RCTL_BA_RMC: /* remove connection */
16229 case FC_RCTL_BA_ACC: /* basic accept */
16230 case FC_RCTL_BA_RJT: /* basic reject */
16231 case FC_RCTL_BA_PRMT:
16232 case FC_RCTL_ACK_1: /* acknowledge_1 */
16233 case FC_RCTL_ACK_0: /* acknowledge_0 */
16234 case FC_RCTL_P_RJT: /* port reject */
16235 case FC_RCTL_F_RJT: /* fabric reject */
16236 case FC_RCTL_P_BSY: /* port busy */
16237 case FC_RCTL_F_BSY: /* fabric busy to data frame */
16238 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */
16239 case FC_RCTL_LCR: /* link credit reset */
16240 case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */
16241 case FC_RCTL_END: /* end */
16242 break;
16243 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */
16244 fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
16245 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1];
16246 return lpfc_fc_frame_check(phba, fc_hdr);
16247 default:
16248 goto drop;
16249 }
16250
16251 #define FC_TYPE_VENDOR_UNIQUE 0xFF
16252
16253 switch (fc_hdr->fh_type) {
16254 case FC_TYPE_BLS:
16255 case FC_TYPE_ELS:
16256 case FC_TYPE_FCP:
16257 case FC_TYPE_CT:
16258 case FC_TYPE_NVME:
16259 case FC_TYPE_VENDOR_UNIQUE:
16260 break;
16261 case FC_TYPE_IP:
16262 case FC_TYPE_ILS:
16263 default:
16264 goto drop;
16265 }
16266
16267 lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
16268 "2538 Received frame rctl:x%x, type:x%x, "
16269 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n",
16270 fc_hdr->fh_r_ctl, fc_hdr->fh_type,
16271 be32_to_cpu(header[0]), be32_to_cpu(header[1]),
16272 be32_to_cpu(header[2]), be32_to_cpu(header[3]),
16273 be32_to_cpu(header[4]), be32_to_cpu(header[5]),
16274 be32_to_cpu(header[6]));
16275 return 0;
16276 drop:
16277 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS,
16278 "2539 Dropped frame rctl:x%x type:x%x\n",
16279 fc_hdr->fh_r_ctl, fc_hdr->fh_type);
16280 return 1;
16281 }
16282
16283 /**
16284 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame
16285 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
16286 *
16287 * This function processes the FC header to retrieve the VFI from the VF
16288 * header, if one exists. This function will return the VFI if one exists
16289 * or 0 if no VSAN Header exists.
16290 **/
16291 static uint32_t
lpfc_fc_hdr_get_vfi(struct fc_frame_header * fc_hdr)16292 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr)
16293 {
16294 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
16295
16296 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH)
16297 return 0;
16298 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr);
16299 }
16300
16301 /**
16302 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to
16303 * @phba: Pointer to the HBA structure to search for the vport on
16304 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
16305 * @fcfi: The FC Fabric ID that the frame came from
16306 *
16307 * This function searches the @phba for a vport that matches the content of the
16308 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the
16309 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function
16310 * returns the matching vport pointer or NULL if unable to match frame to a
16311 * vport.
16312 **/
16313 static struct lpfc_vport *
lpfc_fc_frame_to_vport(struct lpfc_hba * phba,struct fc_frame_header * fc_hdr,uint16_t fcfi,uint32_t did)16314 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr,
16315 uint16_t fcfi, uint32_t did)
16316 {
16317 struct lpfc_vport **vports;
16318 struct lpfc_vport *vport = NULL;
16319 int i;
16320
16321 if (did == Fabric_DID)
16322 return phba->pport;
16323 if ((phba->pport->fc_flag & FC_PT2PT) &&
16324 !(phba->link_state == LPFC_HBA_READY))
16325 return phba->pport;
16326
16327 vports = lpfc_create_vport_work_array(phba);
16328 if (vports != NULL) {
16329 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) {
16330 if (phba->fcf.fcfi == fcfi &&
16331 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) &&
16332 vports[i]->fc_myDID == did) {
16333 vport = vports[i];
16334 break;
16335 }
16336 }
16337 }
16338 lpfc_destroy_vport_work_array(phba, vports);
16339 return vport;
16340 }
16341
16342 /**
16343 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp
16344 * @vport: The vport to work on.
16345 *
16346 * This function updates the receive sequence time stamp for this vport. The
16347 * receive sequence time stamp indicates the time that the last frame of the
16348 * the sequence that has been idle for the longest amount of time was received.
16349 * the driver uses this time stamp to indicate if any received sequences have
16350 * timed out.
16351 **/
16352 static void
lpfc_update_rcv_time_stamp(struct lpfc_vport * vport)16353 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport)
16354 {
16355 struct lpfc_dmabuf *h_buf;
16356 struct hbq_dmabuf *dmabuf = NULL;
16357
16358 /* get the oldest sequence on the rcv list */
16359 h_buf = list_get_first(&vport->rcv_buffer_list,
16360 struct lpfc_dmabuf, list);
16361 if (!h_buf)
16362 return;
16363 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
16364 vport->rcv_buffer_time_stamp = dmabuf->time_stamp;
16365 }
16366
16367 /**
16368 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences.
16369 * @vport: The vport that the received sequences were sent to.
16370 *
16371 * This function cleans up all outstanding received sequences. This is called
16372 * by the driver when a link event or user action invalidates all the received
16373 * sequences.
16374 **/
16375 void
lpfc_cleanup_rcv_buffers(struct lpfc_vport * vport)16376 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport)
16377 {
16378 struct lpfc_dmabuf *h_buf, *hnext;
16379 struct lpfc_dmabuf *d_buf, *dnext;
16380 struct hbq_dmabuf *dmabuf = NULL;
16381
16382 /* start with the oldest sequence on the rcv list */
16383 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
16384 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
16385 list_del_init(&dmabuf->hbuf.list);
16386 list_for_each_entry_safe(d_buf, dnext,
16387 &dmabuf->dbuf.list, list) {
16388 list_del_init(&d_buf->list);
16389 lpfc_in_buf_free(vport->phba, d_buf);
16390 }
16391 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
16392 }
16393 }
16394
16395 /**
16396 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences.
16397 * @vport: The vport that the received sequences were sent to.
16398 *
16399 * This function determines whether any received sequences have timed out by
16400 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp
16401 * indicates that there is at least one timed out sequence this routine will
16402 * go through the received sequences one at a time from most inactive to most
16403 * active to determine which ones need to be cleaned up. Once it has determined
16404 * that a sequence needs to be cleaned up it will simply free up the resources
16405 * without sending an abort.
16406 **/
16407 void
lpfc_rcv_seq_check_edtov(struct lpfc_vport * vport)16408 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport)
16409 {
16410 struct lpfc_dmabuf *h_buf, *hnext;
16411 struct lpfc_dmabuf *d_buf, *dnext;
16412 struct hbq_dmabuf *dmabuf = NULL;
16413 unsigned long timeout;
16414 int abort_count = 0;
16415
16416 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
16417 vport->rcv_buffer_time_stamp);
16418 if (list_empty(&vport->rcv_buffer_list) ||
16419 time_before(jiffies, timeout))
16420 return;
16421 /* start with the oldest sequence on the rcv list */
16422 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
16423 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
16424 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
16425 dmabuf->time_stamp);
16426 if (time_before(jiffies, timeout))
16427 break;
16428 abort_count++;
16429 list_del_init(&dmabuf->hbuf.list);
16430 list_for_each_entry_safe(d_buf, dnext,
16431 &dmabuf->dbuf.list, list) {
16432 list_del_init(&d_buf->list);
16433 lpfc_in_buf_free(vport->phba, d_buf);
16434 }
16435 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
16436 }
16437 if (abort_count)
16438 lpfc_update_rcv_time_stamp(vport);
16439 }
16440
16441 /**
16442 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences
16443 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame
16444 *
16445 * This function searches through the existing incomplete sequences that have
16446 * been sent to this @vport. If the frame matches one of the incomplete
16447 * sequences then the dbuf in the @dmabuf is added to the list of frames that
16448 * make up that sequence. If no sequence is found that matches this frame then
16449 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list
16450 * This function returns a pointer to the first dmabuf in the sequence list that
16451 * the frame was linked to.
16452 **/
16453 static struct hbq_dmabuf *
lpfc_fc_frame_add(struct lpfc_vport * vport,struct hbq_dmabuf * dmabuf)16454 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
16455 {
16456 struct fc_frame_header *new_hdr;
16457 struct fc_frame_header *temp_hdr;
16458 struct lpfc_dmabuf *d_buf;
16459 struct lpfc_dmabuf *h_buf;
16460 struct hbq_dmabuf *seq_dmabuf = NULL;
16461 struct hbq_dmabuf *temp_dmabuf = NULL;
16462 uint8_t found = 0;
16463
16464 INIT_LIST_HEAD(&dmabuf->dbuf.list);
16465 dmabuf->time_stamp = jiffies;
16466 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
16467
16468 /* Use the hdr_buf to find the sequence that this frame belongs to */
16469 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
16470 temp_hdr = (struct fc_frame_header *)h_buf->virt;
16471 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
16472 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
16473 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
16474 continue;
16475 /* found a pending sequence that matches this frame */
16476 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
16477 break;
16478 }
16479 if (!seq_dmabuf) {
16480 /*
16481 * This indicates first frame received for this sequence.
16482 * Queue the buffer on the vport's rcv_buffer_list.
16483 */
16484 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
16485 lpfc_update_rcv_time_stamp(vport);
16486 return dmabuf;
16487 }
16488 temp_hdr = seq_dmabuf->hbuf.virt;
16489 if (be16_to_cpu(new_hdr->fh_seq_cnt) <
16490 be16_to_cpu(temp_hdr->fh_seq_cnt)) {
16491 list_del_init(&seq_dmabuf->hbuf.list);
16492 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
16493 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
16494 lpfc_update_rcv_time_stamp(vport);
16495 return dmabuf;
16496 }
16497 /* move this sequence to the tail to indicate a young sequence */
16498 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list);
16499 seq_dmabuf->time_stamp = jiffies;
16500 lpfc_update_rcv_time_stamp(vport);
16501 if (list_empty(&seq_dmabuf->dbuf.list)) {
16502 temp_hdr = dmabuf->hbuf.virt;
16503 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
16504 return seq_dmabuf;
16505 }
16506 /* find the correct place in the sequence to insert this frame */
16507 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list);
16508 while (!found) {
16509 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
16510 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt;
16511 /*
16512 * If the frame's sequence count is greater than the frame on
16513 * the list then insert the frame right after this frame
16514 */
16515 if (be16_to_cpu(new_hdr->fh_seq_cnt) >
16516 be16_to_cpu(temp_hdr->fh_seq_cnt)) {
16517 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list);
16518 found = 1;
16519 break;
16520 }
16521
16522 if (&d_buf->list == &seq_dmabuf->dbuf.list)
16523 break;
16524 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list);
16525 }
16526
16527 if (found)
16528 return seq_dmabuf;
16529 return NULL;
16530 }
16531
16532 /**
16533 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence
16534 * @vport: pointer to a vitural port
16535 * @dmabuf: pointer to a dmabuf that describes the FC sequence
16536 *
16537 * This function tries to abort from the partially assembed sequence, described
16538 * by the information from basic abbort @dmabuf. It checks to see whether such
16539 * partially assembled sequence held by the driver. If so, it shall free up all
16540 * the frames from the partially assembled sequence.
16541 *
16542 * Return
16543 * true -- if there is matching partially assembled sequence present and all
16544 * the frames freed with the sequence;
16545 * false -- if there is no matching partially assembled sequence present so
16546 * nothing got aborted in the lower layer driver
16547 **/
16548 static bool
lpfc_sli4_abort_partial_seq(struct lpfc_vport * vport,struct hbq_dmabuf * dmabuf)16549 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport,
16550 struct hbq_dmabuf *dmabuf)
16551 {
16552 struct fc_frame_header *new_hdr;
16553 struct fc_frame_header *temp_hdr;
16554 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf;
16555 struct hbq_dmabuf *seq_dmabuf = NULL;
16556
16557 /* Use the hdr_buf to find the sequence that matches this frame */
16558 INIT_LIST_HEAD(&dmabuf->dbuf.list);
16559 INIT_LIST_HEAD(&dmabuf->hbuf.list);
16560 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
16561 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
16562 temp_hdr = (struct fc_frame_header *)h_buf->virt;
16563 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
16564 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
16565 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
16566 continue;
16567 /* found a pending sequence that matches this frame */
16568 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
16569 break;
16570 }
16571
16572 /* Free up all the frames from the partially assembled sequence */
16573 if (seq_dmabuf) {
16574 list_for_each_entry_safe(d_buf, n_buf,
16575 &seq_dmabuf->dbuf.list, list) {
16576 list_del_init(&d_buf->list);
16577 lpfc_in_buf_free(vport->phba, d_buf);
16578 }
16579 return true;
16580 }
16581 return false;
16582 }
16583
16584 /**
16585 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp
16586 * @vport: pointer to a vitural port
16587 * @dmabuf: pointer to a dmabuf that describes the FC sequence
16588 *
16589 * This function tries to abort from the assembed sequence from upper level
16590 * protocol, described by the information from basic abbort @dmabuf. It
16591 * checks to see whether such pending context exists at upper level protocol.
16592 * If so, it shall clean up the pending context.
16593 *
16594 * Return
16595 * true -- if there is matching pending context of the sequence cleaned
16596 * at ulp;
16597 * false -- if there is no matching pending context of the sequence present
16598 * at ulp.
16599 **/
16600 static bool
lpfc_sli4_abort_ulp_seq(struct lpfc_vport * vport,struct hbq_dmabuf * dmabuf)16601 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
16602 {
16603 struct lpfc_hba *phba = vport->phba;
16604 int handled;
16605
16606 /* Accepting abort at ulp with SLI4 only */
16607 if (phba->sli_rev < LPFC_SLI_REV4)
16608 return false;
16609
16610 /* Register all caring upper level protocols to attend abort */
16611 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf);
16612 if (handled)
16613 return true;
16614
16615 return false;
16616 }
16617
16618 /**
16619 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler
16620 * @phba: Pointer to HBA context object.
16621 * @cmd_iocbq: pointer to the command iocbq structure.
16622 * @rsp_iocbq: pointer to the response iocbq structure.
16623 *
16624 * This function handles the sequence abort response iocb command complete
16625 * event. It properly releases the memory allocated to the sequence abort
16626 * accept iocb.
16627 **/
16628 static void
lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba * phba,struct lpfc_iocbq * cmd_iocbq,struct lpfc_iocbq * rsp_iocbq)16629 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba,
16630 struct lpfc_iocbq *cmd_iocbq,
16631 struct lpfc_iocbq *rsp_iocbq)
16632 {
16633 struct lpfc_nodelist *ndlp;
16634
16635 if (cmd_iocbq) {
16636 ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1;
16637 lpfc_nlp_put(ndlp);
16638 lpfc_nlp_not_used(ndlp);
16639 lpfc_sli_release_iocbq(phba, cmd_iocbq);
16640 }
16641
16642 /* Failure means BLS ABORT RSP did not get delivered to remote node*/
16643 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus)
16644 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16645 "3154 BLS ABORT RSP failed, data: x%x/x%x\n",
16646 rsp_iocbq->iocb.ulpStatus,
16647 rsp_iocbq->iocb.un.ulpWord[4]);
16648 }
16649
16650 /**
16651 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver.
16652 * @phba: Pointer to HBA context object.
16653 * @xri: xri id in transaction.
16654 *
16655 * This function validates the xri maps to the known range of XRIs allocated an
16656 * used by the driver.
16657 **/
16658 uint16_t
lpfc_sli4_xri_inrange(struct lpfc_hba * phba,uint16_t xri)16659 lpfc_sli4_xri_inrange(struct lpfc_hba *phba,
16660 uint16_t xri)
16661 {
16662 uint16_t i;
16663
16664 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) {
16665 if (xri == phba->sli4_hba.xri_ids[i])
16666 return i;
16667 }
16668 return NO_XRI;
16669 }
16670
16671 /**
16672 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort
16673 * @phba: Pointer to HBA context object.
16674 * @fc_hdr: pointer to a FC frame header.
16675 *
16676 * This function sends a basic response to a previous unsol sequence abort
16677 * event after aborting the sequence handling.
16678 **/
16679 void
lpfc_sli4_seq_abort_rsp(struct lpfc_vport * vport,struct fc_frame_header * fc_hdr,bool aborted)16680 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport,
16681 struct fc_frame_header *fc_hdr, bool aborted)
16682 {
16683 struct lpfc_hba *phba = vport->phba;
16684 struct lpfc_iocbq *ctiocb = NULL;
16685 struct lpfc_nodelist *ndlp;
16686 uint16_t oxid, rxid, xri, lxri;
16687 uint32_t sid, fctl;
16688 IOCB_t *icmd;
16689 int rc;
16690
16691 if (!lpfc_is_link_up(phba))
16692 return;
16693
16694 sid = sli4_sid_from_fc_hdr(fc_hdr);
16695 oxid = be16_to_cpu(fc_hdr->fh_ox_id);
16696 rxid = be16_to_cpu(fc_hdr->fh_rx_id);
16697
16698 ndlp = lpfc_findnode_did(vport, sid);
16699 if (!ndlp) {
16700 ndlp = lpfc_nlp_init(vport, sid);
16701 if (!ndlp) {
16702 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS,
16703 "1268 Failed to allocate ndlp for "
16704 "oxid:x%x SID:x%x\n", oxid, sid);
16705 return;
16706 }
16707 /* Put ndlp onto pport node list */
16708 lpfc_enqueue_node(vport, ndlp);
16709 } else if (!NLP_CHK_NODE_ACT(ndlp)) {
16710 /* re-setup ndlp without removing from node list */
16711 ndlp = lpfc_enable_node(vport, ndlp, NLP_STE_UNUSED_NODE);
16712 if (!ndlp) {
16713 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS,
16714 "3275 Failed to active ndlp found "
16715 "for oxid:x%x SID:x%x\n", oxid, sid);
16716 return;
16717 }
16718 }
16719
16720 /* Allocate buffer for rsp iocb */
16721 ctiocb = lpfc_sli_get_iocbq(phba);
16722 if (!ctiocb)
16723 return;
16724
16725 /* Extract the F_CTL field from FC_HDR */
16726 fctl = sli4_fctl_from_fc_hdr(fc_hdr);
16727
16728 icmd = &ctiocb->iocb;
16729 icmd->un.xseq64.bdl.bdeSize = 0;
16730 icmd->un.xseq64.bdl.ulpIoTag32 = 0;
16731 icmd->un.xseq64.w5.hcsw.Dfctl = 0;
16732 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC;
16733 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS;
16734
16735 /* Fill in the rest of iocb fields */
16736 icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX;
16737 icmd->ulpBdeCount = 0;
16738 icmd->ulpLe = 1;
16739 icmd->ulpClass = CLASS3;
16740 icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi];
16741 ctiocb->context1 = lpfc_nlp_get(ndlp);
16742
16743 ctiocb->iocb_cmpl = NULL;
16744 ctiocb->vport = phba->pport;
16745 ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl;
16746 ctiocb->sli4_lxritag = NO_XRI;
16747 ctiocb->sli4_xritag = NO_XRI;
16748
16749 if (fctl & FC_FC_EX_CTX)
16750 /* Exchange responder sent the abort so we
16751 * own the oxid.
16752 */
16753 xri = oxid;
16754 else
16755 xri = rxid;
16756 lxri = lpfc_sli4_xri_inrange(phba, xri);
16757 if (lxri != NO_XRI)
16758 lpfc_set_rrq_active(phba, ndlp, lxri,
16759 (xri == oxid) ? rxid : oxid, 0);
16760 /* For BA_ABTS from exchange responder, if the logical xri with
16761 * the oxid maps to the FCP XRI range, the port no longer has
16762 * that exchange context, send a BLS_RJT. Override the IOCB for
16763 * a BA_RJT.
16764 */
16765 if ((fctl & FC_FC_EX_CTX) &&
16766 (lxri > lpfc_sli4_get_iocb_cnt(phba))) {
16767 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT;
16768 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0);
16769 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID);
16770 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE);
16771 }
16772
16773 /* If BA_ABTS failed to abort a partially assembled receive sequence,
16774 * the driver no longer has that exchange, send a BLS_RJT. Override
16775 * the IOCB for a BA_RJT.
16776 */
16777 if (aborted == false) {
16778 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT;
16779 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0);
16780 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID);
16781 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE);
16782 }
16783
16784 if (fctl & FC_FC_EX_CTX) {
16785 /* ABTS sent by responder to CT exchange, construction
16786 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG
16787 * field and RX_ID from ABTS for RX_ID field.
16788 */
16789 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP);
16790 } else {
16791 /* ABTS sent by initiator to CT exchange, construction
16792 * of BA_ACC will need to allocate a new XRI as for the
16793 * XRI_TAG field.
16794 */
16795 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT);
16796 }
16797 bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid);
16798 bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid);
16799
16800 /* Xmit CT abts response on exchange <xid> */
16801 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS,
16802 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n",
16803 icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state);
16804
16805 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0);
16806 if (rc == IOCB_ERROR) {
16807 lpfc_printf_vlog(vport, KERN_ERR, LOG_ELS,
16808 "2925 Failed to issue CT ABTS RSP x%x on "
16809 "xri x%x, Data x%x\n",
16810 icmd->un.xseq64.w5.hcsw.Rctl, oxid,
16811 phba->link_state);
16812 lpfc_nlp_put(ndlp);
16813 ctiocb->context1 = NULL;
16814 lpfc_sli_release_iocbq(phba, ctiocb);
16815 }
16816 }
16817
16818 /**
16819 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event
16820 * @vport: Pointer to the vport on which this sequence was received
16821 * @dmabuf: pointer to a dmabuf that describes the FC sequence
16822 *
16823 * This function handles an SLI-4 unsolicited abort event. If the unsolicited
16824 * receive sequence is only partially assembed by the driver, it shall abort
16825 * the partially assembled frames for the sequence. Otherwise, if the
16826 * unsolicited receive sequence has been completely assembled and passed to
16827 * the Upper Layer Protocol (UPL), it then mark the per oxid status for the
16828 * unsolicited sequence has been aborted. After that, it will issue a basic
16829 * accept to accept the abort.
16830 **/
16831 static void
lpfc_sli4_handle_unsol_abort(struct lpfc_vport * vport,struct hbq_dmabuf * dmabuf)16832 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport,
16833 struct hbq_dmabuf *dmabuf)
16834 {
16835 struct lpfc_hba *phba = vport->phba;
16836 struct fc_frame_header fc_hdr;
16837 uint32_t fctl;
16838 bool aborted;
16839
16840 /* Make a copy of fc_hdr before the dmabuf being released */
16841 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header));
16842 fctl = sli4_fctl_from_fc_hdr(&fc_hdr);
16843
16844 if (fctl & FC_FC_EX_CTX) {
16845 /* ABTS by responder to exchange, no cleanup needed */
16846 aborted = true;
16847 } else {
16848 /* ABTS by initiator to exchange, need to do cleanup */
16849 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf);
16850 if (aborted == false)
16851 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf);
16852 }
16853 lpfc_in_buf_free(phba, &dmabuf->dbuf);
16854
16855 if (phba->nvmet_support) {
16856 lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr);
16857 return;
16858 }
16859
16860 /* Respond with BA_ACC or BA_RJT accordingly */
16861 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted);
16862 }
16863
16864 /**
16865 * lpfc_seq_complete - Indicates if a sequence is complete
16866 * @dmabuf: pointer to a dmabuf that describes the FC sequence
16867 *
16868 * This function checks the sequence, starting with the frame described by
16869 * @dmabuf, to see if all the frames associated with this sequence are present.
16870 * the frames associated with this sequence are linked to the @dmabuf using the
16871 * dbuf list. This function looks for two major things. 1) That the first frame
16872 * has a sequence count of zero. 2) There is a frame with last frame of sequence
16873 * set. 3) That there are no holes in the sequence count. The function will
16874 * return 1 when the sequence is complete, otherwise it will return 0.
16875 **/
16876 static int
lpfc_seq_complete(struct hbq_dmabuf * dmabuf)16877 lpfc_seq_complete(struct hbq_dmabuf *dmabuf)
16878 {
16879 struct fc_frame_header *hdr;
16880 struct lpfc_dmabuf *d_buf;
16881 struct hbq_dmabuf *seq_dmabuf;
16882 uint32_t fctl;
16883 int seq_count = 0;
16884
16885 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
16886 /* make sure first fame of sequence has a sequence count of zero */
16887 if (hdr->fh_seq_cnt != seq_count)
16888 return 0;
16889 fctl = (hdr->fh_f_ctl[0] << 16 |
16890 hdr->fh_f_ctl[1] << 8 |
16891 hdr->fh_f_ctl[2]);
16892 /* If last frame of sequence we can return success. */
16893 if (fctl & FC_FC_END_SEQ)
16894 return 1;
16895 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) {
16896 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
16897 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
16898 /* If there is a hole in the sequence count then fail. */
16899 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt))
16900 return 0;
16901 fctl = (hdr->fh_f_ctl[0] << 16 |
16902 hdr->fh_f_ctl[1] << 8 |
16903 hdr->fh_f_ctl[2]);
16904 /* If last frame of sequence we can return success. */
16905 if (fctl & FC_FC_END_SEQ)
16906 return 1;
16907 }
16908 return 0;
16909 }
16910
16911 /**
16912 * lpfc_prep_seq - Prep sequence for ULP processing
16913 * @vport: Pointer to the vport on which this sequence was received
16914 * @dmabuf: pointer to a dmabuf that describes the FC sequence
16915 *
16916 * This function takes a sequence, described by a list of frames, and creates
16917 * a list of iocbq structures to describe the sequence. This iocbq list will be
16918 * used to issue to the generic unsolicited sequence handler. This routine
16919 * returns a pointer to the first iocbq in the list. If the function is unable
16920 * to allocate an iocbq then it throw out the received frames that were not
16921 * able to be described and return a pointer to the first iocbq. If unable to
16922 * allocate any iocbqs (including the first) this function will return NULL.
16923 **/
16924 static struct lpfc_iocbq *
lpfc_prep_seq(struct lpfc_vport * vport,struct hbq_dmabuf * seq_dmabuf)16925 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf)
16926 {
16927 struct hbq_dmabuf *hbq_buf;
16928 struct lpfc_dmabuf *d_buf, *n_buf;
16929 struct lpfc_iocbq *first_iocbq, *iocbq;
16930 struct fc_frame_header *fc_hdr;
16931 uint32_t sid;
16932 uint32_t len, tot_len;
16933 struct ulp_bde64 *pbde;
16934
16935 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
16936 /* remove from receive buffer list */
16937 list_del_init(&seq_dmabuf->hbuf.list);
16938 lpfc_update_rcv_time_stamp(vport);
16939 /* get the Remote Port's SID */
16940 sid = sli4_sid_from_fc_hdr(fc_hdr);
16941 tot_len = 0;
16942 /* Get an iocbq struct to fill in. */
16943 first_iocbq = lpfc_sli_get_iocbq(vport->phba);
16944 if (first_iocbq) {
16945 /* Initialize the first IOCB. */
16946 first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0;
16947 first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS;
16948 first_iocbq->vport = vport;
16949
16950 /* Check FC Header to see what TYPE of frame we are rcv'ing */
16951 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) {
16952 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX;
16953 first_iocbq->iocb.un.rcvels.parmRo =
16954 sli4_did_from_fc_hdr(fc_hdr);
16955 first_iocbq->iocb.ulpPU = PARM_NPIV_DID;
16956 } else
16957 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX;
16958 first_iocbq->iocb.ulpContext = NO_XRI;
16959 first_iocbq->iocb.unsli3.rcvsli3.ox_id =
16960 be16_to_cpu(fc_hdr->fh_ox_id);
16961 /* iocbq is prepped for internal consumption. Physical vpi. */
16962 first_iocbq->iocb.unsli3.rcvsli3.vpi =
16963 vport->phba->vpi_ids[vport->vpi];
16964 /* put the first buffer into the first IOCBq */
16965 tot_len = bf_get(lpfc_rcqe_length,
16966 &seq_dmabuf->cq_event.cqe.rcqe_cmpl);
16967
16968 first_iocbq->context2 = &seq_dmabuf->dbuf;
16969 first_iocbq->context3 = NULL;
16970 first_iocbq->iocb.ulpBdeCount = 1;
16971 if (tot_len > LPFC_DATA_BUF_SIZE)
16972 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize =
16973 LPFC_DATA_BUF_SIZE;
16974 else
16975 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = tot_len;
16976
16977 first_iocbq->iocb.un.rcvels.remoteID = sid;
16978
16979 first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len;
16980 }
16981 iocbq = first_iocbq;
16982 /*
16983 * Each IOCBq can have two Buffers assigned, so go through the list
16984 * of buffers for this sequence and save two buffers in each IOCBq
16985 */
16986 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) {
16987 if (!iocbq) {
16988 lpfc_in_buf_free(vport->phba, d_buf);
16989 continue;
16990 }
16991 if (!iocbq->context3) {
16992 iocbq->context3 = d_buf;
16993 iocbq->iocb.ulpBdeCount++;
16994 /* We need to get the size out of the right CQE */
16995 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
16996 len = bf_get(lpfc_rcqe_length,
16997 &hbq_buf->cq_event.cqe.rcqe_cmpl);
16998 pbde = (struct ulp_bde64 *)
16999 &iocbq->iocb.unsli3.sli3Words[4];
17000 if (len > LPFC_DATA_BUF_SIZE)
17001 pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE;
17002 else
17003 pbde->tus.f.bdeSize = len;
17004
17005 iocbq->iocb.unsli3.rcvsli3.acc_len += len;
17006 tot_len += len;
17007 } else {
17008 iocbq = lpfc_sli_get_iocbq(vport->phba);
17009 if (!iocbq) {
17010 if (first_iocbq) {
17011 first_iocbq->iocb.ulpStatus =
17012 IOSTAT_FCP_RSP_ERROR;
17013 first_iocbq->iocb.un.ulpWord[4] =
17014 IOERR_NO_RESOURCES;
17015 }
17016 lpfc_in_buf_free(vport->phba, d_buf);
17017 continue;
17018 }
17019 /* We need to get the size out of the right CQE */
17020 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
17021 len = bf_get(lpfc_rcqe_length,
17022 &hbq_buf->cq_event.cqe.rcqe_cmpl);
17023 iocbq->context2 = d_buf;
17024 iocbq->context3 = NULL;
17025 iocbq->iocb.ulpBdeCount = 1;
17026 if (len > LPFC_DATA_BUF_SIZE)
17027 iocbq->iocb.un.cont64[0].tus.f.bdeSize =
17028 LPFC_DATA_BUF_SIZE;
17029 else
17030 iocbq->iocb.un.cont64[0].tus.f.bdeSize = len;
17031
17032 tot_len += len;
17033 iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len;
17034
17035 iocbq->iocb.un.rcvels.remoteID = sid;
17036 list_add_tail(&iocbq->list, &first_iocbq->list);
17037 }
17038 }
17039 return first_iocbq;
17040 }
17041
17042 static void
lpfc_sli4_send_seq_to_ulp(struct lpfc_vport * vport,struct hbq_dmabuf * seq_dmabuf)17043 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport,
17044 struct hbq_dmabuf *seq_dmabuf)
17045 {
17046 struct fc_frame_header *fc_hdr;
17047 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb;
17048 struct lpfc_hba *phba = vport->phba;
17049
17050 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
17051 iocbq = lpfc_prep_seq(vport, seq_dmabuf);
17052 if (!iocbq) {
17053 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17054 "2707 Ring %d handler: Failed to allocate "
17055 "iocb Rctl x%x Type x%x received\n",
17056 LPFC_ELS_RING,
17057 fc_hdr->fh_r_ctl, fc_hdr->fh_type);
17058 return;
17059 }
17060 if (!lpfc_complete_unsol_iocb(phba,
17061 phba->sli4_hba.els_wq->pring,
17062 iocbq, fc_hdr->fh_r_ctl,
17063 fc_hdr->fh_type))
17064 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17065 "2540 Ring %d handler: unexpected Rctl "
17066 "x%x Type x%x received\n",
17067 LPFC_ELS_RING,
17068 fc_hdr->fh_r_ctl, fc_hdr->fh_type);
17069
17070 /* Free iocb created in lpfc_prep_seq */
17071 list_for_each_entry_safe(curr_iocb, next_iocb,
17072 &iocbq->list, list) {
17073 list_del_init(&curr_iocb->list);
17074 lpfc_sli_release_iocbq(phba, curr_iocb);
17075 }
17076 lpfc_sli_release_iocbq(phba, iocbq);
17077 }
17078
17079 static void
lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba * phba,struct lpfc_iocbq * cmdiocb,struct lpfc_iocbq * rspiocb)17080 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
17081 struct lpfc_iocbq *rspiocb)
17082 {
17083 struct lpfc_dmabuf *pcmd = cmdiocb->context2;
17084
17085 if (pcmd && pcmd->virt)
17086 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys);
17087 kfree(pcmd);
17088 lpfc_sli_release_iocbq(phba, cmdiocb);
17089 }
17090
17091 static void
lpfc_sli4_handle_mds_loopback(struct lpfc_vport * vport,struct hbq_dmabuf * dmabuf)17092 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport,
17093 struct hbq_dmabuf *dmabuf)
17094 {
17095 struct fc_frame_header *fc_hdr;
17096 struct lpfc_hba *phba = vport->phba;
17097 struct lpfc_iocbq *iocbq = NULL;
17098 union lpfc_wqe *wqe;
17099 struct lpfc_dmabuf *pcmd = NULL;
17100 uint32_t frame_len;
17101 int rc;
17102
17103 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17104 frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl);
17105
17106 /* Send the received frame back */
17107 iocbq = lpfc_sli_get_iocbq(phba);
17108 if (!iocbq)
17109 goto exit;
17110
17111 /* Allocate buffer for command payload */
17112 pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
17113 if (pcmd)
17114 pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL,
17115 &pcmd->phys);
17116 if (!pcmd || !pcmd->virt)
17117 goto exit;
17118
17119 INIT_LIST_HEAD(&pcmd->list);
17120
17121 /* copyin the payload */
17122 memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len);
17123
17124 /* fill in BDE's for command */
17125 iocbq->iocb.un.xseq64.bdl.addrHigh = putPaddrHigh(pcmd->phys);
17126 iocbq->iocb.un.xseq64.bdl.addrLow = putPaddrLow(pcmd->phys);
17127 iocbq->iocb.un.xseq64.bdl.bdeFlags = BUFF_TYPE_BDE_64;
17128 iocbq->iocb.un.xseq64.bdl.bdeSize = frame_len;
17129
17130 iocbq->context2 = pcmd;
17131 iocbq->vport = vport;
17132 iocbq->iocb_flag &= ~LPFC_FIP_ELS_ID_MASK;
17133 iocbq->iocb_flag |= LPFC_USE_FCPWQIDX;
17134
17135 /*
17136 * Setup rest of the iocb as though it were a WQE
17137 * Build the SEND_FRAME WQE
17138 */
17139 wqe = (union lpfc_wqe *)&iocbq->iocb;
17140
17141 wqe->send_frame.frame_len = frame_len;
17142 wqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((uint32_t *)fc_hdr));
17143 wqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((uint32_t *)fc_hdr + 1));
17144 wqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((uint32_t *)fc_hdr + 2));
17145 wqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((uint32_t *)fc_hdr + 3));
17146 wqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((uint32_t *)fc_hdr + 4));
17147 wqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((uint32_t *)fc_hdr + 5));
17148
17149 iocbq->iocb.ulpCommand = CMD_SEND_FRAME;
17150 iocbq->iocb.ulpLe = 1;
17151 iocbq->iocb_cmpl = lpfc_sli4_mds_loopback_cmpl;
17152 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0);
17153 if (rc == IOCB_ERROR)
17154 goto exit;
17155
17156 lpfc_in_buf_free(phba, &dmabuf->dbuf);
17157 return;
17158
17159 exit:
17160 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
17161 "2023 Unable to process MDS loopback frame\n");
17162 if (pcmd && pcmd->virt)
17163 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys);
17164 kfree(pcmd);
17165 if (iocbq)
17166 lpfc_sli_release_iocbq(phba, iocbq);
17167 lpfc_in_buf_free(phba, &dmabuf->dbuf);
17168 }
17169
17170 /**
17171 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware
17172 * @phba: Pointer to HBA context object.
17173 *
17174 * This function is called with no lock held. This function processes all
17175 * the received buffers and gives it to upper layers when a received buffer
17176 * indicates that it is the final frame in the sequence. The interrupt
17177 * service routine processes received buffers at interrupt contexts.
17178 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the
17179 * appropriate receive function when the final frame in a sequence is received.
17180 **/
17181 void
lpfc_sli4_handle_received_buffer(struct lpfc_hba * phba,struct hbq_dmabuf * dmabuf)17182 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba,
17183 struct hbq_dmabuf *dmabuf)
17184 {
17185 struct hbq_dmabuf *seq_dmabuf;
17186 struct fc_frame_header *fc_hdr;
17187 struct lpfc_vport *vport;
17188 uint32_t fcfi;
17189 uint32_t did;
17190
17191 /* Process each received buffer */
17192 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17193
17194 /* check to see if this a valid type of frame */
17195 if (lpfc_fc_frame_check(phba, fc_hdr)) {
17196 lpfc_in_buf_free(phba, &dmabuf->dbuf);
17197 return;
17198 }
17199
17200 if ((bf_get(lpfc_cqe_code,
17201 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1))
17202 fcfi = bf_get(lpfc_rcqe_fcf_id_v1,
17203 &dmabuf->cq_event.cqe.rcqe_cmpl);
17204 else
17205 fcfi = bf_get(lpfc_rcqe_fcf_id,
17206 &dmabuf->cq_event.cqe.rcqe_cmpl);
17207
17208 if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) {
17209 vport = phba->pport;
17210 /* Handle MDS Loopback frames */
17211 lpfc_sli4_handle_mds_loopback(vport, dmabuf);
17212 return;
17213 }
17214
17215 /* d_id this frame is directed to */
17216 did = sli4_did_from_fc_hdr(fc_hdr);
17217
17218 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did);
17219 if (!vport) {
17220 /* throw out the frame */
17221 lpfc_in_buf_free(phba, &dmabuf->dbuf);
17222 return;
17223 }
17224
17225 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */
17226 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) &&
17227 (did != Fabric_DID)) {
17228 /*
17229 * Throw out the frame if we are not pt2pt.
17230 * The pt2pt protocol allows for discovery frames
17231 * to be received without a registered VPI.
17232 */
17233 if (!(vport->fc_flag & FC_PT2PT) ||
17234 (phba->link_state == LPFC_HBA_READY)) {
17235 lpfc_in_buf_free(phba, &dmabuf->dbuf);
17236 return;
17237 }
17238 }
17239
17240 /* Handle the basic abort sequence (BA_ABTS) event */
17241 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) {
17242 lpfc_sli4_handle_unsol_abort(vport, dmabuf);
17243 return;
17244 }
17245
17246 /* Link this frame */
17247 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf);
17248 if (!seq_dmabuf) {
17249 /* unable to add frame to vport - throw it out */
17250 lpfc_in_buf_free(phba, &dmabuf->dbuf);
17251 return;
17252 }
17253 /* If not last frame in sequence continue processing frames. */
17254 if (!lpfc_seq_complete(seq_dmabuf))
17255 return;
17256
17257 /* Send the complete sequence to the upper layer protocol */
17258 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf);
17259 }
17260
17261 /**
17262 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port
17263 * @phba: pointer to lpfc hba data structure.
17264 *
17265 * This routine is invoked to post rpi header templates to the
17266 * HBA consistent with the SLI-4 interface spec. This routine
17267 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
17268 * SLI4_PAGE_SIZE modulo 64 rpi context headers.
17269 *
17270 * This routine does not require any locks. It's usage is expected
17271 * to be driver load or reset recovery when the driver is
17272 * sequential.
17273 *
17274 * Return codes
17275 * 0 - successful
17276 * -EIO - The mailbox failed to complete successfully.
17277 * When this error occurs, the driver is not guaranteed
17278 * to have any rpi regions posted to the device and
17279 * must either attempt to repost the regions or take a
17280 * fatal error.
17281 **/
17282 int
lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba * phba)17283 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba)
17284 {
17285 struct lpfc_rpi_hdr *rpi_page;
17286 uint32_t rc = 0;
17287 uint16_t lrpi = 0;
17288
17289 /* SLI4 ports that support extents do not require RPI headers. */
17290 if (!phba->sli4_hba.rpi_hdrs_in_use)
17291 goto exit;
17292 if (phba->sli4_hba.extents_in_use)
17293 return -EIO;
17294
17295 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) {
17296 /*
17297 * Assign the rpi headers a physical rpi only if the driver
17298 * has not initialized those resources. A port reset only
17299 * needs the headers posted.
17300 */
17301 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) !=
17302 LPFC_RPI_RSRC_RDY)
17303 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
17304
17305 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page);
17306 if (rc != MBX_SUCCESS) {
17307 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17308 "2008 Error %d posting all rpi "
17309 "headers\n", rc);
17310 rc = -EIO;
17311 break;
17312 }
17313 }
17314
17315 exit:
17316 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags,
17317 LPFC_RPI_RSRC_RDY);
17318 return rc;
17319 }
17320
17321 /**
17322 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port
17323 * @phba: pointer to lpfc hba data structure.
17324 * @rpi_page: pointer to the rpi memory region.
17325 *
17326 * This routine is invoked to post a single rpi header to the
17327 * HBA consistent with the SLI-4 interface spec. This memory region
17328 * maps up to 64 rpi context regions.
17329 *
17330 * Return codes
17331 * 0 - successful
17332 * -ENOMEM - No available memory
17333 * -EIO - The mailbox failed to complete successfully.
17334 **/
17335 int
lpfc_sli4_post_rpi_hdr(struct lpfc_hba * phba,struct lpfc_rpi_hdr * rpi_page)17336 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page)
17337 {
17338 LPFC_MBOXQ_t *mboxq;
17339 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl;
17340 uint32_t rc = 0;
17341 uint32_t shdr_status, shdr_add_status;
17342 union lpfc_sli4_cfg_shdr *shdr;
17343
17344 /* SLI4 ports that support extents do not require RPI headers. */
17345 if (!phba->sli4_hba.rpi_hdrs_in_use)
17346 return rc;
17347 if (phba->sli4_hba.extents_in_use)
17348 return -EIO;
17349
17350 /* The port is notified of the header region via a mailbox command. */
17351 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17352 if (!mboxq) {
17353 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17354 "2001 Unable to allocate memory for issuing "
17355 "SLI_CONFIG_SPECIAL mailbox command\n");
17356 return -ENOMEM;
17357 }
17358
17359 /* Post all rpi memory regions to the port. */
17360 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl;
17361 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
17362 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE,
17363 sizeof(struct lpfc_mbx_post_hdr_tmpl) -
17364 sizeof(struct lpfc_sli4_cfg_mhdr),
17365 LPFC_SLI4_MBX_EMBED);
17366
17367
17368 /* Post the physical rpi to the port for this rpi header. */
17369 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl,
17370 rpi_page->start_rpi);
17371 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt,
17372 hdr_tmpl, rpi_page->page_count);
17373
17374 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys);
17375 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys);
17376 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
17377 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr;
17378 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17379 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17380 if (rc != MBX_TIMEOUT)
17381 mempool_free(mboxq, phba->mbox_mem_pool);
17382 if (shdr_status || shdr_add_status || rc) {
17383 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
17384 "2514 POST_RPI_HDR mailbox failed with "
17385 "status x%x add_status x%x, mbx status x%x\n",
17386 shdr_status, shdr_add_status, rc);
17387 rc = -ENXIO;
17388 } else {
17389 /*
17390 * The next_rpi stores the next logical module-64 rpi value used
17391 * to post physical rpis in subsequent rpi postings.
17392 */
17393 spin_lock_irq(&phba->hbalock);
17394 phba->sli4_hba.next_rpi = rpi_page->next_rpi;
17395 spin_unlock_irq(&phba->hbalock);
17396 }
17397 return rc;
17398 }
17399
17400 /**
17401 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range
17402 * @phba: pointer to lpfc hba data structure.
17403 *
17404 * This routine is invoked to post rpi header templates to the
17405 * HBA consistent with the SLI-4 interface spec. This routine
17406 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
17407 * SLI4_PAGE_SIZE modulo 64 rpi context headers.
17408 *
17409 * Returns
17410 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
17411 * LPFC_RPI_ALLOC_ERROR if no rpis are available.
17412 **/
17413 int
lpfc_sli4_alloc_rpi(struct lpfc_hba * phba)17414 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba)
17415 {
17416 unsigned long rpi;
17417 uint16_t max_rpi, rpi_limit;
17418 uint16_t rpi_remaining, lrpi = 0;
17419 struct lpfc_rpi_hdr *rpi_hdr;
17420 unsigned long iflag;
17421
17422 /*
17423 * Fetch the next logical rpi. Because this index is logical,
17424 * the driver starts at 0 each time.
17425 */
17426 spin_lock_irqsave(&phba->hbalock, iflag);
17427 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
17428 rpi_limit = phba->sli4_hba.next_rpi;
17429
17430 rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, 0);
17431 if (rpi >= rpi_limit)
17432 rpi = LPFC_RPI_ALLOC_ERROR;
17433 else {
17434 set_bit(rpi, phba->sli4_hba.rpi_bmask);
17435 phba->sli4_hba.max_cfg_param.rpi_used++;
17436 phba->sli4_hba.rpi_count++;
17437 }
17438 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
17439 "0001 rpi:%x max:%x lim:%x\n",
17440 (int) rpi, max_rpi, rpi_limit);
17441
17442 /*
17443 * Don't try to allocate more rpi header regions if the device limit
17444 * has been exhausted.
17445 */
17446 if ((rpi == LPFC_RPI_ALLOC_ERROR) &&
17447 (phba->sli4_hba.rpi_count >= max_rpi)) {
17448 spin_unlock_irqrestore(&phba->hbalock, iflag);
17449 return rpi;
17450 }
17451
17452 /*
17453 * RPI header postings are not required for SLI4 ports capable of
17454 * extents.
17455 */
17456 if (!phba->sli4_hba.rpi_hdrs_in_use) {
17457 spin_unlock_irqrestore(&phba->hbalock, iflag);
17458 return rpi;
17459 }
17460
17461 /*
17462 * If the driver is running low on rpi resources, allocate another
17463 * page now. Note that the next_rpi value is used because
17464 * it represents how many are actually in use whereas max_rpi notes
17465 * how many are supported max by the device.
17466 */
17467 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count;
17468 spin_unlock_irqrestore(&phba->hbalock, iflag);
17469 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) {
17470 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba);
17471 if (!rpi_hdr) {
17472 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17473 "2002 Error Could not grow rpi "
17474 "count\n");
17475 } else {
17476 lrpi = rpi_hdr->start_rpi;
17477 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
17478 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr);
17479 }
17480 }
17481
17482 return rpi;
17483 }
17484
17485 /**
17486 * lpfc_sli4_free_rpi - Release an rpi for reuse.
17487 * @phba: pointer to lpfc hba data structure.
17488 *
17489 * This routine is invoked to release an rpi to the pool of
17490 * available rpis maintained by the driver.
17491 **/
17492 static void
__lpfc_sli4_free_rpi(struct lpfc_hba * phba,int rpi)17493 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
17494 {
17495 /*
17496 * if the rpi value indicates a prior unreg has already
17497 * been done, skip the unreg.
17498 */
17499 if (rpi == LPFC_RPI_ALLOC_ERROR)
17500 return;
17501
17502 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) {
17503 phba->sli4_hba.rpi_count--;
17504 phba->sli4_hba.max_cfg_param.rpi_used--;
17505 }
17506 }
17507
17508 /**
17509 * lpfc_sli4_free_rpi - Release an rpi for reuse.
17510 * @phba: pointer to lpfc hba data structure.
17511 *
17512 * This routine is invoked to release an rpi to the pool of
17513 * available rpis maintained by the driver.
17514 **/
17515 void
lpfc_sli4_free_rpi(struct lpfc_hba * phba,int rpi)17516 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
17517 {
17518 spin_lock_irq(&phba->hbalock);
17519 __lpfc_sli4_free_rpi(phba, rpi);
17520 spin_unlock_irq(&phba->hbalock);
17521 }
17522
17523 /**
17524 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region
17525 * @phba: pointer to lpfc hba data structure.
17526 *
17527 * This routine is invoked to remove the memory region that
17528 * provided rpi via a bitmask.
17529 **/
17530 void
lpfc_sli4_remove_rpis(struct lpfc_hba * phba)17531 lpfc_sli4_remove_rpis(struct lpfc_hba *phba)
17532 {
17533 kfree(phba->sli4_hba.rpi_bmask);
17534 kfree(phba->sli4_hba.rpi_ids);
17535 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
17536 }
17537
17538 /**
17539 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region
17540 * @phba: pointer to lpfc hba data structure.
17541 *
17542 * This routine is invoked to remove the memory region that
17543 * provided rpi via a bitmask.
17544 **/
17545 int
lpfc_sli4_resume_rpi(struct lpfc_nodelist * ndlp,void (* cmpl)(struct lpfc_hba *,LPFC_MBOXQ_t *),void * arg)17546 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp,
17547 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg)
17548 {
17549 LPFC_MBOXQ_t *mboxq;
17550 struct lpfc_hba *phba = ndlp->phba;
17551 int rc;
17552
17553 /* The port is notified of the header region via a mailbox command. */
17554 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17555 if (!mboxq)
17556 return -ENOMEM;
17557
17558 /* Post all rpi memory regions to the port. */
17559 lpfc_resume_rpi(mboxq, ndlp);
17560 if (cmpl) {
17561 mboxq->mbox_cmpl = cmpl;
17562 mboxq->context1 = arg;
17563 mboxq->context2 = ndlp;
17564 } else
17565 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
17566 mboxq->vport = ndlp->vport;
17567 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
17568 if (rc == MBX_NOT_FINISHED) {
17569 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17570 "2010 Resume RPI Mailbox failed "
17571 "status %d, mbxStatus x%x\n", rc,
17572 bf_get(lpfc_mqe_status, &mboxq->u.mqe));
17573 mempool_free(mboxq, phba->mbox_mem_pool);
17574 return -EIO;
17575 }
17576 return 0;
17577 }
17578
17579 /**
17580 * lpfc_sli4_init_vpi - Initialize a vpi with the port
17581 * @vport: Pointer to the vport for which the vpi is being initialized
17582 *
17583 * This routine is invoked to activate a vpi with the port.
17584 *
17585 * Returns:
17586 * 0 success
17587 * -Evalue otherwise
17588 **/
17589 int
lpfc_sli4_init_vpi(struct lpfc_vport * vport)17590 lpfc_sli4_init_vpi(struct lpfc_vport *vport)
17591 {
17592 LPFC_MBOXQ_t *mboxq;
17593 int rc = 0;
17594 int retval = MBX_SUCCESS;
17595 uint32_t mbox_tmo;
17596 struct lpfc_hba *phba = vport->phba;
17597 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17598 if (!mboxq)
17599 return -ENOMEM;
17600 lpfc_init_vpi(phba, mboxq, vport->vpi);
17601 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq);
17602 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo);
17603 if (rc != MBX_SUCCESS) {
17604 lpfc_printf_vlog(vport, KERN_ERR, LOG_SLI,
17605 "2022 INIT VPI Mailbox failed "
17606 "status %d, mbxStatus x%x\n", rc,
17607 bf_get(lpfc_mqe_status, &mboxq->u.mqe));
17608 retval = -EIO;
17609 }
17610 if (rc != MBX_TIMEOUT)
17611 mempool_free(mboxq, vport->phba->mbox_mem_pool);
17612
17613 return retval;
17614 }
17615
17616 /**
17617 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler.
17618 * @phba: pointer to lpfc hba data structure.
17619 * @mboxq: Pointer to mailbox object.
17620 *
17621 * This routine is invoked to manually add a single FCF record. The caller
17622 * must pass a completely initialized FCF_Record. This routine takes
17623 * care of the nonembedded mailbox operations.
17624 **/
17625 static void
lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba * phba,LPFC_MBOXQ_t * mboxq)17626 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
17627 {
17628 void *virt_addr;
17629 union lpfc_sli4_cfg_shdr *shdr;
17630 uint32_t shdr_status, shdr_add_status;
17631
17632 virt_addr = mboxq->sge_array->addr[0];
17633 /* The IOCTL status is embedded in the mailbox subheader. */
17634 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr;
17635 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17636 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17637
17638 if ((shdr_status || shdr_add_status) &&
17639 (shdr_status != STATUS_FCF_IN_USE))
17640 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
17641 "2558 ADD_FCF_RECORD mailbox failed with "
17642 "status x%x add_status x%x\n",
17643 shdr_status, shdr_add_status);
17644
17645 lpfc_sli4_mbox_cmd_free(phba, mboxq);
17646 }
17647
17648 /**
17649 * lpfc_sli4_add_fcf_record - Manually add an FCF Record.
17650 * @phba: pointer to lpfc hba data structure.
17651 * @fcf_record: pointer to the initialized fcf record to add.
17652 *
17653 * This routine is invoked to manually add a single FCF record. The caller
17654 * must pass a completely initialized FCF_Record. This routine takes
17655 * care of the nonembedded mailbox operations.
17656 **/
17657 int
lpfc_sli4_add_fcf_record(struct lpfc_hba * phba,struct fcf_record * fcf_record)17658 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record)
17659 {
17660 int rc = 0;
17661 LPFC_MBOXQ_t *mboxq;
17662 uint8_t *bytep;
17663 void *virt_addr;
17664 struct lpfc_mbx_sge sge;
17665 uint32_t alloc_len, req_len;
17666 uint32_t fcfindex;
17667
17668 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17669 if (!mboxq) {
17670 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
17671 "2009 Failed to allocate mbox for ADD_FCF cmd\n");
17672 return -ENOMEM;
17673 }
17674
17675 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) +
17676 sizeof(uint32_t);
17677
17678 /* Allocate DMA memory and set up the non-embedded mailbox command */
17679 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
17680 LPFC_MBOX_OPCODE_FCOE_ADD_FCF,
17681 req_len, LPFC_SLI4_MBX_NEMBED);
17682 if (alloc_len < req_len) {
17683 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
17684 "2523 Allocated DMA memory size (x%x) is "
17685 "less than the requested DMA memory "
17686 "size (x%x)\n", alloc_len, req_len);
17687 lpfc_sli4_mbox_cmd_free(phba, mboxq);
17688 return -ENOMEM;
17689 }
17690
17691 /*
17692 * Get the first SGE entry from the non-embedded DMA memory. This
17693 * routine only uses a single SGE.
17694 */
17695 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge);
17696 virt_addr = mboxq->sge_array->addr[0];
17697 /*
17698 * Configure the FCF record for FCFI 0. This is the driver's
17699 * hardcoded default and gets used in nonFIP mode.
17700 */
17701 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record);
17702 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr);
17703 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t));
17704
17705 /*
17706 * Copy the fcf_index and the FCF Record Data. The data starts after
17707 * the FCoE header plus word10. The data copy needs to be endian
17708 * correct.
17709 */
17710 bytep += sizeof(uint32_t);
17711 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record));
17712 mboxq->vport = phba->pport;
17713 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record;
17714 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
17715 if (rc == MBX_NOT_FINISHED) {
17716 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
17717 "2515 ADD_FCF_RECORD mailbox failed with "
17718 "status 0x%x\n", rc);
17719 lpfc_sli4_mbox_cmd_free(phba, mboxq);
17720 rc = -EIO;
17721 } else
17722 rc = 0;
17723
17724 return rc;
17725 }
17726
17727 /**
17728 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record.
17729 * @phba: pointer to lpfc hba data structure.
17730 * @fcf_record: pointer to the fcf record to write the default data.
17731 * @fcf_index: FCF table entry index.
17732 *
17733 * This routine is invoked to build the driver's default FCF record. The
17734 * values used are hardcoded. This routine handles memory initialization.
17735 *
17736 **/
17737 void
lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba * phba,struct fcf_record * fcf_record,uint16_t fcf_index)17738 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba,
17739 struct fcf_record *fcf_record,
17740 uint16_t fcf_index)
17741 {
17742 memset(fcf_record, 0, sizeof(struct fcf_record));
17743 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE;
17744 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER;
17745 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY;
17746 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]);
17747 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]);
17748 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]);
17749 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3);
17750 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4);
17751 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5);
17752 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]);
17753 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]);
17754 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]);
17755 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1);
17756 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1);
17757 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index);
17758 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record,
17759 LPFC_FCF_FPMA | LPFC_FCF_SPMA);
17760 /* Set the VLAN bit map */
17761 if (phba->valid_vlan) {
17762 fcf_record->vlan_bitmap[phba->vlan_id / 8]
17763 = 1 << (phba->vlan_id % 8);
17764 }
17765 }
17766
17767 /**
17768 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan.
17769 * @phba: pointer to lpfc hba data structure.
17770 * @fcf_index: FCF table entry offset.
17771 *
17772 * This routine is invoked to scan the entire FCF table by reading FCF
17773 * record and processing it one at a time starting from the @fcf_index
17774 * for initial FCF discovery or fast FCF failover rediscovery.
17775 *
17776 * Return 0 if the mailbox command is submitted successfully, none 0
17777 * otherwise.
17778 **/
17779 int
lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba * phba,uint16_t fcf_index)17780 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
17781 {
17782 int rc = 0, error;
17783 LPFC_MBOXQ_t *mboxq;
17784
17785 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag;
17786 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag;
17787 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17788 if (!mboxq) {
17789 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
17790 "2000 Failed to allocate mbox for "
17791 "READ_FCF cmd\n");
17792 error = -ENOMEM;
17793 goto fail_fcf_scan;
17794 }
17795 /* Construct the read FCF record mailbox command */
17796 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
17797 if (rc) {
17798 error = -EINVAL;
17799 goto fail_fcf_scan;
17800 }
17801 /* Issue the mailbox command asynchronously */
17802 mboxq->vport = phba->pport;
17803 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec;
17804
17805 spin_lock_irq(&phba->hbalock);
17806 phba->hba_flag |= FCF_TS_INPROG;
17807 spin_unlock_irq(&phba->hbalock);
17808
17809 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
17810 if (rc == MBX_NOT_FINISHED)
17811 error = -EIO;
17812 else {
17813 /* Reset eligible FCF count for new scan */
17814 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST)
17815 phba->fcf.eligible_fcf_cnt = 0;
17816 error = 0;
17817 }
17818 fail_fcf_scan:
17819 if (error) {
17820 if (mboxq)
17821 lpfc_sli4_mbox_cmd_free(phba, mboxq);
17822 /* FCF scan failed, clear FCF_TS_INPROG flag */
17823 spin_lock_irq(&phba->hbalock);
17824 phba->hba_flag &= ~FCF_TS_INPROG;
17825 spin_unlock_irq(&phba->hbalock);
17826 }
17827 return error;
17828 }
17829
17830 /**
17831 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf.
17832 * @phba: pointer to lpfc hba data structure.
17833 * @fcf_index: FCF table entry offset.
17834 *
17835 * This routine is invoked to read an FCF record indicated by @fcf_index
17836 * and to use it for FLOGI roundrobin FCF failover.
17837 *
17838 * Return 0 if the mailbox command is submitted successfully, none 0
17839 * otherwise.
17840 **/
17841 int
lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba * phba,uint16_t fcf_index)17842 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
17843 {
17844 int rc = 0, error;
17845 LPFC_MBOXQ_t *mboxq;
17846
17847 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17848 if (!mboxq) {
17849 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
17850 "2763 Failed to allocate mbox for "
17851 "READ_FCF cmd\n");
17852 error = -ENOMEM;
17853 goto fail_fcf_read;
17854 }
17855 /* Construct the read FCF record mailbox command */
17856 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
17857 if (rc) {
17858 error = -EINVAL;
17859 goto fail_fcf_read;
17860 }
17861 /* Issue the mailbox command asynchronously */
17862 mboxq->vport = phba->pport;
17863 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec;
17864 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
17865 if (rc == MBX_NOT_FINISHED)
17866 error = -EIO;
17867 else
17868 error = 0;
17869
17870 fail_fcf_read:
17871 if (error && mboxq)
17872 lpfc_sli4_mbox_cmd_free(phba, mboxq);
17873 return error;
17874 }
17875
17876 /**
17877 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask.
17878 * @phba: pointer to lpfc hba data structure.
17879 * @fcf_index: FCF table entry offset.
17880 *
17881 * This routine is invoked to read an FCF record indicated by @fcf_index to
17882 * determine whether it's eligible for FLOGI roundrobin failover list.
17883 *
17884 * Return 0 if the mailbox command is submitted successfully, none 0
17885 * otherwise.
17886 **/
17887 int
lpfc_sli4_read_fcf_rec(struct lpfc_hba * phba,uint16_t fcf_index)17888 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
17889 {
17890 int rc = 0, error;
17891 LPFC_MBOXQ_t *mboxq;
17892
17893 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17894 if (!mboxq) {
17895 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
17896 "2758 Failed to allocate mbox for "
17897 "READ_FCF cmd\n");
17898 error = -ENOMEM;
17899 goto fail_fcf_read;
17900 }
17901 /* Construct the read FCF record mailbox command */
17902 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
17903 if (rc) {
17904 error = -EINVAL;
17905 goto fail_fcf_read;
17906 }
17907 /* Issue the mailbox command asynchronously */
17908 mboxq->vport = phba->pport;
17909 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec;
17910 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
17911 if (rc == MBX_NOT_FINISHED)
17912 error = -EIO;
17913 else
17914 error = 0;
17915
17916 fail_fcf_read:
17917 if (error && mboxq)
17918 lpfc_sli4_mbox_cmd_free(phba, mboxq);
17919 return error;
17920 }
17921
17922 /**
17923 * lpfc_check_next_fcf_pri_level
17924 * phba pointer to the lpfc_hba struct for this port.
17925 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get
17926 * routine when the rr_bmask is empty. The FCF indecies are put into the
17927 * rr_bmask based on their priority level. Starting from the highest priority
17928 * to the lowest. The most likely FCF candidate will be in the highest
17929 * priority group. When this routine is called it searches the fcf_pri list for
17930 * next lowest priority group and repopulates the rr_bmask with only those
17931 * fcf_indexes.
17932 * returns:
17933 * 1=success 0=failure
17934 **/
17935 static int
lpfc_check_next_fcf_pri_level(struct lpfc_hba * phba)17936 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba)
17937 {
17938 uint16_t next_fcf_pri;
17939 uint16_t last_index;
17940 struct lpfc_fcf_pri *fcf_pri;
17941 int rc;
17942 int ret = 0;
17943
17944 last_index = find_first_bit(phba->fcf.fcf_rr_bmask,
17945 LPFC_SLI4_FCF_TBL_INDX_MAX);
17946 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
17947 "3060 Last IDX %d\n", last_index);
17948
17949 /* Verify the priority list has 2 or more entries */
17950 spin_lock_irq(&phba->hbalock);
17951 if (list_empty(&phba->fcf.fcf_pri_list) ||
17952 list_is_singular(&phba->fcf.fcf_pri_list)) {
17953 spin_unlock_irq(&phba->hbalock);
17954 lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
17955 "3061 Last IDX %d\n", last_index);
17956 return 0; /* Empty rr list */
17957 }
17958 spin_unlock_irq(&phba->hbalock);
17959
17960 next_fcf_pri = 0;
17961 /*
17962 * Clear the rr_bmask and set all of the bits that are at this
17963 * priority.
17964 */
17965 memset(phba->fcf.fcf_rr_bmask, 0,
17966 sizeof(*phba->fcf.fcf_rr_bmask));
17967 spin_lock_irq(&phba->hbalock);
17968 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
17969 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED)
17970 continue;
17971 /*
17972 * the 1st priority that has not FLOGI failed
17973 * will be the highest.
17974 */
17975 if (!next_fcf_pri)
17976 next_fcf_pri = fcf_pri->fcf_rec.priority;
17977 spin_unlock_irq(&phba->hbalock);
17978 if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
17979 rc = lpfc_sli4_fcf_rr_index_set(phba,
17980 fcf_pri->fcf_rec.fcf_index);
17981 if (rc)
17982 return 0;
17983 }
17984 spin_lock_irq(&phba->hbalock);
17985 }
17986 /*
17987 * if next_fcf_pri was not set above and the list is not empty then
17988 * we have failed flogis on all of them. So reset flogi failed
17989 * and start at the beginning.
17990 */
17991 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) {
17992 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
17993 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED;
17994 /*
17995 * the 1st priority that has not FLOGI failed
17996 * will be the highest.
17997 */
17998 if (!next_fcf_pri)
17999 next_fcf_pri = fcf_pri->fcf_rec.priority;
18000 spin_unlock_irq(&phba->hbalock);
18001 if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
18002 rc = lpfc_sli4_fcf_rr_index_set(phba,
18003 fcf_pri->fcf_rec.fcf_index);
18004 if (rc)
18005 return 0;
18006 }
18007 spin_lock_irq(&phba->hbalock);
18008 }
18009 } else
18010 ret = 1;
18011 spin_unlock_irq(&phba->hbalock);
18012
18013 return ret;
18014 }
18015 /**
18016 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index
18017 * @phba: pointer to lpfc hba data structure.
18018 *
18019 * This routine is to get the next eligible FCF record index in a round
18020 * robin fashion. If the next eligible FCF record index equals to the
18021 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF)
18022 * shall be returned, otherwise, the next eligible FCF record's index
18023 * shall be returned.
18024 **/
18025 uint16_t
lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba * phba)18026 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba)
18027 {
18028 uint16_t next_fcf_index;
18029
18030 initial_priority:
18031 /* Search start from next bit of currently registered FCF index */
18032 next_fcf_index = phba->fcf.current_rec.fcf_indx;
18033
18034 next_priority:
18035 /* Determine the next fcf index to check */
18036 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX;
18037 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask,
18038 LPFC_SLI4_FCF_TBL_INDX_MAX,
18039 next_fcf_index);
18040
18041 /* Wrap around condition on phba->fcf.fcf_rr_bmask */
18042 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
18043 /*
18044 * If we have wrapped then we need to clear the bits that
18045 * have been tested so that we can detect when we should
18046 * change the priority level.
18047 */
18048 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask,
18049 LPFC_SLI4_FCF_TBL_INDX_MAX, 0);
18050 }
18051
18052
18053 /* Check roundrobin failover list empty condition */
18054 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX ||
18055 next_fcf_index == phba->fcf.current_rec.fcf_indx) {
18056 /*
18057 * If next fcf index is not found check if there are lower
18058 * Priority level fcf's in the fcf_priority list.
18059 * Set up the rr_bmask with all of the avaiable fcf bits
18060 * at that level and continue the selection process.
18061 */
18062 if (lpfc_check_next_fcf_pri_level(phba))
18063 goto initial_priority;
18064 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP,
18065 "2844 No roundrobin failover FCF available\n");
18066
18067 return LPFC_FCOE_FCF_NEXT_NONE;
18068 }
18069
18070 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX &&
18071 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag &
18072 LPFC_FCF_FLOGI_FAILED) {
18073 if (list_is_singular(&phba->fcf.fcf_pri_list))
18074 return LPFC_FCOE_FCF_NEXT_NONE;
18075
18076 goto next_priority;
18077 }
18078
18079 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
18080 "2845 Get next roundrobin failover FCF (x%x)\n",
18081 next_fcf_index);
18082
18083 return next_fcf_index;
18084 }
18085
18086 /**
18087 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index
18088 * @phba: pointer to lpfc hba data structure.
18089 *
18090 * This routine sets the FCF record index in to the eligible bmask for
18091 * roundrobin failover search. It checks to make sure that the index
18092 * does not go beyond the range of the driver allocated bmask dimension
18093 * before setting the bit.
18094 *
18095 * Returns 0 if the index bit successfully set, otherwise, it returns
18096 * -EINVAL.
18097 **/
18098 int
lpfc_sli4_fcf_rr_index_set(struct lpfc_hba * phba,uint16_t fcf_index)18099 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index)
18100 {
18101 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
18102 lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
18103 "2610 FCF (x%x) reached driver's book "
18104 "keeping dimension:x%x\n",
18105 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
18106 return -EINVAL;
18107 }
18108 /* Set the eligible FCF record index bmask */
18109 set_bit(fcf_index, phba->fcf.fcf_rr_bmask);
18110
18111 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
18112 "2790 Set FCF (x%x) to roundrobin FCF failover "
18113 "bmask\n", fcf_index);
18114
18115 return 0;
18116 }
18117
18118 /**
18119 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index
18120 * @phba: pointer to lpfc hba data structure.
18121 *
18122 * This routine clears the FCF record index from the eligible bmask for
18123 * roundrobin failover search. It checks to make sure that the index
18124 * does not go beyond the range of the driver allocated bmask dimension
18125 * before clearing the bit.
18126 **/
18127 void
lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba * phba,uint16_t fcf_index)18128 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index)
18129 {
18130 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next;
18131 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
18132 lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
18133 "2762 FCF (x%x) reached driver's book "
18134 "keeping dimension:x%x\n",
18135 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
18136 return;
18137 }
18138 /* Clear the eligible FCF record index bmask */
18139 spin_lock_irq(&phba->hbalock);
18140 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list,
18141 list) {
18142 if (fcf_pri->fcf_rec.fcf_index == fcf_index) {
18143 list_del_init(&fcf_pri->list);
18144 break;
18145 }
18146 }
18147 spin_unlock_irq(&phba->hbalock);
18148 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask);
18149
18150 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
18151 "2791 Clear FCF (x%x) from roundrobin failover "
18152 "bmask\n", fcf_index);
18153 }
18154
18155 /**
18156 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table
18157 * @phba: pointer to lpfc hba data structure.
18158 *
18159 * This routine is the completion routine for the rediscover FCF table mailbox
18160 * command. If the mailbox command returned failure, it will try to stop the
18161 * FCF rediscover wait timer.
18162 **/
18163 static void
lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba * phba,LPFC_MBOXQ_t * mbox)18164 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
18165 {
18166 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
18167 uint32_t shdr_status, shdr_add_status;
18168
18169 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
18170
18171 shdr_status = bf_get(lpfc_mbox_hdr_status,
18172 &redisc_fcf->header.cfg_shdr.response);
18173 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
18174 &redisc_fcf->header.cfg_shdr.response);
18175 if (shdr_status || shdr_add_status) {
18176 lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
18177 "2746 Requesting for FCF rediscovery failed "
18178 "status x%x add_status x%x\n",
18179 shdr_status, shdr_add_status);
18180 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) {
18181 spin_lock_irq(&phba->hbalock);
18182 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC;
18183 spin_unlock_irq(&phba->hbalock);
18184 /*
18185 * CVL event triggered FCF rediscover request failed,
18186 * last resort to re-try current registered FCF entry.
18187 */
18188 lpfc_retry_pport_discovery(phba);
18189 } else {
18190 spin_lock_irq(&phba->hbalock);
18191 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC;
18192 spin_unlock_irq(&phba->hbalock);
18193 /*
18194 * DEAD FCF event triggered FCF rediscover request
18195 * failed, last resort to fail over as a link down
18196 * to FCF registration.
18197 */
18198 lpfc_sli4_fcf_dead_failthrough(phba);
18199 }
18200 } else {
18201 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
18202 "2775 Start FCF rediscover quiescent timer\n");
18203 /*
18204 * Start FCF rediscovery wait timer for pending FCF
18205 * before rescan FCF record table.
18206 */
18207 lpfc_fcf_redisc_wait_start_timer(phba);
18208 }
18209
18210 mempool_free(mbox, phba->mbox_mem_pool);
18211 }
18212
18213 /**
18214 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port.
18215 * @phba: pointer to lpfc hba data structure.
18216 *
18217 * This routine is invoked to request for rediscovery of the entire FCF table
18218 * by the port.
18219 **/
18220 int
lpfc_sli4_redisc_fcf_table(struct lpfc_hba * phba)18221 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba)
18222 {
18223 LPFC_MBOXQ_t *mbox;
18224 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
18225 int rc, length;
18226
18227 /* Cancel retry delay timers to all vports before FCF rediscover */
18228 lpfc_cancel_all_vport_retry_delay_timer(phba);
18229
18230 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18231 if (!mbox) {
18232 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18233 "2745 Failed to allocate mbox for "
18234 "requesting FCF rediscover.\n");
18235 return -ENOMEM;
18236 }
18237
18238 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) -
18239 sizeof(struct lpfc_sli4_cfg_mhdr));
18240 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
18241 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF,
18242 length, LPFC_SLI4_MBX_EMBED);
18243
18244 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
18245 /* Set count to 0 for invalidating the entire FCF database */
18246 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0);
18247
18248 /* Issue the mailbox command asynchronously */
18249 mbox->vport = phba->pport;
18250 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table;
18251 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
18252
18253 if (rc == MBX_NOT_FINISHED) {
18254 mempool_free(mbox, phba->mbox_mem_pool);
18255 return -EIO;
18256 }
18257 return 0;
18258 }
18259
18260 /**
18261 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event
18262 * @phba: pointer to lpfc hba data structure.
18263 *
18264 * This function is the failover routine as a last resort to the FCF DEAD
18265 * event when driver failed to perform fast FCF failover.
18266 **/
18267 void
lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba * phba)18268 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba)
18269 {
18270 uint32_t link_state;
18271
18272 /*
18273 * Last resort as FCF DEAD event failover will treat this as
18274 * a link down, but save the link state because we don't want
18275 * it to be changed to Link Down unless it is already down.
18276 */
18277 link_state = phba->link_state;
18278 lpfc_linkdown(phba);
18279 phba->link_state = link_state;
18280
18281 /* Unregister FCF if no devices connected to it */
18282 lpfc_unregister_unused_fcf(phba);
18283 }
18284
18285 /**
18286 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data.
18287 * @phba: pointer to lpfc hba data structure.
18288 * @rgn23_data: pointer to configure region 23 data.
18289 *
18290 * This function gets SLI3 port configure region 23 data through memory dump
18291 * mailbox command. When it successfully retrieves data, the size of the data
18292 * will be returned, otherwise, 0 will be returned.
18293 **/
18294 static uint32_t
lpfc_sli_get_config_region23(struct lpfc_hba * phba,char * rgn23_data)18295 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
18296 {
18297 LPFC_MBOXQ_t *pmb = NULL;
18298 MAILBOX_t *mb;
18299 uint32_t offset = 0;
18300 int rc;
18301
18302 if (!rgn23_data)
18303 return 0;
18304
18305 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18306 if (!pmb) {
18307 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18308 "2600 failed to allocate mailbox memory\n");
18309 return 0;
18310 }
18311 mb = &pmb->u.mb;
18312
18313 do {
18314 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23);
18315 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
18316
18317 if (rc != MBX_SUCCESS) {
18318 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
18319 "2601 failed to read config "
18320 "region 23, rc 0x%x Status 0x%x\n",
18321 rc, mb->mbxStatus);
18322 mb->un.varDmp.word_cnt = 0;
18323 }
18324 /*
18325 * dump mem may return a zero when finished or we got a
18326 * mailbox error, either way we are done.
18327 */
18328 if (mb->un.varDmp.word_cnt == 0)
18329 break;
18330 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset)
18331 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset;
18332
18333 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET,
18334 rgn23_data + offset,
18335 mb->un.varDmp.word_cnt);
18336 offset += mb->un.varDmp.word_cnt;
18337 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE);
18338
18339 mempool_free(pmb, phba->mbox_mem_pool);
18340 return offset;
18341 }
18342
18343 /**
18344 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data.
18345 * @phba: pointer to lpfc hba data structure.
18346 * @rgn23_data: pointer to configure region 23 data.
18347 *
18348 * This function gets SLI4 port configure region 23 data through memory dump
18349 * mailbox command. When it successfully retrieves data, the size of the data
18350 * will be returned, otherwise, 0 will be returned.
18351 **/
18352 static uint32_t
lpfc_sli4_get_config_region23(struct lpfc_hba * phba,char * rgn23_data)18353 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
18354 {
18355 LPFC_MBOXQ_t *mboxq = NULL;
18356 struct lpfc_dmabuf *mp = NULL;
18357 struct lpfc_mqe *mqe;
18358 uint32_t data_length = 0;
18359 int rc;
18360
18361 if (!rgn23_data)
18362 return 0;
18363
18364 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18365 if (!mboxq) {
18366 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18367 "3105 failed to allocate mailbox memory\n");
18368 return 0;
18369 }
18370
18371 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq))
18372 goto out;
18373 mqe = &mboxq->u.mqe;
18374 mp = (struct lpfc_dmabuf *) mboxq->context1;
18375 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
18376 if (rc)
18377 goto out;
18378 data_length = mqe->un.mb_words[5];
18379 if (data_length == 0)
18380 goto out;
18381 if (data_length > DMP_RGN23_SIZE) {
18382 data_length = 0;
18383 goto out;
18384 }
18385 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length);
18386 out:
18387 mempool_free(mboxq, phba->mbox_mem_pool);
18388 if (mp) {
18389 lpfc_mbuf_free(phba, mp->virt, mp->phys);
18390 kfree(mp);
18391 }
18392 return data_length;
18393 }
18394
18395 /**
18396 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled.
18397 * @phba: pointer to lpfc hba data structure.
18398 *
18399 * This function read region 23 and parse TLV for port status to
18400 * decide if the user disaled the port. If the TLV indicates the
18401 * port is disabled, the hba_flag is set accordingly.
18402 **/
18403 void
lpfc_sli_read_link_ste(struct lpfc_hba * phba)18404 lpfc_sli_read_link_ste(struct lpfc_hba *phba)
18405 {
18406 uint8_t *rgn23_data = NULL;
18407 uint32_t if_type, data_size, sub_tlv_len, tlv_offset;
18408 uint32_t offset = 0;
18409
18410 /* Get adapter Region 23 data */
18411 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL);
18412 if (!rgn23_data)
18413 goto out;
18414
18415 if (phba->sli_rev < LPFC_SLI_REV4)
18416 data_size = lpfc_sli_get_config_region23(phba, rgn23_data);
18417 else {
18418 if_type = bf_get(lpfc_sli_intf_if_type,
18419 &phba->sli4_hba.sli_intf);
18420 if (if_type == LPFC_SLI_INTF_IF_TYPE_0)
18421 goto out;
18422 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data);
18423 }
18424
18425 if (!data_size)
18426 goto out;
18427
18428 /* Check the region signature first */
18429 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) {
18430 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18431 "2619 Config region 23 has bad signature\n");
18432 goto out;
18433 }
18434 offset += 4;
18435
18436 /* Check the data structure version */
18437 if (rgn23_data[offset] != LPFC_REGION23_VERSION) {
18438 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18439 "2620 Config region 23 has bad version\n");
18440 goto out;
18441 }
18442 offset += 4;
18443
18444 /* Parse TLV entries in the region */
18445 while (offset < data_size) {
18446 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC)
18447 break;
18448 /*
18449 * If the TLV is not driver specific TLV or driver id is
18450 * not linux driver id, skip the record.
18451 */
18452 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) ||
18453 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) ||
18454 (rgn23_data[offset + 3] != 0)) {
18455 offset += rgn23_data[offset + 1] * 4 + 4;
18456 continue;
18457 }
18458
18459 /* Driver found a driver specific TLV in the config region */
18460 sub_tlv_len = rgn23_data[offset + 1] * 4;
18461 offset += 4;
18462 tlv_offset = 0;
18463
18464 /*
18465 * Search for configured port state sub-TLV.
18466 */
18467 while ((offset < data_size) &&
18468 (tlv_offset < sub_tlv_len)) {
18469 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) {
18470 offset += 4;
18471 tlv_offset += 4;
18472 break;
18473 }
18474 if (rgn23_data[offset] != PORT_STE_TYPE) {
18475 offset += rgn23_data[offset + 1] * 4 + 4;
18476 tlv_offset += rgn23_data[offset + 1] * 4 + 4;
18477 continue;
18478 }
18479
18480 /* This HBA contains PORT_STE configured */
18481 if (!rgn23_data[offset + 2])
18482 phba->hba_flag |= LINK_DISABLED;
18483
18484 goto out;
18485 }
18486 }
18487
18488 out:
18489 kfree(rgn23_data);
18490 return;
18491 }
18492
18493 /**
18494 * lpfc_wr_object - write an object to the firmware
18495 * @phba: HBA structure that indicates port to create a queue on.
18496 * @dmabuf_list: list of dmabufs to write to the port.
18497 * @size: the total byte value of the objects to write to the port.
18498 * @offset: the current offset to be used to start the transfer.
18499 *
18500 * This routine will create a wr_object mailbox command to send to the port.
18501 * the mailbox command will be constructed using the dma buffers described in
18502 * @dmabuf_list to create a list of BDEs. This routine will fill in as many
18503 * BDEs that the imbedded mailbox can support. The @offset variable will be
18504 * used to indicate the starting offset of the transfer and will also return
18505 * the offset after the write object mailbox has completed. @size is used to
18506 * determine the end of the object and whether the eof bit should be set.
18507 *
18508 * Return 0 is successful and offset will contain the the new offset to use
18509 * for the next write.
18510 * Return negative value for error cases.
18511 **/
18512 int
lpfc_wr_object(struct lpfc_hba * phba,struct list_head * dmabuf_list,uint32_t size,uint32_t * offset)18513 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list,
18514 uint32_t size, uint32_t *offset)
18515 {
18516 struct lpfc_mbx_wr_object *wr_object;
18517 LPFC_MBOXQ_t *mbox;
18518 int rc = 0, i = 0;
18519 uint32_t shdr_status, shdr_add_status;
18520 uint32_t mbox_tmo;
18521 union lpfc_sli4_cfg_shdr *shdr;
18522 struct lpfc_dmabuf *dmabuf;
18523 uint32_t written = 0;
18524
18525 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18526 if (!mbox)
18527 return -ENOMEM;
18528
18529 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
18530 LPFC_MBOX_OPCODE_WRITE_OBJECT,
18531 sizeof(struct lpfc_mbx_wr_object) -
18532 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
18533
18534 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object;
18535 wr_object->u.request.write_offset = *offset;
18536 sprintf((uint8_t *)wr_object->u.request.object_name, "/");
18537 wr_object->u.request.object_name[0] =
18538 cpu_to_le32(wr_object->u.request.object_name[0]);
18539 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0);
18540 list_for_each_entry(dmabuf, dmabuf_list, list) {
18541 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size)
18542 break;
18543 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys);
18544 wr_object->u.request.bde[i].addrHigh =
18545 putPaddrHigh(dmabuf->phys);
18546 if (written + SLI4_PAGE_SIZE >= size) {
18547 wr_object->u.request.bde[i].tus.f.bdeSize =
18548 (size - written);
18549 written += (size - written);
18550 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1);
18551 } else {
18552 wr_object->u.request.bde[i].tus.f.bdeSize =
18553 SLI4_PAGE_SIZE;
18554 written += SLI4_PAGE_SIZE;
18555 }
18556 i++;
18557 }
18558 wr_object->u.request.bde_count = i;
18559 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written);
18560 if (!phba->sli4_hba.intr_enable)
18561 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
18562 else {
18563 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
18564 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
18565 }
18566 /* The IOCTL status is embedded in the mailbox subheader. */
18567 shdr = (union lpfc_sli4_cfg_shdr *) &wr_object->header.cfg_shdr;
18568 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
18569 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
18570 if (rc != MBX_TIMEOUT)
18571 mempool_free(mbox, phba->mbox_mem_pool);
18572 if (shdr_status || shdr_add_status || rc) {
18573 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18574 "3025 Write Object mailbox failed with "
18575 "status x%x add_status x%x, mbx status x%x\n",
18576 shdr_status, shdr_add_status, rc);
18577 rc = -ENXIO;
18578 } else
18579 *offset += wr_object->u.response.actual_write_length;
18580 return rc;
18581 }
18582
18583 /**
18584 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands.
18585 * @vport: pointer to vport data structure.
18586 *
18587 * This function iterate through the mailboxq and clean up all REG_LOGIN
18588 * and REG_VPI mailbox commands associated with the vport. This function
18589 * is called when driver want to restart discovery of the vport due to
18590 * a Clear Virtual Link event.
18591 **/
18592 void
lpfc_cleanup_pending_mbox(struct lpfc_vport * vport)18593 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport)
18594 {
18595 struct lpfc_hba *phba = vport->phba;
18596 LPFC_MBOXQ_t *mb, *nextmb;
18597 struct lpfc_dmabuf *mp;
18598 struct lpfc_nodelist *ndlp;
18599 struct lpfc_nodelist *act_mbx_ndlp = NULL;
18600 struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
18601 LIST_HEAD(mbox_cmd_list);
18602 uint8_t restart_loop;
18603
18604 /* Clean up internally queued mailbox commands with the vport */
18605 spin_lock_irq(&phba->hbalock);
18606 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) {
18607 if (mb->vport != vport)
18608 continue;
18609
18610 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
18611 (mb->u.mb.mbxCommand != MBX_REG_VPI))
18612 continue;
18613
18614 list_del(&mb->list);
18615 list_add_tail(&mb->list, &mbox_cmd_list);
18616 }
18617 /* Clean up active mailbox command with the vport */
18618 mb = phba->sli.mbox_active;
18619 if (mb && (mb->vport == vport)) {
18620 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) ||
18621 (mb->u.mb.mbxCommand == MBX_REG_VPI))
18622 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
18623 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
18624 act_mbx_ndlp = (struct lpfc_nodelist *)mb->context2;
18625 /* Put reference count for delayed processing */
18626 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp);
18627 /* Unregister the RPI when mailbox complete */
18628 mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
18629 }
18630 }
18631 /* Cleanup any mailbox completions which are not yet processed */
18632 do {
18633 restart_loop = 0;
18634 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) {
18635 /*
18636 * If this mailox is already processed or it is
18637 * for another vport ignore it.
18638 */
18639 if ((mb->vport != vport) ||
18640 (mb->mbox_flag & LPFC_MBX_IMED_UNREG))
18641 continue;
18642
18643 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
18644 (mb->u.mb.mbxCommand != MBX_REG_VPI))
18645 continue;
18646
18647 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
18648 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
18649 ndlp = (struct lpfc_nodelist *)mb->context2;
18650 /* Unregister the RPI when mailbox complete */
18651 mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
18652 restart_loop = 1;
18653 spin_unlock_irq(&phba->hbalock);
18654 spin_lock(shost->host_lock);
18655 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
18656 spin_unlock(shost->host_lock);
18657 spin_lock_irq(&phba->hbalock);
18658 break;
18659 }
18660 }
18661 } while (restart_loop);
18662
18663 spin_unlock_irq(&phba->hbalock);
18664
18665 /* Release the cleaned-up mailbox commands */
18666 while (!list_empty(&mbox_cmd_list)) {
18667 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list);
18668 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
18669 mp = (struct lpfc_dmabuf *) (mb->context1);
18670 if (mp) {
18671 __lpfc_mbuf_free(phba, mp->virt, mp->phys);
18672 kfree(mp);
18673 }
18674 ndlp = (struct lpfc_nodelist *) mb->context2;
18675 mb->context2 = NULL;
18676 if (ndlp) {
18677 spin_lock(shost->host_lock);
18678 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
18679 spin_unlock(shost->host_lock);
18680 lpfc_nlp_put(ndlp);
18681 }
18682 }
18683 mempool_free(mb, phba->mbox_mem_pool);
18684 }
18685
18686 /* Release the ndlp with the cleaned-up active mailbox command */
18687 if (act_mbx_ndlp) {
18688 spin_lock(shost->host_lock);
18689 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
18690 spin_unlock(shost->host_lock);
18691 lpfc_nlp_put(act_mbx_ndlp);
18692 }
18693 }
18694
18695 /**
18696 * lpfc_drain_txq - Drain the txq
18697 * @phba: Pointer to HBA context object.
18698 *
18699 * This function attempt to submit IOCBs on the txq
18700 * to the adapter. For SLI4 adapters, the txq contains
18701 * ELS IOCBs that have been deferred because the there
18702 * are no SGLs. This congestion can occur with large
18703 * vport counts during node discovery.
18704 **/
18705
18706 uint32_t
lpfc_drain_txq(struct lpfc_hba * phba)18707 lpfc_drain_txq(struct lpfc_hba *phba)
18708 {
18709 LIST_HEAD(completions);
18710 struct lpfc_sli_ring *pring;
18711 struct lpfc_iocbq *piocbq = NULL;
18712 unsigned long iflags = 0;
18713 char *fail_msg = NULL;
18714 struct lpfc_sglq *sglq;
18715 union lpfc_wqe128 wqe128;
18716 union lpfc_wqe *wqe = (union lpfc_wqe *) &wqe128;
18717 uint32_t txq_cnt = 0;
18718
18719 pring = lpfc_phba_elsring(phba);
18720 if (unlikely(!pring))
18721 return 0;
18722
18723 spin_lock_irqsave(&pring->ring_lock, iflags);
18724 list_for_each_entry(piocbq, &pring->txq, list) {
18725 txq_cnt++;
18726 }
18727
18728 if (txq_cnt > pring->txq_max)
18729 pring->txq_max = txq_cnt;
18730
18731 spin_unlock_irqrestore(&pring->ring_lock, iflags);
18732
18733 while (!list_empty(&pring->txq)) {
18734 spin_lock_irqsave(&pring->ring_lock, iflags);
18735
18736 piocbq = lpfc_sli_ringtx_get(phba, pring);
18737 if (!piocbq) {
18738 spin_unlock_irqrestore(&pring->ring_lock, iflags);
18739 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18740 "2823 txq empty and txq_cnt is %d\n ",
18741 txq_cnt);
18742 break;
18743 }
18744 sglq = __lpfc_sli_get_els_sglq(phba, piocbq);
18745 if (!sglq) {
18746 __lpfc_sli_ringtx_put(phba, pring, piocbq);
18747 spin_unlock_irqrestore(&pring->ring_lock, iflags);
18748 break;
18749 }
18750 txq_cnt--;
18751
18752 /* The xri and iocb resources secured,
18753 * attempt to issue request
18754 */
18755 piocbq->sli4_lxritag = sglq->sli4_lxritag;
18756 piocbq->sli4_xritag = sglq->sli4_xritag;
18757 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq))
18758 fail_msg = "to convert bpl to sgl";
18759 else if (lpfc_sli4_iocb2wqe(phba, piocbq, wqe))
18760 fail_msg = "to convert iocb to wqe";
18761 else if (lpfc_sli4_wq_put(phba->sli4_hba.els_wq, wqe))
18762 fail_msg = " - Wq is full";
18763 else
18764 lpfc_sli_ringtxcmpl_put(phba, pring, piocbq);
18765
18766 if (fail_msg) {
18767 /* Failed means we can't issue and need to cancel */
18768 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18769 "2822 IOCB failed %s iotag 0x%x "
18770 "xri 0x%x\n",
18771 fail_msg,
18772 piocbq->iotag, piocbq->sli4_xritag);
18773 list_add_tail(&piocbq->list, &completions);
18774 }
18775 spin_unlock_irqrestore(&pring->ring_lock, iflags);
18776 }
18777
18778 /* Cancel all the IOCBs that cannot be issued */
18779 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
18780 IOERR_SLI_ABORTED);
18781
18782 return txq_cnt;
18783 }
18784
18785 /**
18786 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl.
18787 * @phba: Pointer to HBA context object.
18788 * @pwqe: Pointer to command WQE.
18789 * @sglq: Pointer to the scatter gather queue object.
18790 *
18791 * This routine converts the bpl or bde that is in the WQE
18792 * to a sgl list for the sli4 hardware. The physical address
18793 * of the bpl/bde is converted back to a virtual address.
18794 * If the WQE contains a BPL then the list of BDE's is
18795 * converted to sli4_sge's. If the WQE contains a single
18796 * BDE then it is converted to a single sli_sge.
18797 * The WQE is still in cpu endianness so the contents of
18798 * the bpl can be used without byte swapping.
18799 *
18800 * Returns valid XRI = Success, NO_XRI = Failure.
18801 */
18802 static uint16_t
lpfc_wqe_bpl2sgl(struct lpfc_hba * phba,struct lpfc_iocbq * pwqeq,struct lpfc_sglq * sglq)18803 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq,
18804 struct lpfc_sglq *sglq)
18805 {
18806 uint16_t xritag = NO_XRI;
18807 struct ulp_bde64 *bpl = NULL;
18808 struct ulp_bde64 bde;
18809 struct sli4_sge *sgl = NULL;
18810 struct lpfc_dmabuf *dmabuf;
18811 union lpfc_wqe *wqe;
18812 int numBdes = 0;
18813 int i = 0;
18814 uint32_t offset = 0; /* accumulated offset in the sg request list */
18815 int inbound = 0; /* number of sg reply entries inbound from firmware */
18816 uint32_t cmd;
18817
18818 if (!pwqeq || !sglq)
18819 return xritag;
18820
18821 sgl = (struct sli4_sge *)sglq->sgl;
18822 wqe = &pwqeq->wqe;
18823 pwqeq->iocb.ulpIoTag = pwqeq->iotag;
18824
18825 cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com);
18826 if (cmd == CMD_XMIT_BLS_RSP64_WQE)
18827 return sglq->sli4_xritag;
18828 numBdes = pwqeq->rsvd2;
18829 if (numBdes) {
18830 /* The addrHigh and addrLow fields within the WQE
18831 * have not been byteswapped yet so there is no
18832 * need to swap them back.
18833 */
18834 if (pwqeq->context3)
18835 dmabuf = (struct lpfc_dmabuf *)pwqeq->context3;
18836 else
18837 return xritag;
18838
18839 bpl = (struct ulp_bde64 *)dmabuf->virt;
18840 if (!bpl)
18841 return xritag;
18842
18843 for (i = 0; i < numBdes; i++) {
18844 /* Should already be byte swapped. */
18845 sgl->addr_hi = bpl->addrHigh;
18846 sgl->addr_lo = bpl->addrLow;
18847
18848 sgl->word2 = le32_to_cpu(sgl->word2);
18849 if ((i+1) == numBdes)
18850 bf_set(lpfc_sli4_sge_last, sgl, 1);
18851 else
18852 bf_set(lpfc_sli4_sge_last, sgl, 0);
18853 /* swap the size field back to the cpu so we
18854 * can assign it to the sgl.
18855 */
18856 bde.tus.w = le32_to_cpu(bpl->tus.w);
18857 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize);
18858 /* The offsets in the sgl need to be accumulated
18859 * separately for the request and reply lists.
18860 * The request is always first, the reply follows.
18861 */
18862 switch (cmd) {
18863 case CMD_GEN_REQUEST64_WQE:
18864 /* add up the reply sg entries */
18865 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I)
18866 inbound++;
18867 /* first inbound? reset the offset */
18868 if (inbound == 1)
18869 offset = 0;
18870 bf_set(lpfc_sli4_sge_offset, sgl, offset);
18871 bf_set(lpfc_sli4_sge_type, sgl,
18872 LPFC_SGE_TYPE_DATA);
18873 offset += bde.tus.f.bdeSize;
18874 break;
18875 case CMD_FCP_TRSP64_WQE:
18876 bf_set(lpfc_sli4_sge_offset, sgl, 0);
18877 bf_set(lpfc_sli4_sge_type, sgl,
18878 LPFC_SGE_TYPE_DATA);
18879 break;
18880 case CMD_FCP_TSEND64_WQE:
18881 case CMD_FCP_TRECEIVE64_WQE:
18882 bf_set(lpfc_sli4_sge_type, sgl,
18883 bpl->tus.f.bdeFlags);
18884 if (i < 3)
18885 offset = 0;
18886 else
18887 offset += bde.tus.f.bdeSize;
18888 bf_set(lpfc_sli4_sge_offset, sgl, offset);
18889 break;
18890 }
18891 sgl->word2 = cpu_to_le32(sgl->word2);
18892 bpl++;
18893 sgl++;
18894 }
18895 } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) {
18896 /* The addrHigh and addrLow fields of the BDE have not
18897 * been byteswapped yet so they need to be swapped
18898 * before putting them in the sgl.
18899 */
18900 sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh);
18901 sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow);
18902 sgl->word2 = le32_to_cpu(sgl->word2);
18903 bf_set(lpfc_sli4_sge_last, sgl, 1);
18904 sgl->word2 = cpu_to_le32(sgl->word2);
18905 sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize);
18906 }
18907 return sglq->sli4_xritag;
18908 }
18909
18910 /**
18911 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE)
18912 * @phba: Pointer to HBA context object.
18913 * @ring_number: Base sli ring number
18914 * @pwqe: Pointer to command WQE.
18915 **/
18916 int
lpfc_sli4_issue_wqe(struct lpfc_hba * phba,uint32_t ring_number,struct lpfc_iocbq * pwqe)18917 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, uint32_t ring_number,
18918 struct lpfc_iocbq *pwqe)
18919 {
18920 union lpfc_wqe *wqe = &pwqe->wqe;
18921 struct lpfc_nvmet_rcv_ctx *ctxp;
18922 struct lpfc_queue *wq;
18923 struct lpfc_sglq *sglq;
18924 struct lpfc_sli_ring *pring;
18925 unsigned long iflags;
18926 uint32_t ret = 0;
18927
18928 /* NVME_LS and NVME_LS ABTS requests. */
18929 if (pwqe->iocb_flag & LPFC_IO_NVME_LS) {
18930 pring = phba->sli4_hba.nvmels_wq->pring;
18931 spin_lock_irqsave(&pring->ring_lock, iflags);
18932 sglq = __lpfc_sli_get_els_sglq(phba, pwqe);
18933 if (!sglq) {
18934 spin_unlock_irqrestore(&pring->ring_lock, iflags);
18935 return WQE_BUSY;
18936 }
18937 pwqe->sli4_lxritag = sglq->sli4_lxritag;
18938 pwqe->sli4_xritag = sglq->sli4_xritag;
18939 if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) {
18940 spin_unlock_irqrestore(&pring->ring_lock, iflags);
18941 return WQE_ERROR;
18942 }
18943 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com,
18944 pwqe->sli4_xritag);
18945 ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe);
18946 if (ret) {
18947 spin_unlock_irqrestore(&pring->ring_lock, iflags);
18948 return ret;
18949 }
18950
18951 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
18952 spin_unlock_irqrestore(&pring->ring_lock, iflags);
18953 return 0;
18954 }
18955
18956 /* NVME_FCREQ and NVME_ABTS requests */
18957 if (pwqe->iocb_flag & LPFC_IO_NVME) {
18958 /* Get the IO distribution (hba_wqidx) for WQ assignment. */
18959 pring = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx]->pring;
18960
18961 spin_lock_irqsave(&pring->ring_lock, iflags);
18962 wq = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx];
18963 bf_set(wqe_cqid, &wqe->generic.wqe_com,
18964 phba->sli4_hba.nvme_cq[pwqe->hba_wqidx]->queue_id);
18965 ret = lpfc_sli4_wq_put(wq, wqe);
18966 if (ret) {
18967 spin_unlock_irqrestore(&pring->ring_lock, iflags);
18968 return ret;
18969 }
18970 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
18971 spin_unlock_irqrestore(&pring->ring_lock, iflags);
18972 return 0;
18973 }
18974
18975 /* NVMET requests */
18976 if (pwqe->iocb_flag & LPFC_IO_NVMET) {
18977 /* Get the IO distribution (hba_wqidx) for WQ assignment. */
18978 pring = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx]->pring;
18979
18980 spin_lock_irqsave(&pring->ring_lock, iflags);
18981 ctxp = pwqe->context2;
18982 sglq = ctxp->ctxbuf->sglq;
18983 if (pwqe->sli4_xritag == NO_XRI) {
18984 pwqe->sli4_lxritag = sglq->sli4_lxritag;
18985 pwqe->sli4_xritag = sglq->sli4_xritag;
18986 }
18987 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com,
18988 pwqe->sli4_xritag);
18989 wq = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx];
18990 bf_set(wqe_cqid, &wqe->generic.wqe_com,
18991 phba->sli4_hba.nvme_cq[pwqe->hba_wqidx]->queue_id);
18992 ret = lpfc_sli4_wq_put(wq, wqe);
18993 if (ret) {
18994 spin_unlock_irqrestore(&pring->ring_lock, iflags);
18995 return ret;
18996 }
18997 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
18998 spin_unlock_irqrestore(&pring->ring_lock, iflags);
18999 return 0;
19000 }
19001 return WQE_ERROR;
19002 }
19003