1 /*
2 * linux/mm/swap.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * This file contains the default values for the operation of the
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
11 * Started 18.12.91
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
14 */
15
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/percpu_counter.h>
27 #include <linux/memremap.h>
28 #include <linux/percpu.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/backing-dev.h>
32 #include <linux/memcontrol.h>
33 #include <linux/gfp.h>
34 #include <linux/uio.h>
35 #include <linux/hugetlb.h>
36 #include <linux/page_idle.h>
37
38 #include "internal.h"
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/pagemap.h>
42
43 /* How many pages do we try to swap or page in/out together? */
44 int page_cluster;
45
46 static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
47 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
48 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_file_pvecs);
49 static DEFINE_PER_CPU(struct pagevec, lru_lazyfree_pvecs);
50 #ifdef CONFIG_SMP
51 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
52 #endif
53
54 /*
55 * This path almost never happens for VM activity - pages are normally
56 * freed via pagevecs. But it gets used by networking.
57 */
__page_cache_release(struct page * page)58 static void __page_cache_release(struct page *page)
59 {
60 if (PageLRU(page)) {
61 struct zone *zone = page_zone(page);
62 struct lruvec *lruvec;
63 unsigned long flags;
64
65 spin_lock_irqsave(zone_lru_lock(zone), flags);
66 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
67 VM_BUG_ON_PAGE(!PageLRU(page), page);
68 __ClearPageLRU(page);
69 del_page_from_lru_list(page, lruvec, page_off_lru(page));
70 spin_unlock_irqrestore(zone_lru_lock(zone), flags);
71 }
72 __ClearPageWaiters(page);
73 mem_cgroup_uncharge(page);
74 }
75
__put_single_page(struct page * page)76 static void __put_single_page(struct page *page)
77 {
78 __page_cache_release(page);
79 free_hot_cold_page(page, false);
80 }
81
__put_compound_page(struct page * page)82 static void __put_compound_page(struct page *page)
83 {
84 compound_page_dtor *dtor;
85
86 /*
87 * __page_cache_release() is supposed to be called for thp, not for
88 * hugetlb. This is because hugetlb page does never have PageLRU set
89 * (it's never listed to any LRU lists) and no memcg routines should
90 * be called for hugetlb (it has a separate hugetlb_cgroup.)
91 */
92 if (!PageHuge(page))
93 __page_cache_release(page);
94 dtor = get_compound_page_dtor(page);
95 (*dtor)(page);
96 }
97
__put_page(struct page * page)98 void __put_page(struct page *page)
99 {
100 if (is_zone_device_page(page)) {
101 put_dev_pagemap(page->pgmap);
102
103 /*
104 * The page belongs to the device that created pgmap. Do
105 * not return it to page allocator.
106 */
107 return;
108 }
109
110 if (unlikely(PageCompound(page)))
111 __put_compound_page(page);
112 else
113 __put_single_page(page);
114 }
115 EXPORT_SYMBOL(__put_page);
116
117 /**
118 * put_pages_list() - release a list of pages
119 * @pages: list of pages threaded on page->lru
120 *
121 * Release a list of pages which are strung together on page.lru. Currently
122 * used by read_cache_pages() and related error recovery code.
123 */
put_pages_list(struct list_head * pages)124 void put_pages_list(struct list_head *pages)
125 {
126 while (!list_empty(pages)) {
127 struct page *victim;
128
129 victim = list_entry(pages->prev, struct page, lru);
130 list_del(&victim->lru);
131 put_page(victim);
132 }
133 }
134 EXPORT_SYMBOL(put_pages_list);
135
136 /*
137 * get_kernel_pages() - pin kernel pages in memory
138 * @kiov: An array of struct kvec structures
139 * @nr_segs: number of segments to pin
140 * @write: pinning for read/write, currently ignored
141 * @pages: array that receives pointers to the pages pinned.
142 * Should be at least nr_segs long.
143 *
144 * Returns number of pages pinned. This may be fewer than the number
145 * requested. If nr_pages is 0 or negative, returns 0. If no pages
146 * were pinned, returns -errno. Each page returned must be released
147 * with a put_page() call when it is finished with.
148 */
get_kernel_pages(const struct kvec * kiov,int nr_segs,int write,struct page ** pages)149 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
150 struct page **pages)
151 {
152 int seg;
153
154 for (seg = 0; seg < nr_segs; seg++) {
155 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
156 return seg;
157
158 pages[seg] = kmap_to_page(kiov[seg].iov_base);
159 get_page(pages[seg]);
160 }
161
162 return seg;
163 }
164 EXPORT_SYMBOL_GPL(get_kernel_pages);
165
166 /*
167 * get_kernel_page() - pin a kernel page in memory
168 * @start: starting kernel address
169 * @write: pinning for read/write, currently ignored
170 * @pages: array that receives pointer to the page pinned.
171 * Must be at least nr_segs long.
172 *
173 * Returns 1 if page is pinned. If the page was not pinned, returns
174 * -errno. The page returned must be released with a put_page() call
175 * when it is finished with.
176 */
get_kernel_page(unsigned long start,int write,struct page ** pages)177 int get_kernel_page(unsigned long start, int write, struct page **pages)
178 {
179 const struct kvec kiov = {
180 .iov_base = (void *)start,
181 .iov_len = PAGE_SIZE
182 };
183
184 return get_kernel_pages(&kiov, 1, write, pages);
185 }
186 EXPORT_SYMBOL_GPL(get_kernel_page);
187
pagevec_lru_move_fn(struct pagevec * pvec,void (* move_fn)(struct page * page,struct lruvec * lruvec,void * arg),void * arg)188 static void pagevec_lru_move_fn(struct pagevec *pvec,
189 void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
190 void *arg)
191 {
192 int i;
193 struct pglist_data *pgdat = NULL;
194 struct lruvec *lruvec;
195 unsigned long flags = 0;
196
197 for (i = 0; i < pagevec_count(pvec); i++) {
198 struct page *page = pvec->pages[i];
199 struct pglist_data *pagepgdat = page_pgdat(page);
200
201 if (pagepgdat != pgdat) {
202 if (pgdat)
203 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
204 pgdat = pagepgdat;
205 spin_lock_irqsave(&pgdat->lru_lock, flags);
206 }
207
208 lruvec = mem_cgroup_page_lruvec(page, pgdat);
209 (*move_fn)(page, lruvec, arg);
210 }
211 if (pgdat)
212 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
213 release_pages(pvec->pages, pvec->nr, pvec->cold);
214 pagevec_reinit(pvec);
215 }
216
pagevec_move_tail_fn(struct page * page,struct lruvec * lruvec,void * arg)217 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
218 void *arg)
219 {
220 int *pgmoved = arg;
221
222 if (PageLRU(page) && !PageUnevictable(page)) {
223 del_page_from_lru_list(page, lruvec, page_lru(page));
224 ClearPageActive(page);
225 add_page_to_lru_list_tail(page, lruvec, page_lru(page));
226 (*pgmoved)++;
227 }
228 }
229
230 /*
231 * pagevec_move_tail() must be called with IRQ disabled.
232 * Otherwise this may cause nasty races.
233 */
pagevec_move_tail(struct pagevec * pvec)234 static void pagevec_move_tail(struct pagevec *pvec)
235 {
236 int pgmoved = 0;
237
238 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
239 __count_vm_events(PGROTATED, pgmoved);
240 }
241
242 /*
243 * Writeback is about to end against a page which has been marked for immediate
244 * reclaim. If it still appears to be reclaimable, move it to the tail of the
245 * inactive list.
246 */
rotate_reclaimable_page(struct page * page)247 void rotate_reclaimable_page(struct page *page)
248 {
249 if (!PageLocked(page) && !PageDirty(page) &&
250 !PageUnevictable(page) && PageLRU(page)) {
251 struct pagevec *pvec;
252 unsigned long flags;
253
254 get_page(page);
255 local_irq_save(flags);
256 pvec = this_cpu_ptr(&lru_rotate_pvecs);
257 if (!pagevec_add(pvec, page) || PageCompound(page))
258 pagevec_move_tail(pvec);
259 local_irq_restore(flags);
260 }
261 }
262
update_page_reclaim_stat(struct lruvec * lruvec,int file,int rotated)263 static void update_page_reclaim_stat(struct lruvec *lruvec,
264 int file, int rotated)
265 {
266 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
267
268 reclaim_stat->recent_scanned[file]++;
269 if (rotated)
270 reclaim_stat->recent_rotated[file]++;
271 }
272
__activate_page(struct page * page,struct lruvec * lruvec,void * arg)273 static void __activate_page(struct page *page, struct lruvec *lruvec,
274 void *arg)
275 {
276 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
277 int file = page_is_file_cache(page);
278 int lru = page_lru_base_type(page);
279
280 del_page_from_lru_list(page, lruvec, lru);
281 SetPageActive(page);
282 lru += LRU_ACTIVE;
283 add_page_to_lru_list(page, lruvec, lru);
284 trace_mm_lru_activate(page);
285
286 __count_vm_event(PGACTIVATE);
287 update_page_reclaim_stat(lruvec, file, 1);
288 }
289 }
290
291 #ifdef CONFIG_SMP
activate_page_drain(int cpu)292 static void activate_page_drain(int cpu)
293 {
294 struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
295
296 if (pagevec_count(pvec))
297 pagevec_lru_move_fn(pvec, __activate_page, NULL);
298 }
299
need_activate_page_drain(int cpu)300 static bool need_activate_page_drain(int cpu)
301 {
302 return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0;
303 }
304
activate_page(struct page * page)305 void activate_page(struct page *page)
306 {
307 page = compound_head(page);
308 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
309 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
310
311 get_page(page);
312 if (!pagevec_add(pvec, page) || PageCompound(page))
313 pagevec_lru_move_fn(pvec, __activate_page, NULL);
314 put_cpu_var(activate_page_pvecs);
315 }
316 }
317
318 #else
activate_page_drain(int cpu)319 static inline void activate_page_drain(int cpu)
320 {
321 }
322
need_activate_page_drain(int cpu)323 static bool need_activate_page_drain(int cpu)
324 {
325 return false;
326 }
327
activate_page(struct page * page)328 void activate_page(struct page *page)
329 {
330 struct zone *zone = page_zone(page);
331
332 page = compound_head(page);
333 spin_lock_irq(zone_lru_lock(zone));
334 __activate_page(page, mem_cgroup_page_lruvec(page, zone->zone_pgdat), NULL);
335 spin_unlock_irq(zone_lru_lock(zone));
336 }
337 #endif
338
__lru_cache_activate_page(struct page * page)339 static void __lru_cache_activate_page(struct page *page)
340 {
341 struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
342 int i;
343
344 /*
345 * Search backwards on the optimistic assumption that the page being
346 * activated has just been added to this pagevec. Note that only
347 * the local pagevec is examined as a !PageLRU page could be in the
348 * process of being released, reclaimed, migrated or on a remote
349 * pagevec that is currently being drained. Furthermore, marking
350 * a remote pagevec's page PageActive potentially hits a race where
351 * a page is marked PageActive just after it is added to the inactive
352 * list causing accounting errors and BUG_ON checks to trigger.
353 */
354 for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
355 struct page *pagevec_page = pvec->pages[i];
356
357 if (pagevec_page == page) {
358 SetPageActive(page);
359 break;
360 }
361 }
362
363 put_cpu_var(lru_add_pvec);
364 }
365
366 /*
367 * Mark a page as having seen activity.
368 *
369 * inactive,unreferenced -> inactive,referenced
370 * inactive,referenced -> active,unreferenced
371 * active,unreferenced -> active,referenced
372 *
373 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
374 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
375 */
mark_page_accessed(struct page * page)376 void mark_page_accessed(struct page *page)
377 {
378 page = compound_head(page);
379 if (!PageActive(page) && !PageUnevictable(page) &&
380 PageReferenced(page)) {
381
382 /*
383 * If the page is on the LRU, queue it for activation via
384 * activate_page_pvecs. Otherwise, assume the page is on a
385 * pagevec, mark it active and it'll be moved to the active
386 * LRU on the next drain.
387 */
388 if (PageLRU(page))
389 activate_page(page);
390 else
391 __lru_cache_activate_page(page);
392 ClearPageReferenced(page);
393 if (page_is_file_cache(page))
394 workingset_activation(page);
395 } else if (!PageReferenced(page)) {
396 SetPageReferenced(page);
397 }
398 if (page_is_idle(page))
399 clear_page_idle(page);
400 }
401 EXPORT_SYMBOL(mark_page_accessed);
402
__lru_cache_add(struct page * page)403 static void __lru_cache_add(struct page *page)
404 {
405 struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
406
407 get_page(page);
408 if (!pagevec_add(pvec, page) || PageCompound(page))
409 __pagevec_lru_add(pvec);
410 put_cpu_var(lru_add_pvec);
411 }
412
413 /**
414 * lru_cache_add: add a page to the page lists
415 * @page: the page to add
416 */
lru_cache_add_anon(struct page * page)417 void lru_cache_add_anon(struct page *page)
418 {
419 if (PageActive(page))
420 ClearPageActive(page);
421 __lru_cache_add(page);
422 }
423
lru_cache_add_file(struct page * page)424 void lru_cache_add_file(struct page *page)
425 {
426 if (PageActive(page))
427 ClearPageActive(page);
428 __lru_cache_add(page);
429 }
430 EXPORT_SYMBOL(lru_cache_add_file);
431
432 /**
433 * lru_cache_add - add a page to a page list
434 * @page: the page to be added to the LRU.
435 *
436 * Queue the page for addition to the LRU via pagevec. The decision on whether
437 * to add the page to the [in]active [file|anon] list is deferred until the
438 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
439 * have the page added to the active list using mark_page_accessed().
440 */
lru_cache_add(struct page * page)441 void lru_cache_add(struct page *page)
442 {
443 VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
444 VM_BUG_ON_PAGE(PageLRU(page), page);
445 __lru_cache_add(page);
446 }
447
448 /**
449 * add_page_to_unevictable_list - add a page to the unevictable list
450 * @page: the page to be added to the unevictable list
451 *
452 * Add page directly to its zone's unevictable list. To avoid races with
453 * tasks that might be making the page evictable, through eg. munlock,
454 * munmap or exit, while it's not on the lru, we want to add the page
455 * while it's locked or otherwise "invisible" to other tasks. This is
456 * difficult to do when using the pagevec cache, so bypass that.
457 */
add_page_to_unevictable_list(struct page * page)458 void add_page_to_unevictable_list(struct page *page)
459 {
460 struct pglist_data *pgdat = page_pgdat(page);
461 struct lruvec *lruvec;
462
463 spin_lock_irq(&pgdat->lru_lock);
464 lruvec = mem_cgroup_page_lruvec(page, pgdat);
465 ClearPageActive(page);
466 SetPageUnevictable(page);
467 SetPageLRU(page);
468 add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
469 spin_unlock_irq(&pgdat->lru_lock);
470 }
471
472 /**
473 * lru_cache_add_active_or_unevictable
474 * @page: the page to be added to LRU
475 * @vma: vma in which page is mapped for determining reclaimability
476 *
477 * Place @page on the active or unevictable LRU list, depending on its
478 * evictability. Note that if the page is not evictable, it goes
479 * directly back onto it's zone's unevictable list, it does NOT use a
480 * per cpu pagevec.
481 */
lru_cache_add_active_or_unevictable(struct page * page,struct vm_area_struct * vma)482 void lru_cache_add_active_or_unevictable(struct page *page,
483 struct vm_area_struct *vma)
484 {
485 VM_BUG_ON_PAGE(PageLRU(page), page);
486
487 if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED)) {
488 SetPageActive(page);
489 lru_cache_add(page);
490 return;
491 }
492
493 if (!TestSetPageMlocked(page)) {
494 /*
495 * We use the irq-unsafe __mod_zone_page_stat because this
496 * counter is not modified from interrupt context, and the pte
497 * lock is held(spinlock), which implies preemption disabled.
498 */
499 __mod_zone_page_state(page_zone(page), NR_MLOCK,
500 hpage_nr_pages(page));
501 count_vm_event(UNEVICTABLE_PGMLOCKED);
502 }
503 add_page_to_unevictable_list(page);
504 }
505
506 /*
507 * If the page can not be invalidated, it is moved to the
508 * inactive list to speed up its reclaim. It is moved to the
509 * head of the list, rather than the tail, to give the flusher
510 * threads some time to write it out, as this is much more
511 * effective than the single-page writeout from reclaim.
512 *
513 * If the page isn't page_mapped and dirty/writeback, the page
514 * could reclaim asap using PG_reclaim.
515 *
516 * 1. active, mapped page -> none
517 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
518 * 3. inactive, mapped page -> none
519 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
520 * 5. inactive, clean -> inactive, tail
521 * 6. Others -> none
522 *
523 * In 4, why it moves inactive's head, the VM expects the page would
524 * be write it out by flusher threads as this is much more effective
525 * than the single-page writeout from reclaim.
526 */
lru_deactivate_file_fn(struct page * page,struct lruvec * lruvec,void * arg)527 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec,
528 void *arg)
529 {
530 int lru, file;
531 bool active;
532
533 if (!PageLRU(page))
534 return;
535
536 if (PageUnevictable(page))
537 return;
538
539 /* Some processes are using the page */
540 if (page_mapped(page))
541 return;
542
543 active = PageActive(page);
544 file = page_is_file_cache(page);
545 lru = page_lru_base_type(page);
546
547 del_page_from_lru_list(page, lruvec, lru + active);
548 ClearPageActive(page);
549 ClearPageReferenced(page);
550 add_page_to_lru_list(page, lruvec, lru);
551
552 if (PageWriteback(page) || PageDirty(page)) {
553 /*
554 * PG_reclaim could be raced with end_page_writeback
555 * It can make readahead confusing. But race window
556 * is _really_ small and it's non-critical problem.
557 */
558 SetPageReclaim(page);
559 } else {
560 /*
561 * The page's writeback ends up during pagevec
562 * We moves tha page into tail of inactive.
563 */
564 list_move_tail(&page->lru, &lruvec->lists[lru]);
565 __count_vm_event(PGROTATED);
566 }
567
568 if (active)
569 __count_vm_event(PGDEACTIVATE);
570 update_page_reclaim_stat(lruvec, file, 0);
571 }
572
573
lru_lazyfree_fn(struct page * page,struct lruvec * lruvec,void * arg)574 static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec,
575 void *arg)
576 {
577 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
578 !PageSwapCache(page) && !PageUnevictable(page)) {
579 bool active = PageActive(page);
580
581 del_page_from_lru_list(page, lruvec,
582 LRU_INACTIVE_ANON + active);
583 ClearPageActive(page);
584 ClearPageReferenced(page);
585 /*
586 * lazyfree pages are clean anonymous pages. They have
587 * SwapBacked flag cleared to distinguish normal anonymous
588 * pages
589 */
590 ClearPageSwapBacked(page);
591 add_page_to_lru_list(page, lruvec, LRU_INACTIVE_FILE);
592
593 __count_vm_events(PGLAZYFREE, hpage_nr_pages(page));
594 count_memcg_page_event(page, PGLAZYFREE);
595 update_page_reclaim_stat(lruvec, 1, 0);
596 }
597 }
598
599 /*
600 * Drain pages out of the cpu's pagevecs.
601 * Either "cpu" is the current CPU, and preemption has already been
602 * disabled; or "cpu" is being hot-unplugged, and is already dead.
603 */
lru_add_drain_cpu(int cpu)604 void lru_add_drain_cpu(int cpu)
605 {
606 struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
607
608 if (pagevec_count(pvec))
609 __pagevec_lru_add(pvec);
610
611 pvec = &per_cpu(lru_rotate_pvecs, cpu);
612 if (pagevec_count(pvec)) {
613 unsigned long flags;
614
615 /* No harm done if a racing interrupt already did this */
616 local_irq_save(flags);
617 pagevec_move_tail(pvec);
618 local_irq_restore(flags);
619 }
620
621 pvec = &per_cpu(lru_deactivate_file_pvecs, cpu);
622 if (pagevec_count(pvec))
623 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
624
625 pvec = &per_cpu(lru_lazyfree_pvecs, cpu);
626 if (pagevec_count(pvec))
627 pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
628
629 activate_page_drain(cpu);
630 }
631
632 /**
633 * deactivate_file_page - forcefully deactivate a file page
634 * @page: page to deactivate
635 *
636 * This function hints the VM that @page is a good reclaim candidate,
637 * for example if its invalidation fails due to the page being dirty
638 * or under writeback.
639 */
deactivate_file_page(struct page * page)640 void deactivate_file_page(struct page *page)
641 {
642 /*
643 * In a workload with many unevictable page such as mprotect,
644 * unevictable page deactivation for accelerating reclaim is pointless.
645 */
646 if (PageUnevictable(page))
647 return;
648
649 if (likely(get_page_unless_zero(page))) {
650 struct pagevec *pvec = &get_cpu_var(lru_deactivate_file_pvecs);
651
652 if (!pagevec_add(pvec, page) || PageCompound(page))
653 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
654 put_cpu_var(lru_deactivate_file_pvecs);
655 }
656 }
657
658 /**
659 * mark_page_lazyfree - make an anon page lazyfree
660 * @page: page to deactivate
661 *
662 * mark_page_lazyfree() moves @page to the inactive file list.
663 * This is done to accelerate the reclaim of @page.
664 */
mark_page_lazyfree(struct page * page)665 void mark_page_lazyfree(struct page *page)
666 {
667 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
668 !PageSwapCache(page) && !PageUnevictable(page)) {
669 struct pagevec *pvec = &get_cpu_var(lru_lazyfree_pvecs);
670
671 get_page(page);
672 if (!pagevec_add(pvec, page) || PageCompound(page))
673 pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
674 put_cpu_var(lru_lazyfree_pvecs);
675 }
676 }
677
lru_add_drain(void)678 void lru_add_drain(void)
679 {
680 lru_add_drain_cpu(get_cpu());
681 put_cpu();
682 }
683
lru_add_drain_per_cpu(struct work_struct * dummy)684 static void lru_add_drain_per_cpu(struct work_struct *dummy)
685 {
686 lru_add_drain();
687 }
688
689 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
690
lru_add_drain_all_cpuslocked(void)691 void lru_add_drain_all_cpuslocked(void)
692 {
693 static DEFINE_MUTEX(lock);
694 static struct cpumask has_work;
695 int cpu;
696
697 /*
698 * Make sure nobody triggers this path before mm_percpu_wq is fully
699 * initialized.
700 */
701 if (WARN_ON(!mm_percpu_wq))
702 return;
703
704 mutex_lock(&lock);
705 cpumask_clear(&has_work);
706
707 for_each_online_cpu(cpu) {
708 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
709
710 if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
711 pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
712 pagevec_count(&per_cpu(lru_deactivate_file_pvecs, cpu)) ||
713 pagevec_count(&per_cpu(lru_lazyfree_pvecs, cpu)) ||
714 need_activate_page_drain(cpu)) {
715 INIT_WORK(work, lru_add_drain_per_cpu);
716 queue_work_on(cpu, mm_percpu_wq, work);
717 cpumask_set_cpu(cpu, &has_work);
718 }
719 }
720
721 for_each_cpu(cpu, &has_work)
722 flush_work(&per_cpu(lru_add_drain_work, cpu));
723
724 mutex_unlock(&lock);
725 }
726
lru_add_drain_all(void)727 void lru_add_drain_all(void)
728 {
729 get_online_cpus();
730 lru_add_drain_all_cpuslocked();
731 put_online_cpus();
732 }
733
734 /**
735 * release_pages - batched put_page()
736 * @pages: array of pages to release
737 * @nr: number of pages
738 * @cold: whether the pages are cache cold
739 *
740 * Decrement the reference count on all the pages in @pages. If it
741 * fell to zero, remove the page from the LRU and free it.
742 */
release_pages(struct page ** pages,int nr,bool cold)743 void release_pages(struct page **pages, int nr, bool cold)
744 {
745 int i;
746 LIST_HEAD(pages_to_free);
747 struct pglist_data *locked_pgdat = NULL;
748 struct lruvec *lruvec;
749 unsigned long uninitialized_var(flags);
750 unsigned int uninitialized_var(lock_batch);
751
752 for (i = 0; i < nr; i++) {
753 struct page *page = pages[i];
754
755 /*
756 * Make sure the IRQ-safe lock-holding time does not get
757 * excessive with a continuous string of pages from the
758 * same pgdat. The lock is held only if pgdat != NULL.
759 */
760 if (locked_pgdat && ++lock_batch == SWAP_CLUSTER_MAX) {
761 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
762 locked_pgdat = NULL;
763 }
764
765 if (is_huge_zero_page(page))
766 continue;
767
768 /* Device public page can not be huge page */
769 if (is_device_public_page(page)) {
770 if (locked_pgdat) {
771 spin_unlock_irqrestore(&locked_pgdat->lru_lock,
772 flags);
773 locked_pgdat = NULL;
774 }
775 put_zone_device_private_or_public_page(page);
776 continue;
777 }
778
779 page = compound_head(page);
780 if (!put_page_testzero(page))
781 continue;
782
783 if (PageCompound(page)) {
784 if (locked_pgdat) {
785 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
786 locked_pgdat = NULL;
787 }
788 __put_compound_page(page);
789 continue;
790 }
791
792 if (PageLRU(page)) {
793 struct pglist_data *pgdat = page_pgdat(page);
794
795 if (pgdat != locked_pgdat) {
796 if (locked_pgdat)
797 spin_unlock_irqrestore(&locked_pgdat->lru_lock,
798 flags);
799 lock_batch = 0;
800 locked_pgdat = pgdat;
801 spin_lock_irqsave(&locked_pgdat->lru_lock, flags);
802 }
803
804 lruvec = mem_cgroup_page_lruvec(page, locked_pgdat);
805 VM_BUG_ON_PAGE(!PageLRU(page), page);
806 __ClearPageLRU(page);
807 del_page_from_lru_list(page, lruvec, page_off_lru(page));
808 }
809
810 /* Clear Active bit in case of parallel mark_page_accessed */
811 __ClearPageActive(page);
812 __ClearPageWaiters(page);
813
814 list_add(&page->lru, &pages_to_free);
815 }
816 if (locked_pgdat)
817 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
818
819 mem_cgroup_uncharge_list(&pages_to_free);
820 free_hot_cold_page_list(&pages_to_free, cold);
821 }
822 EXPORT_SYMBOL(release_pages);
823
824 /*
825 * The pages which we're about to release may be in the deferred lru-addition
826 * queues. That would prevent them from really being freed right now. That's
827 * OK from a correctness point of view but is inefficient - those pages may be
828 * cache-warm and we want to give them back to the page allocator ASAP.
829 *
830 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
831 * and __pagevec_lru_add_active() call release_pages() directly to avoid
832 * mutual recursion.
833 */
__pagevec_release(struct pagevec * pvec)834 void __pagevec_release(struct pagevec *pvec)
835 {
836 lru_add_drain();
837 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
838 pagevec_reinit(pvec);
839 }
840 EXPORT_SYMBOL(__pagevec_release);
841
842 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
843 /* used by __split_huge_page_refcount() */
lru_add_page_tail(struct page * page,struct page * page_tail,struct lruvec * lruvec,struct list_head * list)844 void lru_add_page_tail(struct page *page, struct page *page_tail,
845 struct lruvec *lruvec, struct list_head *list)
846 {
847 const int file = 0;
848
849 VM_BUG_ON_PAGE(!PageHead(page), page);
850 VM_BUG_ON_PAGE(PageCompound(page_tail), page);
851 VM_BUG_ON_PAGE(PageLRU(page_tail), page);
852 VM_BUG_ON(NR_CPUS != 1 &&
853 !spin_is_locked(&lruvec_pgdat(lruvec)->lru_lock));
854
855 if (!list)
856 SetPageLRU(page_tail);
857
858 if (likely(PageLRU(page)))
859 list_add_tail(&page_tail->lru, &page->lru);
860 else if (list) {
861 /* page reclaim is reclaiming a huge page */
862 get_page(page_tail);
863 list_add_tail(&page_tail->lru, list);
864 } else {
865 struct list_head *list_head;
866 /*
867 * Head page has not yet been counted, as an hpage,
868 * so we must account for each subpage individually.
869 *
870 * Use the standard add function to put page_tail on the list,
871 * but then correct its position so they all end up in order.
872 */
873 add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail));
874 list_head = page_tail->lru.prev;
875 list_move_tail(&page_tail->lru, list_head);
876 }
877
878 if (!PageUnevictable(page))
879 update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
880 }
881 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
882
__pagevec_lru_add_fn(struct page * page,struct lruvec * lruvec,void * arg)883 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
884 void *arg)
885 {
886 int file = page_is_file_cache(page);
887 int active = PageActive(page);
888 enum lru_list lru = page_lru(page);
889
890 VM_BUG_ON_PAGE(PageLRU(page), page);
891
892 SetPageLRU(page);
893 add_page_to_lru_list(page, lruvec, lru);
894 update_page_reclaim_stat(lruvec, file, active);
895 trace_mm_lru_insertion(page, lru);
896 }
897
898 /*
899 * Add the passed pages to the LRU, then drop the caller's refcount
900 * on them. Reinitialises the caller's pagevec.
901 */
__pagevec_lru_add(struct pagevec * pvec)902 void __pagevec_lru_add(struct pagevec *pvec)
903 {
904 pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
905 }
906 EXPORT_SYMBOL(__pagevec_lru_add);
907
908 /**
909 * pagevec_lookup_entries - gang pagecache lookup
910 * @pvec: Where the resulting entries are placed
911 * @mapping: The address_space to search
912 * @start: The starting entry index
913 * @nr_entries: The maximum number of entries
914 * @indices: The cache indices corresponding to the entries in @pvec
915 *
916 * pagevec_lookup_entries() will search for and return a group of up
917 * to @nr_entries pages and shadow entries in the mapping. All
918 * entries are placed in @pvec. pagevec_lookup_entries() takes a
919 * reference against actual pages in @pvec.
920 *
921 * The search returns a group of mapping-contiguous entries with
922 * ascending indexes. There may be holes in the indices due to
923 * not-present entries.
924 *
925 * pagevec_lookup_entries() returns the number of entries which were
926 * found.
927 */
pagevec_lookup_entries(struct pagevec * pvec,struct address_space * mapping,pgoff_t start,unsigned nr_pages,pgoff_t * indices)928 unsigned pagevec_lookup_entries(struct pagevec *pvec,
929 struct address_space *mapping,
930 pgoff_t start, unsigned nr_pages,
931 pgoff_t *indices)
932 {
933 pvec->nr = find_get_entries(mapping, start, nr_pages,
934 pvec->pages, indices);
935 return pagevec_count(pvec);
936 }
937
938 /**
939 * pagevec_remove_exceptionals - pagevec exceptionals pruning
940 * @pvec: The pagevec to prune
941 *
942 * pagevec_lookup_entries() fills both pages and exceptional radix
943 * tree entries into the pagevec. This function prunes all
944 * exceptionals from @pvec without leaving holes, so that it can be
945 * passed on to page-only pagevec operations.
946 */
pagevec_remove_exceptionals(struct pagevec * pvec)947 void pagevec_remove_exceptionals(struct pagevec *pvec)
948 {
949 int i, j;
950
951 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
952 struct page *page = pvec->pages[i];
953 if (!radix_tree_exceptional_entry(page))
954 pvec->pages[j++] = page;
955 }
956 pvec->nr = j;
957 }
958
959 /**
960 * pagevec_lookup_range - gang pagecache lookup
961 * @pvec: Where the resulting pages are placed
962 * @mapping: The address_space to search
963 * @start: The starting page index
964 * @end: The final page index
965 * @nr_pages: The maximum number of pages
966 *
967 * pagevec_lookup_range() will search for and return a group of up to @nr_pages
968 * pages in the mapping starting from index @start and upto index @end
969 * (inclusive). The pages are placed in @pvec. pagevec_lookup() takes a
970 * reference against the pages in @pvec.
971 *
972 * The search returns a group of mapping-contiguous pages with ascending
973 * indexes. There may be holes in the indices due to not-present pages. We
974 * also update @start to index the next page for the traversal.
975 *
976 * pagevec_lookup_range() returns the number of pages which were found. If this
977 * number is smaller than @nr_pages, the end of specified range has been
978 * reached.
979 */
pagevec_lookup_range(struct pagevec * pvec,struct address_space * mapping,pgoff_t * start,pgoff_t end)980 unsigned pagevec_lookup_range(struct pagevec *pvec,
981 struct address_space *mapping, pgoff_t *start, pgoff_t end)
982 {
983 pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
984 pvec->pages);
985 return pagevec_count(pvec);
986 }
987 EXPORT_SYMBOL(pagevec_lookup_range);
988
pagevec_lookup_range_tag(struct pagevec * pvec,struct address_space * mapping,pgoff_t * index,pgoff_t end,int tag)989 unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
990 struct address_space *mapping, pgoff_t *index, pgoff_t end,
991 int tag)
992 {
993 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
994 PAGEVEC_SIZE, pvec->pages);
995 return pagevec_count(pvec);
996 }
997 EXPORT_SYMBOL(pagevec_lookup_range_tag);
998
pagevec_lookup_range_nr_tag(struct pagevec * pvec,struct address_space * mapping,pgoff_t * index,pgoff_t end,int tag,unsigned max_pages)999 unsigned pagevec_lookup_range_nr_tag(struct pagevec *pvec,
1000 struct address_space *mapping, pgoff_t *index, pgoff_t end,
1001 int tag, unsigned max_pages)
1002 {
1003 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1004 min_t(unsigned int, max_pages, PAGEVEC_SIZE), pvec->pages);
1005 return pagevec_count(pvec);
1006 }
1007 EXPORT_SYMBOL(pagevec_lookup_range_nr_tag);
1008 /*
1009 * Perform any setup for the swap system
1010 */
swap_setup(void)1011 void __init swap_setup(void)
1012 {
1013 unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
1014
1015 /* Use a smaller cluster for small-memory machines */
1016 if (megs < 16)
1017 page_cluster = 2;
1018 else
1019 page_cluster = 3;
1020 /*
1021 * Right now other parts of the system means that we
1022 * _really_ don't want to cluster much more
1023 */
1024 }
1025