• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2013 Imagination Technologies
3  * Author: Paul Burton <paul.burton@mips.com>
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License as published by the
7  * Free Software Foundation;  either version 2 of the  License, or (at your
8  * option) any later version.
9  */
10 
11 #include <linux/errno.h>
12 #include <linux/percpu.h>
13 #include <linux/spinlock.h>
14 
15 #include <asm/mips-cps.h>
16 #include <asm/mipsregs.h>
17 
18 void __iomem *mips_gcr_base;
19 void __iomem *mips_cm_l2sync_base;
20 int mips_cm_is64;
21 
22 static char *cm2_tr[8] = {
23 	"mem",	"gcr",	"gic",	"mmio",
24 	"0x04", "cpc", "0x06", "0x07"
25 };
26 
27 /* CM3 Tag ECC transaction type */
28 static char *cm3_tr[16] = {
29 	[0x0] = "ReqNoData",
30 	[0x1] = "0x1",
31 	[0x2] = "ReqWData",
32 	[0x3] = "0x3",
33 	[0x4] = "IReqNoResp",
34 	[0x5] = "IReqWResp",
35 	[0x6] = "IReqNoRespDat",
36 	[0x7] = "IReqWRespDat",
37 	[0x8] = "RespNoData",
38 	[0x9] = "RespDataFol",
39 	[0xa] = "RespWData",
40 	[0xb] = "RespDataOnly",
41 	[0xc] = "IRespNoData",
42 	[0xd] = "IRespDataFol",
43 	[0xe] = "IRespWData",
44 	[0xf] = "IRespDataOnly"
45 };
46 
47 static char *cm2_cmd[32] = {
48 	[0x00] = "0x00",
49 	[0x01] = "Legacy Write",
50 	[0x02] = "Legacy Read",
51 	[0x03] = "0x03",
52 	[0x04] = "0x04",
53 	[0x05] = "0x05",
54 	[0x06] = "0x06",
55 	[0x07] = "0x07",
56 	[0x08] = "Coherent Read Own",
57 	[0x09] = "Coherent Read Share",
58 	[0x0a] = "Coherent Read Discard",
59 	[0x0b] = "Coherent Ready Share Always",
60 	[0x0c] = "Coherent Upgrade",
61 	[0x0d] = "Coherent Writeback",
62 	[0x0e] = "0x0e",
63 	[0x0f] = "0x0f",
64 	[0x10] = "Coherent Copyback",
65 	[0x11] = "Coherent Copyback Invalidate",
66 	[0x12] = "Coherent Invalidate",
67 	[0x13] = "Coherent Write Invalidate",
68 	[0x14] = "Coherent Completion Sync",
69 	[0x15] = "0x15",
70 	[0x16] = "0x16",
71 	[0x17] = "0x17",
72 	[0x18] = "0x18",
73 	[0x19] = "0x19",
74 	[0x1a] = "0x1a",
75 	[0x1b] = "0x1b",
76 	[0x1c] = "0x1c",
77 	[0x1d] = "0x1d",
78 	[0x1e] = "0x1e",
79 	[0x1f] = "0x1f"
80 };
81 
82 /* CM3 Tag ECC command type */
83 static char *cm3_cmd[16] = {
84 	[0x0] = "Legacy Read",
85 	[0x1] = "Legacy Write",
86 	[0x2] = "Coherent Read Own",
87 	[0x3] = "Coherent Read Share",
88 	[0x4] = "Coherent Read Discard",
89 	[0x5] = "Coherent Evicted",
90 	[0x6] = "Coherent Upgrade",
91 	[0x7] = "Coherent Upgrade for Store Conditional",
92 	[0x8] = "Coherent Writeback",
93 	[0x9] = "Coherent Write Invalidate",
94 	[0xa] = "0xa",
95 	[0xb] = "0xb",
96 	[0xc] = "0xc",
97 	[0xd] = "0xd",
98 	[0xe] = "0xe",
99 	[0xf] = "0xf"
100 };
101 
102 /* CM3 Tag ECC command group */
103 static char *cm3_cmd_group[8] = {
104 	[0x0] = "Normal",
105 	[0x1] = "Registers",
106 	[0x2] = "TLB",
107 	[0x3] = "0x3",
108 	[0x4] = "L1I",
109 	[0x5] = "L1D",
110 	[0x6] = "L3",
111 	[0x7] = "L2"
112 };
113 
114 static char *cm2_core[8] = {
115 	"Invalid/OK",	"Invalid/Data",
116 	"Shared/OK",	"Shared/Data",
117 	"Modified/OK",	"Modified/Data",
118 	"Exclusive/OK", "Exclusive/Data"
119 };
120 
121 static char *cm2_causes[32] = {
122 	"None", "GC_WR_ERR", "GC_RD_ERR", "COH_WR_ERR",
123 	"COH_RD_ERR", "MMIO_WR_ERR", "MMIO_RD_ERR", "0x07",
124 	"0x08", "0x09", "0x0a", "0x0b",
125 	"0x0c", "0x0d", "0x0e", "0x0f",
126 	"0x10", "0x11", "0x12", "0x13",
127 	"0x14", "0x15", "0x16", "INTVN_WR_ERR",
128 	"INTVN_RD_ERR", "0x19", "0x1a", "0x1b",
129 	"0x1c", "0x1d", "0x1e", "0x1f"
130 };
131 
132 static char *cm3_causes[32] = {
133 	"0x0", "MP_CORRECTABLE_ECC_ERR", "MP_REQUEST_DECODE_ERR",
134 	"MP_UNCORRECTABLE_ECC_ERR", "MP_PARITY_ERR", "MP_COHERENCE_ERR",
135 	"CMBIU_REQUEST_DECODE_ERR", "CMBIU_PARITY_ERR", "CMBIU_AXI_RESP_ERR",
136 	"0x9", "RBI_BUS_ERR", "0xb", "0xc", "0xd", "0xe", "0xf", "0x10",
137 	"0x11", "0x12", "0x13", "0x14", "0x15", "0x16", "0x17", "0x18",
138 	"0x19", "0x1a", "0x1b", "0x1c", "0x1d", "0x1e", "0x1f"
139 };
140 
141 static DEFINE_PER_CPU_ALIGNED(spinlock_t, cm_core_lock);
142 static DEFINE_PER_CPU_ALIGNED(unsigned long, cm_core_lock_flags);
143 
__mips_cm_phys_base(void)144 phys_addr_t __mips_cm_phys_base(void)
145 {
146 	u32 config3 = read_c0_config3();
147 	unsigned long cmgcr;
148 
149 	/* Check the CMGCRBase register is implemented */
150 	if (!(config3 & MIPS_CONF3_CMGCR))
151 		return 0;
152 
153 	/* Read the address from CMGCRBase */
154 	cmgcr = read_c0_cmgcrbase();
155 	return (cmgcr & MIPS_CMGCRF_BASE) << (36 - 32);
156 }
157 
158 phys_addr_t mips_cm_phys_base(void)
159 	__attribute__((weak, alias("__mips_cm_phys_base")));
160 
__mips_cm_l2sync_phys_base(void)161 phys_addr_t __mips_cm_l2sync_phys_base(void)
162 {
163 	u32 base_reg;
164 
165 	/*
166 	 * If the L2-only sync region is already enabled then leave it at it's
167 	 * current location.
168 	 */
169 	base_reg = read_gcr_l2_only_sync_base();
170 	if (base_reg & CM_GCR_L2_ONLY_SYNC_BASE_SYNCEN)
171 		return base_reg & CM_GCR_L2_ONLY_SYNC_BASE_SYNCBASE;
172 
173 	/* Default to following the CM */
174 	return mips_cm_phys_base() + MIPS_CM_GCR_SIZE;
175 }
176 
177 phys_addr_t mips_cm_l2sync_phys_base(void)
178 	__attribute__((weak, alias("__mips_cm_l2sync_phys_base")));
179 
mips_cm_probe_l2sync(void)180 static void mips_cm_probe_l2sync(void)
181 {
182 	unsigned major_rev;
183 	phys_addr_t addr;
184 
185 	/* L2-only sync was introduced with CM major revision 6 */
186 	major_rev = (read_gcr_rev() & CM_GCR_REV_MAJOR) >>
187 		__ffs(CM_GCR_REV_MAJOR);
188 	if (major_rev < 6)
189 		return;
190 
191 	/* Find a location for the L2 sync region */
192 	addr = mips_cm_l2sync_phys_base();
193 	BUG_ON((addr & CM_GCR_L2_ONLY_SYNC_BASE_SYNCBASE) != addr);
194 	if (!addr)
195 		return;
196 
197 	/* Set the region base address & enable it */
198 	write_gcr_l2_only_sync_base(addr | CM_GCR_L2_ONLY_SYNC_BASE_SYNCEN);
199 
200 	/* Map the region */
201 	mips_cm_l2sync_base = ioremap_nocache(addr, MIPS_CM_L2SYNC_SIZE);
202 }
203 
mips_cm_probe(void)204 int mips_cm_probe(void)
205 {
206 	phys_addr_t addr;
207 	u32 base_reg;
208 	unsigned cpu;
209 
210 	/*
211 	 * No need to probe again if we have already been
212 	 * here before.
213 	 */
214 	if (mips_gcr_base)
215 		return 0;
216 
217 	addr = mips_cm_phys_base();
218 	BUG_ON((addr & CM_GCR_BASE_GCRBASE) != addr);
219 	if (!addr)
220 		return -ENODEV;
221 
222 	mips_gcr_base = ioremap_nocache(addr, MIPS_CM_GCR_SIZE);
223 	if (!mips_gcr_base)
224 		return -ENXIO;
225 
226 	/* sanity check that we're looking at a CM */
227 	base_reg = read_gcr_base();
228 	if ((base_reg & CM_GCR_BASE_GCRBASE) != addr) {
229 		pr_err("GCRs appear to have been moved (expected them at 0x%08lx)!\n",
230 		       (unsigned long)addr);
231 		mips_gcr_base = NULL;
232 		return -ENODEV;
233 	}
234 
235 	/* set default target to memory */
236 	change_gcr_base(CM_GCR_BASE_CMDEFTGT, CM_GCR_BASE_CMDEFTGT_MEM);
237 
238 	/* disable CM regions */
239 	write_gcr_reg0_base(CM_GCR_REGn_BASE_BASEADDR);
240 	write_gcr_reg0_mask(CM_GCR_REGn_MASK_ADDRMASK);
241 	write_gcr_reg1_base(CM_GCR_REGn_BASE_BASEADDR);
242 	write_gcr_reg1_mask(CM_GCR_REGn_MASK_ADDRMASK);
243 	write_gcr_reg2_base(CM_GCR_REGn_BASE_BASEADDR);
244 	write_gcr_reg2_mask(CM_GCR_REGn_MASK_ADDRMASK);
245 	write_gcr_reg3_base(CM_GCR_REGn_BASE_BASEADDR);
246 	write_gcr_reg3_mask(CM_GCR_REGn_MASK_ADDRMASK);
247 
248 	/* probe for an L2-only sync region */
249 	mips_cm_probe_l2sync();
250 
251 	/* determine register width for this CM */
252 	mips_cm_is64 = IS_ENABLED(CONFIG_64BIT) && (mips_cm_revision() >= CM_REV_CM3);
253 
254 	for_each_possible_cpu(cpu)
255 		spin_lock_init(&per_cpu(cm_core_lock, cpu));
256 
257 	return 0;
258 }
259 
mips_cm_lock_other(unsigned int cluster,unsigned int core,unsigned int vp,unsigned int block)260 void mips_cm_lock_other(unsigned int cluster, unsigned int core,
261 			unsigned int vp, unsigned int block)
262 {
263 	unsigned int curr_core, cm_rev;
264 	u32 val;
265 
266 	cm_rev = mips_cm_revision();
267 	preempt_disable();
268 
269 	if (cm_rev >= CM_REV_CM3) {
270 		val = core << __ffs(CM3_GCR_Cx_OTHER_CORE);
271 		val |= vp << __ffs(CM3_GCR_Cx_OTHER_VP);
272 
273 		if (cm_rev >= CM_REV_CM3_5) {
274 			val |= CM_GCR_Cx_OTHER_CLUSTER_EN;
275 			val |= cluster << __ffs(CM_GCR_Cx_OTHER_CLUSTER);
276 			val |= block << __ffs(CM_GCR_Cx_OTHER_BLOCK);
277 		} else {
278 			WARN_ON(cluster != 0);
279 			WARN_ON(block != CM_GCR_Cx_OTHER_BLOCK_LOCAL);
280 		}
281 
282 		/*
283 		 * We need to disable interrupts in SMP systems in order to
284 		 * ensure that we don't interrupt the caller with code which
285 		 * may modify the redirect register. We do so here in a
286 		 * slightly obscure way by using a spin lock, since this has
287 		 * the neat property of also catching any nested uses of
288 		 * mips_cm_lock_other() leading to a deadlock or a nice warning
289 		 * with lockdep enabled.
290 		 */
291 		spin_lock_irqsave(this_cpu_ptr(&cm_core_lock),
292 				  *this_cpu_ptr(&cm_core_lock_flags));
293 	} else {
294 		WARN_ON(cluster != 0);
295 		WARN_ON(block != CM_GCR_Cx_OTHER_BLOCK_LOCAL);
296 
297 		/*
298 		 * We only have a GCR_CL_OTHER per core in systems with
299 		 * CM 2.5 & older, so have to ensure other VP(E)s don't
300 		 * race with us.
301 		 */
302 		curr_core = cpu_core(&current_cpu_data);
303 		spin_lock_irqsave(&per_cpu(cm_core_lock, curr_core),
304 				  per_cpu(cm_core_lock_flags, curr_core));
305 
306 		val = core << __ffs(CM_GCR_Cx_OTHER_CORENUM);
307 	}
308 
309 	write_gcr_cl_other(val);
310 
311 	/*
312 	 * Ensure the core-other region reflects the appropriate core &
313 	 * VP before any accesses to it occur.
314 	 */
315 	mb();
316 }
317 
mips_cm_unlock_other(void)318 void mips_cm_unlock_other(void)
319 {
320 	unsigned int curr_core;
321 
322 	if (mips_cm_revision() < CM_REV_CM3) {
323 		curr_core = cpu_core(&current_cpu_data);
324 		spin_unlock_irqrestore(&per_cpu(cm_core_lock, curr_core),
325 				       per_cpu(cm_core_lock_flags, curr_core));
326 	} else {
327 		spin_unlock_irqrestore(this_cpu_ptr(&cm_core_lock),
328 				       *this_cpu_ptr(&cm_core_lock_flags));
329 	}
330 
331 	preempt_enable();
332 }
333 
mips_cm_error_report(void)334 void mips_cm_error_report(void)
335 {
336 	u64 cm_error, cm_addr, cm_other;
337 	unsigned long revision;
338 	int ocause, cause;
339 	char buf[256];
340 
341 	if (!mips_cm_present())
342 		return;
343 
344 	revision = mips_cm_revision();
345 	cm_error = read_gcr_error_cause();
346 	cm_addr = read_gcr_error_addr();
347 	cm_other = read_gcr_error_mult();
348 
349 	if (revision < CM_REV_CM3) { /* CM2 */
350 		cause = cm_error >> __ffs(CM_GCR_ERROR_CAUSE_ERRTYPE);
351 		ocause = cm_other >> __ffs(CM_GCR_ERROR_MULT_ERR2ND);
352 
353 		if (!cause)
354 			return;
355 
356 		if (cause < 16) {
357 			unsigned long cca_bits = (cm_error >> 15) & 7;
358 			unsigned long tr_bits = (cm_error >> 12) & 7;
359 			unsigned long cmd_bits = (cm_error >> 7) & 0x1f;
360 			unsigned long stag_bits = (cm_error >> 3) & 15;
361 			unsigned long sport_bits = (cm_error >> 0) & 7;
362 
363 			snprintf(buf, sizeof(buf),
364 				 "CCA=%lu TR=%s MCmd=%s STag=%lu "
365 				 "SPort=%lu\n", cca_bits, cm2_tr[tr_bits],
366 				 cm2_cmd[cmd_bits], stag_bits, sport_bits);
367 		} else {
368 			/* glob state & sresp together */
369 			unsigned long c3_bits = (cm_error >> 18) & 7;
370 			unsigned long c2_bits = (cm_error >> 15) & 7;
371 			unsigned long c1_bits = (cm_error >> 12) & 7;
372 			unsigned long c0_bits = (cm_error >> 9) & 7;
373 			unsigned long sc_bit = (cm_error >> 8) & 1;
374 			unsigned long cmd_bits = (cm_error >> 3) & 0x1f;
375 			unsigned long sport_bits = (cm_error >> 0) & 7;
376 
377 			snprintf(buf, sizeof(buf),
378 				 "C3=%s C2=%s C1=%s C0=%s SC=%s "
379 				 "MCmd=%s SPort=%lu\n",
380 				 cm2_core[c3_bits], cm2_core[c2_bits],
381 				 cm2_core[c1_bits], cm2_core[c0_bits],
382 				 sc_bit ? "True" : "False",
383 				 cm2_cmd[cmd_bits], sport_bits);
384 		}
385 			pr_err("CM_ERROR=%08llx %s <%s>\n", cm_error,
386 			       cm2_causes[cause], buf);
387 		pr_err("CM_ADDR =%08llx\n", cm_addr);
388 		pr_err("CM_OTHER=%08llx %s\n", cm_other, cm2_causes[ocause]);
389 	} else { /* CM3 */
390 		ulong core_id_bits, vp_id_bits, cmd_bits, cmd_group_bits;
391 		ulong cm3_cca_bits, mcp_bits, cm3_tr_bits, sched_bit;
392 
393 		cause = cm_error >> __ffs64(CM3_GCR_ERROR_CAUSE_ERRTYPE);
394 		ocause = cm_other >> __ffs(CM_GCR_ERROR_MULT_ERR2ND);
395 
396 		if (!cause)
397 			return;
398 
399 		/* Used by cause == {1,2,3} */
400 		core_id_bits = (cm_error >> 22) & 0xf;
401 		vp_id_bits = (cm_error >> 18) & 0xf;
402 		cmd_bits = (cm_error >> 14) & 0xf;
403 		cmd_group_bits = (cm_error >> 11) & 0xf;
404 		cm3_cca_bits = (cm_error >> 8) & 7;
405 		mcp_bits = (cm_error >> 5) & 0xf;
406 		cm3_tr_bits = (cm_error >> 1) & 0xf;
407 		sched_bit = cm_error & 0x1;
408 
409 		if (cause == 1 || cause == 3) { /* Tag ECC */
410 			unsigned long tag_ecc = (cm_error >> 57) & 0x1;
411 			unsigned long tag_way_bits = (cm_error >> 29) & 0xffff;
412 			unsigned long dword_bits = (cm_error >> 49) & 0xff;
413 			unsigned long data_way_bits = (cm_error >> 45) & 0xf;
414 			unsigned long data_sets_bits = (cm_error >> 29) & 0xfff;
415 			unsigned long bank_bit = (cm_error >> 28) & 0x1;
416 			snprintf(buf, sizeof(buf),
417 				 "%s ECC Error: Way=%lu (DWORD=%lu, Sets=%lu)"
418 				 "Bank=%lu CoreID=%lu VPID=%lu Command=%s"
419 				 "Command Group=%s CCA=%lu MCP=%d"
420 				 "Transaction type=%s Scheduler=%lu\n",
421 				 tag_ecc ? "TAG" : "DATA",
422 				 tag_ecc ? (unsigned long)ffs(tag_way_bits) - 1 :
423 				 data_way_bits, bank_bit, dword_bits,
424 				 data_sets_bits,
425 				 core_id_bits, vp_id_bits,
426 				 cm3_cmd[cmd_bits],
427 				 cm3_cmd_group[cmd_group_bits],
428 				 cm3_cca_bits, 1 << mcp_bits,
429 				 cm3_tr[cm3_tr_bits], sched_bit);
430 		} else if (cause == 2) {
431 			unsigned long data_error_type = (cm_error >> 41) & 0xfff;
432 			unsigned long data_decode_cmd = (cm_error >> 37) & 0xf;
433 			unsigned long data_decode_group = (cm_error >> 34) & 0x7;
434 			unsigned long data_decode_destination_id = (cm_error >> 28) & 0x3f;
435 
436 			snprintf(buf, sizeof(buf),
437 				 "Decode Request Error: Type=%lu, Command=%lu"
438 				 "Command Group=%lu Destination ID=%lu"
439 				 "CoreID=%lu VPID=%lu Command=%s"
440 				 "Command Group=%s CCA=%lu MCP=%d"
441 				 "Transaction type=%s Scheduler=%lu\n",
442 				 data_error_type, data_decode_cmd,
443 				 data_decode_group, data_decode_destination_id,
444 				 core_id_bits, vp_id_bits,
445 				 cm3_cmd[cmd_bits],
446 				 cm3_cmd_group[cmd_group_bits],
447 				 cm3_cca_bits, 1 << mcp_bits,
448 				 cm3_tr[cm3_tr_bits], sched_bit);
449 		} else {
450 			buf[0] = 0;
451 		}
452 
453 		pr_err("CM_ERROR=%llx %s <%s>\n", cm_error,
454 		       cm3_causes[cause], buf);
455 		pr_err("CM_ADDR =%llx\n", cm_addr);
456 		pr_err("CM_OTHER=%llx %s\n", cm_other, cm3_causes[ocause]);
457 	}
458 
459 	/* reprime cause register */
460 	write_gcr_error_cause(cm_error);
461 }
462