• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h>		/* init_rootfs */
21 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
22 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
23 #include <linux/uaccess.h>
24 #include <linux/proc_ns.h>
25 #include <linux/magic.h>
26 #include <linux/bootmem.h>
27 #include <linux/task_work.h>
28 #include <linux/sched/task.h>
29 
30 #include "pnode.h"
31 #include "internal.h"
32 
33 /* Maximum number of mounts in a mount namespace */
34 unsigned int sysctl_mount_max __read_mostly = 100000;
35 
36 static unsigned int m_hash_mask __read_mostly;
37 static unsigned int m_hash_shift __read_mostly;
38 static unsigned int mp_hash_mask __read_mostly;
39 static unsigned int mp_hash_shift __read_mostly;
40 
41 static __initdata unsigned long mhash_entries;
set_mhash_entries(char * str)42 static int __init set_mhash_entries(char *str)
43 {
44 	if (!str)
45 		return 0;
46 	mhash_entries = simple_strtoul(str, &str, 0);
47 	return 1;
48 }
49 __setup("mhash_entries=", set_mhash_entries);
50 
51 static __initdata unsigned long mphash_entries;
set_mphash_entries(char * str)52 static int __init set_mphash_entries(char *str)
53 {
54 	if (!str)
55 		return 0;
56 	mphash_entries = simple_strtoul(str, &str, 0);
57 	return 1;
58 }
59 __setup("mphash_entries=", set_mphash_entries);
60 
61 static u64 event;
62 static DEFINE_IDA(mnt_id_ida);
63 static DEFINE_IDA(mnt_group_ida);
64 static DEFINE_SPINLOCK(mnt_id_lock);
65 static int mnt_id_start = 0;
66 static int mnt_group_start = 1;
67 
68 static struct hlist_head *mount_hashtable __read_mostly;
69 static struct hlist_head *mountpoint_hashtable __read_mostly;
70 static struct kmem_cache *mnt_cache __read_mostly;
71 static DECLARE_RWSEM(namespace_sem);
72 
73 /* /sys/fs */
74 struct kobject *fs_kobj;
75 EXPORT_SYMBOL_GPL(fs_kobj);
76 
77 /*
78  * vfsmount lock may be taken for read to prevent changes to the
79  * vfsmount hash, ie. during mountpoint lookups or walking back
80  * up the tree.
81  *
82  * It should be taken for write in all cases where the vfsmount
83  * tree or hash is modified or when a vfsmount structure is modified.
84  */
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
86 
m_hash(struct vfsmount * mnt,struct dentry * dentry)87 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
88 {
89 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
90 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
91 	tmp = tmp + (tmp >> m_hash_shift);
92 	return &mount_hashtable[tmp & m_hash_mask];
93 }
94 
mp_hash(struct dentry * dentry)95 static inline struct hlist_head *mp_hash(struct dentry *dentry)
96 {
97 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
98 	tmp = tmp + (tmp >> mp_hash_shift);
99 	return &mountpoint_hashtable[tmp & mp_hash_mask];
100 }
101 
mnt_alloc_id(struct mount * mnt)102 static int mnt_alloc_id(struct mount *mnt)
103 {
104 	int res;
105 
106 retry:
107 	ida_pre_get(&mnt_id_ida, GFP_KERNEL);
108 	spin_lock(&mnt_id_lock);
109 	res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
110 	if (!res)
111 		mnt_id_start = mnt->mnt_id + 1;
112 	spin_unlock(&mnt_id_lock);
113 	if (res == -EAGAIN)
114 		goto retry;
115 
116 	return res;
117 }
118 
mnt_free_id(struct mount * mnt)119 static void mnt_free_id(struct mount *mnt)
120 {
121 	int id = mnt->mnt_id;
122 	spin_lock(&mnt_id_lock);
123 	ida_remove(&mnt_id_ida, id);
124 	if (mnt_id_start > id)
125 		mnt_id_start = id;
126 	spin_unlock(&mnt_id_lock);
127 }
128 
129 /*
130  * Allocate a new peer group ID
131  *
132  * mnt_group_ida is protected by namespace_sem
133  */
mnt_alloc_group_id(struct mount * mnt)134 static int mnt_alloc_group_id(struct mount *mnt)
135 {
136 	int res;
137 
138 	if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
139 		return -ENOMEM;
140 
141 	res = ida_get_new_above(&mnt_group_ida,
142 				mnt_group_start,
143 				&mnt->mnt_group_id);
144 	if (!res)
145 		mnt_group_start = mnt->mnt_group_id + 1;
146 
147 	return res;
148 }
149 
150 /*
151  * Release a peer group ID
152  */
mnt_release_group_id(struct mount * mnt)153 void mnt_release_group_id(struct mount *mnt)
154 {
155 	int id = mnt->mnt_group_id;
156 	ida_remove(&mnt_group_ida, id);
157 	if (mnt_group_start > id)
158 		mnt_group_start = id;
159 	mnt->mnt_group_id = 0;
160 }
161 
162 /*
163  * vfsmount lock must be held for read
164  */
mnt_add_count(struct mount * mnt,int n)165 static inline void mnt_add_count(struct mount *mnt, int n)
166 {
167 #ifdef CONFIG_SMP
168 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
169 #else
170 	preempt_disable();
171 	mnt->mnt_count += n;
172 	preempt_enable();
173 #endif
174 }
175 
176 /*
177  * vfsmount lock must be held for write
178  */
mnt_get_count(struct mount * mnt)179 unsigned int mnt_get_count(struct mount *mnt)
180 {
181 #ifdef CONFIG_SMP
182 	unsigned int count = 0;
183 	int cpu;
184 
185 	for_each_possible_cpu(cpu) {
186 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
187 	}
188 
189 	return count;
190 #else
191 	return mnt->mnt_count;
192 #endif
193 }
194 
drop_mountpoint(struct fs_pin * p)195 static void drop_mountpoint(struct fs_pin *p)
196 {
197 	struct mount *m = container_of(p, struct mount, mnt_umount);
198 	dput(m->mnt_ex_mountpoint);
199 	pin_remove(p);
200 	mntput(&m->mnt);
201 }
202 
alloc_vfsmnt(const char * name)203 static struct mount *alloc_vfsmnt(const char *name)
204 {
205 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
206 	if (mnt) {
207 		int err;
208 
209 		err = mnt_alloc_id(mnt);
210 		if (err)
211 			goto out_free_cache;
212 
213 		if (name) {
214 			mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
215 			if (!mnt->mnt_devname)
216 				goto out_free_id;
217 		}
218 
219 #ifdef CONFIG_SMP
220 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
221 		if (!mnt->mnt_pcp)
222 			goto out_free_devname;
223 
224 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
225 #else
226 		mnt->mnt_count = 1;
227 		mnt->mnt_writers = 0;
228 #endif
229 		mnt->mnt.data = NULL;
230 
231 		INIT_HLIST_NODE(&mnt->mnt_hash);
232 		INIT_LIST_HEAD(&mnt->mnt_child);
233 		INIT_LIST_HEAD(&mnt->mnt_mounts);
234 		INIT_LIST_HEAD(&mnt->mnt_list);
235 		INIT_LIST_HEAD(&mnt->mnt_expire);
236 		INIT_LIST_HEAD(&mnt->mnt_share);
237 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
238 		INIT_LIST_HEAD(&mnt->mnt_slave);
239 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
240 		INIT_LIST_HEAD(&mnt->mnt_umounting);
241 		init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
242 	}
243 	return mnt;
244 
245 #ifdef CONFIG_SMP
246 out_free_devname:
247 	kfree_const(mnt->mnt_devname);
248 #endif
249 out_free_id:
250 	mnt_free_id(mnt);
251 out_free_cache:
252 	kmem_cache_free(mnt_cache, mnt);
253 	return NULL;
254 }
255 
256 /*
257  * Most r/o checks on a fs are for operations that take
258  * discrete amounts of time, like a write() or unlink().
259  * We must keep track of when those operations start
260  * (for permission checks) and when they end, so that
261  * we can determine when writes are able to occur to
262  * a filesystem.
263  */
264 /*
265  * __mnt_is_readonly: check whether a mount is read-only
266  * @mnt: the mount to check for its write status
267  *
268  * This shouldn't be used directly ouside of the VFS.
269  * It does not guarantee that the filesystem will stay
270  * r/w, just that it is right *now*.  This can not and
271  * should not be used in place of IS_RDONLY(inode).
272  * mnt_want/drop_write() will _keep_ the filesystem
273  * r/w.
274  */
__mnt_is_readonly(struct vfsmount * mnt)275 int __mnt_is_readonly(struct vfsmount *mnt)
276 {
277 	if (mnt->mnt_flags & MNT_READONLY)
278 		return 1;
279 	if (sb_rdonly(mnt->mnt_sb))
280 		return 1;
281 	return 0;
282 }
283 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
284 
mnt_inc_writers(struct mount * mnt)285 static inline void mnt_inc_writers(struct mount *mnt)
286 {
287 #ifdef CONFIG_SMP
288 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
289 #else
290 	mnt->mnt_writers++;
291 #endif
292 }
293 
mnt_dec_writers(struct mount * mnt)294 static inline void mnt_dec_writers(struct mount *mnt)
295 {
296 #ifdef CONFIG_SMP
297 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
298 #else
299 	mnt->mnt_writers--;
300 #endif
301 }
302 
mnt_get_writers(struct mount * mnt)303 static unsigned int mnt_get_writers(struct mount *mnt)
304 {
305 #ifdef CONFIG_SMP
306 	unsigned int count = 0;
307 	int cpu;
308 
309 	for_each_possible_cpu(cpu) {
310 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
311 	}
312 
313 	return count;
314 #else
315 	return mnt->mnt_writers;
316 #endif
317 }
318 
mnt_is_readonly(struct vfsmount * mnt)319 static int mnt_is_readonly(struct vfsmount *mnt)
320 {
321 	if (mnt->mnt_sb->s_readonly_remount)
322 		return 1;
323 	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
324 	smp_rmb();
325 	return __mnt_is_readonly(mnt);
326 }
327 
328 /*
329  * Most r/o & frozen checks on a fs are for operations that take discrete
330  * amounts of time, like a write() or unlink().  We must keep track of when
331  * those operations start (for permission checks) and when they end, so that we
332  * can determine when writes are able to occur to a filesystem.
333  */
334 /**
335  * __mnt_want_write - get write access to a mount without freeze protection
336  * @m: the mount on which to take a write
337  *
338  * This tells the low-level filesystem that a write is about to be performed to
339  * it, and makes sure that writes are allowed (mnt it read-write) before
340  * returning success. This operation does not protect against filesystem being
341  * frozen. When the write operation is finished, __mnt_drop_write() must be
342  * called. This is effectively a refcount.
343  */
__mnt_want_write(struct vfsmount * m)344 int __mnt_want_write(struct vfsmount *m)
345 {
346 	struct mount *mnt = real_mount(m);
347 	int ret = 0;
348 
349 	preempt_disable();
350 	mnt_inc_writers(mnt);
351 	/*
352 	 * The store to mnt_inc_writers must be visible before we pass
353 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
354 	 * incremented count after it has set MNT_WRITE_HOLD.
355 	 */
356 	smp_mb();
357 	while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
358 		cpu_relax();
359 	/*
360 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
361 	 * be set to match its requirements. So we must not load that until
362 	 * MNT_WRITE_HOLD is cleared.
363 	 */
364 	smp_rmb();
365 	if (mnt_is_readonly(m)) {
366 		mnt_dec_writers(mnt);
367 		ret = -EROFS;
368 	}
369 	preempt_enable();
370 
371 	return ret;
372 }
373 
374 /**
375  * mnt_want_write - get write access to a mount
376  * @m: the mount on which to take a write
377  *
378  * This tells the low-level filesystem that a write is about to be performed to
379  * it, and makes sure that writes are allowed (mount is read-write, filesystem
380  * is not frozen) before returning success.  When the write operation is
381  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
382  */
mnt_want_write(struct vfsmount * m)383 int mnt_want_write(struct vfsmount *m)
384 {
385 	int ret;
386 
387 	sb_start_write(m->mnt_sb);
388 	ret = __mnt_want_write(m);
389 	if (ret)
390 		sb_end_write(m->mnt_sb);
391 	return ret;
392 }
393 EXPORT_SYMBOL_GPL(mnt_want_write);
394 
395 /**
396  * mnt_clone_write - get write access to a mount
397  * @mnt: the mount on which to take a write
398  *
399  * This is effectively like mnt_want_write, except
400  * it must only be used to take an extra write reference
401  * on a mountpoint that we already know has a write reference
402  * on it. This allows some optimisation.
403  *
404  * After finished, mnt_drop_write must be called as usual to
405  * drop the reference.
406  */
mnt_clone_write(struct vfsmount * mnt)407 int mnt_clone_write(struct vfsmount *mnt)
408 {
409 	/* superblock may be r/o */
410 	if (__mnt_is_readonly(mnt))
411 		return -EROFS;
412 	preempt_disable();
413 	mnt_inc_writers(real_mount(mnt));
414 	preempt_enable();
415 	return 0;
416 }
417 EXPORT_SYMBOL_GPL(mnt_clone_write);
418 
419 /**
420  * __mnt_want_write_file - get write access to a file's mount
421  * @file: the file who's mount on which to take a write
422  *
423  * This is like __mnt_want_write, but it takes a file and can
424  * do some optimisations if the file is open for write already
425  */
__mnt_want_write_file(struct file * file)426 int __mnt_want_write_file(struct file *file)
427 {
428 	if (!(file->f_mode & FMODE_WRITER))
429 		return __mnt_want_write(file->f_path.mnt);
430 	else
431 		return mnt_clone_write(file->f_path.mnt);
432 }
433 
434 /**
435  * mnt_want_write_file_path - get write access to a file's mount
436  * @file: the file who's mount on which to take a write
437  *
438  * This is like mnt_want_write, but it takes a file and can
439  * do some optimisations if the file is open for write already
440  *
441  * Called by the vfs for cases when we have an open file at hand, but will do an
442  * inode operation on it (important distinction for files opened on overlayfs,
443  * since the file operations will come from the real underlying file, while
444  * inode operations come from the overlay).
445  */
mnt_want_write_file_path(struct file * file)446 int mnt_want_write_file_path(struct file *file)
447 {
448 	int ret;
449 
450 	sb_start_write(file->f_path.mnt->mnt_sb);
451 	ret = __mnt_want_write_file(file);
452 	if (ret)
453 		sb_end_write(file->f_path.mnt->mnt_sb);
454 	return ret;
455 }
456 
may_write_real(struct file * file)457 static inline int may_write_real(struct file *file)
458 {
459 	struct dentry *dentry = file->f_path.dentry;
460 	struct dentry *upperdentry;
461 
462 	/* Writable file? */
463 	if (file->f_mode & FMODE_WRITER)
464 		return 0;
465 
466 	/* Not overlayfs? */
467 	if (likely(!(dentry->d_flags & DCACHE_OP_REAL)))
468 		return 0;
469 
470 	/* File refers to upper, writable layer? */
471 	upperdentry = d_real(dentry, NULL, 0, D_REAL_UPPER);
472 	if (upperdentry &&
473 	    (file_inode(file) == d_inode(upperdentry) ||
474 	     file_inode(file) == d_inode(dentry)))
475 		return 0;
476 
477 	/* Lower layer: can't write to real file, sorry... */
478 	return -EPERM;
479 }
480 
481 /**
482  * mnt_want_write_file - get write access to a file's mount
483  * @file: the file who's mount on which to take a write
484  *
485  * This is like mnt_want_write, but it takes a file and can
486  * do some optimisations if the file is open for write already
487  *
488  * Mostly called by filesystems from their ioctl operation before performing
489  * modification.  On overlayfs this needs to check if the file is on a read-only
490  * lower layer and deny access in that case.
491  */
mnt_want_write_file(struct file * file)492 int mnt_want_write_file(struct file *file)
493 {
494 	int ret;
495 
496 	ret = may_write_real(file);
497 	if (!ret) {
498 		sb_start_write(file_inode(file)->i_sb);
499 		ret = __mnt_want_write_file(file);
500 		if (ret)
501 			sb_end_write(file_inode(file)->i_sb);
502 	}
503 	return ret;
504 }
505 EXPORT_SYMBOL_GPL(mnt_want_write_file);
506 
507 /**
508  * __mnt_drop_write - give up write access to a mount
509  * @mnt: the mount on which to give up write access
510  *
511  * Tells the low-level filesystem that we are done
512  * performing writes to it.  Must be matched with
513  * __mnt_want_write() call above.
514  */
__mnt_drop_write(struct vfsmount * mnt)515 void __mnt_drop_write(struct vfsmount *mnt)
516 {
517 	preempt_disable();
518 	mnt_dec_writers(real_mount(mnt));
519 	preempt_enable();
520 }
521 
522 /**
523  * mnt_drop_write - give up write access to a mount
524  * @mnt: the mount on which to give up write access
525  *
526  * Tells the low-level filesystem that we are done performing writes to it and
527  * also allows filesystem to be frozen again.  Must be matched with
528  * mnt_want_write() call above.
529  */
mnt_drop_write(struct vfsmount * mnt)530 void mnt_drop_write(struct vfsmount *mnt)
531 {
532 	__mnt_drop_write(mnt);
533 	sb_end_write(mnt->mnt_sb);
534 }
535 EXPORT_SYMBOL_GPL(mnt_drop_write);
536 
__mnt_drop_write_file(struct file * file)537 void __mnt_drop_write_file(struct file *file)
538 {
539 	__mnt_drop_write(file->f_path.mnt);
540 }
541 
mnt_drop_write_file_path(struct file * file)542 void mnt_drop_write_file_path(struct file *file)
543 {
544 	mnt_drop_write(file->f_path.mnt);
545 }
546 
mnt_drop_write_file(struct file * file)547 void mnt_drop_write_file(struct file *file)
548 {
549 	__mnt_drop_write(file->f_path.mnt);
550 	sb_end_write(file_inode(file)->i_sb);
551 }
552 EXPORT_SYMBOL(mnt_drop_write_file);
553 
mnt_make_readonly(struct mount * mnt)554 static int mnt_make_readonly(struct mount *mnt)
555 {
556 	int ret = 0;
557 
558 	lock_mount_hash();
559 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
560 	/*
561 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
562 	 * should be visible before we do.
563 	 */
564 	smp_mb();
565 
566 	/*
567 	 * With writers on hold, if this value is zero, then there are
568 	 * definitely no active writers (although held writers may subsequently
569 	 * increment the count, they'll have to wait, and decrement it after
570 	 * seeing MNT_READONLY).
571 	 *
572 	 * It is OK to have counter incremented on one CPU and decremented on
573 	 * another: the sum will add up correctly. The danger would be when we
574 	 * sum up each counter, if we read a counter before it is incremented,
575 	 * but then read another CPU's count which it has been subsequently
576 	 * decremented from -- we would see more decrements than we should.
577 	 * MNT_WRITE_HOLD protects against this scenario, because
578 	 * mnt_want_write first increments count, then smp_mb, then spins on
579 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
580 	 * we're counting up here.
581 	 */
582 	if (mnt_get_writers(mnt) > 0)
583 		ret = -EBUSY;
584 	else
585 		mnt->mnt.mnt_flags |= MNT_READONLY;
586 	/*
587 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
588 	 * that become unheld will see MNT_READONLY.
589 	 */
590 	smp_wmb();
591 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
592 	unlock_mount_hash();
593 	return ret;
594 }
595 
__mnt_unmake_readonly(struct mount * mnt)596 static void __mnt_unmake_readonly(struct mount *mnt)
597 {
598 	lock_mount_hash();
599 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
600 	unlock_mount_hash();
601 }
602 
sb_prepare_remount_readonly(struct super_block * sb)603 int sb_prepare_remount_readonly(struct super_block *sb)
604 {
605 	struct mount *mnt;
606 	int err = 0;
607 
608 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
609 	if (atomic_long_read(&sb->s_remove_count))
610 		return -EBUSY;
611 
612 	lock_mount_hash();
613 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
614 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
615 			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
616 			smp_mb();
617 			if (mnt_get_writers(mnt) > 0) {
618 				err = -EBUSY;
619 				break;
620 			}
621 		}
622 	}
623 	if (!err && atomic_long_read(&sb->s_remove_count))
624 		err = -EBUSY;
625 
626 	if (!err) {
627 		sb->s_readonly_remount = 1;
628 		smp_wmb();
629 	}
630 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
631 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
632 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
633 	}
634 	unlock_mount_hash();
635 
636 	return err;
637 }
638 
free_vfsmnt(struct mount * mnt)639 static void free_vfsmnt(struct mount *mnt)
640 {
641 	kfree(mnt->mnt.data);
642 	kfree_const(mnt->mnt_devname);
643 #ifdef CONFIG_SMP
644 	free_percpu(mnt->mnt_pcp);
645 #endif
646 	kmem_cache_free(mnt_cache, mnt);
647 }
648 
delayed_free_vfsmnt(struct rcu_head * head)649 static void delayed_free_vfsmnt(struct rcu_head *head)
650 {
651 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
652 }
653 
654 /* call under rcu_read_lock */
__legitimize_mnt(struct vfsmount * bastard,unsigned seq)655 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
656 {
657 	struct mount *mnt;
658 	if (read_seqretry(&mount_lock, seq))
659 		return 1;
660 	if (bastard == NULL)
661 		return 0;
662 	mnt = real_mount(bastard);
663 	mnt_add_count(mnt, 1);
664 	smp_mb();			// see mntput_no_expire()
665 	if (likely(!read_seqretry(&mount_lock, seq)))
666 		return 0;
667 	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
668 		mnt_add_count(mnt, -1);
669 		return 1;
670 	}
671 	lock_mount_hash();
672 	if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
673 		mnt_add_count(mnt, -1);
674 		unlock_mount_hash();
675 		return 1;
676 	}
677 	unlock_mount_hash();
678 	/* caller will mntput() */
679 	return -1;
680 }
681 
682 /* call under rcu_read_lock */
legitimize_mnt(struct vfsmount * bastard,unsigned seq)683 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
684 {
685 	int res = __legitimize_mnt(bastard, seq);
686 	if (likely(!res))
687 		return true;
688 	if (unlikely(res < 0)) {
689 		rcu_read_unlock();
690 		mntput(bastard);
691 		rcu_read_lock();
692 	}
693 	return false;
694 }
695 
696 /*
697  * find the first mount at @dentry on vfsmount @mnt.
698  * call under rcu_read_lock()
699  */
__lookup_mnt(struct vfsmount * mnt,struct dentry * dentry)700 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
701 {
702 	struct hlist_head *head = m_hash(mnt, dentry);
703 	struct mount *p;
704 
705 	hlist_for_each_entry_rcu(p, head, mnt_hash)
706 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
707 			return p;
708 	return NULL;
709 }
710 
711 /*
712  * lookup_mnt - Return the first child mount mounted at path
713  *
714  * "First" means first mounted chronologically.  If you create the
715  * following mounts:
716  *
717  * mount /dev/sda1 /mnt
718  * mount /dev/sda2 /mnt
719  * mount /dev/sda3 /mnt
720  *
721  * Then lookup_mnt() on the base /mnt dentry in the root mount will
722  * return successively the root dentry and vfsmount of /dev/sda1, then
723  * /dev/sda2, then /dev/sda3, then NULL.
724  *
725  * lookup_mnt takes a reference to the found vfsmount.
726  */
lookup_mnt(const struct path * path)727 struct vfsmount *lookup_mnt(const struct path *path)
728 {
729 	struct mount *child_mnt;
730 	struct vfsmount *m;
731 	unsigned seq;
732 
733 	rcu_read_lock();
734 	do {
735 		seq = read_seqbegin(&mount_lock);
736 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
737 		m = child_mnt ? &child_mnt->mnt : NULL;
738 	} while (!legitimize_mnt(m, seq));
739 	rcu_read_unlock();
740 	return m;
741 }
742 
743 /*
744  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
745  *                         current mount namespace.
746  *
747  * The common case is dentries are not mountpoints at all and that
748  * test is handled inline.  For the slow case when we are actually
749  * dealing with a mountpoint of some kind, walk through all of the
750  * mounts in the current mount namespace and test to see if the dentry
751  * is a mountpoint.
752  *
753  * The mount_hashtable is not usable in the context because we
754  * need to identify all mounts that may be in the current mount
755  * namespace not just a mount that happens to have some specified
756  * parent mount.
757  */
__is_local_mountpoint(struct dentry * dentry)758 bool __is_local_mountpoint(struct dentry *dentry)
759 {
760 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
761 	struct mount *mnt;
762 	bool is_covered = false;
763 
764 	if (!d_mountpoint(dentry))
765 		goto out;
766 
767 	down_read(&namespace_sem);
768 	list_for_each_entry(mnt, &ns->list, mnt_list) {
769 		is_covered = (mnt->mnt_mountpoint == dentry);
770 		if (is_covered)
771 			break;
772 	}
773 	up_read(&namespace_sem);
774 out:
775 	return is_covered;
776 }
777 
lookup_mountpoint(struct dentry * dentry)778 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
779 {
780 	struct hlist_head *chain = mp_hash(dentry);
781 	struct mountpoint *mp;
782 
783 	hlist_for_each_entry(mp, chain, m_hash) {
784 		if (mp->m_dentry == dentry) {
785 			/* might be worth a WARN_ON() */
786 			if (d_unlinked(dentry))
787 				return ERR_PTR(-ENOENT);
788 			mp->m_count++;
789 			return mp;
790 		}
791 	}
792 	return NULL;
793 }
794 
get_mountpoint(struct dentry * dentry)795 static struct mountpoint *get_mountpoint(struct dentry *dentry)
796 {
797 	struct mountpoint *mp, *new = NULL;
798 	int ret;
799 
800 	if (d_mountpoint(dentry)) {
801 mountpoint:
802 		read_seqlock_excl(&mount_lock);
803 		mp = lookup_mountpoint(dentry);
804 		read_sequnlock_excl(&mount_lock);
805 		if (mp)
806 			goto done;
807 	}
808 
809 	if (!new)
810 		new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
811 	if (!new)
812 		return ERR_PTR(-ENOMEM);
813 
814 
815 	/* Exactly one processes may set d_mounted */
816 	ret = d_set_mounted(dentry);
817 
818 	/* Someone else set d_mounted? */
819 	if (ret == -EBUSY)
820 		goto mountpoint;
821 
822 	/* The dentry is not available as a mountpoint? */
823 	mp = ERR_PTR(ret);
824 	if (ret)
825 		goto done;
826 
827 	/* Add the new mountpoint to the hash table */
828 	read_seqlock_excl(&mount_lock);
829 	new->m_dentry = dentry;
830 	new->m_count = 1;
831 	hlist_add_head(&new->m_hash, mp_hash(dentry));
832 	INIT_HLIST_HEAD(&new->m_list);
833 	read_sequnlock_excl(&mount_lock);
834 
835 	mp = new;
836 	new = NULL;
837 done:
838 	kfree(new);
839 	return mp;
840 }
841 
put_mountpoint(struct mountpoint * mp)842 static void put_mountpoint(struct mountpoint *mp)
843 {
844 	if (!--mp->m_count) {
845 		struct dentry *dentry = mp->m_dentry;
846 		BUG_ON(!hlist_empty(&mp->m_list));
847 		spin_lock(&dentry->d_lock);
848 		dentry->d_flags &= ~DCACHE_MOUNTED;
849 		spin_unlock(&dentry->d_lock);
850 		hlist_del(&mp->m_hash);
851 		kfree(mp);
852 	}
853 }
854 
check_mnt(struct mount * mnt)855 static inline int check_mnt(struct mount *mnt)
856 {
857 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
858 }
859 
860 /*
861  * vfsmount lock must be held for write
862  */
touch_mnt_namespace(struct mnt_namespace * ns)863 static void touch_mnt_namespace(struct mnt_namespace *ns)
864 {
865 	if (ns) {
866 		ns->event = ++event;
867 		wake_up_interruptible(&ns->poll);
868 	}
869 }
870 
871 /*
872  * vfsmount lock must be held for write
873  */
__touch_mnt_namespace(struct mnt_namespace * ns)874 static void __touch_mnt_namespace(struct mnt_namespace *ns)
875 {
876 	if (ns && ns->event != event) {
877 		ns->event = event;
878 		wake_up_interruptible(&ns->poll);
879 	}
880 }
881 
882 /*
883  * vfsmount lock must be held for write
884  */
unhash_mnt(struct mount * mnt)885 static void unhash_mnt(struct mount *mnt)
886 {
887 	mnt->mnt_parent = mnt;
888 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
889 	list_del_init(&mnt->mnt_child);
890 	hlist_del_init_rcu(&mnt->mnt_hash);
891 	hlist_del_init(&mnt->mnt_mp_list);
892 	put_mountpoint(mnt->mnt_mp);
893 	mnt->mnt_mp = NULL;
894 }
895 
896 /*
897  * vfsmount lock must be held for write
898  */
detach_mnt(struct mount * mnt,struct path * old_path)899 static void detach_mnt(struct mount *mnt, struct path *old_path)
900 {
901 	old_path->dentry = mnt->mnt_mountpoint;
902 	old_path->mnt = &mnt->mnt_parent->mnt;
903 	unhash_mnt(mnt);
904 }
905 
906 /*
907  * vfsmount lock must be held for write
908  */
umount_mnt(struct mount * mnt)909 static void umount_mnt(struct mount *mnt)
910 {
911 	/* old mountpoint will be dropped when we can do that */
912 	mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
913 	unhash_mnt(mnt);
914 }
915 
916 /*
917  * vfsmount lock must be held for write
918  */
mnt_set_mountpoint(struct mount * mnt,struct mountpoint * mp,struct mount * child_mnt)919 void mnt_set_mountpoint(struct mount *mnt,
920 			struct mountpoint *mp,
921 			struct mount *child_mnt)
922 {
923 	mp->m_count++;
924 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
925 	child_mnt->mnt_mountpoint = dget(mp->m_dentry);
926 	child_mnt->mnt_parent = mnt;
927 	child_mnt->mnt_mp = mp;
928 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
929 }
930 
__attach_mnt(struct mount * mnt,struct mount * parent)931 static void __attach_mnt(struct mount *mnt, struct mount *parent)
932 {
933 	hlist_add_head_rcu(&mnt->mnt_hash,
934 			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
935 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
936 }
937 
938 /*
939  * vfsmount lock must be held for write
940  */
attach_mnt(struct mount * mnt,struct mount * parent,struct mountpoint * mp)941 static void attach_mnt(struct mount *mnt,
942 			struct mount *parent,
943 			struct mountpoint *mp)
944 {
945 	mnt_set_mountpoint(parent, mp, mnt);
946 	__attach_mnt(mnt, parent);
947 }
948 
mnt_change_mountpoint(struct mount * parent,struct mountpoint * mp,struct mount * mnt)949 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
950 {
951 	struct mountpoint *old_mp = mnt->mnt_mp;
952 	struct dentry *old_mountpoint = mnt->mnt_mountpoint;
953 	struct mount *old_parent = mnt->mnt_parent;
954 
955 	list_del_init(&mnt->mnt_child);
956 	hlist_del_init(&mnt->mnt_mp_list);
957 	hlist_del_init_rcu(&mnt->mnt_hash);
958 
959 	attach_mnt(mnt, parent, mp);
960 
961 	put_mountpoint(old_mp);
962 
963 	/*
964 	 * Safely avoid even the suggestion this code might sleep or
965 	 * lock the mount hash by taking advantage of the knowledge that
966 	 * mnt_change_mountpoint will not release the final reference
967 	 * to a mountpoint.
968 	 *
969 	 * During mounting, the mount passed in as the parent mount will
970 	 * continue to use the old mountpoint and during unmounting, the
971 	 * old mountpoint will continue to exist until namespace_unlock,
972 	 * which happens well after mnt_change_mountpoint.
973 	 */
974 	spin_lock(&old_mountpoint->d_lock);
975 	old_mountpoint->d_lockref.count--;
976 	spin_unlock(&old_mountpoint->d_lock);
977 
978 	mnt_add_count(old_parent, -1);
979 }
980 
981 /*
982  * vfsmount lock must be held for write
983  */
commit_tree(struct mount * mnt)984 static void commit_tree(struct mount *mnt)
985 {
986 	struct mount *parent = mnt->mnt_parent;
987 	struct mount *m;
988 	LIST_HEAD(head);
989 	struct mnt_namespace *n = parent->mnt_ns;
990 
991 	BUG_ON(parent == mnt);
992 
993 	list_add_tail(&head, &mnt->mnt_list);
994 	list_for_each_entry(m, &head, mnt_list)
995 		m->mnt_ns = n;
996 
997 	list_splice(&head, n->list.prev);
998 
999 	n->mounts += n->pending_mounts;
1000 	n->pending_mounts = 0;
1001 
1002 	__attach_mnt(mnt, parent);
1003 	touch_mnt_namespace(n);
1004 }
1005 
next_mnt(struct mount * p,struct mount * root)1006 static struct mount *next_mnt(struct mount *p, struct mount *root)
1007 {
1008 	struct list_head *next = p->mnt_mounts.next;
1009 	if (next == &p->mnt_mounts) {
1010 		while (1) {
1011 			if (p == root)
1012 				return NULL;
1013 			next = p->mnt_child.next;
1014 			if (next != &p->mnt_parent->mnt_mounts)
1015 				break;
1016 			p = p->mnt_parent;
1017 		}
1018 	}
1019 	return list_entry(next, struct mount, mnt_child);
1020 }
1021 
skip_mnt_tree(struct mount * p)1022 static struct mount *skip_mnt_tree(struct mount *p)
1023 {
1024 	struct list_head *prev = p->mnt_mounts.prev;
1025 	while (prev != &p->mnt_mounts) {
1026 		p = list_entry(prev, struct mount, mnt_child);
1027 		prev = p->mnt_mounts.prev;
1028 	}
1029 	return p;
1030 }
1031 
1032 struct vfsmount *
vfs_kern_mount(struct file_system_type * type,int flags,const char * name,void * data)1033 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
1034 {
1035 	struct mount *mnt;
1036 	struct dentry *root;
1037 
1038 	if (!type)
1039 		return ERR_PTR(-ENODEV);
1040 
1041 	mnt = alloc_vfsmnt(name);
1042 	if (!mnt)
1043 		return ERR_PTR(-ENOMEM);
1044 
1045 	if (type->alloc_mnt_data) {
1046 		mnt->mnt.data = type->alloc_mnt_data();
1047 		if (!mnt->mnt.data) {
1048 			mnt_free_id(mnt);
1049 			free_vfsmnt(mnt);
1050 			return ERR_PTR(-ENOMEM);
1051 		}
1052 	}
1053 	if (flags & SB_KERNMOUNT)
1054 		mnt->mnt.mnt_flags = MNT_INTERNAL;
1055 
1056 	root = mount_fs(type, flags, name, &mnt->mnt, data);
1057 	if (IS_ERR(root)) {
1058 		mnt_free_id(mnt);
1059 		free_vfsmnt(mnt);
1060 		return ERR_CAST(root);
1061 	}
1062 
1063 	mnt->mnt.mnt_root = root;
1064 	mnt->mnt.mnt_sb = root->d_sb;
1065 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1066 	mnt->mnt_parent = mnt;
1067 	lock_mount_hash();
1068 	list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
1069 	unlock_mount_hash();
1070 	return &mnt->mnt;
1071 }
1072 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1073 
1074 struct vfsmount *
vfs_submount(const struct dentry * mountpoint,struct file_system_type * type,const char * name,void * data)1075 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1076 	     const char *name, void *data)
1077 {
1078 	/* Until it is worked out how to pass the user namespace
1079 	 * through from the parent mount to the submount don't support
1080 	 * unprivileged mounts with submounts.
1081 	 */
1082 	if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1083 		return ERR_PTR(-EPERM);
1084 
1085 	return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1086 }
1087 EXPORT_SYMBOL_GPL(vfs_submount);
1088 
clone_mnt(struct mount * old,struct dentry * root,int flag)1089 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1090 					int flag)
1091 {
1092 	struct super_block *sb = old->mnt.mnt_sb;
1093 	struct mount *mnt;
1094 	int err;
1095 
1096 	mnt = alloc_vfsmnt(old->mnt_devname);
1097 	if (!mnt)
1098 		return ERR_PTR(-ENOMEM);
1099 
1100 	if (sb->s_op->clone_mnt_data) {
1101 		mnt->mnt.data = sb->s_op->clone_mnt_data(old->mnt.data);
1102 		if (!mnt->mnt.data) {
1103 			err = -ENOMEM;
1104 			goto out_free;
1105 		}
1106 	}
1107 
1108 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1109 		mnt->mnt_group_id = 0; /* not a peer of original */
1110 	else
1111 		mnt->mnt_group_id = old->mnt_group_id;
1112 
1113 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1114 		err = mnt_alloc_group_id(mnt);
1115 		if (err)
1116 			goto out_free;
1117 	}
1118 
1119 	mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1120 	mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1121 	/* Don't allow unprivileged users to change mount flags */
1122 	if (flag & CL_UNPRIVILEGED) {
1123 		mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
1124 
1125 		if (mnt->mnt.mnt_flags & MNT_READONLY)
1126 			mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1127 
1128 		if (mnt->mnt.mnt_flags & MNT_NODEV)
1129 			mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1130 
1131 		if (mnt->mnt.mnt_flags & MNT_NOSUID)
1132 			mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1133 
1134 		if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1135 			mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1136 	}
1137 
1138 	/* Don't allow unprivileged users to reveal what is under a mount */
1139 	if ((flag & CL_UNPRIVILEGED) &&
1140 	    (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
1141 		mnt->mnt.mnt_flags |= MNT_LOCKED;
1142 
1143 	atomic_inc(&sb->s_active);
1144 	mnt->mnt.mnt_sb = sb;
1145 	mnt->mnt.mnt_root = dget(root);
1146 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1147 	mnt->mnt_parent = mnt;
1148 	lock_mount_hash();
1149 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1150 	unlock_mount_hash();
1151 
1152 	if ((flag & CL_SLAVE) ||
1153 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1154 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1155 		mnt->mnt_master = old;
1156 		CLEAR_MNT_SHARED(mnt);
1157 	} else if (!(flag & CL_PRIVATE)) {
1158 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1159 			list_add(&mnt->mnt_share, &old->mnt_share);
1160 		if (IS_MNT_SLAVE(old))
1161 			list_add(&mnt->mnt_slave, &old->mnt_slave);
1162 		mnt->mnt_master = old->mnt_master;
1163 	} else {
1164 		CLEAR_MNT_SHARED(mnt);
1165 	}
1166 	if (flag & CL_MAKE_SHARED)
1167 		set_mnt_shared(mnt);
1168 
1169 	/* stick the duplicate mount on the same expiry list
1170 	 * as the original if that was on one */
1171 	if (flag & CL_EXPIRE) {
1172 		if (!list_empty(&old->mnt_expire))
1173 			list_add(&mnt->mnt_expire, &old->mnt_expire);
1174 	}
1175 
1176 	return mnt;
1177 
1178  out_free:
1179 	mnt_free_id(mnt);
1180 	free_vfsmnt(mnt);
1181 	return ERR_PTR(err);
1182 }
1183 
cleanup_mnt(struct mount * mnt)1184 static void cleanup_mnt(struct mount *mnt)
1185 {
1186 	/*
1187 	 * This probably indicates that somebody messed
1188 	 * up a mnt_want/drop_write() pair.  If this
1189 	 * happens, the filesystem was probably unable
1190 	 * to make r/w->r/o transitions.
1191 	 */
1192 	/*
1193 	 * The locking used to deal with mnt_count decrement provides barriers,
1194 	 * so mnt_get_writers() below is safe.
1195 	 */
1196 	WARN_ON(mnt_get_writers(mnt));
1197 	if (unlikely(mnt->mnt_pins.first))
1198 		mnt_pin_kill(mnt);
1199 	fsnotify_vfsmount_delete(&mnt->mnt);
1200 	dput(mnt->mnt.mnt_root);
1201 	deactivate_super(mnt->mnt.mnt_sb);
1202 	mnt_free_id(mnt);
1203 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1204 }
1205 
__cleanup_mnt(struct rcu_head * head)1206 static void __cleanup_mnt(struct rcu_head *head)
1207 {
1208 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1209 }
1210 
1211 static LLIST_HEAD(delayed_mntput_list);
delayed_mntput(struct work_struct * unused)1212 static void delayed_mntput(struct work_struct *unused)
1213 {
1214 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1215 	struct mount *m, *t;
1216 
1217 	llist_for_each_entry_safe(m, t, node, mnt_llist)
1218 		cleanup_mnt(m);
1219 }
1220 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1221 
mntput_no_expire(struct mount * mnt)1222 static void mntput_no_expire(struct mount *mnt)
1223 {
1224 	rcu_read_lock();
1225 	if (likely(READ_ONCE(mnt->mnt_ns))) {
1226 		/*
1227 		 * Since we don't do lock_mount_hash() here,
1228 		 * ->mnt_ns can change under us.  However, if it's
1229 		 * non-NULL, then there's a reference that won't
1230 		 * be dropped until after an RCU delay done after
1231 		 * turning ->mnt_ns NULL.  So if we observe it
1232 		 * non-NULL under rcu_read_lock(), the reference
1233 		 * we are dropping is not the final one.
1234 		 */
1235 		mnt_add_count(mnt, -1);
1236 		rcu_read_unlock();
1237 		return;
1238 	}
1239 	lock_mount_hash();
1240 	/*
1241 	 * make sure that if __legitimize_mnt() has not seen us grab
1242 	 * mount_lock, we'll see their refcount increment here.
1243 	 */
1244 	smp_mb();
1245 	mnt_add_count(mnt, -1);
1246 	if (mnt_get_count(mnt)) {
1247 		rcu_read_unlock();
1248 		unlock_mount_hash();
1249 		return;
1250 	}
1251 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1252 		rcu_read_unlock();
1253 		unlock_mount_hash();
1254 		return;
1255 	}
1256 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1257 	rcu_read_unlock();
1258 
1259 	list_del(&mnt->mnt_instance);
1260 
1261 	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1262 		struct mount *p, *tmp;
1263 		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1264 			umount_mnt(p);
1265 		}
1266 	}
1267 	unlock_mount_hash();
1268 
1269 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1270 		struct task_struct *task = current;
1271 		if (likely(!(task->flags & PF_KTHREAD))) {
1272 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1273 			if (!task_work_add(task, &mnt->mnt_rcu, true))
1274 				return;
1275 		}
1276 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1277 			schedule_delayed_work(&delayed_mntput_work, 1);
1278 		return;
1279 	}
1280 	cleanup_mnt(mnt);
1281 }
1282 
mntput(struct vfsmount * mnt)1283 void mntput(struct vfsmount *mnt)
1284 {
1285 	if (mnt) {
1286 		struct mount *m = real_mount(mnt);
1287 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1288 		if (unlikely(m->mnt_expiry_mark))
1289 			m->mnt_expiry_mark = 0;
1290 		mntput_no_expire(m);
1291 	}
1292 }
1293 EXPORT_SYMBOL(mntput);
1294 
mntget(struct vfsmount * mnt)1295 struct vfsmount *mntget(struct vfsmount *mnt)
1296 {
1297 	if (mnt)
1298 		mnt_add_count(real_mount(mnt), 1);
1299 	return mnt;
1300 }
1301 EXPORT_SYMBOL(mntget);
1302 
1303 /* path_is_mountpoint() - Check if path is a mount in the current
1304  *                          namespace.
1305  *
1306  *  d_mountpoint() can only be used reliably to establish if a dentry is
1307  *  not mounted in any namespace and that common case is handled inline.
1308  *  d_mountpoint() isn't aware of the possibility there may be multiple
1309  *  mounts using a given dentry in a different namespace. This function
1310  *  checks if the passed in path is a mountpoint rather than the dentry
1311  *  alone.
1312  */
path_is_mountpoint(const struct path * path)1313 bool path_is_mountpoint(const struct path *path)
1314 {
1315 	unsigned seq;
1316 	bool res;
1317 
1318 	if (!d_mountpoint(path->dentry))
1319 		return false;
1320 
1321 	rcu_read_lock();
1322 	do {
1323 		seq = read_seqbegin(&mount_lock);
1324 		res = __path_is_mountpoint(path);
1325 	} while (read_seqretry(&mount_lock, seq));
1326 	rcu_read_unlock();
1327 
1328 	return res;
1329 }
1330 EXPORT_SYMBOL(path_is_mountpoint);
1331 
mnt_clone_internal(const struct path * path)1332 struct vfsmount *mnt_clone_internal(const struct path *path)
1333 {
1334 	struct mount *p;
1335 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1336 	if (IS_ERR(p))
1337 		return ERR_CAST(p);
1338 	p->mnt.mnt_flags |= MNT_INTERNAL;
1339 	return &p->mnt;
1340 }
1341 
1342 #ifdef CONFIG_PROC_FS
1343 /* iterator; we want it to have access to namespace_sem, thus here... */
m_start(struct seq_file * m,loff_t * pos)1344 static void *m_start(struct seq_file *m, loff_t *pos)
1345 {
1346 	struct proc_mounts *p = m->private;
1347 
1348 	down_read(&namespace_sem);
1349 	if (p->cached_event == p->ns->event) {
1350 		void *v = p->cached_mount;
1351 		if (*pos == p->cached_index)
1352 			return v;
1353 		if (*pos == p->cached_index + 1) {
1354 			v = seq_list_next(v, &p->ns->list, &p->cached_index);
1355 			return p->cached_mount = v;
1356 		}
1357 	}
1358 
1359 	p->cached_event = p->ns->event;
1360 	p->cached_mount = seq_list_start(&p->ns->list, *pos);
1361 	p->cached_index = *pos;
1362 	return p->cached_mount;
1363 }
1364 
m_next(struct seq_file * m,void * v,loff_t * pos)1365 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1366 {
1367 	struct proc_mounts *p = m->private;
1368 
1369 	p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1370 	p->cached_index = *pos;
1371 	return p->cached_mount;
1372 }
1373 
m_stop(struct seq_file * m,void * v)1374 static void m_stop(struct seq_file *m, void *v)
1375 {
1376 	up_read(&namespace_sem);
1377 }
1378 
m_show(struct seq_file * m,void * v)1379 static int m_show(struct seq_file *m, void *v)
1380 {
1381 	struct proc_mounts *p = m->private;
1382 	struct mount *r = list_entry(v, struct mount, mnt_list);
1383 	return p->show(m, &r->mnt);
1384 }
1385 
1386 const struct seq_operations mounts_op = {
1387 	.start	= m_start,
1388 	.next	= m_next,
1389 	.stop	= m_stop,
1390 	.show	= m_show,
1391 };
1392 #endif  /* CONFIG_PROC_FS */
1393 
1394 /**
1395  * may_umount_tree - check if a mount tree is busy
1396  * @mnt: root of mount tree
1397  *
1398  * This is called to check if a tree of mounts has any
1399  * open files, pwds, chroots or sub mounts that are
1400  * busy.
1401  */
may_umount_tree(struct vfsmount * m)1402 int may_umount_tree(struct vfsmount *m)
1403 {
1404 	struct mount *mnt = real_mount(m);
1405 	int actual_refs = 0;
1406 	int minimum_refs = 0;
1407 	struct mount *p;
1408 	BUG_ON(!m);
1409 
1410 	/* write lock needed for mnt_get_count */
1411 	lock_mount_hash();
1412 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1413 		actual_refs += mnt_get_count(p);
1414 		minimum_refs += 2;
1415 	}
1416 	unlock_mount_hash();
1417 
1418 	if (actual_refs > minimum_refs)
1419 		return 0;
1420 
1421 	return 1;
1422 }
1423 
1424 EXPORT_SYMBOL(may_umount_tree);
1425 
1426 /**
1427  * may_umount - check if a mount point is busy
1428  * @mnt: root of mount
1429  *
1430  * This is called to check if a mount point has any
1431  * open files, pwds, chroots or sub mounts. If the
1432  * mount has sub mounts this will return busy
1433  * regardless of whether the sub mounts are busy.
1434  *
1435  * Doesn't take quota and stuff into account. IOW, in some cases it will
1436  * give false negatives. The main reason why it's here is that we need
1437  * a non-destructive way to look for easily umountable filesystems.
1438  */
may_umount(struct vfsmount * mnt)1439 int may_umount(struct vfsmount *mnt)
1440 {
1441 	int ret = 1;
1442 	down_read(&namespace_sem);
1443 	lock_mount_hash();
1444 	if (propagate_mount_busy(real_mount(mnt), 2))
1445 		ret = 0;
1446 	unlock_mount_hash();
1447 	up_read(&namespace_sem);
1448 	return ret;
1449 }
1450 
1451 EXPORT_SYMBOL(may_umount);
1452 
1453 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
1454 
namespace_unlock(void)1455 static void namespace_unlock(void)
1456 {
1457 	struct hlist_head head;
1458 
1459 	hlist_move_list(&unmounted, &head);
1460 
1461 	up_write(&namespace_sem);
1462 
1463 	if (likely(hlist_empty(&head)))
1464 		return;
1465 
1466 	synchronize_rcu();
1467 
1468 	group_pin_kill(&head);
1469 }
1470 
namespace_lock(void)1471 static inline void namespace_lock(void)
1472 {
1473 	down_write(&namespace_sem);
1474 }
1475 
1476 enum umount_tree_flags {
1477 	UMOUNT_SYNC = 1,
1478 	UMOUNT_PROPAGATE = 2,
1479 	UMOUNT_CONNECTED = 4,
1480 };
1481 
disconnect_mount(struct mount * mnt,enum umount_tree_flags how)1482 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1483 {
1484 	/* Leaving mounts connected is only valid for lazy umounts */
1485 	if (how & UMOUNT_SYNC)
1486 		return true;
1487 
1488 	/* A mount without a parent has nothing to be connected to */
1489 	if (!mnt_has_parent(mnt))
1490 		return true;
1491 
1492 	/* Because the reference counting rules change when mounts are
1493 	 * unmounted and connected, umounted mounts may not be
1494 	 * connected to mounted mounts.
1495 	 */
1496 	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1497 		return true;
1498 
1499 	/* Has it been requested that the mount remain connected? */
1500 	if (how & UMOUNT_CONNECTED)
1501 		return false;
1502 
1503 	/* Is the mount locked such that it needs to remain connected? */
1504 	if (IS_MNT_LOCKED(mnt))
1505 		return false;
1506 
1507 	/* By default disconnect the mount */
1508 	return true;
1509 }
1510 
1511 /*
1512  * mount_lock must be held
1513  * namespace_sem must be held for write
1514  */
umount_tree(struct mount * mnt,enum umount_tree_flags how)1515 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1516 {
1517 	LIST_HEAD(tmp_list);
1518 	struct mount *p;
1519 
1520 	if (how & UMOUNT_PROPAGATE)
1521 		propagate_mount_unlock(mnt);
1522 
1523 	/* Gather the mounts to umount */
1524 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1525 		p->mnt.mnt_flags |= MNT_UMOUNT;
1526 		list_move(&p->mnt_list, &tmp_list);
1527 	}
1528 
1529 	/* Hide the mounts from mnt_mounts */
1530 	list_for_each_entry(p, &tmp_list, mnt_list) {
1531 		list_del_init(&p->mnt_child);
1532 	}
1533 
1534 	/* Add propogated mounts to the tmp_list */
1535 	if (how & UMOUNT_PROPAGATE)
1536 		propagate_umount(&tmp_list);
1537 
1538 	while (!list_empty(&tmp_list)) {
1539 		struct mnt_namespace *ns;
1540 		bool disconnect;
1541 		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1542 		list_del_init(&p->mnt_expire);
1543 		list_del_init(&p->mnt_list);
1544 		ns = p->mnt_ns;
1545 		if (ns) {
1546 			ns->mounts--;
1547 			__touch_mnt_namespace(ns);
1548 		}
1549 		p->mnt_ns = NULL;
1550 		if (how & UMOUNT_SYNC)
1551 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1552 
1553 		disconnect = disconnect_mount(p, how);
1554 
1555 		pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1556 				 disconnect ? &unmounted : NULL);
1557 		if (mnt_has_parent(p)) {
1558 			mnt_add_count(p->mnt_parent, -1);
1559 			if (!disconnect) {
1560 				/* Don't forget about p */
1561 				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1562 			} else {
1563 				umount_mnt(p);
1564 			}
1565 		}
1566 		change_mnt_propagation(p, MS_PRIVATE);
1567 	}
1568 }
1569 
1570 static void shrink_submounts(struct mount *mnt);
1571 
do_umount(struct mount * mnt,int flags)1572 static int do_umount(struct mount *mnt, int flags)
1573 {
1574 	struct super_block *sb = mnt->mnt.mnt_sb;
1575 	int retval;
1576 
1577 	retval = security_sb_umount(&mnt->mnt, flags);
1578 	if (retval)
1579 		return retval;
1580 
1581 	/*
1582 	 * Allow userspace to request a mountpoint be expired rather than
1583 	 * unmounting unconditionally. Unmount only happens if:
1584 	 *  (1) the mark is already set (the mark is cleared by mntput())
1585 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1586 	 */
1587 	if (flags & MNT_EXPIRE) {
1588 		if (&mnt->mnt == current->fs->root.mnt ||
1589 		    flags & (MNT_FORCE | MNT_DETACH))
1590 			return -EINVAL;
1591 
1592 		/*
1593 		 * probably don't strictly need the lock here if we examined
1594 		 * all race cases, but it's a slowpath.
1595 		 */
1596 		lock_mount_hash();
1597 		if (mnt_get_count(mnt) != 2) {
1598 			unlock_mount_hash();
1599 			return -EBUSY;
1600 		}
1601 		unlock_mount_hash();
1602 
1603 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1604 			return -EAGAIN;
1605 	}
1606 
1607 	/*
1608 	 * If we may have to abort operations to get out of this
1609 	 * mount, and they will themselves hold resources we must
1610 	 * allow the fs to do things. In the Unix tradition of
1611 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1612 	 * might fail to complete on the first run through as other tasks
1613 	 * must return, and the like. Thats for the mount program to worry
1614 	 * about for the moment.
1615 	 */
1616 
1617 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1618 		sb->s_op->umount_begin(sb);
1619 	}
1620 
1621 	/*
1622 	 * No sense to grab the lock for this test, but test itself looks
1623 	 * somewhat bogus. Suggestions for better replacement?
1624 	 * Ho-hum... In principle, we might treat that as umount + switch
1625 	 * to rootfs. GC would eventually take care of the old vfsmount.
1626 	 * Actually it makes sense, especially if rootfs would contain a
1627 	 * /reboot - static binary that would close all descriptors and
1628 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1629 	 */
1630 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1631 		/*
1632 		 * Special case for "unmounting" root ...
1633 		 * we just try to remount it readonly.
1634 		 */
1635 		if (!capable(CAP_SYS_ADMIN))
1636 			return -EPERM;
1637 		down_write(&sb->s_umount);
1638 		if (!sb_rdonly(sb))
1639 			retval = do_remount_sb(sb, SB_RDONLY, NULL, 0);
1640 		up_write(&sb->s_umount);
1641 		return retval;
1642 	}
1643 
1644 	namespace_lock();
1645 	lock_mount_hash();
1646 
1647 	/* Recheck MNT_LOCKED with the locks held */
1648 	retval = -EINVAL;
1649 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1650 		goto out;
1651 
1652 	event++;
1653 	if (flags & MNT_DETACH) {
1654 		if (!list_empty(&mnt->mnt_list))
1655 			umount_tree(mnt, UMOUNT_PROPAGATE);
1656 		retval = 0;
1657 	} else {
1658 		shrink_submounts(mnt);
1659 		retval = -EBUSY;
1660 		if (!propagate_mount_busy(mnt, 2)) {
1661 			if (!list_empty(&mnt->mnt_list))
1662 				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1663 			retval = 0;
1664 		}
1665 	}
1666 out:
1667 	unlock_mount_hash();
1668 	namespace_unlock();
1669 	return retval;
1670 }
1671 
1672 /*
1673  * __detach_mounts - lazily unmount all mounts on the specified dentry
1674  *
1675  * During unlink, rmdir, and d_drop it is possible to loose the path
1676  * to an existing mountpoint, and wind up leaking the mount.
1677  * detach_mounts allows lazily unmounting those mounts instead of
1678  * leaking them.
1679  *
1680  * The caller may hold dentry->d_inode->i_mutex.
1681  */
__detach_mounts(struct dentry * dentry)1682 void __detach_mounts(struct dentry *dentry)
1683 {
1684 	struct mountpoint *mp;
1685 	struct mount *mnt;
1686 
1687 	namespace_lock();
1688 	lock_mount_hash();
1689 	mp = lookup_mountpoint(dentry);
1690 	if (IS_ERR_OR_NULL(mp))
1691 		goto out_unlock;
1692 
1693 	event++;
1694 	while (!hlist_empty(&mp->m_list)) {
1695 		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1696 		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1697 			hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1698 			umount_mnt(mnt);
1699 		}
1700 		else umount_tree(mnt, UMOUNT_CONNECTED);
1701 	}
1702 	put_mountpoint(mp);
1703 out_unlock:
1704 	unlock_mount_hash();
1705 	namespace_unlock();
1706 }
1707 
1708 /*
1709  * Is the caller allowed to modify his namespace?
1710  */
may_mount(void)1711 static inline bool may_mount(void)
1712 {
1713 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1714 }
1715 
may_mandlock(void)1716 static inline bool may_mandlock(void)
1717 {
1718 #ifndef	CONFIG_MANDATORY_FILE_LOCKING
1719 	return false;
1720 #endif
1721 	return capable(CAP_SYS_ADMIN);
1722 }
1723 
1724 /*
1725  * Now umount can handle mount points as well as block devices.
1726  * This is important for filesystems which use unnamed block devices.
1727  *
1728  * We now support a flag for forced unmount like the other 'big iron'
1729  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1730  */
1731 
SYSCALL_DEFINE2(umount,char __user *,name,int,flags)1732 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1733 {
1734 	struct path path;
1735 	struct mount *mnt;
1736 	int retval;
1737 	int lookup_flags = 0;
1738 
1739 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1740 		return -EINVAL;
1741 
1742 	if (!may_mount())
1743 		return -EPERM;
1744 
1745 	if (!(flags & UMOUNT_NOFOLLOW))
1746 		lookup_flags |= LOOKUP_FOLLOW;
1747 
1748 	retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1749 	if (retval)
1750 		goto out;
1751 	mnt = real_mount(path.mnt);
1752 	retval = -EINVAL;
1753 	if (path.dentry != path.mnt->mnt_root)
1754 		goto dput_and_out;
1755 	if (!check_mnt(mnt))
1756 		goto dput_and_out;
1757 	if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1758 		goto dput_and_out;
1759 	retval = -EPERM;
1760 	if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1761 		goto dput_and_out;
1762 
1763 	retval = do_umount(mnt, flags);
1764 dput_and_out:
1765 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1766 	dput(path.dentry);
1767 	mntput_no_expire(mnt);
1768 out:
1769 	return retval;
1770 }
1771 
1772 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1773 
1774 /*
1775  *	The 2.0 compatible umount. No flags.
1776  */
SYSCALL_DEFINE1(oldumount,char __user *,name)1777 SYSCALL_DEFINE1(oldumount, char __user *, name)
1778 {
1779 	return sys_umount(name, 0);
1780 }
1781 
1782 #endif
1783 
is_mnt_ns_file(struct dentry * dentry)1784 static bool is_mnt_ns_file(struct dentry *dentry)
1785 {
1786 	/* Is this a proxy for a mount namespace? */
1787 	return dentry->d_op == &ns_dentry_operations &&
1788 	       dentry->d_fsdata == &mntns_operations;
1789 }
1790 
to_mnt_ns(struct ns_common * ns)1791 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1792 {
1793 	return container_of(ns, struct mnt_namespace, ns);
1794 }
1795 
mnt_ns_loop(struct dentry * dentry)1796 static bool mnt_ns_loop(struct dentry *dentry)
1797 {
1798 	/* Could bind mounting the mount namespace inode cause a
1799 	 * mount namespace loop?
1800 	 */
1801 	struct mnt_namespace *mnt_ns;
1802 	if (!is_mnt_ns_file(dentry))
1803 		return false;
1804 
1805 	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1806 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1807 }
1808 
copy_tree(struct mount * mnt,struct dentry * dentry,int flag)1809 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1810 					int flag)
1811 {
1812 	struct mount *res, *p, *q, *r, *parent;
1813 
1814 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1815 		return ERR_PTR(-EINVAL);
1816 
1817 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1818 		return ERR_PTR(-EINVAL);
1819 
1820 	res = q = clone_mnt(mnt, dentry, flag);
1821 	if (IS_ERR(q))
1822 		return q;
1823 
1824 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1825 
1826 	p = mnt;
1827 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1828 		struct mount *s;
1829 		if (!is_subdir(r->mnt_mountpoint, dentry))
1830 			continue;
1831 
1832 		for (s = r; s; s = next_mnt(s, r)) {
1833 			if (!(flag & CL_COPY_UNBINDABLE) &&
1834 			    IS_MNT_UNBINDABLE(s)) {
1835 				if (s->mnt.mnt_flags & MNT_LOCKED) {
1836 					/* Both unbindable and locked. */
1837 					q = ERR_PTR(-EPERM);
1838 					goto out;
1839 				} else {
1840 					s = skip_mnt_tree(s);
1841 					continue;
1842 				}
1843 			}
1844 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
1845 			    is_mnt_ns_file(s->mnt.mnt_root)) {
1846 				s = skip_mnt_tree(s);
1847 				continue;
1848 			}
1849 			while (p != s->mnt_parent) {
1850 				p = p->mnt_parent;
1851 				q = q->mnt_parent;
1852 			}
1853 			p = s;
1854 			parent = q;
1855 			q = clone_mnt(p, p->mnt.mnt_root, flag);
1856 			if (IS_ERR(q))
1857 				goto out;
1858 			lock_mount_hash();
1859 			list_add_tail(&q->mnt_list, &res->mnt_list);
1860 			attach_mnt(q, parent, p->mnt_mp);
1861 			unlock_mount_hash();
1862 		}
1863 	}
1864 	return res;
1865 out:
1866 	if (res) {
1867 		lock_mount_hash();
1868 		umount_tree(res, UMOUNT_SYNC);
1869 		unlock_mount_hash();
1870 	}
1871 	return q;
1872 }
1873 
1874 /* Caller should check returned pointer for errors */
1875 
collect_mounts(const struct path * path)1876 struct vfsmount *collect_mounts(const struct path *path)
1877 {
1878 	struct mount *tree;
1879 	namespace_lock();
1880 	if (!check_mnt(real_mount(path->mnt)))
1881 		tree = ERR_PTR(-EINVAL);
1882 	else
1883 		tree = copy_tree(real_mount(path->mnt), path->dentry,
1884 				 CL_COPY_ALL | CL_PRIVATE);
1885 	namespace_unlock();
1886 	if (IS_ERR(tree))
1887 		return ERR_CAST(tree);
1888 	return &tree->mnt;
1889 }
1890 
drop_collected_mounts(struct vfsmount * mnt)1891 void drop_collected_mounts(struct vfsmount *mnt)
1892 {
1893 	namespace_lock();
1894 	lock_mount_hash();
1895 	umount_tree(real_mount(mnt), 0);
1896 	unlock_mount_hash();
1897 	namespace_unlock();
1898 }
1899 
1900 /**
1901  * clone_private_mount - create a private clone of a path
1902  *
1903  * This creates a new vfsmount, which will be the clone of @path.  The new will
1904  * not be attached anywhere in the namespace and will be private (i.e. changes
1905  * to the originating mount won't be propagated into this).
1906  *
1907  * Release with mntput().
1908  */
clone_private_mount(const struct path * path)1909 struct vfsmount *clone_private_mount(const struct path *path)
1910 {
1911 	struct mount *old_mnt = real_mount(path->mnt);
1912 	struct mount *new_mnt;
1913 
1914 	if (IS_MNT_UNBINDABLE(old_mnt))
1915 		return ERR_PTR(-EINVAL);
1916 
1917 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1918 	if (IS_ERR(new_mnt))
1919 		return ERR_CAST(new_mnt);
1920 
1921 	return &new_mnt->mnt;
1922 }
1923 EXPORT_SYMBOL_GPL(clone_private_mount);
1924 
iterate_mounts(int (* f)(struct vfsmount *,void *),void * arg,struct vfsmount * root)1925 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1926 		   struct vfsmount *root)
1927 {
1928 	struct mount *mnt;
1929 	int res = f(root, arg);
1930 	if (res)
1931 		return res;
1932 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1933 		res = f(&mnt->mnt, arg);
1934 		if (res)
1935 			return res;
1936 	}
1937 	return 0;
1938 }
1939 
cleanup_group_ids(struct mount * mnt,struct mount * end)1940 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1941 {
1942 	struct mount *p;
1943 
1944 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1945 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1946 			mnt_release_group_id(p);
1947 	}
1948 }
1949 
invent_group_ids(struct mount * mnt,bool recurse)1950 static int invent_group_ids(struct mount *mnt, bool recurse)
1951 {
1952 	struct mount *p;
1953 
1954 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1955 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1956 			int err = mnt_alloc_group_id(p);
1957 			if (err) {
1958 				cleanup_group_ids(mnt, p);
1959 				return err;
1960 			}
1961 		}
1962 	}
1963 
1964 	return 0;
1965 }
1966 
count_mounts(struct mnt_namespace * ns,struct mount * mnt)1967 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1968 {
1969 	unsigned int max = READ_ONCE(sysctl_mount_max);
1970 	unsigned int mounts = 0, old, pending, sum;
1971 	struct mount *p;
1972 
1973 	for (p = mnt; p; p = next_mnt(p, mnt))
1974 		mounts++;
1975 
1976 	old = ns->mounts;
1977 	pending = ns->pending_mounts;
1978 	sum = old + pending;
1979 	if ((old > sum) ||
1980 	    (pending > sum) ||
1981 	    (max < sum) ||
1982 	    (mounts > (max - sum)))
1983 		return -ENOSPC;
1984 
1985 	ns->pending_mounts = pending + mounts;
1986 	return 0;
1987 }
1988 
1989 /*
1990  *  @source_mnt : mount tree to be attached
1991  *  @nd         : place the mount tree @source_mnt is attached
1992  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1993  *  		   store the parent mount and mountpoint dentry.
1994  *  		   (done when source_mnt is moved)
1995  *
1996  *  NOTE: in the table below explains the semantics when a source mount
1997  *  of a given type is attached to a destination mount of a given type.
1998  * ---------------------------------------------------------------------------
1999  * |         BIND MOUNT OPERATION                                            |
2000  * |**************************************************************************
2001  * | source-->| shared        |       private  |       slave    | unbindable |
2002  * | dest     |               |                |                |            |
2003  * |   |      |               |                |                |            |
2004  * |   v      |               |                |                |            |
2005  * |**************************************************************************
2006  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
2007  * |          |               |                |                |            |
2008  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
2009  * ***************************************************************************
2010  * A bind operation clones the source mount and mounts the clone on the
2011  * destination mount.
2012  *
2013  * (++)  the cloned mount is propagated to all the mounts in the propagation
2014  * 	 tree of the destination mount and the cloned mount is added to
2015  * 	 the peer group of the source mount.
2016  * (+)   the cloned mount is created under the destination mount and is marked
2017  *       as shared. The cloned mount is added to the peer group of the source
2018  *       mount.
2019  * (+++) the mount is propagated to all the mounts in the propagation tree
2020  *       of the destination mount and the cloned mount is made slave
2021  *       of the same master as that of the source mount. The cloned mount
2022  *       is marked as 'shared and slave'.
2023  * (*)   the cloned mount is made a slave of the same master as that of the
2024  * 	 source mount.
2025  *
2026  * ---------------------------------------------------------------------------
2027  * |         		MOVE MOUNT OPERATION                                 |
2028  * |**************************************************************************
2029  * | source-->| shared        |       private  |       slave    | unbindable |
2030  * | dest     |               |                |                |            |
2031  * |   |      |               |                |                |            |
2032  * |   v      |               |                |                |            |
2033  * |**************************************************************************
2034  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
2035  * |          |               |                |                |            |
2036  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
2037  * ***************************************************************************
2038  *
2039  * (+)  the mount is moved to the destination. And is then propagated to
2040  * 	all the mounts in the propagation tree of the destination mount.
2041  * (+*)  the mount is moved to the destination.
2042  * (+++)  the mount is moved to the destination and is then propagated to
2043  * 	all the mounts belonging to the destination mount's propagation tree.
2044  * 	the mount is marked as 'shared and slave'.
2045  * (*)	the mount continues to be a slave at the new location.
2046  *
2047  * if the source mount is a tree, the operations explained above is
2048  * applied to each mount in the tree.
2049  * Must be called without spinlocks held, since this function can sleep
2050  * in allocations.
2051  */
attach_recursive_mnt(struct mount * source_mnt,struct mount * dest_mnt,struct mountpoint * dest_mp,struct path * parent_path)2052 static int attach_recursive_mnt(struct mount *source_mnt,
2053 			struct mount *dest_mnt,
2054 			struct mountpoint *dest_mp,
2055 			struct path *parent_path)
2056 {
2057 	HLIST_HEAD(tree_list);
2058 	struct mnt_namespace *ns = dest_mnt->mnt_ns;
2059 	struct mountpoint *smp;
2060 	struct mount *child, *p;
2061 	struct hlist_node *n;
2062 	int err;
2063 
2064 	/* Preallocate a mountpoint in case the new mounts need
2065 	 * to be tucked under other mounts.
2066 	 */
2067 	smp = get_mountpoint(source_mnt->mnt.mnt_root);
2068 	if (IS_ERR(smp))
2069 		return PTR_ERR(smp);
2070 
2071 	/* Is there space to add these mounts to the mount namespace? */
2072 	if (!parent_path) {
2073 		err = count_mounts(ns, source_mnt);
2074 		if (err)
2075 			goto out;
2076 	}
2077 
2078 	if (IS_MNT_SHARED(dest_mnt)) {
2079 		err = invent_group_ids(source_mnt, true);
2080 		if (err)
2081 			goto out;
2082 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2083 		lock_mount_hash();
2084 		if (err)
2085 			goto out_cleanup_ids;
2086 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2087 			set_mnt_shared(p);
2088 	} else {
2089 		lock_mount_hash();
2090 	}
2091 	if (parent_path) {
2092 		detach_mnt(source_mnt, parent_path);
2093 		attach_mnt(source_mnt, dest_mnt, dest_mp);
2094 		touch_mnt_namespace(source_mnt->mnt_ns);
2095 	} else {
2096 		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2097 		commit_tree(source_mnt);
2098 	}
2099 
2100 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2101 		struct mount *q;
2102 		hlist_del_init(&child->mnt_hash);
2103 		q = __lookup_mnt(&child->mnt_parent->mnt,
2104 				 child->mnt_mountpoint);
2105 		if (q)
2106 			mnt_change_mountpoint(child, smp, q);
2107 		commit_tree(child);
2108 	}
2109 	put_mountpoint(smp);
2110 	unlock_mount_hash();
2111 
2112 	return 0;
2113 
2114  out_cleanup_ids:
2115 	while (!hlist_empty(&tree_list)) {
2116 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2117 		child->mnt_parent->mnt_ns->pending_mounts = 0;
2118 		umount_tree(child, UMOUNT_SYNC);
2119 	}
2120 	unlock_mount_hash();
2121 	cleanup_group_ids(source_mnt, NULL);
2122  out:
2123 	ns->pending_mounts = 0;
2124 
2125 	read_seqlock_excl(&mount_lock);
2126 	put_mountpoint(smp);
2127 	read_sequnlock_excl(&mount_lock);
2128 
2129 	return err;
2130 }
2131 
lock_mount(struct path * path)2132 static struct mountpoint *lock_mount(struct path *path)
2133 {
2134 	struct vfsmount *mnt;
2135 	struct dentry *dentry = path->dentry;
2136 retry:
2137 	inode_lock(dentry->d_inode);
2138 	if (unlikely(cant_mount(dentry))) {
2139 		inode_unlock(dentry->d_inode);
2140 		return ERR_PTR(-ENOENT);
2141 	}
2142 	namespace_lock();
2143 	mnt = lookup_mnt(path);
2144 	if (likely(!mnt)) {
2145 		struct mountpoint *mp = get_mountpoint(dentry);
2146 		if (IS_ERR(mp)) {
2147 			namespace_unlock();
2148 			inode_unlock(dentry->d_inode);
2149 			return mp;
2150 		}
2151 		return mp;
2152 	}
2153 	namespace_unlock();
2154 	inode_unlock(path->dentry->d_inode);
2155 	path_put(path);
2156 	path->mnt = mnt;
2157 	dentry = path->dentry = dget(mnt->mnt_root);
2158 	goto retry;
2159 }
2160 
unlock_mount(struct mountpoint * where)2161 static void unlock_mount(struct mountpoint *where)
2162 {
2163 	struct dentry *dentry = where->m_dentry;
2164 
2165 	read_seqlock_excl(&mount_lock);
2166 	put_mountpoint(where);
2167 	read_sequnlock_excl(&mount_lock);
2168 
2169 	namespace_unlock();
2170 	inode_unlock(dentry->d_inode);
2171 }
2172 
graft_tree(struct mount * mnt,struct mount * p,struct mountpoint * mp)2173 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2174 {
2175 	if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2176 		return -EINVAL;
2177 
2178 	if (d_is_dir(mp->m_dentry) !=
2179 	      d_is_dir(mnt->mnt.mnt_root))
2180 		return -ENOTDIR;
2181 
2182 	return attach_recursive_mnt(mnt, p, mp, NULL);
2183 }
2184 
2185 /*
2186  * Sanity check the flags to change_mnt_propagation.
2187  */
2188 
flags_to_propagation_type(int ms_flags)2189 static int flags_to_propagation_type(int ms_flags)
2190 {
2191 	int type = ms_flags & ~(MS_REC | MS_SILENT);
2192 
2193 	/* Fail if any non-propagation flags are set */
2194 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2195 		return 0;
2196 	/* Only one propagation flag should be set */
2197 	if (!is_power_of_2(type))
2198 		return 0;
2199 	return type;
2200 }
2201 
2202 /*
2203  * recursively change the type of the mountpoint.
2204  */
do_change_type(struct path * path,int ms_flags)2205 static int do_change_type(struct path *path, int ms_flags)
2206 {
2207 	struct mount *m;
2208 	struct mount *mnt = real_mount(path->mnt);
2209 	int recurse = ms_flags & MS_REC;
2210 	int type;
2211 	int err = 0;
2212 
2213 	if (path->dentry != path->mnt->mnt_root)
2214 		return -EINVAL;
2215 
2216 	type = flags_to_propagation_type(ms_flags);
2217 	if (!type)
2218 		return -EINVAL;
2219 
2220 	namespace_lock();
2221 	if (type == MS_SHARED) {
2222 		err = invent_group_ids(mnt, recurse);
2223 		if (err)
2224 			goto out_unlock;
2225 	}
2226 
2227 	lock_mount_hash();
2228 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2229 		change_mnt_propagation(m, type);
2230 	unlock_mount_hash();
2231 
2232  out_unlock:
2233 	namespace_unlock();
2234 	return err;
2235 }
2236 
has_locked_children(struct mount * mnt,struct dentry * dentry)2237 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2238 {
2239 	struct mount *child;
2240 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2241 		if (!is_subdir(child->mnt_mountpoint, dentry))
2242 			continue;
2243 
2244 		if (child->mnt.mnt_flags & MNT_LOCKED)
2245 			return true;
2246 	}
2247 	return false;
2248 }
2249 
2250 /*
2251  * do loopback mount.
2252  */
do_loopback(struct path * path,const char * old_name,int recurse)2253 static int do_loopback(struct path *path, const char *old_name,
2254 				int recurse)
2255 {
2256 	struct path old_path;
2257 	struct mount *mnt = NULL, *old, *parent;
2258 	struct mountpoint *mp;
2259 	int err;
2260 	if (!old_name || !*old_name)
2261 		return -EINVAL;
2262 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2263 	if (err)
2264 		return err;
2265 
2266 	err = -EINVAL;
2267 	if (mnt_ns_loop(old_path.dentry))
2268 		goto out;
2269 
2270 	mp = lock_mount(path);
2271 	err = PTR_ERR(mp);
2272 	if (IS_ERR(mp))
2273 		goto out;
2274 
2275 	old = real_mount(old_path.mnt);
2276 	parent = real_mount(path->mnt);
2277 
2278 	err = -EINVAL;
2279 	if (IS_MNT_UNBINDABLE(old))
2280 		goto out2;
2281 
2282 	if (!check_mnt(parent))
2283 		goto out2;
2284 
2285 	if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2286 		goto out2;
2287 
2288 	if (!recurse && has_locked_children(old, old_path.dentry))
2289 		goto out2;
2290 
2291 	if (recurse)
2292 		mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2293 	else
2294 		mnt = clone_mnt(old, old_path.dentry, 0);
2295 
2296 	if (IS_ERR(mnt)) {
2297 		err = PTR_ERR(mnt);
2298 		goto out2;
2299 	}
2300 
2301 	mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2302 
2303 	err = graft_tree(mnt, parent, mp);
2304 	if (err) {
2305 		lock_mount_hash();
2306 		umount_tree(mnt, UMOUNT_SYNC);
2307 		unlock_mount_hash();
2308 	}
2309 out2:
2310 	unlock_mount(mp);
2311 out:
2312 	path_put(&old_path);
2313 	return err;
2314 }
2315 
change_mount_flags(struct vfsmount * mnt,int ms_flags)2316 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2317 {
2318 	int error = 0;
2319 	int readonly_request = 0;
2320 
2321 	if (ms_flags & MS_RDONLY)
2322 		readonly_request = 1;
2323 	if (readonly_request == __mnt_is_readonly(mnt))
2324 		return 0;
2325 
2326 	if (readonly_request)
2327 		error = mnt_make_readonly(real_mount(mnt));
2328 	else
2329 		__mnt_unmake_readonly(real_mount(mnt));
2330 	return error;
2331 }
2332 
2333 /*
2334  * change filesystem flags. dir should be a physical root of filesystem.
2335  * If you've mounted a non-root directory somewhere and want to do remount
2336  * on it - tough luck.
2337  */
do_remount(struct path * path,int ms_flags,int sb_flags,int mnt_flags,void * data)2338 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2339 		      int mnt_flags, void *data)
2340 {
2341 	int err;
2342 	struct super_block *sb = path->mnt->mnt_sb;
2343 	struct mount *mnt = real_mount(path->mnt);
2344 
2345 	if (!check_mnt(mnt))
2346 		return -EINVAL;
2347 
2348 	if (path->dentry != path->mnt->mnt_root)
2349 		return -EINVAL;
2350 
2351 	/* Don't allow changing of locked mnt flags.
2352 	 *
2353 	 * No locks need to be held here while testing the various
2354 	 * MNT_LOCK flags because those flags can never be cleared
2355 	 * once they are set.
2356 	 */
2357 	if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2358 	    !(mnt_flags & MNT_READONLY)) {
2359 		return -EPERM;
2360 	}
2361 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2362 	    !(mnt_flags & MNT_NODEV)) {
2363 		return -EPERM;
2364 	}
2365 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2366 	    !(mnt_flags & MNT_NOSUID)) {
2367 		return -EPERM;
2368 	}
2369 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2370 	    !(mnt_flags & MNT_NOEXEC)) {
2371 		return -EPERM;
2372 	}
2373 	if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2374 	    ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2375 		return -EPERM;
2376 	}
2377 
2378 	err = security_sb_remount(sb, data);
2379 	if (err)
2380 		return err;
2381 
2382 	down_write(&sb->s_umount);
2383 	if (ms_flags & MS_BIND)
2384 		err = change_mount_flags(path->mnt, ms_flags);
2385 	else if (!capable(CAP_SYS_ADMIN))
2386 		err = -EPERM;
2387 	else {
2388 		err = do_remount_sb2(path->mnt, sb, sb_flags, data, 0);
2389 		namespace_lock();
2390 		lock_mount_hash();
2391 		propagate_remount(mnt);
2392 		unlock_mount_hash();
2393 		namespace_unlock();
2394 	}
2395 	if (!err) {
2396 		lock_mount_hash();
2397 		mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2398 		mnt->mnt.mnt_flags = mnt_flags;
2399 		touch_mnt_namespace(mnt->mnt_ns);
2400 		unlock_mount_hash();
2401 	}
2402 	up_write(&sb->s_umount);
2403 	return err;
2404 }
2405 
tree_contains_unbindable(struct mount * mnt)2406 static inline int tree_contains_unbindable(struct mount *mnt)
2407 {
2408 	struct mount *p;
2409 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2410 		if (IS_MNT_UNBINDABLE(p))
2411 			return 1;
2412 	}
2413 	return 0;
2414 }
2415 
do_move_mount(struct path * path,const char * old_name)2416 static int do_move_mount(struct path *path, const char *old_name)
2417 {
2418 	struct path old_path, parent_path;
2419 	struct mount *p;
2420 	struct mount *old;
2421 	struct mountpoint *mp;
2422 	int err;
2423 	if (!old_name || !*old_name)
2424 		return -EINVAL;
2425 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2426 	if (err)
2427 		return err;
2428 
2429 	mp = lock_mount(path);
2430 	err = PTR_ERR(mp);
2431 	if (IS_ERR(mp))
2432 		goto out;
2433 
2434 	old = real_mount(old_path.mnt);
2435 	p = real_mount(path->mnt);
2436 
2437 	err = -EINVAL;
2438 	if (!check_mnt(p) || !check_mnt(old))
2439 		goto out1;
2440 
2441 	if (old->mnt.mnt_flags & MNT_LOCKED)
2442 		goto out1;
2443 
2444 	err = -EINVAL;
2445 	if (old_path.dentry != old_path.mnt->mnt_root)
2446 		goto out1;
2447 
2448 	if (!mnt_has_parent(old))
2449 		goto out1;
2450 
2451 	if (d_is_dir(path->dentry) !=
2452 	      d_is_dir(old_path.dentry))
2453 		goto out1;
2454 	/*
2455 	 * Don't move a mount residing in a shared parent.
2456 	 */
2457 	if (IS_MNT_SHARED(old->mnt_parent))
2458 		goto out1;
2459 	/*
2460 	 * Don't move a mount tree containing unbindable mounts to a destination
2461 	 * mount which is shared.
2462 	 */
2463 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2464 		goto out1;
2465 	err = -ELOOP;
2466 	for (; mnt_has_parent(p); p = p->mnt_parent)
2467 		if (p == old)
2468 			goto out1;
2469 
2470 	err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2471 	if (err)
2472 		goto out1;
2473 
2474 	/* if the mount is moved, it should no longer be expire
2475 	 * automatically */
2476 	list_del_init(&old->mnt_expire);
2477 out1:
2478 	unlock_mount(mp);
2479 out:
2480 	if (!err)
2481 		path_put(&parent_path);
2482 	path_put(&old_path);
2483 	return err;
2484 }
2485 
fs_set_subtype(struct vfsmount * mnt,const char * fstype)2486 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2487 {
2488 	int err;
2489 	const char *subtype = strchr(fstype, '.');
2490 	if (subtype) {
2491 		subtype++;
2492 		err = -EINVAL;
2493 		if (!subtype[0])
2494 			goto err;
2495 	} else
2496 		subtype = "";
2497 
2498 	mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2499 	err = -ENOMEM;
2500 	if (!mnt->mnt_sb->s_subtype)
2501 		goto err;
2502 	return mnt;
2503 
2504  err:
2505 	mntput(mnt);
2506 	return ERR_PTR(err);
2507 }
2508 
2509 /*
2510  * add a mount into a namespace's mount tree
2511  */
do_add_mount(struct mount * newmnt,struct path * path,int mnt_flags)2512 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2513 {
2514 	struct mountpoint *mp;
2515 	struct mount *parent;
2516 	int err;
2517 
2518 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
2519 
2520 	mp = lock_mount(path);
2521 	if (IS_ERR(mp))
2522 		return PTR_ERR(mp);
2523 
2524 	parent = real_mount(path->mnt);
2525 	err = -EINVAL;
2526 	if (unlikely(!check_mnt(parent))) {
2527 		/* that's acceptable only for automounts done in private ns */
2528 		if (!(mnt_flags & MNT_SHRINKABLE))
2529 			goto unlock;
2530 		/* ... and for those we'd better have mountpoint still alive */
2531 		if (!parent->mnt_ns)
2532 			goto unlock;
2533 	}
2534 
2535 	/* Refuse the same filesystem on the same mount point */
2536 	err = -EBUSY;
2537 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2538 	    path->mnt->mnt_root == path->dentry)
2539 		goto unlock;
2540 
2541 	err = -EINVAL;
2542 	if (d_is_symlink(newmnt->mnt.mnt_root))
2543 		goto unlock;
2544 
2545 	newmnt->mnt.mnt_flags = mnt_flags;
2546 	err = graft_tree(newmnt, parent, mp);
2547 
2548 unlock:
2549 	unlock_mount(mp);
2550 	return err;
2551 }
2552 
2553 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
2554 
2555 /*
2556  * create a new mount for userspace and request it to be added into the
2557  * namespace's tree
2558  */
do_new_mount(struct path * path,const char * fstype,int sb_flags,int mnt_flags,const char * name,void * data)2559 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2560 			int mnt_flags, const char *name, void *data)
2561 {
2562 	struct file_system_type *type;
2563 	struct vfsmount *mnt;
2564 	int err;
2565 
2566 	if (!fstype)
2567 		return -EINVAL;
2568 
2569 	type = get_fs_type(fstype);
2570 	if (!type)
2571 		return -ENODEV;
2572 
2573 	mnt = vfs_kern_mount(type, sb_flags, name, data);
2574 	if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2575 	    !mnt->mnt_sb->s_subtype)
2576 		mnt = fs_set_subtype(mnt, fstype);
2577 
2578 	put_filesystem(type);
2579 	if (IS_ERR(mnt))
2580 		return PTR_ERR(mnt);
2581 
2582 	if (mount_too_revealing(mnt, &mnt_flags)) {
2583 		mntput(mnt);
2584 		return -EPERM;
2585 	}
2586 
2587 	err = do_add_mount(real_mount(mnt), path, mnt_flags);
2588 	if (err)
2589 		mntput(mnt);
2590 	return err;
2591 }
2592 
finish_automount(struct vfsmount * m,struct path * path)2593 int finish_automount(struct vfsmount *m, struct path *path)
2594 {
2595 	struct mount *mnt = real_mount(m);
2596 	int err;
2597 	/* The new mount record should have at least 2 refs to prevent it being
2598 	 * expired before we get a chance to add it
2599 	 */
2600 	BUG_ON(mnt_get_count(mnt) < 2);
2601 
2602 	if (m->mnt_sb == path->mnt->mnt_sb &&
2603 	    m->mnt_root == path->dentry) {
2604 		err = -ELOOP;
2605 		goto fail;
2606 	}
2607 
2608 	err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2609 	if (!err)
2610 		return 0;
2611 fail:
2612 	/* remove m from any expiration list it may be on */
2613 	if (!list_empty(&mnt->mnt_expire)) {
2614 		namespace_lock();
2615 		list_del_init(&mnt->mnt_expire);
2616 		namespace_unlock();
2617 	}
2618 	mntput(m);
2619 	mntput(m);
2620 	return err;
2621 }
2622 
2623 /**
2624  * mnt_set_expiry - Put a mount on an expiration list
2625  * @mnt: The mount to list.
2626  * @expiry_list: The list to add the mount to.
2627  */
mnt_set_expiry(struct vfsmount * mnt,struct list_head * expiry_list)2628 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2629 {
2630 	namespace_lock();
2631 
2632 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2633 
2634 	namespace_unlock();
2635 }
2636 EXPORT_SYMBOL(mnt_set_expiry);
2637 
2638 /*
2639  * process a list of expirable mountpoints with the intent of discarding any
2640  * mountpoints that aren't in use and haven't been touched since last we came
2641  * here
2642  */
mark_mounts_for_expiry(struct list_head * mounts)2643 void mark_mounts_for_expiry(struct list_head *mounts)
2644 {
2645 	struct mount *mnt, *next;
2646 	LIST_HEAD(graveyard);
2647 
2648 	if (list_empty(mounts))
2649 		return;
2650 
2651 	namespace_lock();
2652 	lock_mount_hash();
2653 
2654 	/* extract from the expiration list every vfsmount that matches the
2655 	 * following criteria:
2656 	 * - only referenced by its parent vfsmount
2657 	 * - still marked for expiry (marked on the last call here; marks are
2658 	 *   cleared by mntput())
2659 	 */
2660 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2661 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2662 			propagate_mount_busy(mnt, 1))
2663 			continue;
2664 		list_move(&mnt->mnt_expire, &graveyard);
2665 	}
2666 	while (!list_empty(&graveyard)) {
2667 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2668 		touch_mnt_namespace(mnt->mnt_ns);
2669 		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2670 	}
2671 	unlock_mount_hash();
2672 	namespace_unlock();
2673 }
2674 
2675 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2676 
2677 /*
2678  * Ripoff of 'select_parent()'
2679  *
2680  * search the list of submounts for a given mountpoint, and move any
2681  * shrinkable submounts to the 'graveyard' list.
2682  */
select_submounts(struct mount * parent,struct list_head * graveyard)2683 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2684 {
2685 	struct mount *this_parent = parent;
2686 	struct list_head *next;
2687 	int found = 0;
2688 
2689 repeat:
2690 	next = this_parent->mnt_mounts.next;
2691 resume:
2692 	while (next != &this_parent->mnt_mounts) {
2693 		struct list_head *tmp = next;
2694 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2695 
2696 		next = tmp->next;
2697 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2698 			continue;
2699 		/*
2700 		 * Descend a level if the d_mounts list is non-empty.
2701 		 */
2702 		if (!list_empty(&mnt->mnt_mounts)) {
2703 			this_parent = mnt;
2704 			goto repeat;
2705 		}
2706 
2707 		if (!propagate_mount_busy(mnt, 1)) {
2708 			list_move_tail(&mnt->mnt_expire, graveyard);
2709 			found++;
2710 		}
2711 	}
2712 	/*
2713 	 * All done at this level ... ascend and resume the search
2714 	 */
2715 	if (this_parent != parent) {
2716 		next = this_parent->mnt_child.next;
2717 		this_parent = this_parent->mnt_parent;
2718 		goto resume;
2719 	}
2720 	return found;
2721 }
2722 
2723 /*
2724  * process a list of expirable mountpoints with the intent of discarding any
2725  * submounts of a specific parent mountpoint
2726  *
2727  * mount_lock must be held for write
2728  */
shrink_submounts(struct mount * mnt)2729 static void shrink_submounts(struct mount *mnt)
2730 {
2731 	LIST_HEAD(graveyard);
2732 	struct mount *m;
2733 
2734 	/* extract submounts of 'mountpoint' from the expiration list */
2735 	while (select_submounts(mnt, &graveyard)) {
2736 		while (!list_empty(&graveyard)) {
2737 			m = list_first_entry(&graveyard, struct mount,
2738 						mnt_expire);
2739 			touch_mnt_namespace(m->mnt_ns);
2740 			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2741 		}
2742 	}
2743 }
2744 
2745 /*
2746  * Some copy_from_user() implementations do not return the exact number of
2747  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
2748  * Note that this function differs from copy_from_user() in that it will oops
2749  * on bad values of `to', rather than returning a short copy.
2750  */
exact_copy_from_user(void * to,const void __user * from,unsigned long n)2751 static long exact_copy_from_user(void *to, const void __user * from,
2752 				 unsigned long n)
2753 {
2754 	char *t = to;
2755 	const char __user *f = from;
2756 	char c;
2757 
2758 	if (!access_ok(VERIFY_READ, from, n))
2759 		return n;
2760 
2761 	while (n) {
2762 		if (__get_user(c, f)) {
2763 			memset(t, 0, n);
2764 			break;
2765 		}
2766 		*t++ = c;
2767 		f++;
2768 		n--;
2769 	}
2770 	return n;
2771 }
2772 
copy_mount_options(const void __user * data)2773 void *copy_mount_options(const void __user * data)
2774 {
2775 	int i;
2776 	unsigned long size;
2777 	char *copy;
2778 
2779 	if (!data)
2780 		return NULL;
2781 
2782 	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2783 	if (!copy)
2784 		return ERR_PTR(-ENOMEM);
2785 
2786 	/* We only care that *some* data at the address the user
2787 	 * gave us is valid.  Just in case, we'll zero
2788 	 * the remainder of the page.
2789 	 */
2790 	/* copy_from_user cannot cross TASK_SIZE ! */
2791 	size = TASK_SIZE - (unsigned long)data;
2792 	if (size > PAGE_SIZE)
2793 		size = PAGE_SIZE;
2794 
2795 	i = size - exact_copy_from_user(copy, data, size);
2796 	if (!i) {
2797 		kfree(copy);
2798 		return ERR_PTR(-EFAULT);
2799 	}
2800 	if (i != PAGE_SIZE)
2801 		memset(copy + i, 0, PAGE_SIZE - i);
2802 	return copy;
2803 }
2804 
copy_mount_string(const void __user * data)2805 char *copy_mount_string(const void __user *data)
2806 {
2807 	return data ? strndup_user(data, PAGE_SIZE) : NULL;
2808 }
2809 
2810 /*
2811  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2812  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2813  *
2814  * data is a (void *) that can point to any structure up to
2815  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2816  * information (or be NULL).
2817  *
2818  * Pre-0.97 versions of mount() didn't have a flags word.
2819  * When the flags word was introduced its top half was required
2820  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2821  * Therefore, if this magic number is present, it carries no information
2822  * and must be discarded.
2823  */
do_mount(const char * dev_name,const char __user * dir_name,const char * type_page,unsigned long flags,void * data_page)2824 long do_mount(const char *dev_name, const char __user *dir_name,
2825 		const char *type_page, unsigned long flags, void *data_page)
2826 {
2827 	struct path path;
2828 	unsigned int mnt_flags = 0, sb_flags;
2829 	int retval = 0;
2830 
2831 	/* Discard magic */
2832 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2833 		flags &= ~MS_MGC_MSK;
2834 
2835 	/* Basic sanity checks */
2836 	if (data_page)
2837 		((char *)data_page)[PAGE_SIZE - 1] = 0;
2838 
2839 	if (flags & MS_NOUSER)
2840 		return -EINVAL;
2841 
2842 	/* ... and get the mountpoint */
2843 	retval = user_path(dir_name, &path);
2844 	if (retval)
2845 		return retval;
2846 
2847 	retval = security_sb_mount(dev_name, &path,
2848 				   type_page, flags, data_page);
2849 	if (!retval && !may_mount())
2850 		retval = -EPERM;
2851 	if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
2852 		retval = -EPERM;
2853 	if (retval)
2854 		goto dput_out;
2855 
2856 	/* Default to relatime unless overriden */
2857 	if (!(flags & MS_NOATIME))
2858 		mnt_flags |= MNT_RELATIME;
2859 
2860 	/* Separate the per-mountpoint flags */
2861 	if (flags & MS_NOSUID)
2862 		mnt_flags |= MNT_NOSUID;
2863 	if (flags & MS_NODEV)
2864 		mnt_flags |= MNT_NODEV;
2865 	if (flags & MS_NOEXEC)
2866 		mnt_flags |= MNT_NOEXEC;
2867 	if (flags & MS_NOATIME)
2868 		mnt_flags |= MNT_NOATIME;
2869 	if (flags & MS_NODIRATIME)
2870 		mnt_flags |= MNT_NODIRATIME;
2871 	if (flags & MS_STRICTATIME)
2872 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2873 	if (flags & MS_RDONLY)
2874 		mnt_flags |= MNT_READONLY;
2875 
2876 	/* The default atime for remount is preservation */
2877 	if ((flags & MS_REMOUNT) &&
2878 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2879 		       MS_STRICTATIME)) == 0)) {
2880 		mnt_flags &= ~MNT_ATIME_MASK;
2881 		mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2882 	}
2883 
2884 	sb_flags = flags & (SB_RDONLY |
2885 			    SB_SYNCHRONOUS |
2886 			    SB_MANDLOCK |
2887 			    SB_DIRSYNC |
2888 			    SB_SILENT |
2889 			    SB_POSIXACL |
2890 			    SB_LAZYTIME |
2891 			    SB_I_VERSION);
2892 
2893 	if (flags & MS_REMOUNT)
2894 		retval = do_remount(&path, flags, sb_flags, mnt_flags,
2895 				    data_page);
2896 	else if (flags & MS_BIND)
2897 		retval = do_loopback(&path, dev_name, flags & MS_REC);
2898 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2899 		retval = do_change_type(&path, flags);
2900 	else if (flags & MS_MOVE)
2901 		retval = do_move_mount(&path, dev_name);
2902 	else
2903 		retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
2904 				      dev_name, data_page);
2905 dput_out:
2906 	path_put(&path);
2907 	return retval;
2908 }
2909 
inc_mnt_namespaces(struct user_namespace * ns)2910 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2911 {
2912 	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2913 }
2914 
dec_mnt_namespaces(struct ucounts * ucounts)2915 static void dec_mnt_namespaces(struct ucounts *ucounts)
2916 {
2917 	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2918 }
2919 
free_mnt_ns(struct mnt_namespace * ns)2920 static void free_mnt_ns(struct mnt_namespace *ns)
2921 {
2922 	ns_free_inum(&ns->ns);
2923 	dec_mnt_namespaces(ns->ucounts);
2924 	put_user_ns(ns->user_ns);
2925 	kfree(ns);
2926 }
2927 
2928 /*
2929  * Assign a sequence number so we can detect when we attempt to bind
2930  * mount a reference to an older mount namespace into the current
2931  * mount namespace, preventing reference counting loops.  A 64bit
2932  * number incrementing at 10Ghz will take 12,427 years to wrap which
2933  * is effectively never, so we can ignore the possibility.
2934  */
2935 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2936 
alloc_mnt_ns(struct user_namespace * user_ns)2937 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2938 {
2939 	struct mnt_namespace *new_ns;
2940 	struct ucounts *ucounts;
2941 	int ret;
2942 
2943 	ucounts = inc_mnt_namespaces(user_ns);
2944 	if (!ucounts)
2945 		return ERR_PTR(-ENOSPC);
2946 
2947 	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2948 	if (!new_ns) {
2949 		dec_mnt_namespaces(ucounts);
2950 		return ERR_PTR(-ENOMEM);
2951 	}
2952 	ret = ns_alloc_inum(&new_ns->ns);
2953 	if (ret) {
2954 		kfree(new_ns);
2955 		dec_mnt_namespaces(ucounts);
2956 		return ERR_PTR(ret);
2957 	}
2958 	new_ns->ns.ops = &mntns_operations;
2959 	new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2960 	atomic_set(&new_ns->count, 1);
2961 	new_ns->root = NULL;
2962 	INIT_LIST_HEAD(&new_ns->list);
2963 	init_waitqueue_head(&new_ns->poll);
2964 	new_ns->event = 0;
2965 	new_ns->user_ns = get_user_ns(user_ns);
2966 	new_ns->ucounts = ucounts;
2967 	new_ns->mounts = 0;
2968 	new_ns->pending_mounts = 0;
2969 	return new_ns;
2970 }
2971 
2972 __latent_entropy
copy_mnt_ns(unsigned long flags,struct mnt_namespace * ns,struct user_namespace * user_ns,struct fs_struct * new_fs)2973 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2974 		struct user_namespace *user_ns, struct fs_struct *new_fs)
2975 {
2976 	struct mnt_namespace *new_ns;
2977 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2978 	struct mount *p, *q;
2979 	struct mount *old;
2980 	struct mount *new;
2981 	int copy_flags;
2982 
2983 	BUG_ON(!ns);
2984 
2985 	if (likely(!(flags & CLONE_NEWNS))) {
2986 		get_mnt_ns(ns);
2987 		return ns;
2988 	}
2989 
2990 	old = ns->root;
2991 
2992 	new_ns = alloc_mnt_ns(user_ns);
2993 	if (IS_ERR(new_ns))
2994 		return new_ns;
2995 
2996 	namespace_lock();
2997 	/* First pass: copy the tree topology */
2998 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2999 	if (user_ns != ns->user_ns)
3000 		copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
3001 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3002 	if (IS_ERR(new)) {
3003 		namespace_unlock();
3004 		free_mnt_ns(new_ns);
3005 		return ERR_CAST(new);
3006 	}
3007 	new_ns->root = new;
3008 	list_add_tail(&new_ns->list, &new->mnt_list);
3009 
3010 	/*
3011 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3012 	 * as belonging to new namespace.  We have already acquired a private
3013 	 * fs_struct, so tsk->fs->lock is not needed.
3014 	 */
3015 	p = old;
3016 	q = new;
3017 	while (p) {
3018 		q->mnt_ns = new_ns;
3019 		new_ns->mounts++;
3020 		if (new_fs) {
3021 			if (&p->mnt == new_fs->root.mnt) {
3022 				new_fs->root.mnt = mntget(&q->mnt);
3023 				rootmnt = &p->mnt;
3024 			}
3025 			if (&p->mnt == new_fs->pwd.mnt) {
3026 				new_fs->pwd.mnt = mntget(&q->mnt);
3027 				pwdmnt = &p->mnt;
3028 			}
3029 		}
3030 		p = next_mnt(p, old);
3031 		q = next_mnt(q, new);
3032 		if (!q)
3033 			break;
3034 		while (p->mnt.mnt_root != q->mnt.mnt_root)
3035 			p = next_mnt(p, old);
3036 	}
3037 	namespace_unlock();
3038 
3039 	if (rootmnt)
3040 		mntput(rootmnt);
3041 	if (pwdmnt)
3042 		mntput(pwdmnt);
3043 
3044 	return new_ns;
3045 }
3046 
3047 /**
3048  * create_mnt_ns - creates a private namespace and adds a root filesystem
3049  * @mnt: pointer to the new root filesystem mountpoint
3050  */
create_mnt_ns(struct vfsmount * m)3051 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
3052 {
3053 	struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
3054 	if (!IS_ERR(new_ns)) {
3055 		struct mount *mnt = real_mount(m);
3056 		mnt->mnt_ns = new_ns;
3057 		new_ns->root = mnt;
3058 		new_ns->mounts++;
3059 		list_add(&mnt->mnt_list, &new_ns->list);
3060 	} else {
3061 		mntput(m);
3062 	}
3063 	return new_ns;
3064 }
3065 
mount_subtree(struct vfsmount * mnt,const char * name)3066 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
3067 {
3068 	struct mnt_namespace *ns;
3069 	struct super_block *s;
3070 	struct path path;
3071 	int err;
3072 
3073 	ns = create_mnt_ns(mnt);
3074 	if (IS_ERR(ns))
3075 		return ERR_CAST(ns);
3076 
3077 	err = vfs_path_lookup(mnt->mnt_root, mnt,
3078 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3079 
3080 	put_mnt_ns(ns);
3081 
3082 	if (err)
3083 		return ERR_PTR(err);
3084 
3085 	/* trade a vfsmount reference for active sb one */
3086 	s = path.mnt->mnt_sb;
3087 	atomic_inc(&s->s_active);
3088 	mntput(path.mnt);
3089 	/* lock the sucker */
3090 	down_write(&s->s_umount);
3091 	/* ... and return the root of (sub)tree on it */
3092 	return path.dentry;
3093 }
3094 EXPORT_SYMBOL(mount_subtree);
3095 
SYSCALL_DEFINE5(mount,char __user *,dev_name,char __user *,dir_name,char __user *,type,unsigned long,flags,void __user *,data)3096 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3097 		char __user *, type, unsigned long, flags, void __user *, data)
3098 {
3099 	int ret;
3100 	char *kernel_type;
3101 	char *kernel_dev;
3102 	void *options;
3103 
3104 	kernel_type = copy_mount_string(type);
3105 	ret = PTR_ERR(kernel_type);
3106 	if (IS_ERR(kernel_type))
3107 		goto out_type;
3108 
3109 	kernel_dev = copy_mount_string(dev_name);
3110 	ret = PTR_ERR(kernel_dev);
3111 	if (IS_ERR(kernel_dev))
3112 		goto out_dev;
3113 
3114 	options = copy_mount_options(data);
3115 	ret = PTR_ERR(options);
3116 	if (IS_ERR(options))
3117 		goto out_data;
3118 
3119 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3120 
3121 	kfree(options);
3122 out_data:
3123 	kfree(kernel_dev);
3124 out_dev:
3125 	kfree(kernel_type);
3126 out_type:
3127 	return ret;
3128 }
3129 
3130 /*
3131  * Return true if path is reachable from root
3132  *
3133  * namespace_sem or mount_lock is held
3134  */
is_path_reachable(struct mount * mnt,struct dentry * dentry,const struct path * root)3135 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3136 			 const struct path *root)
3137 {
3138 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3139 		dentry = mnt->mnt_mountpoint;
3140 		mnt = mnt->mnt_parent;
3141 	}
3142 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3143 }
3144 
path_is_under(const struct path * path1,const struct path * path2)3145 bool path_is_under(const struct path *path1, const struct path *path2)
3146 {
3147 	bool res;
3148 	read_seqlock_excl(&mount_lock);
3149 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3150 	read_sequnlock_excl(&mount_lock);
3151 	return res;
3152 }
3153 EXPORT_SYMBOL(path_is_under);
3154 
3155 /*
3156  * pivot_root Semantics:
3157  * Moves the root file system of the current process to the directory put_old,
3158  * makes new_root as the new root file system of the current process, and sets
3159  * root/cwd of all processes which had them on the current root to new_root.
3160  *
3161  * Restrictions:
3162  * The new_root and put_old must be directories, and  must not be on the
3163  * same file  system as the current process root. The put_old  must  be
3164  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
3165  * pointed to by put_old must yield the same directory as new_root. No other
3166  * file system may be mounted on put_old. After all, new_root is a mountpoint.
3167  *
3168  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3169  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3170  * in this situation.
3171  *
3172  * Notes:
3173  *  - we don't move root/cwd if they are not at the root (reason: if something
3174  *    cared enough to change them, it's probably wrong to force them elsewhere)
3175  *  - it's okay to pick a root that isn't the root of a file system, e.g.
3176  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3177  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3178  *    first.
3179  */
SYSCALL_DEFINE2(pivot_root,const char __user *,new_root,const char __user *,put_old)3180 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3181 		const char __user *, put_old)
3182 {
3183 	struct path new, old, parent_path, root_parent, root;
3184 	struct mount *new_mnt, *root_mnt, *old_mnt;
3185 	struct mountpoint *old_mp, *root_mp;
3186 	int error;
3187 
3188 	if (!may_mount())
3189 		return -EPERM;
3190 
3191 	error = user_path_dir(new_root, &new);
3192 	if (error)
3193 		goto out0;
3194 
3195 	error = user_path_dir(put_old, &old);
3196 	if (error)
3197 		goto out1;
3198 
3199 	error = security_sb_pivotroot(&old, &new);
3200 	if (error)
3201 		goto out2;
3202 
3203 	get_fs_root(current->fs, &root);
3204 	old_mp = lock_mount(&old);
3205 	error = PTR_ERR(old_mp);
3206 	if (IS_ERR(old_mp))
3207 		goto out3;
3208 
3209 	error = -EINVAL;
3210 	new_mnt = real_mount(new.mnt);
3211 	root_mnt = real_mount(root.mnt);
3212 	old_mnt = real_mount(old.mnt);
3213 	if (IS_MNT_SHARED(old_mnt) ||
3214 		IS_MNT_SHARED(new_mnt->mnt_parent) ||
3215 		IS_MNT_SHARED(root_mnt->mnt_parent))
3216 		goto out4;
3217 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3218 		goto out4;
3219 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3220 		goto out4;
3221 	error = -ENOENT;
3222 	if (d_unlinked(new.dentry))
3223 		goto out4;
3224 	error = -EBUSY;
3225 	if (new_mnt == root_mnt || old_mnt == root_mnt)
3226 		goto out4; /* loop, on the same file system  */
3227 	error = -EINVAL;
3228 	if (root.mnt->mnt_root != root.dentry)
3229 		goto out4; /* not a mountpoint */
3230 	if (!mnt_has_parent(root_mnt))
3231 		goto out4; /* not attached */
3232 	root_mp = root_mnt->mnt_mp;
3233 	if (new.mnt->mnt_root != new.dentry)
3234 		goto out4; /* not a mountpoint */
3235 	if (!mnt_has_parent(new_mnt))
3236 		goto out4; /* not attached */
3237 	/* make sure we can reach put_old from new_root */
3238 	if (!is_path_reachable(old_mnt, old.dentry, &new))
3239 		goto out4;
3240 	/* make certain new is below the root */
3241 	if (!is_path_reachable(new_mnt, new.dentry, &root))
3242 		goto out4;
3243 	root_mp->m_count++; /* pin it so it won't go away */
3244 	lock_mount_hash();
3245 	detach_mnt(new_mnt, &parent_path);
3246 	detach_mnt(root_mnt, &root_parent);
3247 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3248 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3249 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3250 	}
3251 	/* mount old root on put_old */
3252 	attach_mnt(root_mnt, old_mnt, old_mp);
3253 	/* mount new_root on / */
3254 	attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3255 	touch_mnt_namespace(current->nsproxy->mnt_ns);
3256 	/* A moved mount should not expire automatically */
3257 	list_del_init(&new_mnt->mnt_expire);
3258 	put_mountpoint(root_mp);
3259 	unlock_mount_hash();
3260 	chroot_fs_refs(&root, &new);
3261 	error = 0;
3262 out4:
3263 	unlock_mount(old_mp);
3264 	if (!error) {
3265 		path_put(&root_parent);
3266 		path_put(&parent_path);
3267 	}
3268 out3:
3269 	path_put(&root);
3270 out2:
3271 	path_put(&old);
3272 out1:
3273 	path_put(&new);
3274 out0:
3275 	return error;
3276 }
3277 
init_mount_tree(void)3278 static void __init init_mount_tree(void)
3279 {
3280 	struct vfsmount *mnt;
3281 	struct mnt_namespace *ns;
3282 	struct path root;
3283 	struct file_system_type *type;
3284 
3285 	type = get_fs_type("rootfs");
3286 	if (!type)
3287 		panic("Can't find rootfs type");
3288 	mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3289 	put_filesystem(type);
3290 	if (IS_ERR(mnt))
3291 		panic("Can't create rootfs");
3292 
3293 	ns = create_mnt_ns(mnt);
3294 	if (IS_ERR(ns))
3295 		panic("Can't allocate initial namespace");
3296 
3297 	init_task.nsproxy->mnt_ns = ns;
3298 	get_mnt_ns(ns);
3299 
3300 	root.mnt = mnt;
3301 	root.dentry = mnt->mnt_root;
3302 	mnt->mnt_flags |= MNT_LOCKED;
3303 
3304 	set_fs_pwd(current->fs, &root);
3305 	set_fs_root(current->fs, &root);
3306 }
3307 
mnt_init(void)3308 void __init mnt_init(void)
3309 {
3310 	int err;
3311 
3312 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3313 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3314 
3315 	mount_hashtable = alloc_large_system_hash("Mount-cache",
3316 				sizeof(struct hlist_head),
3317 				mhash_entries, 19,
3318 				HASH_ZERO,
3319 				&m_hash_shift, &m_hash_mask, 0, 0);
3320 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3321 				sizeof(struct hlist_head),
3322 				mphash_entries, 19,
3323 				HASH_ZERO,
3324 				&mp_hash_shift, &mp_hash_mask, 0, 0);
3325 
3326 	if (!mount_hashtable || !mountpoint_hashtable)
3327 		panic("Failed to allocate mount hash table\n");
3328 
3329 	kernfs_init();
3330 
3331 	err = sysfs_init();
3332 	if (err)
3333 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3334 			__func__, err);
3335 	fs_kobj = kobject_create_and_add("fs", NULL);
3336 	if (!fs_kobj)
3337 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
3338 	init_rootfs();
3339 	init_mount_tree();
3340 }
3341 
put_mnt_ns(struct mnt_namespace * ns)3342 void put_mnt_ns(struct mnt_namespace *ns)
3343 {
3344 	if (!atomic_dec_and_test(&ns->count))
3345 		return;
3346 	drop_collected_mounts(&ns->root->mnt);
3347 	free_mnt_ns(ns);
3348 }
3349 
kern_mount_data(struct file_system_type * type,void * data)3350 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3351 {
3352 	struct vfsmount *mnt;
3353 	mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, data);
3354 	if (!IS_ERR(mnt)) {
3355 		/*
3356 		 * it is a longterm mount, don't release mnt until
3357 		 * we unmount before file sys is unregistered
3358 		*/
3359 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3360 	}
3361 	return mnt;
3362 }
3363 EXPORT_SYMBOL_GPL(kern_mount_data);
3364 
kern_unmount(struct vfsmount * mnt)3365 void kern_unmount(struct vfsmount *mnt)
3366 {
3367 	/* release long term mount so mount point can be released */
3368 	if (!IS_ERR_OR_NULL(mnt)) {
3369 		real_mount(mnt)->mnt_ns = NULL;
3370 		synchronize_rcu();	/* yecchhh... */
3371 		mntput(mnt);
3372 	}
3373 }
3374 EXPORT_SYMBOL(kern_unmount);
3375 
our_mnt(struct vfsmount * mnt)3376 bool our_mnt(struct vfsmount *mnt)
3377 {
3378 	return check_mnt(real_mount(mnt));
3379 }
3380 
current_chrooted(void)3381 bool current_chrooted(void)
3382 {
3383 	/* Does the current process have a non-standard root */
3384 	struct path ns_root;
3385 	struct path fs_root;
3386 	bool chrooted;
3387 
3388 	/* Find the namespace root */
3389 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3390 	ns_root.dentry = ns_root.mnt->mnt_root;
3391 	path_get(&ns_root);
3392 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3393 		;
3394 
3395 	get_fs_root(current->fs, &fs_root);
3396 
3397 	chrooted = !path_equal(&fs_root, &ns_root);
3398 
3399 	path_put(&fs_root);
3400 	path_put(&ns_root);
3401 
3402 	return chrooted;
3403 }
3404 
mnt_already_visible(struct mnt_namespace * ns,struct vfsmount * new,int * new_mnt_flags)3405 static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
3406 				int *new_mnt_flags)
3407 {
3408 	int new_flags = *new_mnt_flags;
3409 	struct mount *mnt;
3410 	bool visible = false;
3411 
3412 	down_read(&namespace_sem);
3413 	list_for_each_entry(mnt, &ns->list, mnt_list) {
3414 		struct mount *child;
3415 		int mnt_flags;
3416 
3417 		if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
3418 			continue;
3419 
3420 		/* This mount is not fully visible if it's root directory
3421 		 * is not the root directory of the filesystem.
3422 		 */
3423 		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3424 			continue;
3425 
3426 		/* A local view of the mount flags */
3427 		mnt_flags = mnt->mnt.mnt_flags;
3428 
3429 		/* Don't miss readonly hidden in the superblock flags */
3430 		if (sb_rdonly(mnt->mnt.mnt_sb))
3431 			mnt_flags |= MNT_LOCK_READONLY;
3432 
3433 		/* Verify the mount flags are equal to or more permissive
3434 		 * than the proposed new mount.
3435 		 */
3436 		if ((mnt_flags & MNT_LOCK_READONLY) &&
3437 		    !(new_flags & MNT_READONLY))
3438 			continue;
3439 		if ((mnt_flags & MNT_LOCK_ATIME) &&
3440 		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3441 			continue;
3442 
3443 		/* This mount is not fully visible if there are any
3444 		 * locked child mounts that cover anything except for
3445 		 * empty directories.
3446 		 */
3447 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3448 			struct inode *inode = child->mnt_mountpoint->d_inode;
3449 			/* Only worry about locked mounts */
3450 			if (!(child->mnt.mnt_flags & MNT_LOCKED))
3451 				continue;
3452 			/* Is the directory permanetly empty? */
3453 			if (!is_empty_dir_inode(inode))
3454 				goto next;
3455 		}
3456 		/* Preserve the locked attributes */
3457 		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3458 					       MNT_LOCK_ATIME);
3459 		visible = true;
3460 		goto found;
3461 	next:	;
3462 	}
3463 found:
3464 	up_read(&namespace_sem);
3465 	return visible;
3466 }
3467 
mount_too_revealing(struct vfsmount * mnt,int * new_mnt_flags)3468 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
3469 {
3470 	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3471 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3472 	unsigned long s_iflags;
3473 
3474 	if (ns->user_ns == &init_user_ns)
3475 		return false;
3476 
3477 	/* Can this filesystem be too revealing? */
3478 	s_iflags = mnt->mnt_sb->s_iflags;
3479 	if (!(s_iflags & SB_I_USERNS_VISIBLE))
3480 		return false;
3481 
3482 	if ((s_iflags & required_iflags) != required_iflags) {
3483 		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3484 			  required_iflags);
3485 		return true;
3486 	}
3487 
3488 	return !mnt_already_visible(ns, mnt, new_mnt_flags);
3489 }
3490 
mnt_may_suid(struct vfsmount * mnt)3491 bool mnt_may_suid(struct vfsmount *mnt)
3492 {
3493 	/*
3494 	 * Foreign mounts (accessed via fchdir or through /proc
3495 	 * symlinks) are always treated as if they are nosuid.  This
3496 	 * prevents namespaces from trusting potentially unsafe
3497 	 * suid/sgid bits, file caps, or security labels that originate
3498 	 * in other namespaces.
3499 	 */
3500 	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3501 	       current_in_userns(mnt->mnt_sb->s_user_ns);
3502 }
3503 
mntns_get(struct task_struct * task)3504 static struct ns_common *mntns_get(struct task_struct *task)
3505 {
3506 	struct ns_common *ns = NULL;
3507 	struct nsproxy *nsproxy;
3508 
3509 	task_lock(task);
3510 	nsproxy = task->nsproxy;
3511 	if (nsproxy) {
3512 		ns = &nsproxy->mnt_ns->ns;
3513 		get_mnt_ns(to_mnt_ns(ns));
3514 	}
3515 	task_unlock(task);
3516 
3517 	return ns;
3518 }
3519 
mntns_put(struct ns_common * ns)3520 static void mntns_put(struct ns_common *ns)
3521 {
3522 	put_mnt_ns(to_mnt_ns(ns));
3523 }
3524 
mntns_install(struct nsproxy * nsproxy,struct ns_common * ns)3525 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3526 {
3527 	struct fs_struct *fs = current->fs;
3528 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
3529 	struct path root;
3530 	int err;
3531 
3532 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3533 	    !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3534 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3535 		return -EPERM;
3536 
3537 	if (fs->users != 1)
3538 		return -EINVAL;
3539 
3540 	get_mnt_ns(mnt_ns);
3541 	old_mnt_ns = nsproxy->mnt_ns;
3542 	nsproxy->mnt_ns = mnt_ns;
3543 
3544 	/* Find the root */
3545 	err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
3546 				"/", LOOKUP_DOWN, &root);
3547 	if (err) {
3548 		/* revert to old namespace */
3549 		nsproxy->mnt_ns = old_mnt_ns;
3550 		put_mnt_ns(mnt_ns);
3551 		return err;
3552 	}
3553 
3554 	put_mnt_ns(old_mnt_ns);
3555 
3556 	/* Update the pwd and root */
3557 	set_fs_pwd(fs, &root);
3558 	set_fs_root(fs, &root);
3559 
3560 	path_put(&root);
3561 	return 0;
3562 }
3563 
mntns_owner(struct ns_common * ns)3564 static struct user_namespace *mntns_owner(struct ns_common *ns)
3565 {
3566 	return to_mnt_ns(ns)->user_ns;
3567 }
3568 
3569 const struct proc_ns_operations mntns_operations = {
3570 	.name		= "mnt",
3571 	.type		= CLONE_NEWNS,
3572 	.get		= mntns_get,
3573 	.put		= mntns_put,
3574 	.install	= mntns_install,
3575 	.owner		= mntns_owner,
3576 };
3577