1 /*
2 * Copyright (C) 2013 Imagination Technologies
3 * Author: Paul Burton <paul.burton@mips.com>
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License as published by the
7 * Free Software Foundation; either version 2 of the License, or (at your
8 * option) any later version.
9 */
10
11 #include <linux/errno.h>
12 #include <linux/percpu.h>
13 #include <linux/spinlock.h>
14
15 #include <asm/mips-cps.h>
16 #include <asm/mipsregs.h>
17
18 void __iomem *mips_gcr_base;
19 void __iomem *mips_cm_l2sync_base;
20 int mips_cm_is64;
21
22 static char *cm2_tr[8] = {
23 "mem", "gcr", "gic", "mmio",
24 "0x04", "cpc", "0x06", "0x07"
25 };
26
27 /* CM3 Tag ECC transaction type */
28 static char *cm3_tr[16] = {
29 [0x0] = "ReqNoData",
30 [0x1] = "0x1",
31 [0x2] = "ReqWData",
32 [0x3] = "0x3",
33 [0x4] = "IReqNoResp",
34 [0x5] = "IReqWResp",
35 [0x6] = "IReqNoRespDat",
36 [0x7] = "IReqWRespDat",
37 [0x8] = "RespNoData",
38 [0x9] = "RespDataFol",
39 [0xa] = "RespWData",
40 [0xb] = "RespDataOnly",
41 [0xc] = "IRespNoData",
42 [0xd] = "IRespDataFol",
43 [0xe] = "IRespWData",
44 [0xf] = "IRespDataOnly"
45 };
46
47 static char *cm2_cmd[32] = {
48 [0x00] = "0x00",
49 [0x01] = "Legacy Write",
50 [0x02] = "Legacy Read",
51 [0x03] = "0x03",
52 [0x04] = "0x04",
53 [0x05] = "0x05",
54 [0x06] = "0x06",
55 [0x07] = "0x07",
56 [0x08] = "Coherent Read Own",
57 [0x09] = "Coherent Read Share",
58 [0x0a] = "Coherent Read Discard",
59 [0x0b] = "Coherent Ready Share Always",
60 [0x0c] = "Coherent Upgrade",
61 [0x0d] = "Coherent Writeback",
62 [0x0e] = "0x0e",
63 [0x0f] = "0x0f",
64 [0x10] = "Coherent Copyback",
65 [0x11] = "Coherent Copyback Invalidate",
66 [0x12] = "Coherent Invalidate",
67 [0x13] = "Coherent Write Invalidate",
68 [0x14] = "Coherent Completion Sync",
69 [0x15] = "0x15",
70 [0x16] = "0x16",
71 [0x17] = "0x17",
72 [0x18] = "0x18",
73 [0x19] = "0x19",
74 [0x1a] = "0x1a",
75 [0x1b] = "0x1b",
76 [0x1c] = "0x1c",
77 [0x1d] = "0x1d",
78 [0x1e] = "0x1e",
79 [0x1f] = "0x1f"
80 };
81
82 /* CM3 Tag ECC command type */
83 static char *cm3_cmd[16] = {
84 [0x0] = "Legacy Read",
85 [0x1] = "Legacy Write",
86 [0x2] = "Coherent Read Own",
87 [0x3] = "Coherent Read Share",
88 [0x4] = "Coherent Read Discard",
89 [0x5] = "Coherent Evicted",
90 [0x6] = "Coherent Upgrade",
91 [0x7] = "Coherent Upgrade for Store Conditional",
92 [0x8] = "Coherent Writeback",
93 [0x9] = "Coherent Write Invalidate",
94 [0xa] = "0xa",
95 [0xb] = "0xb",
96 [0xc] = "0xc",
97 [0xd] = "0xd",
98 [0xe] = "0xe",
99 [0xf] = "0xf"
100 };
101
102 /* CM3 Tag ECC command group */
103 static char *cm3_cmd_group[8] = {
104 [0x0] = "Normal",
105 [0x1] = "Registers",
106 [0x2] = "TLB",
107 [0x3] = "0x3",
108 [0x4] = "L1I",
109 [0x5] = "L1D",
110 [0x6] = "L3",
111 [0x7] = "L2"
112 };
113
114 static char *cm2_core[8] = {
115 "Invalid/OK", "Invalid/Data",
116 "Shared/OK", "Shared/Data",
117 "Modified/OK", "Modified/Data",
118 "Exclusive/OK", "Exclusive/Data"
119 };
120
121 static char *cm2_causes[32] = {
122 "None", "GC_WR_ERR", "GC_RD_ERR", "COH_WR_ERR",
123 "COH_RD_ERR", "MMIO_WR_ERR", "MMIO_RD_ERR", "0x07",
124 "0x08", "0x09", "0x0a", "0x0b",
125 "0x0c", "0x0d", "0x0e", "0x0f",
126 "0x10", "0x11", "0x12", "0x13",
127 "0x14", "0x15", "0x16", "INTVN_WR_ERR",
128 "INTVN_RD_ERR", "0x19", "0x1a", "0x1b",
129 "0x1c", "0x1d", "0x1e", "0x1f"
130 };
131
132 static char *cm3_causes[32] = {
133 "0x0", "MP_CORRECTABLE_ECC_ERR", "MP_REQUEST_DECODE_ERR",
134 "MP_UNCORRECTABLE_ECC_ERR", "MP_PARITY_ERR", "MP_COHERENCE_ERR",
135 "CMBIU_REQUEST_DECODE_ERR", "CMBIU_PARITY_ERR", "CMBIU_AXI_RESP_ERR",
136 "0x9", "RBI_BUS_ERR", "0xb", "0xc", "0xd", "0xe", "0xf", "0x10",
137 "0x11", "0x12", "0x13", "0x14", "0x15", "0x16", "0x17", "0x18",
138 "0x19", "0x1a", "0x1b", "0x1c", "0x1d", "0x1e", "0x1f"
139 };
140
141 static DEFINE_PER_CPU_ALIGNED(spinlock_t, cm_core_lock);
142 static DEFINE_PER_CPU_ALIGNED(unsigned long, cm_core_lock_flags);
143
__mips_cm_phys_base(void)144 phys_addr_t __mips_cm_phys_base(void)
145 {
146 u32 config3 = read_c0_config3();
147 unsigned long cmgcr;
148
149 /* Check the CMGCRBase register is implemented */
150 if (!(config3 & MIPS_CONF3_CMGCR))
151 return 0;
152
153 /* Read the address from CMGCRBase */
154 cmgcr = read_c0_cmgcrbase();
155 return (cmgcr & MIPS_CMGCRF_BASE) << (36 - 32);
156 }
157
158 phys_addr_t mips_cm_phys_base(void)
159 __attribute__((weak, alias("__mips_cm_phys_base")));
160
__mips_cm_l2sync_phys_base(void)161 phys_addr_t __mips_cm_l2sync_phys_base(void)
162 {
163 u32 base_reg;
164
165 /*
166 * If the L2-only sync region is already enabled then leave it at it's
167 * current location.
168 */
169 base_reg = read_gcr_l2_only_sync_base();
170 if (base_reg & CM_GCR_L2_ONLY_SYNC_BASE_SYNCEN)
171 return base_reg & CM_GCR_L2_ONLY_SYNC_BASE_SYNCBASE;
172
173 /* Default to following the CM */
174 return mips_cm_phys_base() + MIPS_CM_GCR_SIZE;
175 }
176
177 phys_addr_t mips_cm_l2sync_phys_base(void)
178 __attribute__((weak, alias("__mips_cm_l2sync_phys_base")));
179
mips_cm_probe_l2sync(void)180 static void mips_cm_probe_l2sync(void)
181 {
182 unsigned major_rev;
183 phys_addr_t addr;
184
185 /* L2-only sync was introduced with CM major revision 6 */
186 major_rev = (read_gcr_rev() & CM_GCR_REV_MAJOR) >>
187 __ffs(CM_GCR_REV_MAJOR);
188 if (major_rev < 6)
189 return;
190
191 /* Find a location for the L2 sync region */
192 addr = mips_cm_l2sync_phys_base();
193 BUG_ON((addr & CM_GCR_L2_ONLY_SYNC_BASE_SYNCBASE) != addr);
194 if (!addr)
195 return;
196
197 /* Set the region base address & enable it */
198 write_gcr_l2_only_sync_base(addr | CM_GCR_L2_ONLY_SYNC_BASE_SYNCEN);
199
200 /* Map the region */
201 mips_cm_l2sync_base = ioremap_nocache(addr, MIPS_CM_L2SYNC_SIZE);
202 }
203
mips_cm_probe(void)204 int mips_cm_probe(void)
205 {
206 phys_addr_t addr;
207 u32 base_reg;
208 unsigned cpu;
209
210 /*
211 * No need to probe again if we have already been
212 * here before.
213 */
214 if (mips_gcr_base)
215 return 0;
216
217 addr = mips_cm_phys_base();
218 BUG_ON((addr & CM_GCR_BASE_GCRBASE) != addr);
219 if (!addr)
220 return -ENODEV;
221
222 mips_gcr_base = ioremap_nocache(addr, MIPS_CM_GCR_SIZE);
223 if (!mips_gcr_base)
224 return -ENXIO;
225
226 /* sanity check that we're looking at a CM */
227 base_reg = read_gcr_base();
228 if ((base_reg & CM_GCR_BASE_GCRBASE) != addr) {
229 pr_err("GCRs appear to have been moved (expected them at 0x%08lx)!\n",
230 (unsigned long)addr);
231 mips_gcr_base = NULL;
232 return -ENODEV;
233 }
234
235 /* set default target to memory */
236 change_gcr_base(CM_GCR_BASE_CMDEFTGT, CM_GCR_BASE_CMDEFTGT_MEM);
237
238 /* disable CM regions */
239 write_gcr_reg0_base(CM_GCR_REGn_BASE_BASEADDR);
240 write_gcr_reg0_mask(CM_GCR_REGn_MASK_ADDRMASK);
241 write_gcr_reg1_base(CM_GCR_REGn_BASE_BASEADDR);
242 write_gcr_reg1_mask(CM_GCR_REGn_MASK_ADDRMASK);
243 write_gcr_reg2_base(CM_GCR_REGn_BASE_BASEADDR);
244 write_gcr_reg2_mask(CM_GCR_REGn_MASK_ADDRMASK);
245 write_gcr_reg3_base(CM_GCR_REGn_BASE_BASEADDR);
246 write_gcr_reg3_mask(CM_GCR_REGn_MASK_ADDRMASK);
247
248 /* probe for an L2-only sync region */
249 mips_cm_probe_l2sync();
250
251 /* determine register width for this CM */
252 mips_cm_is64 = IS_ENABLED(CONFIG_64BIT) && (mips_cm_revision() >= CM_REV_CM3);
253
254 for_each_possible_cpu(cpu)
255 spin_lock_init(&per_cpu(cm_core_lock, cpu));
256
257 return 0;
258 }
259
mips_cm_lock_other(unsigned int cluster,unsigned int core,unsigned int vp,unsigned int block)260 void mips_cm_lock_other(unsigned int cluster, unsigned int core,
261 unsigned int vp, unsigned int block)
262 {
263 unsigned int curr_core, cm_rev;
264 u32 val;
265
266 cm_rev = mips_cm_revision();
267 preempt_disable();
268
269 if (cm_rev >= CM_REV_CM3) {
270 val = core << __ffs(CM3_GCR_Cx_OTHER_CORE);
271 val |= vp << __ffs(CM3_GCR_Cx_OTHER_VP);
272
273 if (cm_rev >= CM_REV_CM3_5) {
274 val |= CM_GCR_Cx_OTHER_CLUSTER_EN;
275 val |= cluster << __ffs(CM_GCR_Cx_OTHER_CLUSTER);
276 val |= block << __ffs(CM_GCR_Cx_OTHER_BLOCK);
277 } else {
278 WARN_ON(cluster != 0);
279 WARN_ON(block != CM_GCR_Cx_OTHER_BLOCK_LOCAL);
280 }
281
282 /*
283 * We need to disable interrupts in SMP systems in order to
284 * ensure that we don't interrupt the caller with code which
285 * may modify the redirect register. We do so here in a
286 * slightly obscure way by using a spin lock, since this has
287 * the neat property of also catching any nested uses of
288 * mips_cm_lock_other() leading to a deadlock or a nice warning
289 * with lockdep enabled.
290 */
291 spin_lock_irqsave(this_cpu_ptr(&cm_core_lock),
292 *this_cpu_ptr(&cm_core_lock_flags));
293 } else {
294 WARN_ON(cluster != 0);
295 WARN_ON(block != CM_GCR_Cx_OTHER_BLOCK_LOCAL);
296
297 /*
298 * We only have a GCR_CL_OTHER per core in systems with
299 * CM 2.5 & older, so have to ensure other VP(E)s don't
300 * race with us.
301 */
302 curr_core = cpu_core(¤t_cpu_data);
303 spin_lock_irqsave(&per_cpu(cm_core_lock, curr_core),
304 per_cpu(cm_core_lock_flags, curr_core));
305
306 val = core << __ffs(CM_GCR_Cx_OTHER_CORENUM);
307 }
308
309 write_gcr_cl_other(val);
310
311 /*
312 * Ensure the core-other region reflects the appropriate core &
313 * VP before any accesses to it occur.
314 */
315 mb();
316 }
317
mips_cm_unlock_other(void)318 void mips_cm_unlock_other(void)
319 {
320 unsigned int curr_core;
321
322 if (mips_cm_revision() < CM_REV_CM3) {
323 curr_core = cpu_core(¤t_cpu_data);
324 spin_unlock_irqrestore(&per_cpu(cm_core_lock, curr_core),
325 per_cpu(cm_core_lock_flags, curr_core));
326 } else {
327 spin_unlock_irqrestore(this_cpu_ptr(&cm_core_lock),
328 *this_cpu_ptr(&cm_core_lock_flags));
329 }
330
331 preempt_enable();
332 }
333
mips_cm_error_report(void)334 void mips_cm_error_report(void)
335 {
336 u64 cm_error, cm_addr, cm_other;
337 unsigned long revision;
338 int ocause, cause;
339 char buf[256];
340
341 if (!mips_cm_present())
342 return;
343
344 revision = mips_cm_revision();
345 cm_error = read_gcr_error_cause();
346 cm_addr = read_gcr_error_addr();
347 cm_other = read_gcr_error_mult();
348
349 if (revision < CM_REV_CM3) { /* CM2 */
350 cause = cm_error >> __ffs(CM_GCR_ERROR_CAUSE_ERRTYPE);
351 ocause = cm_other >> __ffs(CM_GCR_ERROR_MULT_ERR2ND);
352
353 if (!cause)
354 return;
355
356 if (cause < 16) {
357 unsigned long cca_bits = (cm_error >> 15) & 7;
358 unsigned long tr_bits = (cm_error >> 12) & 7;
359 unsigned long cmd_bits = (cm_error >> 7) & 0x1f;
360 unsigned long stag_bits = (cm_error >> 3) & 15;
361 unsigned long sport_bits = (cm_error >> 0) & 7;
362
363 snprintf(buf, sizeof(buf),
364 "CCA=%lu TR=%s MCmd=%s STag=%lu "
365 "SPort=%lu\n", cca_bits, cm2_tr[tr_bits],
366 cm2_cmd[cmd_bits], stag_bits, sport_bits);
367 } else {
368 /* glob state & sresp together */
369 unsigned long c3_bits = (cm_error >> 18) & 7;
370 unsigned long c2_bits = (cm_error >> 15) & 7;
371 unsigned long c1_bits = (cm_error >> 12) & 7;
372 unsigned long c0_bits = (cm_error >> 9) & 7;
373 unsigned long sc_bit = (cm_error >> 8) & 1;
374 unsigned long cmd_bits = (cm_error >> 3) & 0x1f;
375 unsigned long sport_bits = (cm_error >> 0) & 7;
376
377 snprintf(buf, sizeof(buf),
378 "C3=%s C2=%s C1=%s C0=%s SC=%s "
379 "MCmd=%s SPort=%lu\n",
380 cm2_core[c3_bits], cm2_core[c2_bits],
381 cm2_core[c1_bits], cm2_core[c0_bits],
382 sc_bit ? "True" : "False",
383 cm2_cmd[cmd_bits], sport_bits);
384 }
385 pr_err("CM_ERROR=%08llx %s <%s>\n", cm_error,
386 cm2_causes[cause], buf);
387 pr_err("CM_ADDR =%08llx\n", cm_addr);
388 pr_err("CM_OTHER=%08llx %s\n", cm_other, cm2_causes[ocause]);
389 } else { /* CM3 */
390 ulong core_id_bits, vp_id_bits, cmd_bits, cmd_group_bits;
391 ulong cm3_cca_bits, mcp_bits, cm3_tr_bits, sched_bit;
392
393 cause = cm_error >> __ffs64(CM3_GCR_ERROR_CAUSE_ERRTYPE);
394 ocause = cm_other >> __ffs(CM_GCR_ERROR_MULT_ERR2ND);
395
396 if (!cause)
397 return;
398
399 /* Used by cause == {1,2,3} */
400 core_id_bits = (cm_error >> 22) & 0xf;
401 vp_id_bits = (cm_error >> 18) & 0xf;
402 cmd_bits = (cm_error >> 14) & 0xf;
403 cmd_group_bits = (cm_error >> 11) & 0xf;
404 cm3_cca_bits = (cm_error >> 8) & 7;
405 mcp_bits = (cm_error >> 5) & 0xf;
406 cm3_tr_bits = (cm_error >> 1) & 0xf;
407 sched_bit = cm_error & 0x1;
408
409 if (cause == 1 || cause == 3) { /* Tag ECC */
410 unsigned long tag_ecc = (cm_error >> 57) & 0x1;
411 unsigned long tag_way_bits = (cm_error >> 29) & 0xffff;
412 unsigned long dword_bits = (cm_error >> 49) & 0xff;
413 unsigned long data_way_bits = (cm_error >> 45) & 0xf;
414 unsigned long data_sets_bits = (cm_error >> 29) & 0xfff;
415 unsigned long bank_bit = (cm_error >> 28) & 0x1;
416 snprintf(buf, sizeof(buf),
417 "%s ECC Error: Way=%lu (DWORD=%lu, Sets=%lu)"
418 "Bank=%lu CoreID=%lu VPID=%lu Command=%s"
419 "Command Group=%s CCA=%lu MCP=%d"
420 "Transaction type=%s Scheduler=%lu\n",
421 tag_ecc ? "TAG" : "DATA",
422 tag_ecc ? (unsigned long)ffs(tag_way_bits) - 1 :
423 data_way_bits, bank_bit, dword_bits,
424 data_sets_bits,
425 core_id_bits, vp_id_bits,
426 cm3_cmd[cmd_bits],
427 cm3_cmd_group[cmd_group_bits],
428 cm3_cca_bits, 1 << mcp_bits,
429 cm3_tr[cm3_tr_bits], sched_bit);
430 } else if (cause == 2) {
431 unsigned long data_error_type = (cm_error >> 41) & 0xfff;
432 unsigned long data_decode_cmd = (cm_error >> 37) & 0xf;
433 unsigned long data_decode_group = (cm_error >> 34) & 0x7;
434 unsigned long data_decode_destination_id = (cm_error >> 28) & 0x3f;
435
436 snprintf(buf, sizeof(buf),
437 "Decode Request Error: Type=%lu, Command=%lu"
438 "Command Group=%lu Destination ID=%lu"
439 "CoreID=%lu VPID=%lu Command=%s"
440 "Command Group=%s CCA=%lu MCP=%d"
441 "Transaction type=%s Scheduler=%lu\n",
442 data_error_type, data_decode_cmd,
443 data_decode_group, data_decode_destination_id,
444 core_id_bits, vp_id_bits,
445 cm3_cmd[cmd_bits],
446 cm3_cmd_group[cmd_group_bits],
447 cm3_cca_bits, 1 << mcp_bits,
448 cm3_tr[cm3_tr_bits], sched_bit);
449 } else {
450 buf[0] = 0;
451 }
452
453 pr_err("CM_ERROR=%llx %s <%s>\n", cm_error,
454 cm3_causes[cause], buf);
455 pr_err("CM_ADDR =%llx\n", cm_addr);
456 pr_err("CM_OTHER=%llx %s\n", cm_other, cm3_causes[ocause]);
457 }
458
459 /* reprime cause register */
460 write_gcr_error_cause(cm_error);
461 }
462