• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27 
28 #ifdef CONFIG_COMPACTION
count_compact_event(enum vm_event_item item)29 static inline void count_compact_event(enum vm_event_item item)
30 {
31 	count_vm_event(item);
32 }
33 
count_compact_events(enum vm_event_item item,long delta)34 static inline void count_compact_events(enum vm_event_item item, long delta)
35 {
36 	count_vm_events(item, delta);
37 }
38 #else
39 #define count_compact_event(item) do { } while (0)
40 #define count_compact_events(item, delta) do { } while (0)
41 #endif
42 
43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/compaction.h>
47 
48 #define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
49 #define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
50 #define pageblock_start_pfn(pfn)	block_start_pfn(pfn, pageblock_order)
51 #define pageblock_end_pfn(pfn)		block_end_pfn(pfn, pageblock_order)
52 
release_freepages(struct list_head * freelist)53 static unsigned long release_freepages(struct list_head *freelist)
54 {
55 	struct page *page, *next;
56 	unsigned long high_pfn = 0;
57 
58 	list_for_each_entry_safe(page, next, freelist, lru) {
59 		unsigned long pfn = page_to_pfn(page);
60 		list_del(&page->lru);
61 		__free_page(page);
62 		if (pfn > high_pfn)
63 			high_pfn = pfn;
64 	}
65 
66 	return high_pfn;
67 }
68 
map_pages(struct list_head * list)69 static void map_pages(struct list_head *list)
70 {
71 	unsigned int i, order, nr_pages;
72 	struct page *page, *next;
73 	LIST_HEAD(tmp_list);
74 
75 	list_for_each_entry_safe(page, next, list, lru) {
76 		list_del(&page->lru);
77 
78 		order = page_private(page);
79 		nr_pages = 1 << order;
80 
81 		post_alloc_hook(page, order, __GFP_MOVABLE);
82 		if (order)
83 			split_page(page, order);
84 
85 		for (i = 0; i < nr_pages; i++) {
86 			list_add(&page->lru, &tmp_list);
87 			page++;
88 		}
89 	}
90 
91 	list_splice(&tmp_list, list);
92 }
93 
94 #ifdef CONFIG_COMPACTION
95 
PageMovable(struct page * page)96 int PageMovable(struct page *page)
97 {
98 	struct address_space *mapping;
99 
100 	VM_BUG_ON_PAGE(!PageLocked(page), page);
101 	if (!__PageMovable(page))
102 		return 0;
103 
104 	mapping = page_mapping(page);
105 	if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
106 		return 1;
107 
108 	return 0;
109 }
110 EXPORT_SYMBOL(PageMovable);
111 
__SetPageMovable(struct page * page,struct address_space * mapping)112 void __SetPageMovable(struct page *page, struct address_space *mapping)
113 {
114 	VM_BUG_ON_PAGE(!PageLocked(page), page);
115 	VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
116 	page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
117 }
118 EXPORT_SYMBOL(__SetPageMovable);
119 
__ClearPageMovable(struct page * page)120 void __ClearPageMovable(struct page *page)
121 {
122 	VM_BUG_ON_PAGE(!PageLocked(page), page);
123 	VM_BUG_ON_PAGE(!PageMovable(page), page);
124 	/*
125 	 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
126 	 * flag so that VM can catch up released page by driver after isolation.
127 	 * With it, VM migration doesn't try to put it back.
128 	 */
129 	page->mapping = (void *)((unsigned long)page->mapping &
130 				PAGE_MAPPING_MOVABLE);
131 }
132 EXPORT_SYMBOL(__ClearPageMovable);
133 
134 /* Do not skip compaction more than 64 times */
135 #define COMPACT_MAX_DEFER_SHIFT 6
136 
137 /*
138  * Compaction is deferred when compaction fails to result in a page
139  * allocation success. 1 << compact_defer_limit compactions are skipped up
140  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
141  */
defer_compaction(struct zone * zone,int order)142 void defer_compaction(struct zone *zone, int order)
143 {
144 	zone->compact_considered = 0;
145 	zone->compact_defer_shift++;
146 
147 	if (order < zone->compact_order_failed)
148 		zone->compact_order_failed = order;
149 
150 	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
151 		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
152 
153 	trace_mm_compaction_defer_compaction(zone, order);
154 }
155 
156 /* Returns true if compaction should be skipped this time */
compaction_deferred(struct zone * zone,int order)157 bool compaction_deferred(struct zone *zone, int order)
158 {
159 	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
160 
161 	if (order < zone->compact_order_failed)
162 		return false;
163 
164 	/* Avoid possible overflow */
165 	if (++zone->compact_considered > defer_limit)
166 		zone->compact_considered = defer_limit;
167 
168 	if (zone->compact_considered >= defer_limit)
169 		return false;
170 
171 	trace_mm_compaction_deferred(zone, order);
172 
173 	return true;
174 }
175 
176 /*
177  * Update defer tracking counters after successful compaction of given order,
178  * which means an allocation either succeeded (alloc_success == true) or is
179  * expected to succeed.
180  */
compaction_defer_reset(struct zone * zone,int order,bool alloc_success)181 void compaction_defer_reset(struct zone *zone, int order,
182 		bool alloc_success)
183 {
184 	if (alloc_success) {
185 		zone->compact_considered = 0;
186 		zone->compact_defer_shift = 0;
187 	}
188 	if (order >= zone->compact_order_failed)
189 		zone->compact_order_failed = order + 1;
190 
191 	trace_mm_compaction_defer_reset(zone, order);
192 }
193 
194 /* Returns true if restarting compaction after many failures */
compaction_restarting(struct zone * zone,int order)195 bool compaction_restarting(struct zone *zone, int order)
196 {
197 	if (order < zone->compact_order_failed)
198 		return false;
199 
200 	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
201 		zone->compact_considered >= 1UL << zone->compact_defer_shift;
202 }
203 
204 /* Returns true if the pageblock should be scanned for pages to isolate. */
isolation_suitable(struct compact_control * cc,struct page * page)205 static inline bool isolation_suitable(struct compact_control *cc,
206 					struct page *page)
207 {
208 	if (cc->ignore_skip_hint)
209 		return true;
210 
211 	return !get_pageblock_skip(page);
212 }
213 
reset_cached_positions(struct zone * zone)214 static void reset_cached_positions(struct zone *zone)
215 {
216 	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
217 	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
218 	zone->compact_cached_free_pfn =
219 				pageblock_start_pfn(zone_end_pfn(zone) - 1);
220 }
221 
222 /*
223  * This function is called to clear all cached information on pageblocks that
224  * should be skipped for page isolation when the migrate and free page scanner
225  * meet.
226  */
__reset_isolation_suitable(struct zone * zone)227 static void __reset_isolation_suitable(struct zone *zone)
228 {
229 	unsigned long start_pfn = zone->zone_start_pfn;
230 	unsigned long end_pfn = zone_end_pfn(zone);
231 	unsigned long pfn;
232 
233 	zone->compact_blockskip_flush = false;
234 
235 	/* Walk the zone and mark every pageblock as suitable for isolation */
236 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
237 		struct page *page;
238 
239 		cond_resched();
240 
241 		page = pfn_to_online_page(pfn);
242 		if (!page)
243 			continue;
244 		if (zone != page_zone(page))
245 			continue;
246 
247 		clear_pageblock_skip(page);
248 	}
249 
250 	reset_cached_positions(zone);
251 }
252 
reset_isolation_suitable(pg_data_t * pgdat)253 void reset_isolation_suitable(pg_data_t *pgdat)
254 {
255 	int zoneid;
256 
257 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
258 		struct zone *zone = &pgdat->node_zones[zoneid];
259 		if (!populated_zone(zone))
260 			continue;
261 
262 		/* Only flush if a full compaction finished recently */
263 		if (zone->compact_blockskip_flush)
264 			__reset_isolation_suitable(zone);
265 	}
266 }
267 
268 /*
269  * If no pages were isolated then mark this pageblock to be skipped in the
270  * future. The information is later cleared by __reset_isolation_suitable().
271  */
update_pageblock_skip(struct compact_control * cc,struct page * page,unsigned long nr_isolated,bool migrate_scanner)272 static void update_pageblock_skip(struct compact_control *cc,
273 			struct page *page, unsigned long nr_isolated,
274 			bool migrate_scanner)
275 {
276 	struct zone *zone = cc->zone;
277 	unsigned long pfn;
278 
279 	if (cc->ignore_skip_hint)
280 		return;
281 
282 	if (!page)
283 		return;
284 
285 	if (nr_isolated)
286 		return;
287 
288 	set_pageblock_skip(page);
289 
290 	pfn = page_to_pfn(page);
291 
292 	/* Update where async and sync compaction should restart */
293 	if (migrate_scanner) {
294 		if (pfn > zone->compact_cached_migrate_pfn[0])
295 			zone->compact_cached_migrate_pfn[0] = pfn;
296 		if (cc->mode != MIGRATE_ASYNC &&
297 		    pfn > zone->compact_cached_migrate_pfn[1])
298 			zone->compact_cached_migrate_pfn[1] = pfn;
299 	} else {
300 		if (pfn < zone->compact_cached_free_pfn)
301 			zone->compact_cached_free_pfn = pfn;
302 	}
303 }
304 #else
isolation_suitable(struct compact_control * cc,struct page * page)305 static inline bool isolation_suitable(struct compact_control *cc,
306 					struct page *page)
307 {
308 	return true;
309 }
310 
update_pageblock_skip(struct compact_control * cc,struct page * page,unsigned long nr_isolated,bool migrate_scanner)311 static void update_pageblock_skip(struct compact_control *cc,
312 			struct page *page, unsigned long nr_isolated,
313 			bool migrate_scanner)
314 {
315 }
316 #endif /* CONFIG_COMPACTION */
317 
318 /*
319  * Compaction requires the taking of some coarse locks that are potentially
320  * very heavily contended. For async compaction, back out if the lock cannot
321  * be taken immediately. For sync compaction, spin on the lock if needed.
322  *
323  * Returns true if the lock is held
324  * Returns false if the lock is not held and compaction should abort
325  */
compact_trylock_irqsave(spinlock_t * lock,unsigned long * flags,struct compact_control * cc)326 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
327 						struct compact_control *cc)
328 {
329 	if (cc->mode == MIGRATE_ASYNC) {
330 		if (!spin_trylock_irqsave(lock, *flags)) {
331 			cc->contended = true;
332 			return false;
333 		}
334 	} else {
335 		spin_lock_irqsave(lock, *flags);
336 	}
337 
338 	return true;
339 }
340 
341 /*
342  * Compaction requires the taking of some coarse locks that are potentially
343  * very heavily contended. The lock should be periodically unlocked to avoid
344  * having disabled IRQs for a long time, even when there is nobody waiting on
345  * the lock. It might also be that allowing the IRQs will result in
346  * need_resched() becoming true. If scheduling is needed, async compaction
347  * aborts. Sync compaction schedules.
348  * Either compaction type will also abort if a fatal signal is pending.
349  * In either case if the lock was locked, it is dropped and not regained.
350  *
351  * Returns true if compaction should abort due to fatal signal pending, or
352  *		async compaction due to need_resched()
353  * Returns false when compaction can continue (sync compaction might have
354  *		scheduled)
355  */
compact_unlock_should_abort(spinlock_t * lock,unsigned long flags,bool * locked,struct compact_control * cc)356 static bool compact_unlock_should_abort(spinlock_t *lock,
357 		unsigned long flags, bool *locked, struct compact_control *cc)
358 {
359 	if (*locked) {
360 		spin_unlock_irqrestore(lock, flags);
361 		*locked = false;
362 	}
363 
364 	if (fatal_signal_pending(current)) {
365 		cc->contended = true;
366 		return true;
367 	}
368 
369 	if (need_resched()) {
370 		if (cc->mode == MIGRATE_ASYNC) {
371 			cc->contended = true;
372 			return true;
373 		}
374 		cond_resched();
375 	}
376 
377 	return false;
378 }
379 
380 /*
381  * Aside from avoiding lock contention, compaction also periodically checks
382  * need_resched() and either schedules in sync compaction or aborts async
383  * compaction. This is similar to what compact_unlock_should_abort() does, but
384  * is used where no lock is concerned.
385  *
386  * Returns false when no scheduling was needed, or sync compaction scheduled.
387  * Returns true when async compaction should abort.
388  */
compact_should_abort(struct compact_control * cc)389 static inline bool compact_should_abort(struct compact_control *cc)
390 {
391 	/* async compaction aborts if contended */
392 	if (need_resched()) {
393 		if (cc->mode == MIGRATE_ASYNC) {
394 			cc->contended = true;
395 			return true;
396 		}
397 
398 		cond_resched();
399 	}
400 
401 	return false;
402 }
403 
404 /*
405  * Isolate free pages onto a private freelist. If @strict is true, will abort
406  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
407  * (even though it may still end up isolating some pages).
408  */
isolate_freepages_block(struct compact_control * cc,unsigned long * start_pfn,unsigned long end_pfn,struct list_head * freelist,bool strict)409 static unsigned long isolate_freepages_block(struct compact_control *cc,
410 				unsigned long *start_pfn,
411 				unsigned long end_pfn,
412 				struct list_head *freelist,
413 				bool strict)
414 {
415 	int nr_scanned = 0, total_isolated = 0;
416 	struct page *cursor, *valid_page = NULL;
417 	unsigned long flags = 0;
418 	bool locked = false;
419 	unsigned long blockpfn = *start_pfn;
420 	unsigned int order;
421 
422 	cursor = pfn_to_page(blockpfn);
423 
424 	/* Isolate free pages. */
425 	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
426 		int isolated;
427 		struct page *page = cursor;
428 
429 		/*
430 		 * Periodically drop the lock (if held) regardless of its
431 		 * contention, to give chance to IRQs. Abort if fatal signal
432 		 * pending or async compaction detects need_resched()
433 		 */
434 		if (!(blockpfn % SWAP_CLUSTER_MAX)
435 		    && compact_unlock_should_abort(&cc->zone->lock, flags,
436 								&locked, cc))
437 			break;
438 
439 		nr_scanned++;
440 		if (!pfn_valid_within(blockpfn))
441 			goto isolate_fail;
442 
443 		if (!valid_page)
444 			valid_page = page;
445 
446 		/*
447 		 * For compound pages such as THP and hugetlbfs, we can save
448 		 * potentially a lot of iterations if we skip them at once.
449 		 * The check is racy, but we can consider only valid values
450 		 * and the only danger is skipping too much.
451 		 */
452 		if (PageCompound(page)) {
453 			unsigned int comp_order = compound_order(page);
454 
455 			if (likely(comp_order < MAX_ORDER)) {
456 				blockpfn += (1UL << comp_order) - 1;
457 				cursor += (1UL << comp_order) - 1;
458 			}
459 
460 			goto isolate_fail;
461 		}
462 
463 		if (!PageBuddy(page))
464 			goto isolate_fail;
465 
466 		/*
467 		 * If we already hold the lock, we can skip some rechecking.
468 		 * Note that if we hold the lock now, checked_pageblock was
469 		 * already set in some previous iteration (or strict is true),
470 		 * so it is correct to skip the suitable migration target
471 		 * recheck as well.
472 		 */
473 		if (!locked) {
474 			/*
475 			 * The zone lock must be held to isolate freepages.
476 			 * Unfortunately this is a very coarse lock and can be
477 			 * heavily contended if there are parallel allocations
478 			 * or parallel compactions. For async compaction do not
479 			 * spin on the lock and we acquire the lock as late as
480 			 * possible.
481 			 */
482 			locked = compact_trylock_irqsave(&cc->zone->lock,
483 								&flags, cc);
484 			if (!locked)
485 				break;
486 
487 			/* Recheck this is a buddy page under lock */
488 			if (!PageBuddy(page))
489 				goto isolate_fail;
490 		}
491 
492 		/* Found a free page, will break it into order-0 pages */
493 		order = page_order(page);
494 		isolated = __isolate_free_page(page, order);
495 		if (!isolated)
496 			break;
497 		set_page_private(page, order);
498 
499 		total_isolated += isolated;
500 		cc->nr_freepages += isolated;
501 		list_add_tail(&page->lru, freelist);
502 
503 		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
504 			blockpfn += isolated;
505 			break;
506 		}
507 		/* Advance to the end of split page */
508 		blockpfn += isolated - 1;
509 		cursor += isolated - 1;
510 		continue;
511 
512 isolate_fail:
513 		if (strict)
514 			break;
515 		else
516 			continue;
517 
518 	}
519 
520 	if (locked)
521 		spin_unlock_irqrestore(&cc->zone->lock, flags);
522 
523 	/*
524 	 * There is a tiny chance that we have read bogus compound_order(),
525 	 * so be careful to not go outside of the pageblock.
526 	 */
527 	if (unlikely(blockpfn > end_pfn))
528 		blockpfn = end_pfn;
529 
530 	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
531 					nr_scanned, total_isolated);
532 
533 	/* Record how far we have got within the block */
534 	*start_pfn = blockpfn;
535 
536 	/*
537 	 * If strict isolation is requested by CMA then check that all the
538 	 * pages requested were isolated. If there were any failures, 0 is
539 	 * returned and CMA will fail.
540 	 */
541 	if (strict && blockpfn < end_pfn)
542 		total_isolated = 0;
543 
544 	/* Update the pageblock-skip if the whole pageblock was scanned */
545 	if (blockpfn == end_pfn)
546 		update_pageblock_skip(cc, valid_page, total_isolated, false);
547 
548 	cc->total_free_scanned += nr_scanned;
549 	if (total_isolated)
550 		count_compact_events(COMPACTISOLATED, total_isolated);
551 	return total_isolated;
552 }
553 
554 /**
555  * isolate_freepages_range() - isolate free pages.
556  * @start_pfn: The first PFN to start isolating.
557  * @end_pfn:   The one-past-last PFN.
558  *
559  * Non-free pages, invalid PFNs, or zone boundaries within the
560  * [start_pfn, end_pfn) range are considered errors, cause function to
561  * undo its actions and return zero.
562  *
563  * Otherwise, function returns one-past-the-last PFN of isolated page
564  * (which may be greater then end_pfn if end fell in a middle of
565  * a free page).
566  */
567 unsigned long
isolate_freepages_range(struct compact_control * cc,unsigned long start_pfn,unsigned long end_pfn)568 isolate_freepages_range(struct compact_control *cc,
569 			unsigned long start_pfn, unsigned long end_pfn)
570 {
571 	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
572 	LIST_HEAD(freelist);
573 
574 	pfn = start_pfn;
575 	block_start_pfn = pageblock_start_pfn(pfn);
576 	if (block_start_pfn < cc->zone->zone_start_pfn)
577 		block_start_pfn = cc->zone->zone_start_pfn;
578 	block_end_pfn = pageblock_end_pfn(pfn);
579 
580 	for (; pfn < end_pfn; pfn += isolated,
581 				block_start_pfn = block_end_pfn,
582 				block_end_pfn += pageblock_nr_pages) {
583 		/* Protect pfn from changing by isolate_freepages_block */
584 		unsigned long isolate_start_pfn = pfn;
585 
586 		block_end_pfn = min(block_end_pfn, end_pfn);
587 
588 		/*
589 		 * pfn could pass the block_end_pfn if isolated freepage
590 		 * is more than pageblock order. In this case, we adjust
591 		 * scanning range to right one.
592 		 */
593 		if (pfn >= block_end_pfn) {
594 			block_start_pfn = pageblock_start_pfn(pfn);
595 			block_end_pfn = pageblock_end_pfn(pfn);
596 			block_end_pfn = min(block_end_pfn, end_pfn);
597 		}
598 
599 		if (!pageblock_pfn_to_page(block_start_pfn,
600 					block_end_pfn, cc->zone))
601 			break;
602 
603 		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
604 						block_end_pfn, &freelist, true);
605 
606 		/*
607 		 * In strict mode, isolate_freepages_block() returns 0 if
608 		 * there are any holes in the block (ie. invalid PFNs or
609 		 * non-free pages).
610 		 */
611 		if (!isolated)
612 			break;
613 
614 		/*
615 		 * If we managed to isolate pages, it is always (1 << n) *
616 		 * pageblock_nr_pages for some non-negative n.  (Max order
617 		 * page may span two pageblocks).
618 		 */
619 	}
620 
621 	/* __isolate_free_page() does not map the pages */
622 	map_pages(&freelist);
623 
624 	if (pfn < end_pfn) {
625 		/* Loop terminated early, cleanup. */
626 		release_freepages(&freelist);
627 		return 0;
628 	}
629 
630 	/* We don't use freelists for anything. */
631 	return pfn;
632 }
633 
634 /* Similar to reclaim, but different enough that they don't share logic */
too_many_isolated(struct zone * zone)635 static bool too_many_isolated(struct zone *zone)
636 {
637 	unsigned long active, inactive, isolated;
638 
639 	inactive = node_page_state(zone->zone_pgdat, NR_INACTIVE_FILE) +
640 			node_page_state(zone->zone_pgdat, NR_INACTIVE_ANON);
641 	active = node_page_state(zone->zone_pgdat, NR_ACTIVE_FILE) +
642 			node_page_state(zone->zone_pgdat, NR_ACTIVE_ANON);
643 	isolated = node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE) +
644 			node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON);
645 
646 	return isolated > (inactive + active) / 2;
647 }
648 
649 /**
650  * isolate_migratepages_block() - isolate all migrate-able pages within
651  *				  a single pageblock
652  * @cc:		Compaction control structure.
653  * @low_pfn:	The first PFN to isolate
654  * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
655  * @isolate_mode: Isolation mode to be used.
656  *
657  * Isolate all pages that can be migrated from the range specified by
658  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
659  * Returns zero if there is a fatal signal pending, otherwise PFN of the
660  * first page that was not scanned (which may be both less, equal to or more
661  * than end_pfn).
662  *
663  * The pages are isolated on cc->migratepages list (not required to be empty),
664  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
665  * is neither read nor updated.
666  */
667 static unsigned long
isolate_migratepages_block(struct compact_control * cc,unsigned long low_pfn,unsigned long end_pfn,isolate_mode_t isolate_mode)668 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
669 			unsigned long end_pfn, isolate_mode_t isolate_mode)
670 {
671 	struct zone *zone = cc->zone;
672 	unsigned long nr_scanned = 0, nr_isolated = 0;
673 	struct lruvec *lruvec;
674 	unsigned long flags = 0;
675 	bool locked = false;
676 	struct page *page = NULL, *valid_page = NULL;
677 	unsigned long start_pfn = low_pfn;
678 	bool skip_on_failure = false;
679 	unsigned long next_skip_pfn = 0;
680 
681 	/*
682 	 * Ensure that there are not too many pages isolated from the LRU
683 	 * list by either parallel reclaimers or compaction. If there are,
684 	 * delay for some time until fewer pages are isolated
685 	 */
686 	while (unlikely(too_many_isolated(zone))) {
687 		/* async migration should just abort */
688 		if (cc->mode == MIGRATE_ASYNC)
689 			return 0;
690 
691 		congestion_wait(BLK_RW_ASYNC, HZ/10);
692 
693 		if (fatal_signal_pending(current))
694 			return 0;
695 	}
696 
697 	if (compact_should_abort(cc))
698 		return 0;
699 
700 	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
701 		skip_on_failure = true;
702 		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
703 	}
704 
705 	/* Time to isolate some pages for migration */
706 	for (; low_pfn < end_pfn; low_pfn++) {
707 
708 		if (skip_on_failure && low_pfn >= next_skip_pfn) {
709 			/*
710 			 * We have isolated all migration candidates in the
711 			 * previous order-aligned block, and did not skip it due
712 			 * to failure. We should migrate the pages now and
713 			 * hopefully succeed compaction.
714 			 */
715 			if (nr_isolated)
716 				break;
717 
718 			/*
719 			 * We failed to isolate in the previous order-aligned
720 			 * block. Set the new boundary to the end of the
721 			 * current block. Note we can't simply increase
722 			 * next_skip_pfn by 1 << order, as low_pfn might have
723 			 * been incremented by a higher number due to skipping
724 			 * a compound or a high-order buddy page in the
725 			 * previous loop iteration.
726 			 */
727 			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
728 		}
729 
730 		/*
731 		 * Periodically drop the lock (if held) regardless of its
732 		 * contention, to give chance to IRQs. Abort async compaction
733 		 * if contended.
734 		 */
735 		if (!(low_pfn % SWAP_CLUSTER_MAX)
736 		    && compact_unlock_should_abort(zone_lru_lock(zone), flags,
737 								&locked, cc))
738 			break;
739 
740 		if (!pfn_valid_within(low_pfn))
741 			goto isolate_fail;
742 		nr_scanned++;
743 
744 		page = pfn_to_page(low_pfn);
745 
746 		if (!valid_page)
747 			valid_page = page;
748 
749 		/*
750 		 * Skip if free. We read page order here without zone lock
751 		 * which is generally unsafe, but the race window is small and
752 		 * the worst thing that can happen is that we skip some
753 		 * potential isolation targets.
754 		 */
755 		if (PageBuddy(page)) {
756 			unsigned long freepage_order = page_order_unsafe(page);
757 
758 			/*
759 			 * Without lock, we cannot be sure that what we got is
760 			 * a valid page order. Consider only values in the
761 			 * valid order range to prevent low_pfn overflow.
762 			 */
763 			if (freepage_order > 0 && freepage_order < MAX_ORDER)
764 				low_pfn += (1UL << freepage_order) - 1;
765 			continue;
766 		}
767 
768 		/*
769 		 * Regardless of being on LRU, compound pages such as THP and
770 		 * hugetlbfs are not to be compacted. We can potentially save
771 		 * a lot of iterations if we skip them at once. The check is
772 		 * racy, but we can consider only valid values and the only
773 		 * danger is skipping too much.
774 		 */
775 		if (PageCompound(page)) {
776 			unsigned int comp_order = compound_order(page);
777 
778 			if (likely(comp_order < MAX_ORDER))
779 				low_pfn += (1UL << comp_order) - 1;
780 
781 			goto isolate_fail;
782 		}
783 
784 		/*
785 		 * Check may be lockless but that's ok as we recheck later.
786 		 * It's possible to migrate LRU and non-lru movable pages.
787 		 * Skip any other type of page
788 		 */
789 		if (!PageLRU(page)) {
790 			/*
791 			 * __PageMovable can return false positive so we need
792 			 * to verify it under page_lock.
793 			 */
794 			if (unlikely(__PageMovable(page)) &&
795 					!PageIsolated(page)) {
796 				if (locked) {
797 					spin_unlock_irqrestore(zone_lru_lock(zone),
798 									flags);
799 					locked = false;
800 				}
801 
802 				if (!isolate_movable_page(page, isolate_mode))
803 					goto isolate_success;
804 			}
805 
806 			goto isolate_fail;
807 		}
808 
809 		/*
810 		 * Migration will fail if an anonymous page is pinned in memory,
811 		 * so avoid taking lru_lock and isolating it unnecessarily in an
812 		 * admittedly racy check.
813 		 */
814 		if (!page_mapping(page) &&
815 		    page_count(page) > page_mapcount(page))
816 			goto isolate_fail;
817 
818 		/*
819 		 * Only allow to migrate anonymous pages in GFP_NOFS context
820 		 * because those do not depend on fs locks.
821 		 */
822 		if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
823 			goto isolate_fail;
824 
825 		/* If we already hold the lock, we can skip some rechecking */
826 		if (!locked) {
827 			locked = compact_trylock_irqsave(zone_lru_lock(zone),
828 								&flags, cc);
829 			if (!locked)
830 				break;
831 
832 			/* Recheck PageLRU and PageCompound under lock */
833 			if (!PageLRU(page))
834 				goto isolate_fail;
835 
836 			/*
837 			 * Page become compound since the non-locked check,
838 			 * and it's on LRU. It can only be a THP so the order
839 			 * is safe to read and it's 0 for tail pages.
840 			 */
841 			if (unlikely(PageCompound(page))) {
842 				low_pfn += (1UL << compound_order(page)) - 1;
843 				goto isolate_fail;
844 			}
845 		}
846 
847 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
848 
849 		/* Try isolate the page */
850 		if (__isolate_lru_page(page, isolate_mode) != 0)
851 			goto isolate_fail;
852 
853 		VM_BUG_ON_PAGE(PageCompound(page), page);
854 
855 		/* Successfully isolated */
856 		del_page_from_lru_list(page, lruvec, page_lru(page));
857 		inc_node_page_state(page,
858 				NR_ISOLATED_ANON + page_is_file_cache(page));
859 
860 isolate_success:
861 		list_add(&page->lru, &cc->migratepages);
862 		cc->nr_migratepages++;
863 		nr_isolated++;
864 
865 		/*
866 		 * Record where we could have freed pages by migration and not
867 		 * yet flushed them to buddy allocator.
868 		 * - this is the lowest page that was isolated and likely be
869 		 * then freed by migration.
870 		 */
871 		if (!cc->last_migrated_pfn)
872 			cc->last_migrated_pfn = low_pfn;
873 
874 		/* Avoid isolating too much */
875 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
876 			++low_pfn;
877 			break;
878 		}
879 
880 		continue;
881 isolate_fail:
882 		if (!skip_on_failure)
883 			continue;
884 
885 		/*
886 		 * We have isolated some pages, but then failed. Release them
887 		 * instead of migrating, as we cannot form the cc->order buddy
888 		 * page anyway.
889 		 */
890 		if (nr_isolated) {
891 			if (locked) {
892 				spin_unlock_irqrestore(zone_lru_lock(zone), flags);
893 				locked = false;
894 			}
895 			putback_movable_pages(&cc->migratepages);
896 			cc->nr_migratepages = 0;
897 			cc->last_migrated_pfn = 0;
898 			nr_isolated = 0;
899 		}
900 
901 		if (low_pfn < next_skip_pfn) {
902 			low_pfn = next_skip_pfn - 1;
903 			/*
904 			 * The check near the loop beginning would have updated
905 			 * next_skip_pfn too, but this is a bit simpler.
906 			 */
907 			next_skip_pfn += 1UL << cc->order;
908 		}
909 	}
910 
911 	/*
912 	 * The PageBuddy() check could have potentially brought us outside
913 	 * the range to be scanned.
914 	 */
915 	if (unlikely(low_pfn > end_pfn))
916 		low_pfn = end_pfn;
917 
918 	if (locked)
919 		spin_unlock_irqrestore(zone_lru_lock(zone), flags);
920 
921 	/*
922 	 * Update the pageblock-skip information and cached scanner pfn,
923 	 * if the whole pageblock was scanned without isolating any page.
924 	 */
925 	if (low_pfn == end_pfn)
926 		update_pageblock_skip(cc, valid_page, nr_isolated, true);
927 
928 	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
929 						nr_scanned, nr_isolated);
930 
931 	cc->total_migrate_scanned += nr_scanned;
932 	if (nr_isolated)
933 		count_compact_events(COMPACTISOLATED, nr_isolated);
934 
935 	return low_pfn;
936 }
937 
938 /**
939  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
940  * @cc:        Compaction control structure.
941  * @start_pfn: The first PFN to start isolating.
942  * @end_pfn:   The one-past-last PFN.
943  *
944  * Returns zero if isolation fails fatally due to e.g. pending signal.
945  * Otherwise, function returns one-past-the-last PFN of isolated page
946  * (which may be greater than end_pfn if end fell in a middle of a THP page).
947  */
948 unsigned long
isolate_migratepages_range(struct compact_control * cc,unsigned long start_pfn,unsigned long end_pfn)949 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
950 							unsigned long end_pfn)
951 {
952 	unsigned long pfn, block_start_pfn, block_end_pfn;
953 
954 	/* Scan block by block. First and last block may be incomplete */
955 	pfn = start_pfn;
956 	block_start_pfn = pageblock_start_pfn(pfn);
957 	if (block_start_pfn < cc->zone->zone_start_pfn)
958 		block_start_pfn = cc->zone->zone_start_pfn;
959 	block_end_pfn = pageblock_end_pfn(pfn);
960 
961 	for (; pfn < end_pfn; pfn = block_end_pfn,
962 				block_start_pfn = block_end_pfn,
963 				block_end_pfn += pageblock_nr_pages) {
964 
965 		block_end_pfn = min(block_end_pfn, end_pfn);
966 
967 		if (!pageblock_pfn_to_page(block_start_pfn,
968 					block_end_pfn, cc->zone))
969 			continue;
970 
971 		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
972 							ISOLATE_UNEVICTABLE);
973 
974 		if (!pfn)
975 			break;
976 
977 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
978 			break;
979 	}
980 
981 	return pfn;
982 }
983 
984 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
985 #ifdef CONFIG_COMPACTION
986 
suitable_migration_source(struct compact_control * cc,struct page * page)987 static bool suitable_migration_source(struct compact_control *cc,
988 							struct page *page)
989 {
990 	int block_mt;
991 
992 	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
993 		return true;
994 
995 	block_mt = get_pageblock_migratetype(page);
996 
997 	if (cc->migratetype == MIGRATE_MOVABLE)
998 		return is_migrate_movable(block_mt);
999 	else
1000 		return block_mt == cc->migratetype;
1001 }
1002 
1003 /* Returns true if the page is within a block suitable for migration to */
suitable_migration_target(struct compact_control * cc,struct page * page)1004 static bool suitable_migration_target(struct compact_control *cc,
1005 							struct page *page)
1006 {
1007 	/* If the page is a large free page, then disallow migration */
1008 	if (PageBuddy(page)) {
1009 		/*
1010 		 * We are checking page_order without zone->lock taken. But
1011 		 * the only small danger is that we skip a potentially suitable
1012 		 * pageblock, so it's not worth to check order for valid range.
1013 		 */
1014 		if (page_order_unsafe(page) >= pageblock_order)
1015 			return false;
1016 	}
1017 
1018 	if (cc->ignore_block_suitable)
1019 		return true;
1020 
1021 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1022 	if (is_migrate_movable(get_pageblock_migratetype(page)))
1023 		return true;
1024 
1025 	/* Otherwise skip the block */
1026 	return false;
1027 }
1028 
1029 /*
1030  * Test whether the free scanner has reached the same or lower pageblock than
1031  * the migration scanner, and compaction should thus terminate.
1032  */
compact_scanners_met(struct compact_control * cc)1033 static inline bool compact_scanners_met(struct compact_control *cc)
1034 {
1035 	return (cc->free_pfn >> pageblock_order)
1036 		<= (cc->migrate_pfn >> pageblock_order);
1037 }
1038 
1039 /*
1040  * Based on information in the current compact_control, find blocks
1041  * suitable for isolating free pages from and then isolate them.
1042  */
isolate_freepages(struct compact_control * cc)1043 static void isolate_freepages(struct compact_control *cc)
1044 {
1045 	struct zone *zone = cc->zone;
1046 	struct page *page;
1047 	unsigned long block_start_pfn;	/* start of current pageblock */
1048 	unsigned long isolate_start_pfn; /* exact pfn we start at */
1049 	unsigned long block_end_pfn;	/* end of current pageblock */
1050 	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1051 	struct list_head *freelist = &cc->freepages;
1052 
1053 	/*
1054 	 * Initialise the free scanner. The starting point is where we last
1055 	 * successfully isolated from, zone-cached value, or the end of the
1056 	 * zone when isolating for the first time. For looping we also need
1057 	 * this pfn aligned down to the pageblock boundary, because we do
1058 	 * block_start_pfn -= pageblock_nr_pages in the for loop.
1059 	 * For ending point, take care when isolating in last pageblock of a
1060 	 * a zone which ends in the middle of a pageblock.
1061 	 * The low boundary is the end of the pageblock the migration scanner
1062 	 * is using.
1063 	 */
1064 	isolate_start_pfn = cc->free_pfn;
1065 	block_start_pfn = pageblock_start_pfn(cc->free_pfn);
1066 	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1067 						zone_end_pfn(zone));
1068 	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1069 
1070 	/*
1071 	 * Isolate free pages until enough are available to migrate the
1072 	 * pages on cc->migratepages. We stop searching if the migrate
1073 	 * and free page scanners meet or enough free pages are isolated.
1074 	 */
1075 	for (; block_start_pfn >= low_pfn;
1076 				block_end_pfn = block_start_pfn,
1077 				block_start_pfn -= pageblock_nr_pages,
1078 				isolate_start_pfn = block_start_pfn) {
1079 		/*
1080 		 * This can iterate a massively long zone without finding any
1081 		 * suitable migration targets, so periodically check if we need
1082 		 * to schedule, or even abort async compaction.
1083 		 */
1084 		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1085 						&& compact_should_abort(cc))
1086 			break;
1087 
1088 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1089 									zone);
1090 		if (!page)
1091 			continue;
1092 
1093 		/* Check the block is suitable for migration */
1094 		if (!suitable_migration_target(cc, page))
1095 			continue;
1096 
1097 		/* If isolation recently failed, do not retry */
1098 		if (!isolation_suitable(cc, page))
1099 			continue;
1100 
1101 		/* Found a block suitable for isolating free pages from. */
1102 		isolate_freepages_block(cc, &isolate_start_pfn, block_end_pfn,
1103 					freelist, false);
1104 
1105 		/*
1106 		 * If we isolated enough freepages, or aborted due to lock
1107 		 * contention, terminate.
1108 		 */
1109 		if ((cc->nr_freepages >= cc->nr_migratepages)
1110 							|| cc->contended) {
1111 			if (isolate_start_pfn >= block_end_pfn) {
1112 				/*
1113 				 * Restart at previous pageblock if more
1114 				 * freepages can be isolated next time.
1115 				 */
1116 				isolate_start_pfn =
1117 					block_start_pfn - pageblock_nr_pages;
1118 			}
1119 			break;
1120 		} else if (isolate_start_pfn < block_end_pfn) {
1121 			/*
1122 			 * If isolation failed early, do not continue
1123 			 * needlessly.
1124 			 */
1125 			break;
1126 		}
1127 	}
1128 
1129 	/* __isolate_free_page() does not map the pages */
1130 	map_pages(freelist);
1131 
1132 	/*
1133 	 * Record where the free scanner will restart next time. Either we
1134 	 * broke from the loop and set isolate_start_pfn based on the last
1135 	 * call to isolate_freepages_block(), or we met the migration scanner
1136 	 * and the loop terminated due to isolate_start_pfn < low_pfn
1137 	 */
1138 	cc->free_pfn = isolate_start_pfn;
1139 }
1140 
1141 /*
1142  * This is a migrate-callback that "allocates" freepages by taking pages
1143  * from the isolated freelists in the block we are migrating to.
1144  */
compaction_alloc(struct page * migratepage,unsigned long data,int ** result)1145 static struct page *compaction_alloc(struct page *migratepage,
1146 					unsigned long data,
1147 					int **result)
1148 {
1149 	struct compact_control *cc = (struct compact_control *)data;
1150 	struct page *freepage;
1151 
1152 	/*
1153 	 * Isolate free pages if necessary, and if we are not aborting due to
1154 	 * contention.
1155 	 */
1156 	if (list_empty(&cc->freepages)) {
1157 		if (!cc->contended)
1158 			isolate_freepages(cc);
1159 
1160 		if (list_empty(&cc->freepages))
1161 			return NULL;
1162 	}
1163 
1164 	freepage = list_entry(cc->freepages.next, struct page, lru);
1165 	list_del(&freepage->lru);
1166 	cc->nr_freepages--;
1167 
1168 	return freepage;
1169 }
1170 
1171 /*
1172  * This is a migrate-callback that "frees" freepages back to the isolated
1173  * freelist.  All pages on the freelist are from the same zone, so there is no
1174  * special handling needed for NUMA.
1175  */
compaction_free(struct page * page,unsigned long data)1176 static void compaction_free(struct page *page, unsigned long data)
1177 {
1178 	struct compact_control *cc = (struct compact_control *)data;
1179 
1180 	list_add(&page->lru, &cc->freepages);
1181 	cc->nr_freepages++;
1182 }
1183 
1184 /* possible outcome of isolate_migratepages */
1185 typedef enum {
1186 	ISOLATE_ABORT,		/* Abort compaction now */
1187 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1188 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1189 } isolate_migrate_t;
1190 
1191 /*
1192  * Allow userspace to control policy on scanning the unevictable LRU for
1193  * compactable pages.
1194  */
1195 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1196 
1197 /*
1198  * Isolate all pages that can be migrated from the first suitable block,
1199  * starting at the block pointed to by the migrate scanner pfn within
1200  * compact_control.
1201  */
isolate_migratepages(struct zone * zone,struct compact_control * cc)1202 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1203 					struct compact_control *cc)
1204 {
1205 	unsigned long block_start_pfn;
1206 	unsigned long block_end_pfn;
1207 	unsigned long low_pfn;
1208 	struct page *page;
1209 	const isolate_mode_t isolate_mode =
1210 		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1211 		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1212 
1213 	/*
1214 	 * Start at where we last stopped, or beginning of the zone as
1215 	 * initialized by compact_zone()
1216 	 */
1217 	low_pfn = cc->migrate_pfn;
1218 	block_start_pfn = pageblock_start_pfn(low_pfn);
1219 	if (block_start_pfn < zone->zone_start_pfn)
1220 		block_start_pfn = zone->zone_start_pfn;
1221 
1222 	/* Only scan within a pageblock boundary */
1223 	block_end_pfn = pageblock_end_pfn(low_pfn);
1224 
1225 	/*
1226 	 * Iterate over whole pageblocks until we find the first suitable.
1227 	 * Do not cross the free scanner.
1228 	 */
1229 	for (; block_end_pfn <= cc->free_pfn;
1230 			low_pfn = block_end_pfn,
1231 			block_start_pfn = block_end_pfn,
1232 			block_end_pfn += pageblock_nr_pages) {
1233 
1234 		/*
1235 		 * This can potentially iterate a massively long zone with
1236 		 * many pageblocks unsuitable, so periodically check if we
1237 		 * need to schedule, or even abort async compaction.
1238 		 */
1239 		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1240 						&& compact_should_abort(cc))
1241 			break;
1242 
1243 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1244 									zone);
1245 		if (!page)
1246 			continue;
1247 
1248 		/* If isolation recently failed, do not retry */
1249 		if (!isolation_suitable(cc, page))
1250 			continue;
1251 
1252 		/*
1253 		 * For async compaction, also only scan in MOVABLE blocks.
1254 		 * Async compaction is optimistic to see if the minimum amount
1255 		 * of work satisfies the allocation.
1256 		 */
1257 		if (!suitable_migration_source(cc, page))
1258 			continue;
1259 
1260 		/* Perform the isolation */
1261 		low_pfn = isolate_migratepages_block(cc, low_pfn,
1262 						block_end_pfn, isolate_mode);
1263 
1264 		if (!low_pfn || cc->contended)
1265 			return ISOLATE_ABORT;
1266 
1267 		/*
1268 		 * Either we isolated something and proceed with migration. Or
1269 		 * we failed and compact_zone should decide if we should
1270 		 * continue or not.
1271 		 */
1272 		break;
1273 	}
1274 
1275 	/* Record where migration scanner will be restarted. */
1276 	cc->migrate_pfn = low_pfn;
1277 
1278 	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1279 }
1280 
1281 /*
1282  * order == -1 is expected when compacting via
1283  * /proc/sys/vm/compact_memory
1284  */
is_via_compact_memory(int order)1285 static inline bool is_via_compact_memory(int order)
1286 {
1287 	return order == -1;
1288 }
1289 
__compact_finished(struct zone * zone,struct compact_control * cc)1290 static enum compact_result __compact_finished(struct zone *zone,
1291 						struct compact_control *cc)
1292 {
1293 	unsigned int order;
1294 	const int migratetype = cc->migratetype;
1295 
1296 	if (cc->contended || fatal_signal_pending(current))
1297 		return COMPACT_CONTENDED;
1298 
1299 	/* Compaction run completes if the migrate and free scanner meet */
1300 	if (compact_scanners_met(cc)) {
1301 		/* Let the next compaction start anew. */
1302 		reset_cached_positions(zone);
1303 
1304 		/*
1305 		 * Mark that the PG_migrate_skip information should be cleared
1306 		 * by kswapd when it goes to sleep. kcompactd does not set the
1307 		 * flag itself as the decision to be clear should be directly
1308 		 * based on an allocation request.
1309 		 */
1310 		if (cc->direct_compaction)
1311 			zone->compact_blockskip_flush = true;
1312 
1313 		if (cc->whole_zone)
1314 			return COMPACT_COMPLETE;
1315 		else
1316 			return COMPACT_PARTIAL_SKIPPED;
1317 	}
1318 
1319 	if (is_via_compact_memory(cc->order))
1320 		return COMPACT_CONTINUE;
1321 
1322 	if (cc->finishing_block) {
1323 		/*
1324 		 * We have finished the pageblock, but better check again that
1325 		 * we really succeeded.
1326 		 */
1327 		if (IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
1328 			cc->finishing_block = false;
1329 		else
1330 			return COMPACT_CONTINUE;
1331 	}
1332 
1333 	/* Direct compactor: Is a suitable page free? */
1334 	for (order = cc->order; order < MAX_ORDER; order++) {
1335 		struct free_area *area = &zone->free_area[order];
1336 		bool can_steal;
1337 
1338 		/* Job done if page is free of the right migratetype */
1339 		if (!list_empty(&area->free_list[migratetype]))
1340 			return COMPACT_SUCCESS;
1341 
1342 #ifdef CONFIG_CMA
1343 		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1344 		if (migratetype == MIGRATE_MOVABLE &&
1345 			!list_empty(&area->free_list[MIGRATE_CMA]))
1346 			return COMPACT_SUCCESS;
1347 #endif
1348 		/*
1349 		 * Job done if allocation would steal freepages from
1350 		 * other migratetype buddy lists.
1351 		 */
1352 		if (find_suitable_fallback(area, order, migratetype,
1353 						true, &can_steal) != -1) {
1354 
1355 			/* movable pages are OK in any pageblock */
1356 			if (migratetype == MIGRATE_MOVABLE)
1357 				return COMPACT_SUCCESS;
1358 
1359 			/*
1360 			 * We are stealing for a non-movable allocation. Make
1361 			 * sure we finish compacting the current pageblock
1362 			 * first so it is as free as possible and we won't
1363 			 * have to steal another one soon. This only applies
1364 			 * to sync compaction, as async compaction operates
1365 			 * on pageblocks of the same migratetype.
1366 			 */
1367 			if (cc->mode == MIGRATE_ASYNC ||
1368 					IS_ALIGNED(cc->migrate_pfn,
1369 							pageblock_nr_pages)) {
1370 				return COMPACT_SUCCESS;
1371 			}
1372 
1373 			cc->finishing_block = true;
1374 			return COMPACT_CONTINUE;
1375 		}
1376 	}
1377 
1378 	return COMPACT_NO_SUITABLE_PAGE;
1379 }
1380 
compact_finished(struct zone * zone,struct compact_control * cc)1381 static enum compact_result compact_finished(struct zone *zone,
1382 			struct compact_control *cc)
1383 {
1384 	int ret;
1385 
1386 	ret = __compact_finished(zone, cc);
1387 	trace_mm_compaction_finished(zone, cc->order, ret);
1388 	if (ret == COMPACT_NO_SUITABLE_PAGE)
1389 		ret = COMPACT_CONTINUE;
1390 
1391 	return ret;
1392 }
1393 
1394 /*
1395  * compaction_suitable: Is this suitable to run compaction on this zone now?
1396  * Returns
1397  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1398  *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
1399  *   COMPACT_CONTINUE - If compaction should run now
1400  */
__compaction_suitable(struct zone * zone,int order,unsigned int alloc_flags,int classzone_idx,unsigned long wmark_target)1401 static enum compact_result __compaction_suitable(struct zone *zone, int order,
1402 					unsigned int alloc_flags,
1403 					int classzone_idx,
1404 					unsigned long wmark_target)
1405 {
1406 	unsigned long watermark;
1407 
1408 	if (is_via_compact_memory(order))
1409 		return COMPACT_CONTINUE;
1410 
1411 	watermark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1412 	/*
1413 	 * If watermarks for high-order allocation are already met, there
1414 	 * should be no need for compaction at all.
1415 	 */
1416 	if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1417 								alloc_flags))
1418 		return COMPACT_SUCCESS;
1419 
1420 	/*
1421 	 * Watermarks for order-0 must be met for compaction to be able to
1422 	 * isolate free pages for migration targets. This means that the
1423 	 * watermark and alloc_flags have to match, or be more pessimistic than
1424 	 * the check in __isolate_free_page(). We don't use the direct
1425 	 * compactor's alloc_flags, as they are not relevant for freepage
1426 	 * isolation. We however do use the direct compactor's classzone_idx to
1427 	 * skip over zones where lowmem reserves would prevent allocation even
1428 	 * if compaction succeeds.
1429 	 * For costly orders, we require low watermark instead of min for
1430 	 * compaction to proceed to increase its chances.
1431 	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
1432 	 * suitable migration targets
1433 	 */
1434 	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
1435 				low_wmark_pages(zone) : min_wmark_pages(zone);
1436 	watermark += compact_gap(order);
1437 	if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
1438 						ALLOC_CMA, wmark_target))
1439 		return COMPACT_SKIPPED;
1440 
1441 	return COMPACT_CONTINUE;
1442 }
1443 
compaction_suitable(struct zone * zone,int order,unsigned int alloc_flags,int classzone_idx)1444 enum compact_result compaction_suitable(struct zone *zone, int order,
1445 					unsigned int alloc_flags,
1446 					int classzone_idx)
1447 {
1448 	enum compact_result ret;
1449 	int fragindex;
1450 
1451 	ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
1452 				    zone_page_state(zone, NR_FREE_PAGES));
1453 	/*
1454 	 * fragmentation index determines if allocation failures are due to
1455 	 * low memory or external fragmentation
1456 	 *
1457 	 * index of -1000 would imply allocations might succeed depending on
1458 	 * watermarks, but we already failed the high-order watermark check
1459 	 * index towards 0 implies failure is due to lack of memory
1460 	 * index towards 1000 implies failure is due to fragmentation
1461 	 *
1462 	 * Only compact if a failure would be due to fragmentation. Also
1463 	 * ignore fragindex for non-costly orders where the alternative to
1464 	 * a successful reclaim/compaction is OOM. Fragindex and the
1465 	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
1466 	 * excessive compaction for costly orders, but it should not be at the
1467 	 * expense of system stability.
1468 	 */
1469 	if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
1470 		fragindex = fragmentation_index(zone, order);
1471 		if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1472 			ret = COMPACT_NOT_SUITABLE_ZONE;
1473 	}
1474 
1475 	trace_mm_compaction_suitable(zone, order, ret);
1476 	if (ret == COMPACT_NOT_SUITABLE_ZONE)
1477 		ret = COMPACT_SKIPPED;
1478 
1479 	return ret;
1480 }
1481 
compaction_zonelist_suitable(struct alloc_context * ac,int order,int alloc_flags)1482 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
1483 		int alloc_flags)
1484 {
1485 	struct zone *zone;
1486 	struct zoneref *z;
1487 
1488 	/*
1489 	 * Make sure at least one zone would pass __compaction_suitable if we continue
1490 	 * retrying the reclaim.
1491 	 */
1492 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1493 					ac->nodemask) {
1494 		unsigned long available;
1495 		enum compact_result compact_result;
1496 
1497 		/*
1498 		 * Do not consider all the reclaimable memory because we do not
1499 		 * want to trash just for a single high order allocation which
1500 		 * is even not guaranteed to appear even if __compaction_suitable
1501 		 * is happy about the watermark check.
1502 		 */
1503 		available = zone_reclaimable_pages(zone) / order;
1504 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
1505 		compact_result = __compaction_suitable(zone, order, alloc_flags,
1506 				ac_classzone_idx(ac), available);
1507 		if (compact_result != COMPACT_SKIPPED)
1508 			return true;
1509 	}
1510 
1511 	return false;
1512 }
1513 
compact_zone(struct zone * zone,struct compact_control * cc)1514 static enum compact_result compact_zone(struct zone *zone, struct compact_control *cc)
1515 {
1516 	enum compact_result ret;
1517 	unsigned long start_pfn = zone->zone_start_pfn;
1518 	unsigned long end_pfn = zone_end_pfn(zone);
1519 	const bool sync = cc->mode != MIGRATE_ASYNC;
1520 
1521 	/*
1522 	 * These counters track activities during zone compaction.  Initialize
1523 	 * them before compacting a new zone.
1524 	 */
1525 	cc->total_migrate_scanned = 0;
1526 	cc->total_free_scanned = 0;
1527 	cc->nr_migratepages = 0;
1528 	cc->nr_freepages = 0;
1529 	INIT_LIST_HEAD(&cc->freepages);
1530 	INIT_LIST_HEAD(&cc->migratepages);
1531 
1532 	cc->migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1533 	ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1534 							cc->classzone_idx);
1535 	/* Compaction is likely to fail */
1536 	if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
1537 		return ret;
1538 
1539 	/* huh, compaction_suitable is returning something unexpected */
1540 	VM_BUG_ON(ret != COMPACT_CONTINUE);
1541 
1542 	/*
1543 	 * Clear pageblock skip if there were failures recently and compaction
1544 	 * is about to be retried after being deferred.
1545 	 */
1546 	if (compaction_restarting(zone, cc->order))
1547 		__reset_isolation_suitable(zone);
1548 
1549 	/*
1550 	 * Setup to move all movable pages to the end of the zone. Used cached
1551 	 * information on where the scanners should start (unless we explicitly
1552 	 * want to compact the whole zone), but check that it is initialised
1553 	 * by ensuring the values are within zone boundaries.
1554 	 */
1555 	if (cc->whole_zone) {
1556 		cc->migrate_pfn = start_pfn;
1557 		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1558 	} else {
1559 		cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1560 		cc->free_pfn = zone->compact_cached_free_pfn;
1561 		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
1562 			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1563 			zone->compact_cached_free_pfn = cc->free_pfn;
1564 		}
1565 		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
1566 			cc->migrate_pfn = start_pfn;
1567 			zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1568 			zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1569 		}
1570 
1571 		if (cc->migrate_pfn == start_pfn)
1572 			cc->whole_zone = true;
1573 	}
1574 
1575 	cc->last_migrated_pfn = 0;
1576 
1577 	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1578 				cc->free_pfn, end_pfn, sync);
1579 
1580 	migrate_prep_local();
1581 
1582 	while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
1583 		int err;
1584 
1585 		switch (isolate_migratepages(zone, cc)) {
1586 		case ISOLATE_ABORT:
1587 			ret = COMPACT_CONTENDED;
1588 			putback_movable_pages(&cc->migratepages);
1589 			cc->nr_migratepages = 0;
1590 			goto out;
1591 		case ISOLATE_NONE:
1592 			/*
1593 			 * We haven't isolated and migrated anything, but
1594 			 * there might still be unflushed migrations from
1595 			 * previous cc->order aligned block.
1596 			 */
1597 			goto check_drain;
1598 		case ISOLATE_SUCCESS:
1599 			;
1600 		}
1601 
1602 		err = migrate_pages(&cc->migratepages, compaction_alloc,
1603 				compaction_free, (unsigned long)cc, cc->mode,
1604 				MR_COMPACTION);
1605 
1606 		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1607 							&cc->migratepages);
1608 
1609 		/* All pages were either migrated or will be released */
1610 		cc->nr_migratepages = 0;
1611 		if (err) {
1612 			putback_movable_pages(&cc->migratepages);
1613 			/*
1614 			 * migrate_pages() may return -ENOMEM when scanners meet
1615 			 * and we want compact_finished() to detect it
1616 			 */
1617 			if (err == -ENOMEM && !compact_scanners_met(cc)) {
1618 				ret = COMPACT_CONTENDED;
1619 				goto out;
1620 			}
1621 			/*
1622 			 * We failed to migrate at least one page in the current
1623 			 * order-aligned block, so skip the rest of it.
1624 			 */
1625 			if (cc->direct_compaction &&
1626 						(cc->mode == MIGRATE_ASYNC)) {
1627 				cc->migrate_pfn = block_end_pfn(
1628 						cc->migrate_pfn - 1, cc->order);
1629 				/* Draining pcplists is useless in this case */
1630 				cc->last_migrated_pfn = 0;
1631 
1632 			}
1633 		}
1634 
1635 check_drain:
1636 		/*
1637 		 * Has the migration scanner moved away from the previous
1638 		 * cc->order aligned block where we migrated from? If yes,
1639 		 * flush the pages that were freed, so that they can merge and
1640 		 * compact_finished() can detect immediately if allocation
1641 		 * would succeed.
1642 		 */
1643 		if (cc->order > 0 && cc->last_migrated_pfn) {
1644 			int cpu;
1645 			unsigned long current_block_start =
1646 				block_start_pfn(cc->migrate_pfn, cc->order);
1647 
1648 			if (cc->last_migrated_pfn < current_block_start) {
1649 				cpu = get_cpu();
1650 				lru_add_drain_cpu(cpu);
1651 				drain_local_pages(zone);
1652 				put_cpu();
1653 				/* No more flushing until we migrate again */
1654 				cc->last_migrated_pfn = 0;
1655 			}
1656 		}
1657 
1658 	}
1659 
1660 out:
1661 	/*
1662 	 * Release free pages and update where the free scanner should restart,
1663 	 * so we don't leave any returned pages behind in the next attempt.
1664 	 */
1665 	if (cc->nr_freepages > 0) {
1666 		unsigned long free_pfn = release_freepages(&cc->freepages);
1667 
1668 		cc->nr_freepages = 0;
1669 		VM_BUG_ON(free_pfn == 0);
1670 		/* The cached pfn is always the first in a pageblock */
1671 		free_pfn = pageblock_start_pfn(free_pfn);
1672 		/*
1673 		 * Only go back, not forward. The cached pfn might have been
1674 		 * already reset to zone end in compact_finished()
1675 		 */
1676 		if (free_pfn > zone->compact_cached_free_pfn)
1677 			zone->compact_cached_free_pfn = free_pfn;
1678 	}
1679 
1680 	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
1681 	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
1682 
1683 	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1684 				cc->free_pfn, end_pfn, sync, ret);
1685 
1686 	return ret;
1687 }
1688 
compact_zone_order(struct zone * zone,int order,gfp_t gfp_mask,enum compact_priority prio,unsigned int alloc_flags,int classzone_idx)1689 static enum compact_result compact_zone_order(struct zone *zone, int order,
1690 		gfp_t gfp_mask, enum compact_priority prio,
1691 		unsigned int alloc_flags, int classzone_idx)
1692 {
1693 	enum compact_result ret;
1694 	struct compact_control cc = {
1695 		.order = order,
1696 		.gfp_mask = gfp_mask,
1697 		.zone = zone,
1698 		.mode = (prio == COMPACT_PRIO_ASYNC) ?
1699 					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
1700 		.alloc_flags = alloc_flags,
1701 		.classzone_idx = classzone_idx,
1702 		.direct_compaction = true,
1703 		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
1704 		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
1705 		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
1706 	};
1707 
1708 	ret = compact_zone(zone, &cc);
1709 
1710 	VM_BUG_ON(!list_empty(&cc.freepages));
1711 	VM_BUG_ON(!list_empty(&cc.migratepages));
1712 
1713 	return ret;
1714 }
1715 
1716 int sysctl_extfrag_threshold = 500;
1717 
1718 /**
1719  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1720  * @gfp_mask: The GFP mask of the current allocation
1721  * @order: The order of the current allocation
1722  * @alloc_flags: The allocation flags of the current allocation
1723  * @ac: The context of current allocation
1724  * @mode: The migration mode for async, sync light, or sync migration
1725  *
1726  * This is the main entry point for direct page compaction.
1727  */
try_to_compact_pages(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio)1728 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1729 		unsigned int alloc_flags, const struct alloc_context *ac,
1730 		enum compact_priority prio)
1731 {
1732 	int may_perform_io = gfp_mask & __GFP_IO;
1733 	struct zoneref *z;
1734 	struct zone *zone;
1735 	enum compact_result rc = COMPACT_SKIPPED;
1736 
1737 	/*
1738 	 * Check if the GFP flags allow compaction - GFP_NOIO is really
1739 	 * tricky context because the migration might require IO
1740 	 */
1741 	if (!may_perform_io)
1742 		return COMPACT_SKIPPED;
1743 
1744 	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
1745 
1746 	/* Compact each zone in the list */
1747 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1748 								ac->nodemask) {
1749 		enum compact_result status;
1750 
1751 		if (prio > MIN_COMPACT_PRIORITY
1752 					&& compaction_deferred(zone, order)) {
1753 			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
1754 			continue;
1755 		}
1756 
1757 		status = compact_zone_order(zone, order, gfp_mask, prio,
1758 					alloc_flags, ac_classzone_idx(ac));
1759 		rc = max(status, rc);
1760 
1761 		/* The allocation should succeed, stop compacting */
1762 		if (status == COMPACT_SUCCESS) {
1763 			/*
1764 			 * We think the allocation will succeed in this zone,
1765 			 * but it is not certain, hence the false. The caller
1766 			 * will repeat this with true if allocation indeed
1767 			 * succeeds in this zone.
1768 			 */
1769 			compaction_defer_reset(zone, order, false);
1770 
1771 			break;
1772 		}
1773 
1774 		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
1775 					status == COMPACT_PARTIAL_SKIPPED))
1776 			/*
1777 			 * We think that allocation won't succeed in this zone
1778 			 * so we defer compaction there. If it ends up
1779 			 * succeeding after all, it will be reset.
1780 			 */
1781 			defer_compaction(zone, order);
1782 
1783 		/*
1784 		 * We might have stopped compacting due to need_resched() in
1785 		 * async compaction, or due to a fatal signal detected. In that
1786 		 * case do not try further zones
1787 		 */
1788 		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
1789 					|| fatal_signal_pending(current))
1790 			break;
1791 	}
1792 
1793 	return rc;
1794 }
1795 
1796 
1797 /* Compact all zones within a node */
compact_node(int nid)1798 static void compact_node(int nid)
1799 {
1800 	pg_data_t *pgdat = NODE_DATA(nid);
1801 	int zoneid;
1802 	struct zone *zone;
1803 	struct compact_control cc = {
1804 		.order = -1,
1805 		.mode = MIGRATE_SYNC,
1806 		.ignore_skip_hint = true,
1807 		.whole_zone = true,
1808 		.gfp_mask = GFP_KERNEL,
1809 	};
1810 
1811 
1812 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1813 
1814 		zone = &pgdat->node_zones[zoneid];
1815 		if (!populated_zone(zone))
1816 			continue;
1817 
1818 		cc.zone = zone;
1819 
1820 		compact_zone(zone, &cc);
1821 
1822 		VM_BUG_ON(!list_empty(&cc.freepages));
1823 		VM_BUG_ON(!list_empty(&cc.migratepages));
1824 	}
1825 }
1826 
1827 /* Compact all nodes in the system */
compact_nodes(void)1828 static void compact_nodes(void)
1829 {
1830 	int nid;
1831 
1832 	/* Flush pending updates to the LRU lists */
1833 	lru_add_drain_all();
1834 
1835 	for_each_online_node(nid)
1836 		compact_node(nid);
1837 }
1838 
1839 /* The written value is actually unused, all memory is compacted */
1840 int sysctl_compact_memory;
1841 
1842 /*
1843  * This is the entry point for compacting all nodes via
1844  * /proc/sys/vm/compact_memory
1845  */
sysctl_compaction_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)1846 int sysctl_compaction_handler(struct ctl_table *table, int write,
1847 			void __user *buffer, size_t *length, loff_t *ppos)
1848 {
1849 	if (write)
1850 		compact_nodes();
1851 
1852 	return 0;
1853 }
1854 
sysctl_extfrag_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)1855 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1856 			void __user *buffer, size_t *length, loff_t *ppos)
1857 {
1858 	proc_dointvec_minmax(table, write, buffer, length, ppos);
1859 
1860 	return 0;
1861 }
1862 
1863 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
sysfs_compact_node(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1864 static ssize_t sysfs_compact_node(struct device *dev,
1865 			struct device_attribute *attr,
1866 			const char *buf, size_t count)
1867 {
1868 	int nid = dev->id;
1869 
1870 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1871 		/* Flush pending updates to the LRU lists */
1872 		lru_add_drain_all();
1873 
1874 		compact_node(nid);
1875 	}
1876 
1877 	return count;
1878 }
1879 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1880 
compaction_register_node(struct node * node)1881 int compaction_register_node(struct node *node)
1882 {
1883 	return device_create_file(&node->dev, &dev_attr_compact);
1884 }
1885 
compaction_unregister_node(struct node * node)1886 void compaction_unregister_node(struct node *node)
1887 {
1888 	return device_remove_file(&node->dev, &dev_attr_compact);
1889 }
1890 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1891 
kcompactd_work_requested(pg_data_t * pgdat)1892 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
1893 {
1894 	return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
1895 }
1896 
kcompactd_node_suitable(pg_data_t * pgdat)1897 static bool kcompactd_node_suitable(pg_data_t *pgdat)
1898 {
1899 	int zoneid;
1900 	struct zone *zone;
1901 	enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
1902 
1903 	for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
1904 		zone = &pgdat->node_zones[zoneid];
1905 
1906 		if (!populated_zone(zone))
1907 			continue;
1908 
1909 		if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
1910 					classzone_idx) == COMPACT_CONTINUE)
1911 			return true;
1912 	}
1913 
1914 	return false;
1915 }
1916 
kcompactd_do_work(pg_data_t * pgdat)1917 static void kcompactd_do_work(pg_data_t *pgdat)
1918 {
1919 	/*
1920 	 * With no special task, compact all zones so that a page of requested
1921 	 * order is allocatable.
1922 	 */
1923 	int zoneid;
1924 	struct zone *zone;
1925 	struct compact_control cc = {
1926 		.order = pgdat->kcompactd_max_order,
1927 		.classzone_idx = pgdat->kcompactd_classzone_idx,
1928 		.mode = MIGRATE_SYNC_LIGHT,
1929 		.ignore_skip_hint = true,
1930 		.gfp_mask = GFP_KERNEL,
1931 
1932 	};
1933 	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
1934 							cc.classzone_idx);
1935 	count_compact_event(KCOMPACTD_WAKE);
1936 
1937 	for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
1938 		int status;
1939 
1940 		zone = &pgdat->node_zones[zoneid];
1941 		if (!populated_zone(zone))
1942 			continue;
1943 
1944 		if (compaction_deferred(zone, cc.order))
1945 			continue;
1946 
1947 		if (compaction_suitable(zone, cc.order, 0, zoneid) !=
1948 							COMPACT_CONTINUE)
1949 			continue;
1950 
1951 		if (kthread_should_stop())
1952 			return;
1953 
1954 		cc.zone = zone;
1955 		status = compact_zone(zone, &cc);
1956 
1957 		if (status == COMPACT_SUCCESS) {
1958 			compaction_defer_reset(zone, cc.order, false);
1959 		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
1960 			/*
1961 			 * We use sync migration mode here, so we defer like
1962 			 * sync direct compaction does.
1963 			 */
1964 			defer_compaction(zone, cc.order);
1965 		}
1966 
1967 		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
1968 				     cc.total_migrate_scanned);
1969 		count_compact_events(KCOMPACTD_FREE_SCANNED,
1970 				     cc.total_free_scanned);
1971 
1972 		VM_BUG_ON(!list_empty(&cc.freepages));
1973 		VM_BUG_ON(!list_empty(&cc.migratepages));
1974 	}
1975 
1976 	/*
1977 	 * Regardless of success, we are done until woken up next. But remember
1978 	 * the requested order/classzone_idx in case it was higher/tighter than
1979 	 * our current ones
1980 	 */
1981 	if (pgdat->kcompactd_max_order <= cc.order)
1982 		pgdat->kcompactd_max_order = 0;
1983 	if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
1984 		pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
1985 }
1986 
wakeup_kcompactd(pg_data_t * pgdat,int order,int classzone_idx)1987 void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
1988 {
1989 	if (!order)
1990 		return;
1991 
1992 	if (pgdat->kcompactd_max_order < order)
1993 		pgdat->kcompactd_max_order = order;
1994 
1995 	if (pgdat->kcompactd_classzone_idx > classzone_idx)
1996 		pgdat->kcompactd_classzone_idx = classzone_idx;
1997 
1998 	/*
1999 	 * Pairs with implicit barrier in wait_event_freezable()
2000 	 * such that wakeups are not missed.
2001 	 */
2002 	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2003 		return;
2004 
2005 	if (!kcompactd_node_suitable(pgdat))
2006 		return;
2007 
2008 	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2009 							classzone_idx);
2010 	wake_up_interruptible(&pgdat->kcompactd_wait);
2011 }
2012 
2013 /*
2014  * The background compaction daemon, started as a kernel thread
2015  * from the init process.
2016  */
kcompactd(void * p)2017 static int kcompactd(void *p)
2018 {
2019 	pg_data_t *pgdat = (pg_data_t*)p;
2020 	struct task_struct *tsk = current;
2021 
2022 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2023 
2024 	if (!cpumask_empty(cpumask))
2025 		set_cpus_allowed_ptr(tsk, cpumask);
2026 
2027 	set_freezable();
2028 
2029 	pgdat->kcompactd_max_order = 0;
2030 	pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2031 
2032 	while (!kthread_should_stop()) {
2033 		unsigned long pflags;
2034 
2035 		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2036 		wait_event_freezable(pgdat->kcompactd_wait,
2037 				kcompactd_work_requested(pgdat));
2038 
2039 		psi_memstall_enter(&pflags);
2040 		kcompactd_do_work(pgdat);
2041 		psi_memstall_leave(&pflags);
2042 	}
2043 
2044 	return 0;
2045 }
2046 
2047 /*
2048  * This kcompactd start function will be called by init and node-hot-add.
2049  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2050  */
kcompactd_run(int nid)2051 int kcompactd_run(int nid)
2052 {
2053 	pg_data_t *pgdat = NODE_DATA(nid);
2054 	int ret = 0;
2055 
2056 	if (pgdat->kcompactd)
2057 		return 0;
2058 
2059 	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2060 	if (IS_ERR(pgdat->kcompactd)) {
2061 		pr_err("Failed to start kcompactd on node %d\n", nid);
2062 		ret = PTR_ERR(pgdat->kcompactd);
2063 		pgdat->kcompactd = NULL;
2064 	}
2065 	return ret;
2066 }
2067 
2068 /*
2069  * Called by memory hotplug when all memory in a node is offlined. Caller must
2070  * hold mem_hotplug_begin/end().
2071  */
kcompactd_stop(int nid)2072 void kcompactd_stop(int nid)
2073 {
2074 	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2075 
2076 	if (kcompactd) {
2077 		kthread_stop(kcompactd);
2078 		NODE_DATA(nid)->kcompactd = NULL;
2079 	}
2080 }
2081 
2082 /*
2083  * It's optimal to keep kcompactd on the same CPUs as their memory, but
2084  * not required for correctness. So if the last cpu in a node goes
2085  * away, we get changed to run anywhere: as the first one comes back,
2086  * restore their cpu bindings.
2087  */
kcompactd_cpu_online(unsigned int cpu)2088 static int kcompactd_cpu_online(unsigned int cpu)
2089 {
2090 	int nid;
2091 
2092 	for_each_node_state(nid, N_MEMORY) {
2093 		pg_data_t *pgdat = NODE_DATA(nid);
2094 		const struct cpumask *mask;
2095 
2096 		mask = cpumask_of_node(pgdat->node_id);
2097 
2098 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2099 			/* One of our CPUs online: restore mask */
2100 			set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2101 	}
2102 	return 0;
2103 }
2104 
kcompactd_init(void)2105 static int __init kcompactd_init(void)
2106 {
2107 	int nid;
2108 	int ret;
2109 
2110 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2111 					"mm/compaction:online",
2112 					kcompactd_cpu_online, NULL);
2113 	if (ret < 0) {
2114 		pr_err("kcompactd: failed to register hotplug callbacks.\n");
2115 		return ret;
2116 	}
2117 
2118 	for_each_node_state(nid, N_MEMORY)
2119 		kcompactd_run(nid);
2120 	return 0;
2121 }
2122 subsys_initcall(kcompactd_init)
2123 
2124 #endif /* CONFIG_COMPACTION */
2125