• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * udc.c - Core UDC Framework
3  *
4  * Copyright (C) 2010 Texas Instruments
5  * Author: Felipe Balbi <balbi@ti.com>
6  *
7  * This program is free software: you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2  of
9  * the License as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/device.h>
23 #include <linux/list.h>
24 #include <linux/err.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/sched/task_stack.h>
27 #include <linux/workqueue.h>
28 
29 #include <linux/usb/ch9.h>
30 #include <linux/usb/gadget.h>
31 #include <linux/usb.h>
32 
33 #include "trace.h"
34 
35 /**
36  * struct usb_udc - describes one usb device controller
37  * @driver - the gadget driver pointer. For use by the class code
38  * @dev - the child device to the actual controller
39  * @gadget - the gadget. For use by the class code
40  * @list - for use by the udc class driver
41  * @vbus - for udcs who care about vbus status, this value is real vbus status;
42  * for udcs who do not care about vbus status, this value is always true
43  *
44  * This represents the internal data structure which is used by the UDC-class
45  * to hold information about udc driver and gadget together.
46  */
47 struct usb_udc {
48 	struct usb_gadget_driver	*driver;
49 	struct usb_gadget		*gadget;
50 	struct device			dev;
51 	struct list_head		list;
52 	bool				vbus;
53 };
54 
55 static struct class *udc_class;
56 static LIST_HEAD(udc_list);
57 static LIST_HEAD(gadget_driver_pending_list);
58 static DEFINE_MUTEX(udc_lock);
59 
60 static int udc_bind_to_driver(struct usb_udc *udc,
61 		struct usb_gadget_driver *driver);
62 
63 /* ------------------------------------------------------------------------- */
64 
65 /**
66  * usb_ep_set_maxpacket_limit - set maximum packet size limit for endpoint
67  * @ep:the endpoint being configured
68  * @maxpacket_limit:value of maximum packet size limit
69  *
70  * This function should be used only in UDC drivers to initialize endpoint
71  * (usually in probe function).
72  */
usb_ep_set_maxpacket_limit(struct usb_ep * ep,unsigned maxpacket_limit)73 void usb_ep_set_maxpacket_limit(struct usb_ep *ep,
74 					      unsigned maxpacket_limit)
75 {
76 	ep->maxpacket_limit = maxpacket_limit;
77 	ep->maxpacket = maxpacket_limit;
78 
79 	trace_usb_ep_set_maxpacket_limit(ep, 0);
80 }
81 EXPORT_SYMBOL_GPL(usb_ep_set_maxpacket_limit);
82 
83 /**
84  * usb_ep_enable - configure endpoint, making it usable
85  * @ep:the endpoint being configured.  may not be the endpoint named "ep0".
86  *	drivers discover endpoints through the ep_list of a usb_gadget.
87  *
88  * When configurations are set, or when interface settings change, the driver
89  * will enable or disable the relevant endpoints.  while it is enabled, an
90  * endpoint may be used for i/o until the driver receives a disconnect() from
91  * the host or until the endpoint is disabled.
92  *
93  * the ep0 implementation (which calls this routine) must ensure that the
94  * hardware capabilities of each endpoint match the descriptor provided
95  * for it.  for example, an endpoint named "ep2in-bulk" would be usable
96  * for interrupt transfers as well as bulk, but it likely couldn't be used
97  * for iso transfers or for endpoint 14.  some endpoints are fully
98  * configurable, with more generic names like "ep-a".  (remember that for
99  * USB, "in" means "towards the USB master".)
100  *
101  * returns zero, or a negative error code.
102  */
usb_ep_enable(struct usb_ep * ep)103 int usb_ep_enable(struct usb_ep *ep)
104 {
105 	int ret = 0;
106 
107 	if (ep->enabled)
108 		goto out;
109 
110 	/* UDC drivers can't handle endpoints with maxpacket size 0 */
111 	if (usb_endpoint_maxp(ep->desc) == 0) {
112 		/*
113 		 * We should log an error message here, but we can't call
114 		 * dev_err() because there's no way to find the gadget
115 		 * given only ep.
116 		 */
117 		ret = -EINVAL;
118 		goto out;
119 	}
120 
121 	ret = ep->ops->enable(ep, ep->desc);
122 	if (ret)
123 		goto out;
124 
125 	ep->enabled = true;
126 
127 out:
128 	trace_usb_ep_enable(ep, ret);
129 
130 	return ret;
131 }
132 EXPORT_SYMBOL_GPL(usb_ep_enable);
133 
134 /**
135  * usb_ep_disable - endpoint is no longer usable
136  * @ep:the endpoint being unconfigured.  may not be the endpoint named "ep0".
137  *
138  * no other task may be using this endpoint when this is called.
139  * any pending and uncompleted requests will complete with status
140  * indicating disconnect (-ESHUTDOWN) before this call returns.
141  * gadget drivers must call usb_ep_enable() again before queueing
142  * requests to the endpoint.
143  *
144  * returns zero, or a negative error code.
145  */
usb_ep_disable(struct usb_ep * ep)146 int usb_ep_disable(struct usb_ep *ep)
147 {
148 	int ret = 0;
149 
150 	if (!ep->enabled)
151 		goto out;
152 
153 	ret = ep->ops->disable(ep);
154 	if (ret)
155 		goto out;
156 
157 	ep->enabled = false;
158 
159 out:
160 	trace_usb_ep_disable(ep, ret);
161 
162 	return ret;
163 }
164 EXPORT_SYMBOL_GPL(usb_ep_disable);
165 
166 /**
167  * usb_ep_alloc_request - allocate a request object to use with this endpoint
168  * @ep:the endpoint to be used with with the request
169  * @gfp_flags:GFP_* flags to use
170  *
171  * Request objects must be allocated with this call, since they normally
172  * need controller-specific setup and may even need endpoint-specific
173  * resources such as allocation of DMA descriptors.
174  * Requests may be submitted with usb_ep_queue(), and receive a single
175  * completion callback.  Free requests with usb_ep_free_request(), when
176  * they are no longer needed.
177  *
178  * Returns the request, or null if one could not be allocated.
179  */
usb_ep_alloc_request(struct usb_ep * ep,gfp_t gfp_flags)180 struct usb_request *usb_ep_alloc_request(struct usb_ep *ep,
181 						       gfp_t gfp_flags)
182 {
183 	struct usb_request *req = NULL;
184 
185 	req = ep->ops->alloc_request(ep, gfp_flags);
186 
187 	trace_usb_ep_alloc_request(ep, req, req ? 0 : -ENOMEM);
188 
189 	return req;
190 }
191 EXPORT_SYMBOL_GPL(usb_ep_alloc_request);
192 
193 /**
194  * usb_ep_free_request - frees a request object
195  * @ep:the endpoint associated with the request
196  * @req:the request being freed
197  *
198  * Reverses the effect of usb_ep_alloc_request().
199  * Caller guarantees the request is not queued, and that it will
200  * no longer be requeued (or otherwise used).
201  */
usb_ep_free_request(struct usb_ep * ep,struct usb_request * req)202 void usb_ep_free_request(struct usb_ep *ep,
203 				       struct usb_request *req)
204 {
205 	trace_usb_ep_free_request(ep, req, 0);
206 	ep->ops->free_request(ep, req);
207 }
208 EXPORT_SYMBOL_GPL(usb_ep_free_request);
209 
210 /**
211  * usb_ep_queue - queues (submits) an I/O request to an endpoint.
212  * @ep:the endpoint associated with the request
213  * @req:the request being submitted
214  * @gfp_flags: GFP_* flags to use in case the lower level driver couldn't
215  *	pre-allocate all necessary memory with the request.
216  *
217  * This tells the device controller to perform the specified request through
218  * that endpoint (reading or writing a buffer).  When the request completes,
219  * including being canceled by usb_ep_dequeue(), the request's completion
220  * routine is called to return the request to the driver.  Any endpoint
221  * (except control endpoints like ep0) may have more than one transfer
222  * request queued; they complete in FIFO order.  Once a gadget driver
223  * submits a request, that request may not be examined or modified until it
224  * is given back to that driver through the completion callback.
225  *
226  * Each request is turned into one or more packets.  The controller driver
227  * never merges adjacent requests into the same packet.  OUT transfers
228  * will sometimes use data that's already buffered in the hardware.
229  * Drivers can rely on the fact that the first byte of the request's buffer
230  * always corresponds to the first byte of some USB packet, for both
231  * IN and OUT transfers.
232  *
233  * Bulk endpoints can queue any amount of data; the transfer is packetized
234  * automatically.  The last packet will be short if the request doesn't fill it
235  * out completely.  Zero length packets (ZLPs) should be avoided in portable
236  * protocols since not all usb hardware can successfully handle zero length
237  * packets.  (ZLPs may be explicitly written, and may be implicitly written if
238  * the request 'zero' flag is set.)  Bulk endpoints may also be used
239  * for interrupt transfers; but the reverse is not true, and some endpoints
240  * won't support every interrupt transfer.  (Such as 768 byte packets.)
241  *
242  * Interrupt-only endpoints are less functional than bulk endpoints, for
243  * example by not supporting queueing or not handling buffers that are
244  * larger than the endpoint's maxpacket size.  They may also treat data
245  * toggle differently.
246  *
247  * Control endpoints ... after getting a setup() callback, the driver queues
248  * one response (even if it would be zero length).  That enables the
249  * status ack, after transferring data as specified in the response.  Setup
250  * functions may return negative error codes to generate protocol stalls.
251  * (Note that some USB device controllers disallow protocol stall responses
252  * in some cases.)  When control responses are deferred (the response is
253  * written after the setup callback returns), then usb_ep_set_halt() may be
254  * used on ep0 to trigger protocol stalls.  Depending on the controller,
255  * it may not be possible to trigger a status-stage protocol stall when the
256  * data stage is over, that is, from within the response's completion
257  * routine.
258  *
259  * For periodic endpoints, like interrupt or isochronous ones, the usb host
260  * arranges to poll once per interval, and the gadget driver usually will
261  * have queued some data to transfer at that time.
262  *
263  * Note that @req's ->complete() callback must never be called from
264  * within usb_ep_queue() as that can create deadlock situations.
265  *
266  * Returns zero, or a negative error code.  Endpoints that are not enabled
267  * report errors; errors will also be
268  * reported when the usb peripheral is disconnected.
269  */
usb_ep_queue(struct usb_ep * ep,struct usb_request * req,gfp_t gfp_flags)270 int usb_ep_queue(struct usb_ep *ep,
271 			       struct usb_request *req, gfp_t gfp_flags)
272 {
273 	int ret = 0;
274 
275 	if (WARN_ON_ONCE(!ep->enabled && ep->address)) {
276 		ret = -ESHUTDOWN;
277 		goto out;
278 	}
279 
280 	ret = ep->ops->queue(ep, req, gfp_flags);
281 
282 out:
283 	trace_usb_ep_queue(ep, req, ret);
284 
285 	return ret;
286 }
287 EXPORT_SYMBOL_GPL(usb_ep_queue);
288 
289 /**
290  * usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint
291  * @ep:the endpoint associated with the request
292  * @req:the request being canceled
293  *
294  * If the request is still active on the endpoint, it is dequeued and its
295  * completion routine is called (with status -ECONNRESET); else a negative
296  * error code is returned. This is guaranteed to happen before the call to
297  * usb_ep_dequeue() returns.
298  *
299  * Note that some hardware can't clear out write fifos (to unlink the request
300  * at the head of the queue) except as part of disconnecting from usb. Such
301  * restrictions prevent drivers from supporting configuration changes,
302  * even to configuration zero (a "chapter 9" requirement).
303  */
usb_ep_dequeue(struct usb_ep * ep,struct usb_request * req)304 int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
305 {
306 	int ret;
307 
308 	ret = ep->ops->dequeue(ep, req);
309 	trace_usb_ep_dequeue(ep, req, ret);
310 
311 	return ret;
312 }
313 EXPORT_SYMBOL_GPL(usb_ep_dequeue);
314 
315 /**
316  * usb_ep_set_halt - sets the endpoint halt feature.
317  * @ep: the non-isochronous endpoint being stalled
318  *
319  * Use this to stall an endpoint, perhaps as an error report.
320  * Except for control endpoints,
321  * the endpoint stays halted (will not stream any data) until the host
322  * clears this feature; drivers may need to empty the endpoint's request
323  * queue first, to make sure no inappropriate transfers happen.
324  *
325  * Note that while an endpoint CLEAR_FEATURE will be invisible to the
326  * gadget driver, a SET_INTERFACE will not be.  To reset endpoints for the
327  * current altsetting, see usb_ep_clear_halt().  When switching altsettings,
328  * it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints.
329  *
330  * Returns zero, or a negative error code.  On success, this call sets
331  * underlying hardware state that blocks data transfers.
332  * Attempts to halt IN endpoints will fail (returning -EAGAIN) if any
333  * transfer requests are still queued, or if the controller hardware
334  * (usually a FIFO) still holds bytes that the host hasn't collected.
335  */
usb_ep_set_halt(struct usb_ep * ep)336 int usb_ep_set_halt(struct usb_ep *ep)
337 {
338 	int ret;
339 
340 	ret = ep->ops->set_halt(ep, 1);
341 	trace_usb_ep_set_halt(ep, ret);
342 
343 	return ret;
344 }
345 EXPORT_SYMBOL_GPL(usb_ep_set_halt);
346 
347 /**
348  * usb_ep_clear_halt - clears endpoint halt, and resets toggle
349  * @ep:the bulk or interrupt endpoint being reset
350  *
351  * Use this when responding to the standard usb "set interface" request,
352  * for endpoints that aren't reconfigured, after clearing any other state
353  * in the endpoint's i/o queue.
354  *
355  * Returns zero, or a negative error code.  On success, this call clears
356  * the underlying hardware state reflecting endpoint halt and data toggle.
357  * Note that some hardware can't support this request (like pxa2xx_udc),
358  * and accordingly can't correctly implement interface altsettings.
359  */
usb_ep_clear_halt(struct usb_ep * ep)360 int usb_ep_clear_halt(struct usb_ep *ep)
361 {
362 	int ret;
363 
364 	ret = ep->ops->set_halt(ep, 0);
365 	trace_usb_ep_clear_halt(ep, ret);
366 
367 	return ret;
368 }
369 EXPORT_SYMBOL_GPL(usb_ep_clear_halt);
370 
371 /**
372  * usb_ep_set_wedge - sets the halt feature and ignores clear requests
373  * @ep: the endpoint being wedged
374  *
375  * Use this to stall an endpoint and ignore CLEAR_FEATURE(HALT_ENDPOINT)
376  * requests. If the gadget driver clears the halt status, it will
377  * automatically unwedge the endpoint.
378  *
379  * Returns zero on success, else negative errno.
380  */
usb_ep_set_wedge(struct usb_ep * ep)381 int usb_ep_set_wedge(struct usb_ep *ep)
382 {
383 	int ret;
384 
385 	if (ep->ops->set_wedge)
386 		ret = ep->ops->set_wedge(ep);
387 	else
388 		ret = ep->ops->set_halt(ep, 1);
389 
390 	trace_usb_ep_set_wedge(ep, ret);
391 
392 	return ret;
393 }
394 EXPORT_SYMBOL_GPL(usb_ep_set_wedge);
395 
396 /**
397  * usb_ep_fifo_status - returns number of bytes in fifo, or error
398  * @ep: the endpoint whose fifo status is being checked.
399  *
400  * FIFO endpoints may have "unclaimed data" in them in certain cases,
401  * such as after aborted transfers.  Hosts may not have collected all
402  * the IN data written by the gadget driver (and reported by a request
403  * completion).  The gadget driver may not have collected all the data
404  * written OUT to it by the host.  Drivers that need precise handling for
405  * fault reporting or recovery may need to use this call.
406  *
407  * This returns the number of such bytes in the fifo, or a negative
408  * errno if the endpoint doesn't use a FIFO or doesn't support such
409  * precise handling.
410  */
usb_ep_fifo_status(struct usb_ep * ep)411 int usb_ep_fifo_status(struct usb_ep *ep)
412 {
413 	int ret;
414 
415 	if (ep->ops->fifo_status)
416 		ret = ep->ops->fifo_status(ep);
417 	else
418 		ret = -EOPNOTSUPP;
419 
420 	trace_usb_ep_fifo_status(ep, ret);
421 
422 	return ret;
423 }
424 EXPORT_SYMBOL_GPL(usb_ep_fifo_status);
425 
426 /**
427  * usb_ep_fifo_flush - flushes contents of a fifo
428  * @ep: the endpoint whose fifo is being flushed.
429  *
430  * This call may be used to flush the "unclaimed data" that may exist in
431  * an endpoint fifo after abnormal transaction terminations.  The call
432  * must never be used except when endpoint is not being used for any
433  * protocol translation.
434  */
usb_ep_fifo_flush(struct usb_ep * ep)435 void usb_ep_fifo_flush(struct usb_ep *ep)
436 {
437 	if (ep->ops->fifo_flush)
438 		ep->ops->fifo_flush(ep);
439 
440 	trace_usb_ep_fifo_flush(ep, 0);
441 }
442 EXPORT_SYMBOL_GPL(usb_ep_fifo_flush);
443 
444 /* ------------------------------------------------------------------------- */
445 
446 /**
447  * usb_gadget_frame_number - returns the current frame number
448  * @gadget: controller that reports the frame number
449  *
450  * Returns the usb frame number, normally eleven bits from a SOF packet,
451  * or negative errno if this device doesn't support this capability.
452  */
usb_gadget_frame_number(struct usb_gadget * gadget)453 int usb_gadget_frame_number(struct usb_gadget *gadget)
454 {
455 	int ret;
456 
457 	ret = gadget->ops->get_frame(gadget);
458 
459 	trace_usb_gadget_frame_number(gadget, ret);
460 
461 	return ret;
462 }
463 EXPORT_SYMBOL_GPL(usb_gadget_frame_number);
464 
465 /**
466  * usb_gadget_wakeup - tries to wake up the host connected to this gadget
467  * @gadget: controller used to wake up the host
468  *
469  * Returns zero on success, else negative error code if the hardware
470  * doesn't support such attempts, or its support has not been enabled
471  * by the usb host.  Drivers must return device descriptors that report
472  * their ability to support this, or hosts won't enable it.
473  *
474  * This may also try to use SRP to wake the host and start enumeration,
475  * even if OTG isn't otherwise in use.  OTG devices may also start
476  * remote wakeup even when hosts don't explicitly enable it.
477  */
usb_gadget_wakeup(struct usb_gadget * gadget)478 int usb_gadget_wakeup(struct usb_gadget *gadget)
479 {
480 	int ret = 0;
481 
482 	if (!gadget->ops->wakeup) {
483 		ret = -EOPNOTSUPP;
484 		goto out;
485 	}
486 
487 	ret = gadget->ops->wakeup(gadget);
488 
489 out:
490 	trace_usb_gadget_wakeup(gadget, ret);
491 
492 	return ret;
493 }
494 EXPORT_SYMBOL_GPL(usb_gadget_wakeup);
495 
496 /**
497  * usb_gadget_set_selfpowered - sets the device selfpowered feature.
498  * @gadget:the device being declared as self-powered
499  *
500  * this affects the device status reported by the hardware driver
501  * to reflect that it now has a local power supply.
502  *
503  * returns zero on success, else negative errno.
504  */
usb_gadget_set_selfpowered(struct usb_gadget * gadget)505 int usb_gadget_set_selfpowered(struct usb_gadget *gadget)
506 {
507 	int ret = 0;
508 
509 	if (!gadget->ops->set_selfpowered) {
510 		ret = -EOPNOTSUPP;
511 		goto out;
512 	}
513 
514 	ret = gadget->ops->set_selfpowered(gadget, 1);
515 
516 out:
517 	trace_usb_gadget_set_selfpowered(gadget, ret);
518 
519 	return ret;
520 }
521 EXPORT_SYMBOL_GPL(usb_gadget_set_selfpowered);
522 
523 /**
524  * usb_gadget_clear_selfpowered - clear the device selfpowered feature.
525  * @gadget:the device being declared as bus-powered
526  *
527  * this affects the device status reported by the hardware driver.
528  * some hardware may not support bus-powered operation, in which
529  * case this feature's value can never change.
530  *
531  * returns zero on success, else negative errno.
532  */
usb_gadget_clear_selfpowered(struct usb_gadget * gadget)533 int usb_gadget_clear_selfpowered(struct usb_gadget *gadget)
534 {
535 	int ret = 0;
536 
537 	if (!gadget->ops->set_selfpowered) {
538 		ret = -EOPNOTSUPP;
539 		goto out;
540 	}
541 
542 	ret = gadget->ops->set_selfpowered(gadget, 0);
543 
544 out:
545 	trace_usb_gadget_clear_selfpowered(gadget, ret);
546 
547 	return ret;
548 }
549 EXPORT_SYMBOL_GPL(usb_gadget_clear_selfpowered);
550 
551 /**
552  * usb_gadget_vbus_connect - Notify controller that VBUS is powered
553  * @gadget:The device which now has VBUS power.
554  * Context: can sleep
555  *
556  * This call is used by a driver for an external transceiver (or GPIO)
557  * that detects a VBUS power session starting.  Common responses include
558  * resuming the controller, activating the D+ (or D-) pullup to let the
559  * host detect that a USB device is attached, and starting to draw power
560  * (8mA or possibly more, especially after SET_CONFIGURATION).
561  *
562  * Returns zero on success, else negative errno.
563  */
usb_gadget_vbus_connect(struct usb_gadget * gadget)564 int usb_gadget_vbus_connect(struct usb_gadget *gadget)
565 {
566 	int ret = 0;
567 
568 	if (!gadget->ops->vbus_session) {
569 		ret = -EOPNOTSUPP;
570 		goto out;
571 	}
572 
573 	ret = gadget->ops->vbus_session(gadget, 1);
574 
575 out:
576 	trace_usb_gadget_vbus_connect(gadget, ret);
577 
578 	return ret;
579 }
580 EXPORT_SYMBOL_GPL(usb_gadget_vbus_connect);
581 
582 /**
583  * usb_gadget_vbus_draw - constrain controller's VBUS power usage
584  * @gadget:The device whose VBUS usage is being described
585  * @mA:How much current to draw, in milliAmperes.  This should be twice
586  *	the value listed in the configuration descriptor bMaxPower field.
587  *
588  * This call is used by gadget drivers during SET_CONFIGURATION calls,
589  * reporting how much power the device may consume.  For example, this
590  * could affect how quickly batteries are recharged.
591  *
592  * Returns zero on success, else negative errno.
593  */
usb_gadget_vbus_draw(struct usb_gadget * gadget,unsigned mA)594 int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
595 {
596 	int ret = 0;
597 
598 	if (!gadget->ops->vbus_draw) {
599 		ret = -EOPNOTSUPP;
600 		goto out;
601 	}
602 
603 	ret = gadget->ops->vbus_draw(gadget, mA);
604 	if (!ret)
605 		gadget->mA = mA;
606 
607 out:
608 	trace_usb_gadget_vbus_draw(gadget, ret);
609 
610 	return ret;
611 }
612 EXPORT_SYMBOL_GPL(usb_gadget_vbus_draw);
613 
614 /**
615  * usb_gadget_vbus_disconnect - notify controller about VBUS session end
616  * @gadget:the device whose VBUS supply is being described
617  * Context: can sleep
618  *
619  * This call is used by a driver for an external transceiver (or GPIO)
620  * that detects a VBUS power session ending.  Common responses include
621  * reversing everything done in usb_gadget_vbus_connect().
622  *
623  * Returns zero on success, else negative errno.
624  */
usb_gadget_vbus_disconnect(struct usb_gadget * gadget)625 int usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
626 {
627 	int ret = 0;
628 
629 	if (!gadget->ops->vbus_session) {
630 		ret = -EOPNOTSUPP;
631 		goto out;
632 	}
633 
634 	ret = gadget->ops->vbus_session(gadget, 0);
635 
636 out:
637 	trace_usb_gadget_vbus_disconnect(gadget, ret);
638 
639 	return ret;
640 }
641 EXPORT_SYMBOL_GPL(usb_gadget_vbus_disconnect);
642 
643 /**
644  * usb_gadget_connect - software-controlled connect to USB host
645  * @gadget:the peripheral being connected
646  *
647  * Enables the D+ (or potentially D-) pullup.  The host will start
648  * enumerating this gadget when the pullup is active and a VBUS session
649  * is active (the link is powered).  This pullup is always enabled unless
650  * usb_gadget_disconnect() has been used to disable it.
651  *
652  * Returns zero on success, else negative errno.
653  */
usb_gadget_connect(struct usb_gadget * gadget)654 int usb_gadget_connect(struct usb_gadget *gadget)
655 {
656 	int ret = 0;
657 
658 	if (!gadget->ops->pullup) {
659 		ret = -EOPNOTSUPP;
660 		goto out;
661 	}
662 
663 	if (gadget->deactivated) {
664 		/*
665 		 * If gadget is deactivated we only save new state.
666 		 * Gadget will be connected automatically after activation.
667 		 */
668 		gadget->connected = true;
669 		goto out;
670 	}
671 
672 	ret = gadget->ops->pullup(gadget, 1);
673 	if (!ret)
674 		gadget->connected = 1;
675 
676 out:
677 	trace_usb_gadget_connect(gadget, ret);
678 
679 	return ret;
680 }
681 EXPORT_SYMBOL_GPL(usb_gadget_connect);
682 
683 /**
684  * usb_gadget_disconnect - software-controlled disconnect from USB host
685  * @gadget:the peripheral being disconnected
686  *
687  * Disables the D+ (or potentially D-) pullup, which the host may see
688  * as a disconnect (when a VBUS session is active).  Not all systems
689  * support software pullup controls.
690  *
691  * Returns zero on success, else negative errno.
692  */
usb_gadget_disconnect(struct usb_gadget * gadget)693 int usb_gadget_disconnect(struct usb_gadget *gadget)
694 {
695 	int ret = 0;
696 
697 	if (!gadget->ops->pullup) {
698 		ret = -EOPNOTSUPP;
699 		goto out;
700 	}
701 
702 	if (gadget->deactivated) {
703 		/*
704 		 * If gadget is deactivated we only save new state.
705 		 * Gadget will stay disconnected after activation.
706 		 */
707 		gadget->connected = false;
708 		goto out;
709 	}
710 
711 	ret = gadget->ops->pullup(gadget, 0);
712 	if (!ret)
713 		gadget->connected = 0;
714 
715 out:
716 	trace_usb_gadget_disconnect(gadget, ret);
717 
718 	return ret;
719 }
720 EXPORT_SYMBOL_GPL(usb_gadget_disconnect);
721 
722 /**
723  * usb_gadget_deactivate - deactivate function which is not ready to work
724  * @gadget: the peripheral being deactivated
725  *
726  * This routine may be used during the gadget driver bind() call to prevent
727  * the peripheral from ever being visible to the USB host, unless later
728  * usb_gadget_activate() is called.  For example, user mode components may
729  * need to be activated before the system can talk to hosts.
730  *
731  * Returns zero on success, else negative errno.
732  */
usb_gadget_deactivate(struct usb_gadget * gadget)733 int usb_gadget_deactivate(struct usb_gadget *gadget)
734 {
735 	int ret = 0;
736 
737 	if (gadget->deactivated)
738 		goto out;
739 
740 	if (gadget->connected) {
741 		ret = usb_gadget_disconnect(gadget);
742 		if (ret)
743 			goto out;
744 
745 		/*
746 		 * If gadget was being connected before deactivation, we want
747 		 * to reconnect it in usb_gadget_activate().
748 		 */
749 		gadget->connected = true;
750 	}
751 	gadget->deactivated = true;
752 
753 out:
754 	trace_usb_gadget_deactivate(gadget, ret);
755 
756 	return ret;
757 }
758 EXPORT_SYMBOL_GPL(usb_gadget_deactivate);
759 
760 /**
761  * usb_gadget_activate - activate function which is not ready to work
762  * @gadget: the peripheral being activated
763  *
764  * This routine activates gadget which was previously deactivated with
765  * usb_gadget_deactivate() call. It calls usb_gadget_connect() if needed.
766  *
767  * Returns zero on success, else negative errno.
768  */
usb_gadget_activate(struct usb_gadget * gadget)769 int usb_gadget_activate(struct usb_gadget *gadget)
770 {
771 	int ret = 0;
772 
773 	if (!gadget->deactivated)
774 		goto out;
775 
776 	gadget->deactivated = false;
777 
778 	/*
779 	 * If gadget has been connected before deactivation, or became connected
780 	 * while it was being deactivated, we call usb_gadget_connect().
781 	 */
782 	if (gadget->connected)
783 		ret = usb_gadget_connect(gadget);
784 
785 out:
786 	trace_usb_gadget_activate(gadget, ret);
787 
788 	return ret;
789 }
790 EXPORT_SYMBOL_GPL(usb_gadget_activate);
791 
792 /* ------------------------------------------------------------------------- */
793 
794 #ifdef	CONFIG_HAS_DMA
795 
usb_gadget_map_request_by_dev(struct device * dev,struct usb_request * req,int is_in)796 int usb_gadget_map_request_by_dev(struct device *dev,
797 		struct usb_request *req, int is_in)
798 {
799 	if (req->length == 0)
800 		return 0;
801 
802 	if (req->num_sgs) {
803 		int     mapped;
804 
805 		mapped = dma_map_sg(dev, req->sg, req->num_sgs,
806 				is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
807 		if (mapped == 0) {
808 			dev_err(dev, "failed to map SGs\n");
809 			return -EFAULT;
810 		}
811 
812 		req->num_mapped_sgs = mapped;
813 	} else {
814 		if (is_vmalloc_addr(req->buf)) {
815 			dev_err(dev, "buffer is not dma capable\n");
816 			return -EFAULT;
817 		} else if (object_is_on_stack(req->buf)) {
818 			dev_err(dev, "buffer is on stack\n");
819 			return -EFAULT;
820 		}
821 
822 		req->dma = dma_map_single(dev, req->buf, req->length,
823 				is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
824 
825 		if (dma_mapping_error(dev, req->dma)) {
826 			dev_err(dev, "failed to map buffer\n");
827 			return -EFAULT;
828 		}
829 
830 		req->dma_mapped = 1;
831 	}
832 
833 	return 0;
834 }
835 EXPORT_SYMBOL_GPL(usb_gadget_map_request_by_dev);
836 
usb_gadget_map_request(struct usb_gadget * gadget,struct usb_request * req,int is_in)837 int usb_gadget_map_request(struct usb_gadget *gadget,
838 		struct usb_request *req, int is_in)
839 {
840 	return usb_gadget_map_request_by_dev(gadget->dev.parent, req, is_in);
841 }
842 EXPORT_SYMBOL_GPL(usb_gadget_map_request);
843 
usb_gadget_unmap_request_by_dev(struct device * dev,struct usb_request * req,int is_in)844 void usb_gadget_unmap_request_by_dev(struct device *dev,
845 		struct usb_request *req, int is_in)
846 {
847 	if (req->length == 0)
848 		return;
849 
850 	if (req->num_mapped_sgs) {
851 		dma_unmap_sg(dev, req->sg, req->num_sgs,
852 				is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
853 
854 		req->num_mapped_sgs = 0;
855 	} else if (req->dma_mapped) {
856 		dma_unmap_single(dev, req->dma, req->length,
857 				is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
858 		req->dma_mapped = 0;
859 	}
860 }
861 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request_by_dev);
862 
usb_gadget_unmap_request(struct usb_gadget * gadget,struct usb_request * req,int is_in)863 void usb_gadget_unmap_request(struct usb_gadget *gadget,
864 		struct usb_request *req, int is_in)
865 {
866 	usb_gadget_unmap_request_by_dev(gadget->dev.parent, req, is_in);
867 }
868 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request);
869 
870 #endif	/* CONFIG_HAS_DMA */
871 
872 /* ------------------------------------------------------------------------- */
873 
874 /**
875  * usb_gadget_giveback_request - give the request back to the gadget layer
876  * Context: in_interrupt()
877  *
878  * This is called by device controller drivers in order to return the
879  * completed request back to the gadget layer.
880  */
usb_gadget_giveback_request(struct usb_ep * ep,struct usb_request * req)881 void usb_gadget_giveback_request(struct usb_ep *ep,
882 		struct usb_request *req)
883 {
884 	if (likely(req->status == 0))
885 		usb_led_activity(USB_LED_EVENT_GADGET);
886 
887 	trace_usb_gadget_giveback_request(ep, req, 0);
888 
889 	req->complete(ep, req);
890 }
891 EXPORT_SYMBOL_GPL(usb_gadget_giveback_request);
892 
893 /* ------------------------------------------------------------------------- */
894 
895 /**
896  * gadget_find_ep_by_name - returns ep whose name is the same as sting passed
897  *	in second parameter or NULL if searched endpoint not found
898  * @g: controller to check for quirk
899  * @name: name of searched endpoint
900  */
gadget_find_ep_by_name(struct usb_gadget * g,const char * name)901 struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g, const char *name)
902 {
903 	struct usb_ep *ep;
904 
905 	gadget_for_each_ep(ep, g) {
906 		if (!strcmp(ep->name, name))
907 			return ep;
908 	}
909 
910 	return NULL;
911 }
912 EXPORT_SYMBOL_GPL(gadget_find_ep_by_name);
913 
914 /* ------------------------------------------------------------------------- */
915 
usb_gadget_ep_match_desc(struct usb_gadget * gadget,struct usb_ep * ep,struct usb_endpoint_descriptor * desc,struct usb_ss_ep_comp_descriptor * ep_comp)916 int usb_gadget_ep_match_desc(struct usb_gadget *gadget,
917 		struct usb_ep *ep, struct usb_endpoint_descriptor *desc,
918 		struct usb_ss_ep_comp_descriptor *ep_comp)
919 {
920 	u8		type;
921 	u16		max;
922 	int		num_req_streams = 0;
923 
924 	/* endpoint already claimed? */
925 	if (ep->claimed)
926 		return 0;
927 
928 	type = usb_endpoint_type(desc);
929 	max = 0x7ff & usb_endpoint_maxp(desc);
930 
931 	if (usb_endpoint_dir_in(desc) && !ep->caps.dir_in)
932 		return 0;
933 	if (usb_endpoint_dir_out(desc) && !ep->caps.dir_out)
934 		return 0;
935 
936 	if (max > ep->maxpacket_limit)
937 		return 0;
938 
939 	/* "high bandwidth" works only at high speed */
940 	if (!gadget_is_dualspeed(gadget) && usb_endpoint_maxp_mult(desc) > 1)
941 		return 0;
942 
943 	switch (type) {
944 	case USB_ENDPOINT_XFER_CONTROL:
945 		/* only support ep0 for portable CONTROL traffic */
946 		return 0;
947 	case USB_ENDPOINT_XFER_ISOC:
948 		if (!ep->caps.type_iso)
949 			return 0;
950 		/* ISO:  limit 1023 bytes full speed, 1024 high/super speed */
951 		if (!gadget_is_dualspeed(gadget) && max > 1023)
952 			return 0;
953 		break;
954 	case USB_ENDPOINT_XFER_BULK:
955 		if (!ep->caps.type_bulk)
956 			return 0;
957 		if (ep_comp && gadget_is_superspeed(gadget)) {
958 			/* Get the number of required streams from the
959 			 * EP companion descriptor and see if the EP
960 			 * matches it
961 			 */
962 			num_req_streams = ep_comp->bmAttributes & 0x1f;
963 			if (num_req_streams > ep->max_streams)
964 				return 0;
965 		}
966 		break;
967 	case USB_ENDPOINT_XFER_INT:
968 		/* Bulk endpoints handle interrupt transfers,
969 		 * except the toggle-quirky iso-synch kind
970 		 */
971 		if (!ep->caps.type_int && !ep->caps.type_bulk)
972 			return 0;
973 		/* INT:  limit 64 bytes full speed, 1024 high/super speed */
974 		if (!gadget_is_dualspeed(gadget) && max > 64)
975 			return 0;
976 		break;
977 	}
978 
979 	return 1;
980 }
981 EXPORT_SYMBOL_GPL(usb_gadget_ep_match_desc);
982 
983 /* ------------------------------------------------------------------------- */
984 
usb_gadget_state_work(struct work_struct * work)985 static void usb_gadget_state_work(struct work_struct *work)
986 {
987 	struct usb_gadget *gadget = work_to_gadget(work);
988 	struct usb_udc *udc = gadget->udc;
989 
990 	if (udc)
991 		sysfs_notify(&udc->dev.kobj, NULL, "state");
992 }
993 
usb_gadget_set_state(struct usb_gadget * gadget,enum usb_device_state state)994 void usb_gadget_set_state(struct usb_gadget *gadget,
995 		enum usb_device_state state)
996 {
997 	gadget->state = state;
998 	schedule_work(&gadget->work);
999 }
1000 EXPORT_SYMBOL_GPL(usb_gadget_set_state);
1001 
1002 /* ------------------------------------------------------------------------- */
1003 
usb_udc_connect_control(struct usb_udc * udc)1004 static void usb_udc_connect_control(struct usb_udc *udc)
1005 {
1006 	if (udc->vbus)
1007 		usb_gadget_connect(udc->gadget);
1008 	else
1009 		usb_gadget_disconnect(udc->gadget);
1010 }
1011 
1012 /**
1013  * usb_udc_vbus_handler - updates the udc core vbus status, and try to
1014  * connect or disconnect gadget
1015  * @gadget: The gadget which vbus change occurs
1016  * @status: The vbus status
1017  *
1018  * The udc driver calls it when it wants to connect or disconnect gadget
1019  * according to vbus status.
1020  */
usb_udc_vbus_handler(struct usb_gadget * gadget,bool status)1021 void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status)
1022 {
1023 	struct usb_udc *udc = gadget->udc;
1024 
1025 	if (udc) {
1026 		udc->vbus = status;
1027 		usb_udc_connect_control(udc);
1028 	}
1029 }
1030 EXPORT_SYMBOL_GPL(usb_udc_vbus_handler);
1031 
1032 /**
1033  * usb_gadget_udc_reset - notifies the udc core that bus reset occurs
1034  * @gadget: The gadget which bus reset occurs
1035  * @driver: The gadget driver we want to notify
1036  *
1037  * If the udc driver has bus reset handler, it needs to call this when the bus
1038  * reset occurs, it notifies the gadget driver that the bus reset occurs as
1039  * well as updates gadget state.
1040  */
usb_gadget_udc_reset(struct usb_gadget * gadget,struct usb_gadget_driver * driver)1041 void usb_gadget_udc_reset(struct usb_gadget *gadget,
1042 		struct usb_gadget_driver *driver)
1043 {
1044 	driver->reset(gadget);
1045 	usb_gadget_set_state(gadget, USB_STATE_DEFAULT);
1046 }
1047 EXPORT_SYMBOL_GPL(usb_gadget_udc_reset);
1048 
1049 /**
1050  * usb_gadget_udc_start - tells usb device controller to start up
1051  * @udc: The UDC to be started
1052  *
1053  * This call is issued by the UDC Class driver when it's about
1054  * to register a gadget driver to the device controller, before
1055  * calling gadget driver's bind() method.
1056  *
1057  * It allows the controller to be powered off until strictly
1058  * necessary to have it powered on.
1059  *
1060  * Returns zero on success, else negative errno.
1061  */
usb_gadget_udc_start(struct usb_udc * udc)1062 static inline int usb_gadget_udc_start(struct usb_udc *udc)
1063 {
1064 	return udc->gadget->ops->udc_start(udc->gadget, udc->driver);
1065 }
1066 
1067 /**
1068  * usb_gadget_udc_stop - tells usb device controller we don't need it anymore
1069  * @gadget: The device we want to stop activity
1070  * @driver: The driver to unbind from @gadget
1071  *
1072  * This call is issued by the UDC Class driver after calling
1073  * gadget driver's unbind() method.
1074  *
1075  * The details are implementation specific, but it can go as
1076  * far as powering off UDC completely and disable its data
1077  * line pullups.
1078  */
usb_gadget_udc_stop(struct usb_udc * udc)1079 static inline void usb_gadget_udc_stop(struct usb_udc *udc)
1080 {
1081 	udc->gadget->ops->udc_stop(udc->gadget);
1082 }
1083 
1084 /**
1085  * usb_gadget_udc_set_speed - tells usb device controller speed supported by
1086  *    current driver
1087  * @udc: The device we want to set maximum speed
1088  * @speed: The maximum speed to allowed to run
1089  *
1090  * This call is issued by the UDC Class driver before calling
1091  * usb_gadget_udc_start() in order to make sure that we don't try to
1092  * connect on speeds the gadget driver doesn't support.
1093  */
usb_gadget_udc_set_speed(struct usb_udc * udc,enum usb_device_speed speed)1094 static inline void usb_gadget_udc_set_speed(struct usb_udc *udc,
1095 					    enum usb_device_speed speed)
1096 {
1097 	if (udc->gadget->ops->udc_set_speed) {
1098 		enum usb_device_speed s;
1099 
1100 		s = min(speed, udc->gadget->max_speed);
1101 		udc->gadget->ops->udc_set_speed(udc->gadget, s);
1102 	}
1103 }
1104 
1105 /**
1106  * usb_udc_release - release the usb_udc struct
1107  * @dev: the dev member within usb_udc
1108  *
1109  * This is called by driver's core in order to free memory once the last
1110  * reference is released.
1111  */
usb_udc_release(struct device * dev)1112 static void usb_udc_release(struct device *dev)
1113 {
1114 	struct usb_udc *udc;
1115 
1116 	udc = container_of(dev, struct usb_udc, dev);
1117 	dev_dbg(dev, "releasing '%s'\n", dev_name(dev));
1118 	kfree(udc);
1119 }
1120 
1121 static const struct attribute_group *usb_udc_attr_groups[];
1122 
usb_udc_nop_release(struct device * dev)1123 static void usb_udc_nop_release(struct device *dev)
1124 {
1125 	dev_vdbg(dev, "%s\n", __func__);
1126 }
1127 
1128 /* should be called with udc_lock held */
check_pending_gadget_drivers(struct usb_udc * udc)1129 static int check_pending_gadget_drivers(struct usb_udc *udc)
1130 {
1131 	struct usb_gadget_driver *driver;
1132 	int ret = 0;
1133 
1134 	list_for_each_entry(driver, &gadget_driver_pending_list, pending)
1135 		if (!driver->udc_name || strcmp(driver->udc_name,
1136 						dev_name(&udc->dev)) == 0) {
1137 			ret = udc_bind_to_driver(udc, driver);
1138 			if (ret != -EPROBE_DEFER)
1139 				list_del(&driver->pending);
1140 			break;
1141 		}
1142 
1143 	return ret;
1144 }
1145 
1146 /**
1147  * usb_add_gadget_udc_release - adds a new gadget to the udc class driver list
1148  * @parent: the parent device to this udc. Usually the controller driver's
1149  * device.
1150  * @gadget: the gadget to be added to the list.
1151  * @release: a gadget release function.
1152  *
1153  * Returns zero on success, negative errno otherwise.
1154  * Calls the gadget release function in the latter case.
1155  */
usb_add_gadget_udc_release(struct device * parent,struct usb_gadget * gadget,void (* release)(struct device * dev))1156 int usb_add_gadget_udc_release(struct device *parent, struct usb_gadget *gadget,
1157 		void (*release)(struct device *dev))
1158 {
1159 	struct usb_udc		*udc;
1160 	int			ret = -ENOMEM;
1161 
1162 	dev_set_name(&gadget->dev, "gadget");
1163 	INIT_WORK(&gadget->work, usb_gadget_state_work);
1164 	gadget->dev.parent = parent;
1165 
1166 	if (release)
1167 		gadget->dev.release = release;
1168 	else
1169 		gadget->dev.release = usb_udc_nop_release;
1170 
1171 	device_initialize(&gadget->dev);
1172 
1173 	udc = kzalloc(sizeof(*udc), GFP_KERNEL);
1174 	if (!udc)
1175 		goto err_put_gadget;
1176 
1177 	device_initialize(&udc->dev);
1178 	udc->dev.release = usb_udc_release;
1179 	udc->dev.class = udc_class;
1180 	udc->dev.groups = usb_udc_attr_groups;
1181 	udc->dev.parent = parent;
1182 	ret = dev_set_name(&udc->dev, "%s", kobject_name(&parent->kobj));
1183 	if (ret)
1184 		goto err_put_udc;
1185 
1186 	ret = device_add(&gadget->dev);
1187 	if (ret)
1188 		goto err_put_udc;
1189 
1190 	udc->gadget = gadget;
1191 	gadget->udc = udc;
1192 
1193 	mutex_lock(&udc_lock);
1194 	list_add_tail(&udc->list, &udc_list);
1195 
1196 	ret = device_add(&udc->dev);
1197 	if (ret)
1198 		goto err_unlist_udc;
1199 
1200 	usb_gadget_set_state(gadget, USB_STATE_NOTATTACHED);
1201 	udc->vbus = true;
1202 
1203 	/* pick up one of pending gadget drivers */
1204 	ret = check_pending_gadget_drivers(udc);
1205 	if (ret)
1206 		goto err_del_udc;
1207 
1208 	mutex_unlock(&udc_lock);
1209 
1210 	return 0;
1211 
1212  err_del_udc:
1213 	device_del(&udc->dev);
1214 
1215  err_unlist_udc:
1216 	list_del(&udc->list);
1217 	mutex_unlock(&udc_lock);
1218 
1219 	device_del(&gadget->dev);
1220 
1221  err_put_udc:
1222 	put_device(&udc->dev);
1223 
1224  err_put_gadget:
1225 	put_device(&gadget->dev);
1226 	return ret;
1227 }
1228 EXPORT_SYMBOL_GPL(usb_add_gadget_udc_release);
1229 
1230 /**
1231  * usb_get_gadget_udc_name - get the name of the first UDC controller
1232  * This functions returns the name of the first UDC controller in the system.
1233  * Please note that this interface is usefull only for legacy drivers which
1234  * assume that there is only one UDC controller in the system and they need to
1235  * get its name before initialization. There is no guarantee that the UDC
1236  * of the returned name will be still available, when gadget driver registers
1237  * itself.
1238  *
1239  * Returns pointer to string with UDC controller name on success, NULL
1240  * otherwise. Caller should kfree() returned string.
1241  */
usb_get_gadget_udc_name(void)1242 char *usb_get_gadget_udc_name(void)
1243 {
1244 	struct usb_udc *udc;
1245 	char *name = NULL;
1246 
1247 	/* For now we take the first available UDC */
1248 	mutex_lock(&udc_lock);
1249 	list_for_each_entry(udc, &udc_list, list) {
1250 		if (!udc->driver) {
1251 			name = kstrdup(udc->gadget->name, GFP_KERNEL);
1252 			break;
1253 		}
1254 	}
1255 	mutex_unlock(&udc_lock);
1256 	return name;
1257 }
1258 EXPORT_SYMBOL_GPL(usb_get_gadget_udc_name);
1259 
1260 /**
1261  * usb_add_gadget_udc - adds a new gadget to the udc class driver list
1262  * @parent: the parent device to this udc. Usually the controller
1263  * driver's device.
1264  * @gadget: the gadget to be added to the list
1265  *
1266  * Returns zero on success, negative errno otherwise.
1267  */
usb_add_gadget_udc(struct device * parent,struct usb_gadget * gadget)1268 int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget)
1269 {
1270 	return usb_add_gadget_udc_release(parent, gadget, NULL);
1271 }
1272 EXPORT_SYMBOL_GPL(usb_add_gadget_udc);
1273 
usb_gadget_remove_driver(struct usb_udc * udc)1274 static void usb_gadget_remove_driver(struct usb_udc *udc)
1275 {
1276 	dev_dbg(&udc->dev, "unregistering UDC driver [%s]\n",
1277 			udc->driver->function);
1278 
1279 	kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE);
1280 
1281 	usb_gadget_disconnect(udc->gadget);
1282 	udc->driver->disconnect(udc->gadget);
1283 	udc->driver->unbind(udc->gadget);
1284 	usb_gadget_udc_stop(udc);
1285 
1286 	udc->driver = NULL;
1287 	udc->dev.driver = NULL;
1288 	udc->gadget->dev.driver = NULL;
1289 }
1290 
1291 /**
1292  * usb_del_gadget_udc - deletes @udc from udc_list
1293  * @gadget: the gadget to be removed.
1294  *
1295  * This, will call usb_gadget_unregister_driver() if
1296  * the @udc is still busy.
1297  */
usb_del_gadget_udc(struct usb_gadget * gadget)1298 void usb_del_gadget_udc(struct usb_gadget *gadget)
1299 {
1300 	struct usb_udc *udc = gadget->udc;
1301 
1302 	if (!udc)
1303 		return;
1304 
1305 	dev_vdbg(gadget->dev.parent, "unregistering gadget\n");
1306 
1307 	mutex_lock(&udc_lock);
1308 	list_del(&udc->list);
1309 
1310 	if (udc->driver) {
1311 		struct usb_gadget_driver *driver = udc->driver;
1312 
1313 		usb_gadget_remove_driver(udc);
1314 		list_add(&driver->pending, &gadget_driver_pending_list);
1315 	}
1316 	mutex_unlock(&udc_lock);
1317 
1318 	kobject_uevent(&udc->dev.kobj, KOBJ_REMOVE);
1319 	flush_work(&gadget->work);
1320 	device_unregister(&udc->dev);
1321 	device_unregister(&gadget->dev);
1322 	memset(&gadget->dev, 0x00, sizeof(gadget->dev));
1323 }
1324 EXPORT_SYMBOL_GPL(usb_del_gadget_udc);
1325 
1326 /* ------------------------------------------------------------------------- */
1327 
udc_bind_to_driver(struct usb_udc * udc,struct usb_gadget_driver * driver)1328 static int udc_bind_to_driver(struct usb_udc *udc, struct usb_gadget_driver *driver)
1329 {
1330 	int ret;
1331 
1332 	dev_dbg(&udc->dev, "registering UDC driver [%s]\n",
1333 			driver->function);
1334 
1335 	udc->driver = driver;
1336 	udc->dev.driver = &driver->driver;
1337 	udc->gadget->dev.driver = &driver->driver;
1338 
1339 	usb_gadget_udc_set_speed(udc, driver->max_speed);
1340 
1341 	ret = driver->bind(udc->gadget, driver);
1342 	if (ret)
1343 		goto err1;
1344 	ret = usb_gadget_udc_start(udc);
1345 	if (ret) {
1346 		driver->unbind(udc->gadget);
1347 		goto err1;
1348 	}
1349 	usb_udc_connect_control(udc);
1350 
1351 	kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE);
1352 	return 0;
1353 err1:
1354 	if (ret != -EISNAM)
1355 		dev_err(&udc->dev, "failed to start %s: %d\n",
1356 			udc->driver->function, ret);
1357 	udc->driver = NULL;
1358 	udc->dev.driver = NULL;
1359 	udc->gadget->dev.driver = NULL;
1360 	return ret;
1361 }
1362 
usb_gadget_probe_driver(struct usb_gadget_driver * driver)1363 int usb_gadget_probe_driver(struct usb_gadget_driver *driver)
1364 {
1365 	struct usb_udc		*udc = NULL;
1366 	int			ret = -ENODEV;
1367 
1368 	if (!driver || !driver->bind || !driver->setup)
1369 		return -EINVAL;
1370 
1371 	mutex_lock(&udc_lock);
1372 	if (driver->udc_name) {
1373 		list_for_each_entry(udc, &udc_list, list) {
1374 			ret = strcmp(driver->udc_name, dev_name(&udc->dev));
1375 			if (!ret)
1376 				break;
1377 		}
1378 		if (ret)
1379 			ret = -ENODEV;
1380 		else if (udc->driver)
1381 			ret = -EBUSY;
1382 		else
1383 			goto found;
1384 	} else {
1385 		list_for_each_entry(udc, &udc_list, list) {
1386 			/* For now we take the first one */
1387 			if (!udc->driver)
1388 				goto found;
1389 		}
1390 	}
1391 
1392 	if (!driver->match_existing_only) {
1393 		list_add_tail(&driver->pending, &gadget_driver_pending_list);
1394 		pr_info("udc-core: couldn't find an available UDC - added [%s] to list of pending drivers\n",
1395 			driver->function);
1396 		ret = 0;
1397 	}
1398 
1399 	mutex_unlock(&udc_lock);
1400 	return ret;
1401 found:
1402 	ret = udc_bind_to_driver(udc, driver);
1403 	mutex_unlock(&udc_lock);
1404 	return ret;
1405 }
1406 EXPORT_SYMBOL_GPL(usb_gadget_probe_driver);
1407 
usb_gadget_unregister_driver(struct usb_gadget_driver * driver)1408 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
1409 {
1410 	struct usb_udc		*udc = NULL;
1411 	int			ret = -ENODEV;
1412 
1413 	if (!driver || !driver->unbind)
1414 		return -EINVAL;
1415 
1416 	mutex_lock(&udc_lock);
1417 	list_for_each_entry(udc, &udc_list, list) {
1418 		if (udc->driver == driver) {
1419 			usb_gadget_remove_driver(udc);
1420 			usb_gadget_set_state(udc->gadget,
1421 					     USB_STATE_NOTATTACHED);
1422 
1423 			/* Maybe there is someone waiting for this UDC? */
1424 			check_pending_gadget_drivers(udc);
1425 			/*
1426 			 * For now we ignore bind errors as probably it's
1427 			 * not a valid reason to fail other's gadget unbind
1428 			 */
1429 			ret = 0;
1430 			break;
1431 		}
1432 	}
1433 
1434 	if (ret) {
1435 		list_del(&driver->pending);
1436 		ret = 0;
1437 	}
1438 	mutex_unlock(&udc_lock);
1439 	return ret;
1440 }
1441 EXPORT_SYMBOL_GPL(usb_gadget_unregister_driver);
1442 
1443 /* ------------------------------------------------------------------------- */
1444 
usb_udc_srp_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t n)1445 static ssize_t usb_udc_srp_store(struct device *dev,
1446 		struct device_attribute *attr, const char *buf, size_t n)
1447 {
1448 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1449 
1450 	if (sysfs_streq(buf, "1"))
1451 		usb_gadget_wakeup(udc->gadget);
1452 
1453 	return n;
1454 }
1455 static DEVICE_ATTR(srp, S_IWUSR, NULL, usb_udc_srp_store);
1456 
usb_udc_softconn_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t n)1457 static ssize_t usb_udc_softconn_store(struct device *dev,
1458 		struct device_attribute *attr, const char *buf, size_t n)
1459 {
1460 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1461 
1462 	if (!udc->driver) {
1463 		dev_err(dev, "soft-connect without a gadget driver\n");
1464 		return -EOPNOTSUPP;
1465 	}
1466 
1467 	if (sysfs_streq(buf, "connect")) {
1468 		usb_gadget_udc_start(udc);
1469 		usb_gadget_connect(udc->gadget);
1470 	} else if (sysfs_streq(buf, "disconnect")) {
1471 		usb_gadget_disconnect(udc->gadget);
1472 		udc->driver->disconnect(udc->gadget);
1473 		usb_gadget_udc_stop(udc);
1474 	} else {
1475 		dev_err(dev, "unsupported command '%s'\n", buf);
1476 		return -EINVAL;
1477 	}
1478 
1479 	return n;
1480 }
1481 static DEVICE_ATTR(soft_connect, S_IWUSR, NULL, usb_udc_softconn_store);
1482 
state_show(struct device * dev,struct device_attribute * attr,char * buf)1483 static ssize_t state_show(struct device *dev, struct device_attribute *attr,
1484 			  char *buf)
1485 {
1486 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1487 	struct usb_gadget	*gadget = udc->gadget;
1488 
1489 	return sprintf(buf, "%s\n", usb_state_string(gadget->state));
1490 }
1491 static DEVICE_ATTR_RO(state);
1492 
function_show(struct device * dev,struct device_attribute * attr,char * buf)1493 static ssize_t function_show(struct device *dev, struct device_attribute *attr,
1494 			     char *buf)
1495 {
1496 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1497 	struct usb_gadget_driver *drv = udc->driver;
1498 
1499 	if (!drv || !drv->function)
1500 		return 0;
1501 	return scnprintf(buf, PAGE_SIZE, "%s\n", drv->function);
1502 }
1503 static DEVICE_ATTR_RO(function);
1504 
1505 #define USB_UDC_SPEED_ATTR(name, param)					\
1506 ssize_t name##_show(struct device *dev,					\
1507 		struct device_attribute *attr, char *buf)		\
1508 {									\
1509 	struct usb_udc *udc = container_of(dev, struct usb_udc, dev);	\
1510 	return snprintf(buf, PAGE_SIZE, "%s\n",				\
1511 			usb_speed_string(udc->gadget->param));		\
1512 }									\
1513 static DEVICE_ATTR_RO(name)
1514 
1515 static USB_UDC_SPEED_ATTR(current_speed, speed);
1516 static USB_UDC_SPEED_ATTR(maximum_speed, max_speed);
1517 
1518 #define USB_UDC_ATTR(name)					\
1519 ssize_t name##_show(struct device *dev,				\
1520 		struct device_attribute *attr, char *buf)	\
1521 {								\
1522 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev); \
1523 	struct usb_gadget	*gadget = udc->gadget;		\
1524 								\
1525 	return snprintf(buf, PAGE_SIZE, "%d\n", gadget->name);	\
1526 }								\
1527 static DEVICE_ATTR_RO(name)
1528 
1529 static USB_UDC_ATTR(is_otg);
1530 static USB_UDC_ATTR(is_a_peripheral);
1531 static USB_UDC_ATTR(b_hnp_enable);
1532 static USB_UDC_ATTR(a_hnp_support);
1533 static USB_UDC_ATTR(a_alt_hnp_support);
1534 static USB_UDC_ATTR(is_selfpowered);
1535 
1536 static struct attribute *usb_udc_attrs[] = {
1537 	&dev_attr_srp.attr,
1538 	&dev_attr_soft_connect.attr,
1539 	&dev_attr_state.attr,
1540 	&dev_attr_function.attr,
1541 	&dev_attr_current_speed.attr,
1542 	&dev_attr_maximum_speed.attr,
1543 
1544 	&dev_attr_is_otg.attr,
1545 	&dev_attr_is_a_peripheral.attr,
1546 	&dev_attr_b_hnp_enable.attr,
1547 	&dev_attr_a_hnp_support.attr,
1548 	&dev_attr_a_alt_hnp_support.attr,
1549 	&dev_attr_is_selfpowered.attr,
1550 	NULL,
1551 };
1552 
1553 static const struct attribute_group usb_udc_attr_group = {
1554 	.attrs = usb_udc_attrs,
1555 };
1556 
1557 static const struct attribute_group *usb_udc_attr_groups[] = {
1558 	&usb_udc_attr_group,
1559 	NULL,
1560 };
1561 
usb_udc_uevent(struct device * dev,struct kobj_uevent_env * env)1562 static int usb_udc_uevent(struct device *dev, struct kobj_uevent_env *env)
1563 {
1564 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1565 	int			ret;
1566 
1567 	ret = add_uevent_var(env, "USB_UDC_NAME=%s", udc->gadget->name);
1568 	if (ret) {
1569 		dev_err(dev, "failed to add uevent USB_UDC_NAME\n");
1570 		return ret;
1571 	}
1572 
1573 	if (udc->driver) {
1574 		ret = add_uevent_var(env, "USB_UDC_DRIVER=%s",
1575 				udc->driver->function);
1576 		if (ret) {
1577 			dev_err(dev, "failed to add uevent USB_UDC_DRIVER\n");
1578 			return ret;
1579 		}
1580 	}
1581 
1582 	return 0;
1583 }
1584 
usb_udc_init(void)1585 static int __init usb_udc_init(void)
1586 {
1587 	udc_class = class_create(THIS_MODULE, "udc");
1588 	if (IS_ERR(udc_class)) {
1589 		pr_err("failed to create udc class --> %ld\n",
1590 				PTR_ERR(udc_class));
1591 		return PTR_ERR(udc_class);
1592 	}
1593 
1594 	udc_class->dev_uevent = usb_udc_uevent;
1595 	return 0;
1596 }
1597 subsys_initcall(usb_udc_init);
1598 
usb_udc_exit(void)1599 static void __exit usb_udc_exit(void)
1600 {
1601 	class_destroy(udc_class);
1602 }
1603 module_exit(usb_udc_exit);
1604 
1605 MODULE_DESCRIPTION("UDC Framework");
1606 MODULE_AUTHOR("Felipe Balbi <balbi@ti.com>");
1607 MODULE_LICENSE("GPL v2");
1608