1 #include <linux/kernel.h>
2 #include <linux/skbuff.h>
3 #include <linux/export.h>
4 #include <linux/ip.h>
5 #include <linux/ipv6.h>
6 #include <linux/if_vlan.h>
7 #include <net/dsa.h>
8 #include <net/ip.h>
9 #include <net/ipv6.h>
10 #include <net/gre.h>
11 #include <net/pptp.h>
12 #include <linux/igmp.h>
13 #include <linux/icmp.h>
14 #include <linux/sctp.h>
15 #include <linux/dccp.h>
16 #include <linux/if_tunnel.h>
17 #include <linux/if_pppox.h>
18 #include <linux/ppp_defs.h>
19 #include <linux/stddef.h>
20 #include <linux/if_ether.h>
21 #include <linux/mpls.h>
22 #include <linux/tcp.h>
23 #include <net/flow_dissector.h>
24 #include <scsi/fc/fc_fcoe.h>
25
dissector_set_key(struct flow_dissector * flow_dissector,enum flow_dissector_key_id key_id)26 static void dissector_set_key(struct flow_dissector *flow_dissector,
27 enum flow_dissector_key_id key_id)
28 {
29 flow_dissector->used_keys |= (1 << key_id);
30 }
31
skb_flow_dissector_init(struct flow_dissector * flow_dissector,const struct flow_dissector_key * key,unsigned int key_count)32 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
33 const struct flow_dissector_key *key,
34 unsigned int key_count)
35 {
36 unsigned int i;
37
38 memset(flow_dissector, 0, sizeof(*flow_dissector));
39
40 for (i = 0; i < key_count; i++, key++) {
41 /* User should make sure that every key target offset is withing
42 * boundaries of unsigned short.
43 */
44 BUG_ON(key->offset > USHRT_MAX);
45 BUG_ON(dissector_uses_key(flow_dissector,
46 key->key_id));
47
48 dissector_set_key(flow_dissector, key->key_id);
49 flow_dissector->offset[key->key_id] = key->offset;
50 }
51
52 /* Ensure that the dissector always includes control and basic key.
53 * That way we are able to avoid handling lack of these in fast path.
54 */
55 BUG_ON(!dissector_uses_key(flow_dissector,
56 FLOW_DISSECTOR_KEY_CONTROL));
57 BUG_ON(!dissector_uses_key(flow_dissector,
58 FLOW_DISSECTOR_KEY_BASIC));
59 }
60 EXPORT_SYMBOL(skb_flow_dissector_init);
61
62 /**
63 * skb_flow_get_be16 - extract be16 entity
64 * @skb: sk_buff to extract from
65 * @poff: offset to extract at
66 * @data: raw buffer pointer to the packet
67 * @hlen: packet header length
68 *
69 * The function will try to retrieve a be32 entity at
70 * offset poff
71 */
skb_flow_get_be16(const struct sk_buff * skb,int poff,void * data,int hlen)72 static __be16 skb_flow_get_be16(const struct sk_buff *skb, int poff,
73 void *data, int hlen)
74 {
75 __be16 *u, _u;
76
77 u = __skb_header_pointer(skb, poff, sizeof(_u), data, hlen, &_u);
78 if (u)
79 return *u;
80
81 return 0;
82 }
83
84 /**
85 * __skb_flow_get_ports - extract the upper layer ports and return them
86 * @skb: sk_buff to extract the ports from
87 * @thoff: transport header offset
88 * @ip_proto: protocol for which to get port offset
89 * @data: raw buffer pointer to the packet, if NULL use skb->data
90 * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
91 *
92 * The function will try to retrieve the ports at offset thoff + poff where poff
93 * is the protocol port offset returned from proto_ports_offset
94 */
__skb_flow_get_ports(const struct sk_buff * skb,int thoff,u8 ip_proto,void * data,int hlen)95 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
96 void *data, int hlen)
97 {
98 int poff = proto_ports_offset(ip_proto);
99
100 if (!data) {
101 data = skb->data;
102 hlen = skb_headlen(skb);
103 }
104
105 if (poff >= 0) {
106 __be32 *ports, _ports;
107
108 ports = __skb_header_pointer(skb, thoff + poff,
109 sizeof(_ports), data, hlen, &_ports);
110 if (ports)
111 return *ports;
112 }
113
114 return 0;
115 }
116 EXPORT_SYMBOL(__skb_flow_get_ports);
117
118 static enum flow_dissect_ret
__skb_flow_dissect_mpls(const struct sk_buff * skb,struct flow_dissector * flow_dissector,void * target_container,void * data,int nhoff,int hlen)119 __skb_flow_dissect_mpls(const struct sk_buff *skb,
120 struct flow_dissector *flow_dissector,
121 void *target_container, void *data, int nhoff, int hlen)
122 {
123 struct flow_dissector_key_keyid *key_keyid;
124 struct mpls_label *hdr, _hdr[2];
125 u32 entry, label;
126
127 if (!dissector_uses_key(flow_dissector,
128 FLOW_DISSECTOR_KEY_MPLS_ENTROPY) &&
129 !dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS))
130 return FLOW_DISSECT_RET_OUT_GOOD;
131
132 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
133 hlen, &_hdr);
134 if (!hdr)
135 return FLOW_DISSECT_RET_OUT_BAD;
136
137 entry = ntohl(hdr[0].entry);
138 label = (entry & MPLS_LS_LABEL_MASK) >> MPLS_LS_LABEL_SHIFT;
139
140 if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS)) {
141 struct flow_dissector_key_mpls *key_mpls;
142
143 key_mpls = skb_flow_dissector_target(flow_dissector,
144 FLOW_DISSECTOR_KEY_MPLS,
145 target_container);
146 key_mpls->mpls_label = label;
147 key_mpls->mpls_ttl = (entry & MPLS_LS_TTL_MASK)
148 >> MPLS_LS_TTL_SHIFT;
149 key_mpls->mpls_tc = (entry & MPLS_LS_TC_MASK)
150 >> MPLS_LS_TC_SHIFT;
151 key_mpls->mpls_bos = (entry & MPLS_LS_S_MASK)
152 >> MPLS_LS_S_SHIFT;
153 }
154
155 if (label == MPLS_LABEL_ENTROPY) {
156 key_keyid = skb_flow_dissector_target(flow_dissector,
157 FLOW_DISSECTOR_KEY_MPLS_ENTROPY,
158 target_container);
159 key_keyid->keyid = hdr[1].entry & htonl(MPLS_LS_LABEL_MASK);
160 }
161 return FLOW_DISSECT_RET_OUT_GOOD;
162 }
163
164 static enum flow_dissect_ret
__skb_flow_dissect_arp(const struct sk_buff * skb,struct flow_dissector * flow_dissector,void * target_container,void * data,int nhoff,int hlen)165 __skb_flow_dissect_arp(const struct sk_buff *skb,
166 struct flow_dissector *flow_dissector,
167 void *target_container, void *data, int nhoff, int hlen)
168 {
169 struct flow_dissector_key_arp *key_arp;
170 struct {
171 unsigned char ar_sha[ETH_ALEN];
172 unsigned char ar_sip[4];
173 unsigned char ar_tha[ETH_ALEN];
174 unsigned char ar_tip[4];
175 } *arp_eth, _arp_eth;
176 const struct arphdr *arp;
177 struct arphdr _arp;
178
179 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ARP))
180 return FLOW_DISSECT_RET_OUT_GOOD;
181
182 arp = __skb_header_pointer(skb, nhoff, sizeof(_arp), data,
183 hlen, &_arp);
184 if (!arp)
185 return FLOW_DISSECT_RET_OUT_BAD;
186
187 if (arp->ar_hrd != htons(ARPHRD_ETHER) ||
188 arp->ar_pro != htons(ETH_P_IP) ||
189 arp->ar_hln != ETH_ALEN ||
190 arp->ar_pln != 4 ||
191 (arp->ar_op != htons(ARPOP_REPLY) &&
192 arp->ar_op != htons(ARPOP_REQUEST)))
193 return FLOW_DISSECT_RET_OUT_BAD;
194
195 arp_eth = __skb_header_pointer(skb, nhoff + sizeof(_arp),
196 sizeof(_arp_eth), data,
197 hlen, &_arp_eth);
198 if (!arp_eth)
199 return FLOW_DISSECT_RET_OUT_BAD;
200
201 key_arp = skb_flow_dissector_target(flow_dissector,
202 FLOW_DISSECTOR_KEY_ARP,
203 target_container);
204
205 memcpy(&key_arp->sip, arp_eth->ar_sip, sizeof(key_arp->sip));
206 memcpy(&key_arp->tip, arp_eth->ar_tip, sizeof(key_arp->tip));
207
208 /* Only store the lower byte of the opcode;
209 * this covers ARPOP_REPLY and ARPOP_REQUEST.
210 */
211 key_arp->op = ntohs(arp->ar_op) & 0xff;
212
213 ether_addr_copy(key_arp->sha, arp_eth->ar_sha);
214 ether_addr_copy(key_arp->tha, arp_eth->ar_tha);
215
216 return FLOW_DISSECT_RET_OUT_GOOD;
217 }
218
219 static enum flow_dissect_ret
__skb_flow_dissect_gre(const struct sk_buff * skb,struct flow_dissector_key_control * key_control,struct flow_dissector * flow_dissector,void * target_container,void * data,__be16 * p_proto,int * p_nhoff,int * p_hlen,unsigned int flags)220 __skb_flow_dissect_gre(const struct sk_buff *skb,
221 struct flow_dissector_key_control *key_control,
222 struct flow_dissector *flow_dissector,
223 void *target_container, void *data,
224 __be16 *p_proto, int *p_nhoff, int *p_hlen,
225 unsigned int flags)
226 {
227 struct flow_dissector_key_keyid *key_keyid;
228 struct gre_base_hdr *hdr, _hdr;
229 int offset = 0;
230 u16 gre_ver;
231
232 hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr),
233 data, *p_hlen, &_hdr);
234 if (!hdr)
235 return FLOW_DISSECT_RET_OUT_BAD;
236
237 /* Only look inside GRE without routing */
238 if (hdr->flags & GRE_ROUTING)
239 return FLOW_DISSECT_RET_OUT_GOOD;
240
241 /* Only look inside GRE for version 0 and 1 */
242 gre_ver = ntohs(hdr->flags & GRE_VERSION);
243 if (gre_ver > 1)
244 return FLOW_DISSECT_RET_OUT_GOOD;
245
246 *p_proto = hdr->protocol;
247 if (gre_ver) {
248 /* Version1 must be PPTP, and check the flags */
249 if (!(*p_proto == GRE_PROTO_PPP && (hdr->flags & GRE_KEY)))
250 return FLOW_DISSECT_RET_OUT_GOOD;
251 }
252
253 offset += sizeof(struct gre_base_hdr);
254
255 if (hdr->flags & GRE_CSUM)
256 offset += sizeof(((struct gre_full_hdr *) 0)->csum) +
257 sizeof(((struct gre_full_hdr *) 0)->reserved1);
258
259 if (hdr->flags & GRE_KEY) {
260 const __be32 *keyid;
261 __be32 _keyid;
262
263 keyid = __skb_header_pointer(skb, *p_nhoff + offset,
264 sizeof(_keyid),
265 data, *p_hlen, &_keyid);
266 if (!keyid)
267 return FLOW_DISSECT_RET_OUT_BAD;
268
269 if (dissector_uses_key(flow_dissector,
270 FLOW_DISSECTOR_KEY_GRE_KEYID)) {
271 key_keyid = skb_flow_dissector_target(flow_dissector,
272 FLOW_DISSECTOR_KEY_GRE_KEYID,
273 target_container);
274 if (gre_ver == 0)
275 key_keyid->keyid = *keyid;
276 else
277 key_keyid->keyid = *keyid & GRE_PPTP_KEY_MASK;
278 }
279 offset += sizeof(((struct gre_full_hdr *) 0)->key);
280 }
281
282 if (hdr->flags & GRE_SEQ)
283 offset += sizeof(((struct pptp_gre_header *) 0)->seq);
284
285 if (gre_ver == 0) {
286 if (*p_proto == htons(ETH_P_TEB)) {
287 const struct ethhdr *eth;
288 struct ethhdr _eth;
289
290 eth = __skb_header_pointer(skb, *p_nhoff + offset,
291 sizeof(_eth),
292 data, *p_hlen, &_eth);
293 if (!eth)
294 return FLOW_DISSECT_RET_OUT_BAD;
295 *p_proto = eth->h_proto;
296 offset += sizeof(*eth);
297
298 /* Cap headers that we access via pointers at the
299 * end of the Ethernet header as our maximum alignment
300 * at that point is only 2 bytes.
301 */
302 if (NET_IP_ALIGN)
303 *p_hlen = *p_nhoff + offset;
304 }
305 } else { /* version 1, must be PPTP */
306 u8 _ppp_hdr[PPP_HDRLEN];
307 u8 *ppp_hdr;
308
309 if (hdr->flags & GRE_ACK)
310 offset += sizeof(((struct pptp_gre_header *) 0)->ack);
311
312 ppp_hdr = __skb_header_pointer(skb, *p_nhoff + offset,
313 sizeof(_ppp_hdr),
314 data, *p_hlen, _ppp_hdr);
315 if (!ppp_hdr)
316 return FLOW_DISSECT_RET_OUT_BAD;
317
318 switch (PPP_PROTOCOL(ppp_hdr)) {
319 case PPP_IP:
320 *p_proto = htons(ETH_P_IP);
321 break;
322 case PPP_IPV6:
323 *p_proto = htons(ETH_P_IPV6);
324 break;
325 default:
326 /* Could probably catch some more like MPLS */
327 break;
328 }
329
330 offset += PPP_HDRLEN;
331 }
332
333 *p_nhoff += offset;
334 key_control->flags |= FLOW_DIS_ENCAPSULATION;
335 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
336 return FLOW_DISSECT_RET_OUT_GOOD;
337
338 return FLOW_DISSECT_RET_PROTO_AGAIN;
339 }
340
341 static void
__skb_flow_dissect_tcp(const struct sk_buff * skb,struct flow_dissector * flow_dissector,void * target_container,void * data,int thoff,int hlen)342 __skb_flow_dissect_tcp(const struct sk_buff *skb,
343 struct flow_dissector *flow_dissector,
344 void *target_container, void *data, int thoff, int hlen)
345 {
346 struct flow_dissector_key_tcp *key_tcp;
347 struct tcphdr *th, _th;
348
349 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_TCP))
350 return;
351
352 th = __skb_header_pointer(skb, thoff, sizeof(_th), data, hlen, &_th);
353 if (!th)
354 return;
355
356 if (unlikely(__tcp_hdrlen(th) < sizeof(_th)))
357 return;
358
359 key_tcp = skb_flow_dissector_target(flow_dissector,
360 FLOW_DISSECTOR_KEY_TCP,
361 target_container);
362 key_tcp->flags = (*(__be16 *) &tcp_flag_word(th) & htons(0x0FFF));
363 }
364
365 static void
__skb_flow_dissect_ipv4(const struct sk_buff * skb,struct flow_dissector * flow_dissector,void * target_container,void * data,const struct iphdr * iph)366 __skb_flow_dissect_ipv4(const struct sk_buff *skb,
367 struct flow_dissector *flow_dissector,
368 void *target_container, void *data, const struct iphdr *iph)
369 {
370 struct flow_dissector_key_ip *key_ip;
371
372 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
373 return;
374
375 key_ip = skb_flow_dissector_target(flow_dissector,
376 FLOW_DISSECTOR_KEY_IP,
377 target_container);
378 key_ip->tos = iph->tos;
379 key_ip->ttl = iph->ttl;
380 }
381
382 static void
__skb_flow_dissect_ipv6(const struct sk_buff * skb,struct flow_dissector * flow_dissector,void * target_container,void * data,const struct ipv6hdr * iph)383 __skb_flow_dissect_ipv6(const struct sk_buff *skb,
384 struct flow_dissector *flow_dissector,
385 void *target_container, void *data, const struct ipv6hdr *iph)
386 {
387 struct flow_dissector_key_ip *key_ip;
388
389 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
390 return;
391
392 key_ip = skb_flow_dissector_target(flow_dissector,
393 FLOW_DISSECTOR_KEY_IP,
394 target_container);
395 key_ip->tos = ipv6_get_dsfield(iph);
396 key_ip->ttl = iph->hop_limit;
397 }
398
399 /* Maximum number of protocol headers that can be parsed in
400 * __skb_flow_dissect
401 */
402 #define MAX_FLOW_DISSECT_HDRS 15
403
skb_flow_dissect_allowed(int * num_hdrs)404 static bool skb_flow_dissect_allowed(int *num_hdrs)
405 {
406 ++*num_hdrs;
407
408 return (*num_hdrs <= MAX_FLOW_DISSECT_HDRS);
409 }
410
411 /**
412 * __skb_flow_dissect - extract the flow_keys struct and return it
413 * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
414 * @flow_dissector: list of keys to dissect
415 * @target_container: target structure to put dissected values into
416 * @data: raw buffer pointer to the packet, if NULL use skb->data
417 * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
418 * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
419 * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
420 *
421 * The function will try to retrieve individual keys into target specified
422 * by flow_dissector from either the skbuff or a raw buffer specified by the
423 * rest parameters.
424 *
425 * Caller must take care of zeroing target container memory.
426 */
__skb_flow_dissect(const struct sk_buff * skb,struct flow_dissector * flow_dissector,void * target_container,void * data,__be16 proto,int nhoff,int hlen,unsigned int flags)427 bool __skb_flow_dissect(const struct sk_buff *skb,
428 struct flow_dissector *flow_dissector,
429 void *target_container,
430 void *data, __be16 proto, int nhoff, int hlen,
431 unsigned int flags)
432 {
433 struct flow_dissector_key_control *key_control;
434 struct flow_dissector_key_basic *key_basic;
435 struct flow_dissector_key_addrs *key_addrs;
436 struct flow_dissector_key_ports *key_ports;
437 struct flow_dissector_key_icmp *key_icmp;
438 struct flow_dissector_key_tags *key_tags;
439 struct flow_dissector_key_vlan *key_vlan;
440 enum flow_dissect_ret fdret;
441 bool skip_vlan = false;
442 int num_hdrs = 0;
443 u8 ip_proto = 0;
444 bool ret;
445
446 if (!data) {
447 data = skb->data;
448 proto = skb_vlan_tag_present(skb) ?
449 skb->vlan_proto : skb->protocol;
450 nhoff = skb_network_offset(skb);
451 hlen = skb_headlen(skb);
452 #if IS_ENABLED(CONFIG_NET_DSA)
453 if (unlikely(skb->dev && netdev_uses_dsa(skb->dev) &&
454 proto == htons(ETH_P_XDSA))) {
455 const struct dsa_device_ops *ops;
456 int offset = 0;
457
458 ops = skb->dev->dsa_ptr->tag_ops;
459 if (ops->flow_dissect &&
460 !ops->flow_dissect(skb, &proto, &offset)) {
461 hlen -= offset;
462 nhoff += offset;
463 }
464 }
465 #endif
466 }
467
468 /* It is ensured by skb_flow_dissector_init() that control key will
469 * be always present.
470 */
471 key_control = skb_flow_dissector_target(flow_dissector,
472 FLOW_DISSECTOR_KEY_CONTROL,
473 target_container);
474
475 /* It is ensured by skb_flow_dissector_init() that basic key will
476 * be always present.
477 */
478 key_basic = skb_flow_dissector_target(flow_dissector,
479 FLOW_DISSECTOR_KEY_BASIC,
480 target_container);
481
482 if (dissector_uses_key(flow_dissector,
483 FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
484 struct ethhdr *eth = eth_hdr(skb);
485 struct flow_dissector_key_eth_addrs *key_eth_addrs;
486
487 key_eth_addrs = skb_flow_dissector_target(flow_dissector,
488 FLOW_DISSECTOR_KEY_ETH_ADDRS,
489 target_container);
490 memcpy(key_eth_addrs, ð->h_dest, sizeof(*key_eth_addrs));
491 }
492
493 proto_again:
494 fdret = FLOW_DISSECT_RET_CONTINUE;
495
496 switch (proto) {
497 case htons(ETH_P_IP): {
498 const struct iphdr *iph;
499 struct iphdr _iph;
500
501 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
502 if (!iph || iph->ihl < 5) {
503 fdret = FLOW_DISSECT_RET_OUT_BAD;
504 break;
505 }
506
507 nhoff += iph->ihl * 4;
508
509 ip_proto = iph->protocol;
510
511 if (dissector_uses_key(flow_dissector,
512 FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
513 key_addrs = skb_flow_dissector_target(flow_dissector,
514 FLOW_DISSECTOR_KEY_IPV4_ADDRS,
515 target_container);
516
517 memcpy(&key_addrs->v4addrs, &iph->saddr,
518 sizeof(key_addrs->v4addrs));
519 key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
520 }
521
522 if (ip_is_fragment(iph)) {
523 key_control->flags |= FLOW_DIS_IS_FRAGMENT;
524
525 if (iph->frag_off & htons(IP_OFFSET)) {
526 fdret = FLOW_DISSECT_RET_OUT_GOOD;
527 break;
528 } else {
529 key_control->flags |= FLOW_DIS_FIRST_FRAG;
530 if (!(flags &
531 FLOW_DISSECTOR_F_PARSE_1ST_FRAG)) {
532 fdret = FLOW_DISSECT_RET_OUT_GOOD;
533 break;
534 }
535 }
536 }
537
538 __skb_flow_dissect_ipv4(skb, flow_dissector,
539 target_container, data, iph);
540
541 if (flags & FLOW_DISSECTOR_F_STOP_AT_L3) {
542 fdret = FLOW_DISSECT_RET_OUT_GOOD;
543 break;
544 }
545
546 break;
547 }
548 case htons(ETH_P_IPV6): {
549 const struct ipv6hdr *iph;
550 struct ipv6hdr _iph;
551
552 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
553 if (!iph) {
554 fdret = FLOW_DISSECT_RET_OUT_BAD;
555 break;
556 }
557
558 ip_proto = iph->nexthdr;
559 nhoff += sizeof(struct ipv6hdr);
560
561 if (dissector_uses_key(flow_dissector,
562 FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
563 key_addrs = skb_flow_dissector_target(flow_dissector,
564 FLOW_DISSECTOR_KEY_IPV6_ADDRS,
565 target_container);
566
567 memcpy(&key_addrs->v6addrs, &iph->saddr,
568 sizeof(key_addrs->v6addrs));
569 key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
570 }
571
572 if ((dissector_uses_key(flow_dissector,
573 FLOW_DISSECTOR_KEY_FLOW_LABEL) ||
574 (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) &&
575 ip6_flowlabel(iph)) {
576 __be32 flow_label = ip6_flowlabel(iph);
577
578 if (dissector_uses_key(flow_dissector,
579 FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
580 key_tags = skb_flow_dissector_target(flow_dissector,
581 FLOW_DISSECTOR_KEY_FLOW_LABEL,
582 target_container);
583 key_tags->flow_label = ntohl(flow_label);
584 }
585 if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL) {
586 fdret = FLOW_DISSECT_RET_OUT_GOOD;
587 break;
588 }
589 }
590
591 __skb_flow_dissect_ipv6(skb, flow_dissector,
592 target_container, data, iph);
593
594 if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
595 fdret = FLOW_DISSECT_RET_OUT_GOOD;
596
597 break;
598 }
599 case htons(ETH_P_8021AD):
600 case htons(ETH_P_8021Q): {
601 const struct vlan_hdr *vlan;
602 struct vlan_hdr _vlan;
603 bool vlan_tag_present = skb && skb_vlan_tag_present(skb);
604
605 if (vlan_tag_present)
606 proto = skb->protocol;
607
608 if (!vlan_tag_present || eth_type_vlan(skb->protocol)) {
609 vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan),
610 data, hlen, &_vlan);
611 if (!vlan) {
612 fdret = FLOW_DISSECT_RET_OUT_BAD;
613 break;
614 }
615
616 proto = vlan->h_vlan_encapsulated_proto;
617 nhoff += sizeof(*vlan);
618 if (skip_vlan) {
619 fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
620 break;
621 }
622 }
623
624 skip_vlan = true;
625 if (dissector_uses_key(flow_dissector,
626 FLOW_DISSECTOR_KEY_VLAN)) {
627 key_vlan = skb_flow_dissector_target(flow_dissector,
628 FLOW_DISSECTOR_KEY_VLAN,
629 target_container);
630
631 if (vlan_tag_present) {
632 key_vlan->vlan_id = skb_vlan_tag_get_id(skb);
633 key_vlan->vlan_priority =
634 (skb_vlan_tag_get_prio(skb) >> VLAN_PRIO_SHIFT);
635 } else {
636 key_vlan->vlan_id = ntohs(vlan->h_vlan_TCI) &
637 VLAN_VID_MASK;
638 key_vlan->vlan_priority =
639 (ntohs(vlan->h_vlan_TCI) &
640 VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
641 }
642 }
643
644 fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
645 break;
646 }
647 case htons(ETH_P_PPP_SES): {
648 struct {
649 struct pppoe_hdr hdr;
650 __be16 proto;
651 } *hdr, _hdr;
652 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
653 if (!hdr) {
654 fdret = FLOW_DISSECT_RET_OUT_BAD;
655 break;
656 }
657
658 proto = hdr->proto;
659 nhoff += PPPOE_SES_HLEN;
660 switch (proto) {
661 case htons(PPP_IP):
662 proto = htons(ETH_P_IP);
663 fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
664 break;
665 case htons(PPP_IPV6):
666 proto = htons(ETH_P_IPV6);
667 fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
668 break;
669 default:
670 fdret = FLOW_DISSECT_RET_OUT_BAD;
671 break;
672 }
673 break;
674 }
675 case htons(ETH_P_TIPC): {
676 struct {
677 __be32 pre[3];
678 __be32 srcnode;
679 } *hdr, _hdr;
680 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
681 if (!hdr) {
682 fdret = FLOW_DISSECT_RET_OUT_BAD;
683 break;
684 }
685
686 if (dissector_uses_key(flow_dissector,
687 FLOW_DISSECTOR_KEY_TIPC_ADDRS)) {
688 key_addrs = skb_flow_dissector_target(flow_dissector,
689 FLOW_DISSECTOR_KEY_TIPC_ADDRS,
690 target_container);
691 key_addrs->tipcaddrs.srcnode = hdr->srcnode;
692 key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC_ADDRS;
693 }
694 fdret = FLOW_DISSECT_RET_OUT_GOOD;
695 break;
696 }
697
698 case htons(ETH_P_MPLS_UC):
699 case htons(ETH_P_MPLS_MC):
700 fdret = __skb_flow_dissect_mpls(skb, flow_dissector,
701 target_container, data,
702 nhoff, hlen);
703 break;
704 case htons(ETH_P_FCOE):
705 if ((hlen - nhoff) < FCOE_HEADER_LEN) {
706 fdret = FLOW_DISSECT_RET_OUT_BAD;
707 break;
708 }
709
710 nhoff += FCOE_HEADER_LEN;
711 fdret = FLOW_DISSECT_RET_OUT_GOOD;
712 break;
713
714 case htons(ETH_P_ARP):
715 case htons(ETH_P_RARP):
716 fdret = __skb_flow_dissect_arp(skb, flow_dissector,
717 target_container, data,
718 nhoff, hlen);
719 break;
720
721 default:
722 fdret = FLOW_DISSECT_RET_OUT_BAD;
723 break;
724 }
725
726 /* Process result of proto processing */
727 switch (fdret) {
728 case FLOW_DISSECT_RET_OUT_GOOD:
729 goto out_good;
730 case FLOW_DISSECT_RET_PROTO_AGAIN:
731 if (skb_flow_dissect_allowed(&num_hdrs))
732 goto proto_again;
733 goto out_good;
734 case FLOW_DISSECT_RET_CONTINUE:
735 case FLOW_DISSECT_RET_IPPROTO_AGAIN:
736 break;
737 case FLOW_DISSECT_RET_OUT_BAD:
738 default:
739 goto out_bad;
740 }
741
742 ip_proto_again:
743 fdret = FLOW_DISSECT_RET_CONTINUE;
744
745 switch (ip_proto) {
746 case IPPROTO_GRE:
747 fdret = __skb_flow_dissect_gre(skb, key_control, flow_dissector,
748 target_container, data,
749 &proto, &nhoff, &hlen, flags);
750 break;
751
752 case NEXTHDR_HOP:
753 case NEXTHDR_ROUTING:
754 case NEXTHDR_DEST: {
755 u8 _opthdr[2], *opthdr;
756
757 if (proto != htons(ETH_P_IPV6))
758 break;
759
760 opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr),
761 data, hlen, &_opthdr);
762 if (!opthdr) {
763 fdret = FLOW_DISSECT_RET_OUT_BAD;
764 break;
765 }
766
767 ip_proto = opthdr[0];
768 nhoff += (opthdr[1] + 1) << 3;
769
770 fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
771 break;
772 }
773 case NEXTHDR_FRAGMENT: {
774 struct frag_hdr _fh, *fh;
775
776 if (proto != htons(ETH_P_IPV6))
777 break;
778
779 fh = __skb_header_pointer(skb, nhoff, sizeof(_fh),
780 data, hlen, &_fh);
781
782 if (!fh) {
783 fdret = FLOW_DISSECT_RET_OUT_BAD;
784 break;
785 }
786
787 key_control->flags |= FLOW_DIS_IS_FRAGMENT;
788
789 nhoff += sizeof(_fh);
790 ip_proto = fh->nexthdr;
791
792 if (!(fh->frag_off & htons(IP6_OFFSET))) {
793 key_control->flags |= FLOW_DIS_FIRST_FRAG;
794 if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG) {
795 fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
796 break;
797 }
798 }
799
800 fdret = FLOW_DISSECT_RET_OUT_GOOD;
801 break;
802 }
803 case IPPROTO_IPIP:
804 proto = htons(ETH_P_IP);
805
806 key_control->flags |= FLOW_DIS_ENCAPSULATION;
807 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
808 fdret = FLOW_DISSECT_RET_OUT_GOOD;
809 break;
810 }
811
812 fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
813 break;
814
815 case IPPROTO_IPV6:
816 proto = htons(ETH_P_IPV6);
817
818 key_control->flags |= FLOW_DIS_ENCAPSULATION;
819 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
820 fdret = FLOW_DISSECT_RET_OUT_GOOD;
821 break;
822 }
823
824 fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
825 break;
826
827
828 case IPPROTO_MPLS:
829 proto = htons(ETH_P_MPLS_UC);
830 fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
831 break;
832
833 case IPPROTO_TCP:
834 __skb_flow_dissect_tcp(skb, flow_dissector, target_container,
835 data, nhoff, hlen);
836 break;
837
838 default:
839 break;
840 }
841
842 if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS) &&
843 !(key_control->flags & FLOW_DIS_IS_FRAGMENT)) {
844 key_ports = skb_flow_dissector_target(flow_dissector,
845 FLOW_DISSECTOR_KEY_PORTS,
846 target_container);
847 key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
848 data, hlen);
849 }
850
851 if (dissector_uses_key(flow_dissector,
852 FLOW_DISSECTOR_KEY_ICMP)) {
853 key_icmp = skb_flow_dissector_target(flow_dissector,
854 FLOW_DISSECTOR_KEY_ICMP,
855 target_container);
856 key_icmp->icmp = skb_flow_get_be16(skb, nhoff, data, hlen);
857 }
858
859 /* Process result of IP proto processing */
860 switch (fdret) {
861 case FLOW_DISSECT_RET_PROTO_AGAIN:
862 if (skb_flow_dissect_allowed(&num_hdrs))
863 goto proto_again;
864 break;
865 case FLOW_DISSECT_RET_IPPROTO_AGAIN:
866 if (skb_flow_dissect_allowed(&num_hdrs))
867 goto ip_proto_again;
868 break;
869 case FLOW_DISSECT_RET_OUT_GOOD:
870 case FLOW_DISSECT_RET_CONTINUE:
871 break;
872 case FLOW_DISSECT_RET_OUT_BAD:
873 default:
874 goto out_bad;
875 }
876
877 out_good:
878 ret = true;
879
880 out:
881 key_control->thoff = min_t(u16, nhoff, skb ? skb->len : hlen);
882 key_basic->n_proto = proto;
883 key_basic->ip_proto = ip_proto;
884
885 return ret;
886
887 out_bad:
888 ret = false;
889 goto out;
890 }
891 EXPORT_SYMBOL(__skb_flow_dissect);
892
893 static siphash_key_t hashrnd __read_mostly;
__flow_hash_secret_init(void)894 static __always_inline void __flow_hash_secret_init(void)
895 {
896 net_get_random_once(&hashrnd, sizeof(hashrnd));
897 }
898
flow_keys_hash_start(const struct flow_keys * flow)899 static const void *flow_keys_hash_start(const struct flow_keys *flow)
900 {
901 BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % SIPHASH_ALIGNMENT);
902 return &flow->FLOW_KEYS_HASH_START_FIELD;
903 }
904
flow_keys_hash_length(const struct flow_keys * flow)905 static inline size_t flow_keys_hash_length(const struct flow_keys *flow)
906 {
907 size_t len = offsetof(typeof(*flow), addrs) - FLOW_KEYS_HASH_OFFSET;
908
909 switch (flow->control.addr_type) {
910 case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
911 len += sizeof(flow->addrs.v4addrs);
912 break;
913 case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
914 len += sizeof(flow->addrs.v6addrs);
915 break;
916 case FLOW_DISSECTOR_KEY_TIPC_ADDRS:
917 len += sizeof(flow->addrs.tipcaddrs);
918 break;
919 }
920 return len;
921 }
922
flow_get_u32_src(const struct flow_keys * flow)923 __be32 flow_get_u32_src(const struct flow_keys *flow)
924 {
925 switch (flow->control.addr_type) {
926 case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
927 return flow->addrs.v4addrs.src;
928 case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
929 return (__force __be32)ipv6_addr_hash(
930 &flow->addrs.v6addrs.src);
931 case FLOW_DISSECTOR_KEY_TIPC_ADDRS:
932 return flow->addrs.tipcaddrs.srcnode;
933 default:
934 return 0;
935 }
936 }
937 EXPORT_SYMBOL(flow_get_u32_src);
938
flow_get_u32_dst(const struct flow_keys * flow)939 __be32 flow_get_u32_dst(const struct flow_keys *flow)
940 {
941 switch (flow->control.addr_type) {
942 case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
943 return flow->addrs.v4addrs.dst;
944 case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
945 return (__force __be32)ipv6_addr_hash(
946 &flow->addrs.v6addrs.dst);
947 default:
948 return 0;
949 }
950 }
951 EXPORT_SYMBOL(flow_get_u32_dst);
952
__flow_hash_consistentify(struct flow_keys * keys)953 static inline void __flow_hash_consistentify(struct flow_keys *keys)
954 {
955 int addr_diff, i;
956
957 switch (keys->control.addr_type) {
958 case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
959 addr_diff = (__force u32)keys->addrs.v4addrs.dst -
960 (__force u32)keys->addrs.v4addrs.src;
961 if ((addr_diff < 0) ||
962 (addr_diff == 0 &&
963 ((__force u16)keys->ports.dst <
964 (__force u16)keys->ports.src))) {
965 swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst);
966 swap(keys->ports.src, keys->ports.dst);
967 }
968 break;
969 case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
970 addr_diff = memcmp(&keys->addrs.v6addrs.dst,
971 &keys->addrs.v6addrs.src,
972 sizeof(keys->addrs.v6addrs.dst));
973 if ((addr_diff < 0) ||
974 (addr_diff == 0 &&
975 ((__force u16)keys->ports.dst <
976 (__force u16)keys->ports.src))) {
977 for (i = 0; i < 4; i++)
978 swap(keys->addrs.v6addrs.src.s6_addr32[i],
979 keys->addrs.v6addrs.dst.s6_addr32[i]);
980 swap(keys->ports.src, keys->ports.dst);
981 }
982 break;
983 }
984 }
985
__flow_hash_from_keys(struct flow_keys * keys,const siphash_key_t * keyval)986 static inline u32 __flow_hash_from_keys(struct flow_keys *keys,
987 const siphash_key_t *keyval)
988 {
989 u32 hash;
990
991 __flow_hash_consistentify(keys);
992
993 hash = siphash(flow_keys_hash_start(keys),
994 flow_keys_hash_length(keys), keyval);
995 if (!hash)
996 hash = 1;
997
998 return hash;
999 }
1000
flow_hash_from_keys(struct flow_keys * keys)1001 u32 flow_hash_from_keys(struct flow_keys *keys)
1002 {
1003 __flow_hash_secret_init();
1004 return __flow_hash_from_keys(keys, &hashrnd);
1005 }
1006 EXPORT_SYMBOL(flow_hash_from_keys);
1007
___skb_get_hash(const struct sk_buff * skb,struct flow_keys * keys,const siphash_key_t * keyval)1008 static inline u32 ___skb_get_hash(const struct sk_buff *skb,
1009 struct flow_keys *keys,
1010 const siphash_key_t *keyval)
1011 {
1012 skb_flow_dissect_flow_keys(skb, keys,
1013 FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
1014
1015 return __flow_hash_from_keys(keys, keyval);
1016 }
1017
1018 struct _flow_keys_digest_data {
1019 __be16 n_proto;
1020 u8 ip_proto;
1021 u8 padding;
1022 __be32 ports;
1023 __be32 src;
1024 __be32 dst;
1025 };
1026
make_flow_keys_digest(struct flow_keys_digest * digest,const struct flow_keys * flow)1027 void make_flow_keys_digest(struct flow_keys_digest *digest,
1028 const struct flow_keys *flow)
1029 {
1030 struct _flow_keys_digest_data *data =
1031 (struct _flow_keys_digest_data *)digest;
1032
1033 BUILD_BUG_ON(sizeof(*data) > sizeof(*digest));
1034
1035 memset(digest, 0, sizeof(*digest));
1036
1037 data->n_proto = flow->basic.n_proto;
1038 data->ip_proto = flow->basic.ip_proto;
1039 data->ports = flow->ports.ports;
1040 data->src = flow->addrs.v4addrs.src;
1041 data->dst = flow->addrs.v4addrs.dst;
1042 }
1043 EXPORT_SYMBOL(make_flow_keys_digest);
1044
1045 static struct flow_dissector flow_keys_dissector_symmetric __read_mostly;
1046
__skb_get_hash_symmetric(const struct sk_buff * skb)1047 u32 __skb_get_hash_symmetric(const struct sk_buff *skb)
1048 {
1049 struct flow_keys keys;
1050
1051 __flow_hash_secret_init();
1052
1053 memset(&keys, 0, sizeof(keys));
1054 __skb_flow_dissect(skb, &flow_keys_dissector_symmetric, &keys,
1055 NULL, 0, 0, 0,
1056 FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
1057
1058 return __flow_hash_from_keys(&keys, &hashrnd);
1059 }
1060 EXPORT_SYMBOL_GPL(__skb_get_hash_symmetric);
1061
1062 /**
1063 * __skb_get_hash: calculate a flow hash
1064 * @skb: sk_buff to calculate flow hash from
1065 *
1066 * This function calculates a flow hash based on src/dst addresses
1067 * and src/dst port numbers. Sets hash in skb to non-zero hash value
1068 * on success, zero indicates no valid hash. Also, sets l4_hash in skb
1069 * if hash is a canonical 4-tuple hash over transport ports.
1070 */
__skb_get_hash(struct sk_buff * skb)1071 void __skb_get_hash(struct sk_buff *skb)
1072 {
1073 struct flow_keys keys;
1074 u32 hash;
1075
1076 __flow_hash_secret_init();
1077
1078 hash = ___skb_get_hash(skb, &keys, &hashrnd);
1079
1080 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1081 }
1082 EXPORT_SYMBOL(__skb_get_hash);
1083
skb_get_hash_perturb(const struct sk_buff * skb,const siphash_key_t * perturb)1084 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1085 const siphash_key_t *perturb)
1086 {
1087 struct flow_keys keys;
1088
1089 return ___skb_get_hash(skb, &keys, perturb);
1090 }
1091 EXPORT_SYMBOL(skb_get_hash_perturb);
1092
__skb_get_poff(const struct sk_buff * skb,void * data,const struct flow_keys * keys,int hlen)1093 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1094 const struct flow_keys *keys, int hlen)
1095 {
1096 u32 poff = keys->control.thoff;
1097
1098 /* skip L4 headers for fragments after the first */
1099 if ((keys->control.flags & FLOW_DIS_IS_FRAGMENT) &&
1100 !(keys->control.flags & FLOW_DIS_FIRST_FRAG))
1101 return poff;
1102
1103 switch (keys->basic.ip_proto) {
1104 case IPPROTO_TCP: {
1105 /* access doff as u8 to avoid unaligned access */
1106 const u8 *doff;
1107 u8 _doff;
1108
1109 doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
1110 data, hlen, &_doff);
1111 if (!doff)
1112 return poff;
1113
1114 poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
1115 break;
1116 }
1117 case IPPROTO_UDP:
1118 case IPPROTO_UDPLITE:
1119 poff += sizeof(struct udphdr);
1120 break;
1121 /* For the rest, we do not really care about header
1122 * extensions at this point for now.
1123 */
1124 case IPPROTO_ICMP:
1125 poff += sizeof(struct icmphdr);
1126 break;
1127 case IPPROTO_ICMPV6:
1128 poff += sizeof(struct icmp6hdr);
1129 break;
1130 case IPPROTO_IGMP:
1131 poff += sizeof(struct igmphdr);
1132 break;
1133 case IPPROTO_DCCP:
1134 poff += sizeof(struct dccp_hdr);
1135 break;
1136 case IPPROTO_SCTP:
1137 poff += sizeof(struct sctphdr);
1138 break;
1139 }
1140
1141 return poff;
1142 }
1143
1144 /**
1145 * skb_get_poff - get the offset to the payload
1146 * @skb: sk_buff to get the payload offset from
1147 *
1148 * The function will get the offset to the payload as far as it could
1149 * be dissected. The main user is currently BPF, so that we can dynamically
1150 * truncate packets without needing to push actual payload to the user
1151 * space and can analyze headers only, instead.
1152 */
skb_get_poff(const struct sk_buff * skb)1153 u32 skb_get_poff(const struct sk_buff *skb)
1154 {
1155 struct flow_keys keys;
1156
1157 if (!skb_flow_dissect_flow_keys(skb, &keys, 0))
1158 return 0;
1159
1160 return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
1161 }
1162
__get_hash_from_flowi6(const struct flowi6 * fl6,struct flow_keys * keys)1163 __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys)
1164 {
1165 memset(keys, 0, sizeof(*keys));
1166
1167 memcpy(&keys->addrs.v6addrs.src, &fl6->saddr,
1168 sizeof(keys->addrs.v6addrs.src));
1169 memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr,
1170 sizeof(keys->addrs.v6addrs.dst));
1171 keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
1172 keys->ports.src = fl6->fl6_sport;
1173 keys->ports.dst = fl6->fl6_dport;
1174 keys->keyid.keyid = fl6->fl6_gre_key;
1175 keys->tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6);
1176 keys->basic.ip_proto = fl6->flowi6_proto;
1177
1178 return flow_hash_from_keys(keys);
1179 }
1180 EXPORT_SYMBOL(__get_hash_from_flowi6);
1181
__get_hash_from_flowi4(const struct flowi4 * fl4,struct flow_keys * keys)1182 __u32 __get_hash_from_flowi4(const struct flowi4 *fl4, struct flow_keys *keys)
1183 {
1184 memset(keys, 0, sizeof(*keys));
1185
1186 keys->addrs.v4addrs.src = fl4->saddr;
1187 keys->addrs.v4addrs.dst = fl4->daddr;
1188 keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
1189 keys->ports.src = fl4->fl4_sport;
1190 keys->ports.dst = fl4->fl4_dport;
1191 keys->keyid.keyid = fl4->fl4_gre_key;
1192 keys->basic.ip_proto = fl4->flowi4_proto;
1193
1194 return flow_hash_from_keys(keys);
1195 }
1196 EXPORT_SYMBOL(__get_hash_from_flowi4);
1197
1198 static const struct flow_dissector_key flow_keys_dissector_keys[] = {
1199 {
1200 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
1201 .offset = offsetof(struct flow_keys, control),
1202 },
1203 {
1204 .key_id = FLOW_DISSECTOR_KEY_BASIC,
1205 .offset = offsetof(struct flow_keys, basic),
1206 },
1207 {
1208 .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1209 .offset = offsetof(struct flow_keys, addrs.v4addrs),
1210 },
1211 {
1212 .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1213 .offset = offsetof(struct flow_keys, addrs.v6addrs),
1214 },
1215 {
1216 .key_id = FLOW_DISSECTOR_KEY_TIPC_ADDRS,
1217 .offset = offsetof(struct flow_keys, addrs.tipcaddrs),
1218 },
1219 {
1220 .key_id = FLOW_DISSECTOR_KEY_PORTS,
1221 .offset = offsetof(struct flow_keys, ports),
1222 },
1223 {
1224 .key_id = FLOW_DISSECTOR_KEY_VLAN,
1225 .offset = offsetof(struct flow_keys, vlan),
1226 },
1227 {
1228 .key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL,
1229 .offset = offsetof(struct flow_keys, tags),
1230 },
1231 {
1232 .key_id = FLOW_DISSECTOR_KEY_GRE_KEYID,
1233 .offset = offsetof(struct flow_keys, keyid),
1234 },
1235 };
1236
1237 static const struct flow_dissector_key flow_keys_dissector_symmetric_keys[] = {
1238 {
1239 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
1240 .offset = offsetof(struct flow_keys, control),
1241 },
1242 {
1243 .key_id = FLOW_DISSECTOR_KEY_BASIC,
1244 .offset = offsetof(struct flow_keys, basic),
1245 },
1246 {
1247 .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1248 .offset = offsetof(struct flow_keys, addrs.v4addrs),
1249 },
1250 {
1251 .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1252 .offset = offsetof(struct flow_keys, addrs.v6addrs),
1253 },
1254 {
1255 .key_id = FLOW_DISSECTOR_KEY_PORTS,
1256 .offset = offsetof(struct flow_keys, ports),
1257 },
1258 };
1259
1260 static const struct flow_dissector_key flow_keys_buf_dissector_keys[] = {
1261 {
1262 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
1263 .offset = offsetof(struct flow_keys, control),
1264 },
1265 {
1266 .key_id = FLOW_DISSECTOR_KEY_BASIC,
1267 .offset = offsetof(struct flow_keys, basic),
1268 },
1269 };
1270
1271 struct flow_dissector flow_keys_dissector __read_mostly;
1272 EXPORT_SYMBOL(flow_keys_dissector);
1273
1274 struct flow_dissector flow_keys_buf_dissector __read_mostly;
1275
init_default_flow_dissectors(void)1276 static int __init init_default_flow_dissectors(void)
1277 {
1278 skb_flow_dissector_init(&flow_keys_dissector,
1279 flow_keys_dissector_keys,
1280 ARRAY_SIZE(flow_keys_dissector_keys));
1281 skb_flow_dissector_init(&flow_keys_dissector_symmetric,
1282 flow_keys_dissector_symmetric_keys,
1283 ARRAY_SIZE(flow_keys_dissector_symmetric_keys));
1284 skb_flow_dissector_init(&flow_keys_buf_dissector,
1285 flow_keys_buf_dissector_keys,
1286 ARRAY_SIZE(flow_keys_buf_dissector_keys));
1287 return 0;
1288 }
1289
1290 core_initcall(init_default_flow_dissectors);
1291