• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Copyright (C) 1995  Linus Torvalds
3  *
4  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5  *
6  *  Memory region support
7  *	David Parsons <orc@pell.chi.il.us>, July-August 1999
8  *
9  *  Added E820 sanitization routine (removes overlapping memory regions);
10  *  Brian Moyle <bmoyle@mvista.com>, February 2001
11  *
12  * Moved CPU detection code to cpu/${cpu}.c
13  *    Patrick Mochel <mochel@osdl.org>, March 2002
14  *
15  *  Provisions for empty E820 memory regions (reported by certain BIOSes).
16  *  Alex Achenbach <xela@slit.de>, December 2002.
17  *
18  */
19 
20 /*
21  * This file handles the architecture-dependent parts of initialization
22  */
23 
24 #include <linux/sched.h>
25 #include <linux/mm.h>
26 #include <linux/mmzone.h>
27 #include <linux/screen_info.h>
28 #include <linux/ioport.h>
29 #include <linux/acpi.h>
30 #include <linux/sfi.h>
31 #include <linux/apm_bios.h>
32 #include <linux/initrd.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/seq_file.h>
36 #include <linux/console.h>
37 #include <linux/root_dev.h>
38 #include <linux/highmem.h>
39 #include <linux/export.h>
40 #include <linux/efi.h>
41 #include <linux/init.h>
42 #include <linux/edd.h>
43 #include <linux/iscsi_ibft.h>
44 #include <linux/nodemask.h>
45 #include <linux/kexec.h>
46 #include <linux/dmi.h>
47 #include <linux/pfn.h>
48 #include <linux/pci.h>
49 #include <asm/pci-direct.h>
50 #include <linux/init_ohci1394_dma.h>
51 #include <linux/kvm_para.h>
52 #include <linux/dma-contiguous.h>
53 
54 #include <linux/errno.h>
55 #include <linux/kernel.h>
56 #include <linux/stddef.h>
57 #include <linux/unistd.h>
58 #include <linux/ptrace.h>
59 #include <linux/user.h>
60 #include <linux/delay.h>
61 
62 #include <linux/kallsyms.h>
63 #include <linux/cpufreq.h>
64 #include <linux/dma-mapping.h>
65 #include <linux/ctype.h>
66 #include <linux/uaccess.h>
67 
68 #include <linux/percpu.h>
69 #include <linux/crash_dump.h>
70 #include <linux/tboot.h>
71 #include <linux/jiffies.h>
72 #include <linux/mem_encrypt.h>
73 
74 #include <linux/usb/xhci-dbgp.h>
75 #include <video/edid.h>
76 
77 #include <asm/mtrr.h>
78 #include <asm/apic.h>
79 #include <asm/realmode.h>
80 #include <asm/e820/api.h>
81 #include <asm/mpspec.h>
82 #include <asm/setup.h>
83 #include <asm/efi.h>
84 #include <asm/timer.h>
85 #include <asm/i8259.h>
86 #include <asm/sections.h>
87 #include <asm/io_apic.h>
88 #include <asm/ist.h>
89 #include <asm/setup_arch.h>
90 #include <asm/bios_ebda.h>
91 #include <asm/cacheflush.h>
92 #include <asm/processor.h>
93 #include <asm/bugs.h>
94 #include <asm/kasan.h>
95 
96 #include <asm/vsyscall.h>
97 #include <asm/cpu.h>
98 #include <asm/desc.h>
99 #include <asm/dma.h>
100 #include <asm/iommu.h>
101 #include <asm/gart.h>
102 #include <asm/mmu_context.h>
103 #include <asm/proto.h>
104 
105 #include <asm/paravirt.h>
106 #include <asm/hypervisor.h>
107 #include <asm/olpc_ofw.h>
108 
109 #include <asm/percpu.h>
110 #include <asm/topology.h>
111 #include <asm/apicdef.h>
112 #include <asm/amd_nb.h>
113 #include <asm/mce.h>
114 #include <asm/alternative.h>
115 #include <asm/prom.h>
116 #include <asm/microcode.h>
117 #include <asm/mmu_context.h>
118 #include <asm/kaslr.h>
119 #include <asm/unwind.h>
120 
121 /*
122  * max_low_pfn_mapped: highest direct mapped pfn under 4GB
123  * max_pfn_mapped:     highest direct mapped pfn over 4GB
124  *
125  * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
126  * represented by pfn_mapped
127  */
128 unsigned long max_low_pfn_mapped;
129 unsigned long max_pfn_mapped;
130 
131 #ifdef CONFIG_DMI
132 RESERVE_BRK(dmi_alloc, 65536);
133 #endif
134 
135 
136 static __initdata unsigned long _brk_start = (unsigned long)__brk_base;
137 unsigned long _brk_end = (unsigned long)__brk_base;
138 
139 #ifdef CONFIG_X86_64
default_cpu_present_to_apicid(int mps_cpu)140 int default_cpu_present_to_apicid(int mps_cpu)
141 {
142 	return __default_cpu_present_to_apicid(mps_cpu);
143 }
144 
default_check_phys_apicid_present(int phys_apicid)145 int default_check_phys_apicid_present(int phys_apicid)
146 {
147 	return __default_check_phys_apicid_present(phys_apicid);
148 }
149 #endif
150 
151 struct boot_params boot_params;
152 
153 /*
154  * Machine setup..
155  */
156 static struct resource data_resource = {
157 	.name	= "Kernel data",
158 	.start	= 0,
159 	.end	= 0,
160 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
161 };
162 
163 static struct resource code_resource = {
164 	.name	= "Kernel code",
165 	.start	= 0,
166 	.end	= 0,
167 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
168 };
169 
170 static struct resource bss_resource = {
171 	.name	= "Kernel bss",
172 	.start	= 0,
173 	.end	= 0,
174 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
175 };
176 
177 
178 #ifdef CONFIG_X86_32
179 /* cpu data as detected by the assembly code in head_32.S */
180 struct cpuinfo_x86 new_cpu_data;
181 
182 /* common cpu data for all cpus */
183 struct cpuinfo_x86 boot_cpu_data __read_mostly;
184 EXPORT_SYMBOL(boot_cpu_data);
185 
186 unsigned int def_to_bigsmp;
187 
188 /* for MCA, but anyone else can use it if they want */
189 unsigned int machine_id;
190 unsigned int machine_submodel_id;
191 unsigned int BIOS_revision;
192 
193 struct apm_info apm_info;
194 EXPORT_SYMBOL(apm_info);
195 
196 #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
197 	defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
198 struct ist_info ist_info;
199 EXPORT_SYMBOL(ist_info);
200 #else
201 struct ist_info ist_info;
202 #endif
203 
204 #else
205 struct cpuinfo_x86 boot_cpu_data __read_mostly = {
206 	.x86_phys_bits = MAX_PHYSMEM_BITS,
207 };
208 EXPORT_SYMBOL(boot_cpu_data);
209 #endif
210 
211 
212 #if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
213 __visible unsigned long mmu_cr4_features __ro_after_init;
214 #else
215 __visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
216 #endif
217 
218 /* Boot loader ID and version as integers, for the benefit of proc_dointvec */
219 int bootloader_type, bootloader_version;
220 
221 /*
222  * Setup options
223  */
224 struct screen_info screen_info;
225 EXPORT_SYMBOL(screen_info);
226 struct edid_info edid_info;
227 EXPORT_SYMBOL_GPL(edid_info);
228 
229 extern int root_mountflags;
230 
231 unsigned long saved_video_mode;
232 
233 #define RAMDISK_IMAGE_START_MASK	0x07FF
234 #define RAMDISK_PROMPT_FLAG		0x8000
235 #define RAMDISK_LOAD_FLAG		0x4000
236 
237 static char __initdata command_line[COMMAND_LINE_SIZE];
238 #ifdef CONFIG_CMDLINE_BOOL
239 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
240 #endif
241 
242 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
243 struct edd edd;
244 #ifdef CONFIG_EDD_MODULE
245 EXPORT_SYMBOL(edd);
246 #endif
247 /**
248  * copy_edd() - Copy the BIOS EDD information
249  *              from boot_params into a safe place.
250  *
251  */
copy_edd(void)252 static inline void __init copy_edd(void)
253 {
254      memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
255 	    sizeof(edd.mbr_signature));
256      memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
257      edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
258      edd.edd_info_nr = boot_params.eddbuf_entries;
259 }
260 #else
copy_edd(void)261 static inline void __init copy_edd(void)
262 {
263 }
264 #endif
265 
extend_brk(size_t size,size_t align)266 void * __init extend_brk(size_t size, size_t align)
267 {
268 	size_t mask = align - 1;
269 	void *ret;
270 
271 	BUG_ON(_brk_start == 0);
272 	BUG_ON(align & mask);
273 
274 	_brk_end = (_brk_end + mask) & ~mask;
275 	BUG_ON((char *)(_brk_end + size) > __brk_limit);
276 
277 	ret = (void *)_brk_end;
278 	_brk_end += size;
279 
280 	memset(ret, 0, size);
281 
282 	return ret;
283 }
284 
285 #ifdef CONFIG_X86_32
cleanup_highmap(void)286 static void __init cleanup_highmap(void)
287 {
288 }
289 #endif
290 
reserve_brk(void)291 static void __init reserve_brk(void)
292 {
293 	if (_brk_end > _brk_start)
294 		memblock_reserve(__pa_symbol(_brk_start),
295 				 _brk_end - _brk_start);
296 
297 	/* Mark brk area as locked down and no longer taking any
298 	   new allocations */
299 	_brk_start = 0;
300 }
301 
302 u64 relocated_ramdisk;
303 
304 #ifdef CONFIG_BLK_DEV_INITRD
305 
get_ramdisk_image(void)306 static u64 __init get_ramdisk_image(void)
307 {
308 	u64 ramdisk_image = boot_params.hdr.ramdisk_image;
309 
310 	ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
311 
312 	return ramdisk_image;
313 }
get_ramdisk_size(void)314 static u64 __init get_ramdisk_size(void)
315 {
316 	u64 ramdisk_size = boot_params.hdr.ramdisk_size;
317 
318 	ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
319 
320 	return ramdisk_size;
321 }
322 
relocate_initrd(void)323 static void __init relocate_initrd(void)
324 {
325 	/* Assume only end is not page aligned */
326 	u64 ramdisk_image = get_ramdisk_image();
327 	u64 ramdisk_size  = get_ramdisk_size();
328 	u64 area_size     = PAGE_ALIGN(ramdisk_size);
329 
330 	/* We need to move the initrd down into directly mapped mem */
331 	relocated_ramdisk = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
332 						   area_size, PAGE_SIZE);
333 
334 	if (!relocated_ramdisk)
335 		panic("Cannot find place for new RAMDISK of size %lld\n",
336 		      ramdisk_size);
337 
338 	/* Note: this includes all the mem currently occupied by
339 	   the initrd, we rely on that fact to keep the data intact. */
340 	memblock_reserve(relocated_ramdisk, area_size);
341 	initrd_start = relocated_ramdisk + PAGE_OFFSET;
342 	initrd_end   = initrd_start + ramdisk_size;
343 	printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
344 	       relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
345 
346 	copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
347 
348 	printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
349 		" [mem %#010llx-%#010llx]\n",
350 		ramdisk_image, ramdisk_image + ramdisk_size - 1,
351 		relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
352 }
353 
early_reserve_initrd(void)354 static void __init early_reserve_initrd(void)
355 {
356 	/* Assume only end is not page aligned */
357 	u64 ramdisk_image = get_ramdisk_image();
358 	u64 ramdisk_size  = get_ramdisk_size();
359 	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
360 
361 	if (!boot_params.hdr.type_of_loader ||
362 	    !ramdisk_image || !ramdisk_size)
363 		return;		/* No initrd provided by bootloader */
364 
365 	memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
366 }
reserve_initrd(void)367 static void __init reserve_initrd(void)
368 {
369 	/* Assume only end is not page aligned */
370 	u64 ramdisk_image = get_ramdisk_image();
371 	u64 ramdisk_size  = get_ramdisk_size();
372 	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
373 	u64 mapped_size;
374 
375 	if (!boot_params.hdr.type_of_loader ||
376 	    !ramdisk_image || !ramdisk_size)
377 		return;		/* No initrd provided by bootloader */
378 
379 	initrd_start = 0;
380 
381 	mapped_size = memblock_mem_size(max_pfn_mapped);
382 	if (ramdisk_size >= (mapped_size>>1))
383 		panic("initrd too large to handle, "
384 		       "disabling initrd (%lld needed, %lld available)\n",
385 		       ramdisk_size, mapped_size>>1);
386 
387 	printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
388 			ramdisk_end - 1);
389 
390 	if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
391 				PFN_DOWN(ramdisk_end))) {
392 		/* All are mapped, easy case */
393 		initrd_start = ramdisk_image + PAGE_OFFSET;
394 		initrd_end = initrd_start + ramdisk_size;
395 		return;
396 	}
397 
398 	relocate_initrd();
399 
400 	memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);
401 }
402 
403 #else
early_reserve_initrd(void)404 static void __init early_reserve_initrd(void)
405 {
406 }
reserve_initrd(void)407 static void __init reserve_initrd(void)
408 {
409 }
410 #endif /* CONFIG_BLK_DEV_INITRD */
411 
parse_setup_data(void)412 static void __init parse_setup_data(void)
413 {
414 	struct setup_data *data;
415 	u64 pa_data, pa_next;
416 
417 	pa_data = boot_params.hdr.setup_data;
418 	while (pa_data) {
419 		u32 data_len, data_type;
420 
421 		data = early_memremap(pa_data, sizeof(*data));
422 		data_len = data->len + sizeof(struct setup_data);
423 		data_type = data->type;
424 		pa_next = data->next;
425 		early_memunmap(data, sizeof(*data));
426 
427 		switch (data_type) {
428 		case SETUP_E820_EXT:
429 			e820__memory_setup_extended(pa_data, data_len);
430 			break;
431 		case SETUP_DTB:
432 			add_dtb(pa_data);
433 			break;
434 		case SETUP_EFI:
435 			parse_efi_setup(pa_data, data_len);
436 			break;
437 		default:
438 			break;
439 		}
440 		pa_data = pa_next;
441 	}
442 }
443 
memblock_x86_reserve_range_setup_data(void)444 static void __init memblock_x86_reserve_range_setup_data(void)
445 {
446 	struct setup_data *data;
447 	u64 pa_data;
448 
449 	pa_data = boot_params.hdr.setup_data;
450 	while (pa_data) {
451 		data = early_memremap(pa_data, sizeof(*data));
452 		memblock_reserve(pa_data, sizeof(*data) + data->len);
453 		pa_data = data->next;
454 		early_memunmap(data, sizeof(*data));
455 	}
456 }
457 
458 /*
459  * --------- Crashkernel reservation ------------------------------
460  */
461 
462 #ifdef CONFIG_KEXEC_CORE
463 
464 /* 16M alignment for crash kernel regions */
465 #define CRASH_ALIGN		(16 << 20)
466 
467 /*
468  * Keep the crash kernel below this limit.  On 32 bits earlier kernels
469  * would limit the kernel to the low 512 MiB due to mapping restrictions.
470  * On 64bit, old kexec-tools need to under 896MiB.
471  */
472 #ifdef CONFIG_X86_32
473 # define CRASH_ADDR_LOW_MAX	(512 << 20)
474 # define CRASH_ADDR_HIGH_MAX	(512 << 20)
475 #else
476 # define CRASH_ADDR_LOW_MAX	(896UL << 20)
477 # define CRASH_ADDR_HIGH_MAX	MAXMEM
478 #endif
479 
reserve_crashkernel_low(void)480 static int __init reserve_crashkernel_low(void)
481 {
482 #ifdef CONFIG_X86_64
483 	unsigned long long base, low_base = 0, low_size = 0;
484 	unsigned long total_low_mem;
485 	int ret;
486 
487 	total_low_mem = memblock_mem_size(1UL << (32 - PAGE_SHIFT));
488 
489 	/* crashkernel=Y,low */
490 	ret = parse_crashkernel_low(boot_command_line, total_low_mem, &low_size, &base);
491 	if (ret) {
492 		/*
493 		 * two parts from lib/swiotlb.c:
494 		 * -swiotlb size: user-specified with swiotlb= or default.
495 		 *
496 		 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
497 		 * to 8M for other buffers that may need to stay low too. Also
498 		 * make sure we allocate enough extra low memory so that we
499 		 * don't run out of DMA buffers for 32-bit devices.
500 		 */
501 		low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
502 	} else {
503 		/* passed with crashkernel=0,low ? */
504 		if (!low_size)
505 			return 0;
506 	}
507 
508 	low_base = memblock_find_in_range(0, 1ULL << 32, low_size, CRASH_ALIGN);
509 	if (!low_base) {
510 		pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
511 		       (unsigned long)(low_size >> 20));
512 		return -ENOMEM;
513 	}
514 
515 	ret = memblock_reserve(low_base, low_size);
516 	if (ret) {
517 		pr_err("%s: Error reserving crashkernel low memblock.\n", __func__);
518 		return ret;
519 	}
520 
521 	pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (System low RAM: %ldMB)\n",
522 		(unsigned long)(low_size >> 20),
523 		(unsigned long)(low_base >> 20),
524 		(unsigned long)(total_low_mem >> 20));
525 
526 	crashk_low_res.start = low_base;
527 	crashk_low_res.end   = low_base + low_size - 1;
528 	insert_resource(&iomem_resource, &crashk_low_res);
529 #endif
530 	return 0;
531 }
532 
reserve_crashkernel(void)533 static void __init reserve_crashkernel(void)
534 {
535 	unsigned long long crash_size, crash_base, total_mem;
536 	bool high = false;
537 	int ret;
538 
539 	total_mem = memblock_phys_mem_size();
540 
541 	/* crashkernel=XM */
542 	ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
543 	if (ret != 0 || crash_size <= 0) {
544 		/* crashkernel=X,high */
545 		ret = parse_crashkernel_high(boot_command_line, total_mem,
546 					     &crash_size, &crash_base);
547 		if (ret != 0 || crash_size <= 0)
548 			return;
549 		high = true;
550 	}
551 
552 	/* 0 means: find the address automatically */
553 	if (crash_base <= 0) {
554 		/*
555 		 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory,
556 		 * as old kexec-tools loads bzImage below that, unless
557 		 * "crashkernel=size[KMG],high" is specified.
558 		 */
559 		crash_base = memblock_find_in_range(CRASH_ALIGN,
560 						    high ? CRASH_ADDR_HIGH_MAX
561 							 : CRASH_ADDR_LOW_MAX,
562 						    crash_size, CRASH_ALIGN);
563 		if (!crash_base) {
564 			pr_info("crashkernel reservation failed - No suitable area found.\n");
565 			return;
566 		}
567 
568 	} else {
569 		unsigned long long start;
570 
571 		start = memblock_find_in_range(crash_base,
572 					       crash_base + crash_size,
573 					       crash_size, 1 << 20);
574 		if (start != crash_base) {
575 			pr_info("crashkernel reservation failed - memory is in use.\n");
576 			return;
577 		}
578 	}
579 	ret = memblock_reserve(crash_base, crash_size);
580 	if (ret) {
581 		pr_err("%s: Error reserving crashkernel memblock.\n", __func__);
582 		return;
583 	}
584 
585 	if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
586 		memblock_free(crash_base, crash_size);
587 		return;
588 	}
589 
590 	pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
591 		(unsigned long)(crash_size >> 20),
592 		(unsigned long)(crash_base >> 20),
593 		(unsigned long)(total_mem >> 20));
594 
595 	crashk_res.start = crash_base;
596 	crashk_res.end   = crash_base + crash_size - 1;
597 	insert_resource(&iomem_resource, &crashk_res);
598 }
599 #else
reserve_crashkernel(void)600 static void __init reserve_crashkernel(void)
601 {
602 }
603 #endif
604 
605 static struct resource standard_io_resources[] = {
606 	{ .name = "dma1", .start = 0x00, .end = 0x1f,
607 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
608 	{ .name = "pic1", .start = 0x20, .end = 0x21,
609 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
610 	{ .name = "timer0", .start = 0x40, .end = 0x43,
611 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
612 	{ .name = "timer1", .start = 0x50, .end = 0x53,
613 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
614 	{ .name = "keyboard", .start = 0x60, .end = 0x60,
615 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
616 	{ .name = "keyboard", .start = 0x64, .end = 0x64,
617 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
618 	{ .name = "dma page reg", .start = 0x80, .end = 0x8f,
619 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
620 	{ .name = "pic2", .start = 0xa0, .end = 0xa1,
621 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
622 	{ .name = "dma2", .start = 0xc0, .end = 0xdf,
623 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
624 	{ .name = "fpu", .start = 0xf0, .end = 0xff,
625 		.flags = IORESOURCE_BUSY | IORESOURCE_IO }
626 };
627 
reserve_standard_io_resources(void)628 void __init reserve_standard_io_resources(void)
629 {
630 	int i;
631 
632 	/* request I/O space for devices used on all i[345]86 PCs */
633 	for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
634 		request_resource(&ioport_resource, &standard_io_resources[i]);
635 
636 }
637 
reserve_ibft_region(void)638 static __init void reserve_ibft_region(void)
639 {
640 	unsigned long addr, size = 0;
641 
642 	addr = find_ibft_region(&size);
643 
644 	if (size)
645 		memblock_reserve(addr, size);
646 }
647 
snb_gfx_workaround_needed(void)648 static bool __init snb_gfx_workaround_needed(void)
649 {
650 #ifdef CONFIG_PCI
651 	int i;
652 	u16 vendor, devid;
653 	static const __initconst u16 snb_ids[] = {
654 		0x0102,
655 		0x0112,
656 		0x0122,
657 		0x0106,
658 		0x0116,
659 		0x0126,
660 		0x010a,
661 	};
662 
663 	/* Assume no if something weird is going on with PCI */
664 	if (!early_pci_allowed())
665 		return false;
666 
667 	vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
668 	if (vendor != 0x8086)
669 		return false;
670 
671 	devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
672 	for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
673 		if (devid == snb_ids[i])
674 			return true;
675 #endif
676 
677 	return false;
678 }
679 
680 /*
681  * Sandy Bridge graphics has trouble with certain ranges, exclude
682  * them from allocation.
683  */
trim_snb_memory(void)684 static void __init trim_snb_memory(void)
685 {
686 	static const __initconst unsigned long bad_pages[] = {
687 		0x20050000,
688 		0x20110000,
689 		0x20130000,
690 		0x20138000,
691 		0x40004000,
692 	};
693 	int i;
694 
695 	if (!snb_gfx_workaround_needed())
696 		return;
697 
698 	printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
699 
700 	/*
701 	 * Reserve all memory below the 1 MB mark that has not
702 	 * already been reserved.
703 	 */
704 	memblock_reserve(0, 1<<20);
705 
706 	for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
707 		if (memblock_reserve(bad_pages[i], PAGE_SIZE))
708 			printk(KERN_WARNING "failed to reserve 0x%08lx\n",
709 			       bad_pages[i]);
710 	}
711 }
712 
713 /*
714  * Here we put platform-specific memory range workarounds, i.e.
715  * memory known to be corrupt or otherwise in need to be reserved on
716  * specific platforms.
717  *
718  * If this gets used more widely it could use a real dispatch mechanism.
719  */
trim_platform_memory_ranges(void)720 static void __init trim_platform_memory_ranges(void)
721 {
722 	trim_snb_memory();
723 }
724 
trim_bios_range(void)725 static void __init trim_bios_range(void)
726 {
727 	/*
728 	 * A special case is the first 4Kb of memory;
729 	 * This is a BIOS owned area, not kernel ram, but generally
730 	 * not listed as such in the E820 table.
731 	 *
732 	 * This typically reserves additional memory (64KiB by default)
733 	 * since some BIOSes are known to corrupt low memory.  See the
734 	 * Kconfig help text for X86_RESERVE_LOW.
735 	 */
736 	e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
737 
738 	/*
739 	 * special case: Some BIOSen report the PC BIOS
740 	 * area (640->1Mb) as ram even though it is not.
741 	 * take them out.
742 	 */
743 	e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
744 
745 	e820__update_table(e820_table);
746 }
747 
748 /* called before trim_bios_range() to spare extra sanitize */
e820_add_kernel_range(void)749 static void __init e820_add_kernel_range(void)
750 {
751 	u64 start = __pa_symbol(_text);
752 	u64 size = __pa_symbol(_end) - start;
753 
754 	/*
755 	 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
756 	 * attempt to fix it by adding the range. We may have a confused BIOS,
757 	 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
758 	 * exclude kernel range. If we really are running on top non-RAM,
759 	 * we will crash later anyways.
760 	 */
761 	if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
762 		return;
763 
764 	pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
765 	e820__range_remove(start, size, E820_TYPE_RAM, 0);
766 	e820__range_add(start, size, E820_TYPE_RAM);
767 }
768 
769 static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10;
770 
parse_reservelow(char * p)771 static int __init parse_reservelow(char *p)
772 {
773 	unsigned long long size;
774 
775 	if (!p)
776 		return -EINVAL;
777 
778 	size = memparse(p, &p);
779 
780 	if (size < 4096)
781 		size = 4096;
782 
783 	if (size > 640*1024)
784 		size = 640*1024;
785 
786 	reserve_low = size;
787 
788 	return 0;
789 }
790 
791 early_param("reservelow", parse_reservelow);
792 
trim_low_memory_range(void)793 static void __init trim_low_memory_range(void)
794 {
795 	memblock_reserve(0, ALIGN(reserve_low, PAGE_SIZE));
796 }
797 
798 /*
799  * Dump out kernel offset information on panic.
800  */
801 static int
dump_kernel_offset(struct notifier_block * self,unsigned long v,void * p)802 dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
803 {
804 	if (kaslr_enabled()) {
805 		pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
806 			 kaslr_offset(),
807 			 __START_KERNEL,
808 			 __START_KERNEL_map,
809 			 MODULES_VADDR-1);
810 	} else {
811 		pr_emerg("Kernel Offset: disabled\n");
812 	}
813 
814 	return 0;
815 }
816 
simple_udelay_calibration(void)817 static void __init simple_udelay_calibration(void)
818 {
819 	unsigned int tsc_khz, cpu_khz;
820 	unsigned long lpj;
821 
822 	if (!boot_cpu_has(X86_FEATURE_TSC))
823 		return;
824 
825 	cpu_khz = x86_platform.calibrate_cpu();
826 	tsc_khz = x86_platform.calibrate_tsc();
827 
828 	tsc_khz = tsc_khz ? : cpu_khz;
829 	if (!tsc_khz)
830 		return;
831 
832 	lpj = tsc_khz * 1000;
833 	do_div(lpj, HZ);
834 	loops_per_jiffy = lpj;
835 }
836 
837 /*
838  * Determine if we were loaded by an EFI loader.  If so, then we have also been
839  * passed the efi memmap, systab, etc., so we should use these data structures
840  * for initialization.  Note, the efi init code path is determined by the
841  * global efi_enabled. This allows the same kernel image to be used on existing
842  * systems (with a traditional BIOS) as well as on EFI systems.
843  */
844 /*
845  * setup_arch - architecture-specific boot-time initializations
846  *
847  * Note: On x86_64, fixmaps are ready for use even before this is called.
848  */
849 
setup_arch(char ** cmdline_p)850 void __init setup_arch(char **cmdline_p)
851 {
852 	memblock_reserve(__pa_symbol(_text),
853 			 (unsigned long)__bss_stop - (unsigned long)_text);
854 
855 	/*
856 	 * Make sure page 0 is always reserved because on systems with
857 	 * L1TF its contents can be leaked to user processes.
858 	 */
859 	memblock_reserve(0, PAGE_SIZE);
860 
861 	early_reserve_initrd();
862 
863 	/*
864 	 * At this point everything still needed from the boot loader
865 	 * or BIOS or kernel text should be early reserved or marked not
866 	 * RAM in e820. All other memory is free game.
867 	 */
868 
869 #ifdef CONFIG_X86_32
870 	memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
871 
872 	/*
873 	 * copy kernel address range established so far and switch
874 	 * to the proper swapper page table
875 	 */
876 	clone_pgd_range(swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
877 			initial_page_table + KERNEL_PGD_BOUNDARY,
878 			KERNEL_PGD_PTRS);
879 
880 	load_cr3(swapper_pg_dir);
881 	/*
882 	 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
883 	 * a cr3 based tlb flush, so the following __flush_tlb_all()
884 	 * will not flush anything because the cpu quirk which clears
885 	 * X86_FEATURE_PGE has not been invoked yet. Though due to the
886 	 * load_cr3() above the TLB has been flushed already. The
887 	 * quirk is invoked before subsequent calls to __flush_tlb_all()
888 	 * so proper operation is guaranteed.
889 	 */
890 	__flush_tlb_all();
891 #else
892 	printk(KERN_INFO "Command line: %s\n", boot_command_line);
893 #endif
894 
895 	/*
896 	 * If we have OLPC OFW, we might end up relocating the fixmap due to
897 	 * reserve_top(), so do this before touching the ioremap area.
898 	 */
899 	olpc_ofw_detect();
900 
901 	idt_setup_early_traps();
902 	early_cpu_init();
903 	early_ioremap_init();
904 
905 	setup_olpc_ofw_pgd();
906 
907 	ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
908 	screen_info = boot_params.screen_info;
909 	edid_info = boot_params.edid_info;
910 #ifdef CONFIG_X86_32
911 	apm_info.bios = boot_params.apm_bios_info;
912 	ist_info = boot_params.ist_info;
913 #endif
914 	saved_video_mode = boot_params.hdr.vid_mode;
915 	bootloader_type = boot_params.hdr.type_of_loader;
916 	if ((bootloader_type >> 4) == 0xe) {
917 		bootloader_type &= 0xf;
918 		bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
919 	}
920 	bootloader_version  = bootloader_type & 0xf;
921 	bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
922 
923 #ifdef CONFIG_BLK_DEV_RAM
924 	rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
925 	rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
926 	rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
927 #endif
928 #ifdef CONFIG_EFI
929 	if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
930 		     EFI32_LOADER_SIGNATURE, 4)) {
931 		set_bit(EFI_BOOT, &efi.flags);
932 	} else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
933 		     EFI64_LOADER_SIGNATURE, 4)) {
934 		set_bit(EFI_BOOT, &efi.flags);
935 		set_bit(EFI_64BIT, &efi.flags);
936 	}
937 #endif
938 
939 	x86_init.oem.arch_setup();
940 
941 	iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
942 	e820__memory_setup();
943 	parse_setup_data();
944 
945 	copy_edd();
946 
947 	if (!boot_params.hdr.root_flags)
948 		root_mountflags &= ~MS_RDONLY;
949 	init_mm.start_code = (unsigned long) _text;
950 	init_mm.end_code = (unsigned long) _etext;
951 	init_mm.end_data = (unsigned long) _edata;
952 	init_mm.brk = _brk_end;
953 
954 	mpx_mm_init(&init_mm);
955 
956 	code_resource.start = __pa_symbol(_text);
957 	code_resource.end = __pa_symbol(_etext)-1;
958 	data_resource.start = __pa_symbol(_etext);
959 	data_resource.end = __pa_symbol(_edata)-1;
960 	bss_resource.start = __pa_symbol(__bss_start);
961 	bss_resource.end = __pa_symbol(__bss_stop)-1;
962 
963 #ifdef CONFIG_CMDLINE_BOOL
964 #ifdef CONFIG_CMDLINE_OVERRIDE
965 	strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
966 #else
967 	if (builtin_cmdline[0]) {
968 		/* append boot loader cmdline to builtin */
969 		strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
970 		strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
971 		strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
972 	}
973 #endif
974 #endif
975 
976 	strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
977 	*cmdline_p = command_line;
978 
979 	/*
980 	 * x86_configure_nx() is called before parse_early_param() to detect
981 	 * whether hardware doesn't support NX (so that the early EHCI debug
982 	 * console setup can safely call set_fixmap()). It may then be called
983 	 * again from within noexec_setup() during parsing early parameters
984 	 * to honor the respective command line option.
985 	 */
986 	x86_configure_nx();
987 
988 	parse_early_param();
989 
990 	if (efi_enabled(EFI_BOOT))
991 		efi_memblock_x86_reserve_range();
992 #ifdef CONFIG_MEMORY_HOTPLUG
993 	/*
994 	 * Memory used by the kernel cannot be hot-removed because Linux
995 	 * cannot migrate the kernel pages. When memory hotplug is
996 	 * enabled, we should prevent memblock from allocating memory
997 	 * for the kernel.
998 	 *
999 	 * ACPI SRAT records all hotpluggable memory ranges. But before
1000 	 * SRAT is parsed, we don't know about it.
1001 	 *
1002 	 * The kernel image is loaded into memory at very early time. We
1003 	 * cannot prevent this anyway. So on NUMA system, we set any
1004 	 * node the kernel resides in as un-hotpluggable.
1005 	 *
1006 	 * Since on modern servers, one node could have double-digit
1007 	 * gigabytes memory, we can assume the memory around the kernel
1008 	 * image is also un-hotpluggable. So before SRAT is parsed, just
1009 	 * allocate memory near the kernel image to try the best to keep
1010 	 * the kernel away from hotpluggable memory.
1011 	 */
1012 	if (movable_node_is_enabled())
1013 		memblock_set_bottom_up(true);
1014 #endif
1015 
1016 	x86_report_nx();
1017 
1018 	/* after early param, so could get panic from serial */
1019 	memblock_x86_reserve_range_setup_data();
1020 
1021 	if (acpi_mps_check()) {
1022 #ifdef CONFIG_X86_LOCAL_APIC
1023 		disable_apic = 1;
1024 #endif
1025 		setup_clear_cpu_cap(X86_FEATURE_APIC);
1026 	}
1027 
1028 #ifdef CONFIG_PCI
1029 	if (pci_early_dump_regs)
1030 		early_dump_pci_devices();
1031 #endif
1032 
1033 	e820__reserve_setup_data();
1034 	e820__finish_early_params();
1035 
1036 	if (efi_enabled(EFI_BOOT))
1037 		efi_init();
1038 
1039 	dmi_scan_machine();
1040 	dmi_memdev_walk();
1041 	dmi_set_dump_stack_arch_desc();
1042 
1043 	/*
1044 	 * VMware detection requires dmi to be available, so this
1045 	 * needs to be done after dmi_scan_machine, for the BP.
1046 	 */
1047 	init_hypervisor_platform();
1048 
1049 	simple_udelay_calibration();
1050 
1051 	x86_init.resources.probe_roms();
1052 
1053 	/* after parse_early_param, so could debug it */
1054 	insert_resource(&iomem_resource, &code_resource);
1055 	insert_resource(&iomem_resource, &data_resource);
1056 	insert_resource(&iomem_resource, &bss_resource);
1057 
1058 	e820_add_kernel_range();
1059 	trim_bios_range();
1060 #ifdef CONFIG_X86_32
1061 	if (ppro_with_ram_bug()) {
1062 		e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
1063 				  E820_TYPE_RESERVED);
1064 		e820__update_table(e820_table);
1065 		printk(KERN_INFO "fixed physical RAM map:\n");
1066 		e820__print_table("bad_ppro");
1067 	}
1068 #else
1069 	early_gart_iommu_check();
1070 #endif
1071 
1072 	/*
1073 	 * partially used pages are not usable - thus
1074 	 * we are rounding upwards:
1075 	 */
1076 	max_pfn = e820__end_of_ram_pfn();
1077 
1078 	/* update e820 for memory not covered by WB MTRRs */
1079 	mtrr_bp_init();
1080 	if (mtrr_trim_uncached_memory(max_pfn))
1081 		max_pfn = e820__end_of_ram_pfn();
1082 
1083 	max_possible_pfn = max_pfn;
1084 
1085 	/*
1086 	 * This call is required when the CPU does not support PAT. If
1087 	 * mtrr_bp_init() invoked it already via pat_init() the call has no
1088 	 * effect.
1089 	 */
1090 	init_cache_modes();
1091 
1092 	/*
1093 	 * Define random base addresses for memory sections after max_pfn is
1094 	 * defined and before each memory section base is used.
1095 	 */
1096 	kernel_randomize_memory();
1097 
1098 #ifdef CONFIG_X86_32
1099 	/* max_low_pfn get updated here */
1100 	find_low_pfn_range();
1101 #else
1102 	check_x2apic();
1103 
1104 	/* How many end-of-memory variables you have, grandma! */
1105 	/* need this before calling reserve_initrd */
1106 	if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1107 		max_low_pfn = e820__end_of_low_ram_pfn();
1108 	else
1109 		max_low_pfn = max_pfn;
1110 
1111 	high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1112 #endif
1113 
1114 	/*
1115 	 * Find and reserve possible boot-time SMP configuration:
1116 	 */
1117 	find_smp_config();
1118 
1119 	reserve_ibft_region();
1120 
1121 	early_alloc_pgt_buf();
1122 
1123 	/*
1124 	 * Need to conclude brk, before e820__memblock_setup()
1125 	 *  it could use memblock_find_in_range, could overlap with
1126 	 *  brk area.
1127 	 */
1128 	reserve_brk();
1129 
1130 	cleanup_highmap();
1131 
1132 	memblock_set_current_limit(ISA_END_ADDRESS);
1133 	e820__memblock_setup();
1134 
1135 	if (!early_xdbc_setup_hardware())
1136 		early_xdbc_register_console();
1137 
1138 	reserve_bios_regions();
1139 
1140 	if (efi_enabled(EFI_MEMMAP)) {
1141 		efi_fake_memmap();
1142 		efi_find_mirror();
1143 		efi_esrt_init();
1144 
1145 		/*
1146 		 * The EFI specification says that boot service code won't be
1147 		 * called after ExitBootServices(). This is, in fact, a lie.
1148 		 */
1149 		efi_reserve_boot_services();
1150 	}
1151 
1152 	/* preallocate 4k for mptable mpc */
1153 	e820__memblock_alloc_reserved_mpc_new();
1154 
1155 #ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1156 	setup_bios_corruption_check();
1157 #endif
1158 
1159 #ifdef CONFIG_X86_32
1160 	printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1161 			(max_pfn_mapped<<PAGE_SHIFT) - 1);
1162 #endif
1163 
1164 	reserve_real_mode();
1165 
1166 	trim_platform_memory_ranges();
1167 	trim_low_memory_range();
1168 
1169 	init_mem_mapping();
1170 
1171 	idt_setup_early_pf();
1172 
1173 	/*
1174 	 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1175 	 * with the current CR4 value.  This may not be necessary, but
1176 	 * auditing all the early-boot CR4 manipulation would be needed to
1177 	 * rule it out.
1178 	 *
1179 	 * Mask off features that don't work outside long mode (just
1180 	 * PCIDE for now).
1181 	 */
1182 	mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1183 
1184 	memblock_set_current_limit(get_max_mapped());
1185 
1186 	/*
1187 	 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1188 	 */
1189 
1190 #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1191 	if (init_ohci1394_dma_early)
1192 		init_ohci1394_dma_on_all_controllers();
1193 #endif
1194 	/* Allocate bigger log buffer */
1195 	setup_log_buf(1);
1196 
1197 	if (efi_enabled(EFI_BOOT)) {
1198 		switch (boot_params.secure_boot) {
1199 		case efi_secureboot_mode_disabled:
1200 			pr_info("Secure boot disabled\n");
1201 			break;
1202 		case efi_secureboot_mode_enabled:
1203 			pr_info("Secure boot enabled\n");
1204 			break;
1205 		default:
1206 			pr_info("Secure boot could not be determined\n");
1207 			break;
1208 		}
1209 	}
1210 
1211 	reserve_initrd();
1212 
1213 	acpi_table_upgrade();
1214 
1215 	vsmp_init();
1216 
1217 	io_delay_init();
1218 
1219 	early_platform_quirks();
1220 
1221 	/*
1222 	 * Parse the ACPI tables for possible boot-time SMP configuration.
1223 	 */
1224 	acpi_boot_table_init();
1225 
1226 	early_acpi_boot_init();
1227 
1228 	initmem_init();
1229 	dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1230 
1231 	/*
1232 	 * Reserve memory for crash kernel after SRAT is parsed so that it
1233 	 * won't consume hotpluggable memory.
1234 	 */
1235 	reserve_crashkernel();
1236 
1237 	memblock_find_dma_reserve();
1238 
1239 #ifdef CONFIG_KVM_GUEST
1240 	kvmclock_init();
1241 #endif
1242 
1243 	x86_init.paging.pagetable_init();
1244 
1245 	kasan_init();
1246 
1247 	/*
1248 	 * Sync back kernel address range.
1249 	 *
1250 	 * FIXME: Can the later sync in setup_cpu_entry_areas() replace
1251 	 * this call?
1252 	 */
1253 	sync_initial_page_table();
1254 
1255 	tboot_probe();
1256 
1257 	map_vsyscall();
1258 
1259 	generic_apic_probe();
1260 
1261 	early_quirks();
1262 
1263 	/*
1264 	 * Read APIC and some other early information from ACPI tables.
1265 	 */
1266 	acpi_boot_init();
1267 	sfi_init();
1268 	x86_dtb_init();
1269 
1270 	/*
1271 	 * get boot-time SMP configuration:
1272 	 */
1273 	get_smp_config();
1274 
1275 	/*
1276 	 * Systems w/o ACPI and mptables might not have it mapped the local
1277 	 * APIC yet, but prefill_possible_map() might need to access it.
1278 	 */
1279 	init_apic_mappings();
1280 
1281 	prefill_possible_map();
1282 
1283 	init_cpu_to_node();
1284 
1285 	io_apic_init_mappings();
1286 
1287 	kvm_guest_init();
1288 
1289 	e820__reserve_resources();
1290 	e820__register_nosave_regions(max_pfn);
1291 
1292 	x86_init.resources.reserve_resources();
1293 
1294 	e820__setup_pci_gap();
1295 
1296 #ifdef CONFIG_VT
1297 #if defined(CONFIG_VGA_CONSOLE)
1298 	if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1299 		conswitchp = &vga_con;
1300 #elif defined(CONFIG_DUMMY_CONSOLE)
1301 	conswitchp = &dummy_con;
1302 #endif
1303 #endif
1304 	x86_init.oem.banner();
1305 
1306 	x86_init.timers.wallclock_init();
1307 
1308 	mcheck_init();
1309 
1310 	arch_init_ideal_nops();
1311 
1312 	register_refined_jiffies(CLOCK_TICK_RATE);
1313 
1314 #ifdef CONFIG_EFI
1315 	if (efi_enabled(EFI_BOOT))
1316 		efi_apply_memmap_quirks();
1317 #endif
1318 
1319 	unwind_init();
1320 }
1321 
1322 #ifdef CONFIG_X86_32
1323 
1324 static struct resource video_ram_resource = {
1325 	.name	= "Video RAM area",
1326 	.start	= 0xa0000,
1327 	.end	= 0xbffff,
1328 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
1329 };
1330 
i386_reserve_resources(void)1331 void __init i386_reserve_resources(void)
1332 {
1333 	request_resource(&iomem_resource, &video_ram_resource);
1334 	reserve_standard_io_resources();
1335 }
1336 
1337 #endif /* CONFIG_X86_32 */
1338 
1339 static struct notifier_block kernel_offset_notifier = {
1340 	.notifier_call = dump_kernel_offset
1341 };
1342 
register_kernel_offset_dumper(void)1343 static int __init register_kernel_offset_dumper(void)
1344 {
1345 	atomic_notifier_chain_register(&panic_notifier_list,
1346 					&kernel_offset_notifier);
1347 	return 0;
1348 }
1349 __initcall(register_kernel_offset_dumper);
1350 
arch_show_smap(struct seq_file * m,struct vm_area_struct * vma)1351 void arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
1352 {
1353 	if (!boot_cpu_has(X86_FEATURE_OSPKE))
1354 		return;
1355 
1356 	seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
1357 }
1358