• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2014-2015 The Linux Foundation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 and
6  * only version 2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  */
13 
14 #include "mdp5_kms.h"
15 #include "mdp5_ctl.h"
16 
17 /*
18  * CTL - MDP Control Pool Manager
19  *
20  * Controls are shared between all display interfaces.
21  *
22  * They are intended to be used for data path configuration.
23  * The top level register programming describes the complete data path for
24  * a specific data path ID - REG_MDP5_CTL_*(<id>, ...)
25  *
26  * Hardware capabilities determine the number of concurrent data paths
27  *
28  * In certain use cases (high-resolution dual pipe), one single CTL can be
29  * shared across multiple CRTCs.
30  */
31 
32 #define CTL_STAT_BUSY		0x1
33 #define CTL_STAT_BOOKED	0x2
34 
35 struct mdp5_ctl {
36 	struct mdp5_ctl_manager *ctlm;
37 
38 	u32 id;
39 
40 	/* CTL status bitmask */
41 	u32 status;
42 
43 	bool encoder_enabled;
44 	uint32_t start_mask;
45 
46 	/* REG_MDP5_CTL_*(<id>) registers access info + lock: */
47 	spinlock_t hw_lock;
48 	u32 reg_offset;
49 
50 	/* when do CTL registers need to be flushed? (mask of trigger bits) */
51 	u32 pending_ctl_trigger;
52 
53 	bool cursor_on;
54 
55 	/* True if the current CTL has FLUSH bits pending for single FLUSH. */
56 	bool flush_pending;
57 
58 	struct mdp5_ctl *pair; /* Paired CTL to be flushed together */
59 };
60 
61 struct mdp5_ctl_manager {
62 	struct drm_device *dev;
63 
64 	/* number of CTL / Layer Mixers in this hw config: */
65 	u32 nlm;
66 	u32 nctl;
67 
68 	/* to filter out non-present bits in the current hardware config */
69 	u32 flush_hw_mask;
70 
71 	/* status for single FLUSH */
72 	bool single_flush_supported;
73 	u32 single_flush_pending_mask;
74 
75 	/* pool of CTLs + lock to protect resource allocation (ctls[i].busy) */
76 	spinlock_t pool_lock;
77 	struct mdp5_ctl ctls[MAX_CTL];
78 };
79 
80 static inline
get_kms(struct mdp5_ctl_manager * ctl_mgr)81 struct mdp5_kms *get_kms(struct mdp5_ctl_manager *ctl_mgr)
82 {
83 	struct msm_drm_private *priv = ctl_mgr->dev->dev_private;
84 
85 	return to_mdp5_kms(to_mdp_kms(priv->kms));
86 }
87 
88 static inline
ctl_write(struct mdp5_ctl * ctl,u32 reg,u32 data)89 void ctl_write(struct mdp5_ctl *ctl, u32 reg, u32 data)
90 {
91 	struct mdp5_kms *mdp5_kms = get_kms(ctl->ctlm);
92 
93 	(void)ctl->reg_offset; /* TODO use this instead of mdp5_write */
94 	mdp5_write(mdp5_kms, reg, data);
95 }
96 
97 static inline
ctl_read(struct mdp5_ctl * ctl,u32 reg)98 u32 ctl_read(struct mdp5_ctl *ctl, u32 reg)
99 {
100 	struct mdp5_kms *mdp5_kms = get_kms(ctl->ctlm);
101 
102 	(void)ctl->reg_offset; /* TODO use this instead of mdp5_write */
103 	return mdp5_read(mdp5_kms, reg);
104 }
105 
set_display_intf(struct mdp5_kms * mdp5_kms,struct mdp5_interface * intf)106 static void set_display_intf(struct mdp5_kms *mdp5_kms,
107 		struct mdp5_interface *intf)
108 {
109 	unsigned long flags;
110 	u32 intf_sel;
111 
112 	spin_lock_irqsave(&mdp5_kms->resource_lock, flags);
113 	intf_sel = mdp5_read(mdp5_kms, REG_MDP5_DISP_INTF_SEL);
114 
115 	switch (intf->num) {
116 	case 0:
117 		intf_sel &= ~MDP5_DISP_INTF_SEL_INTF0__MASK;
118 		intf_sel |= MDP5_DISP_INTF_SEL_INTF0(intf->type);
119 		break;
120 	case 1:
121 		intf_sel &= ~MDP5_DISP_INTF_SEL_INTF1__MASK;
122 		intf_sel |= MDP5_DISP_INTF_SEL_INTF1(intf->type);
123 		break;
124 	case 2:
125 		intf_sel &= ~MDP5_DISP_INTF_SEL_INTF2__MASK;
126 		intf_sel |= MDP5_DISP_INTF_SEL_INTF2(intf->type);
127 		break;
128 	case 3:
129 		intf_sel &= ~MDP5_DISP_INTF_SEL_INTF3__MASK;
130 		intf_sel |= MDP5_DISP_INTF_SEL_INTF3(intf->type);
131 		break;
132 	default:
133 		BUG();
134 		break;
135 	}
136 
137 	mdp5_write(mdp5_kms, REG_MDP5_DISP_INTF_SEL, intf_sel);
138 	spin_unlock_irqrestore(&mdp5_kms->resource_lock, flags);
139 }
140 
set_ctl_op(struct mdp5_ctl * ctl,struct mdp5_pipeline * pipeline)141 static void set_ctl_op(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline)
142 {
143 	unsigned long flags;
144 	struct mdp5_interface *intf = pipeline->intf;
145 	u32 ctl_op = 0;
146 
147 	if (!mdp5_cfg_intf_is_virtual(intf->type))
148 		ctl_op |= MDP5_CTL_OP_INTF_NUM(INTF0 + intf->num);
149 
150 	switch (intf->type) {
151 	case INTF_DSI:
152 		if (intf->mode == MDP5_INTF_DSI_MODE_COMMAND)
153 			ctl_op |= MDP5_CTL_OP_CMD_MODE;
154 		break;
155 
156 	case INTF_WB:
157 		if (intf->mode == MDP5_INTF_WB_MODE_LINE)
158 			ctl_op |= MDP5_CTL_OP_MODE(MODE_WB_2_LINE);
159 		break;
160 
161 	default:
162 		break;
163 	}
164 
165 	if (pipeline->r_mixer)
166 		ctl_op |= MDP5_CTL_OP_PACK_3D_ENABLE |
167 			  MDP5_CTL_OP_PACK_3D(1);
168 
169 	spin_lock_irqsave(&ctl->hw_lock, flags);
170 	ctl_write(ctl, REG_MDP5_CTL_OP(ctl->id), ctl_op);
171 	spin_unlock_irqrestore(&ctl->hw_lock, flags);
172 }
173 
mdp5_ctl_set_pipeline(struct mdp5_ctl * ctl,struct mdp5_pipeline * pipeline)174 int mdp5_ctl_set_pipeline(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline)
175 {
176 	struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
177 	struct mdp5_kms *mdp5_kms = get_kms(ctl_mgr);
178 	struct mdp5_interface *intf = pipeline->intf;
179 	struct mdp5_hw_mixer *mixer = pipeline->mixer;
180 	struct mdp5_hw_mixer *r_mixer = pipeline->r_mixer;
181 
182 	ctl->start_mask = mdp_ctl_flush_mask_lm(mixer->lm) |
183 			  mdp_ctl_flush_mask_encoder(intf);
184 	if (r_mixer)
185 		ctl->start_mask |= mdp_ctl_flush_mask_lm(r_mixer->lm);
186 
187 	/* Virtual interfaces need not set a display intf (e.g.: Writeback) */
188 	if (!mdp5_cfg_intf_is_virtual(intf->type))
189 		set_display_intf(mdp5_kms, intf);
190 
191 	set_ctl_op(ctl, pipeline);
192 
193 	return 0;
194 }
195 
start_signal_needed(struct mdp5_ctl * ctl,struct mdp5_pipeline * pipeline)196 static bool start_signal_needed(struct mdp5_ctl *ctl,
197 				struct mdp5_pipeline *pipeline)
198 {
199 	struct mdp5_interface *intf = pipeline->intf;
200 
201 	if (!ctl->encoder_enabled || ctl->start_mask != 0)
202 		return false;
203 
204 	switch (intf->type) {
205 	case INTF_WB:
206 		return true;
207 	case INTF_DSI:
208 		return intf->mode == MDP5_INTF_DSI_MODE_COMMAND;
209 	default:
210 		return false;
211 	}
212 }
213 
214 /*
215  * send_start_signal() - Overlay Processor Start Signal
216  *
217  * For a given control operation (display pipeline), a START signal needs to be
218  * executed in order to kick off operation and activate all layers.
219  * e.g.: DSI command mode, Writeback
220  */
send_start_signal(struct mdp5_ctl * ctl)221 static void send_start_signal(struct mdp5_ctl *ctl)
222 {
223 	unsigned long flags;
224 
225 	spin_lock_irqsave(&ctl->hw_lock, flags);
226 	ctl_write(ctl, REG_MDP5_CTL_START(ctl->id), 1);
227 	spin_unlock_irqrestore(&ctl->hw_lock, flags);
228 }
229 
refill_start_mask(struct mdp5_ctl * ctl,struct mdp5_pipeline * pipeline)230 static void refill_start_mask(struct mdp5_ctl *ctl,
231 			      struct mdp5_pipeline *pipeline)
232 {
233 	struct mdp5_interface *intf = pipeline->intf;
234 	struct mdp5_hw_mixer *mixer = pipeline->mixer;
235 	struct mdp5_hw_mixer *r_mixer = pipeline->r_mixer;
236 
237 	ctl->start_mask = mdp_ctl_flush_mask_lm(mixer->lm);
238 	if (r_mixer)
239 		ctl->start_mask |= mdp_ctl_flush_mask_lm(r_mixer->lm);
240 
241 	/*
242 	 * Writeback encoder needs to program & flush
243 	 * address registers for each page flip..
244 	 */
245 	if (intf->type == INTF_WB)
246 		ctl->start_mask |= mdp_ctl_flush_mask_encoder(intf);
247 }
248 
249 /**
250  * mdp5_ctl_set_encoder_state() - set the encoder state
251  *
252  * @enable: true, when encoder is ready for data streaming; false, otherwise.
253  *
254  * Note:
255  * This encoder state is needed to trigger START signal (data path kickoff).
256  */
mdp5_ctl_set_encoder_state(struct mdp5_ctl * ctl,struct mdp5_pipeline * pipeline,bool enabled)257 int mdp5_ctl_set_encoder_state(struct mdp5_ctl *ctl,
258 			       struct mdp5_pipeline *pipeline,
259 			       bool enabled)
260 {
261 	struct mdp5_interface *intf = pipeline->intf;
262 
263 	if (WARN_ON(!ctl))
264 		return -EINVAL;
265 
266 	ctl->encoder_enabled = enabled;
267 	DBG("intf_%d: %s", intf->num, enabled ? "on" : "off");
268 
269 	if (start_signal_needed(ctl, pipeline)) {
270 		send_start_signal(ctl);
271 		refill_start_mask(ctl, pipeline);
272 	}
273 
274 	return 0;
275 }
276 
277 /*
278  * Note:
279  * CTL registers need to be flushed after calling this function
280  * (call mdp5_ctl_commit() with mdp_ctl_flush_mask_ctl() mask)
281  */
mdp5_ctl_set_cursor(struct mdp5_ctl * ctl,struct mdp5_pipeline * pipeline,int cursor_id,bool enable)282 int mdp5_ctl_set_cursor(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline,
283 			int cursor_id, bool enable)
284 {
285 	struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
286 	unsigned long flags;
287 	u32 blend_cfg;
288 	struct mdp5_hw_mixer *mixer = pipeline->mixer;
289 
290 	if (unlikely(WARN_ON(!mixer))) {
291 		dev_err(ctl_mgr->dev->dev, "CTL %d cannot find LM",
292 			ctl->id);
293 		return -EINVAL;
294 	}
295 
296 	if (pipeline->r_mixer) {
297 		dev_err(ctl_mgr->dev->dev, "unsupported configuration");
298 		return -EINVAL;
299 	}
300 
301 	spin_lock_irqsave(&ctl->hw_lock, flags);
302 
303 	blend_cfg = ctl_read(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, mixer->lm));
304 
305 	if (enable)
306 		blend_cfg |=  MDP5_CTL_LAYER_REG_CURSOR_OUT;
307 	else
308 		blend_cfg &= ~MDP5_CTL_LAYER_REG_CURSOR_OUT;
309 
310 	ctl_write(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, mixer->lm), blend_cfg);
311 	ctl->cursor_on = enable;
312 
313 	spin_unlock_irqrestore(&ctl->hw_lock, flags);
314 
315 	ctl->pending_ctl_trigger = mdp_ctl_flush_mask_cursor(cursor_id);
316 
317 	return 0;
318 }
319 
mdp_ctl_blend_mask(enum mdp5_pipe pipe,enum mdp_mixer_stage_id stage)320 static u32 mdp_ctl_blend_mask(enum mdp5_pipe pipe,
321 		enum mdp_mixer_stage_id stage)
322 {
323 	switch (pipe) {
324 	case SSPP_VIG0: return MDP5_CTL_LAYER_REG_VIG0(stage);
325 	case SSPP_VIG1: return MDP5_CTL_LAYER_REG_VIG1(stage);
326 	case SSPP_VIG2: return MDP5_CTL_LAYER_REG_VIG2(stage);
327 	case SSPP_RGB0: return MDP5_CTL_LAYER_REG_RGB0(stage);
328 	case SSPP_RGB1: return MDP5_CTL_LAYER_REG_RGB1(stage);
329 	case SSPP_RGB2: return MDP5_CTL_LAYER_REG_RGB2(stage);
330 	case SSPP_DMA0: return MDP5_CTL_LAYER_REG_DMA0(stage);
331 	case SSPP_DMA1: return MDP5_CTL_LAYER_REG_DMA1(stage);
332 	case SSPP_VIG3: return MDP5_CTL_LAYER_REG_VIG3(stage);
333 	case SSPP_RGB3: return MDP5_CTL_LAYER_REG_RGB3(stage);
334 	case SSPP_CURSOR0:
335 	case SSPP_CURSOR1:
336 	default:	return 0;
337 	}
338 }
339 
mdp_ctl_blend_ext_mask(enum mdp5_pipe pipe,enum mdp_mixer_stage_id stage)340 static u32 mdp_ctl_blend_ext_mask(enum mdp5_pipe pipe,
341 		enum mdp_mixer_stage_id stage)
342 {
343 	if (stage < STAGE6 && (pipe != SSPP_CURSOR0 && pipe != SSPP_CURSOR1))
344 		return 0;
345 
346 	switch (pipe) {
347 	case SSPP_VIG0: return MDP5_CTL_LAYER_EXT_REG_VIG0_BIT3;
348 	case SSPP_VIG1: return MDP5_CTL_LAYER_EXT_REG_VIG1_BIT3;
349 	case SSPP_VIG2: return MDP5_CTL_LAYER_EXT_REG_VIG2_BIT3;
350 	case SSPP_RGB0: return MDP5_CTL_LAYER_EXT_REG_RGB0_BIT3;
351 	case SSPP_RGB1: return MDP5_CTL_LAYER_EXT_REG_RGB1_BIT3;
352 	case SSPP_RGB2: return MDP5_CTL_LAYER_EXT_REG_RGB2_BIT3;
353 	case SSPP_DMA0: return MDP5_CTL_LAYER_EXT_REG_DMA0_BIT3;
354 	case SSPP_DMA1: return MDP5_CTL_LAYER_EXT_REG_DMA1_BIT3;
355 	case SSPP_VIG3: return MDP5_CTL_LAYER_EXT_REG_VIG3_BIT3;
356 	case SSPP_RGB3: return MDP5_CTL_LAYER_EXT_REG_RGB3_BIT3;
357 	case SSPP_CURSOR0: return MDP5_CTL_LAYER_EXT_REG_CURSOR0(stage);
358 	case SSPP_CURSOR1: return MDP5_CTL_LAYER_EXT_REG_CURSOR1(stage);
359 	default:	return 0;
360 	}
361 }
362 
mdp5_ctl_reset_blend_regs(struct mdp5_ctl * ctl)363 static void mdp5_ctl_reset_blend_regs(struct mdp5_ctl *ctl)
364 {
365 	unsigned long flags;
366 	struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
367 	int i;
368 
369 	spin_lock_irqsave(&ctl->hw_lock, flags);
370 
371 	for (i = 0; i < ctl_mgr->nlm; i++) {
372 		ctl_write(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, i), 0x0);
373 		ctl_write(ctl, REG_MDP5_CTL_LAYER_EXT_REG(ctl->id, i), 0x0);
374 	}
375 
376 	spin_unlock_irqrestore(&ctl->hw_lock, flags);
377 }
378 
379 #define PIPE_LEFT	0
380 #define PIPE_RIGHT	1
mdp5_ctl_blend(struct mdp5_ctl * ctl,struct mdp5_pipeline * pipeline,enum mdp5_pipe stage[][MAX_PIPE_STAGE],enum mdp5_pipe r_stage[][MAX_PIPE_STAGE],u32 stage_cnt,u32 ctl_blend_op_flags)381 int mdp5_ctl_blend(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline,
382 		   enum mdp5_pipe stage[][MAX_PIPE_STAGE],
383 		   enum mdp5_pipe r_stage[][MAX_PIPE_STAGE],
384 		   u32 stage_cnt, u32 ctl_blend_op_flags)
385 {
386 	struct mdp5_hw_mixer *mixer = pipeline->mixer;
387 	struct mdp5_hw_mixer *r_mixer = pipeline->r_mixer;
388 	unsigned long flags;
389 	u32 blend_cfg = 0, blend_ext_cfg = 0;
390 	u32 r_blend_cfg = 0, r_blend_ext_cfg = 0;
391 	int i, start_stage;
392 
393 	mdp5_ctl_reset_blend_regs(ctl);
394 
395 	if (ctl_blend_op_flags & MDP5_CTL_BLEND_OP_FLAG_BORDER_OUT) {
396 		start_stage = STAGE0;
397 		blend_cfg |= MDP5_CTL_LAYER_REG_BORDER_COLOR;
398 		if (r_mixer)
399 			r_blend_cfg |= MDP5_CTL_LAYER_REG_BORDER_COLOR;
400 	} else {
401 		start_stage = STAGE_BASE;
402 	}
403 
404 	for (i = start_stage; stage_cnt && i <= STAGE_MAX; i++) {
405 		blend_cfg |=
406 			mdp_ctl_blend_mask(stage[i][PIPE_LEFT], i) |
407 			mdp_ctl_blend_mask(stage[i][PIPE_RIGHT], i);
408 		blend_ext_cfg |=
409 			mdp_ctl_blend_ext_mask(stage[i][PIPE_LEFT], i) |
410 			mdp_ctl_blend_ext_mask(stage[i][PIPE_RIGHT], i);
411 		if (r_mixer) {
412 			r_blend_cfg |=
413 				mdp_ctl_blend_mask(r_stage[i][PIPE_LEFT], i) |
414 				mdp_ctl_blend_mask(r_stage[i][PIPE_RIGHT], i);
415 			r_blend_ext_cfg |=
416 			     mdp_ctl_blend_ext_mask(r_stage[i][PIPE_LEFT], i) |
417 			     mdp_ctl_blend_ext_mask(r_stage[i][PIPE_RIGHT], i);
418 		}
419 	}
420 
421 	spin_lock_irqsave(&ctl->hw_lock, flags);
422 	if (ctl->cursor_on)
423 		blend_cfg |=  MDP5_CTL_LAYER_REG_CURSOR_OUT;
424 
425 	ctl_write(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, mixer->lm), blend_cfg);
426 	ctl_write(ctl, REG_MDP5_CTL_LAYER_EXT_REG(ctl->id, mixer->lm),
427 		  blend_ext_cfg);
428 	if (r_mixer) {
429 		ctl_write(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, r_mixer->lm),
430 			  r_blend_cfg);
431 		ctl_write(ctl, REG_MDP5_CTL_LAYER_EXT_REG(ctl->id, r_mixer->lm),
432 			  r_blend_ext_cfg);
433 	}
434 	spin_unlock_irqrestore(&ctl->hw_lock, flags);
435 
436 	ctl->pending_ctl_trigger = mdp_ctl_flush_mask_lm(mixer->lm);
437 	if (r_mixer)
438 		ctl->pending_ctl_trigger |= mdp_ctl_flush_mask_lm(r_mixer->lm);
439 
440 	DBG("lm%d: blend config = 0x%08x. ext_cfg = 0x%08x", mixer->lm,
441 		blend_cfg, blend_ext_cfg);
442 	if (r_mixer)
443 		DBG("lm%d: blend config = 0x%08x. ext_cfg = 0x%08x",
444 		    r_mixer->lm, r_blend_cfg, r_blend_ext_cfg);
445 
446 	return 0;
447 }
448 
mdp_ctl_flush_mask_encoder(struct mdp5_interface * intf)449 u32 mdp_ctl_flush_mask_encoder(struct mdp5_interface *intf)
450 {
451 	if (intf->type == INTF_WB)
452 		return MDP5_CTL_FLUSH_WB;
453 
454 	switch (intf->num) {
455 	case 0: return MDP5_CTL_FLUSH_TIMING_0;
456 	case 1: return MDP5_CTL_FLUSH_TIMING_1;
457 	case 2: return MDP5_CTL_FLUSH_TIMING_2;
458 	case 3: return MDP5_CTL_FLUSH_TIMING_3;
459 	default: return 0;
460 	}
461 }
462 
mdp_ctl_flush_mask_cursor(int cursor_id)463 u32 mdp_ctl_flush_mask_cursor(int cursor_id)
464 {
465 	switch (cursor_id) {
466 	case 0: return MDP5_CTL_FLUSH_CURSOR_0;
467 	case 1: return MDP5_CTL_FLUSH_CURSOR_1;
468 	default: return 0;
469 	}
470 }
471 
mdp_ctl_flush_mask_pipe(enum mdp5_pipe pipe)472 u32 mdp_ctl_flush_mask_pipe(enum mdp5_pipe pipe)
473 {
474 	switch (pipe) {
475 	case SSPP_VIG0: return MDP5_CTL_FLUSH_VIG0;
476 	case SSPP_VIG1: return MDP5_CTL_FLUSH_VIG1;
477 	case SSPP_VIG2: return MDP5_CTL_FLUSH_VIG2;
478 	case SSPP_RGB0: return MDP5_CTL_FLUSH_RGB0;
479 	case SSPP_RGB1: return MDP5_CTL_FLUSH_RGB1;
480 	case SSPP_RGB2: return MDP5_CTL_FLUSH_RGB2;
481 	case SSPP_DMA0: return MDP5_CTL_FLUSH_DMA0;
482 	case SSPP_DMA1: return MDP5_CTL_FLUSH_DMA1;
483 	case SSPP_VIG3: return MDP5_CTL_FLUSH_VIG3;
484 	case SSPP_RGB3: return MDP5_CTL_FLUSH_RGB3;
485 	case SSPP_CURSOR0: return MDP5_CTL_FLUSH_CURSOR_0;
486 	case SSPP_CURSOR1: return MDP5_CTL_FLUSH_CURSOR_1;
487 	default:        return 0;
488 	}
489 }
490 
mdp_ctl_flush_mask_lm(int lm)491 u32 mdp_ctl_flush_mask_lm(int lm)
492 {
493 	switch (lm) {
494 	case 0:  return MDP5_CTL_FLUSH_LM0;
495 	case 1:  return MDP5_CTL_FLUSH_LM1;
496 	case 2:  return MDP5_CTL_FLUSH_LM2;
497 	case 5:  return MDP5_CTL_FLUSH_LM5;
498 	default: return 0;
499 	}
500 }
501 
fix_sw_flush(struct mdp5_ctl * ctl,struct mdp5_pipeline * pipeline,u32 flush_mask)502 static u32 fix_sw_flush(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline,
503 			u32 flush_mask)
504 {
505 	struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
506 	u32 sw_mask = 0;
507 #define BIT_NEEDS_SW_FIX(bit) \
508 	(!(ctl_mgr->flush_hw_mask & bit) && (flush_mask & bit))
509 
510 	/* for some targets, cursor bit is the same as LM bit */
511 	if (BIT_NEEDS_SW_FIX(MDP5_CTL_FLUSH_CURSOR_0))
512 		sw_mask |= mdp_ctl_flush_mask_lm(pipeline->mixer->lm);
513 
514 	return sw_mask;
515 }
516 
fix_for_single_flush(struct mdp5_ctl * ctl,u32 * flush_mask,u32 * flush_id)517 static void fix_for_single_flush(struct mdp5_ctl *ctl, u32 *flush_mask,
518 		u32 *flush_id)
519 {
520 	struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
521 
522 	if (ctl->pair) {
523 		DBG("CTL %d FLUSH pending mask %x", ctl->id, *flush_mask);
524 		ctl->flush_pending = true;
525 		ctl_mgr->single_flush_pending_mask |= (*flush_mask);
526 		*flush_mask = 0;
527 
528 		if (ctl->pair->flush_pending) {
529 			*flush_id = min_t(u32, ctl->id, ctl->pair->id);
530 			*flush_mask = ctl_mgr->single_flush_pending_mask;
531 
532 			ctl->flush_pending = false;
533 			ctl->pair->flush_pending = false;
534 			ctl_mgr->single_flush_pending_mask = 0;
535 
536 			DBG("Single FLUSH mask %x,ID %d", *flush_mask,
537 				*flush_id);
538 		}
539 	}
540 }
541 
542 /**
543  * mdp5_ctl_commit() - Register Flush
544  *
545  * The flush register is used to indicate several registers are all
546  * programmed, and are safe to update to the back copy of the double
547  * buffered registers.
548  *
549  * Some registers FLUSH bits are shared when the hardware does not have
550  * dedicated bits for them; handling these is the job of fix_sw_flush().
551  *
552  * CTL registers need to be flushed in some circumstances; if that is the
553  * case, some trigger bits will be present in both flush mask and
554  * ctl->pending_ctl_trigger.
555  *
556  * Return H/W flushed bit mask.
557  */
mdp5_ctl_commit(struct mdp5_ctl * ctl,struct mdp5_pipeline * pipeline,u32 flush_mask)558 u32 mdp5_ctl_commit(struct mdp5_ctl *ctl,
559 		    struct mdp5_pipeline *pipeline,
560 		    u32 flush_mask)
561 {
562 	struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
563 	unsigned long flags;
564 	u32 flush_id = ctl->id;
565 	u32 curr_ctl_flush_mask;
566 
567 	ctl->start_mask &= ~flush_mask;
568 
569 	VERB("flush_mask=%x, start_mask=%x, trigger=%x", flush_mask,
570 			ctl->start_mask, ctl->pending_ctl_trigger);
571 
572 	if (ctl->pending_ctl_trigger & flush_mask) {
573 		flush_mask |= MDP5_CTL_FLUSH_CTL;
574 		ctl->pending_ctl_trigger = 0;
575 	}
576 
577 	flush_mask |= fix_sw_flush(ctl, pipeline, flush_mask);
578 
579 	flush_mask &= ctl_mgr->flush_hw_mask;
580 
581 	curr_ctl_flush_mask = flush_mask;
582 
583 	fix_for_single_flush(ctl, &flush_mask, &flush_id);
584 
585 	if (flush_mask) {
586 		spin_lock_irqsave(&ctl->hw_lock, flags);
587 		ctl_write(ctl, REG_MDP5_CTL_FLUSH(flush_id), flush_mask);
588 		spin_unlock_irqrestore(&ctl->hw_lock, flags);
589 	}
590 
591 	if (start_signal_needed(ctl, pipeline)) {
592 		send_start_signal(ctl);
593 		refill_start_mask(ctl, pipeline);
594 	}
595 
596 	return curr_ctl_flush_mask;
597 }
598 
mdp5_ctl_get_commit_status(struct mdp5_ctl * ctl)599 u32 mdp5_ctl_get_commit_status(struct mdp5_ctl *ctl)
600 {
601 	return ctl_read(ctl, REG_MDP5_CTL_FLUSH(ctl->id));
602 }
603 
mdp5_ctl_get_ctl_id(struct mdp5_ctl * ctl)604 int mdp5_ctl_get_ctl_id(struct mdp5_ctl *ctl)
605 {
606 	return WARN_ON(!ctl) ? -EINVAL : ctl->id;
607 }
608 
609 /*
610  * mdp5_ctl_pair() - Associate 2 booked CTLs for single FLUSH
611  */
mdp5_ctl_pair(struct mdp5_ctl * ctlx,struct mdp5_ctl * ctly,bool enable)612 int mdp5_ctl_pair(struct mdp5_ctl *ctlx, struct mdp5_ctl *ctly, bool enable)
613 {
614 	struct mdp5_ctl_manager *ctl_mgr = ctlx->ctlm;
615 	struct mdp5_kms *mdp5_kms = get_kms(ctl_mgr);
616 
617 	/* do nothing silently if hw doesn't support */
618 	if (!ctl_mgr->single_flush_supported)
619 		return 0;
620 
621 	if (!enable) {
622 		ctlx->pair = NULL;
623 		ctly->pair = NULL;
624 		mdp5_write(mdp5_kms, REG_MDP5_SPARE_0, 0);
625 		return 0;
626 	} else if ((ctlx->pair != NULL) || (ctly->pair != NULL)) {
627 		dev_err(ctl_mgr->dev->dev, "CTLs already paired\n");
628 		return -EINVAL;
629 	} else if (!(ctlx->status & ctly->status & CTL_STAT_BOOKED)) {
630 		dev_err(ctl_mgr->dev->dev, "Only pair booked CTLs\n");
631 		return -EINVAL;
632 	}
633 
634 	ctlx->pair = ctly;
635 	ctly->pair = ctlx;
636 
637 	mdp5_write(mdp5_kms, REG_MDP5_SPARE_0,
638 		   MDP5_SPARE_0_SPLIT_DPL_SINGLE_FLUSH_EN);
639 
640 	return 0;
641 }
642 
643 /*
644  * mdp5_ctl_request() - CTL allocation
645  *
646  * Try to return booked CTL for @intf_num is 1 or 2, unbooked for other INTFs.
647  * If no CTL is available in preferred category, allocate from the other one.
648  *
649  * @return fail if no CTL is available.
650  */
mdp5_ctlm_request(struct mdp5_ctl_manager * ctl_mgr,int intf_num)651 struct mdp5_ctl *mdp5_ctlm_request(struct mdp5_ctl_manager *ctl_mgr,
652 		int intf_num)
653 {
654 	struct mdp5_ctl *ctl = NULL;
655 	const u32 checkm = CTL_STAT_BUSY | CTL_STAT_BOOKED;
656 	u32 match = ((intf_num == 1) || (intf_num == 2)) ? CTL_STAT_BOOKED : 0;
657 	unsigned long flags;
658 	int c;
659 
660 	spin_lock_irqsave(&ctl_mgr->pool_lock, flags);
661 
662 	/* search the preferred */
663 	for (c = 0; c < ctl_mgr->nctl; c++)
664 		if ((ctl_mgr->ctls[c].status & checkm) == match)
665 			goto found;
666 
667 	dev_warn(ctl_mgr->dev->dev,
668 		"fall back to the other CTL category for INTF %d!\n", intf_num);
669 
670 	match ^= CTL_STAT_BOOKED;
671 	for (c = 0; c < ctl_mgr->nctl; c++)
672 		if ((ctl_mgr->ctls[c].status & checkm) == match)
673 			goto found;
674 
675 	dev_err(ctl_mgr->dev->dev, "No more CTL available!");
676 	goto unlock;
677 
678 found:
679 	ctl = &ctl_mgr->ctls[c];
680 	ctl->status |= CTL_STAT_BUSY;
681 	ctl->pending_ctl_trigger = 0;
682 	DBG("CTL %d allocated", ctl->id);
683 
684 unlock:
685 	spin_unlock_irqrestore(&ctl_mgr->pool_lock, flags);
686 	return ctl;
687 }
688 
mdp5_ctlm_hw_reset(struct mdp5_ctl_manager * ctl_mgr)689 void mdp5_ctlm_hw_reset(struct mdp5_ctl_manager *ctl_mgr)
690 {
691 	unsigned long flags;
692 	int c;
693 
694 	for (c = 0; c < ctl_mgr->nctl; c++) {
695 		struct mdp5_ctl *ctl = &ctl_mgr->ctls[c];
696 
697 		spin_lock_irqsave(&ctl->hw_lock, flags);
698 		ctl_write(ctl, REG_MDP5_CTL_OP(ctl->id), 0);
699 		spin_unlock_irqrestore(&ctl->hw_lock, flags);
700 	}
701 }
702 
mdp5_ctlm_destroy(struct mdp5_ctl_manager * ctl_mgr)703 void mdp5_ctlm_destroy(struct mdp5_ctl_manager *ctl_mgr)
704 {
705 	kfree(ctl_mgr);
706 }
707 
mdp5_ctlm_init(struct drm_device * dev,void __iomem * mmio_base,struct mdp5_cfg_handler * cfg_hnd)708 struct mdp5_ctl_manager *mdp5_ctlm_init(struct drm_device *dev,
709 		void __iomem *mmio_base, struct mdp5_cfg_handler *cfg_hnd)
710 {
711 	struct mdp5_ctl_manager *ctl_mgr;
712 	const struct mdp5_cfg_hw *hw_cfg = mdp5_cfg_get_hw_config(cfg_hnd);
713 	int rev = mdp5_cfg_get_hw_rev(cfg_hnd);
714 	const struct mdp5_ctl_block *ctl_cfg = &hw_cfg->ctl;
715 	unsigned long flags;
716 	int c, ret;
717 
718 	ctl_mgr = kzalloc(sizeof(*ctl_mgr), GFP_KERNEL);
719 	if (!ctl_mgr) {
720 		dev_err(dev->dev, "failed to allocate CTL manager\n");
721 		ret = -ENOMEM;
722 		goto fail;
723 	}
724 
725 	if (unlikely(WARN_ON(ctl_cfg->count > MAX_CTL))) {
726 		dev_err(dev->dev, "Increase static pool size to at least %d\n",
727 				ctl_cfg->count);
728 		ret = -ENOSPC;
729 		goto fail;
730 	}
731 
732 	/* initialize the CTL manager: */
733 	ctl_mgr->dev = dev;
734 	ctl_mgr->nlm = hw_cfg->lm.count;
735 	ctl_mgr->nctl = ctl_cfg->count;
736 	ctl_mgr->flush_hw_mask = ctl_cfg->flush_hw_mask;
737 	spin_lock_init(&ctl_mgr->pool_lock);
738 
739 	/* initialize each CTL of the pool: */
740 	spin_lock_irqsave(&ctl_mgr->pool_lock, flags);
741 	for (c = 0; c < ctl_mgr->nctl; c++) {
742 		struct mdp5_ctl *ctl = &ctl_mgr->ctls[c];
743 
744 		if (WARN_ON(!ctl_cfg->base[c])) {
745 			dev_err(dev->dev, "CTL_%d: base is null!\n", c);
746 			ret = -EINVAL;
747 			spin_unlock_irqrestore(&ctl_mgr->pool_lock, flags);
748 			goto fail;
749 		}
750 		ctl->ctlm = ctl_mgr;
751 		ctl->id = c;
752 		ctl->reg_offset = ctl_cfg->base[c];
753 		ctl->status = 0;
754 		spin_lock_init(&ctl->hw_lock);
755 	}
756 
757 	/*
758 	 * In Dual DSI case, CTL0 and CTL1 are always assigned to two DSI
759 	 * interfaces to support single FLUSH feature (Flush CTL0 and CTL1 when
760 	 * only write into CTL0's FLUSH register) to keep two DSI pipes in sync.
761 	 * Single FLUSH is supported from hw rev v3.0.
762 	 */
763 	if (rev >= 3) {
764 		ctl_mgr->single_flush_supported = true;
765 		/* Reserve CTL0/1 for INTF1/2 */
766 		ctl_mgr->ctls[0].status |= CTL_STAT_BOOKED;
767 		ctl_mgr->ctls[1].status |= CTL_STAT_BOOKED;
768 	}
769 	spin_unlock_irqrestore(&ctl_mgr->pool_lock, flags);
770 	DBG("Pool of %d CTLs created.", ctl_mgr->nctl);
771 
772 	return ctl_mgr;
773 
774 fail:
775 	if (ctl_mgr)
776 		mdp5_ctlm_destroy(ctl_mgr);
777 
778 	return ERR_PTR(ret);
779 }
780