1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22 #include "lapic.h"
23
24 #include <linux/kvm_host.h>
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/mm.h>
28 #include <linux/highmem.h>
29 #include <linux/sched.h>
30 #include <linux/sched/smt.h>
31 #include <linux/moduleparam.h>
32 #include <linux/mod_devicetable.h>
33 #include <linux/trace_events.h>
34 #include <linux/slab.h>
35 #include <linux/tboot.h>
36 #include <linux/hrtimer.h>
37 #include <linux/frame.h>
38 #include <linux/nospec.h>
39 #include "kvm_cache_regs.h"
40 #include "x86.h"
41
42 #include <asm/cpu.h>
43 #include <asm/io.h>
44 #include <asm/desc.h>
45 #include <asm/vmx.h>
46 #include <asm/virtext.h>
47 #include <asm/mce.h>
48 #include <asm/fpu/internal.h>
49 #include <asm/perf_event.h>
50 #include <asm/debugreg.h>
51 #include <asm/kexec.h>
52 #include <asm/apic.h>
53 #include <asm/irq_remapping.h>
54 #include <asm/mmu_context.h>
55 #include <asm/microcode.h>
56 #include <asm/spec-ctrl.h>
57
58 #include "trace.h"
59 #include "pmu.h"
60
61 #define __ex(x) __kvm_handle_fault_on_reboot(x)
62 #define __ex_clear(x, reg) \
63 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
64
65 MODULE_AUTHOR("Qumranet");
66 MODULE_LICENSE("GPL");
67
68 static const struct x86_cpu_id vmx_cpu_id[] = {
69 X86_FEATURE_MATCH(X86_FEATURE_VMX),
70 {}
71 };
72 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
73
74 static bool __read_mostly enable_vpid = 1;
75 module_param_named(vpid, enable_vpid, bool, 0444);
76
77 static bool __read_mostly flexpriority_enabled = 1;
78 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
79
80 static bool __read_mostly enable_ept = 1;
81 module_param_named(ept, enable_ept, bool, S_IRUGO);
82
83 static bool __read_mostly enable_unrestricted_guest = 1;
84 module_param_named(unrestricted_guest,
85 enable_unrestricted_guest, bool, S_IRUGO);
86
87 static bool __read_mostly enable_ept_ad_bits = 1;
88 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
89
90 static bool __read_mostly emulate_invalid_guest_state = true;
91 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
92
93 static bool __read_mostly fasteoi = 1;
94 module_param(fasteoi, bool, S_IRUGO);
95
96 static bool __read_mostly enable_apicv = 1;
97 module_param(enable_apicv, bool, S_IRUGO);
98
99 static bool __read_mostly enable_shadow_vmcs = 1;
100 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
101 /*
102 * If nested=1, nested virtualization is supported, i.e., guests may use
103 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
104 * use VMX instructions.
105 */
106 static bool __read_mostly nested = 0;
107 module_param(nested, bool, S_IRUGO);
108
109 static u64 __read_mostly host_xss;
110
111 static bool __read_mostly enable_pml = 1;
112 module_param_named(pml, enable_pml, bool, S_IRUGO);
113
114 #define MSR_TYPE_R 1
115 #define MSR_TYPE_W 2
116 #define MSR_TYPE_RW 3
117
118 #define MSR_BITMAP_MODE_X2APIC 1
119 #define MSR_BITMAP_MODE_X2APIC_APICV 2
120 #define MSR_BITMAP_MODE_LM 4
121
122 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
123
124 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */
125 static int __read_mostly cpu_preemption_timer_multi;
126 static bool __read_mostly enable_preemption_timer = 1;
127 #ifdef CONFIG_X86_64
128 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
129 #endif
130
131 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
132 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
133 #define KVM_VM_CR0_ALWAYS_ON \
134 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
135 #define KVM_CR4_GUEST_OWNED_BITS \
136 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
137 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
138
139 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
140 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
141
142 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
143
144 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
145
146 /*
147 * Hyper-V requires all of these, so mark them as supported even though
148 * they are just treated the same as all-context.
149 */
150 #define VMX_VPID_EXTENT_SUPPORTED_MASK \
151 (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
152 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
153 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
154 VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
155
156 /*
157 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
158 * ple_gap: upper bound on the amount of time between two successive
159 * executions of PAUSE in a loop. Also indicate if ple enabled.
160 * According to test, this time is usually smaller than 128 cycles.
161 * ple_window: upper bound on the amount of time a guest is allowed to execute
162 * in a PAUSE loop. Tests indicate that most spinlocks are held for
163 * less than 2^12 cycles
164 * Time is measured based on a counter that runs at the same rate as the TSC,
165 * refer SDM volume 3b section 21.6.13 & 22.1.3.
166 */
167 #define KVM_VMX_DEFAULT_PLE_GAP 128
168 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
169 #define KVM_VMX_DEFAULT_PLE_WINDOW_GROW 2
170 #define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
171 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX \
172 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
173
174 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
175 module_param(ple_gap, int, S_IRUGO);
176
177 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
178 module_param(ple_window, int, S_IRUGO);
179
180 /* Default doubles per-vcpu window every exit. */
181 static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
182 module_param(ple_window_grow, int, S_IRUGO);
183
184 /* Default resets per-vcpu window every exit to ple_window. */
185 static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
186 module_param(ple_window_shrink, int, S_IRUGO);
187
188 /* Default is to compute the maximum so we can never overflow. */
189 static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
190 static int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
191 module_param(ple_window_max, int, S_IRUGO);
192
193 extern const ulong vmx_return;
194
195 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
196 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
197 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
198
199 /* Storage for pre module init parameter parsing */
200 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
201
202 static const struct {
203 const char *option;
204 bool for_parse;
205 } vmentry_l1d_param[] = {
206 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true},
207 [VMENTER_L1D_FLUSH_NEVER] = {"never", true},
208 [VMENTER_L1D_FLUSH_COND] = {"cond", true},
209 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true},
210 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
211 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
212 };
213
214 #define L1D_CACHE_ORDER 4
215 static void *vmx_l1d_flush_pages;
216
vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)217 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
218 {
219 struct page *page;
220 unsigned int i;
221
222 if (!enable_ept) {
223 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
224 return 0;
225 }
226
227 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
228 u64 msr;
229
230 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
231 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
232 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
233 return 0;
234 }
235 }
236
237 /* If set to auto use the default l1tf mitigation method */
238 if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
239 switch (l1tf_mitigation) {
240 case L1TF_MITIGATION_OFF:
241 l1tf = VMENTER_L1D_FLUSH_NEVER;
242 break;
243 case L1TF_MITIGATION_FLUSH_NOWARN:
244 case L1TF_MITIGATION_FLUSH:
245 case L1TF_MITIGATION_FLUSH_NOSMT:
246 l1tf = VMENTER_L1D_FLUSH_COND;
247 break;
248 case L1TF_MITIGATION_FULL:
249 case L1TF_MITIGATION_FULL_FORCE:
250 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
251 break;
252 }
253 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
254 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
255 }
256
257 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
258 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
259 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
260 if (!page)
261 return -ENOMEM;
262 vmx_l1d_flush_pages = page_address(page);
263
264 /*
265 * Initialize each page with a different pattern in
266 * order to protect against KSM in the nested
267 * virtualization case.
268 */
269 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
270 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
271 PAGE_SIZE);
272 }
273 }
274
275 l1tf_vmx_mitigation = l1tf;
276
277 if (l1tf != VMENTER_L1D_FLUSH_NEVER)
278 static_branch_enable(&vmx_l1d_should_flush);
279 else
280 static_branch_disable(&vmx_l1d_should_flush);
281
282 if (l1tf == VMENTER_L1D_FLUSH_COND)
283 static_branch_enable(&vmx_l1d_flush_cond);
284 else
285 static_branch_disable(&vmx_l1d_flush_cond);
286 return 0;
287 }
288
vmentry_l1d_flush_parse(const char * s)289 static int vmentry_l1d_flush_parse(const char *s)
290 {
291 unsigned int i;
292
293 if (s) {
294 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
295 if (vmentry_l1d_param[i].for_parse &&
296 sysfs_streq(s, vmentry_l1d_param[i].option))
297 return i;
298 }
299 }
300 return -EINVAL;
301 }
302
vmentry_l1d_flush_set(const char * s,const struct kernel_param * kp)303 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
304 {
305 int l1tf, ret;
306
307 l1tf = vmentry_l1d_flush_parse(s);
308 if (l1tf < 0)
309 return l1tf;
310
311 if (!boot_cpu_has(X86_BUG_L1TF))
312 return 0;
313
314 /*
315 * Has vmx_init() run already? If not then this is the pre init
316 * parameter parsing. In that case just store the value and let
317 * vmx_init() do the proper setup after enable_ept has been
318 * established.
319 */
320 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
321 vmentry_l1d_flush_param = l1tf;
322 return 0;
323 }
324
325 mutex_lock(&vmx_l1d_flush_mutex);
326 ret = vmx_setup_l1d_flush(l1tf);
327 mutex_unlock(&vmx_l1d_flush_mutex);
328 return ret;
329 }
330
vmentry_l1d_flush_get(char * s,const struct kernel_param * kp)331 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
332 {
333 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
334 return sprintf(s, "???\n");
335
336 return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
337 }
338
339 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
340 .set = vmentry_l1d_flush_set,
341 .get = vmentry_l1d_flush_get,
342 };
343 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
344
345 #define NR_AUTOLOAD_MSRS 8
346
347 struct vmcs {
348 u32 revision_id;
349 u32 abort;
350 char data[0];
351 };
352
353 /*
354 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
355 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
356 * loaded on this CPU (so we can clear them if the CPU goes down).
357 */
358 struct loaded_vmcs {
359 struct vmcs *vmcs;
360 struct vmcs *shadow_vmcs;
361 int cpu;
362 bool launched;
363 bool nmi_known_unmasked;
364 unsigned long vmcs_host_cr3; /* May not match real cr3 */
365 unsigned long vmcs_host_cr4; /* May not match real cr4 */
366 /* Support for vnmi-less CPUs */
367 int soft_vnmi_blocked;
368 ktime_t entry_time;
369 s64 vnmi_blocked_time;
370 unsigned long *msr_bitmap;
371 struct list_head loaded_vmcss_on_cpu_link;
372 };
373
374 struct shared_msr_entry {
375 unsigned index;
376 u64 data;
377 u64 mask;
378 };
379
380 /*
381 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
382 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
383 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
384 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
385 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
386 * More than one of these structures may exist, if L1 runs multiple L2 guests.
387 * nested_vmx_run() will use the data here to build the vmcs02: a VMCS for the
388 * underlying hardware which will be used to run L2.
389 * This structure is packed to ensure that its layout is identical across
390 * machines (necessary for live migration).
391 * If there are changes in this struct, VMCS12_REVISION must be changed.
392 */
393 typedef u64 natural_width;
394 struct __packed vmcs12 {
395 /* According to the Intel spec, a VMCS region must start with the
396 * following two fields. Then follow implementation-specific data.
397 */
398 u32 revision_id;
399 u32 abort;
400
401 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
402 u32 padding[7]; /* room for future expansion */
403
404 u64 io_bitmap_a;
405 u64 io_bitmap_b;
406 u64 msr_bitmap;
407 u64 vm_exit_msr_store_addr;
408 u64 vm_exit_msr_load_addr;
409 u64 vm_entry_msr_load_addr;
410 u64 tsc_offset;
411 u64 virtual_apic_page_addr;
412 u64 apic_access_addr;
413 u64 posted_intr_desc_addr;
414 u64 vm_function_control;
415 u64 ept_pointer;
416 u64 eoi_exit_bitmap0;
417 u64 eoi_exit_bitmap1;
418 u64 eoi_exit_bitmap2;
419 u64 eoi_exit_bitmap3;
420 u64 eptp_list_address;
421 u64 xss_exit_bitmap;
422 u64 guest_physical_address;
423 u64 vmcs_link_pointer;
424 u64 pml_address;
425 u64 guest_ia32_debugctl;
426 u64 guest_ia32_pat;
427 u64 guest_ia32_efer;
428 u64 guest_ia32_perf_global_ctrl;
429 u64 guest_pdptr0;
430 u64 guest_pdptr1;
431 u64 guest_pdptr2;
432 u64 guest_pdptr3;
433 u64 guest_bndcfgs;
434 u64 host_ia32_pat;
435 u64 host_ia32_efer;
436 u64 host_ia32_perf_global_ctrl;
437 u64 padding64[8]; /* room for future expansion */
438 /*
439 * To allow migration of L1 (complete with its L2 guests) between
440 * machines of different natural widths (32 or 64 bit), we cannot have
441 * unsigned long fields with no explict size. We use u64 (aliased
442 * natural_width) instead. Luckily, x86 is little-endian.
443 */
444 natural_width cr0_guest_host_mask;
445 natural_width cr4_guest_host_mask;
446 natural_width cr0_read_shadow;
447 natural_width cr4_read_shadow;
448 natural_width cr3_target_value0;
449 natural_width cr3_target_value1;
450 natural_width cr3_target_value2;
451 natural_width cr3_target_value3;
452 natural_width exit_qualification;
453 natural_width guest_linear_address;
454 natural_width guest_cr0;
455 natural_width guest_cr3;
456 natural_width guest_cr4;
457 natural_width guest_es_base;
458 natural_width guest_cs_base;
459 natural_width guest_ss_base;
460 natural_width guest_ds_base;
461 natural_width guest_fs_base;
462 natural_width guest_gs_base;
463 natural_width guest_ldtr_base;
464 natural_width guest_tr_base;
465 natural_width guest_gdtr_base;
466 natural_width guest_idtr_base;
467 natural_width guest_dr7;
468 natural_width guest_rsp;
469 natural_width guest_rip;
470 natural_width guest_rflags;
471 natural_width guest_pending_dbg_exceptions;
472 natural_width guest_sysenter_esp;
473 natural_width guest_sysenter_eip;
474 natural_width host_cr0;
475 natural_width host_cr3;
476 natural_width host_cr4;
477 natural_width host_fs_base;
478 natural_width host_gs_base;
479 natural_width host_tr_base;
480 natural_width host_gdtr_base;
481 natural_width host_idtr_base;
482 natural_width host_ia32_sysenter_esp;
483 natural_width host_ia32_sysenter_eip;
484 natural_width host_rsp;
485 natural_width host_rip;
486 natural_width paddingl[8]; /* room for future expansion */
487 u32 pin_based_vm_exec_control;
488 u32 cpu_based_vm_exec_control;
489 u32 exception_bitmap;
490 u32 page_fault_error_code_mask;
491 u32 page_fault_error_code_match;
492 u32 cr3_target_count;
493 u32 vm_exit_controls;
494 u32 vm_exit_msr_store_count;
495 u32 vm_exit_msr_load_count;
496 u32 vm_entry_controls;
497 u32 vm_entry_msr_load_count;
498 u32 vm_entry_intr_info_field;
499 u32 vm_entry_exception_error_code;
500 u32 vm_entry_instruction_len;
501 u32 tpr_threshold;
502 u32 secondary_vm_exec_control;
503 u32 vm_instruction_error;
504 u32 vm_exit_reason;
505 u32 vm_exit_intr_info;
506 u32 vm_exit_intr_error_code;
507 u32 idt_vectoring_info_field;
508 u32 idt_vectoring_error_code;
509 u32 vm_exit_instruction_len;
510 u32 vmx_instruction_info;
511 u32 guest_es_limit;
512 u32 guest_cs_limit;
513 u32 guest_ss_limit;
514 u32 guest_ds_limit;
515 u32 guest_fs_limit;
516 u32 guest_gs_limit;
517 u32 guest_ldtr_limit;
518 u32 guest_tr_limit;
519 u32 guest_gdtr_limit;
520 u32 guest_idtr_limit;
521 u32 guest_es_ar_bytes;
522 u32 guest_cs_ar_bytes;
523 u32 guest_ss_ar_bytes;
524 u32 guest_ds_ar_bytes;
525 u32 guest_fs_ar_bytes;
526 u32 guest_gs_ar_bytes;
527 u32 guest_ldtr_ar_bytes;
528 u32 guest_tr_ar_bytes;
529 u32 guest_interruptibility_info;
530 u32 guest_activity_state;
531 u32 guest_sysenter_cs;
532 u32 host_ia32_sysenter_cs;
533 u32 vmx_preemption_timer_value;
534 u32 padding32[7]; /* room for future expansion */
535 u16 virtual_processor_id;
536 u16 posted_intr_nv;
537 u16 guest_es_selector;
538 u16 guest_cs_selector;
539 u16 guest_ss_selector;
540 u16 guest_ds_selector;
541 u16 guest_fs_selector;
542 u16 guest_gs_selector;
543 u16 guest_ldtr_selector;
544 u16 guest_tr_selector;
545 u16 guest_intr_status;
546 u16 guest_pml_index;
547 u16 host_es_selector;
548 u16 host_cs_selector;
549 u16 host_ss_selector;
550 u16 host_ds_selector;
551 u16 host_fs_selector;
552 u16 host_gs_selector;
553 u16 host_tr_selector;
554 };
555
556 /*
557 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
558 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
559 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
560 */
561 #define VMCS12_REVISION 0x11e57ed0
562
563 /*
564 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
565 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
566 * current implementation, 4K are reserved to avoid future complications.
567 */
568 #define VMCS12_SIZE 0x1000
569
570 /*
571 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
572 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
573 */
574 struct nested_vmx {
575 /* Has the level1 guest done vmxon? */
576 bool vmxon;
577 gpa_t vmxon_ptr;
578 bool pml_full;
579
580 /* The guest-physical address of the current VMCS L1 keeps for L2 */
581 gpa_t current_vmptr;
582 /*
583 * Cache of the guest's VMCS, existing outside of guest memory.
584 * Loaded from guest memory during VMPTRLD. Flushed to guest
585 * memory during VMCLEAR and VMPTRLD.
586 */
587 struct vmcs12 *cached_vmcs12;
588 /*
589 * Indicates if the shadow vmcs must be updated with the
590 * data hold by vmcs12
591 */
592 bool sync_shadow_vmcs;
593
594 bool change_vmcs01_virtual_apic_mode;
595
596 /* L2 must run next, and mustn't decide to exit to L1. */
597 bool nested_run_pending;
598
599 struct loaded_vmcs vmcs02;
600
601 /*
602 * Guest pages referred to in the vmcs02 with host-physical
603 * pointers, so we must keep them pinned while L2 runs.
604 */
605 struct page *apic_access_page;
606 struct page *virtual_apic_page;
607 struct page *pi_desc_page;
608 struct pi_desc *pi_desc;
609 bool pi_pending;
610 u16 posted_intr_nv;
611
612 struct hrtimer preemption_timer;
613 bool preemption_timer_expired;
614
615 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
616 u64 vmcs01_debugctl;
617
618 u16 vpid02;
619 u16 last_vpid;
620
621 /*
622 * We only store the "true" versions of the VMX capability MSRs. We
623 * generate the "non-true" versions by setting the must-be-1 bits
624 * according to the SDM.
625 */
626 u32 nested_vmx_procbased_ctls_low;
627 u32 nested_vmx_procbased_ctls_high;
628 u32 nested_vmx_secondary_ctls_low;
629 u32 nested_vmx_secondary_ctls_high;
630 u32 nested_vmx_pinbased_ctls_low;
631 u32 nested_vmx_pinbased_ctls_high;
632 u32 nested_vmx_exit_ctls_low;
633 u32 nested_vmx_exit_ctls_high;
634 u32 nested_vmx_entry_ctls_low;
635 u32 nested_vmx_entry_ctls_high;
636 u32 nested_vmx_misc_low;
637 u32 nested_vmx_misc_high;
638 u32 nested_vmx_ept_caps;
639 u32 nested_vmx_vpid_caps;
640 u64 nested_vmx_basic;
641 u64 nested_vmx_cr0_fixed0;
642 u64 nested_vmx_cr0_fixed1;
643 u64 nested_vmx_cr4_fixed0;
644 u64 nested_vmx_cr4_fixed1;
645 u64 nested_vmx_vmcs_enum;
646 u64 nested_vmx_vmfunc_controls;
647 };
648
649 #define POSTED_INTR_ON 0
650 #define POSTED_INTR_SN 1
651
652 /* Posted-Interrupt Descriptor */
653 struct pi_desc {
654 u32 pir[8]; /* Posted interrupt requested */
655 union {
656 struct {
657 /* bit 256 - Outstanding Notification */
658 u16 on : 1,
659 /* bit 257 - Suppress Notification */
660 sn : 1,
661 /* bit 271:258 - Reserved */
662 rsvd_1 : 14;
663 /* bit 279:272 - Notification Vector */
664 u8 nv;
665 /* bit 287:280 - Reserved */
666 u8 rsvd_2;
667 /* bit 319:288 - Notification Destination */
668 u32 ndst;
669 };
670 u64 control;
671 };
672 u32 rsvd[6];
673 } __aligned(64);
674
pi_test_and_set_on(struct pi_desc * pi_desc)675 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
676 {
677 return test_and_set_bit(POSTED_INTR_ON,
678 (unsigned long *)&pi_desc->control);
679 }
680
pi_test_and_clear_on(struct pi_desc * pi_desc)681 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
682 {
683 return test_and_clear_bit(POSTED_INTR_ON,
684 (unsigned long *)&pi_desc->control);
685 }
686
pi_test_and_set_pir(int vector,struct pi_desc * pi_desc)687 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
688 {
689 return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
690 }
691
pi_clear_sn(struct pi_desc * pi_desc)692 static inline void pi_clear_sn(struct pi_desc *pi_desc)
693 {
694 return clear_bit(POSTED_INTR_SN,
695 (unsigned long *)&pi_desc->control);
696 }
697
pi_set_sn(struct pi_desc * pi_desc)698 static inline void pi_set_sn(struct pi_desc *pi_desc)
699 {
700 return set_bit(POSTED_INTR_SN,
701 (unsigned long *)&pi_desc->control);
702 }
703
pi_clear_on(struct pi_desc * pi_desc)704 static inline void pi_clear_on(struct pi_desc *pi_desc)
705 {
706 clear_bit(POSTED_INTR_ON,
707 (unsigned long *)&pi_desc->control);
708 }
709
pi_test_on(struct pi_desc * pi_desc)710 static inline int pi_test_on(struct pi_desc *pi_desc)
711 {
712 return test_bit(POSTED_INTR_ON,
713 (unsigned long *)&pi_desc->control);
714 }
715
pi_test_sn(struct pi_desc * pi_desc)716 static inline int pi_test_sn(struct pi_desc *pi_desc)
717 {
718 return test_bit(POSTED_INTR_SN,
719 (unsigned long *)&pi_desc->control);
720 }
721
722 struct vmx_msrs {
723 unsigned int nr;
724 struct vmx_msr_entry val[NR_AUTOLOAD_MSRS];
725 };
726
727 struct vcpu_vmx {
728 struct kvm_vcpu vcpu;
729 unsigned long host_rsp;
730 u8 fail;
731 u8 msr_bitmap_mode;
732 u32 exit_intr_info;
733 u32 idt_vectoring_info;
734 ulong rflags;
735 struct shared_msr_entry *guest_msrs;
736 int nmsrs;
737 int save_nmsrs;
738 unsigned long host_idt_base;
739 #ifdef CONFIG_X86_64
740 u64 msr_host_kernel_gs_base;
741 u64 msr_guest_kernel_gs_base;
742 #endif
743
744 u64 spec_ctrl;
745
746 u32 vm_entry_controls_shadow;
747 u32 vm_exit_controls_shadow;
748 u32 secondary_exec_control;
749
750 /*
751 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
752 * non-nested (L1) guest, it always points to vmcs01. For a nested
753 * guest (L2), it points to a different VMCS. loaded_cpu_state points
754 * to the VMCS whose state is loaded into the CPU registers that only
755 * need to be switched when transitioning to/from the kernel; a NULL
756 * value indicates that host state is loaded.
757 */
758 struct loaded_vmcs vmcs01;
759 struct loaded_vmcs *loaded_vmcs;
760 struct loaded_vmcs *loaded_cpu_state;
761 bool __launched; /* temporary, used in vmx_vcpu_run */
762 struct msr_autoload {
763 struct vmx_msrs guest;
764 struct vmx_msrs host;
765 } msr_autoload;
766
767 struct {
768 u16 fs_sel, gs_sel, ldt_sel;
769 #ifdef CONFIG_X86_64
770 u16 ds_sel, es_sel;
771 #endif
772 int gs_ldt_reload_needed;
773 int fs_reload_needed;
774 u64 msr_host_bndcfgs;
775 } host_state;
776 struct {
777 int vm86_active;
778 ulong save_rflags;
779 struct kvm_segment segs[8];
780 } rmode;
781 struct {
782 u32 bitmask; /* 4 bits per segment (1 bit per field) */
783 struct kvm_save_segment {
784 u16 selector;
785 unsigned long base;
786 u32 limit;
787 u32 ar;
788 } seg[8];
789 } segment_cache;
790 int vpid;
791 bool emulation_required;
792
793 u32 exit_reason;
794
795 /* Posted interrupt descriptor */
796 struct pi_desc pi_desc;
797
798 /* Support for a guest hypervisor (nested VMX) */
799 struct nested_vmx nested;
800
801 /* Dynamic PLE window. */
802 int ple_window;
803 bool ple_window_dirty;
804
805 /* Support for PML */
806 #define PML_ENTITY_NUM 512
807 struct page *pml_pg;
808
809 /* apic deadline value in host tsc */
810 u64 hv_deadline_tsc;
811
812 u64 current_tsc_ratio;
813
814 u32 host_pkru;
815
816 /*
817 * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
818 * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included
819 * in msr_ia32_feature_control_valid_bits.
820 */
821 u64 msr_ia32_feature_control;
822 u64 msr_ia32_feature_control_valid_bits;
823 };
824
825 enum segment_cache_field {
826 SEG_FIELD_SEL = 0,
827 SEG_FIELD_BASE = 1,
828 SEG_FIELD_LIMIT = 2,
829 SEG_FIELD_AR = 3,
830
831 SEG_FIELD_NR = 4
832 };
833
to_vmx(struct kvm_vcpu * vcpu)834 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
835 {
836 return container_of(vcpu, struct vcpu_vmx, vcpu);
837 }
838
vcpu_to_pi_desc(struct kvm_vcpu * vcpu)839 static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
840 {
841 return &(to_vmx(vcpu)->pi_desc);
842 }
843
844 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
845 #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
846 #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
847 [number##_HIGH] = VMCS12_OFFSET(name)+4
848
849
850 static unsigned long shadow_read_only_fields[] = {
851 /*
852 * We do NOT shadow fields that are modified when L0
853 * traps and emulates any vmx instruction (e.g. VMPTRLD,
854 * VMXON...) executed by L1.
855 * For example, VM_INSTRUCTION_ERROR is read
856 * by L1 if a vmx instruction fails (part of the error path).
857 * Note the code assumes this logic. If for some reason
858 * we start shadowing these fields then we need to
859 * force a shadow sync when L0 emulates vmx instructions
860 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
861 * by nested_vmx_failValid)
862 */
863 VM_EXIT_REASON,
864 VM_EXIT_INTR_INFO,
865 VM_EXIT_INSTRUCTION_LEN,
866 IDT_VECTORING_INFO_FIELD,
867 IDT_VECTORING_ERROR_CODE,
868 VM_EXIT_INTR_ERROR_CODE,
869 EXIT_QUALIFICATION,
870 GUEST_LINEAR_ADDRESS,
871 GUEST_PHYSICAL_ADDRESS
872 };
873 static int max_shadow_read_only_fields =
874 ARRAY_SIZE(shadow_read_only_fields);
875
876 static unsigned long shadow_read_write_fields[] = {
877 TPR_THRESHOLD,
878 GUEST_RIP,
879 GUEST_RSP,
880 GUEST_CR0,
881 GUEST_CR3,
882 GUEST_CR4,
883 GUEST_INTERRUPTIBILITY_INFO,
884 GUEST_RFLAGS,
885 GUEST_CS_SELECTOR,
886 GUEST_CS_AR_BYTES,
887 GUEST_CS_LIMIT,
888 GUEST_CS_BASE,
889 GUEST_ES_BASE,
890 GUEST_BNDCFGS,
891 CR0_GUEST_HOST_MASK,
892 CR0_READ_SHADOW,
893 CR4_READ_SHADOW,
894 TSC_OFFSET,
895 EXCEPTION_BITMAP,
896 CPU_BASED_VM_EXEC_CONTROL,
897 VM_ENTRY_EXCEPTION_ERROR_CODE,
898 VM_ENTRY_INTR_INFO_FIELD,
899 VM_ENTRY_INSTRUCTION_LEN,
900 VM_ENTRY_EXCEPTION_ERROR_CODE,
901 HOST_FS_BASE,
902 HOST_GS_BASE,
903 HOST_FS_SELECTOR,
904 HOST_GS_SELECTOR
905 };
906 static int max_shadow_read_write_fields =
907 ARRAY_SIZE(shadow_read_write_fields);
908
909 static const unsigned short vmcs_field_to_offset_table[] = {
910 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
911 FIELD(POSTED_INTR_NV, posted_intr_nv),
912 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
913 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
914 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
915 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
916 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
917 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
918 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
919 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
920 FIELD(GUEST_INTR_STATUS, guest_intr_status),
921 FIELD(GUEST_PML_INDEX, guest_pml_index),
922 FIELD(HOST_ES_SELECTOR, host_es_selector),
923 FIELD(HOST_CS_SELECTOR, host_cs_selector),
924 FIELD(HOST_SS_SELECTOR, host_ss_selector),
925 FIELD(HOST_DS_SELECTOR, host_ds_selector),
926 FIELD(HOST_FS_SELECTOR, host_fs_selector),
927 FIELD(HOST_GS_SELECTOR, host_gs_selector),
928 FIELD(HOST_TR_SELECTOR, host_tr_selector),
929 FIELD64(IO_BITMAP_A, io_bitmap_a),
930 FIELD64(IO_BITMAP_B, io_bitmap_b),
931 FIELD64(MSR_BITMAP, msr_bitmap),
932 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
933 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
934 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
935 FIELD64(TSC_OFFSET, tsc_offset),
936 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
937 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
938 FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
939 FIELD64(VM_FUNCTION_CONTROL, vm_function_control),
940 FIELD64(EPT_POINTER, ept_pointer),
941 FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
942 FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
943 FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
944 FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
945 FIELD64(EPTP_LIST_ADDRESS, eptp_list_address),
946 FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
947 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
948 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
949 FIELD64(PML_ADDRESS, pml_address),
950 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
951 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
952 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
953 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
954 FIELD64(GUEST_PDPTR0, guest_pdptr0),
955 FIELD64(GUEST_PDPTR1, guest_pdptr1),
956 FIELD64(GUEST_PDPTR2, guest_pdptr2),
957 FIELD64(GUEST_PDPTR3, guest_pdptr3),
958 FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
959 FIELD64(HOST_IA32_PAT, host_ia32_pat),
960 FIELD64(HOST_IA32_EFER, host_ia32_efer),
961 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
962 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
963 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
964 FIELD(EXCEPTION_BITMAP, exception_bitmap),
965 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
966 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
967 FIELD(CR3_TARGET_COUNT, cr3_target_count),
968 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
969 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
970 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
971 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
972 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
973 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
974 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
975 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
976 FIELD(TPR_THRESHOLD, tpr_threshold),
977 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
978 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
979 FIELD(VM_EXIT_REASON, vm_exit_reason),
980 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
981 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
982 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
983 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
984 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
985 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
986 FIELD(GUEST_ES_LIMIT, guest_es_limit),
987 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
988 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
989 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
990 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
991 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
992 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
993 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
994 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
995 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
996 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
997 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
998 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
999 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
1000 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
1001 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
1002 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
1003 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
1004 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
1005 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
1006 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
1007 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
1008 FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
1009 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
1010 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
1011 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
1012 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
1013 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
1014 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
1015 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
1016 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
1017 FIELD(EXIT_QUALIFICATION, exit_qualification),
1018 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
1019 FIELD(GUEST_CR0, guest_cr0),
1020 FIELD(GUEST_CR3, guest_cr3),
1021 FIELD(GUEST_CR4, guest_cr4),
1022 FIELD(GUEST_ES_BASE, guest_es_base),
1023 FIELD(GUEST_CS_BASE, guest_cs_base),
1024 FIELD(GUEST_SS_BASE, guest_ss_base),
1025 FIELD(GUEST_DS_BASE, guest_ds_base),
1026 FIELD(GUEST_FS_BASE, guest_fs_base),
1027 FIELD(GUEST_GS_BASE, guest_gs_base),
1028 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
1029 FIELD(GUEST_TR_BASE, guest_tr_base),
1030 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
1031 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
1032 FIELD(GUEST_DR7, guest_dr7),
1033 FIELD(GUEST_RSP, guest_rsp),
1034 FIELD(GUEST_RIP, guest_rip),
1035 FIELD(GUEST_RFLAGS, guest_rflags),
1036 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
1037 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
1038 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
1039 FIELD(HOST_CR0, host_cr0),
1040 FIELD(HOST_CR3, host_cr3),
1041 FIELD(HOST_CR4, host_cr4),
1042 FIELD(HOST_FS_BASE, host_fs_base),
1043 FIELD(HOST_GS_BASE, host_gs_base),
1044 FIELD(HOST_TR_BASE, host_tr_base),
1045 FIELD(HOST_GDTR_BASE, host_gdtr_base),
1046 FIELD(HOST_IDTR_BASE, host_idtr_base),
1047 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
1048 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
1049 FIELD(HOST_RSP, host_rsp),
1050 FIELD(HOST_RIP, host_rip),
1051 };
1052
vmcs_field_to_offset(unsigned long field)1053 static inline short vmcs_field_to_offset(unsigned long field)
1054 {
1055 const size_t size = ARRAY_SIZE(vmcs_field_to_offset_table);
1056 unsigned short offset;
1057
1058 BUILD_BUG_ON(size > SHRT_MAX);
1059 if (field >= size)
1060 return -ENOENT;
1061
1062 field = array_index_nospec(field, size);
1063 offset = vmcs_field_to_offset_table[field];
1064 if (offset == 0)
1065 return -ENOENT;
1066 return offset;
1067 }
1068
get_vmcs12(struct kvm_vcpu * vcpu)1069 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
1070 {
1071 return to_vmx(vcpu)->nested.cached_vmcs12;
1072 }
1073
1074 static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu);
1075 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
1076 static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa);
1077 static bool vmx_xsaves_supported(void);
1078 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
1079 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1080 struct kvm_segment *var, int seg);
1081 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1082 struct kvm_segment *var, int seg);
1083 static bool guest_state_valid(struct kvm_vcpu *vcpu);
1084 static u32 vmx_segment_access_rights(struct kvm_segment *var);
1085 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
1086 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
1087 static int alloc_identity_pagetable(struct kvm *kvm);
1088 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu);
1089 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked);
1090 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
1091 u16 error_code);
1092 static void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu);
1093 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
1094 u32 msr, int type);
1095
1096 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
1097 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
1098 /*
1099 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
1100 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
1101 */
1102 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
1103
1104 /*
1105 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
1106 * can find which vCPU should be waken up.
1107 */
1108 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
1109 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
1110
1111 enum {
1112 VMX_IO_BITMAP_A,
1113 VMX_IO_BITMAP_B,
1114 VMX_VMREAD_BITMAP,
1115 VMX_VMWRITE_BITMAP,
1116 VMX_BITMAP_NR
1117 };
1118
1119 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
1120
1121 #define vmx_io_bitmap_a (vmx_bitmap[VMX_IO_BITMAP_A])
1122 #define vmx_io_bitmap_b (vmx_bitmap[VMX_IO_BITMAP_B])
1123 #define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
1124 #define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
1125
1126 static bool cpu_has_load_ia32_efer;
1127 static bool cpu_has_load_perf_global_ctrl;
1128
1129 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
1130 static DEFINE_SPINLOCK(vmx_vpid_lock);
1131
1132 static struct vmcs_config {
1133 int size;
1134 int order;
1135 u32 basic_cap;
1136 u32 revision_id;
1137 u32 pin_based_exec_ctrl;
1138 u32 cpu_based_exec_ctrl;
1139 u32 cpu_based_2nd_exec_ctrl;
1140 u32 vmexit_ctrl;
1141 u32 vmentry_ctrl;
1142 } vmcs_config;
1143
1144 static struct vmx_capability {
1145 u32 ept;
1146 u32 vpid;
1147 } vmx_capability;
1148
1149 #define VMX_SEGMENT_FIELD(seg) \
1150 [VCPU_SREG_##seg] = { \
1151 .selector = GUEST_##seg##_SELECTOR, \
1152 .base = GUEST_##seg##_BASE, \
1153 .limit = GUEST_##seg##_LIMIT, \
1154 .ar_bytes = GUEST_##seg##_AR_BYTES, \
1155 }
1156
1157 static const struct kvm_vmx_segment_field {
1158 unsigned selector;
1159 unsigned base;
1160 unsigned limit;
1161 unsigned ar_bytes;
1162 } kvm_vmx_segment_fields[] = {
1163 VMX_SEGMENT_FIELD(CS),
1164 VMX_SEGMENT_FIELD(DS),
1165 VMX_SEGMENT_FIELD(ES),
1166 VMX_SEGMENT_FIELD(FS),
1167 VMX_SEGMENT_FIELD(GS),
1168 VMX_SEGMENT_FIELD(SS),
1169 VMX_SEGMENT_FIELD(TR),
1170 VMX_SEGMENT_FIELD(LDTR),
1171 };
1172
1173 static u64 host_efer;
1174
1175 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
1176
1177 /*
1178 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
1179 * away by decrementing the array size.
1180 */
1181 static const u32 vmx_msr_index[] = {
1182 #ifdef CONFIG_X86_64
1183 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
1184 #endif
1185 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
1186 };
1187
is_exception_n(u32 intr_info,u8 vector)1188 static inline bool is_exception_n(u32 intr_info, u8 vector)
1189 {
1190 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1191 INTR_INFO_VALID_MASK)) ==
1192 (INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK);
1193 }
1194
is_debug(u32 intr_info)1195 static inline bool is_debug(u32 intr_info)
1196 {
1197 return is_exception_n(intr_info, DB_VECTOR);
1198 }
1199
is_breakpoint(u32 intr_info)1200 static inline bool is_breakpoint(u32 intr_info)
1201 {
1202 return is_exception_n(intr_info, BP_VECTOR);
1203 }
1204
is_page_fault(u32 intr_info)1205 static inline bool is_page_fault(u32 intr_info)
1206 {
1207 return is_exception_n(intr_info, PF_VECTOR);
1208 }
1209
is_no_device(u32 intr_info)1210 static inline bool is_no_device(u32 intr_info)
1211 {
1212 return is_exception_n(intr_info, NM_VECTOR);
1213 }
1214
is_invalid_opcode(u32 intr_info)1215 static inline bool is_invalid_opcode(u32 intr_info)
1216 {
1217 return is_exception_n(intr_info, UD_VECTOR);
1218 }
1219
is_external_interrupt(u32 intr_info)1220 static inline bool is_external_interrupt(u32 intr_info)
1221 {
1222 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1223 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1224 }
1225
is_machine_check(u32 intr_info)1226 static inline bool is_machine_check(u32 intr_info)
1227 {
1228 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1229 INTR_INFO_VALID_MASK)) ==
1230 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
1231 }
1232
1233 /* Undocumented: icebp/int1 */
is_icebp(u32 intr_info)1234 static inline bool is_icebp(u32 intr_info)
1235 {
1236 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1237 == (INTR_TYPE_PRIV_SW_EXCEPTION | INTR_INFO_VALID_MASK);
1238 }
1239
cpu_has_vmx_msr_bitmap(void)1240 static inline bool cpu_has_vmx_msr_bitmap(void)
1241 {
1242 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
1243 }
1244
cpu_has_vmx_tpr_shadow(void)1245 static inline bool cpu_has_vmx_tpr_shadow(void)
1246 {
1247 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
1248 }
1249
cpu_need_tpr_shadow(struct kvm_vcpu * vcpu)1250 static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
1251 {
1252 return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
1253 }
1254
cpu_has_secondary_exec_ctrls(void)1255 static inline bool cpu_has_secondary_exec_ctrls(void)
1256 {
1257 return vmcs_config.cpu_based_exec_ctrl &
1258 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1259 }
1260
cpu_has_vmx_virtualize_apic_accesses(void)1261 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
1262 {
1263 return vmcs_config.cpu_based_2nd_exec_ctrl &
1264 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1265 }
1266
cpu_has_vmx_virtualize_x2apic_mode(void)1267 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1268 {
1269 return vmcs_config.cpu_based_2nd_exec_ctrl &
1270 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
1271 }
1272
cpu_has_vmx_apic_register_virt(void)1273 static inline bool cpu_has_vmx_apic_register_virt(void)
1274 {
1275 return vmcs_config.cpu_based_2nd_exec_ctrl &
1276 SECONDARY_EXEC_APIC_REGISTER_VIRT;
1277 }
1278
cpu_has_vmx_virtual_intr_delivery(void)1279 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1280 {
1281 return vmcs_config.cpu_based_2nd_exec_ctrl &
1282 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1283 }
1284
1285 /*
1286 * Comment's format: document - errata name - stepping - processor name.
1287 * Refer from
1288 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
1289 */
1290 static u32 vmx_preemption_cpu_tfms[] = {
1291 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
1292 0x000206E6,
1293 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */
1294 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
1295 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
1296 0x00020652,
1297 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
1298 0x00020655,
1299 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
1300 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
1301 /*
1302 * 320767.pdf - AAP86 - B1 -
1303 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
1304 */
1305 0x000106E5,
1306 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
1307 0x000106A0,
1308 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
1309 0x000106A1,
1310 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
1311 0x000106A4,
1312 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
1313 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
1314 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
1315 0x000106A5,
1316 };
1317
cpu_has_broken_vmx_preemption_timer(void)1318 static inline bool cpu_has_broken_vmx_preemption_timer(void)
1319 {
1320 u32 eax = cpuid_eax(0x00000001), i;
1321
1322 /* Clear the reserved bits */
1323 eax &= ~(0x3U << 14 | 0xfU << 28);
1324 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
1325 if (eax == vmx_preemption_cpu_tfms[i])
1326 return true;
1327
1328 return false;
1329 }
1330
cpu_has_vmx_preemption_timer(void)1331 static inline bool cpu_has_vmx_preemption_timer(void)
1332 {
1333 return vmcs_config.pin_based_exec_ctrl &
1334 PIN_BASED_VMX_PREEMPTION_TIMER;
1335 }
1336
cpu_has_vmx_posted_intr(void)1337 static inline bool cpu_has_vmx_posted_intr(void)
1338 {
1339 return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
1340 vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
1341 }
1342
cpu_has_vmx_apicv(void)1343 static inline bool cpu_has_vmx_apicv(void)
1344 {
1345 return cpu_has_vmx_apic_register_virt() &&
1346 cpu_has_vmx_virtual_intr_delivery() &&
1347 cpu_has_vmx_posted_intr();
1348 }
1349
cpu_has_vmx_flexpriority(void)1350 static inline bool cpu_has_vmx_flexpriority(void)
1351 {
1352 return cpu_has_vmx_tpr_shadow() &&
1353 cpu_has_vmx_virtualize_apic_accesses();
1354 }
1355
cpu_has_vmx_ept_execute_only(void)1356 static inline bool cpu_has_vmx_ept_execute_only(void)
1357 {
1358 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
1359 }
1360
cpu_has_vmx_ept_2m_page(void)1361 static inline bool cpu_has_vmx_ept_2m_page(void)
1362 {
1363 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
1364 }
1365
cpu_has_vmx_ept_1g_page(void)1366 static inline bool cpu_has_vmx_ept_1g_page(void)
1367 {
1368 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
1369 }
1370
cpu_has_vmx_ept_4levels(void)1371 static inline bool cpu_has_vmx_ept_4levels(void)
1372 {
1373 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1374 }
1375
cpu_has_vmx_ept_mt_wb(void)1376 static inline bool cpu_has_vmx_ept_mt_wb(void)
1377 {
1378 return vmx_capability.ept & VMX_EPTP_WB_BIT;
1379 }
1380
cpu_has_vmx_ept_5levels(void)1381 static inline bool cpu_has_vmx_ept_5levels(void)
1382 {
1383 return vmx_capability.ept & VMX_EPT_PAGE_WALK_5_BIT;
1384 }
1385
cpu_has_vmx_ept_ad_bits(void)1386 static inline bool cpu_has_vmx_ept_ad_bits(void)
1387 {
1388 return vmx_capability.ept & VMX_EPT_AD_BIT;
1389 }
1390
cpu_has_vmx_invept_context(void)1391 static inline bool cpu_has_vmx_invept_context(void)
1392 {
1393 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
1394 }
1395
cpu_has_vmx_invept_global(void)1396 static inline bool cpu_has_vmx_invept_global(void)
1397 {
1398 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
1399 }
1400
cpu_has_vmx_invvpid_single(void)1401 static inline bool cpu_has_vmx_invvpid_single(void)
1402 {
1403 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1404 }
1405
cpu_has_vmx_invvpid_global(void)1406 static inline bool cpu_has_vmx_invvpid_global(void)
1407 {
1408 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1409 }
1410
cpu_has_vmx_invvpid(void)1411 static inline bool cpu_has_vmx_invvpid(void)
1412 {
1413 return vmx_capability.vpid & VMX_VPID_INVVPID_BIT;
1414 }
1415
cpu_has_vmx_ept(void)1416 static inline bool cpu_has_vmx_ept(void)
1417 {
1418 return vmcs_config.cpu_based_2nd_exec_ctrl &
1419 SECONDARY_EXEC_ENABLE_EPT;
1420 }
1421
cpu_has_vmx_unrestricted_guest(void)1422 static inline bool cpu_has_vmx_unrestricted_guest(void)
1423 {
1424 return vmcs_config.cpu_based_2nd_exec_ctrl &
1425 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1426 }
1427
cpu_has_vmx_ple(void)1428 static inline bool cpu_has_vmx_ple(void)
1429 {
1430 return vmcs_config.cpu_based_2nd_exec_ctrl &
1431 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1432 }
1433
cpu_has_vmx_basic_inout(void)1434 static inline bool cpu_has_vmx_basic_inout(void)
1435 {
1436 return (((u64)vmcs_config.basic_cap << 32) & VMX_BASIC_INOUT);
1437 }
1438
cpu_need_virtualize_apic_accesses(struct kvm_vcpu * vcpu)1439 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
1440 {
1441 return flexpriority_enabled && lapic_in_kernel(vcpu);
1442 }
1443
cpu_has_vmx_vpid(void)1444 static inline bool cpu_has_vmx_vpid(void)
1445 {
1446 return vmcs_config.cpu_based_2nd_exec_ctrl &
1447 SECONDARY_EXEC_ENABLE_VPID;
1448 }
1449
cpu_has_vmx_rdtscp(void)1450 static inline bool cpu_has_vmx_rdtscp(void)
1451 {
1452 return vmcs_config.cpu_based_2nd_exec_ctrl &
1453 SECONDARY_EXEC_RDTSCP;
1454 }
1455
cpu_has_vmx_invpcid(void)1456 static inline bool cpu_has_vmx_invpcid(void)
1457 {
1458 return vmcs_config.cpu_based_2nd_exec_ctrl &
1459 SECONDARY_EXEC_ENABLE_INVPCID;
1460 }
1461
cpu_has_virtual_nmis(void)1462 static inline bool cpu_has_virtual_nmis(void)
1463 {
1464 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1465 }
1466
cpu_has_vmx_wbinvd_exit(void)1467 static inline bool cpu_has_vmx_wbinvd_exit(void)
1468 {
1469 return vmcs_config.cpu_based_2nd_exec_ctrl &
1470 SECONDARY_EXEC_WBINVD_EXITING;
1471 }
1472
cpu_has_vmx_shadow_vmcs(void)1473 static inline bool cpu_has_vmx_shadow_vmcs(void)
1474 {
1475 u64 vmx_msr;
1476 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1477 /* check if the cpu supports writing r/o exit information fields */
1478 if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1479 return false;
1480
1481 return vmcs_config.cpu_based_2nd_exec_ctrl &
1482 SECONDARY_EXEC_SHADOW_VMCS;
1483 }
1484
cpu_has_vmx_pml(void)1485 static inline bool cpu_has_vmx_pml(void)
1486 {
1487 return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1488 }
1489
cpu_has_vmx_tsc_scaling(void)1490 static inline bool cpu_has_vmx_tsc_scaling(void)
1491 {
1492 return vmcs_config.cpu_based_2nd_exec_ctrl &
1493 SECONDARY_EXEC_TSC_SCALING;
1494 }
1495
cpu_has_vmx_vmfunc(void)1496 static inline bool cpu_has_vmx_vmfunc(void)
1497 {
1498 return vmcs_config.cpu_based_2nd_exec_ctrl &
1499 SECONDARY_EXEC_ENABLE_VMFUNC;
1500 }
1501
report_flexpriority(void)1502 static inline bool report_flexpriority(void)
1503 {
1504 return flexpriority_enabled;
1505 }
1506
nested_cpu_vmx_misc_cr3_count(struct kvm_vcpu * vcpu)1507 static inline unsigned nested_cpu_vmx_misc_cr3_count(struct kvm_vcpu *vcpu)
1508 {
1509 return vmx_misc_cr3_count(to_vmx(vcpu)->nested.nested_vmx_misc_low);
1510 }
1511
nested_cpu_has(struct vmcs12 * vmcs12,u32 bit)1512 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1513 {
1514 return vmcs12->cpu_based_vm_exec_control & bit;
1515 }
1516
nested_cpu_has2(struct vmcs12 * vmcs12,u32 bit)1517 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1518 {
1519 return (vmcs12->cpu_based_vm_exec_control &
1520 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1521 (vmcs12->secondary_vm_exec_control & bit);
1522 }
1523
nested_cpu_has_preemption_timer(struct vmcs12 * vmcs12)1524 static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1525 {
1526 return vmcs12->pin_based_vm_exec_control &
1527 PIN_BASED_VMX_PREEMPTION_TIMER;
1528 }
1529
nested_cpu_has_ept(struct vmcs12 * vmcs12)1530 static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1531 {
1532 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1533 }
1534
nested_cpu_has_xsaves(struct vmcs12 * vmcs12)1535 static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1536 {
1537 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
1538 }
1539
nested_cpu_has_pml(struct vmcs12 * vmcs12)1540 static inline bool nested_cpu_has_pml(struct vmcs12 *vmcs12)
1541 {
1542 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML);
1543 }
1544
nested_cpu_has_virt_x2apic_mode(struct vmcs12 * vmcs12)1545 static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1546 {
1547 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1548 }
1549
nested_cpu_has_vpid(struct vmcs12 * vmcs12)1550 static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
1551 {
1552 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
1553 }
1554
nested_cpu_has_apic_reg_virt(struct vmcs12 * vmcs12)1555 static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1556 {
1557 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1558 }
1559
nested_cpu_has_vid(struct vmcs12 * vmcs12)1560 static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1561 {
1562 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1563 }
1564
nested_cpu_has_posted_intr(struct vmcs12 * vmcs12)1565 static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1566 {
1567 return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1568 }
1569
nested_cpu_has_vmfunc(struct vmcs12 * vmcs12)1570 static inline bool nested_cpu_has_vmfunc(struct vmcs12 *vmcs12)
1571 {
1572 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VMFUNC);
1573 }
1574
nested_cpu_has_eptp_switching(struct vmcs12 * vmcs12)1575 static inline bool nested_cpu_has_eptp_switching(struct vmcs12 *vmcs12)
1576 {
1577 return nested_cpu_has_vmfunc(vmcs12) &&
1578 (vmcs12->vm_function_control &
1579 VMX_VMFUNC_EPTP_SWITCHING);
1580 }
1581
is_nmi(u32 intr_info)1582 static inline bool is_nmi(u32 intr_info)
1583 {
1584 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1585 == (INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK);
1586 }
1587
1588 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1589 u32 exit_intr_info,
1590 unsigned long exit_qualification);
1591 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1592 struct vmcs12 *vmcs12,
1593 u32 reason, unsigned long qualification);
1594
__find_msr_index(struct vcpu_vmx * vmx,u32 msr)1595 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1596 {
1597 int i;
1598
1599 for (i = 0; i < vmx->nmsrs; ++i)
1600 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1601 return i;
1602 return -1;
1603 }
1604
__invvpid(unsigned long ext,u16 vpid,gva_t gva)1605 static inline void __invvpid(unsigned long ext, u16 vpid, gva_t gva)
1606 {
1607 struct {
1608 u64 vpid : 16;
1609 u64 rsvd : 48;
1610 u64 gva;
1611 } operand = { vpid, 0, gva };
1612
1613 asm volatile (__ex(ASM_VMX_INVVPID)
1614 /* CF==1 or ZF==1 --> rc = -1 */
1615 "; ja 1f ; ud2 ; 1:"
1616 : : "a"(&operand), "c"(ext) : "cc", "memory");
1617 }
1618
__invept(unsigned long ext,u64 eptp,gpa_t gpa)1619 static inline void __invept(unsigned long ext, u64 eptp, gpa_t gpa)
1620 {
1621 struct {
1622 u64 eptp, gpa;
1623 } operand = {eptp, gpa};
1624
1625 asm volatile (__ex(ASM_VMX_INVEPT)
1626 /* CF==1 or ZF==1 --> rc = -1 */
1627 "; ja 1f ; ud2 ; 1:\n"
1628 : : "a" (&operand), "c" (ext) : "cc", "memory");
1629 }
1630
find_msr_entry(struct vcpu_vmx * vmx,u32 msr)1631 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1632 {
1633 int i;
1634
1635 i = __find_msr_index(vmx, msr);
1636 if (i >= 0)
1637 return &vmx->guest_msrs[i];
1638 return NULL;
1639 }
1640
vmcs_clear(struct vmcs * vmcs)1641 static void vmcs_clear(struct vmcs *vmcs)
1642 {
1643 u64 phys_addr = __pa(vmcs);
1644 u8 error;
1645
1646 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1647 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1648 : "cc", "memory");
1649 if (error)
1650 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1651 vmcs, phys_addr);
1652 }
1653
loaded_vmcs_init(struct loaded_vmcs * loaded_vmcs)1654 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1655 {
1656 vmcs_clear(loaded_vmcs->vmcs);
1657 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
1658 vmcs_clear(loaded_vmcs->shadow_vmcs);
1659 loaded_vmcs->cpu = -1;
1660 loaded_vmcs->launched = 0;
1661 }
1662
vmcs_load(struct vmcs * vmcs)1663 static void vmcs_load(struct vmcs *vmcs)
1664 {
1665 u64 phys_addr = __pa(vmcs);
1666 u8 error;
1667
1668 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1669 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1670 : "cc", "memory");
1671 if (error)
1672 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1673 vmcs, phys_addr);
1674 }
1675
1676 #ifdef CONFIG_KEXEC_CORE
1677 /*
1678 * This bitmap is used to indicate whether the vmclear
1679 * operation is enabled on all cpus. All disabled by
1680 * default.
1681 */
1682 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1683
crash_enable_local_vmclear(int cpu)1684 static inline void crash_enable_local_vmclear(int cpu)
1685 {
1686 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1687 }
1688
crash_disable_local_vmclear(int cpu)1689 static inline void crash_disable_local_vmclear(int cpu)
1690 {
1691 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1692 }
1693
crash_local_vmclear_enabled(int cpu)1694 static inline int crash_local_vmclear_enabled(int cpu)
1695 {
1696 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1697 }
1698
crash_vmclear_local_loaded_vmcss(void)1699 static void crash_vmclear_local_loaded_vmcss(void)
1700 {
1701 int cpu = raw_smp_processor_id();
1702 struct loaded_vmcs *v;
1703
1704 if (!crash_local_vmclear_enabled(cpu))
1705 return;
1706
1707 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1708 loaded_vmcss_on_cpu_link)
1709 vmcs_clear(v->vmcs);
1710 }
1711 #else
crash_enable_local_vmclear(int cpu)1712 static inline void crash_enable_local_vmclear(int cpu) { }
crash_disable_local_vmclear(int cpu)1713 static inline void crash_disable_local_vmclear(int cpu) { }
1714 #endif /* CONFIG_KEXEC_CORE */
1715
__loaded_vmcs_clear(void * arg)1716 static void __loaded_vmcs_clear(void *arg)
1717 {
1718 struct loaded_vmcs *loaded_vmcs = arg;
1719 int cpu = raw_smp_processor_id();
1720
1721 if (loaded_vmcs->cpu != cpu)
1722 return; /* vcpu migration can race with cpu offline */
1723 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1724 per_cpu(current_vmcs, cpu) = NULL;
1725 crash_disable_local_vmclear(cpu);
1726 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1727
1728 /*
1729 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1730 * is before setting loaded_vmcs->vcpu to -1 which is done in
1731 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1732 * then adds the vmcs into percpu list before it is deleted.
1733 */
1734 smp_wmb();
1735
1736 loaded_vmcs_init(loaded_vmcs);
1737 crash_enable_local_vmclear(cpu);
1738 }
1739
loaded_vmcs_clear(struct loaded_vmcs * loaded_vmcs)1740 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1741 {
1742 int cpu = loaded_vmcs->cpu;
1743
1744 if (cpu != -1)
1745 smp_call_function_single(cpu,
1746 __loaded_vmcs_clear, loaded_vmcs, 1);
1747 }
1748
vpid_sync_vcpu_single(int vpid)1749 static inline void vpid_sync_vcpu_single(int vpid)
1750 {
1751 if (vpid == 0)
1752 return;
1753
1754 if (cpu_has_vmx_invvpid_single())
1755 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
1756 }
1757
vpid_sync_vcpu_global(void)1758 static inline void vpid_sync_vcpu_global(void)
1759 {
1760 if (cpu_has_vmx_invvpid_global())
1761 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1762 }
1763
vpid_sync_context(int vpid)1764 static inline void vpid_sync_context(int vpid)
1765 {
1766 if (cpu_has_vmx_invvpid_single())
1767 vpid_sync_vcpu_single(vpid);
1768 else
1769 vpid_sync_vcpu_global();
1770 }
1771
ept_sync_global(void)1772 static inline void ept_sync_global(void)
1773 {
1774 if (cpu_has_vmx_invept_global())
1775 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1776 }
1777
ept_sync_context(u64 eptp)1778 static inline void ept_sync_context(u64 eptp)
1779 {
1780 if (enable_ept) {
1781 if (cpu_has_vmx_invept_context())
1782 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1783 else
1784 ept_sync_global();
1785 }
1786 }
1787
vmcs_check16(unsigned long field)1788 static __always_inline void vmcs_check16(unsigned long field)
1789 {
1790 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1791 "16-bit accessor invalid for 64-bit field");
1792 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1793 "16-bit accessor invalid for 64-bit high field");
1794 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1795 "16-bit accessor invalid for 32-bit high field");
1796 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1797 "16-bit accessor invalid for natural width field");
1798 }
1799
vmcs_check32(unsigned long field)1800 static __always_inline void vmcs_check32(unsigned long field)
1801 {
1802 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1803 "32-bit accessor invalid for 16-bit field");
1804 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1805 "32-bit accessor invalid for natural width field");
1806 }
1807
vmcs_check64(unsigned long field)1808 static __always_inline void vmcs_check64(unsigned long field)
1809 {
1810 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1811 "64-bit accessor invalid for 16-bit field");
1812 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1813 "64-bit accessor invalid for 64-bit high field");
1814 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1815 "64-bit accessor invalid for 32-bit field");
1816 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1817 "64-bit accessor invalid for natural width field");
1818 }
1819
vmcs_checkl(unsigned long field)1820 static __always_inline void vmcs_checkl(unsigned long field)
1821 {
1822 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1823 "Natural width accessor invalid for 16-bit field");
1824 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1825 "Natural width accessor invalid for 64-bit field");
1826 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1827 "Natural width accessor invalid for 64-bit high field");
1828 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1829 "Natural width accessor invalid for 32-bit field");
1830 }
1831
__vmcs_readl(unsigned long field)1832 static __always_inline unsigned long __vmcs_readl(unsigned long field)
1833 {
1834 unsigned long value;
1835
1836 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1837 : "=a"(value) : "d"(field) : "cc");
1838 return value;
1839 }
1840
vmcs_read16(unsigned long field)1841 static __always_inline u16 vmcs_read16(unsigned long field)
1842 {
1843 vmcs_check16(field);
1844 return __vmcs_readl(field);
1845 }
1846
vmcs_read32(unsigned long field)1847 static __always_inline u32 vmcs_read32(unsigned long field)
1848 {
1849 vmcs_check32(field);
1850 return __vmcs_readl(field);
1851 }
1852
vmcs_read64(unsigned long field)1853 static __always_inline u64 vmcs_read64(unsigned long field)
1854 {
1855 vmcs_check64(field);
1856 #ifdef CONFIG_X86_64
1857 return __vmcs_readl(field);
1858 #else
1859 return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32);
1860 #endif
1861 }
1862
vmcs_readl(unsigned long field)1863 static __always_inline unsigned long vmcs_readl(unsigned long field)
1864 {
1865 vmcs_checkl(field);
1866 return __vmcs_readl(field);
1867 }
1868
vmwrite_error(unsigned long field,unsigned long value)1869 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1870 {
1871 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1872 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1873 dump_stack();
1874 }
1875
__vmcs_writel(unsigned long field,unsigned long value)1876 static __always_inline void __vmcs_writel(unsigned long field, unsigned long value)
1877 {
1878 u8 error;
1879
1880 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1881 : "=q"(error) : "a"(value), "d"(field) : "cc");
1882 if (unlikely(error))
1883 vmwrite_error(field, value);
1884 }
1885
vmcs_write16(unsigned long field,u16 value)1886 static __always_inline void vmcs_write16(unsigned long field, u16 value)
1887 {
1888 vmcs_check16(field);
1889 __vmcs_writel(field, value);
1890 }
1891
vmcs_write32(unsigned long field,u32 value)1892 static __always_inline void vmcs_write32(unsigned long field, u32 value)
1893 {
1894 vmcs_check32(field);
1895 __vmcs_writel(field, value);
1896 }
1897
vmcs_write64(unsigned long field,u64 value)1898 static __always_inline void vmcs_write64(unsigned long field, u64 value)
1899 {
1900 vmcs_check64(field);
1901 __vmcs_writel(field, value);
1902 #ifndef CONFIG_X86_64
1903 asm volatile ("");
1904 __vmcs_writel(field+1, value >> 32);
1905 #endif
1906 }
1907
vmcs_writel(unsigned long field,unsigned long value)1908 static __always_inline void vmcs_writel(unsigned long field, unsigned long value)
1909 {
1910 vmcs_checkl(field);
1911 __vmcs_writel(field, value);
1912 }
1913
vmcs_clear_bits(unsigned long field,u32 mask)1914 static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask)
1915 {
1916 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1917 "vmcs_clear_bits does not support 64-bit fields");
1918 __vmcs_writel(field, __vmcs_readl(field) & ~mask);
1919 }
1920
vmcs_set_bits(unsigned long field,u32 mask)1921 static __always_inline void vmcs_set_bits(unsigned long field, u32 mask)
1922 {
1923 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1924 "vmcs_set_bits does not support 64-bit fields");
1925 __vmcs_writel(field, __vmcs_readl(field) | mask);
1926 }
1927
vm_entry_controls_reset_shadow(struct vcpu_vmx * vmx)1928 static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx *vmx)
1929 {
1930 vmx->vm_entry_controls_shadow = vmcs_read32(VM_ENTRY_CONTROLS);
1931 }
1932
vm_entry_controls_init(struct vcpu_vmx * vmx,u32 val)1933 static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1934 {
1935 vmcs_write32(VM_ENTRY_CONTROLS, val);
1936 vmx->vm_entry_controls_shadow = val;
1937 }
1938
vm_entry_controls_set(struct vcpu_vmx * vmx,u32 val)1939 static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1940 {
1941 if (vmx->vm_entry_controls_shadow != val)
1942 vm_entry_controls_init(vmx, val);
1943 }
1944
vm_entry_controls_get(struct vcpu_vmx * vmx)1945 static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1946 {
1947 return vmx->vm_entry_controls_shadow;
1948 }
1949
1950
vm_entry_controls_setbit(struct vcpu_vmx * vmx,u32 val)1951 static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1952 {
1953 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1954 }
1955
vm_entry_controls_clearbit(struct vcpu_vmx * vmx,u32 val)1956 static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1957 {
1958 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1959 }
1960
vm_exit_controls_reset_shadow(struct vcpu_vmx * vmx)1961 static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx *vmx)
1962 {
1963 vmx->vm_exit_controls_shadow = vmcs_read32(VM_EXIT_CONTROLS);
1964 }
1965
vm_exit_controls_init(struct vcpu_vmx * vmx,u32 val)1966 static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1967 {
1968 vmcs_write32(VM_EXIT_CONTROLS, val);
1969 vmx->vm_exit_controls_shadow = val;
1970 }
1971
vm_exit_controls_set(struct vcpu_vmx * vmx,u32 val)1972 static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1973 {
1974 if (vmx->vm_exit_controls_shadow != val)
1975 vm_exit_controls_init(vmx, val);
1976 }
1977
vm_exit_controls_get(struct vcpu_vmx * vmx)1978 static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1979 {
1980 return vmx->vm_exit_controls_shadow;
1981 }
1982
1983
vm_exit_controls_setbit(struct vcpu_vmx * vmx,u32 val)1984 static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1985 {
1986 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1987 }
1988
vm_exit_controls_clearbit(struct vcpu_vmx * vmx,u32 val)1989 static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1990 {
1991 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1992 }
1993
vmx_segment_cache_clear(struct vcpu_vmx * vmx)1994 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1995 {
1996 vmx->segment_cache.bitmask = 0;
1997 }
1998
vmx_segment_cache_test_set(struct vcpu_vmx * vmx,unsigned seg,unsigned field)1999 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
2000 unsigned field)
2001 {
2002 bool ret;
2003 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
2004
2005 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
2006 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
2007 vmx->segment_cache.bitmask = 0;
2008 }
2009 ret = vmx->segment_cache.bitmask & mask;
2010 vmx->segment_cache.bitmask |= mask;
2011 return ret;
2012 }
2013
vmx_read_guest_seg_selector(struct vcpu_vmx * vmx,unsigned seg)2014 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
2015 {
2016 u16 *p = &vmx->segment_cache.seg[seg].selector;
2017
2018 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
2019 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
2020 return *p;
2021 }
2022
vmx_read_guest_seg_base(struct vcpu_vmx * vmx,unsigned seg)2023 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
2024 {
2025 ulong *p = &vmx->segment_cache.seg[seg].base;
2026
2027 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
2028 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
2029 return *p;
2030 }
2031
vmx_read_guest_seg_limit(struct vcpu_vmx * vmx,unsigned seg)2032 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
2033 {
2034 u32 *p = &vmx->segment_cache.seg[seg].limit;
2035
2036 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
2037 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
2038 return *p;
2039 }
2040
vmx_read_guest_seg_ar(struct vcpu_vmx * vmx,unsigned seg)2041 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
2042 {
2043 u32 *p = &vmx->segment_cache.seg[seg].ar;
2044
2045 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
2046 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
2047 return *p;
2048 }
2049
update_exception_bitmap(struct kvm_vcpu * vcpu)2050 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
2051 {
2052 u32 eb;
2053
2054 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
2055 (1u << DB_VECTOR) | (1u << AC_VECTOR);
2056 if ((vcpu->guest_debug &
2057 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
2058 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
2059 eb |= 1u << BP_VECTOR;
2060 if (to_vmx(vcpu)->rmode.vm86_active)
2061 eb = ~0;
2062 if (enable_ept)
2063 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
2064
2065 /* When we are running a nested L2 guest and L1 specified for it a
2066 * certain exception bitmap, we must trap the same exceptions and pass
2067 * them to L1. When running L2, we will only handle the exceptions
2068 * specified above if L1 did not want them.
2069 */
2070 if (is_guest_mode(vcpu))
2071 eb |= get_vmcs12(vcpu)->exception_bitmap;
2072
2073 vmcs_write32(EXCEPTION_BITMAP, eb);
2074 }
2075
2076 /*
2077 * Check if MSR is intercepted for currently loaded MSR bitmap.
2078 */
msr_write_intercepted(struct kvm_vcpu * vcpu,u32 msr)2079 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
2080 {
2081 unsigned long *msr_bitmap;
2082 int f = sizeof(unsigned long);
2083
2084 if (!cpu_has_vmx_msr_bitmap())
2085 return true;
2086
2087 msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
2088
2089 if (msr <= 0x1fff) {
2090 return !!test_bit(msr, msr_bitmap + 0x800 / f);
2091 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
2092 msr &= 0x1fff;
2093 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
2094 }
2095
2096 return true;
2097 }
2098
2099 /*
2100 * Check if MSR is intercepted for L01 MSR bitmap.
2101 */
msr_write_intercepted_l01(struct kvm_vcpu * vcpu,u32 msr)2102 static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
2103 {
2104 unsigned long *msr_bitmap;
2105 int f = sizeof(unsigned long);
2106
2107 if (!cpu_has_vmx_msr_bitmap())
2108 return true;
2109
2110 msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
2111
2112 if (msr <= 0x1fff) {
2113 return !!test_bit(msr, msr_bitmap + 0x800 / f);
2114 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
2115 msr &= 0x1fff;
2116 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
2117 }
2118
2119 return true;
2120 }
2121
clear_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit)2122 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
2123 unsigned long entry, unsigned long exit)
2124 {
2125 vm_entry_controls_clearbit(vmx, entry);
2126 vm_exit_controls_clearbit(vmx, exit);
2127 }
2128
find_msr(struct vmx_msrs * m,unsigned int msr)2129 static int find_msr(struct vmx_msrs *m, unsigned int msr)
2130 {
2131 unsigned int i;
2132
2133 for (i = 0; i < m->nr; ++i) {
2134 if (m->val[i].index == msr)
2135 return i;
2136 }
2137 return -ENOENT;
2138 }
2139
clear_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr)2140 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
2141 {
2142 int i;
2143 struct msr_autoload *m = &vmx->msr_autoload;
2144
2145 switch (msr) {
2146 case MSR_EFER:
2147 if (cpu_has_load_ia32_efer) {
2148 clear_atomic_switch_msr_special(vmx,
2149 VM_ENTRY_LOAD_IA32_EFER,
2150 VM_EXIT_LOAD_IA32_EFER);
2151 return;
2152 }
2153 break;
2154 case MSR_CORE_PERF_GLOBAL_CTRL:
2155 if (cpu_has_load_perf_global_ctrl) {
2156 clear_atomic_switch_msr_special(vmx,
2157 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
2158 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
2159 return;
2160 }
2161 break;
2162 }
2163 i = find_msr(&m->guest, msr);
2164 if (i < 0)
2165 goto skip_guest;
2166 --m->guest.nr;
2167 m->guest.val[i] = m->guest.val[m->guest.nr];
2168 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
2169
2170 skip_guest:
2171 i = find_msr(&m->host, msr);
2172 if (i < 0)
2173 return;
2174
2175 --m->host.nr;
2176 m->host.val[i] = m->host.val[m->host.nr];
2177 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
2178 }
2179
add_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit,unsigned long guest_val_vmcs,unsigned long host_val_vmcs,u64 guest_val,u64 host_val)2180 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
2181 unsigned long entry, unsigned long exit,
2182 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
2183 u64 guest_val, u64 host_val)
2184 {
2185 vmcs_write64(guest_val_vmcs, guest_val);
2186 vmcs_write64(host_val_vmcs, host_val);
2187 vm_entry_controls_setbit(vmx, entry);
2188 vm_exit_controls_setbit(vmx, exit);
2189 }
2190
add_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr,u64 guest_val,u64 host_val,bool entry_only)2191 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
2192 u64 guest_val, u64 host_val, bool entry_only)
2193 {
2194 int i, j = 0;
2195 struct msr_autoload *m = &vmx->msr_autoload;
2196
2197 switch (msr) {
2198 case MSR_EFER:
2199 if (cpu_has_load_ia32_efer) {
2200 add_atomic_switch_msr_special(vmx,
2201 VM_ENTRY_LOAD_IA32_EFER,
2202 VM_EXIT_LOAD_IA32_EFER,
2203 GUEST_IA32_EFER,
2204 HOST_IA32_EFER,
2205 guest_val, host_val);
2206 return;
2207 }
2208 break;
2209 case MSR_CORE_PERF_GLOBAL_CTRL:
2210 if (cpu_has_load_perf_global_ctrl) {
2211 add_atomic_switch_msr_special(vmx,
2212 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
2213 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
2214 GUEST_IA32_PERF_GLOBAL_CTRL,
2215 HOST_IA32_PERF_GLOBAL_CTRL,
2216 guest_val, host_val);
2217 return;
2218 }
2219 break;
2220 case MSR_IA32_PEBS_ENABLE:
2221 /* PEBS needs a quiescent period after being disabled (to write
2222 * a record). Disabling PEBS through VMX MSR swapping doesn't
2223 * provide that period, so a CPU could write host's record into
2224 * guest's memory.
2225 */
2226 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
2227 }
2228
2229 i = find_msr(&m->guest, msr);
2230 if (!entry_only)
2231 j = find_msr(&m->host, msr);
2232
2233 if ((i < 0 && m->guest.nr == NR_AUTOLOAD_MSRS) ||
2234 (j < 0 && m->host.nr == NR_AUTOLOAD_MSRS)) {
2235 printk_once(KERN_WARNING "Not enough msr switch entries. "
2236 "Can't add msr %x\n", msr);
2237 return;
2238 }
2239 if (i < 0) {
2240 i = m->guest.nr++;
2241 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
2242 }
2243 m->guest.val[i].index = msr;
2244 m->guest.val[i].value = guest_val;
2245
2246 if (entry_only)
2247 return;
2248
2249 if (j < 0) {
2250 j = m->host.nr++;
2251 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
2252 }
2253 m->host.val[j].index = msr;
2254 m->host.val[j].value = host_val;
2255 }
2256
update_transition_efer(struct vcpu_vmx * vmx,int efer_offset)2257 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
2258 {
2259 u64 guest_efer = vmx->vcpu.arch.efer;
2260 u64 ignore_bits = 0;
2261
2262 /* Shadow paging assumes NX to be available. */
2263 if (!enable_ept)
2264 guest_efer |= EFER_NX;
2265
2266 /*
2267 * LMA and LME handled by hardware; SCE meaningless outside long mode.
2268 */
2269 ignore_bits |= EFER_SCE;
2270 #ifdef CONFIG_X86_64
2271 ignore_bits |= EFER_LMA | EFER_LME;
2272 /* SCE is meaningful only in long mode on Intel */
2273 if (guest_efer & EFER_LMA)
2274 ignore_bits &= ~(u64)EFER_SCE;
2275 #endif
2276
2277 clear_atomic_switch_msr(vmx, MSR_EFER);
2278
2279 /*
2280 * On EPT, we can't emulate NX, so we must switch EFER atomically.
2281 * On CPUs that support "load IA32_EFER", always switch EFER
2282 * atomically, since it's faster than switching it manually.
2283 */
2284 if (cpu_has_load_ia32_efer ||
2285 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
2286 if (!(guest_efer & EFER_LMA))
2287 guest_efer &= ~EFER_LME;
2288 if (guest_efer != host_efer)
2289 add_atomic_switch_msr(vmx, MSR_EFER,
2290 guest_efer, host_efer, false);
2291 return false;
2292 } else {
2293 guest_efer &= ~ignore_bits;
2294 guest_efer |= host_efer & ignore_bits;
2295
2296 vmx->guest_msrs[efer_offset].data = guest_efer;
2297 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
2298
2299 return true;
2300 }
2301 }
2302
2303 #ifdef CONFIG_X86_32
2304 /*
2305 * On 32-bit kernels, VM exits still load the FS and GS bases from the
2306 * VMCS rather than the segment table. KVM uses this helper to figure
2307 * out the current bases to poke them into the VMCS before entry.
2308 */
segment_base(u16 selector)2309 static unsigned long segment_base(u16 selector)
2310 {
2311 struct desc_struct *table;
2312 unsigned long v;
2313
2314 if (!(selector & ~SEGMENT_RPL_MASK))
2315 return 0;
2316
2317 table = get_current_gdt_ro();
2318
2319 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2320 u16 ldt_selector = kvm_read_ldt();
2321
2322 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
2323 return 0;
2324
2325 table = (struct desc_struct *)segment_base(ldt_selector);
2326 }
2327 v = get_desc_base(&table[selector >> 3]);
2328 return v;
2329 }
2330 #endif
2331
vmx_save_host_state(struct kvm_vcpu * vcpu)2332 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
2333 {
2334 struct vcpu_vmx *vmx = to_vmx(vcpu);
2335 int i;
2336
2337 if (vmx->loaded_cpu_state)
2338 return;
2339
2340 vmx->loaded_cpu_state = vmx->loaded_vmcs;
2341
2342 /*
2343 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
2344 * allow segment selectors with cpl > 0 or ti == 1.
2345 */
2346 vmx->host_state.ldt_sel = kvm_read_ldt();
2347 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
2348 savesegment(fs, vmx->host_state.fs_sel);
2349 if (!(vmx->host_state.fs_sel & 7)) {
2350 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
2351 vmx->host_state.fs_reload_needed = 0;
2352 } else {
2353 vmcs_write16(HOST_FS_SELECTOR, 0);
2354 vmx->host_state.fs_reload_needed = 1;
2355 }
2356 savesegment(gs, vmx->host_state.gs_sel);
2357 if (!(vmx->host_state.gs_sel & 7))
2358 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
2359 else {
2360 vmcs_write16(HOST_GS_SELECTOR, 0);
2361 vmx->host_state.gs_ldt_reload_needed = 1;
2362 }
2363
2364 #ifdef CONFIG_X86_64
2365 savesegment(ds, vmx->host_state.ds_sel);
2366 savesegment(es, vmx->host_state.es_sel);
2367 #endif
2368
2369 #ifdef CONFIG_X86_64
2370 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
2371 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
2372 #else
2373 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
2374 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
2375 #endif
2376
2377 #ifdef CONFIG_X86_64
2378 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2379 if (is_long_mode(&vmx->vcpu))
2380 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2381 #endif
2382 if (boot_cpu_has(X86_FEATURE_MPX))
2383 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2384 for (i = 0; i < vmx->save_nmsrs; ++i)
2385 kvm_set_shared_msr(vmx->guest_msrs[i].index,
2386 vmx->guest_msrs[i].data,
2387 vmx->guest_msrs[i].mask);
2388 }
2389
__vmx_load_host_state(struct vcpu_vmx * vmx)2390 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
2391 {
2392 if (!vmx->loaded_cpu_state)
2393 return;
2394
2395 WARN_ON_ONCE(vmx->loaded_cpu_state != vmx->loaded_vmcs);
2396
2397 ++vmx->vcpu.stat.host_state_reload;
2398 vmx->loaded_cpu_state = NULL;
2399
2400 #ifdef CONFIG_X86_64
2401 if (is_long_mode(&vmx->vcpu))
2402 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2403 #endif
2404 if (vmx->host_state.gs_ldt_reload_needed) {
2405 kvm_load_ldt(vmx->host_state.ldt_sel);
2406 #ifdef CONFIG_X86_64
2407 load_gs_index(vmx->host_state.gs_sel);
2408 #else
2409 loadsegment(gs, vmx->host_state.gs_sel);
2410 #endif
2411 }
2412 if (vmx->host_state.fs_reload_needed)
2413 loadsegment(fs, vmx->host_state.fs_sel);
2414 #ifdef CONFIG_X86_64
2415 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
2416 loadsegment(ds, vmx->host_state.ds_sel);
2417 loadsegment(es, vmx->host_state.es_sel);
2418 }
2419 #endif
2420 invalidate_tss_limit();
2421 #ifdef CONFIG_X86_64
2422 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2423 #endif
2424 if (vmx->host_state.msr_host_bndcfgs)
2425 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2426 load_fixmap_gdt(raw_smp_processor_id());
2427 }
2428
vmx_load_host_state(struct vcpu_vmx * vmx)2429 static void vmx_load_host_state(struct vcpu_vmx *vmx)
2430 {
2431 preempt_disable();
2432 __vmx_load_host_state(vmx);
2433 preempt_enable();
2434 }
2435
vmx_vcpu_pi_load(struct kvm_vcpu * vcpu,int cpu)2436 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
2437 {
2438 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2439 struct pi_desc old, new;
2440 unsigned int dest;
2441
2442 /*
2443 * In case of hot-plug or hot-unplug, we may have to undo
2444 * vmx_vcpu_pi_put even if there is no assigned device. And we
2445 * always keep PI.NDST up to date for simplicity: it makes the
2446 * code easier, and CPU migration is not a fast path.
2447 */
2448 if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
2449 return;
2450
2451 /*
2452 * First handle the simple case where no cmpxchg is necessary; just
2453 * allow posting non-urgent interrupts.
2454 *
2455 * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change
2456 * PI.NDST: pi_post_block will do it for us and the wakeup_handler
2457 * expects the VCPU to be on the blocked_vcpu_list that matches
2458 * PI.NDST.
2459 */
2460 if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR ||
2461 vcpu->cpu == cpu) {
2462 pi_clear_sn(pi_desc);
2463 return;
2464 }
2465
2466 /* The full case. */
2467 do {
2468 old.control = new.control = pi_desc->control;
2469
2470 dest = cpu_physical_id(cpu);
2471
2472 if (x2apic_enabled())
2473 new.ndst = dest;
2474 else
2475 new.ndst = (dest << 8) & 0xFF00;
2476
2477 new.sn = 0;
2478 } while (cmpxchg64(&pi_desc->control, old.control,
2479 new.control) != old.control);
2480 }
2481
decache_tsc_multiplier(struct vcpu_vmx * vmx)2482 static void decache_tsc_multiplier(struct vcpu_vmx *vmx)
2483 {
2484 vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio;
2485 vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
2486 }
2487
2488 /*
2489 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2490 * vcpu mutex is already taken.
2491 */
vmx_vcpu_load(struct kvm_vcpu * vcpu,int cpu)2492 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2493 {
2494 struct vcpu_vmx *vmx = to_vmx(vcpu);
2495 bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
2496
2497 if (!already_loaded) {
2498 loaded_vmcs_clear(vmx->loaded_vmcs);
2499 local_irq_disable();
2500 crash_disable_local_vmclear(cpu);
2501
2502 /*
2503 * Read loaded_vmcs->cpu should be before fetching
2504 * loaded_vmcs->loaded_vmcss_on_cpu_link.
2505 * See the comments in __loaded_vmcs_clear().
2506 */
2507 smp_rmb();
2508
2509 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
2510 &per_cpu(loaded_vmcss_on_cpu, cpu));
2511 crash_enable_local_vmclear(cpu);
2512 local_irq_enable();
2513 }
2514
2515 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
2516 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
2517 vmcs_load(vmx->loaded_vmcs->vmcs);
2518 indirect_branch_prediction_barrier();
2519 }
2520
2521 if (!already_loaded) {
2522 void *gdt = get_current_gdt_ro();
2523 unsigned long sysenter_esp;
2524
2525 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2526
2527 /*
2528 * Linux uses per-cpu TSS and GDT, so set these when switching
2529 * processors. See 22.2.4.
2530 */
2531 vmcs_writel(HOST_TR_BASE,
2532 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
2533 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */
2534
2535 /*
2536 * VM exits change the host TR limit to 0x67 after a VM
2537 * exit. This is okay, since 0x67 covers everything except
2538 * the IO bitmap and have have code to handle the IO bitmap
2539 * being lost after a VM exit.
2540 */
2541 BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
2542
2543 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
2544 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
2545
2546 vmx->loaded_vmcs->cpu = cpu;
2547 }
2548
2549 /* Setup TSC multiplier */
2550 if (kvm_has_tsc_control &&
2551 vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
2552 decache_tsc_multiplier(vmx);
2553
2554 vmx_vcpu_pi_load(vcpu, cpu);
2555 vmx->host_pkru = read_pkru();
2556 }
2557
vmx_vcpu_pi_put(struct kvm_vcpu * vcpu)2558 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
2559 {
2560 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2561
2562 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2563 !irq_remapping_cap(IRQ_POSTING_CAP) ||
2564 !kvm_vcpu_apicv_active(vcpu))
2565 return;
2566
2567 /* Set SN when the vCPU is preempted */
2568 if (vcpu->preempted)
2569 pi_set_sn(pi_desc);
2570 }
2571
vmx_vcpu_put(struct kvm_vcpu * vcpu)2572 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
2573 {
2574 vmx_vcpu_pi_put(vcpu);
2575
2576 __vmx_load_host_state(to_vmx(vcpu));
2577 }
2578
emulation_required(struct kvm_vcpu * vcpu)2579 static bool emulation_required(struct kvm_vcpu *vcpu)
2580 {
2581 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
2582 }
2583
2584 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
2585
2586 /*
2587 * Return the cr0 value that a nested guest would read. This is a combination
2588 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2589 * its hypervisor (cr0_read_shadow).
2590 */
nested_read_cr0(struct vmcs12 * fields)2591 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
2592 {
2593 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
2594 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
2595 }
nested_read_cr4(struct vmcs12 * fields)2596 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
2597 {
2598 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
2599 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
2600 }
2601
vmx_get_rflags(struct kvm_vcpu * vcpu)2602 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2603 {
2604 unsigned long rflags, save_rflags;
2605
2606 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2607 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2608 rflags = vmcs_readl(GUEST_RFLAGS);
2609 if (to_vmx(vcpu)->rmode.vm86_active) {
2610 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2611 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2612 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2613 }
2614 to_vmx(vcpu)->rflags = rflags;
2615 }
2616 return to_vmx(vcpu)->rflags;
2617 }
2618
vmx_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)2619 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2620 {
2621 unsigned long old_rflags = vmx_get_rflags(vcpu);
2622
2623 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2624 to_vmx(vcpu)->rflags = rflags;
2625 if (to_vmx(vcpu)->rmode.vm86_active) {
2626 to_vmx(vcpu)->rmode.save_rflags = rflags;
2627 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2628 }
2629 vmcs_writel(GUEST_RFLAGS, rflags);
2630
2631 if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM)
2632 to_vmx(vcpu)->emulation_required = emulation_required(vcpu);
2633 }
2634
vmx_get_interrupt_shadow(struct kvm_vcpu * vcpu)2635 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2636 {
2637 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2638 int ret = 0;
2639
2640 if (interruptibility & GUEST_INTR_STATE_STI)
2641 ret |= KVM_X86_SHADOW_INT_STI;
2642 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
2643 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2644
2645 return ret;
2646 }
2647
vmx_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)2648 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2649 {
2650 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2651 u32 interruptibility = interruptibility_old;
2652
2653 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2654
2655 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2656 interruptibility |= GUEST_INTR_STATE_MOV_SS;
2657 else if (mask & KVM_X86_SHADOW_INT_STI)
2658 interruptibility |= GUEST_INTR_STATE_STI;
2659
2660 if ((interruptibility != interruptibility_old))
2661 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2662 }
2663
skip_emulated_instruction(struct kvm_vcpu * vcpu)2664 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2665 {
2666 unsigned long rip;
2667
2668 rip = kvm_rip_read(vcpu);
2669 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2670 kvm_rip_write(vcpu, rip);
2671
2672 /* skipping an emulated instruction also counts */
2673 vmx_set_interrupt_shadow(vcpu, 0);
2674 }
2675
nested_vmx_inject_exception_vmexit(struct kvm_vcpu * vcpu,unsigned long exit_qual)2676 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
2677 unsigned long exit_qual)
2678 {
2679 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2680 unsigned int nr = vcpu->arch.exception.nr;
2681 u32 intr_info = nr | INTR_INFO_VALID_MASK;
2682
2683 if (vcpu->arch.exception.has_error_code) {
2684 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
2685 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2686 }
2687
2688 if (kvm_exception_is_soft(nr))
2689 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2690 else
2691 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2692
2693 if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
2694 vmx_get_nmi_mask(vcpu))
2695 intr_info |= INTR_INFO_UNBLOCK_NMI;
2696
2697 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
2698 }
2699
2700 /*
2701 * KVM wants to inject page-faults which it got to the guest. This function
2702 * checks whether in a nested guest, we need to inject them to L1 or L2.
2703 */
nested_vmx_check_exception(struct kvm_vcpu * vcpu,unsigned long * exit_qual)2704 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
2705 {
2706 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2707 unsigned int nr = vcpu->arch.exception.nr;
2708
2709 if (nr == PF_VECTOR) {
2710 if (vcpu->arch.exception.nested_apf) {
2711 *exit_qual = vcpu->arch.apf.nested_apf_token;
2712 return 1;
2713 }
2714 /*
2715 * FIXME: we must not write CR2 when L1 intercepts an L2 #PF exception.
2716 * The fix is to add the ancillary datum (CR2 or DR6) to structs
2717 * kvm_queued_exception and kvm_vcpu_events, so that CR2 and DR6
2718 * can be written only when inject_pending_event runs. This should be
2719 * conditional on a new capability---if the capability is disabled,
2720 * kvm_multiple_exception would write the ancillary information to
2721 * CR2 or DR6, for backwards ABI-compatibility.
2722 */
2723 if (nested_vmx_is_page_fault_vmexit(vmcs12,
2724 vcpu->arch.exception.error_code)) {
2725 *exit_qual = vcpu->arch.cr2;
2726 return 1;
2727 }
2728 } else {
2729 if (vmcs12->exception_bitmap & (1u << nr)) {
2730 if (nr == DB_VECTOR) {
2731 *exit_qual = vcpu->arch.dr6;
2732 *exit_qual &= ~(DR6_FIXED_1 | DR6_BT);
2733 *exit_qual ^= DR6_RTM;
2734 } else {
2735 *exit_qual = 0;
2736 }
2737 return 1;
2738 }
2739 }
2740
2741 return 0;
2742 }
2743
vmx_queue_exception(struct kvm_vcpu * vcpu)2744 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
2745 {
2746 struct vcpu_vmx *vmx = to_vmx(vcpu);
2747 unsigned nr = vcpu->arch.exception.nr;
2748 bool has_error_code = vcpu->arch.exception.has_error_code;
2749 u32 error_code = vcpu->arch.exception.error_code;
2750 u32 intr_info = nr | INTR_INFO_VALID_MASK;
2751
2752 if (has_error_code) {
2753 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
2754 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2755 }
2756
2757 if (vmx->rmode.vm86_active) {
2758 int inc_eip = 0;
2759 if (kvm_exception_is_soft(nr))
2760 inc_eip = vcpu->arch.event_exit_inst_len;
2761 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
2762 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2763 return;
2764 }
2765
2766 WARN_ON_ONCE(vmx->emulation_required);
2767
2768 if (kvm_exception_is_soft(nr)) {
2769 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2770 vmx->vcpu.arch.event_exit_inst_len);
2771 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2772 } else
2773 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2774
2775 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
2776 }
2777
vmx_rdtscp_supported(void)2778 static bool vmx_rdtscp_supported(void)
2779 {
2780 return cpu_has_vmx_rdtscp();
2781 }
2782
vmx_invpcid_supported(void)2783 static bool vmx_invpcid_supported(void)
2784 {
2785 return cpu_has_vmx_invpcid() && enable_ept;
2786 }
2787
2788 /*
2789 * Swap MSR entry in host/guest MSR entry array.
2790 */
move_msr_up(struct vcpu_vmx * vmx,int from,int to)2791 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
2792 {
2793 struct shared_msr_entry tmp;
2794
2795 tmp = vmx->guest_msrs[to];
2796 vmx->guest_msrs[to] = vmx->guest_msrs[from];
2797 vmx->guest_msrs[from] = tmp;
2798 }
2799
2800 /*
2801 * Set up the vmcs to automatically save and restore system
2802 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2803 * mode, as fiddling with msrs is very expensive.
2804 */
setup_msrs(struct vcpu_vmx * vmx)2805 static void setup_msrs(struct vcpu_vmx *vmx)
2806 {
2807 int save_nmsrs, index;
2808
2809 save_nmsrs = 0;
2810 #ifdef CONFIG_X86_64
2811 if (is_long_mode(&vmx->vcpu)) {
2812 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2813 if (index >= 0)
2814 move_msr_up(vmx, index, save_nmsrs++);
2815 index = __find_msr_index(vmx, MSR_LSTAR);
2816 if (index >= 0)
2817 move_msr_up(vmx, index, save_nmsrs++);
2818 index = __find_msr_index(vmx, MSR_CSTAR);
2819 if (index >= 0)
2820 move_msr_up(vmx, index, save_nmsrs++);
2821 /*
2822 * MSR_STAR is only needed on long mode guests, and only
2823 * if efer.sce is enabled.
2824 */
2825 index = __find_msr_index(vmx, MSR_STAR);
2826 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2827 move_msr_up(vmx, index, save_nmsrs++);
2828 }
2829 #endif
2830 index = __find_msr_index(vmx, MSR_EFER);
2831 if (index >= 0 && update_transition_efer(vmx, index))
2832 move_msr_up(vmx, index, save_nmsrs++);
2833 index = __find_msr_index(vmx, MSR_TSC_AUX);
2834 if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
2835 move_msr_up(vmx, index, save_nmsrs++);
2836
2837 vmx->save_nmsrs = save_nmsrs;
2838
2839 if (cpu_has_vmx_msr_bitmap())
2840 vmx_update_msr_bitmap(&vmx->vcpu);
2841 }
2842
2843 /*
2844 * reads and returns guest's timestamp counter "register"
2845 * guest_tsc = (host_tsc * tsc multiplier) >> 48 + tsc_offset
2846 * -- Intel TSC Scaling for Virtualization White Paper, sec 1.3
2847 */
guest_read_tsc(struct kvm_vcpu * vcpu)2848 static u64 guest_read_tsc(struct kvm_vcpu *vcpu)
2849 {
2850 u64 host_tsc, tsc_offset;
2851
2852 host_tsc = rdtsc();
2853 tsc_offset = vmcs_read64(TSC_OFFSET);
2854 return kvm_scale_tsc(vcpu, host_tsc) + tsc_offset;
2855 }
2856
2857 /*
2858 * writes 'offset' into guest's timestamp counter offset register
2859 */
vmx_write_tsc_offset(struct kvm_vcpu * vcpu,u64 offset)2860 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2861 {
2862 if (is_guest_mode(vcpu)) {
2863 /*
2864 * We're here if L1 chose not to trap WRMSR to TSC. According
2865 * to the spec, this should set L1's TSC; The offset that L1
2866 * set for L2 remains unchanged, and still needs to be added
2867 * to the newly set TSC to get L2's TSC.
2868 */
2869 struct vmcs12 *vmcs12;
2870 /* recalculate vmcs02.TSC_OFFSET: */
2871 vmcs12 = get_vmcs12(vcpu);
2872 vmcs_write64(TSC_OFFSET, offset +
2873 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2874 vmcs12->tsc_offset : 0));
2875 } else {
2876 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2877 vmcs_read64(TSC_OFFSET), offset);
2878 vmcs_write64(TSC_OFFSET, offset);
2879 }
2880 }
2881
2882 /*
2883 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2884 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2885 * all guests if the "nested" module option is off, and can also be disabled
2886 * for a single guest by disabling its VMX cpuid bit.
2887 */
nested_vmx_allowed(struct kvm_vcpu * vcpu)2888 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2889 {
2890 return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
2891 }
2892
2893 /*
2894 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2895 * returned for the various VMX controls MSRs when nested VMX is enabled.
2896 * The same values should also be used to verify that vmcs12 control fields are
2897 * valid during nested entry from L1 to L2.
2898 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2899 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2900 * bit in the high half is on if the corresponding bit in the control field
2901 * may be on. See also vmx_control_verify().
2902 */
nested_vmx_setup_ctls_msrs(struct vcpu_vmx * vmx)2903 static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
2904 {
2905 /*
2906 * Note that as a general rule, the high half of the MSRs (bits in
2907 * the control fields which may be 1) should be initialized by the
2908 * intersection of the underlying hardware's MSR (i.e., features which
2909 * can be supported) and the list of features we want to expose -
2910 * because they are known to be properly supported in our code.
2911 * Also, usually, the low half of the MSRs (bits which must be 1) can
2912 * be set to 0, meaning that L1 may turn off any of these bits. The
2913 * reason is that if one of these bits is necessary, it will appear
2914 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2915 * fields of vmcs01 and vmcs02, will turn these bits off - and
2916 * nested_vmx_exit_reflected() will not pass related exits to L1.
2917 * These rules have exceptions below.
2918 */
2919
2920 /* pin-based controls */
2921 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2922 vmx->nested.nested_vmx_pinbased_ctls_low,
2923 vmx->nested.nested_vmx_pinbased_ctls_high);
2924 vmx->nested.nested_vmx_pinbased_ctls_low |=
2925 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2926 vmx->nested.nested_vmx_pinbased_ctls_high &=
2927 PIN_BASED_EXT_INTR_MASK |
2928 PIN_BASED_NMI_EXITING |
2929 PIN_BASED_VIRTUAL_NMIS;
2930 vmx->nested.nested_vmx_pinbased_ctls_high |=
2931 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2932 PIN_BASED_VMX_PREEMPTION_TIMER;
2933 if (kvm_vcpu_apicv_active(&vmx->vcpu))
2934 vmx->nested.nested_vmx_pinbased_ctls_high |=
2935 PIN_BASED_POSTED_INTR;
2936
2937 /* exit controls */
2938 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2939 vmx->nested.nested_vmx_exit_ctls_low,
2940 vmx->nested.nested_vmx_exit_ctls_high);
2941 vmx->nested.nested_vmx_exit_ctls_low =
2942 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2943
2944 vmx->nested.nested_vmx_exit_ctls_high &=
2945 #ifdef CONFIG_X86_64
2946 VM_EXIT_HOST_ADDR_SPACE_SIZE |
2947 #endif
2948 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
2949 vmx->nested.nested_vmx_exit_ctls_high |=
2950 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2951 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
2952 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2953
2954 if (kvm_mpx_supported())
2955 vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
2956
2957 /* We support free control of debug control saving. */
2958 vmx->nested.nested_vmx_exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2959
2960 /* entry controls */
2961 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2962 vmx->nested.nested_vmx_entry_ctls_low,
2963 vmx->nested.nested_vmx_entry_ctls_high);
2964 vmx->nested.nested_vmx_entry_ctls_low =
2965 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2966 vmx->nested.nested_vmx_entry_ctls_high &=
2967 #ifdef CONFIG_X86_64
2968 VM_ENTRY_IA32E_MODE |
2969 #endif
2970 VM_ENTRY_LOAD_IA32_PAT;
2971 vmx->nested.nested_vmx_entry_ctls_high |=
2972 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
2973 if (kvm_mpx_supported())
2974 vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
2975
2976 /* We support free control of debug control loading. */
2977 vmx->nested.nested_vmx_entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2978
2979 /* cpu-based controls */
2980 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2981 vmx->nested.nested_vmx_procbased_ctls_low,
2982 vmx->nested.nested_vmx_procbased_ctls_high);
2983 vmx->nested.nested_vmx_procbased_ctls_low =
2984 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2985 vmx->nested.nested_vmx_procbased_ctls_high &=
2986 CPU_BASED_VIRTUAL_INTR_PENDING |
2987 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2988 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2989 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2990 CPU_BASED_CR3_STORE_EXITING |
2991 #ifdef CONFIG_X86_64
2992 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2993 #endif
2994 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2995 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
2996 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
2997 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
2998 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2999 /*
3000 * We can allow some features even when not supported by the
3001 * hardware. For example, L1 can specify an MSR bitmap - and we
3002 * can use it to avoid exits to L1 - even when L0 runs L2
3003 * without MSR bitmaps.
3004 */
3005 vmx->nested.nested_vmx_procbased_ctls_high |=
3006 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
3007 CPU_BASED_USE_MSR_BITMAPS;
3008
3009 /* We support free control of CR3 access interception. */
3010 vmx->nested.nested_vmx_procbased_ctls_low &=
3011 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
3012
3013 /*
3014 * secondary cpu-based controls. Do not include those that
3015 * depend on CPUID bits, they are added later by vmx_cpuid_update.
3016 */
3017 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
3018 vmx->nested.nested_vmx_secondary_ctls_low,
3019 vmx->nested.nested_vmx_secondary_ctls_high);
3020 vmx->nested.nested_vmx_secondary_ctls_low = 0;
3021 vmx->nested.nested_vmx_secondary_ctls_high &=
3022 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
3023 SECONDARY_EXEC_DESC |
3024 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3025 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3026 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
3027 SECONDARY_EXEC_WBINVD_EXITING;
3028
3029 if (enable_ept) {
3030 /* nested EPT: emulate EPT also to L1 */
3031 vmx->nested.nested_vmx_secondary_ctls_high |=
3032 SECONDARY_EXEC_ENABLE_EPT;
3033 vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
3034 VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
3035 if (cpu_has_vmx_ept_execute_only())
3036 vmx->nested.nested_vmx_ept_caps |=
3037 VMX_EPT_EXECUTE_ONLY_BIT;
3038 vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
3039 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
3040 VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
3041 VMX_EPT_1GB_PAGE_BIT;
3042 if (enable_ept_ad_bits) {
3043 vmx->nested.nested_vmx_secondary_ctls_high |=
3044 SECONDARY_EXEC_ENABLE_PML;
3045 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_AD_BIT;
3046 }
3047 } else
3048 vmx->nested.nested_vmx_ept_caps = 0;
3049
3050 if (cpu_has_vmx_vmfunc()) {
3051 vmx->nested.nested_vmx_secondary_ctls_high |=
3052 SECONDARY_EXEC_ENABLE_VMFUNC;
3053 /*
3054 * Advertise EPTP switching unconditionally
3055 * since we emulate it
3056 */
3057 if (enable_ept)
3058 vmx->nested.nested_vmx_vmfunc_controls =
3059 VMX_VMFUNC_EPTP_SWITCHING;
3060 }
3061
3062 /*
3063 * Old versions of KVM use the single-context version without
3064 * checking for support, so declare that it is supported even
3065 * though it is treated as global context. The alternative is
3066 * not failing the single-context invvpid, and it is worse.
3067 */
3068 if (enable_vpid) {
3069 vmx->nested.nested_vmx_secondary_ctls_high |=
3070 SECONDARY_EXEC_ENABLE_VPID;
3071 vmx->nested.nested_vmx_vpid_caps = VMX_VPID_INVVPID_BIT |
3072 VMX_VPID_EXTENT_SUPPORTED_MASK;
3073 } else
3074 vmx->nested.nested_vmx_vpid_caps = 0;
3075
3076 if (enable_unrestricted_guest)
3077 vmx->nested.nested_vmx_secondary_ctls_high |=
3078 SECONDARY_EXEC_UNRESTRICTED_GUEST;
3079
3080 /* miscellaneous data */
3081 rdmsr(MSR_IA32_VMX_MISC,
3082 vmx->nested.nested_vmx_misc_low,
3083 vmx->nested.nested_vmx_misc_high);
3084 vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
3085 vmx->nested.nested_vmx_misc_low |=
3086 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
3087 VMX_MISC_ACTIVITY_HLT;
3088 vmx->nested.nested_vmx_misc_high = 0;
3089
3090 /*
3091 * This MSR reports some information about VMX support. We
3092 * should return information about the VMX we emulate for the
3093 * guest, and the VMCS structure we give it - not about the
3094 * VMX support of the underlying hardware.
3095 */
3096 vmx->nested.nested_vmx_basic =
3097 VMCS12_REVISION |
3098 VMX_BASIC_TRUE_CTLS |
3099 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
3100 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
3101
3102 if (cpu_has_vmx_basic_inout())
3103 vmx->nested.nested_vmx_basic |= VMX_BASIC_INOUT;
3104
3105 /*
3106 * These MSRs specify bits which the guest must keep fixed on
3107 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
3108 * We picked the standard core2 setting.
3109 */
3110 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
3111 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
3112 vmx->nested.nested_vmx_cr0_fixed0 = VMXON_CR0_ALWAYSON;
3113 vmx->nested.nested_vmx_cr4_fixed0 = VMXON_CR4_ALWAYSON;
3114
3115 /* These MSRs specify bits which the guest must keep fixed off. */
3116 rdmsrl(MSR_IA32_VMX_CR0_FIXED1, vmx->nested.nested_vmx_cr0_fixed1);
3117 rdmsrl(MSR_IA32_VMX_CR4_FIXED1, vmx->nested.nested_vmx_cr4_fixed1);
3118
3119 /* highest index: VMX_PREEMPTION_TIMER_VALUE */
3120 vmx->nested.nested_vmx_vmcs_enum = 0x2e;
3121 }
3122
3123 /*
3124 * if fixed0[i] == 1: val[i] must be 1
3125 * if fixed1[i] == 0: val[i] must be 0
3126 */
fixed_bits_valid(u64 val,u64 fixed0,u64 fixed1)3127 static inline bool fixed_bits_valid(u64 val, u64 fixed0, u64 fixed1)
3128 {
3129 return ((val & fixed1) | fixed0) == val;
3130 }
3131
vmx_control_verify(u32 control,u32 low,u32 high)3132 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
3133 {
3134 return fixed_bits_valid(control, low, high);
3135 }
3136
vmx_control_msr(u32 low,u32 high)3137 static inline u64 vmx_control_msr(u32 low, u32 high)
3138 {
3139 return low | ((u64)high << 32);
3140 }
3141
is_bitwise_subset(u64 superset,u64 subset,u64 mask)3142 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
3143 {
3144 superset &= mask;
3145 subset &= mask;
3146
3147 return (superset | subset) == superset;
3148 }
3149
vmx_restore_vmx_basic(struct vcpu_vmx * vmx,u64 data)3150 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
3151 {
3152 const u64 feature_and_reserved =
3153 /* feature (except bit 48; see below) */
3154 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
3155 /* reserved */
3156 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
3157 u64 vmx_basic = vmx->nested.nested_vmx_basic;
3158
3159 if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
3160 return -EINVAL;
3161
3162 /*
3163 * KVM does not emulate a version of VMX that constrains physical
3164 * addresses of VMX structures (e.g. VMCS) to 32-bits.
3165 */
3166 if (data & BIT_ULL(48))
3167 return -EINVAL;
3168
3169 if (vmx_basic_vmcs_revision_id(vmx_basic) !=
3170 vmx_basic_vmcs_revision_id(data))
3171 return -EINVAL;
3172
3173 if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
3174 return -EINVAL;
3175
3176 vmx->nested.nested_vmx_basic = data;
3177 return 0;
3178 }
3179
3180 static int
vmx_restore_control_msr(struct vcpu_vmx * vmx,u32 msr_index,u64 data)3181 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
3182 {
3183 u64 supported;
3184 u32 *lowp, *highp;
3185
3186 switch (msr_index) {
3187 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3188 lowp = &vmx->nested.nested_vmx_pinbased_ctls_low;
3189 highp = &vmx->nested.nested_vmx_pinbased_ctls_high;
3190 break;
3191 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3192 lowp = &vmx->nested.nested_vmx_procbased_ctls_low;
3193 highp = &vmx->nested.nested_vmx_procbased_ctls_high;
3194 break;
3195 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3196 lowp = &vmx->nested.nested_vmx_exit_ctls_low;
3197 highp = &vmx->nested.nested_vmx_exit_ctls_high;
3198 break;
3199 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3200 lowp = &vmx->nested.nested_vmx_entry_ctls_low;
3201 highp = &vmx->nested.nested_vmx_entry_ctls_high;
3202 break;
3203 case MSR_IA32_VMX_PROCBASED_CTLS2:
3204 lowp = &vmx->nested.nested_vmx_secondary_ctls_low;
3205 highp = &vmx->nested.nested_vmx_secondary_ctls_high;
3206 break;
3207 default:
3208 BUG();
3209 }
3210
3211 supported = vmx_control_msr(*lowp, *highp);
3212
3213 /* Check must-be-1 bits are still 1. */
3214 if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
3215 return -EINVAL;
3216
3217 /* Check must-be-0 bits are still 0. */
3218 if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
3219 return -EINVAL;
3220
3221 *lowp = data;
3222 *highp = data >> 32;
3223 return 0;
3224 }
3225
vmx_restore_vmx_misc(struct vcpu_vmx * vmx,u64 data)3226 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
3227 {
3228 const u64 feature_and_reserved_bits =
3229 /* feature */
3230 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
3231 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
3232 /* reserved */
3233 GENMASK_ULL(13, 9) | BIT_ULL(31);
3234 u64 vmx_misc;
3235
3236 vmx_misc = vmx_control_msr(vmx->nested.nested_vmx_misc_low,
3237 vmx->nested.nested_vmx_misc_high);
3238
3239 if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
3240 return -EINVAL;
3241
3242 if ((vmx->nested.nested_vmx_pinbased_ctls_high &
3243 PIN_BASED_VMX_PREEMPTION_TIMER) &&
3244 vmx_misc_preemption_timer_rate(data) !=
3245 vmx_misc_preemption_timer_rate(vmx_misc))
3246 return -EINVAL;
3247
3248 if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
3249 return -EINVAL;
3250
3251 if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
3252 return -EINVAL;
3253
3254 if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
3255 return -EINVAL;
3256
3257 vmx->nested.nested_vmx_misc_low = data;
3258 vmx->nested.nested_vmx_misc_high = data >> 32;
3259 return 0;
3260 }
3261
vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx * vmx,u64 data)3262 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
3263 {
3264 u64 vmx_ept_vpid_cap;
3265
3266 vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.nested_vmx_ept_caps,
3267 vmx->nested.nested_vmx_vpid_caps);
3268
3269 /* Every bit is either reserved or a feature bit. */
3270 if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
3271 return -EINVAL;
3272
3273 vmx->nested.nested_vmx_ept_caps = data;
3274 vmx->nested.nested_vmx_vpid_caps = data >> 32;
3275 return 0;
3276 }
3277
vmx_restore_fixed0_msr(struct vcpu_vmx * vmx,u32 msr_index,u64 data)3278 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
3279 {
3280 u64 *msr;
3281
3282 switch (msr_index) {
3283 case MSR_IA32_VMX_CR0_FIXED0:
3284 msr = &vmx->nested.nested_vmx_cr0_fixed0;
3285 break;
3286 case MSR_IA32_VMX_CR4_FIXED0:
3287 msr = &vmx->nested.nested_vmx_cr4_fixed0;
3288 break;
3289 default:
3290 BUG();
3291 }
3292
3293 /*
3294 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
3295 * must be 1 in the restored value.
3296 */
3297 if (!is_bitwise_subset(data, *msr, -1ULL))
3298 return -EINVAL;
3299
3300 *msr = data;
3301 return 0;
3302 }
3303
3304 /*
3305 * Called when userspace is restoring VMX MSRs.
3306 *
3307 * Returns 0 on success, non-0 otherwise.
3308 */
vmx_set_vmx_msr(struct kvm_vcpu * vcpu,u32 msr_index,u64 data)3309 static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
3310 {
3311 struct vcpu_vmx *vmx = to_vmx(vcpu);
3312
3313 switch (msr_index) {
3314 case MSR_IA32_VMX_BASIC:
3315 return vmx_restore_vmx_basic(vmx, data);
3316 case MSR_IA32_VMX_PINBASED_CTLS:
3317 case MSR_IA32_VMX_PROCBASED_CTLS:
3318 case MSR_IA32_VMX_EXIT_CTLS:
3319 case MSR_IA32_VMX_ENTRY_CTLS:
3320 /*
3321 * The "non-true" VMX capability MSRs are generated from the
3322 * "true" MSRs, so we do not support restoring them directly.
3323 *
3324 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
3325 * should restore the "true" MSRs with the must-be-1 bits
3326 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
3327 * DEFAULT SETTINGS".
3328 */
3329 return -EINVAL;
3330 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3331 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3332 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3333 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3334 case MSR_IA32_VMX_PROCBASED_CTLS2:
3335 return vmx_restore_control_msr(vmx, msr_index, data);
3336 case MSR_IA32_VMX_MISC:
3337 return vmx_restore_vmx_misc(vmx, data);
3338 case MSR_IA32_VMX_CR0_FIXED0:
3339 case MSR_IA32_VMX_CR4_FIXED0:
3340 return vmx_restore_fixed0_msr(vmx, msr_index, data);
3341 case MSR_IA32_VMX_CR0_FIXED1:
3342 case MSR_IA32_VMX_CR4_FIXED1:
3343 /*
3344 * These MSRs are generated based on the vCPU's CPUID, so we
3345 * do not support restoring them directly.
3346 */
3347 return -EINVAL;
3348 case MSR_IA32_VMX_EPT_VPID_CAP:
3349 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
3350 case MSR_IA32_VMX_VMCS_ENUM:
3351 vmx->nested.nested_vmx_vmcs_enum = data;
3352 return 0;
3353 default:
3354 /*
3355 * The rest of the VMX capability MSRs do not support restore.
3356 */
3357 return -EINVAL;
3358 }
3359 }
3360
3361 /* Returns 0 on success, non-0 otherwise. */
vmx_get_vmx_msr(struct kvm_vcpu * vcpu,u32 msr_index,u64 * pdata)3362 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
3363 {
3364 struct vcpu_vmx *vmx = to_vmx(vcpu);
3365
3366 switch (msr_index) {
3367 case MSR_IA32_VMX_BASIC:
3368 *pdata = vmx->nested.nested_vmx_basic;
3369 break;
3370 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3371 case MSR_IA32_VMX_PINBASED_CTLS:
3372 *pdata = vmx_control_msr(
3373 vmx->nested.nested_vmx_pinbased_ctls_low,
3374 vmx->nested.nested_vmx_pinbased_ctls_high);
3375 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
3376 *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
3377 break;
3378 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3379 case MSR_IA32_VMX_PROCBASED_CTLS:
3380 *pdata = vmx_control_msr(
3381 vmx->nested.nested_vmx_procbased_ctls_low,
3382 vmx->nested.nested_vmx_procbased_ctls_high);
3383 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
3384 *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
3385 break;
3386 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3387 case MSR_IA32_VMX_EXIT_CTLS:
3388 *pdata = vmx_control_msr(
3389 vmx->nested.nested_vmx_exit_ctls_low,
3390 vmx->nested.nested_vmx_exit_ctls_high);
3391 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
3392 *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
3393 break;
3394 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3395 case MSR_IA32_VMX_ENTRY_CTLS:
3396 *pdata = vmx_control_msr(
3397 vmx->nested.nested_vmx_entry_ctls_low,
3398 vmx->nested.nested_vmx_entry_ctls_high);
3399 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
3400 *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
3401 break;
3402 case MSR_IA32_VMX_MISC:
3403 *pdata = vmx_control_msr(
3404 vmx->nested.nested_vmx_misc_low,
3405 vmx->nested.nested_vmx_misc_high);
3406 break;
3407 case MSR_IA32_VMX_CR0_FIXED0:
3408 *pdata = vmx->nested.nested_vmx_cr0_fixed0;
3409 break;
3410 case MSR_IA32_VMX_CR0_FIXED1:
3411 *pdata = vmx->nested.nested_vmx_cr0_fixed1;
3412 break;
3413 case MSR_IA32_VMX_CR4_FIXED0:
3414 *pdata = vmx->nested.nested_vmx_cr4_fixed0;
3415 break;
3416 case MSR_IA32_VMX_CR4_FIXED1:
3417 *pdata = vmx->nested.nested_vmx_cr4_fixed1;
3418 break;
3419 case MSR_IA32_VMX_VMCS_ENUM:
3420 *pdata = vmx->nested.nested_vmx_vmcs_enum;
3421 break;
3422 case MSR_IA32_VMX_PROCBASED_CTLS2:
3423 *pdata = vmx_control_msr(
3424 vmx->nested.nested_vmx_secondary_ctls_low,
3425 vmx->nested.nested_vmx_secondary_ctls_high);
3426 break;
3427 case MSR_IA32_VMX_EPT_VPID_CAP:
3428 *pdata = vmx->nested.nested_vmx_ept_caps |
3429 ((u64)vmx->nested.nested_vmx_vpid_caps << 32);
3430 break;
3431 case MSR_IA32_VMX_VMFUNC:
3432 *pdata = vmx->nested.nested_vmx_vmfunc_controls;
3433 break;
3434 default:
3435 return 1;
3436 }
3437
3438 return 0;
3439 }
3440
vmx_feature_control_msr_valid(struct kvm_vcpu * vcpu,uint64_t val)3441 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
3442 uint64_t val)
3443 {
3444 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
3445
3446 return !(val & ~valid_bits);
3447 }
3448
vmx_get_msr_feature(struct kvm_msr_entry * msr)3449 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
3450 {
3451 return 1;
3452 }
3453
3454 /*
3455 * Reads an msr value (of 'msr_index') into 'pdata'.
3456 * Returns 0 on success, non-0 otherwise.
3457 * Assumes vcpu_load() was already called.
3458 */
vmx_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3459 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3460 {
3461 struct shared_msr_entry *msr;
3462
3463 switch (msr_info->index) {
3464 #ifdef CONFIG_X86_64
3465 case MSR_FS_BASE:
3466 msr_info->data = vmcs_readl(GUEST_FS_BASE);
3467 break;
3468 case MSR_GS_BASE:
3469 msr_info->data = vmcs_readl(GUEST_GS_BASE);
3470 break;
3471 case MSR_KERNEL_GS_BASE:
3472 vmx_load_host_state(to_vmx(vcpu));
3473 msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
3474 break;
3475 #endif
3476 case MSR_EFER:
3477 return kvm_get_msr_common(vcpu, msr_info);
3478 case MSR_IA32_TSC:
3479 msr_info->data = guest_read_tsc(vcpu);
3480 break;
3481 case MSR_IA32_SPEC_CTRL:
3482 if (!msr_info->host_initiated &&
3483 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
3484 return 1;
3485
3486 msr_info->data = to_vmx(vcpu)->spec_ctrl;
3487 break;
3488 case MSR_IA32_SYSENTER_CS:
3489 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
3490 break;
3491 case MSR_IA32_SYSENTER_EIP:
3492 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
3493 break;
3494 case MSR_IA32_SYSENTER_ESP:
3495 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
3496 break;
3497 case MSR_IA32_BNDCFGS:
3498 if (!kvm_mpx_supported() ||
3499 (!msr_info->host_initiated &&
3500 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
3501 return 1;
3502 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
3503 break;
3504 case MSR_IA32_MCG_EXT_CTL:
3505 if (!msr_info->host_initiated &&
3506 !(to_vmx(vcpu)->msr_ia32_feature_control &
3507 FEATURE_CONTROL_LMCE))
3508 return 1;
3509 msr_info->data = vcpu->arch.mcg_ext_ctl;
3510 break;
3511 case MSR_IA32_FEATURE_CONTROL:
3512 msr_info->data = to_vmx(vcpu)->msr_ia32_feature_control;
3513 break;
3514 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3515 if (!nested_vmx_allowed(vcpu))
3516 return 1;
3517 return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
3518 case MSR_IA32_XSS:
3519 if (!vmx_xsaves_supported())
3520 return 1;
3521 msr_info->data = vcpu->arch.ia32_xss;
3522 break;
3523 case MSR_TSC_AUX:
3524 if (!msr_info->host_initiated &&
3525 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
3526 return 1;
3527 /* Otherwise falls through */
3528 default:
3529 msr = find_msr_entry(to_vmx(vcpu), msr_info->index);
3530 if (msr) {
3531 msr_info->data = msr->data;
3532 break;
3533 }
3534 return kvm_get_msr_common(vcpu, msr_info);
3535 }
3536
3537 return 0;
3538 }
3539
3540 static void vmx_leave_nested(struct kvm_vcpu *vcpu);
3541
3542 /*
3543 * Writes msr value into into the appropriate "register".
3544 * Returns 0 on success, non-0 otherwise.
3545 * Assumes vcpu_load() was already called.
3546 */
vmx_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3547 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3548 {
3549 struct vcpu_vmx *vmx = to_vmx(vcpu);
3550 struct shared_msr_entry *msr;
3551 int ret = 0;
3552 u32 msr_index = msr_info->index;
3553 u64 data = msr_info->data;
3554
3555 switch (msr_index) {
3556 case MSR_EFER:
3557 ret = kvm_set_msr_common(vcpu, msr_info);
3558 break;
3559 #ifdef CONFIG_X86_64
3560 case MSR_FS_BASE:
3561 vmx_segment_cache_clear(vmx);
3562 vmcs_writel(GUEST_FS_BASE, data);
3563 break;
3564 case MSR_GS_BASE:
3565 vmx_segment_cache_clear(vmx);
3566 vmcs_writel(GUEST_GS_BASE, data);
3567 break;
3568 case MSR_KERNEL_GS_BASE:
3569 vmx_load_host_state(vmx);
3570 vmx->msr_guest_kernel_gs_base = data;
3571 break;
3572 #endif
3573 case MSR_IA32_SYSENTER_CS:
3574 vmcs_write32(GUEST_SYSENTER_CS, data);
3575 break;
3576 case MSR_IA32_SYSENTER_EIP:
3577 vmcs_writel(GUEST_SYSENTER_EIP, data);
3578 break;
3579 case MSR_IA32_SYSENTER_ESP:
3580 vmcs_writel(GUEST_SYSENTER_ESP, data);
3581 break;
3582 case MSR_IA32_BNDCFGS:
3583 if (!kvm_mpx_supported() ||
3584 (!msr_info->host_initiated &&
3585 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
3586 return 1;
3587 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
3588 (data & MSR_IA32_BNDCFGS_RSVD))
3589 return 1;
3590 vmcs_write64(GUEST_BNDCFGS, data);
3591 break;
3592 case MSR_IA32_TSC:
3593 kvm_write_tsc(vcpu, msr_info);
3594 break;
3595 case MSR_IA32_SPEC_CTRL:
3596 if (!msr_info->host_initiated &&
3597 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
3598 return 1;
3599
3600 /* The STIBP bit doesn't fault even if it's not advertised */
3601 if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
3602 return 1;
3603
3604 vmx->spec_ctrl = data;
3605
3606 if (!data)
3607 break;
3608
3609 /*
3610 * For non-nested:
3611 * When it's written (to non-zero) for the first time, pass
3612 * it through.
3613 *
3614 * For nested:
3615 * The handling of the MSR bitmap for L2 guests is done in
3616 * nested_vmx_merge_msr_bitmap. We should not touch the
3617 * vmcs02.msr_bitmap here since it gets completely overwritten
3618 * in the merging. We update the vmcs01 here for L1 as well
3619 * since it will end up touching the MSR anyway now.
3620 */
3621 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap,
3622 MSR_IA32_SPEC_CTRL,
3623 MSR_TYPE_RW);
3624 break;
3625 case MSR_IA32_PRED_CMD:
3626 if (!msr_info->host_initiated &&
3627 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
3628 return 1;
3629
3630 if (data & ~PRED_CMD_IBPB)
3631 return 1;
3632
3633 if (!data)
3634 break;
3635
3636 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
3637
3638 /*
3639 * For non-nested:
3640 * When it's written (to non-zero) for the first time, pass
3641 * it through.
3642 *
3643 * For nested:
3644 * The handling of the MSR bitmap for L2 guests is done in
3645 * nested_vmx_merge_msr_bitmap. We should not touch the
3646 * vmcs02.msr_bitmap here since it gets completely overwritten
3647 * in the merging.
3648 */
3649 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD,
3650 MSR_TYPE_W);
3651 break;
3652 case MSR_IA32_CR_PAT:
3653 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
3654 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
3655 return 1;
3656 vmcs_write64(GUEST_IA32_PAT, data);
3657 vcpu->arch.pat = data;
3658 break;
3659 }
3660 ret = kvm_set_msr_common(vcpu, msr_info);
3661 break;
3662 case MSR_IA32_TSC_ADJUST:
3663 ret = kvm_set_msr_common(vcpu, msr_info);
3664 break;
3665 case MSR_IA32_MCG_EXT_CTL:
3666 if ((!msr_info->host_initiated &&
3667 !(to_vmx(vcpu)->msr_ia32_feature_control &
3668 FEATURE_CONTROL_LMCE)) ||
3669 (data & ~MCG_EXT_CTL_LMCE_EN))
3670 return 1;
3671 vcpu->arch.mcg_ext_ctl = data;
3672 break;
3673 case MSR_IA32_FEATURE_CONTROL:
3674 if (!vmx_feature_control_msr_valid(vcpu, data) ||
3675 (to_vmx(vcpu)->msr_ia32_feature_control &
3676 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
3677 return 1;
3678 vmx->msr_ia32_feature_control = data;
3679 if (msr_info->host_initiated && data == 0)
3680 vmx_leave_nested(vcpu);
3681 break;
3682 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3683 if (!msr_info->host_initiated)
3684 return 1; /* they are read-only */
3685 if (!nested_vmx_allowed(vcpu))
3686 return 1;
3687 return vmx_set_vmx_msr(vcpu, msr_index, data);
3688 case MSR_IA32_XSS:
3689 if (!vmx_xsaves_supported())
3690 return 1;
3691 /*
3692 * The only supported bit as of Skylake is bit 8, but
3693 * it is not supported on KVM.
3694 */
3695 if (data != 0)
3696 return 1;
3697 vcpu->arch.ia32_xss = data;
3698 if (vcpu->arch.ia32_xss != host_xss)
3699 add_atomic_switch_msr(vmx, MSR_IA32_XSS,
3700 vcpu->arch.ia32_xss, host_xss, false);
3701 else
3702 clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
3703 break;
3704 case MSR_TSC_AUX:
3705 if (!msr_info->host_initiated &&
3706 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
3707 return 1;
3708 /* Check reserved bit, higher 32 bits should be zero */
3709 if ((data >> 32) != 0)
3710 return 1;
3711 /* Otherwise falls through */
3712 default:
3713 msr = find_msr_entry(vmx, msr_index);
3714 if (msr) {
3715 u64 old_msr_data = msr->data;
3716 msr->data = data;
3717 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
3718 preempt_disable();
3719 ret = kvm_set_shared_msr(msr->index, msr->data,
3720 msr->mask);
3721 preempt_enable();
3722 if (ret)
3723 msr->data = old_msr_data;
3724 }
3725 break;
3726 }
3727 ret = kvm_set_msr_common(vcpu, msr_info);
3728 }
3729
3730 return ret;
3731 }
3732
vmx_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)3733 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
3734 {
3735 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
3736 switch (reg) {
3737 case VCPU_REGS_RSP:
3738 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
3739 break;
3740 case VCPU_REGS_RIP:
3741 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
3742 break;
3743 case VCPU_EXREG_PDPTR:
3744 if (enable_ept)
3745 ept_save_pdptrs(vcpu);
3746 break;
3747 default:
3748 break;
3749 }
3750 }
3751
cpu_has_kvm_support(void)3752 static __init int cpu_has_kvm_support(void)
3753 {
3754 return cpu_has_vmx();
3755 }
3756
vmx_disabled_by_bios(void)3757 static __init int vmx_disabled_by_bios(void)
3758 {
3759 u64 msr;
3760
3761 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
3762 if (msr & FEATURE_CONTROL_LOCKED) {
3763 /* launched w/ TXT and VMX disabled */
3764 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3765 && tboot_enabled())
3766 return 1;
3767 /* launched w/o TXT and VMX only enabled w/ TXT */
3768 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3769 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3770 && !tboot_enabled()) {
3771 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
3772 "activate TXT before enabling KVM\n");
3773 return 1;
3774 }
3775 /* launched w/o TXT and VMX disabled */
3776 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3777 && !tboot_enabled())
3778 return 1;
3779 }
3780
3781 return 0;
3782 }
3783
kvm_cpu_vmxon(u64 addr)3784 static void kvm_cpu_vmxon(u64 addr)
3785 {
3786 cr4_set_bits(X86_CR4_VMXE);
3787 intel_pt_handle_vmx(1);
3788
3789 asm volatile (ASM_VMX_VMXON_RAX
3790 : : "a"(&addr), "m"(addr)
3791 : "memory", "cc");
3792 }
3793
hardware_enable(void)3794 static int hardware_enable(void)
3795 {
3796 int cpu = raw_smp_processor_id();
3797 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
3798 u64 old, test_bits;
3799
3800 if (cr4_read_shadow() & X86_CR4_VMXE)
3801 return -EBUSY;
3802
3803 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
3804 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
3805 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
3806
3807 /*
3808 * Now we can enable the vmclear operation in kdump
3809 * since the loaded_vmcss_on_cpu list on this cpu
3810 * has been initialized.
3811 *
3812 * Though the cpu is not in VMX operation now, there
3813 * is no problem to enable the vmclear operation
3814 * for the loaded_vmcss_on_cpu list is empty!
3815 */
3816 crash_enable_local_vmclear(cpu);
3817
3818 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
3819
3820 test_bits = FEATURE_CONTROL_LOCKED;
3821 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
3822 if (tboot_enabled())
3823 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
3824
3825 if ((old & test_bits) != test_bits) {
3826 /* enable and lock */
3827 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
3828 }
3829 kvm_cpu_vmxon(phys_addr);
3830 ept_sync_global();
3831
3832 return 0;
3833 }
3834
vmclear_local_loaded_vmcss(void)3835 static void vmclear_local_loaded_vmcss(void)
3836 {
3837 int cpu = raw_smp_processor_id();
3838 struct loaded_vmcs *v, *n;
3839
3840 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
3841 loaded_vmcss_on_cpu_link)
3842 __loaded_vmcs_clear(v);
3843 }
3844
3845
3846 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
3847 * tricks.
3848 */
kvm_cpu_vmxoff(void)3849 static void kvm_cpu_vmxoff(void)
3850 {
3851 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
3852
3853 intel_pt_handle_vmx(0);
3854 cr4_clear_bits(X86_CR4_VMXE);
3855 }
3856
hardware_disable(void)3857 static void hardware_disable(void)
3858 {
3859 vmclear_local_loaded_vmcss();
3860 kvm_cpu_vmxoff();
3861 }
3862
adjust_vmx_controls(u32 ctl_min,u32 ctl_opt,u32 msr,u32 * result)3863 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
3864 u32 msr, u32 *result)
3865 {
3866 u32 vmx_msr_low, vmx_msr_high;
3867 u32 ctl = ctl_min | ctl_opt;
3868
3869 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3870
3871 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
3872 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
3873
3874 /* Ensure minimum (required) set of control bits are supported. */
3875 if (ctl_min & ~ctl)
3876 return -EIO;
3877
3878 *result = ctl;
3879 return 0;
3880 }
3881
allow_1_setting(u32 msr,u32 ctl)3882 static __init bool allow_1_setting(u32 msr, u32 ctl)
3883 {
3884 u32 vmx_msr_low, vmx_msr_high;
3885
3886 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3887 return vmx_msr_high & ctl;
3888 }
3889
setup_vmcs_config(struct vmcs_config * vmcs_conf)3890 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
3891 {
3892 u32 vmx_msr_low, vmx_msr_high;
3893 u32 min, opt, min2, opt2;
3894 u32 _pin_based_exec_control = 0;
3895 u32 _cpu_based_exec_control = 0;
3896 u32 _cpu_based_2nd_exec_control = 0;
3897 u32 _vmexit_control = 0;
3898 u32 _vmentry_control = 0;
3899
3900 min = CPU_BASED_HLT_EXITING |
3901 #ifdef CONFIG_X86_64
3902 CPU_BASED_CR8_LOAD_EXITING |
3903 CPU_BASED_CR8_STORE_EXITING |
3904 #endif
3905 CPU_BASED_CR3_LOAD_EXITING |
3906 CPU_BASED_CR3_STORE_EXITING |
3907 CPU_BASED_USE_IO_BITMAPS |
3908 CPU_BASED_MOV_DR_EXITING |
3909 CPU_BASED_USE_TSC_OFFSETING |
3910 CPU_BASED_INVLPG_EXITING |
3911 CPU_BASED_RDPMC_EXITING;
3912
3913 if (!kvm_mwait_in_guest())
3914 min |= CPU_BASED_MWAIT_EXITING |
3915 CPU_BASED_MONITOR_EXITING;
3916
3917 opt = CPU_BASED_TPR_SHADOW |
3918 CPU_BASED_USE_MSR_BITMAPS |
3919 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
3920 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
3921 &_cpu_based_exec_control) < 0)
3922 return -EIO;
3923 #ifdef CONFIG_X86_64
3924 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3925 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3926 ~CPU_BASED_CR8_STORE_EXITING;
3927 #endif
3928 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
3929 min2 = 0;
3930 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
3931 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3932 SECONDARY_EXEC_WBINVD_EXITING |
3933 SECONDARY_EXEC_ENABLE_VPID |
3934 SECONDARY_EXEC_ENABLE_EPT |
3935 SECONDARY_EXEC_UNRESTRICTED_GUEST |
3936 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
3937 SECONDARY_EXEC_RDTSCP |
3938 SECONDARY_EXEC_ENABLE_INVPCID |
3939 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3940 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
3941 SECONDARY_EXEC_SHADOW_VMCS |
3942 SECONDARY_EXEC_XSAVES |
3943 SECONDARY_EXEC_RDSEED |
3944 SECONDARY_EXEC_RDRAND |
3945 SECONDARY_EXEC_ENABLE_PML |
3946 SECONDARY_EXEC_TSC_SCALING |
3947 SECONDARY_EXEC_ENABLE_VMFUNC;
3948 if (adjust_vmx_controls(min2, opt2,
3949 MSR_IA32_VMX_PROCBASED_CTLS2,
3950 &_cpu_based_2nd_exec_control) < 0)
3951 return -EIO;
3952 }
3953 #ifndef CONFIG_X86_64
3954 if (!(_cpu_based_2nd_exec_control &
3955 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3956 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3957 #endif
3958
3959 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3960 _cpu_based_2nd_exec_control &= ~(
3961 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3962 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3963 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3964
3965 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
3966 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3967 enabled */
3968 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3969 CPU_BASED_CR3_STORE_EXITING |
3970 CPU_BASED_INVLPG_EXITING);
3971 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
3972 vmx_capability.ept, vmx_capability.vpid);
3973 }
3974
3975 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
3976 #ifdef CONFIG_X86_64
3977 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3978 #endif
3979 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
3980 VM_EXIT_CLEAR_BNDCFGS;
3981 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3982 &_vmexit_control) < 0)
3983 return -EIO;
3984
3985 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
3986 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
3987 PIN_BASED_VMX_PREEMPTION_TIMER;
3988 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3989 &_pin_based_exec_control) < 0)
3990 return -EIO;
3991
3992 if (cpu_has_broken_vmx_preemption_timer())
3993 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
3994 if (!(_cpu_based_2nd_exec_control &
3995 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
3996 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3997
3998 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
3999 opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
4000 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
4001 &_vmentry_control) < 0)
4002 return -EIO;
4003
4004 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
4005
4006 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
4007 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
4008 return -EIO;
4009
4010 #ifdef CONFIG_X86_64
4011 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
4012 if (vmx_msr_high & (1u<<16))
4013 return -EIO;
4014 #endif
4015
4016 /* Require Write-Back (WB) memory type for VMCS accesses. */
4017 if (((vmx_msr_high >> 18) & 15) != 6)
4018 return -EIO;
4019
4020 vmcs_conf->size = vmx_msr_high & 0x1fff;
4021 vmcs_conf->order = get_order(vmcs_conf->size);
4022 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
4023 vmcs_conf->revision_id = vmx_msr_low;
4024
4025 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
4026 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
4027 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
4028 vmcs_conf->vmexit_ctrl = _vmexit_control;
4029 vmcs_conf->vmentry_ctrl = _vmentry_control;
4030
4031 cpu_has_load_ia32_efer =
4032 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
4033 VM_ENTRY_LOAD_IA32_EFER)
4034 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
4035 VM_EXIT_LOAD_IA32_EFER);
4036
4037 cpu_has_load_perf_global_ctrl =
4038 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
4039 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
4040 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
4041 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
4042
4043 /*
4044 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
4045 * but due to errata below it can't be used. Workaround is to use
4046 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
4047 *
4048 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
4049 *
4050 * AAK155 (model 26)
4051 * AAP115 (model 30)
4052 * AAT100 (model 37)
4053 * BC86,AAY89,BD102 (model 44)
4054 * BA97 (model 46)
4055 *
4056 */
4057 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
4058 switch (boot_cpu_data.x86_model) {
4059 case 26:
4060 case 30:
4061 case 37:
4062 case 44:
4063 case 46:
4064 cpu_has_load_perf_global_ctrl = false;
4065 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
4066 "does not work properly. Using workaround\n");
4067 break;
4068 default:
4069 break;
4070 }
4071 }
4072
4073 if (boot_cpu_has(X86_FEATURE_XSAVES))
4074 rdmsrl(MSR_IA32_XSS, host_xss);
4075
4076 return 0;
4077 }
4078
alloc_vmcs_cpu(int cpu)4079 static struct vmcs *alloc_vmcs_cpu(int cpu)
4080 {
4081 int node = cpu_to_node(cpu);
4082 struct page *pages;
4083 struct vmcs *vmcs;
4084
4085 pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
4086 if (!pages)
4087 return NULL;
4088 vmcs = page_address(pages);
4089 memset(vmcs, 0, vmcs_config.size);
4090 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
4091 return vmcs;
4092 }
4093
free_vmcs(struct vmcs * vmcs)4094 static void free_vmcs(struct vmcs *vmcs)
4095 {
4096 free_pages((unsigned long)vmcs, vmcs_config.order);
4097 }
4098
4099 /*
4100 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
4101 */
free_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)4102 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
4103 {
4104 if (!loaded_vmcs->vmcs)
4105 return;
4106 loaded_vmcs_clear(loaded_vmcs);
4107 free_vmcs(loaded_vmcs->vmcs);
4108 loaded_vmcs->vmcs = NULL;
4109 if (loaded_vmcs->msr_bitmap)
4110 free_page((unsigned long)loaded_vmcs->msr_bitmap);
4111 WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
4112 }
4113
alloc_vmcs(void)4114 static struct vmcs *alloc_vmcs(void)
4115 {
4116 return alloc_vmcs_cpu(raw_smp_processor_id());
4117 }
4118
alloc_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)4119 static int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
4120 {
4121 loaded_vmcs->vmcs = alloc_vmcs();
4122 if (!loaded_vmcs->vmcs)
4123 return -ENOMEM;
4124
4125 loaded_vmcs->shadow_vmcs = NULL;
4126 loaded_vmcs_init(loaded_vmcs);
4127
4128 if (cpu_has_vmx_msr_bitmap()) {
4129 loaded_vmcs->msr_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
4130 if (!loaded_vmcs->msr_bitmap)
4131 goto out_vmcs;
4132 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
4133 }
4134 return 0;
4135
4136 out_vmcs:
4137 free_loaded_vmcs(loaded_vmcs);
4138 return -ENOMEM;
4139 }
4140
free_kvm_area(void)4141 static void free_kvm_area(void)
4142 {
4143 int cpu;
4144
4145 for_each_possible_cpu(cpu) {
4146 free_vmcs(per_cpu(vmxarea, cpu));
4147 per_cpu(vmxarea, cpu) = NULL;
4148 }
4149 }
4150
4151 enum vmcs_field_type {
4152 VMCS_FIELD_TYPE_U16 = 0,
4153 VMCS_FIELD_TYPE_U64 = 1,
4154 VMCS_FIELD_TYPE_U32 = 2,
4155 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
4156 };
4157
vmcs_field_type(unsigned long field)4158 static inline int vmcs_field_type(unsigned long field)
4159 {
4160 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
4161 return VMCS_FIELD_TYPE_U32;
4162 return (field >> 13) & 0x3 ;
4163 }
4164
vmcs_field_readonly(unsigned long field)4165 static inline int vmcs_field_readonly(unsigned long field)
4166 {
4167 return (((field >> 10) & 0x3) == 1);
4168 }
4169
init_vmcs_shadow_fields(void)4170 static void init_vmcs_shadow_fields(void)
4171 {
4172 int i, j;
4173
4174 /* No checks for read only fields yet */
4175
4176 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
4177 switch (shadow_read_write_fields[i]) {
4178 case GUEST_BNDCFGS:
4179 if (!kvm_mpx_supported())
4180 continue;
4181 break;
4182 default:
4183 break;
4184 }
4185
4186 if (j < i)
4187 shadow_read_write_fields[j] =
4188 shadow_read_write_fields[i];
4189 j++;
4190 }
4191 max_shadow_read_write_fields = j;
4192
4193 /* shadowed fields guest access without vmexit */
4194 for (i = 0; i < max_shadow_read_write_fields; i++) {
4195 unsigned long field = shadow_read_write_fields[i];
4196
4197 clear_bit(field, vmx_vmwrite_bitmap);
4198 clear_bit(field, vmx_vmread_bitmap);
4199 if (vmcs_field_type(field) == VMCS_FIELD_TYPE_U64) {
4200 clear_bit(field + 1, vmx_vmwrite_bitmap);
4201 clear_bit(field + 1, vmx_vmread_bitmap);
4202 }
4203 }
4204 for (i = 0; i < max_shadow_read_only_fields; i++) {
4205 unsigned long field = shadow_read_only_fields[i];
4206
4207 clear_bit(field, vmx_vmread_bitmap);
4208 if (vmcs_field_type(field) == VMCS_FIELD_TYPE_U64)
4209 clear_bit(field + 1, vmx_vmread_bitmap);
4210 }
4211 }
4212
alloc_kvm_area(void)4213 static __init int alloc_kvm_area(void)
4214 {
4215 int cpu;
4216
4217 for_each_possible_cpu(cpu) {
4218 struct vmcs *vmcs;
4219
4220 vmcs = alloc_vmcs_cpu(cpu);
4221 if (!vmcs) {
4222 free_kvm_area();
4223 return -ENOMEM;
4224 }
4225
4226 per_cpu(vmxarea, cpu) = vmcs;
4227 }
4228 return 0;
4229 }
4230
fix_pmode_seg(struct kvm_vcpu * vcpu,int seg,struct kvm_segment * save)4231 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
4232 struct kvm_segment *save)
4233 {
4234 if (!emulate_invalid_guest_state) {
4235 /*
4236 * CS and SS RPL should be equal during guest entry according
4237 * to VMX spec, but in reality it is not always so. Since vcpu
4238 * is in the middle of the transition from real mode to
4239 * protected mode it is safe to assume that RPL 0 is a good
4240 * default value.
4241 */
4242 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
4243 save->selector &= ~SEGMENT_RPL_MASK;
4244 save->dpl = save->selector & SEGMENT_RPL_MASK;
4245 save->s = 1;
4246 }
4247 vmx_set_segment(vcpu, save, seg);
4248 }
4249
enter_pmode(struct kvm_vcpu * vcpu)4250 static void enter_pmode(struct kvm_vcpu *vcpu)
4251 {
4252 unsigned long flags;
4253 struct vcpu_vmx *vmx = to_vmx(vcpu);
4254
4255 /*
4256 * Update real mode segment cache. It may be not up-to-date if sement
4257 * register was written while vcpu was in a guest mode.
4258 */
4259 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
4260 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
4261 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
4262 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
4263 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
4264 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
4265
4266 vmx->rmode.vm86_active = 0;
4267
4268 vmx_segment_cache_clear(vmx);
4269
4270 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
4271
4272 flags = vmcs_readl(GUEST_RFLAGS);
4273 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
4274 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
4275 vmcs_writel(GUEST_RFLAGS, flags);
4276
4277 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
4278 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
4279
4280 update_exception_bitmap(vcpu);
4281
4282 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
4283 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
4284 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
4285 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
4286 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
4287 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
4288 }
4289
fix_rmode_seg(int seg,struct kvm_segment * save)4290 static void fix_rmode_seg(int seg, struct kvm_segment *save)
4291 {
4292 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4293 struct kvm_segment var = *save;
4294
4295 var.dpl = 0x3;
4296 if (seg == VCPU_SREG_CS)
4297 var.type = 0x3;
4298
4299 if (!emulate_invalid_guest_state) {
4300 var.selector = var.base >> 4;
4301 var.base = var.base & 0xffff0;
4302 var.limit = 0xffff;
4303 var.g = 0;
4304 var.db = 0;
4305 var.present = 1;
4306 var.s = 1;
4307 var.l = 0;
4308 var.unusable = 0;
4309 var.type = 0x3;
4310 var.avl = 0;
4311 if (save->base & 0xf)
4312 printk_once(KERN_WARNING "kvm: segment base is not "
4313 "paragraph aligned when entering "
4314 "protected mode (seg=%d)", seg);
4315 }
4316
4317 vmcs_write16(sf->selector, var.selector);
4318 vmcs_writel(sf->base, var.base);
4319 vmcs_write32(sf->limit, var.limit);
4320 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
4321 }
4322
enter_rmode(struct kvm_vcpu * vcpu)4323 static void enter_rmode(struct kvm_vcpu *vcpu)
4324 {
4325 unsigned long flags;
4326 struct vcpu_vmx *vmx = to_vmx(vcpu);
4327
4328 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
4329 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
4330 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
4331 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
4332 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
4333 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
4334 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
4335
4336 vmx->rmode.vm86_active = 1;
4337
4338 /*
4339 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
4340 * vcpu. Warn the user that an update is overdue.
4341 */
4342 if (!vcpu->kvm->arch.tss_addr)
4343 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
4344 "called before entering vcpu\n");
4345
4346 vmx_segment_cache_clear(vmx);
4347
4348 vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
4349 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
4350 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4351
4352 flags = vmcs_readl(GUEST_RFLAGS);
4353 vmx->rmode.save_rflags = flags;
4354
4355 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
4356
4357 vmcs_writel(GUEST_RFLAGS, flags);
4358 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
4359 update_exception_bitmap(vcpu);
4360
4361 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
4362 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
4363 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
4364 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
4365 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
4366 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
4367
4368 kvm_mmu_reset_context(vcpu);
4369 }
4370
vmx_set_efer(struct kvm_vcpu * vcpu,u64 efer)4371 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
4372 {
4373 struct vcpu_vmx *vmx = to_vmx(vcpu);
4374 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
4375
4376 if (!msr)
4377 return;
4378
4379 /*
4380 * Force kernel_gs_base reloading before EFER changes, as control
4381 * of this msr depends on is_long_mode().
4382 */
4383 vmx_load_host_state(to_vmx(vcpu));
4384 vcpu->arch.efer = efer;
4385 if (efer & EFER_LMA) {
4386 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
4387 msr->data = efer;
4388 } else {
4389 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
4390
4391 msr->data = efer & ~EFER_LME;
4392 }
4393 setup_msrs(vmx);
4394 }
4395
4396 #ifdef CONFIG_X86_64
4397
enter_lmode(struct kvm_vcpu * vcpu)4398 static void enter_lmode(struct kvm_vcpu *vcpu)
4399 {
4400 u32 guest_tr_ar;
4401
4402 vmx_segment_cache_clear(to_vmx(vcpu));
4403
4404 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
4405 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
4406 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
4407 __func__);
4408 vmcs_write32(GUEST_TR_AR_BYTES,
4409 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
4410 | VMX_AR_TYPE_BUSY_64_TSS);
4411 }
4412 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
4413 }
4414
exit_lmode(struct kvm_vcpu * vcpu)4415 static void exit_lmode(struct kvm_vcpu *vcpu)
4416 {
4417 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
4418 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
4419 }
4420
4421 #endif
4422
__vmx_flush_tlb(struct kvm_vcpu * vcpu,int vpid,bool invalidate_gpa)4423 static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid,
4424 bool invalidate_gpa)
4425 {
4426 if (enable_ept && (invalidate_gpa || !enable_vpid)) {
4427 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4428 return;
4429 ept_sync_context(construct_eptp(vcpu, vcpu->arch.mmu.root_hpa));
4430 } else {
4431 vpid_sync_context(vpid);
4432 }
4433 }
4434
vmx_flush_tlb(struct kvm_vcpu * vcpu,bool invalidate_gpa)4435 static void vmx_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
4436 {
4437 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid, invalidate_gpa);
4438 }
4439
vmx_decache_cr0_guest_bits(struct kvm_vcpu * vcpu)4440 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
4441 {
4442 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
4443
4444 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
4445 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
4446 }
4447
vmx_decache_cr3(struct kvm_vcpu * vcpu)4448 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
4449 {
4450 if (enable_ept && is_paging(vcpu))
4451 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4452 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
4453 }
4454
vmx_decache_cr4_guest_bits(struct kvm_vcpu * vcpu)4455 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
4456 {
4457 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
4458
4459 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
4460 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
4461 }
4462
ept_load_pdptrs(struct kvm_vcpu * vcpu)4463 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
4464 {
4465 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4466
4467 if (!test_bit(VCPU_EXREG_PDPTR,
4468 (unsigned long *)&vcpu->arch.regs_dirty))
4469 return;
4470
4471 if (is_pae_paging(vcpu)) {
4472 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
4473 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
4474 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
4475 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
4476 }
4477 }
4478
ept_save_pdptrs(struct kvm_vcpu * vcpu)4479 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
4480 {
4481 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4482
4483 if (is_pae_paging(vcpu)) {
4484 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
4485 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
4486 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
4487 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
4488 }
4489
4490 __set_bit(VCPU_EXREG_PDPTR,
4491 (unsigned long *)&vcpu->arch.regs_avail);
4492 __set_bit(VCPU_EXREG_PDPTR,
4493 (unsigned long *)&vcpu->arch.regs_dirty);
4494 }
4495
nested_guest_cr0_valid(struct kvm_vcpu * vcpu,unsigned long val)4496 static bool nested_guest_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4497 {
4498 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4499 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4500 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4501
4502 if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
4503 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
4504 nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
4505 fixed0 &= ~(X86_CR0_PE | X86_CR0_PG);
4506
4507 return fixed_bits_valid(val, fixed0, fixed1);
4508 }
4509
nested_host_cr0_valid(struct kvm_vcpu * vcpu,unsigned long val)4510 static bool nested_host_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4511 {
4512 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4513 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4514
4515 return fixed_bits_valid(val, fixed0, fixed1);
4516 }
4517
nested_cr4_valid(struct kvm_vcpu * vcpu,unsigned long val)4518 static bool nested_cr4_valid(struct kvm_vcpu *vcpu, unsigned long val)
4519 {
4520 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed0;
4521 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed1;
4522
4523 return fixed_bits_valid(val, fixed0, fixed1);
4524 }
4525
4526 /* No difference in the restrictions on guest and host CR4 in VMX operation. */
4527 #define nested_guest_cr4_valid nested_cr4_valid
4528 #define nested_host_cr4_valid nested_cr4_valid
4529
4530 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
4531
ept_update_paging_mode_cr0(unsigned long * hw_cr0,unsigned long cr0,struct kvm_vcpu * vcpu)4532 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
4533 unsigned long cr0,
4534 struct kvm_vcpu *vcpu)
4535 {
4536 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
4537 vmx_decache_cr3(vcpu);
4538 if (!(cr0 & X86_CR0_PG)) {
4539 /* From paging/starting to nonpaging */
4540 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
4541 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
4542 (CPU_BASED_CR3_LOAD_EXITING |
4543 CPU_BASED_CR3_STORE_EXITING));
4544 vcpu->arch.cr0 = cr0;
4545 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
4546 } else if (!is_paging(vcpu)) {
4547 /* From nonpaging to paging */
4548 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
4549 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
4550 ~(CPU_BASED_CR3_LOAD_EXITING |
4551 CPU_BASED_CR3_STORE_EXITING));
4552 vcpu->arch.cr0 = cr0;
4553 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
4554 }
4555
4556 if (!(cr0 & X86_CR0_WP))
4557 *hw_cr0 &= ~X86_CR0_WP;
4558 }
4559
vmx_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)4560 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
4561 {
4562 struct vcpu_vmx *vmx = to_vmx(vcpu);
4563 unsigned long hw_cr0;
4564
4565 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
4566 if (enable_unrestricted_guest)
4567 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
4568 else {
4569 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
4570
4571 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
4572 enter_pmode(vcpu);
4573
4574 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
4575 enter_rmode(vcpu);
4576 }
4577
4578 #ifdef CONFIG_X86_64
4579 if (vcpu->arch.efer & EFER_LME) {
4580 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
4581 enter_lmode(vcpu);
4582 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
4583 exit_lmode(vcpu);
4584 }
4585 #endif
4586
4587 if (enable_ept)
4588 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
4589
4590 vmcs_writel(CR0_READ_SHADOW, cr0);
4591 vmcs_writel(GUEST_CR0, hw_cr0);
4592 vcpu->arch.cr0 = cr0;
4593
4594 /* depends on vcpu->arch.cr0 to be set to a new value */
4595 vmx->emulation_required = emulation_required(vcpu);
4596 }
4597
get_ept_level(struct kvm_vcpu * vcpu)4598 static int get_ept_level(struct kvm_vcpu *vcpu)
4599 {
4600 /* Nested EPT currently only supports 4-level walks. */
4601 if (is_guest_mode(vcpu) && nested_cpu_has_ept(get_vmcs12(vcpu)))
4602 return 4;
4603 if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
4604 return 5;
4605 return 4;
4606 }
4607
construct_eptp(struct kvm_vcpu * vcpu,unsigned long root_hpa)4608 static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
4609 {
4610 u64 eptp = VMX_EPTP_MT_WB;
4611
4612 eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
4613
4614 if (enable_ept_ad_bits &&
4615 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
4616 eptp |= VMX_EPTP_AD_ENABLE_BIT;
4617 eptp |= (root_hpa & PAGE_MASK);
4618
4619 return eptp;
4620 }
4621
vmx_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)4622 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
4623 {
4624 unsigned long guest_cr3;
4625 u64 eptp;
4626
4627 guest_cr3 = cr3;
4628 if (enable_ept) {
4629 eptp = construct_eptp(vcpu, cr3);
4630 vmcs_write64(EPT_POINTER, eptp);
4631 if (is_paging(vcpu) || is_guest_mode(vcpu))
4632 guest_cr3 = kvm_read_cr3(vcpu);
4633 else
4634 guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
4635 ept_load_pdptrs(vcpu);
4636 }
4637
4638 vmx_flush_tlb(vcpu, true);
4639 vmcs_writel(GUEST_CR3, guest_cr3);
4640 }
4641
vmx_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)4642 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
4643 {
4644 /*
4645 * Pass through host's Machine Check Enable value to hw_cr4, which
4646 * is in force while we are in guest mode. Do not let guests control
4647 * this bit, even if host CR4.MCE == 0.
4648 */
4649 unsigned long hw_cr4 =
4650 (cr4_read_shadow() & X86_CR4_MCE) |
4651 (cr4 & ~X86_CR4_MCE) |
4652 (to_vmx(vcpu)->rmode.vm86_active ?
4653 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
4654
4655 if (cr4 & X86_CR4_VMXE) {
4656 /*
4657 * To use VMXON (and later other VMX instructions), a guest
4658 * must first be able to turn on cr4.VMXE (see handle_vmon()).
4659 * So basically the check on whether to allow nested VMX
4660 * is here.
4661 */
4662 if (!nested_vmx_allowed(vcpu))
4663 return 1;
4664 }
4665
4666 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
4667 return 1;
4668
4669 vcpu->arch.cr4 = cr4;
4670 if (enable_ept) {
4671 if (!is_paging(vcpu)) {
4672 hw_cr4 &= ~X86_CR4_PAE;
4673 hw_cr4 |= X86_CR4_PSE;
4674 } else if (!(cr4 & X86_CR4_PAE)) {
4675 hw_cr4 &= ~X86_CR4_PAE;
4676 }
4677 }
4678
4679 if (!enable_unrestricted_guest && !is_paging(vcpu))
4680 /*
4681 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
4682 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
4683 * to be manually disabled when guest switches to non-paging
4684 * mode.
4685 *
4686 * If !enable_unrestricted_guest, the CPU is always running
4687 * with CR0.PG=1 and CR4 needs to be modified.
4688 * If enable_unrestricted_guest, the CPU automatically
4689 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
4690 */
4691 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
4692
4693 vmcs_writel(CR4_READ_SHADOW, cr4);
4694 vmcs_writel(GUEST_CR4, hw_cr4);
4695 return 0;
4696 }
4697
vmx_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)4698 static void vmx_get_segment(struct kvm_vcpu *vcpu,
4699 struct kvm_segment *var, int seg)
4700 {
4701 struct vcpu_vmx *vmx = to_vmx(vcpu);
4702 u32 ar;
4703
4704 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4705 *var = vmx->rmode.segs[seg];
4706 if (seg == VCPU_SREG_TR
4707 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
4708 return;
4709 var->base = vmx_read_guest_seg_base(vmx, seg);
4710 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4711 return;
4712 }
4713 var->base = vmx_read_guest_seg_base(vmx, seg);
4714 var->limit = vmx_read_guest_seg_limit(vmx, seg);
4715 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4716 ar = vmx_read_guest_seg_ar(vmx, seg);
4717 var->unusable = (ar >> 16) & 1;
4718 var->type = ar & 15;
4719 var->s = (ar >> 4) & 1;
4720 var->dpl = (ar >> 5) & 3;
4721 /*
4722 * Some userspaces do not preserve unusable property. Since usable
4723 * segment has to be present according to VMX spec we can use present
4724 * property to amend userspace bug by making unusable segment always
4725 * nonpresent. vmx_segment_access_rights() already marks nonpresent
4726 * segment as unusable.
4727 */
4728 var->present = !var->unusable;
4729 var->avl = (ar >> 12) & 1;
4730 var->l = (ar >> 13) & 1;
4731 var->db = (ar >> 14) & 1;
4732 var->g = (ar >> 15) & 1;
4733 }
4734
vmx_get_segment_base(struct kvm_vcpu * vcpu,int seg)4735 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
4736 {
4737 struct kvm_segment s;
4738
4739 if (to_vmx(vcpu)->rmode.vm86_active) {
4740 vmx_get_segment(vcpu, &s, seg);
4741 return s.base;
4742 }
4743 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
4744 }
4745
vmx_get_cpl(struct kvm_vcpu * vcpu)4746 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
4747 {
4748 struct vcpu_vmx *vmx = to_vmx(vcpu);
4749
4750 if (unlikely(vmx->rmode.vm86_active))
4751 return 0;
4752 else {
4753 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
4754 return VMX_AR_DPL(ar);
4755 }
4756 }
4757
vmx_segment_access_rights(struct kvm_segment * var)4758 static u32 vmx_segment_access_rights(struct kvm_segment *var)
4759 {
4760 u32 ar;
4761
4762 if (var->unusable || !var->present)
4763 ar = 1 << 16;
4764 else {
4765 ar = var->type & 15;
4766 ar |= (var->s & 1) << 4;
4767 ar |= (var->dpl & 3) << 5;
4768 ar |= (var->present & 1) << 7;
4769 ar |= (var->avl & 1) << 12;
4770 ar |= (var->l & 1) << 13;
4771 ar |= (var->db & 1) << 14;
4772 ar |= (var->g & 1) << 15;
4773 }
4774
4775 return ar;
4776 }
4777
vmx_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)4778 static void vmx_set_segment(struct kvm_vcpu *vcpu,
4779 struct kvm_segment *var, int seg)
4780 {
4781 struct vcpu_vmx *vmx = to_vmx(vcpu);
4782 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4783
4784 vmx_segment_cache_clear(vmx);
4785
4786 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4787 vmx->rmode.segs[seg] = *var;
4788 if (seg == VCPU_SREG_TR)
4789 vmcs_write16(sf->selector, var->selector);
4790 else if (var->s)
4791 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
4792 goto out;
4793 }
4794
4795 vmcs_writel(sf->base, var->base);
4796 vmcs_write32(sf->limit, var->limit);
4797 vmcs_write16(sf->selector, var->selector);
4798
4799 /*
4800 * Fix the "Accessed" bit in AR field of segment registers for older
4801 * qemu binaries.
4802 * IA32 arch specifies that at the time of processor reset the
4803 * "Accessed" bit in the AR field of segment registers is 1. And qemu
4804 * is setting it to 0 in the userland code. This causes invalid guest
4805 * state vmexit when "unrestricted guest" mode is turned on.
4806 * Fix for this setup issue in cpu_reset is being pushed in the qemu
4807 * tree. Newer qemu binaries with that qemu fix would not need this
4808 * kvm hack.
4809 */
4810 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
4811 var->type |= 0x1; /* Accessed */
4812
4813 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
4814
4815 out:
4816 vmx->emulation_required = emulation_required(vcpu);
4817 }
4818
vmx_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)4819 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4820 {
4821 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
4822
4823 *db = (ar >> 14) & 1;
4824 *l = (ar >> 13) & 1;
4825 }
4826
vmx_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)4827 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4828 {
4829 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
4830 dt->address = vmcs_readl(GUEST_IDTR_BASE);
4831 }
4832
vmx_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)4833 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4834 {
4835 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
4836 vmcs_writel(GUEST_IDTR_BASE, dt->address);
4837 }
4838
vmx_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)4839 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4840 {
4841 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
4842 dt->address = vmcs_readl(GUEST_GDTR_BASE);
4843 }
4844
vmx_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)4845 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4846 {
4847 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
4848 vmcs_writel(GUEST_GDTR_BASE, dt->address);
4849 }
4850
rmode_segment_valid(struct kvm_vcpu * vcpu,int seg)4851 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
4852 {
4853 struct kvm_segment var;
4854 u32 ar;
4855
4856 vmx_get_segment(vcpu, &var, seg);
4857 var.dpl = 0x3;
4858 if (seg == VCPU_SREG_CS)
4859 var.type = 0x3;
4860 ar = vmx_segment_access_rights(&var);
4861
4862 if (var.base != (var.selector << 4))
4863 return false;
4864 if (var.limit != 0xffff)
4865 return false;
4866 if (ar != 0xf3)
4867 return false;
4868
4869 return true;
4870 }
4871
code_segment_valid(struct kvm_vcpu * vcpu)4872 static bool code_segment_valid(struct kvm_vcpu *vcpu)
4873 {
4874 struct kvm_segment cs;
4875 unsigned int cs_rpl;
4876
4877 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4878 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
4879
4880 if (cs.unusable)
4881 return false;
4882 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
4883 return false;
4884 if (!cs.s)
4885 return false;
4886 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
4887 if (cs.dpl > cs_rpl)
4888 return false;
4889 } else {
4890 if (cs.dpl != cs_rpl)
4891 return false;
4892 }
4893 if (!cs.present)
4894 return false;
4895
4896 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
4897 return true;
4898 }
4899
stack_segment_valid(struct kvm_vcpu * vcpu)4900 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
4901 {
4902 struct kvm_segment ss;
4903 unsigned int ss_rpl;
4904
4905 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4906 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
4907
4908 if (ss.unusable)
4909 return true;
4910 if (ss.type != 3 && ss.type != 7)
4911 return false;
4912 if (!ss.s)
4913 return false;
4914 if (ss.dpl != ss_rpl) /* DPL != RPL */
4915 return false;
4916 if (!ss.present)
4917 return false;
4918
4919 return true;
4920 }
4921
data_segment_valid(struct kvm_vcpu * vcpu,int seg)4922 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
4923 {
4924 struct kvm_segment var;
4925 unsigned int rpl;
4926
4927 vmx_get_segment(vcpu, &var, seg);
4928 rpl = var.selector & SEGMENT_RPL_MASK;
4929
4930 if (var.unusable)
4931 return true;
4932 if (!var.s)
4933 return false;
4934 if (!var.present)
4935 return false;
4936 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
4937 if (var.dpl < rpl) /* DPL < RPL */
4938 return false;
4939 }
4940
4941 /* TODO: Add other members to kvm_segment_field to allow checking for other access
4942 * rights flags
4943 */
4944 return true;
4945 }
4946
tr_valid(struct kvm_vcpu * vcpu)4947 static bool tr_valid(struct kvm_vcpu *vcpu)
4948 {
4949 struct kvm_segment tr;
4950
4951 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
4952
4953 if (tr.unusable)
4954 return false;
4955 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
4956 return false;
4957 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
4958 return false;
4959 if (!tr.present)
4960 return false;
4961
4962 return true;
4963 }
4964
ldtr_valid(struct kvm_vcpu * vcpu)4965 static bool ldtr_valid(struct kvm_vcpu *vcpu)
4966 {
4967 struct kvm_segment ldtr;
4968
4969 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
4970
4971 if (ldtr.unusable)
4972 return true;
4973 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
4974 return false;
4975 if (ldtr.type != 2)
4976 return false;
4977 if (!ldtr.present)
4978 return false;
4979
4980 return true;
4981 }
4982
cs_ss_rpl_check(struct kvm_vcpu * vcpu)4983 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
4984 {
4985 struct kvm_segment cs, ss;
4986
4987 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4988 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4989
4990 return ((cs.selector & SEGMENT_RPL_MASK) ==
4991 (ss.selector & SEGMENT_RPL_MASK));
4992 }
4993
4994 static bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu,
4995 unsigned int port, int size);
nested_vmx_exit_handled_io(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4996 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
4997 struct vmcs12 *vmcs12)
4998 {
4999 unsigned long exit_qualification;
5000 unsigned short port;
5001 int size;
5002
5003 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
5004 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
5005
5006 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5007
5008 port = exit_qualification >> 16;
5009 size = (exit_qualification & 7) + 1;
5010
5011 return nested_vmx_check_io_bitmaps(vcpu, port, size);
5012 }
5013
5014 /*
5015 * Check if guest state is valid. Returns true if valid, false if
5016 * not.
5017 * We assume that registers are always usable
5018 */
guest_state_valid(struct kvm_vcpu * vcpu)5019 static bool guest_state_valid(struct kvm_vcpu *vcpu)
5020 {
5021 if (enable_unrestricted_guest)
5022 return true;
5023
5024 /* real mode guest state checks */
5025 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
5026 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
5027 return false;
5028 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
5029 return false;
5030 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
5031 return false;
5032 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
5033 return false;
5034 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
5035 return false;
5036 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
5037 return false;
5038 } else {
5039 /* protected mode guest state checks */
5040 if (!cs_ss_rpl_check(vcpu))
5041 return false;
5042 if (!code_segment_valid(vcpu))
5043 return false;
5044 if (!stack_segment_valid(vcpu))
5045 return false;
5046 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
5047 return false;
5048 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
5049 return false;
5050 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
5051 return false;
5052 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
5053 return false;
5054 if (!tr_valid(vcpu))
5055 return false;
5056 if (!ldtr_valid(vcpu))
5057 return false;
5058 }
5059 /* TODO:
5060 * - Add checks on RIP
5061 * - Add checks on RFLAGS
5062 */
5063
5064 return true;
5065 }
5066
page_address_valid(struct kvm_vcpu * vcpu,gpa_t gpa)5067 static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
5068 {
5069 return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
5070 }
5071
init_rmode_tss(struct kvm * kvm)5072 static int init_rmode_tss(struct kvm *kvm)
5073 {
5074 gfn_t fn;
5075 u16 data = 0;
5076 int idx, r;
5077
5078 idx = srcu_read_lock(&kvm->srcu);
5079 fn = kvm->arch.tss_addr >> PAGE_SHIFT;
5080 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
5081 if (r < 0)
5082 goto out;
5083 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
5084 r = kvm_write_guest_page(kvm, fn++, &data,
5085 TSS_IOPB_BASE_OFFSET, sizeof(u16));
5086 if (r < 0)
5087 goto out;
5088 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
5089 if (r < 0)
5090 goto out;
5091 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
5092 if (r < 0)
5093 goto out;
5094 data = ~0;
5095 r = kvm_write_guest_page(kvm, fn, &data,
5096 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
5097 sizeof(u8));
5098 out:
5099 srcu_read_unlock(&kvm->srcu, idx);
5100 return r;
5101 }
5102
init_rmode_identity_map(struct kvm * kvm)5103 static int init_rmode_identity_map(struct kvm *kvm)
5104 {
5105 int i, idx, r = 0;
5106 kvm_pfn_t identity_map_pfn;
5107 u32 tmp;
5108
5109 if (!enable_ept)
5110 return 0;
5111
5112 /* Protect kvm->arch.ept_identity_pagetable_done. */
5113 mutex_lock(&kvm->slots_lock);
5114
5115 if (likely(kvm->arch.ept_identity_pagetable_done))
5116 goto out2;
5117
5118 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
5119
5120 r = alloc_identity_pagetable(kvm);
5121 if (r < 0)
5122 goto out2;
5123
5124 idx = srcu_read_lock(&kvm->srcu);
5125 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
5126 if (r < 0)
5127 goto out;
5128 /* Set up identity-mapping pagetable for EPT in real mode */
5129 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
5130 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
5131 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
5132 r = kvm_write_guest_page(kvm, identity_map_pfn,
5133 &tmp, i * sizeof(tmp), sizeof(tmp));
5134 if (r < 0)
5135 goto out;
5136 }
5137 kvm->arch.ept_identity_pagetable_done = true;
5138
5139 out:
5140 srcu_read_unlock(&kvm->srcu, idx);
5141
5142 out2:
5143 mutex_unlock(&kvm->slots_lock);
5144 return r;
5145 }
5146
seg_setup(int seg)5147 static void seg_setup(int seg)
5148 {
5149 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
5150 unsigned int ar;
5151
5152 vmcs_write16(sf->selector, 0);
5153 vmcs_writel(sf->base, 0);
5154 vmcs_write32(sf->limit, 0xffff);
5155 ar = 0x93;
5156 if (seg == VCPU_SREG_CS)
5157 ar |= 0x08; /* code segment */
5158
5159 vmcs_write32(sf->ar_bytes, ar);
5160 }
5161
alloc_apic_access_page(struct kvm * kvm)5162 static int alloc_apic_access_page(struct kvm *kvm)
5163 {
5164 struct page *page;
5165 int r = 0;
5166
5167 mutex_lock(&kvm->slots_lock);
5168 if (kvm->arch.apic_access_page_done)
5169 goto out;
5170 r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
5171 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
5172 if (r)
5173 goto out;
5174
5175 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
5176 if (is_error_page(page)) {
5177 r = -EFAULT;
5178 goto out;
5179 }
5180
5181 /*
5182 * Do not pin the page in memory, so that memory hot-unplug
5183 * is able to migrate it.
5184 */
5185 put_page(page);
5186 kvm->arch.apic_access_page_done = true;
5187 out:
5188 mutex_unlock(&kvm->slots_lock);
5189 return r;
5190 }
5191
alloc_identity_pagetable(struct kvm * kvm)5192 static int alloc_identity_pagetable(struct kvm *kvm)
5193 {
5194 /* Called with kvm->slots_lock held. */
5195
5196 int r = 0;
5197
5198 BUG_ON(kvm->arch.ept_identity_pagetable_done);
5199
5200 r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
5201 kvm->arch.ept_identity_map_addr, PAGE_SIZE);
5202
5203 return r;
5204 }
5205
allocate_vpid(void)5206 static int allocate_vpid(void)
5207 {
5208 int vpid;
5209
5210 if (!enable_vpid)
5211 return 0;
5212 spin_lock(&vmx_vpid_lock);
5213 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
5214 if (vpid < VMX_NR_VPIDS)
5215 __set_bit(vpid, vmx_vpid_bitmap);
5216 else
5217 vpid = 0;
5218 spin_unlock(&vmx_vpid_lock);
5219 return vpid;
5220 }
5221
free_vpid(int vpid)5222 static void free_vpid(int vpid)
5223 {
5224 if (!enable_vpid || vpid == 0)
5225 return;
5226 spin_lock(&vmx_vpid_lock);
5227 __clear_bit(vpid, vmx_vpid_bitmap);
5228 spin_unlock(&vmx_vpid_lock);
5229 }
5230
vmx_disable_intercept_for_msr(unsigned long * msr_bitmap,u32 msr,int type)5231 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
5232 u32 msr, int type)
5233 {
5234 int f = sizeof(unsigned long);
5235
5236 if (!cpu_has_vmx_msr_bitmap())
5237 return;
5238
5239 /*
5240 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
5241 * have the write-low and read-high bitmap offsets the wrong way round.
5242 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
5243 */
5244 if (msr <= 0x1fff) {
5245 if (type & MSR_TYPE_R)
5246 /* read-low */
5247 __clear_bit(msr, msr_bitmap + 0x000 / f);
5248
5249 if (type & MSR_TYPE_W)
5250 /* write-low */
5251 __clear_bit(msr, msr_bitmap + 0x800 / f);
5252
5253 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
5254 msr &= 0x1fff;
5255 if (type & MSR_TYPE_R)
5256 /* read-high */
5257 __clear_bit(msr, msr_bitmap + 0x400 / f);
5258
5259 if (type & MSR_TYPE_W)
5260 /* write-high */
5261 __clear_bit(msr, msr_bitmap + 0xc00 / f);
5262
5263 }
5264 }
5265
vmx_enable_intercept_for_msr(unsigned long * msr_bitmap,u32 msr,int type)5266 static __always_inline void vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
5267 u32 msr, int type)
5268 {
5269 int f = sizeof(unsigned long);
5270
5271 if (!cpu_has_vmx_msr_bitmap())
5272 return;
5273
5274 /*
5275 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
5276 * have the write-low and read-high bitmap offsets the wrong way round.
5277 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
5278 */
5279 if (msr <= 0x1fff) {
5280 if (type & MSR_TYPE_R)
5281 /* read-low */
5282 __set_bit(msr, msr_bitmap + 0x000 / f);
5283
5284 if (type & MSR_TYPE_W)
5285 /* write-low */
5286 __set_bit(msr, msr_bitmap + 0x800 / f);
5287
5288 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
5289 msr &= 0x1fff;
5290 if (type & MSR_TYPE_R)
5291 /* read-high */
5292 __set_bit(msr, msr_bitmap + 0x400 / f);
5293
5294 if (type & MSR_TYPE_W)
5295 /* write-high */
5296 __set_bit(msr, msr_bitmap + 0xc00 / f);
5297
5298 }
5299 }
5300
vmx_set_intercept_for_msr(unsigned long * msr_bitmap,u32 msr,int type,bool value)5301 static __always_inline void vmx_set_intercept_for_msr(unsigned long *msr_bitmap,
5302 u32 msr, int type, bool value)
5303 {
5304 if (value)
5305 vmx_enable_intercept_for_msr(msr_bitmap, msr, type);
5306 else
5307 vmx_disable_intercept_for_msr(msr_bitmap, msr, type);
5308 }
5309
5310 /*
5311 * If a msr is allowed by L0, we should check whether it is allowed by L1.
5312 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
5313 */
nested_vmx_disable_intercept_for_msr(unsigned long * msr_bitmap_l1,unsigned long * msr_bitmap_nested,u32 msr,int type)5314 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
5315 unsigned long *msr_bitmap_nested,
5316 u32 msr, int type)
5317 {
5318 int f = sizeof(unsigned long);
5319
5320 if (!cpu_has_vmx_msr_bitmap()) {
5321 WARN_ON(1);
5322 return;
5323 }
5324
5325 /*
5326 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
5327 * have the write-low and read-high bitmap offsets the wrong way round.
5328 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
5329 */
5330 if (msr <= 0x1fff) {
5331 if (type & MSR_TYPE_R &&
5332 !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
5333 /* read-low */
5334 __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
5335
5336 if (type & MSR_TYPE_W &&
5337 !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
5338 /* write-low */
5339 __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
5340
5341 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
5342 msr &= 0x1fff;
5343 if (type & MSR_TYPE_R &&
5344 !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
5345 /* read-high */
5346 __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
5347
5348 if (type & MSR_TYPE_W &&
5349 !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
5350 /* write-high */
5351 __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
5352
5353 }
5354 }
5355
vmx_msr_bitmap_mode(struct kvm_vcpu * vcpu)5356 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
5357 {
5358 u8 mode = 0;
5359
5360 if (cpu_has_secondary_exec_ctrls() &&
5361 (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
5362 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
5363 mode |= MSR_BITMAP_MODE_X2APIC;
5364 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
5365 mode |= MSR_BITMAP_MODE_X2APIC_APICV;
5366 }
5367
5368 if (is_long_mode(vcpu))
5369 mode |= MSR_BITMAP_MODE_LM;
5370
5371 return mode;
5372 }
5373
5374 #define X2APIC_MSR(r) (APIC_BASE_MSR + ((r) >> 4))
5375
vmx_update_msr_bitmap_x2apic(unsigned long * msr_bitmap,u8 mode)5376 static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap,
5377 u8 mode)
5378 {
5379 int msr;
5380
5381 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
5382 unsigned word = msr / BITS_PER_LONG;
5383 msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
5384 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
5385 }
5386
5387 if (mode & MSR_BITMAP_MODE_X2APIC) {
5388 /*
5389 * TPR reads and writes can be virtualized even if virtual interrupt
5390 * delivery is not in use.
5391 */
5392 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW);
5393 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
5394 vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R);
5395 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
5396 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
5397 }
5398 }
5399 }
5400
vmx_update_msr_bitmap(struct kvm_vcpu * vcpu)5401 static void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
5402 {
5403 struct vcpu_vmx *vmx = to_vmx(vcpu);
5404 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
5405 u8 mode = vmx_msr_bitmap_mode(vcpu);
5406 u8 changed = mode ^ vmx->msr_bitmap_mode;
5407
5408 if (!changed)
5409 return;
5410
5411 vmx_set_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW,
5412 !(mode & MSR_BITMAP_MODE_LM));
5413
5414 if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
5415 vmx_update_msr_bitmap_x2apic(msr_bitmap, mode);
5416
5417 vmx->msr_bitmap_mode = mode;
5418 }
5419
vmx_get_enable_apicv(struct kvm_vcpu * vcpu)5420 static bool vmx_get_enable_apicv(struct kvm_vcpu *vcpu)
5421 {
5422 return enable_apicv;
5423 }
5424
nested_mark_vmcs12_pages_dirty(struct kvm_vcpu * vcpu)5425 static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
5426 {
5427 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5428 gfn_t gfn;
5429
5430 /*
5431 * Don't need to mark the APIC access page dirty; it is never
5432 * written to by the CPU during APIC virtualization.
5433 */
5434
5435 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
5436 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
5437 kvm_vcpu_mark_page_dirty(vcpu, gfn);
5438 }
5439
5440 if (nested_cpu_has_posted_intr(vmcs12)) {
5441 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
5442 kvm_vcpu_mark_page_dirty(vcpu, gfn);
5443 }
5444 }
5445
5446
vmx_complete_nested_posted_interrupt(struct kvm_vcpu * vcpu)5447 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
5448 {
5449 struct vcpu_vmx *vmx = to_vmx(vcpu);
5450 int max_irr;
5451 void *vapic_page;
5452 u16 status;
5453
5454 if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
5455 return;
5456
5457 vmx->nested.pi_pending = false;
5458 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
5459 return;
5460
5461 max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
5462 if (max_irr != 256) {
5463 vapic_page = kmap(vmx->nested.virtual_apic_page);
5464 __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
5465 kunmap(vmx->nested.virtual_apic_page);
5466
5467 status = vmcs_read16(GUEST_INTR_STATUS);
5468 if ((u8)max_irr > ((u8)status & 0xff)) {
5469 status &= ~0xff;
5470 status |= (u8)max_irr;
5471 vmcs_write16(GUEST_INTR_STATUS, status);
5472 }
5473 }
5474
5475 nested_mark_vmcs12_pages_dirty(vcpu);
5476 }
5477
kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu * vcpu,bool nested)5478 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
5479 bool nested)
5480 {
5481 #ifdef CONFIG_SMP
5482 int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
5483
5484 if (vcpu->mode == IN_GUEST_MODE) {
5485 /*
5486 * The vector of interrupt to be delivered to vcpu had
5487 * been set in PIR before this function.
5488 *
5489 * Following cases will be reached in this block, and
5490 * we always send a notification event in all cases as
5491 * explained below.
5492 *
5493 * Case 1: vcpu keeps in non-root mode. Sending a
5494 * notification event posts the interrupt to vcpu.
5495 *
5496 * Case 2: vcpu exits to root mode and is still
5497 * runnable. PIR will be synced to vIRR before the
5498 * next vcpu entry. Sending a notification event in
5499 * this case has no effect, as vcpu is not in root
5500 * mode.
5501 *
5502 * Case 3: vcpu exits to root mode and is blocked.
5503 * vcpu_block() has already synced PIR to vIRR and
5504 * never blocks vcpu if vIRR is not cleared. Therefore,
5505 * a blocked vcpu here does not wait for any requested
5506 * interrupts in PIR, and sending a notification event
5507 * which has no effect is safe here.
5508 */
5509
5510 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
5511 return true;
5512 }
5513 #endif
5514 return false;
5515 }
5516
vmx_deliver_nested_posted_interrupt(struct kvm_vcpu * vcpu,int vector)5517 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
5518 int vector)
5519 {
5520 struct vcpu_vmx *vmx = to_vmx(vcpu);
5521
5522 if (is_guest_mode(vcpu) &&
5523 vector == vmx->nested.posted_intr_nv) {
5524 /*
5525 * If a posted intr is not recognized by hardware,
5526 * we will accomplish it in the next vmentry.
5527 */
5528 vmx->nested.pi_pending = true;
5529 kvm_make_request(KVM_REQ_EVENT, vcpu);
5530 /* the PIR and ON have been set by L1. */
5531 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
5532 kvm_vcpu_kick(vcpu);
5533 return 0;
5534 }
5535 return -1;
5536 }
5537 /*
5538 * Send interrupt to vcpu via posted interrupt way.
5539 * 1. If target vcpu is running(non-root mode), send posted interrupt
5540 * notification to vcpu and hardware will sync PIR to vIRR atomically.
5541 * 2. If target vcpu isn't running(root mode), kick it to pick up the
5542 * interrupt from PIR in next vmentry.
5543 */
vmx_deliver_posted_interrupt(struct kvm_vcpu * vcpu,int vector)5544 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
5545 {
5546 struct vcpu_vmx *vmx = to_vmx(vcpu);
5547 int r;
5548
5549 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
5550 if (!r)
5551 return 0;
5552
5553 if (!vcpu->arch.apicv_active)
5554 return -1;
5555
5556 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
5557 return 0;
5558
5559 /* If a previous notification has sent the IPI, nothing to do. */
5560 if (pi_test_and_set_on(&vmx->pi_desc))
5561 return 0;
5562
5563 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
5564 kvm_vcpu_kick(vcpu);
5565
5566 return 0;
5567 }
5568
5569 /*
5570 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
5571 * will not change in the lifetime of the guest.
5572 * Note that host-state that does change is set elsewhere. E.g., host-state
5573 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
5574 */
vmx_set_constant_host_state(struct vcpu_vmx * vmx)5575 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
5576 {
5577 u32 low32, high32;
5578 unsigned long tmpl;
5579 struct desc_ptr dt;
5580 unsigned long cr0, cr3, cr4;
5581
5582 cr0 = read_cr0();
5583 WARN_ON(cr0 & X86_CR0_TS);
5584 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
5585
5586 /*
5587 * Save the most likely value for this task's CR3 in the VMCS.
5588 * We can't use __get_current_cr3_fast() because we're not atomic.
5589 */
5590 cr3 = __read_cr3();
5591 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */
5592 vmx->loaded_vmcs->vmcs_host_cr3 = cr3;
5593
5594 /* Save the most likely value for this task's CR4 in the VMCS. */
5595 cr4 = cr4_read_shadow();
5596 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
5597 vmx->loaded_vmcs->vmcs_host_cr4 = cr4;
5598
5599 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
5600 #ifdef CONFIG_X86_64
5601 /*
5602 * Load null selectors, so we can avoid reloading them in
5603 * __vmx_load_host_state(), in case userspace uses the null selectors
5604 * too (the expected case).
5605 */
5606 vmcs_write16(HOST_DS_SELECTOR, 0);
5607 vmcs_write16(HOST_ES_SELECTOR, 0);
5608 #else
5609 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
5610 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
5611 #endif
5612 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
5613 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
5614
5615 store_idt(&dt);
5616 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
5617 vmx->host_idt_base = dt.address;
5618
5619 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
5620
5621 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
5622 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
5623 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
5624 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
5625
5626 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
5627 rdmsr(MSR_IA32_CR_PAT, low32, high32);
5628 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
5629 }
5630 }
5631
set_cr4_guest_host_mask(struct vcpu_vmx * vmx)5632 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
5633 {
5634 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
5635 if (enable_ept)
5636 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
5637 if (is_guest_mode(&vmx->vcpu))
5638 vmx->vcpu.arch.cr4_guest_owned_bits &=
5639 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
5640 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
5641 }
5642
vmx_pin_based_exec_ctrl(struct vcpu_vmx * vmx)5643 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
5644 {
5645 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
5646
5647 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
5648 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
5649 /* Enable the preemption timer dynamically */
5650 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
5651 return pin_based_exec_ctrl;
5652 }
5653
vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu * vcpu)5654 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5655 {
5656 struct vcpu_vmx *vmx = to_vmx(vcpu);
5657
5658 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
5659 if (cpu_has_secondary_exec_ctrls()) {
5660 if (kvm_vcpu_apicv_active(vcpu))
5661 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
5662 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5663 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5664 else
5665 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
5666 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5667 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5668 }
5669
5670 if (cpu_has_vmx_msr_bitmap())
5671 vmx_update_msr_bitmap(vcpu);
5672 }
5673
vmx_exec_control(struct vcpu_vmx * vmx)5674 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
5675 {
5676 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
5677
5678 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
5679 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5680
5681 if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
5682 exec_control &= ~CPU_BASED_TPR_SHADOW;
5683 #ifdef CONFIG_X86_64
5684 exec_control |= CPU_BASED_CR8_STORE_EXITING |
5685 CPU_BASED_CR8_LOAD_EXITING;
5686 #endif
5687 }
5688 if (!enable_ept)
5689 exec_control |= CPU_BASED_CR3_STORE_EXITING |
5690 CPU_BASED_CR3_LOAD_EXITING |
5691 CPU_BASED_INVLPG_EXITING;
5692 return exec_control;
5693 }
5694
vmx_rdrand_supported(void)5695 static bool vmx_rdrand_supported(void)
5696 {
5697 return vmcs_config.cpu_based_2nd_exec_ctrl &
5698 SECONDARY_EXEC_RDRAND;
5699 }
5700
vmx_rdseed_supported(void)5701 static bool vmx_rdseed_supported(void)
5702 {
5703 return vmcs_config.cpu_based_2nd_exec_ctrl &
5704 SECONDARY_EXEC_RDSEED;
5705 }
5706
vmx_compute_secondary_exec_control(struct vcpu_vmx * vmx)5707 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
5708 {
5709 struct kvm_vcpu *vcpu = &vmx->vcpu;
5710
5711 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
5712 if (!cpu_need_virtualize_apic_accesses(vcpu))
5713 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5714 if (vmx->vpid == 0)
5715 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
5716 if (!enable_ept) {
5717 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
5718 enable_unrestricted_guest = 0;
5719 /* Enable INVPCID for non-ept guests may cause performance regression. */
5720 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
5721 }
5722 if (!enable_unrestricted_guest)
5723 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
5724 if (!ple_gap)
5725 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
5726 if (!kvm_vcpu_apicv_active(vcpu))
5727 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
5728 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5729 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
5730 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
5731 (handle_vmptrld).
5732 We can NOT enable shadow_vmcs here because we don't have yet
5733 a current VMCS12
5734 */
5735 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
5736
5737 if (!enable_pml)
5738 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
5739
5740 if (vmx_xsaves_supported()) {
5741 /* Exposing XSAVES only when XSAVE is exposed */
5742 bool xsaves_enabled =
5743 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
5744 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
5745
5746 if (!xsaves_enabled)
5747 exec_control &= ~SECONDARY_EXEC_XSAVES;
5748
5749 if (nested) {
5750 if (xsaves_enabled)
5751 vmx->nested.nested_vmx_secondary_ctls_high |=
5752 SECONDARY_EXEC_XSAVES;
5753 else
5754 vmx->nested.nested_vmx_secondary_ctls_high &=
5755 ~SECONDARY_EXEC_XSAVES;
5756 }
5757 }
5758
5759 if (vmx_rdtscp_supported()) {
5760 bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
5761 if (!rdtscp_enabled)
5762 exec_control &= ~SECONDARY_EXEC_RDTSCP;
5763
5764 if (nested) {
5765 if (rdtscp_enabled)
5766 vmx->nested.nested_vmx_secondary_ctls_high |=
5767 SECONDARY_EXEC_RDTSCP;
5768 else
5769 vmx->nested.nested_vmx_secondary_ctls_high &=
5770 ~SECONDARY_EXEC_RDTSCP;
5771 }
5772 }
5773
5774 if (vmx_invpcid_supported()) {
5775 /* Exposing INVPCID only when PCID is exposed */
5776 bool invpcid_enabled =
5777 guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
5778 guest_cpuid_has(vcpu, X86_FEATURE_PCID);
5779
5780 if (!invpcid_enabled) {
5781 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
5782 guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
5783 }
5784
5785 if (nested) {
5786 if (invpcid_enabled)
5787 vmx->nested.nested_vmx_secondary_ctls_high |=
5788 SECONDARY_EXEC_ENABLE_INVPCID;
5789 else
5790 vmx->nested.nested_vmx_secondary_ctls_high &=
5791 ~SECONDARY_EXEC_ENABLE_INVPCID;
5792 }
5793 }
5794
5795 if (vmx_rdrand_supported()) {
5796 bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
5797 if (rdrand_enabled)
5798 exec_control &= ~SECONDARY_EXEC_RDRAND;
5799
5800 if (nested) {
5801 if (rdrand_enabled)
5802 vmx->nested.nested_vmx_secondary_ctls_high |=
5803 SECONDARY_EXEC_RDRAND;
5804 else
5805 vmx->nested.nested_vmx_secondary_ctls_high &=
5806 ~SECONDARY_EXEC_RDRAND;
5807 }
5808 }
5809
5810 if (vmx_rdseed_supported()) {
5811 bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
5812 if (rdseed_enabled)
5813 exec_control &= ~SECONDARY_EXEC_RDSEED;
5814
5815 if (nested) {
5816 if (rdseed_enabled)
5817 vmx->nested.nested_vmx_secondary_ctls_high |=
5818 SECONDARY_EXEC_RDSEED;
5819 else
5820 vmx->nested.nested_vmx_secondary_ctls_high &=
5821 ~SECONDARY_EXEC_RDSEED;
5822 }
5823 }
5824
5825 vmx->secondary_exec_control = exec_control;
5826 }
5827
ept_set_mmio_spte_mask(void)5828 static void ept_set_mmio_spte_mask(void)
5829 {
5830 /*
5831 * EPT Misconfigurations can be generated if the value of bits 2:0
5832 * of an EPT paging-structure entry is 110b (write/execute).
5833 */
5834 kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
5835 VMX_EPT_MISCONFIG_WX_VALUE);
5836 }
5837
5838 #define VMX_XSS_EXIT_BITMAP 0
5839 /*
5840 * Sets up the vmcs for emulated real mode.
5841 */
vmx_vcpu_setup(struct vcpu_vmx * vmx)5842 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
5843 {
5844 #ifdef CONFIG_X86_64
5845 unsigned long a;
5846 #endif
5847 int i;
5848
5849 /* I/O */
5850 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
5851 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
5852
5853 if (enable_shadow_vmcs) {
5854 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5855 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
5856 }
5857 if (cpu_has_vmx_msr_bitmap())
5858 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
5859
5860 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
5861
5862 /* Control */
5863 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
5864 vmx->hv_deadline_tsc = -1;
5865
5866 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
5867
5868 if (cpu_has_secondary_exec_ctrls()) {
5869 vmx_compute_secondary_exec_control(vmx);
5870 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
5871 vmx->secondary_exec_control);
5872 }
5873
5874 if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
5875 vmcs_write64(EOI_EXIT_BITMAP0, 0);
5876 vmcs_write64(EOI_EXIT_BITMAP1, 0);
5877 vmcs_write64(EOI_EXIT_BITMAP2, 0);
5878 vmcs_write64(EOI_EXIT_BITMAP3, 0);
5879
5880 vmcs_write16(GUEST_INTR_STATUS, 0);
5881
5882 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
5883 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
5884 }
5885
5886 if (ple_gap) {
5887 vmcs_write32(PLE_GAP, ple_gap);
5888 vmx->ple_window = ple_window;
5889 vmx->ple_window_dirty = true;
5890 }
5891
5892 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
5893 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
5894 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
5895
5896 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
5897 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
5898 vmx_set_constant_host_state(vmx);
5899 #ifdef CONFIG_X86_64
5900 rdmsrl(MSR_FS_BASE, a);
5901 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
5902 rdmsrl(MSR_GS_BASE, a);
5903 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
5904 #else
5905 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
5906 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
5907 #endif
5908
5909 if (cpu_has_vmx_vmfunc())
5910 vmcs_write64(VM_FUNCTION_CONTROL, 0);
5911
5912 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
5913 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
5914 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
5915 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
5916 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
5917
5918 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
5919 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
5920
5921 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
5922 u32 index = vmx_msr_index[i];
5923 u32 data_low, data_high;
5924 int j = vmx->nmsrs;
5925
5926 if (rdmsr_safe(index, &data_low, &data_high) < 0)
5927 continue;
5928 if (wrmsr_safe(index, data_low, data_high) < 0)
5929 continue;
5930 vmx->guest_msrs[j].index = i;
5931 vmx->guest_msrs[j].data = 0;
5932 vmx->guest_msrs[j].mask = -1ull;
5933 ++vmx->nmsrs;
5934 }
5935
5936 vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
5937
5938 /* 22.2.1, 20.8.1 */
5939 vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
5940
5941 vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
5942 vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
5943
5944 set_cr4_guest_host_mask(vmx);
5945
5946 if (vmx_xsaves_supported())
5947 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
5948
5949 if (enable_pml) {
5950 ASSERT(vmx->pml_pg);
5951 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
5952 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5953 }
5954
5955 return 0;
5956 }
5957
vmx_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)5958 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
5959 {
5960 struct vcpu_vmx *vmx = to_vmx(vcpu);
5961 struct msr_data apic_base_msr;
5962 u64 cr0;
5963
5964 vmx->rmode.vm86_active = 0;
5965 vmx->spec_ctrl = 0;
5966
5967 vcpu->arch.microcode_version = 0x100000000ULL;
5968 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
5969 kvm_set_cr8(vcpu, 0);
5970
5971 if (!init_event) {
5972 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
5973 MSR_IA32_APICBASE_ENABLE;
5974 if (kvm_vcpu_is_reset_bsp(vcpu))
5975 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
5976 apic_base_msr.host_initiated = true;
5977 kvm_set_apic_base(vcpu, &apic_base_msr);
5978 }
5979
5980 vmx_segment_cache_clear(vmx);
5981
5982 seg_setup(VCPU_SREG_CS);
5983 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
5984 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
5985
5986 seg_setup(VCPU_SREG_DS);
5987 seg_setup(VCPU_SREG_ES);
5988 seg_setup(VCPU_SREG_FS);
5989 seg_setup(VCPU_SREG_GS);
5990 seg_setup(VCPU_SREG_SS);
5991
5992 vmcs_write16(GUEST_TR_SELECTOR, 0);
5993 vmcs_writel(GUEST_TR_BASE, 0);
5994 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
5995 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
5996
5997 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
5998 vmcs_writel(GUEST_LDTR_BASE, 0);
5999 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
6000 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
6001
6002 if (!init_event) {
6003 vmcs_write32(GUEST_SYSENTER_CS, 0);
6004 vmcs_writel(GUEST_SYSENTER_ESP, 0);
6005 vmcs_writel(GUEST_SYSENTER_EIP, 0);
6006 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
6007 }
6008
6009 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6010 kvm_rip_write(vcpu, 0xfff0);
6011
6012 vmcs_writel(GUEST_GDTR_BASE, 0);
6013 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
6014
6015 vmcs_writel(GUEST_IDTR_BASE, 0);
6016 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
6017
6018 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
6019 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
6020 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
6021
6022 setup_msrs(vmx);
6023
6024 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
6025
6026 if (cpu_has_vmx_tpr_shadow() && !init_event) {
6027 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
6028 if (cpu_need_tpr_shadow(vcpu))
6029 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
6030 __pa(vcpu->arch.apic->regs));
6031 vmcs_write32(TPR_THRESHOLD, 0);
6032 }
6033
6034 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6035
6036 if (vmx->vpid != 0)
6037 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
6038
6039 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
6040 vmx->vcpu.arch.cr0 = cr0;
6041 vmx_set_cr0(vcpu, cr0); /* enter rmode */
6042 vmx_set_cr4(vcpu, 0);
6043 vmx_set_efer(vcpu, 0);
6044
6045 update_exception_bitmap(vcpu);
6046
6047 vpid_sync_context(vmx->vpid);
6048 }
6049
6050 /*
6051 * In nested virtualization, check if L1 asked to exit on external interrupts.
6052 * For most existing hypervisors, this will always return true.
6053 */
nested_exit_on_intr(struct kvm_vcpu * vcpu)6054 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
6055 {
6056 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
6057 PIN_BASED_EXT_INTR_MASK;
6058 }
6059
6060 /*
6061 * In nested virtualization, check if L1 has set
6062 * VM_EXIT_ACK_INTR_ON_EXIT
6063 */
nested_exit_intr_ack_set(struct kvm_vcpu * vcpu)6064 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
6065 {
6066 return get_vmcs12(vcpu)->vm_exit_controls &
6067 VM_EXIT_ACK_INTR_ON_EXIT;
6068 }
6069
nested_exit_on_nmi(struct kvm_vcpu * vcpu)6070 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
6071 {
6072 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
6073 PIN_BASED_NMI_EXITING;
6074 }
6075
enable_irq_window(struct kvm_vcpu * vcpu)6076 static void enable_irq_window(struct kvm_vcpu *vcpu)
6077 {
6078 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
6079 CPU_BASED_VIRTUAL_INTR_PENDING);
6080 }
6081
enable_nmi_window(struct kvm_vcpu * vcpu)6082 static void enable_nmi_window(struct kvm_vcpu *vcpu)
6083 {
6084 if (!cpu_has_virtual_nmis() ||
6085 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
6086 enable_irq_window(vcpu);
6087 return;
6088 }
6089
6090 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
6091 CPU_BASED_VIRTUAL_NMI_PENDING);
6092 }
6093
vmx_inject_irq(struct kvm_vcpu * vcpu)6094 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
6095 {
6096 struct vcpu_vmx *vmx = to_vmx(vcpu);
6097 uint32_t intr;
6098 int irq = vcpu->arch.interrupt.nr;
6099
6100 trace_kvm_inj_virq(irq);
6101
6102 ++vcpu->stat.irq_injections;
6103 if (vmx->rmode.vm86_active) {
6104 int inc_eip = 0;
6105 if (vcpu->arch.interrupt.soft)
6106 inc_eip = vcpu->arch.event_exit_inst_len;
6107 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
6108 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6109 return;
6110 }
6111 intr = irq | INTR_INFO_VALID_MASK;
6112 if (vcpu->arch.interrupt.soft) {
6113 intr |= INTR_TYPE_SOFT_INTR;
6114 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
6115 vmx->vcpu.arch.event_exit_inst_len);
6116 } else
6117 intr |= INTR_TYPE_EXT_INTR;
6118 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
6119 }
6120
vmx_inject_nmi(struct kvm_vcpu * vcpu)6121 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
6122 {
6123 struct vcpu_vmx *vmx = to_vmx(vcpu);
6124
6125 if (!cpu_has_virtual_nmis()) {
6126 /*
6127 * Tracking the NMI-blocked state in software is built upon
6128 * finding the next open IRQ window. This, in turn, depends on
6129 * well-behaving guests: They have to keep IRQs disabled at
6130 * least as long as the NMI handler runs. Otherwise we may
6131 * cause NMI nesting, maybe breaking the guest. But as this is
6132 * highly unlikely, we can live with the residual risk.
6133 */
6134 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
6135 vmx->loaded_vmcs->vnmi_blocked_time = 0;
6136 }
6137
6138 ++vcpu->stat.nmi_injections;
6139 vmx->loaded_vmcs->nmi_known_unmasked = false;
6140
6141 if (vmx->rmode.vm86_active) {
6142 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
6143 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6144 return;
6145 }
6146
6147 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
6148 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
6149 }
6150
vmx_get_nmi_mask(struct kvm_vcpu * vcpu)6151 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
6152 {
6153 struct vcpu_vmx *vmx = to_vmx(vcpu);
6154 bool masked;
6155
6156 if (!cpu_has_virtual_nmis())
6157 return vmx->loaded_vmcs->soft_vnmi_blocked;
6158 if (vmx->loaded_vmcs->nmi_known_unmasked)
6159 return false;
6160 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
6161 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
6162 return masked;
6163 }
6164
vmx_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)6165 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
6166 {
6167 struct vcpu_vmx *vmx = to_vmx(vcpu);
6168
6169 if (!cpu_has_virtual_nmis()) {
6170 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
6171 vmx->loaded_vmcs->soft_vnmi_blocked = masked;
6172 vmx->loaded_vmcs->vnmi_blocked_time = 0;
6173 }
6174 } else {
6175 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
6176 if (masked)
6177 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6178 GUEST_INTR_STATE_NMI);
6179 else
6180 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
6181 GUEST_INTR_STATE_NMI);
6182 }
6183 }
6184
vmx_nmi_allowed(struct kvm_vcpu * vcpu)6185 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
6186 {
6187 if (to_vmx(vcpu)->nested.nested_run_pending)
6188 return 0;
6189
6190 if (!cpu_has_virtual_nmis() &&
6191 to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
6192 return 0;
6193
6194 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
6195 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
6196 | GUEST_INTR_STATE_NMI));
6197 }
6198
vmx_interrupt_allowed(struct kvm_vcpu * vcpu)6199 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
6200 {
6201 return (!to_vmx(vcpu)->nested.nested_run_pending &&
6202 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
6203 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
6204 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
6205 }
6206
vmx_set_tss_addr(struct kvm * kvm,unsigned int addr)6207 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
6208 {
6209 int ret;
6210
6211 ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
6212 PAGE_SIZE * 3);
6213 if (ret)
6214 return ret;
6215 kvm->arch.tss_addr = addr;
6216 return init_rmode_tss(kvm);
6217 }
6218
rmode_exception(struct kvm_vcpu * vcpu,int vec)6219 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
6220 {
6221 switch (vec) {
6222 case BP_VECTOR:
6223 /*
6224 * Update instruction length as we may reinject the exception
6225 * from user space while in guest debugging mode.
6226 */
6227 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
6228 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6229 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
6230 return false;
6231 /* fall through */
6232 case DB_VECTOR:
6233 if (vcpu->guest_debug &
6234 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
6235 return false;
6236 /* fall through */
6237 case DE_VECTOR:
6238 case OF_VECTOR:
6239 case BR_VECTOR:
6240 case UD_VECTOR:
6241 case DF_VECTOR:
6242 case SS_VECTOR:
6243 case GP_VECTOR:
6244 case MF_VECTOR:
6245 return true;
6246 break;
6247 }
6248 return false;
6249 }
6250
handle_rmode_exception(struct kvm_vcpu * vcpu,int vec,u32 err_code)6251 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
6252 int vec, u32 err_code)
6253 {
6254 /*
6255 * Instruction with address size override prefix opcode 0x67
6256 * Cause the #SS fault with 0 error code in VM86 mode.
6257 */
6258 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
6259 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
6260 if (vcpu->arch.halt_request) {
6261 vcpu->arch.halt_request = 0;
6262 return kvm_vcpu_halt(vcpu);
6263 }
6264 return 1;
6265 }
6266 return 0;
6267 }
6268
6269 /*
6270 * Forward all other exceptions that are valid in real mode.
6271 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
6272 * the required debugging infrastructure rework.
6273 */
6274 kvm_queue_exception(vcpu, vec);
6275 return 1;
6276 }
6277
6278 /*
6279 * Trigger machine check on the host. We assume all the MSRs are already set up
6280 * by the CPU and that we still run on the same CPU as the MCE occurred on.
6281 * We pass a fake environment to the machine check handler because we want
6282 * the guest to be always treated like user space, no matter what context
6283 * it used internally.
6284 */
kvm_machine_check(void)6285 static void kvm_machine_check(void)
6286 {
6287 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
6288 struct pt_regs regs = {
6289 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
6290 .flags = X86_EFLAGS_IF,
6291 };
6292
6293 do_machine_check(®s, 0);
6294 #endif
6295 }
6296
handle_machine_check(struct kvm_vcpu * vcpu)6297 static int handle_machine_check(struct kvm_vcpu *vcpu)
6298 {
6299 /* already handled by vcpu_run */
6300 return 1;
6301 }
6302
handle_exception(struct kvm_vcpu * vcpu)6303 static int handle_exception(struct kvm_vcpu *vcpu)
6304 {
6305 struct vcpu_vmx *vmx = to_vmx(vcpu);
6306 struct kvm_run *kvm_run = vcpu->run;
6307 u32 intr_info, ex_no, error_code;
6308 unsigned long cr2, rip, dr6;
6309 u32 vect_info;
6310 enum emulation_result er;
6311
6312 vect_info = vmx->idt_vectoring_info;
6313 intr_info = vmx->exit_intr_info;
6314
6315 if (is_machine_check(intr_info))
6316 return handle_machine_check(vcpu);
6317
6318 if (is_nmi(intr_info))
6319 return 1; /* already handled by vmx_vcpu_run() */
6320
6321 if (is_invalid_opcode(intr_info)) {
6322 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
6323 if (er == EMULATE_USER_EXIT)
6324 return 0;
6325 if (er != EMULATE_DONE)
6326 kvm_queue_exception(vcpu, UD_VECTOR);
6327 return 1;
6328 }
6329
6330 error_code = 0;
6331 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
6332 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6333
6334 /*
6335 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
6336 * MMIO, it is better to report an internal error.
6337 * See the comments in vmx_handle_exit.
6338 */
6339 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
6340 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
6341 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6342 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
6343 vcpu->run->internal.ndata = 3;
6344 vcpu->run->internal.data[0] = vect_info;
6345 vcpu->run->internal.data[1] = intr_info;
6346 vcpu->run->internal.data[2] = error_code;
6347 return 0;
6348 }
6349
6350 if (is_page_fault(intr_info)) {
6351 cr2 = vmcs_readl(EXIT_QUALIFICATION);
6352 /* EPT won't cause page fault directly */
6353 WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
6354 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0,
6355 true);
6356 }
6357
6358 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
6359
6360 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
6361 return handle_rmode_exception(vcpu, ex_no, error_code);
6362
6363 switch (ex_no) {
6364 case AC_VECTOR:
6365 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
6366 return 1;
6367 case DB_VECTOR:
6368 dr6 = vmcs_readl(EXIT_QUALIFICATION);
6369 if (!(vcpu->guest_debug &
6370 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
6371 vcpu->arch.dr6 &= ~15;
6372 vcpu->arch.dr6 |= dr6 | DR6_RTM;
6373 if (is_icebp(intr_info))
6374 skip_emulated_instruction(vcpu);
6375
6376 kvm_queue_exception(vcpu, DB_VECTOR);
6377 return 1;
6378 }
6379 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
6380 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
6381 /* fall through */
6382 case BP_VECTOR:
6383 /*
6384 * Update instruction length as we may reinject #BP from
6385 * user space while in guest debugging mode. Reading it for
6386 * #DB as well causes no harm, it is not used in that case.
6387 */
6388 vmx->vcpu.arch.event_exit_inst_len =
6389 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6390 kvm_run->exit_reason = KVM_EXIT_DEBUG;
6391 rip = kvm_rip_read(vcpu);
6392 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
6393 kvm_run->debug.arch.exception = ex_no;
6394 break;
6395 default:
6396 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
6397 kvm_run->ex.exception = ex_no;
6398 kvm_run->ex.error_code = error_code;
6399 break;
6400 }
6401 return 0;
6402 }
6403
handle_external_interrupt(struct kvm_vcpu * vcpu)6404 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
6405 {
6406 ++vcpu->stat.irq_exits;
6407 return 1;
6408 }
6409
handle_triple_fault(struct kvm_vcpu * vcpu)6410 static int handle_triple_fault(struct kvm_vcpu *vcpu)
6411 {
6412 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6413 vcpu->mmio_needed = 0;
6414 return 0;
6415 }
6416
handle_io(struct kvm_vcpu * vcpu)6417 static int handle_io(struct kvm_vcpu *vcpu)
6418 {
6419 unsigned long exit_qualification;
6420 int size, in, string, ret;
6421 unsigned port;
6422
6423 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6424 string = (exit_qualification & 16) != 0;
6425 in = (exit_qualification & 8) != 0;
6426
6427 ++vcpu->stat.io_exits;
6428
6429 if (string || in)
6430 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
6431
6432 port = exit_qualification >> 16;
6433 size = (exit_qualification & 7) + 1;
6434
6435 ret = kvm_skip_emulated_instruction(vcpu);
6436
6437 /*
6438 * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
6439 * KVM_EXIT_DEBUG here.
6440 */
6441 return kvm_fast_pio_out(vcpu, size, port) && ret;
6442 }
6443
6444 static void
vmx_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)6445 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
6446 {
6447 /*
6448 * Patch in the VMCALL instruction:
6449 */
6450 hypercall[0] = 0x0f;
6451 hypercall[1] = 0x01;
6452 hypercall[2] = 0xc1;
6453 }
6454
6455 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
handle_set_cr0(struct kvm_vcpu * vcpu,unsigned long val)6456 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
6457 {
6458 if (is_guest_mode(vcpu)) {
6459 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6460 unsigned long orig_val = val;
6461
6462 /*
6463 * We get here when L2 changed cr0 in a way that did not change
6464 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
6465 * but did change L0 shadowed bits. So we first calculate the
6466 * effective cr0 value that L1 would like to write into the
6467 * hardware. It consists of the L2-owned bits from the new
6468 * value combined with the L1-owned bits from L1's guest_cr0.
6469 */
6470 val = (val & ~vmcs12->cr0_guest_host_mask) |
6471 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
6472
6473 if (!nested_guest_cr0_valid(vcpu, val))
6474 return 1;
6475
6476 if (kvm_set_cr0(vcpu, val))
6477 return 1;
6478 vmcs_writel(CR0_READ_SHADOW, orig_val);
6479 return 0;
6480 } else {
6481 if (to_vmx(vcpu)->nested.vmxon &&
6482 !nested_host_cr0_valid(vcpu, val))
6483 return 1;
6484
6485 return kvm_set_cr0(vcpu, val);
6486 }
6487 }
6488
handle_set_cr4(struct kvm_vcpu * vcpu,unsigned long val)6489 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
6490 {
6491 if (is_guest_mode(vcpu)) {
6492 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6493 unsigned long orig_val = val;
6494
6495 /* analogously to handle_set_cr0 */
6496 val = (val & ~vmcs12->cr4_guest_host_mask) |
6497 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
6498 if (kvm_set_cr4(vcpu, val))
6499 return 1;
6500 vmcs_writel(CR4_READ_SHADOW, orig_val);
6501 return 0;
6502 } else
6503 return kvm_set_cr4(vcpu, val);
6504 }
6505
handle_cr(struct kvm_vcpu * vcpu)6506 static int handle_cr(struct kvm_vcpu *vcpu)
6507 {
6508 unsigned long exit_qualification, val;
6509 int cr;
6510 int reg;
6511 int err;
6512 int ret;
6513
6514 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6515 cr = exit_qualification & 15;
6516 reg = (exit_qualification >> 8) & 15;
6517 switch ((exit_qualification >> 4) & 3) {
6518 case 0: /* mov to cr */
6519 val = kvm_register_readl(vcpu, reg);
6520 trace_kvm_cr_write(cr, val);
6521 switch (cr) {
6522 case 0:
6523 err = handle_set_cr0(vcpu, val);
6524 return kvm_complete_insn_gp(vcpu, err);
6525 case 3:
6526 err = kvm_set_cr3(vcpu, val);
6527 return kvm_complete_insn_gp(vcpu, err);
6528 case 4:
6529 err = handle_set_cr4(vcpu, val);
6530 return kvm_complete_insn_gp(vcpu, err);
6531 case 8: {
6532 u8 cr8_prev = kvm_get_cr8(vcpu);
6533 u8 cr8 = (u8)val;
6534 err = kvm_set_cr8(vcpu, cr8);
6535 ret = kvm_complete_insn_gp(vcpu, err);
6536 if (lapic_in_kernel(vcpu))
6537 return ret;
6538 if (cr8_prev <= cr8)
6539 return ret;
6540 /*
6541 * TODO: we might be squashing a
6542 * KVM_GUESTDBG_SINGLESTEP-triggered
6543 * KVM_EXIT_DEBUG here.
6544 */
6545 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
6546 return 0;
6547 }
6548 }
6549 break;
6550 case 2: /* clts */
6551 WARN_ONCE(1, "Guest should always own CR0.TS");
6552 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
6553 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
6554 return kvm_skip_emulated_instruction(vcpu);
6555 case 1: /*mov from cr*/
6556 switch (cr) {
6557 case 3:
6558 val = kvm_read_cr3(vcpu);
6559 kvm_register_write(vcpu, reg, val);
6560 trace_kvm_cr_read(cr, val);
6561 return kvm_skip_emulated_instruction(vcpu);
6562 case 8:
6563 val = kvm_get_cr8(vcpu);
6564 kvm_register_write(vcpu, reg, val);
6565 trace_kvm_cr_read(cr, val);
6566 return kvm_skip_emulated_instruction(vcpu);
6567 }
6568 break;
6569 case 3: /* lmsw */
6570 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
6571 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
6572 kvm_lmsw(vcpu, val);
6573
6574 return kvm_skip_emulated_instruction(vcpu);
6575 default:
6576 break;
6577 }
6578 vcpu->run->exit_reason = 0;
6579 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
6580 (int)(exit_qualification >> 4) & 3, cr);
6581 return 0;
6582 }
6583
handle_dr(struct kvm_vcpu * vcpu)6584 static int handle_dr(struct kvm_vcpu *vcpu)
6585 {
6586 unsigned long exit_qualification;
6587 int dr, dr7, reg;
6588
6589 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6590 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
6591
6592 /* First, if DR does not exist, trigger UD */
6593 if (!kvm_require_dr(vcpu, dr))
6594 return 1;
6595
6596 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
6597 if (!kvm_require_cpl(vcpu, 0))
6598 return 1;
6599 dr7 = vmcs_readl(GUEST_DR7);
6600 if (dr7 & DR7_GD) {
6601 /*
6602 * As the vm-exit takes precedence over the debug trap, we
6603 * need to emulate the latter, either for the host or the
6604 * guest debugging itself.
6605 */
6606 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6607 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
6608 vcpu->run->debug.arch.dr7 = dr7;
6609 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
6610 vcpu->run->debug.arch.exception = DB_VECTOR;
6611 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
6612 return 0;
6613 } else {
6614 vcpu->arch.dr6 &= ~15;
6615 vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
6616 kvm_queue_exception(vcpu, DB_VECTOR);
6617 return 1;
6618 }
6619 }
6620
6621 if (vcpu->guest_debug == 0) {
6622 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6623 CPU_BASED_MOV_DR_EXITING);
6624
6625 /*
6626 * No more DR vmexits; force a reload of the debug registers
6627 * and reenter on this instruction. The next vmexit will
6628 * retrieve the full state of the debug registers.
6629 */
6630 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
6631 return 1;
6632 }
6633
6634 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
6635 if (exit_qualification & TYPE_MOV_FROM_DR) {
6636 unsigned long val;
6637
6638 if (kvm_get_dr(vcpu, dr, &val))
6639 return 1;
6640 kvm_register_write(vcpu, reg, val);
6641 } else
6642 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
6643 return 1;
6644
6645 return kvm_skip_emulated_instruction(vcpu);
6646 }
6647
vmx_get_dr6(struct kvm_vcpu * vcpu)6648 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
6649 {
6650 return vcpu->arch.dr6;
6651 }
6652
vmx_set_dr6(struct kvm_vcpu * vcpu,unsigned long val)6653 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
6654 {
6655 }
6656
vmx_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)6657 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
6658 {
6659 get_debugreg(vcpu->arch.db[0], 0);
6660 get_debugreg(vcpu->arch.db[1], 1);
6661 get_debugreg(vcpu->arch.db[2], 2);
6662 get_debugreg(vcpu->arch.db[3], 3);
6663 get_debugreg(vcpu->arch.dr6, 6);
6664 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
6665
6666 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
6667 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
6668 }
6669
vmx_set_dr7(struct kvm_vcpu * vcpu,unsigned long val)6670 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
6671 {
6672 vmcs_writel(GUEST_DR7, val);
6673 }
6674
handle_cpuid(struct kvm_vcpu * vcpu)6675 static int handle_cpuid(struct kvm_vcpu *vcpu)
6676 {
6677 return kvm_emulate_cpuid(vcpu);
6678 }
6679
handle_rdmsr(struct kvm_vcpu * vcpu)6680 static int handle_rdmsr(struct kvm_vcpu *vcpu)
6681 {
6682 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6683 struct msr_data msr_info;
6684
6685 msr_info.index = ecx;
6686 msr_info.host_initiated = false;
6687 if (vmx_get_msr(vcpu, &msr_info)) {
6688 trace_kvm_msr_read_ex(ecx);
6689 kvm_inject_gp(vcpu, 0);
6690 return 1;
6691 }
6692
6693 trace_kvm_msr_read(ecx, msr_info.data);
6694
6695 /* FIXME: handling of bits 32:63 of rax, rdx */
6696 vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
6697 vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
6698 return kvm_skip_emulated_instruction(vcpu);
6699 }
6700
handle_wrmsr(struct kvm_vcpu * vcpu)6701 static int handle_wrmsr(struct kvm_vcpu *vcpu)
6702 {
6703 struct msr_data msr;
6704 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6705 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
6706 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
6707
6708 msr.data = data;
6709 msr.index = ecx;
6710 msr.host_initiated = false;
6711 if (kvm_set_msr(vcpu, &msr) != 0) {
6712 trace_kvm_msr_write_ex(ecx, data);
6713 kvm_inject_gp(vcpu, 0);
6714 return 1;
6715 }
6716
6717 trace_kvm_msr_write(ecx, data);
6718 return kvm_skip_emulated_instruction(vcpu);
6719 }
6720
handle_tpr_below_threshold(struct kvm_vcpu * vcpu)6721 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
6722 {
6723 kvm_apic_update_ppr(vcpu);
6724 return 1;
6725 }
6726
handle_interrupt_window(struct kvm_vcpu * vcpu)6727 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
6728 {
6729 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6730 CPU_BASED_VIRTUAL_INTR_PENDING);
6731
6732 kvm_make_request(KVM_REQ_EVENT, vcpu);
6733
6734 ++vcpu->stat.irq_window_exits;
6735 return 1;
6736 }
6737
handle_halt(struct kvm_vcpu * vcpu)6738 static int handle_halt(struct kvm_vcpu *vcpu)
6739 {
6740 return kvm_emulate_halt(vcpu);
6741 }
6742
handle_vmcall(struct kvm_vcpu * vcpu)6743 static int handle_vmcall(struct kvm_vcpu *vcpu)
6744 {
6745 return kvm_emulate_hypercall(vcpu);
6746 }
6747
handle_invd(struct kvm_vcpu * vcpu)6748 static int handle_invd(struct kvm_vcpu *vcpu)
6749 {
6750 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
6751 }
6752
handle_invlpg(struct kvm_vcpu * vcpu)6753 static int handle_invlpg(struct kvm_vcpu *vcpu)
6754 {
6755 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6756
6757 kvm_mmu_invlpg(vcpu, exit_qualification);
6758 return kvm_skip_emulated_instruction(vcpu);
6759 }
6760
handle_rdpmc(struct kvm_vcpu * vcpu)6761 static int handle_rdpmc(struct kvm_vcpu *vcpu)
6762 {
6763 int err;
6764
6765 err = kvm_rdpmc(vcpu);
6766 return kvm_complete_insn_gp(vcpu, err);
6767 }
6768
handle_wbinvd(struct kvm_vcpu * vcpu)6769 static int handle_wbinvd(struct kvm_vcpu *vcpu)
6770 {
6771 return kvm_emulate_wbinvd(vcpu);
6772 }
6773
handle_xsetbv(struct kvm_vcpu * vcpu)6774 static int handle_xsetbv(struct kvm_vcpu *vcpu)
6775 {
6776 u64 new_bv = kvm_read_edx_eax(vcpu);
6777 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
6778
6779 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
6780 return kvm_skip_emulated_instruction(vcpu);
6781 return 1;
6782 }
6783
handle_xsaves(struct kvm_vcpu * vcpu)6784 static int handle_xsaves(struct kvm_vcpu *vcpu)
6785 {
6786 kvm_skip_emulated_instruction(vcpu);
6787 WARN(1, "this should never happen\n");
6788 return 1;
6789 }
6790
handle_xrstors(struct kvm_vcpu * vcpu)6791 static int handle_xrstors(struct kvm_vcpu *vcpu)
6792 {
6793 kvm_skip_emulated_instruction(vcpu);
6794 WARN(1, "this should never happen\n");
6795 return 1;
6796 }
6797
handle_apic_access(struct kvm_vcpu * vcpu)6798 static int handle_apic_access(struct kvm_vcpu *vcpu)
6799 {
6800 if (likely(fasteoi)) {
6801 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6802 int access_type, offset;
6803
6804 access_type = exit_qualification & APIC_ACCESS_TYPE;
6805 offset = exit_qualification & APIC_ACCESS_OFFSET;
6806 /*
6807 * Sane guest uses MOV to write EOI, with written value
6808 * not cared. So make a short-circuit here by avoiding
6809 * heavy instruction emulation.
6810 */
6811 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
6812 (offset == APIC_EOI)) {
6813 kvm_lapic_set_eoi(vcpu);
6814 return kvm_skip_emulated_instruction(vcpu);
6815 }
6816 }
6817 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
6818 }
6819
handle_apic_eoi_induced(struct kvm_vcpu * vcpu)6820 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
6821 {
6822 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6823 int vector = exit_qualification & 0xff;
6824
6825 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
6826 kvm_apic_set_eoi_accelerated(vcpu, vector);
6827 return 1;
6828 }
6829
handle_apic_write(struct kvm_vcpu * vcpu)6830 static int handle_apic_write(struct kvm_vcpu *vcpu)
6831 {
6832 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6833 u32 offset = exit_qualification & 0xfff;
6834
6835 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
6836 kvm_apic_write_nodecode(vcpu, offset);
6837 return 1;
6838 }
6839
handle_task_switch(struct kvm_vcpu * vcpu)6840 static int handle_task_switch(struct kvm_vcpu *vcpu)
6841 {
6842 struct vcpu_vmx *vmx = to_vmx(vcpu);
6843 unsigned long exit_qualification;
6844 bool has_error_code = false;
6845 u32 error_code = 0;
6846 u16 tss_selector;
6847 int reason, type, idt_v, idt_index;
6848
6849 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
6850 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
6851 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
6852
6853 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6854
6855 reason = (u32)exit_qualification >> 30;
6856 if (reason == TASK_SWITCH_GATE && idt_v) {
6857 switch (type) {
6858 case INTR_TYPE_NMI_INTR:
6859 vcpu->arch.nmi_injected = false;
6860 vmx_set_nmi_mask(vcpu, true);
6861 break;
6862 case INTR_TYPE_EXT_INTR:
6863 case INTR_TYPE_SOFT_INTR:
6864 kvm_clear_interrupt_queue(vcpu);
6865 break;
6866 case INTR_TYPE_HARD_EXCEPTION:
6867 if (vmx->idt_vectoring_info &
6868 VECTORING_INFO_DELIVER_CODE_MASK) {
6869 has_error_code = true;
6870 error_code =
6871 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6872 }
6873 /* fall through */
6874 case INTR_TYPE_SOFT_EXCEPTION:
6875 kvm_clear_exception_queue(vcpu);
6876 break;
6877 default:
6878 break;
6879 }
6880 }
6881 tss_selector = exit_qualification;
6882
6883 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
6884 type != INTR_TYPE_EXT_INTR &&
6885 type != INTR_TYPE_NMI_INTR))
6886 skip_emulated_instruction(vcpu);
6887
6888 if (kvm_task_switch(vcpu, tss_selector,
6889 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
6890 has_error_code, error_code) == EMULATE_FAIL) {
6891 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6892 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6893 vcpu->run->internal.ndata = 0;
6894 return 0;
6895 }
6896
6897 /*
6898 * TODO: What about debug traps on tss switch?
6899 * Are we supposed to inject them and update dr6?
6900 */
6901
6902 return 1;
6903 }
6904
handle_ept_violation(struct kvm_vcpu * vcpu)6905 static int handle_ept_violation(struct kvm_vcpu *vcpu)
6906 {
6907 unsigned long exit_qualification;
6908 gpa_t gpa;
6909 u64 error_code;
6910
6911 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6912
6913 /*
6914 * EPT violation happened while executing iret from NMI,
6915 * "blocked by NMI" bit has to be set before next VM entry.
6916 * There are errata that may cause this bit to not be set:
6917 * AAK134, BY25.
6918 */
6919 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
6920 cpu_has_virtual_nmis() &&
6921 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
6922 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
6923
6924 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6925 trace_kvm_page_fault(gpa, exit_qualification);
6926
6927 /* Is it a read fault? */
6928 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
6929 ? PFERR_USER_MASK : 0;
6930 /* Is it a write fault? */
6931 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
6932 ? PFERR_WRITE_MASK : 0;
6933 /* Is it a fetch fault? */
6934 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
6935 ? PFERR_FETCH_MASK : 0;
6936 /* ept page table entry is present? */
6937 error_code |= (exit_qualification &
6938 (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
6939 EPT_VIOLATION_EXECUTABLE))
6940 ? PFERR_PRESENT_MASK : 0;
6941
6942 error_code |= (exit_qualification & 0x100) != 0 ?
6943 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
6944
6945 vcpu->arch.exit_qualification = exit_qualification;
6946 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
6947 }
6948
handle_ept_misconfig(struct kvm_vcpu * vcpu)6949 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
6950 {
6951 int ret;
6952 gpa_t gpa;
6953
6954 /*
6955 * A nested guest cannot optimize MMIO vmexits, because we have an
6956 * nGPA here instead of the required GPA.
6957 */
6958 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6959 if (!is_guest_mode(vcpu) &&
6960 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
6961 trace_kvm_fast_mmio(gpa);
6962 /*
6963 * Doing kvm_skip_emulated_instruction() depends on undefined
6964 * behavior: Intel's manual doesn't mandate
6965 * VM_EXIT_INSTRUCTION_LEN to be set in VMCS when EPT MISCONFIG
6966 * occurs and while on real hardware it was observed to be set,
6967 * other hypervisors (namely Hyper-V) don't set it, we end up
6968 * advancing IP with some random value. Disable fast mmio when
6969 * running nested and keep it for real hardware in hope that
6970 * VM_EXIT_INSTRUCTION_LEN will always be set correctly.
6971 */
6972 if (!static_cpu_has(X86_FEATURE_HYPERVISOR))
6973 return kvm_skip_emulated_instruction(vcpu);
6974 else
6975 return emulate_instruction(vcpu, EMULTYPE_SKIP) ==
6976 EMULATE_DONE;
6977 }
6978
6979 ret = kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
6980 if (ret >= 0)
6981 return ret;
6982
6983 /* It is the real ept misconfig */
6984 WARN_ON(1);
6985
6986 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6987 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
6988
6989 return 0;
6990 }
6991
handle_nmi_window(struct kvm_vcpu * vcpu)6992 static int handle_nmi_window(struct kvm_vcpu *vcpu)
6993 {
6994 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6995 CPU_BASED_VIRTUAL_NMI_PENDING);
6996 ++vcpu->stat.nmi_window_exits;
6997 kvm_make_request(KVM_REQ_EVENT, vcpu);
6998
6999 return 1;
7000 }
7001
handle_invalid_guest_state(struct kvm_vcpu * vcpu)7002 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
7003 {
7004 struct vcpu_vmx *vmx = to_vmx(vcpu);
7005 enum emulation_result err = EMULATE_DONE;
7006 int ret = 1;
7007 u32 cpu_exec_ctrl;
7008 bool intr_window_requested;
7009 unsigned count = 130;
7010
7011 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
7012 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
7013
7014 while (vmx->emulation_required && count-- != 0) {
7015 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
7016 return handle_interrupt_window(&vmx->vcpu);
7017
7018 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
7019 return 1;
7020
7021 err = emulate_instruction(vcpu, 0);
7022
7023 if (err == EMULATE_USER_EXIT) {
7024 ++vcpu->stat.mmio_exits;
7025 ret = 0;
7026 goto out;
7027 }
7028
7029 if (err != EMULATE_DONE)
7030 goto emulation_error;
7031
7032 if (vmx->emulation_required && !vmx->rmode.vm86_active &&
7033 vcpu->arch.exception.pending)
7034 goto emulation_error;
7035
7036 if (vcpu->arch.halt_request) {
7037 vcpu->arch.halt_request = 0;
7038 ret = kvm_vcpu_halt(vcpu);
7039 goto out;
7040 }
7041
7042 if (signal_pending(current))
7043 goto out;
7044 if (need_resched())
7045 schedule();
7046 }
7047
7048 out:
7049 return ret;
7050
7051 emulation_error:
7052 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7053 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7054 vcpu->run->internal.ndata = 0;
7055 return 0;
7056 }
7057
__grow_ple_window(int val)7058 static int __grow_ple_window(int val)
7059 {
7060 if (ple_window_grow < 1)
7061 return ple_window;
7062
7063 val = min(val, ple_window_actual_max);
7064
7065 if (ple_window_grow < ple_window)
7066 val *= ple_window_grow;
7067 else
7068 val += ple_window_grow;
7069
7070 return val;
7071 }
7072
__shrink_ple_window(int val,int modifier,int minimum)7073 static int __shrink_ple_window(int val, int modifier, int minimum)
7074 {
7075 if (modifier < 1)
7076 return ple_window;
7077
7078 if (modifier < ple_window)
7079 val /= modifier;
7080 else
7081 val -= modifier;
7082
7083 return max(val, minimum);
7084 }
7085
grow_ple_window(struct kvm_vcpu * vcpu)7086 static void grow_ple_window(struct kvm_vcpu *vcpu)
7087 {
7088 struct vcpu_vmx *vmx = to_vmx(vcpu);
7089 int old = vmx->ple_window;
7090
7091 vmx->ple_window = __grow_ple_window(old);
7092
7093 if (vmx->ple_window != old)
7094 vmx->ple_window_dirty = true;
7095
7096 trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
7097 }
7098
shrink_ple_window(struct kvm_vcpu * vcpu)7099 static void shrink_ple_window(struct kvm_vcpu *vcpu)
7100 {
7101 struct vcpu_vmx *vmx = to_vmx(vcpu);
7102 int old = vmx->ple_window;
7103
7104 vmx->ple_window = __shrink_ple_window(old,
7105 ple_window_shrink, ple_window);
7106
7107 if (vmx->ple_window != old)
7108 vmx->ple_window_dirty = true;
7109
7110 trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
7111 }
7112
7113 /*
7114 * ple_window_actual_max is computed to be one grow_ple_window() below
7115 * ple_window_max. (See __grow_ple_window for the reason.)
7116 * This prevents overflows, because ple_window_max is int.
7117 * ple_window_max effectively rounded down to a multiple of ple_window_grow in
7118 * this process.
7119 * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
7120 */
update_ple_window_actual_max(void)7121 static void update_ple_window_actual_max(void)
7122 {
7123 ple_window_actual_max =
7124 __shrink_ple_window(max(ple_window_max, ple_window),
7125 ple_window_grow, INT_MIN);
7126 }
7127
7128 /*
7129 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
7130 */
wakeup_handler(void)7131 static void wakeup_handler(void)
7132 {
7133 struct kvm_vcpu *vcpu;
7134 int cpu = smp_processor_id();
7135
7136 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
7137 list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
7138 blocked_vcpu_list) {
7139 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7140
7141 if (pi_test_on(pi_desc) == 1)
7142 kvm_vcpu_kick(vcpu);
7143 }
7144 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
7145 }
7146
vmx_enable_tdp(void)7147 void vmx_enable_tdp(void)
7148 {
7149 kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
7150 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
7151 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
7152 0ull, VMX_EPT_EXECUTABLE_MASK,
7153 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
7154 VMX_EPT_RWX_MASK, 0ull);
7155
7156 ept_set_mmio_spte_mask();
7157 kvm_enable_tdp();
7158 }
7159
hardware_setup(void)7160 static __init int hardware_setup(void)
7161 {
7162 int r = -ENOMEM, i;
7163
7164 rdmsrl_safe(MSR_EFER, &host_efer);
7165
7166 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
7167 kvm_define_shared_msr(i, vmx_msr_index[i]);
7168
7169 for (i = 0; i < VMX_BITMAP_NR; i++) {
7170 vmx_bitmap[i] = (unsigned long *)__get_free_page(GFP_KERNEL);
7171 if (!vmx_bitmap[i])
7172 goto out;
7173 }
7174
7175 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
7176 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
7177
7178 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
7179
7180 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
7181
7182 if (setup_vmcs_config(&vmcs_config) < 0) {
7183 r = -EIO;
7184 goto out;
7185 }
7186
7187 if (boot_cpu_has(X86_FEATURE_NX))
7188 kvm_enable_efer_bits(EFER_NX);
7189
7190 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7191 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7192 enable_vpid = 0;
7193
7194 if (!cpu_has_vmx_shadow_vmcs())
7195 enable_shadow_vmcs = 0;
7196 if (enable_shadow_vmcs)
7197 init_vmcs_shadow_fields();
7198
7199 if (!cpu_has_vmx_ept() ||
7200 !cpu_has_vmx_ept_4levels() ||
7201 !cpu_has_vmx_ept_mt_wb()) {
7202 enable_ept = 0;
7203 enable_unrestricted_guest = 0;
7204 enable_ept_ad_bits = 0;
7205 }
7206
7207 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7208 enable_ept_ad_bits = 0;
7209
7210 if (!cpu_has_vmx_unrestricted_guest())
7211 enable_unrestricted_guest = 0;
7212
7213 if (!cpu_has_vmx_flexpriority())
7214 flexpriority_enabled = 0;
7215
7216 /*
7217 * set_apic_access_page_addr() is used to reload apic access
7218 * page upon invalidation. No need to do anything if not
7219 * using the APIC_ACCESS_ADDR VMCS field.
7220 */
7221 if (!flexpriority_enabled)
7222 kvm_x86_ops->set_apic_access_page_addr = NULL;
7223
7224 if (!cpu_has_vmx_tpr_shadow())
7225 kvm_x86_ops->update_cr8_intercept = NULL;
7226
7227 if (enable_ept && !cpu_has_vmx_ept_2m_page())
7228 kvm_disable_largepages();
7229
7230 if (!cpu_has_vmx_ple())
7231 ple_gap = 0;
7232
7233 if (!cpu_has_vmx_apicv()) {
7234 enable_apicv = 0;
7235 kvm_x86_ops->sync_pir_to_irr = NULL;
7236 }
7237
7238 if (cpu_has_vmx_tsc_scaling()) {
7239 kvm_has_tsc_control = true;
7240 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7241 kvm_tsc_scaling_ratio_frac_bits = 48;
7242 }
7243
7244 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7245
7246 if (enable_ept)
7247 vmx_enable_tdp();
7248 else
7249 kvm_disable_tdp();
7250
7251 update_ple_window_actual_max();
7252
7253 /*
7254 * Only enable PML when hardware supports PML feature, and both EPT
7255 * and EPT A/D bit features are enabled -- PML depends on them to work.
7256 */
7257 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7258 enable_pml = 0;
7259
7260 if (!enable_pml) {
7261 kvm_x86_ops->slot_enable_log_dirty = NULL;
7262 kvm_x86_ops->slot_disable_log_dirty = NULL;
7263 kvm_x86_ops->flush_log_dirty = NULL;
7264 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
7265 }
7266
7267 if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) {
7268 u64 vmx_msr;
7269
7270 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7271 cpu_preemption_timer_multi =
7272 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7273 } else {
7274 kvm_x86_ops->set_hv_timer = NULL;
7275 kvm_x86_ops->cancel_hv_timer = NULL;
7276 }
7277
7278 kvm_set_posted_intr_wakeup_handler(wakeup_handler);
7279
7280 kvm_mce_cap_supported |= MCG_LMCE_P;
7281
7282 r = alloc_kvm_area();
7283 if (r)
7284 goto out;
7285 return 0;
7286
7287 out:
7288 for (i = 0; i < VMX_BITMAP_NR; i++)
7289 free_page((unsigned long)vmx_bitmap[i]);
7290
7291 return r;
7292 }
7293
hardware_unsetup(void)7294 static __exit void hardware_unsetup(void)
7295 {
7296 int i;
7297
7298 for (i = 0; i < VMX_BITMAP_NR; i++)
7299 free_page((unsigned long)vmx_bitmap[i]);
7300
7301 free_kvm_area();
7302 }
7303
7304 /*
7305 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
7306 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
7307 */
handle_pause(struct kvm_vcpu * vcpu)7308 static int handle_pause(struct kvm_vcpu *vcpu)
7309 {
7310 if (ple_gap)
7311 grow_ple_window(vcpu);
7312
7313 /*
7314 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
7315 * VM-execution control is ignored if CPL > 0. OTOH, KVM
7316 * never set PAUSE_EXITING and just set PLE if supported,
7317 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
7318 */
7319 kvm_vcpu_on_spin(vcpu, true);
7320 return kvm_skip_emulated_instruction(vcpu);
7321 }
7322
handle_nop(struct kvm_vcpu * vcpu)7323 static int handle_nop(struct kvm_vcpu *vcpu)
7324 {
7325 return kvm_skip_emulated_instruction(vcpu);
7326 }
7327
handle_mwait(struct kvm_vcpu * vcpu)7328 static int handle_mwait(struct kvm_vcpu *vcpu)
7329 {
7330 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
7331 return handle_nop(vcpu);
7332 }
7333
handle_invalid_op(struct kvm_vcpu * vcpu)7334 static int handle_invalid_op(struct kvm_vcpu *vcpu)
7335 {
7336 kvm_queue_exception(vcpu, UD_VECTOR);
7337 return 1;
7338 }
7339
handle_monitor_trap(struct kvm_vcpu * vcpu)7340 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
7341 {
7342 return 1;
7343 }
7344
handle_monitor(struct kvm_vcpu * vcpu)7345 static int handle_monitor(struct kvm_vcpu *vcpu)
7346 {
7347 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
7348 return handle_nop(vcpu);
7349 }
7350
7351 /*
7352 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
7353 * set the success or error code of an emulated VMX instruction, as specified
7354 * by Vol 2B, VMX Instruction Reference, "Conventions".
7355 */
nested_vmx_succeed(struct kvm_vcpu * vcpu)7356 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
7357 {
7358 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
7359 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
7360 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
7361 }
7362
nested_vmx_failInvalid(struct kvm_vcpu * vcpu)7363 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
7364 {
7365 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
7366 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
7367 X86_EFLAGS_SF | X86_EFLAGS_OF))
7368 | X86_EFLAGS_CF);
7369 }
7370
nested_vmx_failValid(struct kvm_vcpu * vcpu,u32 vm_instruction_error)7371 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
7372 u32 vm_instruction_error)
7373 {
7374 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
7375 /*
7376 * failValid writes the error number to the current VMCS, which
7377 * can't be done there isn't a current VMCS.
7378 */
7379 nested_vmx_failInvalid(vcpu);
7380 return;
7381 }
7382 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
7383 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
7384 X86_EFLAGS_SF | X86_EFLAGS_OF))
7385 | X86_EFLAGS_ZF);
7386 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
7387 /*
7388 * We don't need to force a shadow sync because
7389 * VM_INSTRUCTION_ERROR is not shadowed
7390 */
7391 }
7392
nested_vmx_abort(struct kvm_vcpu * vcpu,u32 indicator)7393 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
7394 {
7395 /* TODO: not to reset guest simply here. */
7396 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7397 pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
7398 }
7399
vmx_preemption_timer_fn(struct hrtimer * timer)7400 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
7401 {
7402 struct vcpu_vmx *vmx =
7403 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
7404
7405 vmx->nested.preemption_timer_expired = true;
7406 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
7407 kvm_vcpu_kick(&vmx->vcpu);
7408
7409 return HRTIMER_NORESTART;
7410 }
7411
7412 /*
7413 * Decode the memory-address operand of a vmx instruction, as recorded on an
7414 * exit caused by such an instruction (run by a guest hypervisor).
7415 * On success, returns 0. When the operand is invalid, returns 1 and throws
7416 * #UD or #GP.
7417 */
get_vmx_mem_address(struct kvm_vcpu * vcpu,unsigned long exit_qualification,u32 vmx_instruction_info,bool wr,gva_t * ret)7418 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
7419 unsigned long exit_qualification,
7420 u32 vmx_instruction_info, bool wr, gva_t *ret)
7421 {
7422 gva_t off;
7423 bool exn;
7424 struct kvm_segment s;
7425
7426 /*
7427 * According to Vol. 3B, "Information for VM Exits Due to Instruction
7428 * Execution", on an exit, vmx_instruction_info holds most of the
7429 * addressing components of the operand. Only the displacement part
7430 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
7431 * For how an actual address is calculated from all these components,
7432 * refer to Vol. 1, "Operand Addressing".
7433 */
7434 int scaling = vmx_instruction_info & 3;
7435 int addr_size = (vmx_instruction_info >> 7) & 7;
7436 bool is_reg = vmx_instruction_info & (1u << 10);
7437 int seg_reg = (vmx_instruction_info >> 15) & 7;
7438 int index_reg = (vmx_instruction_info >> 18) & 0xf;
7439 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
7440 int base_reg = (vmx_instruction_info >> 23) & 0xf;
7441 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
7442
7443 if (is_reg) {
7444 kvm_queue_exception(vcpu, UD_VECTOR);
7445 return 1;
7446 }
7447
7448 /* Addr = segment_base + offset */
7449 /* offset = base + [index * scale] + displacement */
7450 off = exit_qualification; /* holds the displacement */
7451 if (addr_size == 1)
7452 off = (gva_t)sign_extend64(off, 31);
7453 else if (addr_size == 0)
7454 off = (gva_t)sign_extend64(off, 15);
7455 if (base_is_valid)
7456 off += kvm_register_read(vcpu, base_reg);
7457 if (index_is_valid)
7458 off += kvm_register_read(vcpu, index_reg)<<scaling;
7459 vmx_get_segment(vcpu, &s, seg_reg);
7460
7461 /*
7462 * The effective address, i.e. @off, of a memory operand is truncated
7463 * based on the address size of the instruction. Note that this is
7464 * the *effective address*, i.e. the address prior to accounting for
7465 * the segment's base.
7466 */
7467 if (addr_size == 1) /* 32 bit */
7468 off &= 0xffffffff;
7469 else if (addr_size == 0) /* 16 bit */
7470 off &= 0xffff;
7471
7472 /* Checks for #GP/#SS exceptions. */
7473 exn = false;
7474 if (is_long_mode(vcpu)) {
7475 /*
7476 * The virtual/linear address is never truncated in 64-bit
7477 * mode, e.g. a 32-bit address size can yield a 64-bit virtual
7478 * address when using FS/GS with a non-zero base.
7479 */
7480 *ret = s.base + off;
7481
7482 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
7483 * non-canonical form. This is the only check on the memory
7484 * destination for long mode!
7485 */
7486 exn = is_noncanonical_address(*ret, vcpu);
7487 } else if (is_protmode(vcpu)) {
7488 /*
7489 * When not in long mode, the virtual/linear address is
7490 * unconditionally truncated to 32 bits regardless of the
7491 * address size.
7492 */
7493 *ret = (s.base + off) & 0xffffffff;
7494
7495 /* Protected mode: apply checks for segment validity in the
7496 * following order:
7497 * - segment type check (#GP(0) may be thrown)
7498 * - usability check (#GP(0)/#SS(0))
7499 * - limit check (#GP(0)/#SS(0))
7500 */
7501 if (wr)
7502 /* #GP(0) if the destination operand is located in a
7503 * read-only data segment or any code segment.
7504 */
7505 exn = ((s.type & 0xa) == 0 || (s.type & 8));
7506 else
7507 /* #GP(0) if the source operand is located in an
7508 * execute-only code segment
7509 */
7510 exn = ((s.type & 0xa) == 8);
7511 if (exn) {
7512 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7513 return 1;
7514 }
7515 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
7516 */
7517 exn = (s.unusable != 0);
7518
7519 /*
7520 * Protected mode: #GP(0)/#SS(0) if the memory operand is
7521 * outside the segment limit. All CPUs that support VMX ignore
7522 * limit checks for flat segments, i.e. segments with base==0,
7523 * limit==0xffffffff and of type expand-up data or code.
7524 */
7525 if (!(s.base == 0 && s.limit == 0xffffffff &&
7526 ((s.type & 8) || !(s.type & 4))))
7527 exn = exn || (off + sizeof(u64) > s.limit);
7528 }
7529 if (exn) {
7530 kvm_queue_exception_e(vcpu,
7531 seg_reg == VCPU_SREG_SS ?
7532 SS_VECTOR : GP_VECTOR,
7533 0);
7534 return 1;
7535 }
7536
7537 return 0;
7538 }
7539
nested_vmx_get_vmptr(struct kvm_vcpu * vcpu,gpa_t * vmpointer)7540 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
7541 {
7542 gva_t gva;
7543 struct x86_exception e;
7544
7545 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7546 vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
7547 return 1;
7548
7549 if (kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e)) {
7550 kvm_inject_page_fault(vcpu, &e);
7551 return 1;
7552 }
7553
7554 return 0;
7555 }
7556
enter_vmx_operation(struct kvm_vcpu * vcpu)7557 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
7558 {
7559 struct vcpu_vmx *vmx = to_vmx(vcpu);
7560 struct vmcs *shadow_vmcs;
7561 int r;
7562
7563 r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
7564 if (r < 0)
7565 goto out_vmcs02;
7566
7567 vmx->nested.cached_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL);
7568 if (!vmx->nested.cached_vmcs12)
7569 goto out_cached_vmcs12;
7570
7571 if (enable_shadow_vmcs) {
7572 shadow_vmcs = alloc_vmcs();
7573 if (!shadow_vmcs)
7574 goto out_shadow_vmcs;
7575 /* mark vmcs as shadow */
7576 shadow_vmcs->revision_id |= (1u << 31);
7577 /* init shadow vmcs */
7578 vmcs_clear(shadow_vmcs);
7579 vmx->vmcs01.shadow_vmcs = shadow_vmcs;
7580 }
7581
7582 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
7583 HRTIMER_MODE_REL_PINNED);
7584 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
7585
7586 vmx->nested.vpid02 = allocate_vpid();
7587
7588 vmx->nested.vmxon = true;
7589 return 0;
7590
7591 out_shadow_vmcs:
7592 kfree(vmx->nested.cached_vmcs12);
7593
7594 out_cached_vmcs12:
7595 free_loaded_vmcs(&vmx->nested.vmcs02);
7596
7597 out_vmcs02:
7598 return -ENOMEM;
7599 }
7600
7601 /*
7602 * Emulate the VMXON instruction.
7603 * Currently, we just remember that VMX is active, and do not save or even
7604 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
7605 * do not currently need to store anything in that guest-allocated memory
7606 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
7607 * argument is different from the VMXON pointer (which the spec says they do).
7608 */
handle_vmon(struct kvm_vcpu * vcpu)7609 static int handle_vmon(struct kvm_vcpu *vcpu)
7610 {
7611 int ret;
7612 gpa_t vmptr;
7613 struct page *page;
7614 struct vcpu_vmx *vmx = to_vmx(vcpu);
7615 const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
7616 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
7617
7618 /*
7619 * The Intel VMX Instruction Reference lists a bunch of bits that are
7620 * prerequisite to running VMXON, most notably cr4.VMXE must be set to
7621 * 1 (see vmx_set_cr4() for when we allow the guest to set this).
7622 * Otherwise, we should fail with #UD. But most faulting conditions
7623 * have already been checked by hardware, prior to the VM-exit for
7624 * VMXON. We do test guest cr4.VMXE because processor CR4 always has
7625 * that bit set to 1 in non-root mode.
7626 */
7627 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
7628 kvm_queue_exception(vcpu, UD_VECTOR);
7629 return 1;
7630 }
7631
7632 /* CPL=0 must be checked manually. */
7633 if (vmx_get_cpl(vcpu)) {
7634 kvm_inject_gp(vcpu, 0);
7635 return 1;
7636 }
7637
7638 if (vmx->nested.vmxon) {
7639 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
7640 return kvm_skip_emulated_instruction(vcpu);
7641 }
7642
7643 if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
7644 != VMXON_NEEDED_FEATURES) {
7645 kvm_inject_gp(vcpu, 0);
7646 return 1;
7647 }
7648
7649 if (nested_vmx_get_vmptr(vcpu, &vmptr))
7650 return 1;
7651
7652 /*
7653 * SDM 3: 24.11.5
7654 * The first 4 bytes of VMXON region contain the supported
7655 * VMCS revision identifier
7656 *
7657 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
7658 * which replaces physical address width with 32
7659 */
7660 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7661 nested_vmx_failInvalid(vcpu);
7662 return kvm_skip_emulated_instruction(vcpu);
7663 }
7664
7665 page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
7666 if (is_error_page(page)) {
7667 nested_vmx_failInvalid(vcpu);
7668 return kvm_skip_emulated_instruction(vcpu);
7669 }
7670 if (*(u32 *)kmap(page) != VMCS12_REVISION) {
7671 kunmap(page);
7672 kvm_release_page_clean(page);
7673 nested_vmx_failInvalid(vcpu);
7674 return kvm_skip_emulated_instruction(vcpu);
7675 }
7676 kunmap(page);
7677 kvm_release_page_clean(page);
7678
7679 vmx->nested.vmxon_ptr = vmptr;
7680 ret = enter_vmx_operation(vcpu);
7681 if (ret)
7682 return ret;
7683
7684 nested_vmx_succeed(vcpu);
7685 return kvm_skip_emulated_instruction(vcpu);
7686 }
7687
7688 /*
7689 * Intel's VMX Instruction Reference specifies a common set of prerequisites
7690 * for running VMX instructions (except VMXON, whose prerequisites are
7691 * slightly different). It also specifies what exception to inject otherwise.
7692 * Note that many of these exceptions have priority over VM exits, so they
7693 * don't have to be checked again here.
7694 */
nested_vmx_check_permission(struct kvm_vcpu * vcpu)7695 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
7696 {
7697 if (vmx_get_cpl(vcpu)) {
7698 kvm_inject_gp(vcpu, 0);
7699 return 0;
7700 }
7701
7702 if (!to_vmx(vcpu)->nested.vmxon) {
7703 kvm_queue_exception(vcpu, UD_VECTOR);
7704 return 0;
7705 }
7706 return 1;
7707 }
7708
vmx_disable_shadow_vmcs(struct vcpu_vmx * vmx)7709 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
7710 {
7711 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_SHADOW_VMCS);
7712 vmcs_write64(VMCS_LINK_POINTER, -1ull);
7713 vmx->nested.sync_shadow_vmcs = false;
7714 }
7715
nested_release_vmcs12(struct vcpu_vmx * vmx)7716 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
7717 {
7718 if (vmx->nested.current_vmptr == -1ull)
7719 return;
7720
7721 if (enable_shadow_vmcs) {
7722 /* copy to memory all shadowed fields in case
7723 they were modified */
7724 copy_shadow_to_vmcs12(vmx);
7725 vmx_disable_shadow_vmcs(vmx);
7726 }
7727 vmx->nested.posted_intr_nv = -1;
7728
7729 /* Flush VMCS12 to guest memory */
7730 kvm_vcpu_write_guest_page(&vmx->vcpu,
7731 vmx->nested.current_vmptr >> PAGE_SHIFT,
7732 vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
7733
7734 vmx->nested.current_vmptr = -1ull;
7735 }
7736
7737 /*
7738 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
7739 * just stops using VMX.
7740 */
free_nested(struct vcpu_vmx * vmx)7741 static void free_nested(struct vcpu_vmx *vmx)
7742 {
7743 if (!vmx->nested.vmxon)
7744 return;
7745
7746 hrtimer_cancel(&vmx->nested.preemption_timer);
7747 vmx->nested.vmxon = false;
7748 free_vpid(vmx->nested.vpid02);
7749 vmx->nested.posted_intr_nv = -1;
7750 vmx->nested.current_vmptr = -1ull;
7751 if (enable_shadow_vmcs) {
7752 vmx_disable_shadow_vmcs(vmx);
7753 vmcs_clear(vmx->vmcs01.shadow_vmcs);
7754 free_vmcs(vmx->vmcs01.shadow_vmcs);
7755 vmx->vmcs01.shadow_vmcs = NULL;
7756 }
7757 kfree(vmx->nested.cached_vmcs12);
7758 /* Unpin physical memory we referred to in the vmcs02 */
7759 if (vmx->nested.apic_access_page) {
7760 kvm_release_page_dirty(vmx->nested.apic_access_page);
7761 vmx->nested.apic_access_page = NULL;
7762 }
7763 if (vmx->nested.virtual_apic_page) {
7764 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
7765 vmx->nested.virtual_apic_page = NULL;
7766 }
7767 if (vmx->nested.pi_desc_page) {
7768 kunmap(vmx->nested.pi_desc_page);
7769 kvm_release_page_dirty(vmx->nested.pi_desc_page);
7770 vmx->nested.pi_desc_page = NULL;
7771 vmx->nested.pi_desc = NULL;
7772 }
7773
7774 free_loaded_vmcs(&vmx->nested.vmcs02);
7775 }
7776
7777 /* Emulate the VMXOFF instruction */
handle_vmoff(struct kvm_vcpu * vcpu)7778 static int handle_vmoff(struct kvm_vcpu *vcpu)
7779 {
7780 if (!nested_vmx_check_permission(vcpu))
7781 return 1;
7782 free_nested(to_vmx(vcpu));
7783 nested_vmx_succeed(vcpu);
7784 return kvm_skip_emulated_instruction(vcpu);
7785 }
7786
7787 /* Emulate the VMCLEAR instruction */
handle_vmclear(struct kvm_vcpu * vcpu)7788 static int handle_vmclear(struct kvm_vcpu *vcpu)
7789 {
7790 struct vcpu_vmx *vmx = to_vmx(vcpu);
7791 u32 zero = 0;
7792 gpa_t vmptr;
7793
7794 if (!nested_vmx_check_permission(vcpu))
7795 return 1;
7796
7797 if (nested_vmx_get_vmptr(vcpu, &vmptr))
7798 return 1;
7799
7800 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7801 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
7802 return kvm_skip_emulated_instruction(vcpu);
7803 }
7804
7805 if (vmptr == vmx->nested.vmxon_ptr) {
7806 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
7807 return kvm_skip_emulated_instruction(vcpu);
7808 }
7809
7810 if (vmptr == vmx->nested.current_vmptr)
7811 nested_release_vmcs12(vmx);
7812
7813 kvm_vcpu_write_guest(vcpu,
7814 vmptr + offsetof(struct vmcs12, launch_state),
7815 &zero, sizeof(zero));
7816
7817 nested_vmx_succeed(vcpu);
7818 return kvm_skip_emulated_instruction(vcpu);
7819 }
7820
7821 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
7822
7823 /* Emulate the VMLAUNCH instruction */
handle_vmlaunch(struct kvm_vcpu * vcpu)7824 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
7825 {
7826 return nested_vmx_run(vcpu, true);
7827 }
7828
7829 /* Emulate the VMRESUME instruction */
handle_vmresume(struct kvm_vcpu * vcpu)7830 static int handle_vmresume(struct kvm_vcpu *vcpu)
7831 {
7832
7833 return nested_vmx_run(vcpu, false);
7834 }
7835
7836 /*
7837 * Read a vmcs12 field. Since these can have varying lengths and we return
7838 * one type, we chose the biggest type (u64) and zero-extend the return value
7839 * to that size. Note that the caller, handle_vmread, might need to use only
7840 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
7841 * 64-bit fields are to be returned).
7842 */
vmcs12_read_any(struct kvm_vcpu * vcpu,unsigned long field,u64 * ret)7843 static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
7844 unsigned long field, u64 *ret)
7845 {
7846 short offset = vmcs_field_to_offset(field);
7847 char *p;
7848
7849 if (offset < 0)
7850 return offset;
7851
7852 p = ((char *)(get_vmcs12(vcpu))) + offset;
7853
7854 switch (vmcs_field_type(field)) {
7855 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7856 *ret = *((natural_width *)p);
7857 return 0;
7858 case VMCS_FIELD_TYPE_U16:
7859 *ret = *((u16 *)p);
7860 return 0;
7861 case VMCS_FIELD_TYPE_U32:
7862 *ret = *((u32 *)p);
7863 return 0;
7864 case VMCS_FIELD_TYPE_U64:
7865 *ret = *((u64 *)p);
7866 return 0;
7867 default:
7868 WARN_ON(1);
7869 return -ENOENT;
7870 }
7871 }
7872
7873
vmcs12_write_any(struct kvm_vcpu * vcpu,unsigned long field,u64 field_value)7874 static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
7875 unsigned long field, u64 field_value){
7876 short offset = vmcs_field_to_offset(field);
7877 char *p = ((char *) get_vmcs12(vcpu)) + offset;
7878 if (offset < 0)
7879 return offset;
7880
7881 switch (vmcs_field_type(field)) {
7882 case VMCS_FIELD_TYPE_U16:
7883 *(u16 *)p = field_value;
7884 return 0;
7885 case VMCS_FIELD_TYPE_U32:
7886 *(u32 *)p = field_value;
7887 return 0;
7888 case VMCS_FIELD_TYPE_U64:
7889 *(u64 *)p = field_value;
7890 return 0;
7891 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7892 *(natural_width *)p = field_value;
7893 return 0;
7894 default:
7895 WARN_ON(1);
7896 return -ENOENT;
7897 }
7898
7899 }
7900
copy_shadow_to_vmcs12(struct vcpu_vmx * vmx)7901 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
7902 {
7903 int i;
7904 unsigned long field;
7905 u64 field_value;
7906 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
7907 const unsigned long *fields = shadow_read_write_fields;
7908 const int num_fields = max_shadow_read_write_fields;
7909
7910 if (WARN_ON(!shadow_vmcs))
7911 return;
7912
7913 preempt_disable();
7914
7915 vmcs_load(shadow_vmcs);
7916
7917 for (i = 0; i < num_fields; i++) {
7918 field = fields[i];
7919 switch (vmcs_field_type(field)) {
7920 case VMCS_FIELD_TYPE_U16:
7921 field_value = vmcs_read16(field);
7922 break;
7923 case VMCS_FIELD_TYPE_U32:
7924 field_value = vmcs_read32(field);
7925 break;
7926 case VMCS_FIELD_TYPE_U64:
7927 field_value = vmcs_read64(field);
7928 break;
7929 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7930 field_value = vmcs_readl(field);
7931 break;
7932 default:
7933 WARN_ON(1);
7934 continue;
7935 }
7936 vmcs12_write_any(&vmx->vcpu, field, field_value);
7937 }
7938
7939 vmcs_clear(shadow_vmcs);
7940 vmcs_load(vmx->loaded_vmcs->vmcs);
7941
7942 preempt_enable();
7943 }
7944
copy_vmcs12_to_shadow(struct vcpu_vmx * vmx)7945 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
7946 {
7947 const unsigned long *fields[] = {
7948 shadow_read_write_fields,
7949 shadow_read_only_fields
7950 };
7951 const int max_fields[] = {
7952 max_shadow_read_write_fields,
7953 max_shadow_read_only_fields
7954 };
7955 int i, q;
7956 unsigned long field;
7957 u64 field_value = 0;
7958 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
7959
7960 if (WARN_ON(!shadow_vmcs))
7961 return;
7962
7963 vmcs_load(shadow_vmcs);
7964
7965 for (q = 0; q < ARRAY_SIZE(fields); q++) {
7966 for (i = 0; i < max_fields[q]; i++) {
7967 field = fields[q][i];
7968 vmcs12_read_any(&vmx->vcpu, field, &field_value);
7969
7970 switch (vmcs_field_type(field)) {
7971 case VMCS_FIELD_TYPE_U16:
7972 vmcs_write16(field, (u16)field_value);
7973 break;
7974 case VMCS_FIELD_TYPE_U32:
7975 vmcs_write32(field, (u32)field_value);
7976 break;
7977 case VMCS_FIELD_TYPE_U64:
7978 vmcs_write64(field, (u64)field_value);
7979 break;
7980 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7981 vmcs_writel(field, (long)field_value);
7982 break;
7983 default:
7984 WARN_ON(1);
7985 break;
7986 }
7987 }
7988 }
7989
7990 vmcs_clear(shadow_vmcs);
7991 vmcs_load(vmx->loaded_vmcs->vmcs);
7992 }
7993
7994 /*
7995 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
7996 * used before) all generate the same failure when it is missing.
7997 */
nested_vmx_check_vmcs12(struct kvm_vcpu * vcpu)7998 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
7999 {
8000 struct vcpu_vmx *vmx = to_vmx(vcpu);
8001 if (vmx->nested.current_vmptr == -1ull) {
8002 nested_vmx_failInvalid(vcpu);
8003 return 0;
8004 }
8005 return 1;
8006 }
8007
handle_vmread(struct kvm_vcpu * vcpu)8008 static int handle_vmread(struct kvm_vcpu *vcpu)
8009 {
8010 unsigned long field;
8011 u64 field_value;
8012 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8013 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
8014 gva_t gva = 0;
8015 struct x86_exception e;
8016
8017 if (!nested_vmx_check_permission(vcpu))
8018 return 1;
8019
8020 if (!nested_vmx_check_vmcs12(vcpu))
8021 return kvm_skip_emulated_instruction(vcpu);
8022
8023 /* Decode instruction info and find the field to read */
8024 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
8025 /* Read the field, zero-extended to a u64 field_value */
8026 if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
8027 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
8028 return kvm_skip_emulated_instruction(vcpu);
8029 }
8030 /*
8031 * Now copy part of this value to register or memory, as requested.
8032 * Note that the number of bits actually copied is 32 or 64 depending
8033 * on the guest's mode (32 or 64 bit), not on the given field's length.
8034 */
8035 if (vmx_instruction_info & (1u << 10)) {
8036 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
8037 field_value);
8038 } else {
8039 if (get_vmx_mem_address(vcpu, exit_qualification,
8040 vmx_instruction_info, true, &gva))
8041 return 1;
8042 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
8043 if (kvm_write_guest_virt_system(vcpu, gva, &field_value,
8044 (is_long_mode(vcpu) ? 8 : 4),
8045 &e)) {
8046 kvm_inject_page_fault(vcpu, &e);
8047 return 1;
8048 }
8049 }
8050
8051 nested_vmx_succeed(vcpu);
8052 return kvm_skip_emulated_instruction(vcpu);
8053 }
8054
8055
handle_vmwrite(struct kvm_vcpu * vcpu)8056 static int handle_vmwrite(struct kvm_vcpu *vcpu)
8057 {
8058 unsigned long field;
8059 gva_t gva;
8060 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8061 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
8062 /* The value to write might be 32 or 64 bits, depending on L1's long
8063 * mode, and eventually we need to write that into a field of several
8064 * possible lengths. The code below first zero-extends the value to 64
8065 * bit (field_value), and then copies only the appropriate number of
8066 * bits into the vmcs12 field.
8067 */
8068 u64 field_value = 0;
8069 struct x86_exception e;
8070
8071 if (!nested_vmx_check_permission(vcpu))
8072 return 1;
8073
8074 if (!nested_vmx_check_vmcs12(vcpu))
8075 return kvm_skip_emulated_instruction(vcpu);
8076
8077 if (vmx_instruction_info & (1u << 10))
8078 field_value = kvm_register_readl(vcpu,
8079 (((vmx_instruction_info) >> 3) & 0xf));
8080 else {
8081 if (get_vmx_mem_address(vcpu, exit_qualification,
8082 vmx_instruction_info, false, &gva))
8083 return 1;
8084 if (kvm_read_guest_virt(vcpu, gva, &field_value,
8085 (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
8086 kvm_inject_page_fault(vcpu, &e);
8087 return 1;
8088 }
8089 }
8090
8091
8092 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
8093 if (vmcs_field_readonly(field)) {
8094 nested_vmx_failValid(vcpu,
8095 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
8096 return kvm_skip_emulated_instruction(vcpu);
8097 }
8098
8099 if (vmcs12_write_any(vcpu, field, field_value) < 0) {
8100 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
8101 return kvm_skip_emulated_instruction(vcpu);
8102 }
8103
8104 nested_vmx_succeed(vcpu);
8105 return kvm_skip_emulated_instruction(vcpu);
8106 }
8107
set_current_vmptr(struct vcpu_vmx * vmx,gpa_t vmptr)8108 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
8109 {
8110 vmx->nested.current_vmptr = vmptr;
8111 if (enable_shadow_vmcs) {
8112 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
8113 SECONDARY_EXEC_SHADOW_VMCS);
8114 vmcs_write64(VMCS_LINK_POINTER,
8115 __pa(vmx->vmcs01.shadow_vmcs));
8116 vmx->nested.sync_shadow_vmcs = true;
8117 }
8118 }
8119
8120 /* Emulate the VMPTRLD instruction */
handle_vmptrld(struct kvm_vcpu * vcpu)8121 static int handle_vmptrld(struct kvm_vcpu *vcpu)
8122 {
8123 struct vcpu_vmx *vmx = to_vmx(vcpu);
8124 gpa_t vmptr;
8125
8126 if (!nested_vmx_check_permission(vcpu))
8127 return 1;
8128
8129 if (nested_vmx_get_vmptr(vcpu, &vmptr))
8130 return 1;
8131
8132 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
8133 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
8134 return kvm_skip_emulated_instruction(vcpu);
8135 }
8136
8137 if (vmptr == vmx->nested.vmxon_ptr) {
8138 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
8139 return kvm_skip_emulated_instruction(vcpu);
8140 }
8141
8142 if (vmx->nested.current_vmptr != vmptr) {
8143 struct vmcs12 *new_vmcs12;
8144 struct page *page;
8145 page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
8146 if (is_error_page(page)) {
8147 nested_vmx_failInvalid(vcpu);
8148 return kvm_skip_emulated_instruction(vcpu);
8149 }
8150 new_vmcs12 = kmap(page);
8151 if (new_vmcs12->revision_id != VMCS12_REVISION) {
8152 kunmap(page);
8153 kvm_release_page_clean(page);
8154 nested_vmx_failValid(vcpu,
8155 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
8156 return kvm_skip_emulated_instruction(vcpu);
8157 }
8158
8159 nested_release_vmcs12(vmx);
8160 /*
8161 * Load VMCS12 from guest memory since it is not already
8162 * cached.
8163 */
8164 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
8165 kunmap(page);
8166 kvm_release_page_clean(page);
8167
8168 set_current_vmptr(vmx, vmptr);
8169 }
8170
8171 nested_vmx_succeed(vcpu);
8172 return kvm_skip_emulated_instruction(vcpu);
8173 }
8174
8175 /* Emulate the VMPTRST instruction */
handle_vmptrst(struct kvm_vcpu * vcpu)8176 static int handle_vmptrst(struct kvm_vcpu *vcpu)
8177 {
8178 unsigned long exit_qual = vmcs_readl(EXIT_QUALIFICATION);
8179 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
8180 gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
8181 struct x86_exception e;
8182 gva_t gva;
8183
8184 if (!nested_vmx_check_permission(vcpu))
8185 return 1;
8186
8187 if (get_vmx_mem_address(vcpu, exit_qual, instr_info, true, &gva))
8188 return 1;
8189 /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
8190 if (kvm_write_guest_virt_system(vcpu, gva, (void *)¤t_vmptr,
8191 sizeof(gpa_t), &e)) {
8192 kvm_inject_page_fault(vcpu, &e);
8193 return 1;
8194 }
8195 nested_vmx_succeed(vcpu);
8196 return kvm_skip_emulated_instruction(vcpu);
8197 }
8198
8199 /* Emulate the INVEPT instruction */
handle_invept(struct kvm_vcpu * vcpu)8200 static int handle_invept(struct kvm_vcpu *vcpu)
8201 {
8202 struct vcpu_vmx *vmx = to_vmx(vcpu);
8203 u32 vmx_instruction_info, types;
8204 unsigned long type;
8205 gva_t gva;
8206 struct x86_exception e;
8207 struct {
8208 u64 eptp, gpa;
8209 } operand;
8210
8211 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
8212 SECONDARY_EXEC_ENABLE_EPT) ||
8213 !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
8214 kvm_queue_exception(vcpu, UD_VECTOR);
8215 return 1;
8216 }
8217
8218 if (!nested_vmx_check_permission(vcpu))
8219 return 1;
8220
8221 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
8222 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
8223
8224 types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
8225
8226 if (type >= 32 || !(types & (1 << type))) {
8227 nested_vmx_failValid(vcpu,
8228 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
8229 return kvm_skip_emulated_instruction(vcpu);
8230 }
8231
8232 /* According to the Intel VMX instruction reference, the memory
8233 * operand is read even if it isn't needed (e.g., for type==global)
8234 */
8235 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
8236 vmx_instruction_info, false, &gva))
8237 return 1;
8238 if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
8239 kvm_inject_page_fault(vcpu, &e);
8240 return 1;
8241 }
8242
8243 switch (type) {
8244 case VMX_EPT_EXTENT_GLOBAL:
8245 /*
8246 * TODO: track mappings and invalidate
8247 * single context requests appropriately
8248 */
8249 case VMX_EPT_EXTENT_CONTEXT:
8250 kvm_mmu_sync_roots(vcpu);
8251 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
8252 nested_vmx_succeed(vcpu);
8253 break;
8254 default:
8255 BUG_ON(1);
8256 break;
8257 }
8258
8259 return kvm_skip_emulated_instruction(vcpu);
8260 }
8261
handle_invvpid(struct kvm_vcpu * vcpu)8262 static int handle_invvpid(struct kvm_vcpu *vcpu)
8263 {
8264 struct vcpu_vmx *vmx = to_vmx(vcpu);
8265 u32 vmx_instruction_info;
8266 unsigned long type, types;
8267 gva_t gva;
8268 struct x86_exception e;
8269 struct {
8270 u64 vpid;
8271 u64 gla;
8272 } operand;
8273
8274 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
8275 SECONDARY_EXEC_ENABLE_VPID) ||
8276 !(vmx->nested.nested_vmx_vpid_caps & VMX_VPID_INVVPID_BIT)) {
8277 kvm_queue_exception(vcpu, UD_VECTOR);
8278 return 1;
8279 }
8280
8281 if (!nested_vmx_check_permission(vcpu))
8282 return 1;
8283
8284 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
8285 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
8286
8287 types = (vmx->nested.nested_vmx_vpid_caps &
8288 VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
8289
8290 if (type >= 32 || !(types & (1 << type))) {
8291 nested_vmx_failValid(vcpu,
8292 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
8293 return kvm_skip_emulated_instruction(vcpu);
8294 }
8295
8296 /* according to the intel vmx instruction reference, the memory
8297 * operand is read even if it isn't needed (e.g., for type==global)
8298 */
8299 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
8300 vmx_instruction_info, false, &gva))
8301 return 1;
8302 if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
8303 kvm_inject_page_fault(vcpu, &e);
8304 return 1;
8305 }
8306 if (operand.vpid >> 16) {
8307 nested_vmx_failValid(vcpu,
8308 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
8309 return kvm_skip_emulated_instruction(vcpu);
8310 }
8311
8312 switch (type) {
8313 case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
8314 if (is_noncanonical_address(operand.gla, vcpu)) {
8315 nested_vmx_failValid(vcpu,
8316 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
8317 return kvm_skip_emulated_instruction(vcpu);
8318 }
8319 /* fall through */
8320 case VMX_VPID_EXTENT_SINGLE_CONTEXT:
8321 case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
8322 if (!operand.vpid) {
8323 nested_vmx_failValid(vcpu,
8324 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
8325 return kvm_skip_emulated_instruction(vcpu);
8326 }
8327 break;
8328 case VMX_VPID_EXTENT_ALL_CONTEXT:
8329 break;
8330 default:
8331 WARN_ON_ONCE(1);
8332 return kvm_skip_emulated_instruction(vcpu);
8333 }
8334
8335 __vmx_flush_tlb(vcpu, vmx->nested.vpid02, true);
8336 nested_vmx_succeed(vcpu);
8337
8338 return kvm_skip_emulated_instruction(vcpu);
8339 }
8340
handle_pml_full(struct kvm_vcpu * vcpu)8341 static int handle_pml_full(struct kvm_vcpu *vcpu)
8342 {
8343 unsigned long exit_qualification;
8344
8345 trace_kvm_pml_full(vcpu->vcpu_id);
8346
8347 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8348
8349 /*
8350 * PML buffer FULL happened while executing iret from NMI,
8351 * "blocked by NMI" bit has to be set before next VM entry.
8352 */
8353 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
8354 cpu_has_virtual_nmis() &&
8355 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
8356 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
8357 GUEST_INTR_STATE_NMI);
8358
8359 /*
8360 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
8361 * here.., and there's no userspace involvement needed for PML.
8362 */
8363 return 1;
8364 }
8365
handle_preemption_timer(struct kvm_vcpu * vcpu)8366 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
8367 {
8368 kvm_lapic_expired_hv_timer(vcpu);
8369 return 1;
8370 }
8371
valid_ept_address(struct kvm_vcpu * vcpu,u64 address)8372 static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address)
8373 {
8374 struct vcpu_vmx *vmx = to_vmx(vcpu);
8375 int maxphyaddr = cpuid_maxphyaddr(vcpu);
8376
8377 /* Check for memory type validity */
8378 switch (address & VMX_EPTP_MT_MASK) {
8379 case VMX_EPTP_MT_UC:
8380 if (!(vmx->nested.nested_vmx_ept_caps & VMX_EPTP_UC_BIT))
8381 return false;
8382 break;
8383 case VMX_EPTP_MT_WB:
8384 if (!(vmx->nested.nested_vmx_ept_caps & VMX_EPTP_WB_BIT))
8385 return false;
8386 break;
8387 default:
8388 return false;
8389 }
8390
8391 /* only 4 levels page-walk length are valid */
8392 if ((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4)
8393 return false;
8394
8395 /* Reserved bits should not be set */
8396 if (address >> maxphyaddr || ((address >> 7) & 0x1f))
8397 return false;
8398
8399 /* AD, if set, should be supported */
8400 if (address & VMX_EPTP_AD_ENABLE_BIT) {
8401 if (!(vmx->nested.nested_vmx_ept_caps & VMX_EPT_AD_BIT))
8402 return false;
8403 }
8404
8405 return true;
8406 }
8407
nested_vmx_eptp_switching(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)8408 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
8409 struct vmcs12 *vmcs12)
8410 {
8411 u32 index = vcpu->arch.regs[VCPU_REGS_RCX];
8412 u64 address;
8413 bool accessed_dirty;
8414 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
8415
8416 if (!nested_cpu_has_eptp_switching(vmcs12) ||
8417 !nested_cpu_has_ept(vmcs12))
8418 return 1;
8419
8420 if (index >= VMFUNC_EPTP_ENTRIES)
8421 return 1;
8422
8423
8424 if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
8425 &address, index * 8, 8))
8426 return 1;
8427
8428 accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT);
8429
8430 /*
8431 * If the (L2) guest does a vmfunc to the currently
8432 * active ept pointer, we don't have to do anything else
8433 */
8434 if (vmcs12->ept_pointer != address) {
8435 if (!valid_ept_address(vcpu, address))
8436 return 1;
8437
8438 kvm_mmu_unload(vcpu);
8439 mmu->ept_ad = accessed_dirty;
8440 mmu->base_role.ad_disabled = !accessed_dirty;
8441 vmcs12->ept_pointer = address;
8442 /*
8443 * TODO: Check what's the correct approach in case
8444 * mmu reload fails. Currently, we just let the next
8445 * reload potentially fail
8446 */
8447 kvm_mmu_reload(vcpu);
8448 }
8449
8450 return 0;
8451 }
8452
handle_vmfunc(struct kvm_vcpu * vcpu)8453 static int handle_vmfunc(struct kvm_vcpu *vcpu)
8454 {
8455 struct vcpu_vmx *vmx = to_vmx(vcpu);
8456 struct vmcs12 *vmcs12;
8457 u32 function = vcpu->arch.regs[VCPU_REGS_RAX];
8458
8459 /*
8460 * VMFUNC is only supported for nested guests, but we always enable the
8461 * secondary control for simplicity; for non-nested mode, fake that we
8462 * didn't by injecting #UD.
8463 */
8464 if (!is_guest_mode(vcpu)) {
8465 kvm_queue_exception(vcpu, UD_VECTOR);
8466 return 1;
8467 }
8468
8469 vmcs12 = get_vmcs12(vcpu);
8470 if ((vmcs12->vm_function_control & (1 << function)) == 0)
8471 goto fail;
8472
8473 switch (function) {
8474 case 0:
8475 if (nested_vmx_eptp_switching(vcpu, vmcs12))
8476 goto fail;
8477 break;
8478 default:
8479 goto fail;
8480 }
8481 return kvm_skip_emulated_instruction(vcpu);
8482
8483 fail:
8484 nested_vmx_vmexit(vcpu, vmx->exit_reason,
8485 vmcs_read32(VM_EXIT_INTR_INFO),
8486 vmcs_readl(EXIT_QUALIFICATION));
8487 return 1;
8488 }
8489
8490 /*
8491 * The exit handlers return 1 if the exit was handled fully and guest execution
8492 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
8493 * to be done to userspace and return 0.
8494 */
8495 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
8496 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
8497 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
8498 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
8499 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
8500 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
8501 [EXIT_REASON_CR_ACCESS] = handle_cr,
8502 [EXIT_REASON_DR_ACCESS] = handle_dr,
8503 [EXIT_REASON_CPUID] = handle_cpuid,
8504 [EXIT_REASON_MSR_READ] = handle_rdmsr,
8505 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
8506 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
8507 [EXIT_REASON_HLT] = handle_halt,
8508 [EXIT_REASON_INVD] = handle_invd,
8509 [EXIT_REASON_INVLPG] = handle_invlpg,
8510 [EXIT_REASON_RDPMC] = handle_rdpmc,
8511 [EXIT_REASON_VMCALL] = handle_vmcall,
8512 [EXIT_REASON_VMCLEAR] = handle_vmclear,
8513 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
8514 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
8515 [EXIT_REASON_VMPTRST] = handle_vmptrst,
8516 [EXIT_REASON_VMREAD] = handle_vmread,
8517 [EXIT_REASON_VMRESUME] = handle_vmresume,
8518 [EXIT_REASON_VMWRITE] = handle_vmwrite,
8519 [EXIT_REASON_VMOFF] = handle_vmoff,
8520 [EXIT_REASON_VMON] = handle_vmon,
8521 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
8522 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
8523 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
8524 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
8525 [EXIT_REASON_WBINVD] = handle_wbinvd,
8526 [EXIT_REASON_XSETBV] = handle_xsetbv,
8527 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
8528 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
8529 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
8530 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
8531 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
8532 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
8533 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
8534 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
8535 [EXIT_REASON_INVEPT] = handle_invept,
8536 [EXIT_REASON_INVVPID] = handle_invvpid,
8537 [EXIT_REASON_RDRAND] = handle_invalid_op,
8538 [EXIT_REASON_RDSEED] = handle_invalid_op,
8539 [EXIT_REASON_XSAVES] = handle_xsaves,
8540 [EXIT_REASON_XRSTORS] = handle_xrstors,
8541 [EXIT_REASON_PML_FULL] = handle_pml_full,
8542 [EXIT_REASON_VMFUNC] = handle_vmfunc,
8543 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
8544 };
8545
8546 static const int kvm_vmx_max_exit_handlers =
8547 ARRAY_SIZE(kvm_vmx_exit_handlers);
8548
8549 /*
8550 * Return true if an IO instruction with the specified port and size should cause
8551 * a VM-exit into L1.
8552 */
nested_vmx_check_io_bitmaps(struct kvm_vcpu * vcpu,unsigned int port,int size)8553 bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
8554 int size)
8555 {
8556 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8557 gpa_t bitmap, last_bitmap;
8558 u8 b;
8559
8560 last_bitmap = (gpa_t)-1;
8561 b = -1;
8562
8563 while (size > 0) {
8564 if (port < 0x8000)
8565 bitmap = vmcs12->io_bitmap_a;
8566 else if (port < 0x10000)
8567 bitmap = vmcs12->io_bitmap_b;
8568 else
8569 return true;
8570 bitmap += (port & 0x7fff) / 8;
8571
8572 if (last_bitmap != bitmap)
8573 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
8574 return true;
8575 if (b & (1 << (port & 7)))
8576 return true;
8577
8578 port++;
8579 size--;
8580 last_bitmap = bitmap;
8581 }
8582
8583 return false;
8584 }
8585
8586 /*
8587 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
8588 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
8589 * disinterest in the current event (read or write a specific MSR) by using an
8590 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
8591 */
nested_vmx_exit_handled_msr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 exit_reason)8592 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
8593 struct vmcs12 *vmcs12, u32 exit_reason)
8594 {
8595 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
8596 gpa_t bitmap;
8597
8598 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
8599 return true;
8600
8601 /*
8602 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
8603 * for the four combinations of read/write and low/high MSR numbers.
8604 * First we need to figure out which of the four to use:
8605 */
8606 bitmap = vmcs12->msr_bitmap;
8607 if (exit_reason == EXIT_REASON_MSR_WRITE)
8608 bitmap += 2048;
8609 if (msr_index >= 0xc0000000) {
8610 msr_index -= 0xc0000000;
8611 bitmap += 1024;
8612 }
8613
8614 /* Then read the msr_index'th bit from this bitmap: */
8615 if (msr_index < 1024*8) {
8616 unsigned char b;
8617 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
8618 return true;
8619 return 1 & (b >> (msr_index & 7));
8620 } else
8621 return true; /* let L1 handle the wrong parameter */
8622 }
8623
8624 /*
8625 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
8626 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
8627 * intercept (via guest_host_mask etc.) the current event.
8628 */
nested_vmx_exit_handled_cr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)8629 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
8630 struct vmcs12 *vmcs12)
8631 {
8632 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8633 int cr = exit_qualification & 15;
8634 int reg;
8635 unsigned long val;
8636
8637 switch ((exit_qualification >> 4) & 3) {
8638 case 0: /* mov to cr */
8639 reg = (exit_qualification >> 8) & 15;
8640 val = kvm_register_readl(vcpu, reg);
8641 switch (cr) {
8642 case 0:
8643 if (vmcs12->cr0_guest_host_mask &
8644 (val ^ vmcs12->cr0_read_shadow))
8645 return true;
8646 break;
8647 case 3:
8648 if ((vmcs12->cr3_target_count >= 1 &&
8649 vmcs12->cr3_target_value0 == val) ||
8650 (vmcs12->cr3_target_count >= 2 &&
8651 vmcs12->cr3_target_value1 == val) ||
8652 (vmcs12->cr3_target_count >= 3 &&
8653 vmcs12->cr3_target_value2 == val) ||
8654 (vmcs12->cr3_target_count >= 4 &&
8655 vmcs12->cr3_target_value3 == val))
8656 return false;
8657 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
8658 return true;
8659 break;
8660 case 4:
8661 if (vmcs12->cr4_guest_host_mask &
8662 (vmcs12->cr4_read_shadow ^ val))
8663 return true;
8664 break;
8665 case 8:
8666 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
8667 return true;
8668 break;
8669 }
8670 break;
8671 case 2: /* clts */
8672 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
8673 (vmcs12->cr0_read_shadow & X86_CR0_TS))
8674 return true;
8675 break;
8676 case 1: /* mov from cr */
8677 switch (cr) {
8678 case 3:
8679 if (vmcs12->cpu_based_vm_exec_control &
8680 CPU_BASED_CR3_STORE_EXITING)
8681 return true;
8682 break;
8683 case 8:
8684 if (vmcs12->cpu_based_vm_exec_control &
8685 CPU_BASED_CR8_STORE_EXITING)
8686 return true;
8687 break;
8688 }
8689 break;
8690 case 3: /* lmsw */
8691 /*
8692 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
8693 * cr0. Other attempted changes are ignored, with no exit.
8694 */
8695 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
8696 if (vmcs12->cr0_guest_host_mask & 0xe &
8697 (val ^ vmcs12->cr0_read_shadow))
8698 return true;
8699 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
8700 !(vmcs12->cr0_read_shadow & 0x1) &&
8701 (val & 0x1))
8702 return true;
8703 break;
8704 }
8705 return false;
8706 }
8707
8708 /*
8709 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
8710 * should handle it ourselves in L0 (and then continue L2). Only call this
8711 * when in is_guest_mode (L2).
8712 */
nested_vmx_exit_reflected(struct kvm_vcpu * vcpu,u32 exit_reason)8713 static bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
8714 {
8715 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8716 struct vcpu_vmx *vmx = to_vmx(vcpu);
8717 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8718
8719 if (vmx->nested.nested_run_pending)
8720 return false;
8721
8722 if (unlikely(vmx->fail)) {
8723 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
8724 vmcs_read32(VM_INSTRUCTION_ERROR));
8725 return true;
8726 }
8727
8728 /*
8729 * The host physical addresses of some pages of guest memory
8730 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
8731 * Page). The CPU may write to these pages via their host
8732 * physical address while L2 is running, bypassing any
8733 * address-translation-based dirty tracking (e.g. EPT write
8734 * protection).
8735 *
8736 * Mark them dirty on every exit from L2 to prevent them from
8737 * getting out of sync with dirty tracking.
8738 */
8739 nested_mark_vmcs12_pages_dirty(vcpu);
8740
8741 trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
8742 vmcs_readl(EXIT_QUALIFICATION),
8743 vmx->idt_vectoring_info,
8744 intr_info,
8745 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8746 KVM_ISA_VMX);
8747
8748 switch (exit_reason) {
8749 case EXIT_REASON_EXCEPTION_NMI:
8750 if (is_nmi(intr_info))
8751 return false;
8752 else if (is_page_fault(intr_info))
8753 return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
8754 else if (is_no_device(intr_info) &&
8755 !(vmcs12->guest_cr0 & X86_CR0_TS))
8756 return false;
8757 else if (is_debug(intr_info) &&
8758 vcpu->guest_debug &
8759 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
8760 return false;
8761 else if (is_breakpoint(intr_info) &&
8762 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
8763 return false;
8764 return vmcs12->exception_bitmap &
8765 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
8766 case EXIT_REASON_EXTERNAL_INTERRUPT:
8767 return false;
8768 case EXIT_REASON_TRIPLE_FAULT:
8769 return true;
8770 case EXIT_REASON_PENDING_INTERRUPT:
8771 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
8772 case EXIT_REASON_NMI_WINDOW:
8773 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
8774 case EXIT_REASON_TASK_SWITCH:
8775 return true;
8776 case EXIT_REASON_CPUID:
8777 return true;
8778 case EXIT_REASON_HLT:
8779 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
8780 case EXIT_REASON_INVD:
8781 return true;
8782 case EXIT_REASON_INVLPG:
8783 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
8784 case EXIT_REASON_RDPMC:
8785 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
8786 case EXIT_REASON_RDRAND:
8787 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND);
8788 case EXIT_REASON_RDSEED:
8789 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED);
8790 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
8791 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
8792 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
8793 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
8794 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
8795 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
8796 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
8797 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
8798 /*
8799 * VMX instructions trap unconditionally. This allows L1 to
8800 * emulate them for its L2 guest, i.e., allows 3-level nesting!
8801 */
8802 return true;
8803 case EXIT_REASON_CR_ACCESS:
8804 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
8805 case EXIT_REASON_DR_ACCESS:
8806 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
8807 case EXIT_REASON_IO_INSTRUCTION:
8808 return nested_vmx_exit_handled_io(vcpu, vmcs12);
8809 case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
8810 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
8811 case EXIT_REASON_MSR_READ:
8812 case EXIT_REASON_MSR_WRITE:
8813 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
8814 case EXIT_REASON_INVALID_STATE:
8815 return true;
8816 case EXIT_REASON_MWAIT_INSTRUCTION:
8817 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
8818 case EXIT_REASON_MONITOR_TRAP_FLAG:
8819 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
8820 case EXIT_REASON_MONITOR_INSTRUCTION:
8821 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
8822 case EXIT_REASON_PAUSE_INSTRUCTION:
8823 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
8824 nested_cpu_has2(vmcs12,
8825 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
8826 case EXIT_REASON_MCE_DURING_VMENTRY:
8827 return false;
8828 case EXIT_REASON_TPR_BELOW_THRESHOLD:
8829 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
8830 case EXIT_REASON_APIC_ACCESS:
8831 return nested_cpu_has2(vmcs12,
8832 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
8833 case EXIT_REASON_APIC_WRITE:
8834 case EXIT_REASON_EOI_INDUCED:
8835 /* apic_write and eoi_induced should exit unconditionally. */
8836 return true;
8837 case EXIT_REASON_EPT_VIOLATION:
8838 /*
8839 * L0 always deals with the EPT violation. If nested EPT is
8840 * used, and the nested mmu code discovers that the address is
8841 * missing in the guest EPT table (EPT12), the EPT violation
8842 * will be injected with nested_ept_inject_page_fault()
8843 */
8844 return false;
8845 case EXIT_REASON_EPT_MISCONFIG:
8846 /*
8847 * L2 never uses directly L1's EPT, but rather L0's own EPT
8848 * table (shadow on EPT) or a merged EPT table that L0 built
8849 * (EPT on EPT). So any problems with the structure of the
8850 * table is L0's fault.
8851 */
8852 return false;
8853 case EXIT_REASON_INVPCID:
8854 return
8855 nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
8856 nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
8857 case EXIT_REASON_WBINVD:
8858 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
8859 case EXIT_REASON_XSETBV:
8860 return true;
8861 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
8862 /*
8863 * This should never happen, since it is not possible to
8864 * set XSS to a non-zero value---neither in L1 nor in L2.
8865 * If if it were, XSS would have to be checked against
8866 * the XSS exit bitmap in vmcs12.
8867 */
8868 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
8869 case EXIT_REASON_PREEMPTION_TIMER:
8870 return false;
8871 case EXIT_REASON_PML_FULL:
8872 /* We emulate PML support to L1. */
8873 return false;
8874 case EXIT_REASON_VMFUNC:
8875 /* VM functions are emulated through L2->L0 vmexits. */
8876 return false;
8877 default:
8878 return true;
8879 }
8880 }
8881
nested_vmx_reflect_vmexit(struct kvm_vcpu * vcpu,u32 exit_reason)8882 static int nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason)
8883 {
8884 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8885
8886 /*
8887 * At this point, the exit interruption info in exit_intr_info
8888 * is only valid for EXCEPTION_NMI exits. For EXTERNAL_INTERRUPT
8889 * we need to query the in-kernel LAPIC.
8890 */
8891 WARN_ON(exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT);
8892 if ((exit_intr_info &
8893 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
8894 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) {
8895 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8896 vmcs12->vm_exit_intr_error_code =
8897 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
8898 }
8899
8900 nested_vmx_vmexit(vcpu, exit_reason, exit_intr_info,
8901 vmcs_readl(EXIT_QUALIFICATION));
8902 return 1;
8903 }
8904
vmx_get_exit_info(struct kvm_vcpu * vcpu,u64 * info1,u64 * info2)8905 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
8906 {
8907 *info1 = vmcs_readl(EXIT_QUALIFICATION);
8908 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
8909 }
8910
vmx_destroy_pml_buffer(struct vcpu_vmx * vmx)8911 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
8912 {
8913 if (vmx->pml_pg) {
8914 __free_page(vmx->pml_pg);
8915 vmx->pml_pg = NULL;
8916 }
8917 }
8918
vmx_flush_pml_buffer(struct kvm_vcpu * vcpu)8919 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
8920 {
8921 struct vcpu_vmx *vmx = to_vmx(vcpu);
8922 u64 *pml_buf;
8923 u16 pml_idx;
8924
8925 pml_idx = vmcs_read16(GUEST_PML_INDEX);
8926
8927 /* Do nothing if PML buffer is empty */
8928 if (pml_idx == (PML_ENTITY_NUM - 1))
8929 return;
8930
8931 /* PML index always points to next available PML buffer entity */
8932 if (pml_idx >= PML_ENTITY_NUM)
8933 pml_idx = 0;
8934 else
8935 pml_idx++;
8936
8937 pml_buf = page_address(vmx->pml_pg);
8938 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
8939 u64 gpa;
8940
8941 gpa = pml_buf[pml_idx];
8942 WARN_ON(gpa & (PAGE_SIZE - 1));
8943 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
8944 }
8945
8946 /* reset PML index */
8947 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
8948 }
8949
8950 /*
8951 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
8952 * Called before reporting dirty_bitmap to userspace.
8953 */
kvm_flush_pml_buffers(struct kvm * kvm)8954 static void kvm_flush_pml_buffers(struct kvm *kvm)
8955 {
8956 int i;
8957 struct kvm_vcpu *vcpu;
8958 /*
8959 * We only need to kick vcpu out of guest mode here, as PML buffer
8960 * is flushed at beginning of all VMEXITs, and it's obvious that only
8961 * vcpus running in guest are possible to have unflushed GPAs in PML
8962 * buffer.
8963 */
8964 kvm_for_each_vcpu(i, vcpu, kvm)
8965 kvm_vcpu_kick(vcpu);
8966 }
8967
vmx_dump_sel(char * name,uint32_t sel)8968 static void vmx_dump_sel(char *name, uint32_t sel)
8969 {
8970 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
8971 name, vmcs_read16(sel),
8972 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
8973 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
8974 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
8975 }
8976
vmx_dump_dtsel(char * name,uint32_t limit)8977 static void vmx_dump_dtsel(char *name, uint32_t limit)
8978 {
8979 pr_err("%s limit=0x%08x, base=0x%016lx\n",
8980 name, vmcs_read32(limit),
8981 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
8982 }
8983
dump_vmcs(void)8984 static void dump_vmcs(void)
8985 {
8986 u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
8987 u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
8988 u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
8989 u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
8990 u32 secondary_exec_control = 0;
8991 unsigned long cr4 = vmcs_readl(GUEST_CR4);
8992 u64 efer = vmcs_read64(GUEST_IA32_EFER);
8993 int i, n;
8994
8995 if (cpu_has_secondary_exec_ctrls())
8996 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8997
8998 pr_err("*** Guest State ***\n");
8999 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
9000 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
9001 vmcs_readl(CR0_GUEST_HOST_MASK));
9002 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
9003 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
9004 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
9005 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
9006 (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
9007 {
9008 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
9009 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
9010 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
9011 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
9012 }
9013 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
9014 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
9015 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
9016 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
9017 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
9018 vmcs_readl(GUEST_SYSENTER_ESP),
9019 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
9020 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
9021 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
9022 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
9023 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
9024 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
9025 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
9026 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
9027 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
9028 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
9029 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
9030 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
9031 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
9032 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
9033 efer, vmcs_read64(GUEST_IA32_PAT));
9034 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
9035 vmcs_read64(GUEST_IA32_DEBUGCTL),
9036 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
9037 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
9038 pr_err("PerfGlobCtl = 0x%016llx\n",
9039 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
9040 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
9041 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
9042 pr_err("Interruptibility = %08x ActivityState = %08x\n",
9043 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
9044 vmcs_read32(GUEST_ACTIVITY_STATE));
9045 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
9046 pr_err("InterruptStatus = %04x\n",
9047 vmcs_read16(GUEST_INTR_STATUS));
9048
9049 pr_err("*** Host State ***\n");
9050 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
9051 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
9052 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
9053 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
9054 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
9055 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
9056 vmcs_read16(HOST_TR_SELECTOR));
9057 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
9058 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
9059 vmcs_readl(HOST_TR_BASE));
9060 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
9061 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
9062 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
9063 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
9064 vmcs_readl(HOST_CR4));
9065 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
9066 vmcs_readl(HOST_IA32_SYSENTER_ESP),
9067 vmcs_read32(HOST_IA32_SYSENTER_CS),
9068 vmcs_readl(HOST_IA32_SYSENTER_EIP));
9069 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
9070 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
9071 vmcs_read64(HOST_IA32_EFER),
9072 vmcs_read64(HOST_IA32_PAT));
9073 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
9074 pr_err("PerfGlobCtl = 0x%016llx\n",
9075 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
9076
9077 pr_err("*** Control State ***\n");
9078 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
9079 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
9080 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
9081 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
9082 vmcs_read32(EXCEPTION_BITMAP),
9083 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
9084 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
9085 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
9086 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
9087 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
9088 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
9089 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
9090 vmcs_read32(VM_EXIT_INTR_INFO),
9091 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
9092 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
9093 pr_err(" reason=%08x qualification=%016lx\n",
9094 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
9095 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
9096 vmcs_read32(IDT_VECTORING_INFO_FIELD),
9097 vmcs_read32(IDT_VECTORING_ERROR_CODE));
9098 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
9099 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
9100 pr_err("TSC Multiplier = 0x%016llx\n",
9101 vmcs_read64(TSC_MULTIPLIER));
9102 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
9103 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
9104 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
9105 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
9106 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
9107 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
9108 n = vmcs_read32(CR3_TARGET_COUNT);
9109 for (i = 0; i + 1 < n; i += 4)
9110 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
9111 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
9112 i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
9113 if (i < n)
9114 pr_err("CR3 target%u=%016lx\n",
9115 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
9116 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
9117 pr_err("PLE Gap=%08x Window=%08x\n",
9118 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
9119 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
9120 pr_err("Virtual processor ID = 0x%04x\n",
9121 vmcs_read16(VIRTUAL_PROCESSOR_ID));
9122 }
9123
9124 /*
9125 * The guest has exited. See if we can fix it or if we need userspace
9126 * assistance.
9127 */
vmx_handle_exit(struct kvm_vcpu * vcpu)9128 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
9129 {
9130 struct vcpu_vmx *vmx = to_vmx(vcpu);
9131 u32 exit_reason = vmx->exit_reason;
9132 u32 vectoring_info = vmx->idt_vectoring_info;
9133
9134 trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
9135
9136 /*
9137 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
9138 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
9139 * querying dirty_bitmap, we only need to kick all vcpus out of guest
9140 * mode as if vcpus is in root mode, the PML buffer must has been
9141 * flushed already.
9142 */
9143 if (enable_pml)
9144 vmx_flush_pml_buffer(vcpu);
9145
9146 /* If guest state is invalid, start emulating */
9147 if (vmx->emulation_required)
9148 return handle_invalid_guest_state(vcpu);
9149
9150 if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason))
9151 return nested_vmx_reflect_vmexit(vcpu, exit_reason);
9152
9153 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
9154 dump_vmcs();
9155 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
9156 vcpu->run->fail_entry.hardware_entry_failure_reason
9157 = exit_reason;
9158 return 0;
9159 }
9160
9161 if (unlikely(vmx->fail)) {
9162 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
9163 vcpu->run->fail_entry.hardware_entry_failure_reason
9164 = vmcs_read32(VM_INSTRUCTION_ERROR);
9165 return 0;
9166 }
9167
9168 /*
9169 * Note:
9170 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
9171 * delivery event since it indicates guest is accessing MMIO.
9172 * The vm-exit can be triggered again after return to guest that
9173 * will cause infinite loop.
9174 */
9175 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
9176 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
9177 exit_reason != EXIT_REASON_EPT_VIOLATION &&
9178 exit_reason != EXIT_REASON_PML_FULL &&
9179 exit_reason != EXIT_REASON_TASK_SWITCH)) {
9180 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9181 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
9182 vcpu->run->internal.ndata = 3;
9183 vcpu->run->internal.data[0] = vectoring_info;
9184 vcpu->run->internal.data[1] = exit_reason;
9185 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
9186 if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
9187 vcpu->run->internal.ndata++;
9188 vcpu->run->internal.data[3] =
9189 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
9190 }
9191 return 0;
9192 }
9193
9194 if (unlikely(!cpu_has_virtual_nmis() &&
9195 vmx->loaded_vmcs->soft_vnmi_blocked)) {
9196 if (vmx_interrupt_allowed(vcpu)) {
9197 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
9198 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
9199 vcpu->arch.nmi_pending) {
9200 /*
9201 * This CPU don't support us in finding the end of an
9202 * NMI-blocked window if the guest runs with IRQs
9203 * disabled. So we pull the trigger after 1 s of
9204 * futile waiting, but inform the user about this.
9205 */
9206 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
9207 "state on VCPU %d after 1 s timeout\n",
9208 __func__, vcpu->vcpu_id);
9209 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
9210 }
9211 }
9212
9213 if (exit_reason < kvm_vmx_max_exit_handlers
9214 && kvm_vmx_exit_handlers[exit_reason])
9215 return kvm_vmx_exit_handlers[exit_reason](vcpu);
9216 else {
9217 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
9218 exit_reason);
9219 kvm_queue_exception(vcpu, UD_VECTOR);
9220 return 1;
9221 }
9222 }
9223
9224 /*
9225 * Software based L1D cache flush which is used when microcode providing
9226 * the cache control MSR is not loaded.
9227 *
9228 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
9229 * flush it is required to read in 64 KiB because the replacement algorithm
9230 * is not exactly LRU. This could be sized at runtime via topology
9231 * information but as all relevant affected CPUs have 32KiB L1D cache size
9232 * there is no point in doing so.
9233 */
vmx_l1d_flush(struct kvm_vcpu * vcpu)9234 static void vmx_l1d_flush(struct kvm_vcpu *vcpu)
9235 {
9236 int size = PAGE_SIZE << L1D_CACHE_ORDER;
9237
9238 /*
9239 * This code is only executed when the the flush mode is 'cond' or
9240 * 'always'
9241 */
9242 if (static_branch_likely(&vmx_l1d_flush_cond)) {
9243 bool flush_l1d;
9244
9245 /*
9246 * Clear the per-vcpu flush bit, it gets set again
9247 * either from vcpu_run() or from one of the unsafe
9248 * VMEXIT handlers.
9249 */
9250 flush_l1d = vcpu->arch.l1tf_flush_l1d;
9251 vcpu->arch.l1tf_flush_l1d = false;
9252
9253 /*
9254 * Clear the per-cpu flush bit, it gets set again from
9255 * the interrupt handlers.
9256 */
9257 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
9258 kvm_clear_cpu_l1tf_flush_l1d();
9259
9260 if (!flush_l1d)
9261 return;
9262 }
9263
9264 vcpu->stat.l1d_flush++;
9265
9266 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
9267 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
9268 return;
9269 }
9270
9271 asm volatile(
9272 /* First ensure the pages are in the TLB */
9273 "xorl %%eax, %%eax\n"
9274 ".Lpopulate_tlb:\n\t"
9275 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
9276 "addl $4096, %%eax\n\t"
9277 "cmpl %%eax, %[size]\n\t"
9278 "jne .Lpopulate_tlb\n\t"
9279 "xorl %%eax, %%eax\n\t"
9280 "cpuid\n\t"
9281 /* Now fill the cache */
9282 "xorl %%eax, %%eax\n"
9283 ".Lfill_cache:\n"
9284 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
9285 "addl $64, %%eax\n\t"
9286 "cmpl %%eax, %[size]\n\t"
9287 "jne .Lfill_cache\n\t"
9288 "lfence\n"
9289 :: [flush_pages] "r" (vmx_l1d_flush_pages),
9290 [size] "r" (size)
9291 : "eax", "ebx", "ecx", "edx");
9292 }
9293
update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)9294 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
9295 {
9296 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9297
9298 if (is_guest_mode(vcpu) &&
9299 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
9300 return;
9301
9302 if (irr == -1 || tpr < irr) {
9303 vmcs_write32(TPR_THRESHOLD, 0);
9304 return;
9305 }
9306
9307 vmcs_write32(TPR_THRESHOLD, irr);
9308 }
9309
vmx_set_virtual_apic_mode(struct kvm_vcpu * vcpu)9310 static void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
9311 {
9312 u32 sec_exec_control;
9313
9314 if (!lapic_in_kernel(vcpu))
9315 return;
9316
9317 /* Postpone execution until vmcs01 is the current VMCS. */
9318 if (is_guest_mode(vcpu)) {
9319 to_vmx(vcpu)->nested.change_vmcs01_virtual_apic_mode = true;
9320 return;
9321 }
9322
9323 if (!cpu_need_tpr_shadow(vcpu))
9324 return;
9325
9326 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
9327 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
9328 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
9329
9330 switch (kvm_get_apic_mode(vcpu)) {
9331 case LAPIC_MODE_INVALID:
9332 WARN_ONCE(true, "Invalid local APIC state");
9333 case LAPIC_MODE_DISABLED:
9334 break;
9335 case LAPIC_MODE_XAPIC:
9336 if (flexpriority_enabled) {
9337 sec_exec_control |=
9338 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9339 vmx_flush_tlb(vcpu, true);
9340 }
9341 break;
9342 case LAPIC_MODE_X2APIC:
9343 if (cpu_has_vmx_virtualize_x2apic_mode())
9344 sec_exec_control |=
9345 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
9346 break;
9347 }
9348 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
9349
9350 vmx_update_msr_bitmap(vcpu);
9351 }
9352
vmx_set_apic_access_page_addr(struct kvm_vcpu * vcpu,hpa_t hpa)9353 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
9354 {
9355 struct vcpu_vmx *vmx = to_vmx(vcpu);
9356
9357 /*
9358 * Currently we do not handle the nested case where L2 has an
9359 * APIC access page of its own; that page is still pinned.
9360 * Hence, we skip the case where the VCPU is in guest mode _and_
9361 * L1 prepared an APIC access page for L2.
9362 *
9363 * For the case where L1 and L2 share the same APIC access page
9364 * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
9365 * in the vmcs12), this function will only update either the vmcs01
9366 * or the vmcs02. If the former, the vmcs02 will be updated by
9367 * prepare_vmcs02. If the latter, the vmcs01 will be updated in
9368 * the next L2->L1 exit.
9369 */
9370 if (!is_guest_mode(vcpu) ||
9371 !nested_cpu_has2(get_vmcs12(&vmx->vcpu),
9372 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
9373 vmcs_write64(APIC_ACCESS_ADDR, hpa);
9374 vmx_flush_tlb(vcpu, true);
9375 }
9376 }
9377
vmx_hwapic_isr_update(struct kvm_vcpu * vcpu,int max_isr)9378 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
9379 {
9380 u16 status;
9381 u8 old;
9382
9383 if (max_isr == -1)
9384 max_isr = 0;
9385
9386 status = vmcs_read16(GUEST_INTR_STATUS);
9387 old = status >> 8;
9388 if (max_isr != old) {
9389 status &= 0xff;
9390 status |= max_isr << 8;
9391 vmcs_write16(GUEST_INTR_STATUS, status);
9392 }
9393 }
9394
vmx_set_rvi(int vector)9395 static void vmx_set_rvi(int vector)
9396 {
9397 u16 status;
9398 u8 old;
9399
9400 if (vector == -1)
9401 vector = 0;
9402
9403 status = vmcs_read16(GUEST_INTR_STATUS);
9404 old = (u8)status & 0xff;
9405 if ((u8)vector != old) {
9406 status &= ~0xff;
9407 status |= (u8)vector;
9408 vmcs_write16(GUEST_INTR_STATUS, status);
9409 }
9410 }
9411
vmx_hwapic_irr_update(struct kvm_vcpu * vcpu,int max_irr)9412 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
9413 {
9414 if (!is_guest_mode(vcpu)) {
9415 vmx_set_rvi(max_irr);
9416 return;
9417 }
9418
9419 if (max_irr == -1)
9420 return;
9421
9422 /*
9423 * In guest mode. If a vmexit is needed, vmx_check_nested_events
9424 * handles it.
9425 */
9426 if (nested_exit_on_intr(vcpu))
9427 return;
9428
9429 /*
9430 * Else, fall back to pre-APICv interrupt injection since L2
9431 * is run without virtual interrupt delivery.
9432 */
9433 if (!kvm_event_needs_reinjection(vcpu) &&
9434 vmx_interrupt_allowed(vcpu)) {
9435 kvm_queue_interrupt(vcpu, max_irr, false);
9436 vmx_inject_irq(vcpu);
9437 }
9438 }
9439
vmx_sync_pir_to_irr(struct kvm_vcpu * vcpu)9440 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
9441 {
9442 struct vcpu_vmx *vmx = to_vmx(vcpu);
9443 int max_irr;
9444
9445 WARN_ON(!vcpu->arch.apicv_active);
9446 if (pi_test_on(&vmx->pi_desc)) {
9447 pi_clear_on(&vmx->pi_desc);
9448 /*
9449 * IOMMU can write to PIR.ON, so the barrier matters even on UP.
9450 * But on x86 this is just a compiler barrier anyway.
9451 */
9452 smp_mb__after_atomic();
9453 max_irr = kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
9454 } else {
9455 max_irr = kvm_lapic_find_highest_irr(vcpu);
9456 }
9457 vmx_hwapic_irr_update(vcpu, max_irr);
9458 return max_irr;
9459 }
9460
vmx_dy_apicv_has_pending_interrupt(struct kvm_vcpu * vcpu)9461 static bool vmx_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
9462 {
9463 return pi_test_on(vcpu_to_pi_desc(vcpu));
9464 }
9465
vmx_load_eoi_exitmap(struct kvm_vcpu * vcpu,u64 * eoi_exit_bitmap)9466 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
9467 {
9468 if (!kvm_vcpu_apicv_active(vcpu))
9469 return;
9470
9471 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
9472 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
9473 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
9474 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
9475 }
9476
vmx_apicv_post_state_restore(struct kvm_vcpu * vcpu)9477 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
9478 {
9479 struct vcpu_vmx *vmx = to_vmx(vcpu);
9480
9481 pi_clear_on(&vmx->pi_desc);
9482 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
9483 }
9484
vmx_complete_atomic_exit(struct vcpu_vmx * vmx)9485 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
9486 {
9487 u32 exit_intr_info = 0;
9488 u16 basic_exit_reason = (u16)vmx->exit_reason;
9489
9490 if (!(basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
9491 || basic_exit_reason == EXIT_REASON_EXCEPTION_NMI))
9492 return;
9493
9494 if (!(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
9495 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
9496 vmx->exit_intr_info = exit_intr_info;
9497
9498 /* if exit due to PF check for async PF */
9499 if (is_page_fault(exit_intr_info))
9500 vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
9501
9502 /* Handle machine checks before interrupts are enabled */
9503 if (basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY ||
9504 is_machine_check(exit_intr_info))
9505 kvm_machine_check();
9506
9507 /* We need to handle NMIs before interrupts are enabled */
9508 if (is_nmi(exit_intr_info)) {
9509 kvm_before_handle_nmi(&vmx->vcpu);
9510 asm("int $2");
9511 kvm_after_handle_nmi(&vmx->vcpu);
9512 }
9513 }
9514
vmx_handle_external_intr(struct kvm_vcpu * vcpu)9515 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
9516 {
9517 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
9518
9519 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
9520 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
9521 unsigned int vector;
9522 unsigned long entry;
9523 gate_desc *desc;
9524 struct vcpu_vmx *vmx = to_vmx(vcpu);
9525 #ifdef CONFIG_X86_64
9526 unsigned long tmp;
9527 #endif
9528
9529 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
9530 desc = (gate_desc *)vmx->host_idt_base + vector;
9531 entry = gate_offset(desc);
9532 asm volatile(
9533 #ifdef CONFIG_X86_64
9534 "mov %%" _ASM_SP ", %[sp]\n\t"
9535 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
9536 "push $%c[ss]\n\t"
9537 "push %[sp]\n\t"
9538 #endif
9539 "pushf\n\t"
9540 __ASM_SIZE(push) " $%c[cs]\n\t"
9541 CALL_NOSPEC
9542 :
9543 #ifdef CONFIG_X86_64
9544 [sp]"=&r"(tmp),
9545 #endif
9546 ASM_CALL_CONSTRAINT
9547 :
9548 THUNK_TARGET(entry),
9549 [ss]"i"(__KERNEL_DS),
9550 [cs]"i"(__KERNEL_CS)
9551 );
9552 }
9553 }
9554 STACK_FRAME_NON_STANDARD(vmx_handle_external_intr);
9555
vmx_has_emulated_msr(int index)9556 static bool vmx_has_emulated_msr(int index)
9557 {
9558 switch (index) {
9559 case MSR_IA32_SMBASE:
9560 /*
9561 * We cannot do SMM unless we can run the guest in big
9562 * real mode.
9563 */
9564 return enable_unrestricted_guest || emulate_invalid_guest_state;
9565 case MSR_AMD64_VIRT_SPEC_CTRL:
9566 /* This is AMD only. */
9567 return false;
9568 default:
9569 return true;
9570 }
9571 }
9572
vmx_mpx_supported(void)9573 static bool vmx_mpx_supported(void)
9574 {
9575 return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
9576 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
9577 }
9578
vmx_xsaves_supported(void)9579 static bool vmx_xsaves_supported(void)
9580 {
9581 return vmcs_config.cpu_based_2nd_exec_ctrl &
9582 SECONDARY_EXEC_XSAVES;
9583 }
9584
vmx_recover_nmi_blocking(struct vcpu_vmx * vmx)9585 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
9586 {
9587 u32 exit_intr_info;
9588 bool unblock_nmi;
9589 u8 vector;
9590 bool idtv_info_valid;
9591
9592 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
9593
9594 if (cpu_has_virtual_nmis()) {
9595 if (vmx->loaded_vmcs->nmi_known_unmasked)
9596 return;
9597 /*
9598 * Can't use vmx->exit_intr_info since we're not sure what
9599 * the exit reason is.
9600 */
9601 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
9602 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
9603 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
9604 /*
9605 * SDM 3: 27.7.1.2 (September 2008)
9606 * Re-set bit "block by NMI" before VM entry if vmexit caused by
9607 * a guest IRET fault.
9608 * SDM 3: 23.2.2 (September 2008)
9609 * Bit 12 is undefined in any of the following cases:
9610 * If the VM exit sets the valid bit in the IDT-vectoring
9611 * information field.
9612 * If the VM exit is due to a double fault.
9613 */
9614 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
9615 vector != DF_VECTOR && !idtv_info_valid)
9616 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
9617 GUEST_INTR_STATE_NMI);
9618 else
9619 vmx->loaded_vmcs->nmi_known_unmasked =
9620 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
9621 & GUEST_INTR_STATE_NMI);
9622 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
9623 vmx->loaded_vmcs->vnmi_blocked_time +=
9624 ktime_to_ns(ktime_sub(ktime_get(),
9625 vmx->loaded_vmcs->entry_time));
9626 }
9627
__vmx_complete_interrupts(struct kvm_vcpu * vcpu,u32 idt_vectoring_info,int instr_len_field,int error_code_field)9628 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
9629 u32 idt_vectoring_info,
9630 int instr_len_field,
9631 int error_code_field)
9632 {
9633 u8 vector;
9634 int type;
9635 bool idtv_info_valid;
9636
9637 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
9638
9639 vcpu->arch.nmi_injected = false;
9640 kvm_clear_exception_queue(vcpu);
9641 kvm_clear_interrupt_queue(vcpu);
9642
9643 if (!idtv_info_valid)
9644 return;
9645
9646 kvm_make_request(KVM_REQ_EVENT, vcpu);
9647
9648 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
9649 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
9650
9651 switch (type) {
9652 case INTR_TYPE_NMI_INTR:
9653 vcpu->arch.nmi_injected = true;
9654 /*
9655 * SDM 3: 27.7.1.2 (September 2008)
9656 * Clear bit "block by NMI" before VM entry if a NMI
9657 * delivery faulted.
9658 */
9659 vmx_set_nmi_mask(vcpu, false);
9660 break;
9661 case INTR_TYPE_SOFT_EXCEPTION:
9662 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
9663 /* fall through */
9664 case INTR_TYPE_HARD_EXCEPTION:
9665 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
9666 u32 err = vmcs_read32(error_code_field);
9667 kvm_requeue_exception_e(vcpu, vector, err);
9668 } else
9669 kvm_requeue_exception(vcpu, vector);
9670 break;
9671 case INTR_TYPE_SOFT_INTR:
9672 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
9673 /* fall through */
9674 case INTR_TYPE_EXT_INTR:
9675 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
9676 break;
9677 default:
9678 break;
9679 }
9680 }
9681
vmx_complete_interrupts(struct vcpu_vmx * vmx)9682 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
9683 {
9684 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
9685 VM_EXIT_INSTRUCTION_LEN,
9686 IDT_VECTORING_ERROR_CODE);
9687 }
9688
vmx_cancel_injection(struct kvm_vcpu * vcpu)9689 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
9690 {
9691 __vmx_complete_interrupts(vcpu,
9692 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
9693 VM_ENTRY_INSTRUCTION_LEN,
9694 VM_ENTRY_EXCEPTION_ERROR_CODE);
9695
9696 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
9697 }
9698
atomic_switch_perf_msrs(struct vcpu_vmx * vmx)9699 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
9700 {
9701 int i, nr_msrs;
9702 struct perf_guest_switch_msr *msrs;
9703
9704 msrs = perf_guest_get_msrs(&nr_msrs);
9705
9706 if (!msrs)
9707 return;
9708
9709 for (i = 0; i < nr_msrs; i++)
9710 if (msrs[i].host == msrs[i].guest)
9711 clear_atomic_switch_msr(vmx, msrs[i].msr);
9712 else
9713 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
9714 msrs[i].host, false);
9715 }
9716
vmx_arm_hv_timer(struct kvm_vcpu * vcpu)9717 static void vmx_arm_hv_timer(struct kvm_vcpu *vcpu)
9718 {
9719 struct vcpu_vmx *vmx = to_vmx(vcpu);
9720 u64 tscl;
9721 u32 delta_tsc;
9722
9723 if (vmx->hv_deadline_tsc == -1)
9724 return;
9725
9726 tscl = rdtsc();
9727 if (vmx->hv_deadline_tsc > tscl)
9728 /* sure to be 32 bit only because checked on set_hv_timer */
9729 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
9730 cpu_preemption_timer_multi);
9731 else
9732 delta_tsc = 0;
9733
9734 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
9735 }
9736
vmx_vcpu_run(struct kvm_vcpu * vcpu)9737 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
9738 {
9739 struct vcpu_vmx *vmx = to_vmx(vcpu);
9740 unsigned long debugctlmsr, cr3, cr4;
9741
9742 /* Record the guest's net vcpu time for enforced NMI injections. */
9743 if (unlikely(!cpu_has_virtual_nmis() &&
9744 vmx->loaded_vmcs->soft_vnmi_blocked))
9745 vmx->loaded_vmcs->entry_time = ktime_get();
9746
9747 /* Don't enter VMX if guest state is invalid, let the exit handler
9748 start emulation until we arrive back to a valid state */
9749 if (vmx->emulation_required)
9750 return;
9751
9752 if (vmx->ple_window_dirty) {
9753 vmx->ple_window_dirty = false;
9754 vmcs_write32(PLE_WINDOW, vmx->ple_window);
9755 }
9756
9757 if (vmx->nested.sync_shadow_vmcs) {
9758 copy_vmcs12_to_shadow(vmx);
9759 vmx->nested.sync_shadow_vmcs = false;
9760 }
9761
9762 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
9763 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
9764 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
9765 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
9766
9767 cr3 = __get_current_cr3_fast();
9768 if (unlikely(cr3 != vmx->loaded_vmcs->vmcs_host_cr3)) {
9769 vmcs_writel(HOST_CR3, cr3);
9770 vmx->loaded_vmcs->vmcs_host_cr3 = cr3;
9771 }
9772
9773 cr4 = cr4_read_shadow();
9774 if (unlikely(cr4 != vmx->loaded_vmcs->vmcs_host_cr4)) {
9775 vmcs_writel(HOST_CR4, cr4);
9776 vmx->loaded_vmcs->vmcs_host_cr4 = cr4;
9777 }
9778
9779 /* When single-stepping over STI and MOV SS, we must clear the
9780 * corresponding interruptibility bits in the guest state. Otherwise
9781 * vmentry fails as it then expects bit 14 (BS) in pending debug
9782 * exceptions being set, but that's not correct for the guest debugging
9783 * case. */
9784 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9785 vmx_set_interrupt_shadow(vcpu, 0);
9786
9787 if (static_cpu_has(X86_FEATURE_PKU) &&
9788 kvm_read_cr4_bits(vcpu, X86_CR4_PKE) &&
9789 vcpu->arch.pkru != vmx->host_pkru)
9790 __write_pkru(vcpu->arch.pkru);
9791
9792 atomic_switch_perf_msrs(vmx);
9793 debugctlmsr = get_debugctlmsr();
9794
9795 vmx_arm_hv_timer(vcpu);
9796
9797 /*
9798 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
9799 * it's non-zero. Since vmentry is serialising on affected CPUs, there
9800 * is no need to worry about the conditional branch over the wrmsr
9801 * being speculatively taken.
9802 */
9803 x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
9804
9805 vmx->__launched = vmx->loaded_vmcs->launched;
9806
9807 /* L1D Flush includes CPU buffer clear to mitigate MDS */
9808 if (static_branch_unlikely(&vmx_l1d_should_flush))
9809 vmx_l1d_flush(vcpu);
9810 else if (static_branch_unlikely(&mds_user_clear))
9811 mds_clear_cpu_buffers();
9812
9813 asm(
9814 /* Store host registers */
9815 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
9816 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
9817 "push %%" _ASM_CX " \n\t"
9818 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
9819 "je 1f \n\t"
9820 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
9821 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
9822 "1: \n\t"
9823 /* Reload cr2 if changed */
9824 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
9825 "mov %%cr2, %%" _ASM_DX " \n\t"
9826 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
9827 "je 2f \n\t"
9828 "mov %%" _ASM_AX", %%cr2 \n\t"
9829 "2: \n\t"
9830 /* Check if vmlaunch of vmresume is needed */
9831 "cmpl $0, %c[launched](%0) \n\t"
9832 /* Load guest registers. Don't clobber flags. */
9833 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
9834 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
9835 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
9836 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
9837 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
9838 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
9839 #ifdef CONFIG_X86_64
9840 "mov %c[r8](%0), %%r8 \n\t"
9841 "mov %c[r9](%0), %%r9 \n\t"
9842 "mov %c[r10](%0), %%r10 \n\t"
9843 "mov %c[r11](%0), %%r11 \n\t"
9844 "mov %c[r12](%0), %%r12 \n\t"
9845 "mov %c[r13](%0), %%r13 \n\t"
9846 "mov %c[r14](%0), %%r14 \n\t"
9847 "mov %c[r15](%0), %%r15 \n\t"
9848 #endif
9849 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
9850
9851 /* Enter guest mode */
9852 "jne 1f \n\t"
9853 __ex(ASM_VMX_VMLAUNCH) "\n\t"
9854 "jmp 2f \n\t"
9855 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
9856 "2: "
9857 /* Save guest registers, load host registers, keep flags */
9858 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
9859 "pop %0 \n\t"
9860 "setbe %c[fail](%0)\n\t"
9861 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
9862 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
9863 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
9864 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
9865 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
9866 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
9867 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
9868 #ifdef CONFIG_X86_64
9869 "mov %%r8, %c[r8](%0) \n\t"
9870 "mov %%r9, %c[r9](%0) \n\t"
9871 "mov %%r10, %c[r10](%0) \n\t"
9872 "mov %%r11, %c[r11](%0) \n\t"
9873 "mov %%r12, %c[r12](%0) \n\t"
9874 "mov %%r13, %c[r13](%0) \n\t"
9875 "mov %%r14, %c[r14](%0) \n\t"
9876 "mov %%r15, %c[r15](%0) \n\t"
9877 "xor %%r8d, %%r8d \n\t"
9878 "xor %%r9d, %%r9d \n\t"
9879 "xor %%r10d, %%r10d \n\t"
9880 "xor %%r11d, %%r11d \n\t"
9881 "xor %%r12d, %%r12d \n\t"
9882 "xor %%r13d, %%r13d \n\t"
9883 "xor %%r14d, %%r14d \n\t"
9884 "xor %%r15d, %%r15d \n\t"
9885 #endif
9886 "mov %%cr2, %%" _ASM_AX " \n\t"
9887 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
9888
9889 "xor %%eax, %%eax \n\t"
9890 "xor %%ebx, %%ebx \n\t"
9891 "xor %%esi, %%esi \n\t"
9892 "xor %%edi, %%edi \n\t"
9893 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
9894 ".pushsection .rodata \n\t"
9895 ".global vmx_return \n\t"
9896 "vmx_return: " _ASM_PTR " 2b \n\t"
9897 ".popsection"
9898 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
9899 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
9900 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
9901 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
9902 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
9903 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
9904 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
9905 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
9906 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
9907 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
9908 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
9909 #ifdef CONFIG_X86_64
9910 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
9911 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
9912 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
9913 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
9914 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
9915 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
9916 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
9917 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
9918 #endif
9919 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
9920 [wordsize]"i"(sizeof(ulong))
9921 : "cc", "memory"
9922 #ifdef CONFIG_X86_64
9923 , "rax", "rbx", "rdi", "rsi"
9924 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
9925 #else
9926 , "eax", "ebx", "edi", "esi"
9927 #endif
9928 );
9929
9930 /*
9931 * We do not use IBRS in the kernel. If this vCPU has used the
9932 * SPEC_CTRL MSR it may have left it on; save the value and
9933 * turn it off. This is much more efficient than blindly adding
9934 * it to the atomic save/restore list. Especially as the former
9935 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
9936 *
9937 * For non-nested case:
9938 * If the L01 MSR bitmap does not intercept the MSR, then we need to
9939 * save it.
9940 *
9941 * For nested case:
9942 * If the L02 MSR bitmap does not intercept the MSR, then we need to
9943 * save it.
9944 */
9945 if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
9946 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
9947
9948 x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
9949
9950 /* Eliminate branch target predictions from guest mode */
9951 vmexit_fill_RSB();
9952
9953 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
9954 if (debugctlmsr)
9955 update_debugctlmsr(debugctlmsr);
9956
9957 #ifndef CONFIG_X86_64
9958 /*
9959 * The sysexit path does not restore ds/es, so we must set them to
9960 * a reasonable value ourselves.
9961 *
9962 * We can't defer this to vmx_load_host_state() since that function
9963 * may be executed in interrupt context, which saves and restore segments
9964 * around it, nullifying its effect.
9965 */
9966 loadsegment(ds, __USER_DS);
9967 loadsegment(es, __USER_DS);
9968 #endif
9969
9970 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
9971 | (1 << VCPU_EXREG_RFLAGS)
9972 | (1 << VCPU_EXREG_PDPTR)
9973 | (1 << VCPU_EXREG_SEGMENTS)
9974 | (1 << VCPU_EXREG_CR3));
9975 vcpu->arch.regs_dirty = 0;
9976
9977 /*
9978 * eager fpu is enabled if PKEY is supported and CR4 is switched
9979 * back on host, so it is safe to read guest PKRU from current
9980 * XSAVE.
9981 */
9982 if (static_cpu_has(X86_FEATURE_PKU) &&
9983 kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) {
9984 vcpu->arch.pkru = __read_pkru();
9985 if (vcpu->arch.pkru != vmx->host_pkru)
9986 __write_pkru(vmx->host_pkru);
9987 }
9988
9989 /*
9990 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
9991 * we did not inject a still-pending event to L1 now because of
9992 * nested_run_pending, we need to re-enable this bit.
9993 */
9994 if (vmx->nested.nested_run_pending)
9995 kvm_make_request(KVM_REQ_EVENT, vcpu);
9996
9997 vmx->nested.nested_run_pending = 0;
9998 vmx->idt_vectoring_info = 0;
9999
10000 vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON);
10001 if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
10002 return;
10003
10004 vmx->loaded_vmcs->launched = 1;
10005 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
10006
10007 vmx_complete_atomic_exit(vmx);
10008 vmx_recover_nmi_blocking(vmx);
10009 vmx_complete_interrupts(vmx);
10010 }
10011 STACK_FRAME_NON_STANDARD(vmx_vcpu_run);
10012
vmx_switch_vmcs(struct kvm_vcpu * vcpu,struct loaded_vmcs * vmcs)10013 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
10014 {
10015 struct vcpu_vmx *vmx = to_vmx(vcpu);
10016 int cpu;
10017
10018 if (vmx->loaded_vmcs == vmcs)
10019 return;
10020
10021 cpu = get_cpu();
10022 vmx_vcpu_put(vcpu);
10023 vmx->loaded_vmcs = vmcs;
10024 vmx_vcpu_load(vcpu, cpu);
10025 vcpu->cpu = cpu;
10026 put_cpu();
10027 }
10028
10029 /*
10030 * Ensure that the current vmcs of the logical processor is the
10031 * vmcs01 of the vcpu before calling free_nested().
10032 */
vmx_free_vcpu_nested(struct kvm_vcpu * vcpu)10033 static void vmx_free_vcpu_nested(struct kvm_vcpu *vcpu)
10034 {
10035 struct vcpu_vmx *vmx = to_vmx(vcpu);
10036 int r;
10037
10038 r = vcpu_load(vcpu);
10039 BUG_ON(r);
10040 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
10041 free_nested(vmx);
10042 vcpu_put(vcpu);
10043 }
10044
vmx_free_vcpu(struct kvm_vcpu * vcpu)10045 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
10046 {
10047 struct vcpu_vmx *vmx = to_vmx(vcpu);
10048
10049 if (enable_pml)
10050 vmx_destroy_pml_buffer(vmx);
10051 free_vpid(vmx->vpid);
10052 leave_guest_mode(vcpu);
10053 vmx_free_vcpu_nested(vcpu);
10054 free_loaded_vmcs(vmx->loaded_vmcs);
10055 kfree(vmx->guest_msrs);
10056 kvm_vcpu_uninit(vcpu);
10057 kmem_cache_free(kvm_vcpu_cache, vmx);
10058 }
10059
vmx_create_vcpu(struct kvm * kvm,unsigned int id)10060 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
10061 {
10062 int err;
10063 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
10064 unsigned long *msr_bitmap;
10065 int cpu;
10066
10067 if (!vmx)
10068 return ERR_PTR(-ENOMEM);
10069
10070 vmx->vpid = allocate_vpid();
10071
10072 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
10073 if (err)
10074 goto free_vcpu;
10075
10076 err = -ENOMEM;
10077
10078 /*
10079 * If PML is turned on, failure on enabling PML just results in failure
10080 * of creating the vcpu, therefore we can simplify PML logic (by
10081 * avoiding dealing with cases, such as enabling PML partially on vcpus
10082 * for the guest, etc.
10083 */
10084 if (enable_pml) {
10085 vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
10086 if (!vmx->pml_pg)
10087 goto uninit_vcpu;
10088 }
10089
10090 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
10091 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
10092 > PAGE_SIZE);
10093
10094 if (!vmx->guest_msrs)
10095 goto free_pml;
10096
10097 err = alloc_loaded_vmcs(&vmx->vmcs01);
10098 if (err < 0)
10099 goto free_msrs;
10100
10101 msr_bitmap = vmx->vmcs01.msr_bitmap;
10102 vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW);
10103 vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW);
10104 vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
10105 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
10106 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
10107 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
10108 vmx->msr_bitmap_mode = 0;
10109
10110 vmx->loaded_vmcs = &vmx->vmcs01;
10111 cpu = get_cpu();
10112 vmx_vcpu_load(&vmx->vcpu, cpu);
10113 vmx->vcpu.cpu = cpu;
10114 err = vmx_vcpu_setup(vmx);
10115 vmx_vcpu_put(&vmx->vcpu);
10116 put_cpu();
10117 if (err)
10118 goto free_vmcs;
10119 if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
10120 err = alloc_apic_access_page(kvm);
10121 if (err)
10122 goto free_vmcs;
10123 }
10124
10125 if (enable_ept) {
10126 if (!kvm->arch.ept_identity_map_addr)
10127 kvm->arch.ept_identity_map_addr =
10128 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
10129 err = init_rmode_identity_map(kvm);
10130 if (err)
10131 goto free_vmcs;
10132 }
10133
10134 if (nested)
10135 nested_vmx_setup_ctls_msrs(vmx);
10136
10137 vmx->nested.posted_intr_nv = -1;
10138 vmx->nested.current_vmptr = -1ull;
10139
10140 vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
10141
10142 /*
10143 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
10144 * or POSTED_INTR_WAKEUP_VECTOR.
10145 */
10146 vmx->pi_desc.nv = POSTED_INTR_VECTOR;
10147 vmx->pi_desc.sn = 1;
10148
10149 return &vmx->vcpu;
10150
10151 free_vmcs:
10152 free_loaded_vmcs(vmx->loaded_vmcs);
10153 free_msrs:
10154 kfree(vmx->guest_msrs);
10155 free_pml:
10156 vmx_destroy_pml_buffer(vmx);
10157 uninit_vcpu:
10158 kvm_vcpu_uninit(&vmx->vcpu);
10159 free_vcpu:
10160 free_vpid(vmx->vpid);
10161 kmem_cache_free(kvm_vcpu_cache, vmx);
10162 return ERR_PTR(err);
10163 }
10164
10165 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
10166 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
10167
vmx_vm_init(struct kvm * kvm)10168 static int vmx_vm_init(struct kvm *kvm)
10169 {
10170 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
10171 switch (l1tf_mitigation) {
10172 case L1TF_MITIGATION_OFF:
10173 case L1TF_MITIGATION_FLUSH_NOWARN:
10174 /* 'I explicitly don't care' is set */
10175 break;
10176 case L1TF_MITIGATION_FLUSH:
10177 case L1TF_MITIGATION_FLUSH_NOSMT:
10178 case L1TF_MITIGATION_FULL:
10179 /*
10180 * Warn upon starting the first VM in a potentially
10181 * insecure environment.
10182 */
10183 if (sched_smt_active())
10184 pr_warn_once(L1TF_MSG_SMT);
10185 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
10186 pr_warn_once(L1TF_MSG_L1D);
10187 break;
10188 case L1TF_MITIGATION_FULL_FORCE:
10189 /* Flush is enforced */
10190 break;
10191 }
10192 }
10193 return 0;
10194 }
10195
vmx_check_processor_compat(void * rtn)10196 static void __init vmx_check_processor_compat(void *rtn)
10197 {
10198 struct vmcs_config vmcs_conf;
10199
10200 *(int *)rtn = 0;
10201 if (setup_vmcs_config(&vmcs_conf) < 0)
10202 *(int *)rtn = -EIO;
10203 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
10204 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
10205 smp_processor_id());
10206 *(int *)rtn = -EIO;
10207 }
10208 }
10209
vmx_get_mt_mask(struct kvm_vcpu * vcpu,gfn_t gfn,bool is_mmio)10210 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
10211 {
10212 u8 cache;
10213 u64 ipat = 0;
10214
10215 /* For VT-d and EPT combination
10216 * 1. MMIO: always map as UC
10217 * 2. EPT with VT-d:
10218 * a. VT-d without snooping control feature: can't guarantee the
10219 * result, try to trust guest.
10220 * b. VT-d with snooping control feature: snooping control feature of
10221 * VT-d engine can guarantee the cache correctness. Just set it
10222 * to WB to keep consistent with host. So the same as item 3.
10223 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
10224 * consistent with host MTRR
10225 */
10226 if (is_mmio) {
10227 cache = MTRR_TYPE_UNCACHABLE;
10228 goto exit;
10229 }
10230
10231 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
10232 ipat = VMX_EPT_IPAT_BIT;
10233 cache = MTRR_TYPE_WRBACK;
10234 goto exit;
10235 }
10236
10237 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
10238 ipat = VMX_EPT_IPAT_BIT;
10239 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
10240 cache = MTRR_TYPE_WRBACK;
10241 else
10242 cache = MTRR_TYPE_UNCACHABLE;
10243 goto exit;
10244 }
10245
10246 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
10247
10248 exit:
10249 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
10250 }
10251
vmx_get_lpage_level(void)10252 static int vmx_get_lpage_level(void)
10253 {
10254 if (enable_ept && !cpu_has_vmx_ept_1g_page())
10255 return PT_DIRECTORY_LEVEL;
10256 else
10257 /* For shadow and EPT supported 1GB page */
10258 return PT_PDPE_LEVEL;
10259 }
10260
vmcs_set_secondary_exec_control(u32 new_ctl)10261 static void vmcs_set_secondary_exec_control(u32 new_ctl)
10262 {
10263 /*
10264 * These bits in the secondary execution controls field
10265 * are dynamic, the others are mostly based on the hypervisor
10266 * architecture and the guest's CPUID. Do not touch the
10267 * dynamic bits.
10268 */
10269 u32 mask =
10270 SECONDARY_EXEC_SHADOW_VMCS |
10271 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
10272 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
10273
10274 u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
10275
10276 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
10277 (new_ctl & ~mask) | (cur_ctl & mask));
10278 }
10279
10280 /*
10281 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
10282 * (indicating "allowed-1") if they are supported in the guest's CPUID.
10283 */
nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu * vcpu)10284 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
10285 {
10286 struct vcpu_vmx *vmx = to_vmx(vcpu);
10287 struct kvm_cpuid_entry2 *entry;
10288
10289 vmx->nested.nested_vmx_cr0_fixed1 = 0xffffffff;
10290 vmx->nested.nested_vmx_cr4_fixed1 = X86_CR4_PCE;
10291
10292 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
10293 if (entry && (entry->_reg & (_cpuid_mask))) \
10294 vmx->nested.nested_vmx_cr4_fixed1 |= (_cr4_mask); \
10295 } while (0)
10296
10297 entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
10298 cr4_fixed1_update(X86_CR4_VME, edx, bit(X86_FEATURE_VME));
10299 cr4_fixed1_update(X86_CR4_PVI, edx, bit(X86_FEATURE_VME));
10300 cr4_fixed1_update(X86_CR4_TSD, edx, bit(X86_FEATURE_TSC));
10301 cr4_fixed1_update(X86_CR4_DE, edx, bit(X86_FEATURE_DE));
10302 cr4_fixed1_update(X86_CR4_PSE, edx, bit(X86_FEATURE_PSE));
10303 cr4_fixed1_update(X86_CR4_PAE, edx, bit(X86_FEATURE_PAE));
10304 cr4_fixed1_update(X86_CR4_MCE, edx, bit(X86_FEATURE_MCE));
10305 cr4_fixed1_update(X86_CR4_PGE, edx, bit(X86_FEATURE_PGE));
10306 cr4_fixed1_update(X86_CR4_OSFXSR, edx, bit(X86_FEATURE_FXSR));
10307 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
10308 cr4_fixed1_update(X86_CR4_VMXE, ecx, bit(X86_FEATURE_VMX));
10309 cr4_fixed1_update(X86_CR4_SMXE, ecx, bit(X86_FEATURE_SMX));
10310 cr4_fixed1_update(X86_CR4_PCIDE, ecx, bit(X86_FEATURE_PCID));
10311 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, bit(X86_FEATURE_XSAVE));
10312
10313 entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
10314 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, bit(X86_FEATURE_FSGSBASE));
10315 cr4_fixed1_update(X86_CR4_SMEP, ebx, bit(X86_FEATURE_SMEP));
10316 cr4_fixed1_update(X86_CR4_SMAP, ebx, bit(X86_FEATURE_SMAP));
10317 cr4_fixed1_update(X86_CR4_PKE, ecx, bit(X86_FEATURE_PKU));
10318 /* TODO: Use X86_CR4_UMIP and X86_FEATURE_UMIP macros */
10319 cr4_fixed1_update(bit(11), ecx, bit(2));
10320
10321 #undef cr4_fixed1_update
10322 }
10323
vmx_cpuid_update(struct kvm_vcpu * vcpu)10324 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
10325 {
10326 struct vcpu_vmx *vmx = to_vmx(vcpu);
10327
10328 if (cpu_has_secondary_exec_ctrls()) {
10329 vmx_compute_secondary_exec_control(vmx);
10330 vmcs_set_secondary_exec_control(vmx->secondary_exec_control);
10331 }
10332
10333 if (nested_vmx_allowed(vcpu))
10334 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
10335 FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
10336 else
10337 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
10338 ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
10339
10340 if (nested_vmx_allowed(vcpu))
10341 nested_vmx_cr_fixed1_bits_update(vcpu);
10342 }
10343
vmx_set_supported_cpuid(u32 func,struct kvm_cpuid_entry2 * entry)10344 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
10345 {
10346 if (func == 1 && nested)
10347 entry->ecx |= bit(X86_FEATURE_VMX);
10348 }
10349
nested_ept_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)10350 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
10351 struct x86_exception *fault)
10352 {
10353 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10354 struct vcpu_vmx *vmx = to_vmx(vcpu);
10355 u32 exit_reason;
10356 unsigned long exit_qualification = vcpu->arch.exit_qualification;
10357
10358 if (vmx->nested.pml_full) {
10359 exit_reason = EXIT_REASON_PML_FULL;
10360 vmx->nested.pml_full = false;
10361 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
10362 } else if (fault->error_code & PFERR_RSVD_MASK)
10363 exit_reason = EXIT_REASON_EPT_MISCONFIG;
10364 else
10365 exit_reason = EXIT_REASON_EPT_VIOLATION;
10366
10367 nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
10368 vmcs12->guest_physical_address = fault->address;
10369 }
10370
nested_ept_ad_enabled(struct kvm_vcpu * vcpu)10371 static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu)
10372 {
10373 return nested_ept_get_cr3(vcpu) & VMX_EPTP_AD_ENABLE_BIT;
10374 }
10375
10376 /* Callbacks for nested_ept_init_mmu_context: */
10377
nested_ept_get_cr3(struct kvm_vcpu * vcpu)10378 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
10379 {
10380 /* return the page table to be shadowed - in our case, EPT12 */
10381 return get_vmcs12(vcpu)->ept_pointer;
10382 }
10383
nested_ept_init_mmu_context(struct kvm_vcpu * vcpu)10384 static int nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
10385 {
10386 WARN_ON(mmu_is_nested(vcpu));
10387 if (!valid_ept_address(vcpu, nested_ept_get_cr3(vcpu)))
10388 return 1;
10389
10390 kvm_mmu_unload(vcpu);
10391 kvm_init_shadow_ept_mmu(vcpu,
10392 to_vmx(vcpu)->nested.nested_vmx_ept_caps &
10393 VMX_EPT_EXECUTE_ONLY_BIT,
10394 nested_ept_ad_enabled(vcpu));
10395 vcpu->arch.mmu.set_cr3 = vmx_set_cr3;
10396 vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3;
10397 vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
10398
10399 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
10400 return 0;
10401 }
10402
nested_ept_uninit_mmu_context(struct kvm_vcpu * vcpu)10403 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
10404 {
10405 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
10406 }
10407
nested_vmx_is_page_fault_vmexit(struct vmcs12 * vmcs12,u16 error_code)10408 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
10409 u16 error_code)
10410 {
10411 bool inequality, bit;
10412
10413 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
10414 inequality =
10415 (error_code & vmcs12->page_fault_error_code_mask) !=
10416 vmcs12->page_fault_error_code_match;
10417 return inequality ^ bit;
10418 }
10419
vmx_inject_page_fault_nested(struct kvm_vcpu * vcpu,struct x86_exception * fault)10420 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
10421 struct x86_exception *fault)
10422 {
10423 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10424
10425 WARN_ON(!is_guest_mode(vcpu));
10426
10427 if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
10428 !to_vmx(vcpu)->nested.nested_run_pending) {
10429 vmcs12->vm_exit_intr_error_code = fault->error_code;
10430 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
10431 PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
10432 INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
10433 fault->address);
10434 } else {
10435 kvm_inject_page_fault(vcpu, fault);
10436 }
10437 }
10438
10439 static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
10440 struct vmcs12 *vmcs12);
10441
nested_get_vmcs12_pages(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)10442 static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
10443 struct vmcs12 *vmcs12)
10444 {
10445 struct vcpu_vmx *vmx = to_vmx(vcpu);
10446 struct page *page;
10447 u64 hpa;
10448
10449 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
10450 /*
10451 * Translate L1 physical address to host physical
10452 * address for vmcs02. Keep the page pinned, so this
10453 * physical address remains valid. We keep a reference
10454 * to it so we can release it later.
10455 */
10456 if (vmx->nested.apic_access_page) { /* shouldn't happen */
10457 kvm_release_page_dirty(vmx->nested.apic_access_page);
10458 vmx->nested.apic_access_page = NULL;
10459 }
10460 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
10461 /*
10462 * If translation failed, no matter: This feature asks
10463 * to exit when accessing the given address, and if it
10464 * can never be accessed, this feature won't do
10465 * anything anyway.
10466 */
10467 if (!is_error_page(page)) {
10468 vmx->nested.apic_access_page = page;
10469 hpa = page_to_phys(vmx->nested.apic_access_page);
10470 vmcs_write64(APIC_ACCESS_ADDR, hpa);
10471 } else {
10472 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
10473 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
10474 }
10475 } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
10476 cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
10477 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
10478 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
10479 kvm_vcpu_reload_apic_access_page(vcpu);
10480 }
10481
10482 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
10483 if (vmx->nested.virtual_apic_page) { /* shouldn't happen */
10484 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
10485 vmx->nested.virtual_apic_page = NULL;
10486 }
10487 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->virtual_apic_page_addr);
10488
10489 /*
10490 * If translation failed, VM entry will fail because
10491 * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
10492 * Failing the vm entry is _not_ what the processor
10493 * does but it's basically the only possibility we
10494 * have. We could still enter the guest if CR8 load
10495 * exits are enabled, CR8 store exits are enabled, and
10496 * virtualize APIC access is disabled; in this case
10497 * the processor would never use the TPR shadow and we
10498 * could simply clear the bit from the execution
10499 * control. But such a configuration is useless, so
10500 * let's keep the code simple.
10501 */
10502 if (!is_error_page(page)) {
10503 vmx->nested.virtual_apic_page = page;
10504 hpa = page_to_phys(vmx->nested.virtual_apic_page);
10505 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa);
10506 }
10507 }
10508
10509 if (nested_cpu_has_posted_intr(vmcs12)) {
10510 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
10511 kunmap(vmx->nested.pi_desc_page);
10512 kvm_release_page_dirty(vmx->nested.pi_desc_page);
10513 vmx->nested.pi_desc_page = NULL;
10514 vmx->nested.pi_desc = NULL;
10515 vmcs_write64(POSTED_INTR_DESC_ADDR, -1ull);
10516 }
10517 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->posted_intr_desc_addr);
10518 if (is_error_page(page))
10519 return;
10520 vmx->nested.pi_desc_page = page;
10521 vmx->nested.pi_desc = kmap(vmx->nested.pi_desc_page);
10522 vmx->nested.pi_desc =
10523 (struct pi_desc *)((void *)vmx->nested.pi_desc +
10524 (unsigned long)(vmcs12->posted_intr_desc_addr &
10525 (PAGE_SIZE - 1)));
10526 vmcs_write64(POSTED_INTR_DESC_ADDR,
10527 page_to_phys(vmx->nested.pi_desc_page) +
10528 (unsigned long)(vmcs12->posted_intr_desc_addr &
10529 (PAGE_SIZE - 1)));
10530 }
10531 if (cpu_has_vmx_msr_bitmap() &&
10532 nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS) &&
10533 nested_vmx_merge_msr_bitmap(vcpu, vmcs12))
10534 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
10535 CPU_BASED_USE_MSR_BITMAPS);
10536 else
10537 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
10538 CPU_BASED_USE_MSR_BITMAPS);
10539 }
10540
vmx_start_preemption_timer(struct kvm_vcpu * vcpu)10541 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
10542 {
10543 u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
10544 struct vcpu_vmx *vmx = to_vmx(vcpu);
10545
10546 if (vcpu->arch.virtual_tsc_khz == 0)
10547 return;
10548
10549 /* Make sure short timeouts reliably trigger an immediate vmexit.
10550 * hrtimer_start does not guarantee this. */
10551 if (preemption_timeout <= 1) {
10552 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
10553 return;
10554 }
10555
10556 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
10557 preemption_timeout *= 1000000;
10558 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
10559 hrtimer_start(&vmx->nested.preemption_timer,
10560 ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
10561 }
10562
nested_vmx_check_io_bitmap_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)10563 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
10564 struct vmcs12 *vmcs12)
10565 {
10566 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
10567 return 0;
10568
10569 if (!page_address_valid(vcpu, vmcs12->io_bitmap_a) ||
10570 !page_address_valid(vcpu, vmcs12->io_bitmap_b))
10571 return -EINVAL;
10572
10573 return 0;
10574 }
10575
nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)10576 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
10577 struct vmcs12 *vmcs12)
10578 {
10579 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
10580 return 0;
10581
10582 if (!page_address_valid(vcpu, vmcs12->msr_bitmap))
10583 return -EINVAL;
10584
10585 return 0;
10586 }
10587
nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)10588 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
10589 struct vmcs12 *vmcs12)
10590 {
10591 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
10592 return 0;
10593
10594 if (!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr))
10595 return -EINVAL;
10596
10597 return 0;
10598 }
10599
10600 /*
10601 * Merge L0's and L1's MSR bitmap, return false to indicate that
10602 * we do not use the hardware.
10603 */
nested_vmx_merge_msr_bitmap(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)10604 static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
10605 struct vmcs12 *vmcs12)
10606 {
10607 int msr;
10608 struct page *page;
10609 unsigned long *msr_bitmap_l1;
10610 unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
10611 /*
10612 * pred_cmd & spec_ctrl are trying to verify two things:
10613 *
10614 * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
10615 * ensures that we do not accidentally generate an L02 MSR bitmap
10616 * from the L12 MSR bitmap that is too permissive.
10617 * 2. That L1 or L2s have actually used the MSR. This avoids
10618 * unnecessarily merging of the bitmap if the MSR is unused. This
10619 * works properly because we only update the L01 MSR bitmap lazily.
10620 * So even if L0 should pass L1 these MSRs, the L01 bitmap is only
10621 * updated to reflect this when L1 (or its L2s) actually write to
10622 * the MSR.
10623 */
10624 bool pred_cmd = !msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD);
10625 bool spec_ctrl = !msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL);
10626
10627 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
10628 !pred_cmd && !spec_ctrl)
10629 return false;
10630
10631 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->msr_bitmap);
10632 if (is_error_page(page))
10633 return false;
10634 msr_bitmap_l1 = (unsigned long *)kmap(page);
10635
10636 memset(msr_bitmap_l0, 0xff, PAGE_SIZE);
10637
10638 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
10639 if (nested_cpu_has_apic_reg_virt(vmcs12))
10640 for (msr = 0x800; msr <= 0x8ff; msr++)
10641 nested_vmx_disable_intercept_for_msr(
10642 msr_bitmap_l1, msr_bitmap_l0,
10643 msr, MSR_TYPE_R);
10644
10645 nested_vmx_disable_intercept_for_msr(
10646 msr_bitmap_l1, msr_bitmap_l0,
10647 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
10648 MSR_TYPE_R | MSR_TYPE_W);
10649
10650 if (nested_cpu_has_vid(vmcs12)) {
10651 nested_vmx_disable_intercept_for_msr(
10652 msr_bitmap_l1, msr_bitmap_l0,
10653 APIC_BASE_MSR + (APIC_EOI >> 4),
10654 MSR_TYPE_W);
10655 nested_vmx_disable_intercept_for_msr(
10656 msr_bitmap_l1, msr_bitmap_l0,
10657 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
10658 MSR_TYPE_W);
10659 }
10660 }
10661
10662 if (spec_ctrl)
10663 nested_vmx_disable_intercept_for_msr(
10664 msr_bitmap_l1, msr_bitmap_l0,
10665 MSR_IA32_SPEC_CTRL,
10666 MSR_TYPE_R | MSR_TYPE_W);
10667
10668 if (pred_cmd)
10669 nested_vmx_disable_intercept_for_msr(
10670 msr_bitmap_l1, msr_bitmap_l0,
10671 MSR_IA32_PRED_CMD,
10672 MSR_TYPE_W);
10673
10674 kunmap(page);
10675 kvm_release_page_clean(page);
10676
10677 return true;
10678 }
10679
nested_vmx_check_apic_access_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)10680 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
10681 struct vmcs12 *vmcs12)
10682 {
10683 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
10684 !page_address_valid(vcpu, vmcs12->apic_access_addr))
10685 return -EINVAL;
10686 else
10687 return 0;
10688 }
10689
nested_vmx_check_apicv_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)10690 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
10691 struct vmcs12 *vmcs12)
10692 {
10693 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
10694 !nested_cpu_has_apic_reg_virt(vmcs12) &&
10695 !nested_cpu_has_vid(vmcs12) &&
10696 !nested_cpu_has_posted_intr(vmcs12))
10697 return 0;
10698
10699 /*
10700 * If virtualize x2apic mode is enabled,
10701 * virtualize apic access must be disabled.
10702 */
10703 if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
10704 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
10705 return -EINVAL;
10706
10707 /*
10708 * If virtual interrupt delivery is enabled,
10709 * we must exit on external interrupts.
10710 */
10711 if (nested_cpu_has_vid(vmcs12) &&
10712 !nested_exit_on_intr(vcpu))
10713 return -EINVAL;
10714
10715 /*
10716 * bits 15:8 should be zero in posted_intr_nv,
10717 * the descriptor address has been already checked
10718 * in nested_get_vmcs12_pages.
10719 */
10720 if (nested_cpu_has_posted_intr(vmcs12) &&
10721 (!nested_cpu_has_vid(vmcs12) ||
10722 !nested_exit_intr_ack_set(vcpu) ||
10723 vmcs12->posted_intr_nv & 0xff00))
10724 return -EINVAL;
10725
10726 /* tpr shadow is needed by all apicv features. */
10727 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
10728 return -EINVAL;
10729
10730 return 0;
10731 }
10732
nested_vmx_check_msr_switch(struct kvm_vcpu * vcpu,unsigned long count_field,unsigned long addr_field)10733 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
10734 unsigned long count_field,
10735 unsigned long addr_field)
10736 {
10737 int maxphyaddr;
10738 u64 count, addr;
10739
10740 if (vmcs12_read_any(vcpu, count_field, &count) ||
10741 vmcs12_read_any(vcpu, addr_field, &addr)) {
10742 WARN_ON(1);
10743 return -EINVAL;
10744 }
10745 if (count == 0)
10746 return 0;
10747 maxphyaddr = cpuid_maxphyaddr(vcpu);
10748 if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
10749 (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
10750 pr_debug_ratelimited(
10751 "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
10752 addr_field, maxphyaddr, count, addr);
10753 return -EINVAL;
10754 }
10755 return 0;
10756 }
10757
nested_vmx_check_msr_switch_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)10758 static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
10759 struct vmcs12 *vmcs12)
10760 {
10761 if (vmcs12->vm_exit_msr_load_count == 0 &&
10762 vmcs12->vm_exit_msr_store_count == 0 &&
10763 vmcs12->vm_entry_msr_load_count == 0)
10764 return 0; /* Fast path */
10765 if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
10766 VM_EXIT_MSR_LOAD_ADDR) ||
10767 nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
10768 VM_EXIT_MSR_STORE_ADDR) ||
10769 nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
10770 VM_ENTRY_MSR_LOAD_ADDR))
10771 return -EINVAL;
10772 return 0;
10773 }
10774
nested_vmx_check_pml_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)10775 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
10776 struct vmcs12 *vmcs12)
10777 {
10778 u64 address = vmcs12->pml_address;
10779 int maxphyaddr = cpuid_maxphyaddr(vcpu);
10780
10781 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML)) {
10782 if (!nested_cpu_has_ept(vmcs12) ||
10783 !IS_ALIGNED(address, 4096) ||
10784 address >> maxphyaddr)
10785 return -EINVAL;
10786 }
10787
10788 return 0;
10789 }
10790
nested_vmx_msr_check_common(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)10791 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
10792 struct vmx_msr_entry *e)
10793 {
10794 /* x2APIC MSR accesses are not allowed */
10795 if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
10796 return -EINVAL;
10797 if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
10798 e->index == MSR_IA32_UCODE_REV)
10799 return -EINVAL;
10800 if (e->reserved != 0)
10801 return -EINVAL;
10802 return 0;
10803 }
10804
nested_vmx_load_msr_check(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)10805 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
10806 struct vmx_msr_entry *e)
10807 {
10808 if (e->index == MSR_FS_BASE ||
10809 e->index == MSR_GS_BASE ||
10810 e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
10811 nested_vmx_msr_check_common(vcpu, e))
10812 return -EINVAL;
10813 return 0;
10814 }
10815
nested_vmx_store_msr_check(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)10816 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
10817 struct vmx_msr_entry *e)
10818 {
10819 if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
10820 nested_vmx_msr_check_common(vcpu, e))
10821 return -EINVAL;
10822 return 0;
10823 }
10824
10825 /*
10826 * Load guest's/host's msr at nested entry/exit.
10827 * return 0 for success, entry index for failure.
10828 */
nested_vmx_load_msr(struct kvm_vcpu * vcpu,u64 gpa,u32 count)10829 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
10830 {
10831 u32 i;
10832 struct vmx_msr_entry e;
10833 struct msr_data msr;
10834
10835 msr.host_initiated = false;
10836 for (i = 0; i < count; i++) {
10837 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
10838 &e, sizeof(e))) {
10839 pr_debug_ratelimited(
10840 "%s cannot read MSR entry (%u, 0x%08llx)\n",
10841 __func__, i, gpa + i * sizeof(e));
10842 goto fail;
10843 }
10844 if (nested_vmx_load_msr_check(vcpu, &e)) {
10845 pr_debug_ratelimited(
10846 "%s check failed (%u, 0x%x, 0x%x)\n",
10847 __func__, i, e.index, e.reserved);
10848 goto fail;
10849 }
10850 msr.index = e.index;
10851 msr.data = e.value;
10852 if (kvm_set_msr(vcpu, &msr)) {
10853 pr_debug_ratelimited(
10854 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
10855 __func__, i, e.index, e.value);
10856 goto fail;
10857 }
10858 }
10859 return 0;
10860 fail:
10861 return i + 1;
10862 }
10863
nested_vmx_store_msr(struct kvm_vcpu * vcpu,u64 gpa,u32 count)10864 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
10865 {
10866 u32 i;
10867 struct vmx_msr_entry e;
10868
10869 for (i = 0; i < count; i++) {
10870 struct msr_data msr_info;
10871 if (kvm_vcpu_read_guest(vcpu,
10872 gpa + i * sizeof(e),
10873 &e, 2 * sizeof(u32))) {
10874 pr_debug_ratelimited(
10875 "%s cannot read MSR entry (%u, 0x%08llx)\n",
10876 __func__, i, gpa + i * sizeof(e));
10877 return -EINVAL;
10878 }
10879 if (nested_vmx_store_msr_check(vcpu, &e)) {
10880 pr_debug_ratelimited(
10881 "%s check failed (%u, 0x%x, 0x%x)\n",
10882 __func__, i, e.index, e.reserved);
10883 return -EINVAL;
10884 }
10885 msr_info.host_initiated = false;
10886 msr_info.index = e.index;
10887 if (kvm_get_msr(vcpu, &msr_info)) {
10888 pr_debug_ratelimited(
10889 "%s cannot read MSR (%u, 0x%x)\n",
10890 __func__, i, e.index);
10891 return -EINVAL;
10892 }
10893 if (kvm_vcpu_write_guest(vcpu,
10894 gpa + i * sizeof(e) +
10895 offsetof(struct vmx_msr_entry, value),
10896 &msr_info.data, sizeof(msr_info.data))) {
10897 pr_debug_ratelimited(
10898 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
10899 __func__, i, e.index, msr_info.data);
10900 return -EINVAL;
10901 }
10902 }
10903 return 0;
10904 }
10905
nested_cr3_valid(struct kvm_vcpu * vcpu,unsigned long val)10906 static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
10907 {
10908 unsigned long invalid_mask;
10909
10910 invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
10911 return (val & invalid_mask) == 0;
10912 }
10913
10914 /*
10915 * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
10916 * emulating VM entry into a guest with EPT enabled.
10917 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
10918 * is assigned to entry_failure_code on failure.
10919 */
nested_vmx_load_cr3(struct kvm_vcpu * vcpu,unsigned long cr3,bool nested_ept,u32 * entry_failure_code)10920 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
10921 u32 *entry_failure_code)
10922 {
10923 if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
10924 if (!nested_cr3_valid(vcpu, cr3)) {
10925 *entry_failure_code = ENTRY_FAIL_DEFAULT;
10926 return 1;
10927 }
10928
10929 /*
10930 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
10931 * must not be dereferenced.
10932 */
10933 if (is_pae_paging(vcpu) && !nested_ept) {
10934 if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
10935 *entry_failure_code = ENTRY_FAIL_PDPTE;
10936 return 1;
10937 }
10938 }
10939
10940 vcpu->arch.cr3 = cr3;
10941 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
10942 }
10943
10944 kvm_mmu_reset_context(vcpu);
10945 return 0;
10946 }
10947
10948 /*
10949 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
10950 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
10951 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
10952 * guest in a way that will both be appropriate to L1's requests, and our
10953 * needs. In addition to modifying the active vmcs (which is vmcs02), this
10954 * function also has additional necessary side-effects, like setting various
10955 * vcpu->arch fields.
10956 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
10957 * is assigned to entry_failure_code on failure.
10958 */
prepare_vmcs02(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,bool from_vmentry,u32 * entry_failure_code)10959 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10960 bool from_vmentry, u32 *entry_failure_code)
10961 {
10962 struct vcpu_vmx *vmx = to_vmx(vcpu);
10963 u32 exec_control, vmcs12_exec_ctrl;
10964
10965 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
10966 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
10967 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
10968 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
10969 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
10970 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
10971 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
10972 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
10973 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
10974 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
10975 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
10976 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
10977 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
10978 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
10979 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
10980 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
10981 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
10982 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
10983 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
10984 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
10985 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
10986 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
10987 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
10988 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
10989 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
10990 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
10991 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
10992 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
10993 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
10994 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
10995 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
10996 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
10997 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
10998 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
10999 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
11000 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
11001
11002 if (from_vmentry &&
11003 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
11004 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
11005 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
11006 } else {
11007 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
11008 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
11009 }
11010 if (from_vmentry) {
11011 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
11012 vmcs12->vm_entry_intr_info_field);
11013 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
11014 vmcs12->vm_entry_exception_error_code);
11015 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
11016 vmcs12->vm_entry_instruction_len);
11017 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
11018 vmcs12->guest_interruptibility_info);
11019 vmx->loaded_vmcs->nmi_known_unmasked =
11020 !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
11021 } else {
11022 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
11023 }
11024 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
11025 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
11026 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
11027 vmcs12->guest_pending_dbg_exceptions);
11028 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
11029 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
11030
11031 if (nested_cpu_has_xsaves(vmcs12))
11032 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
11033 vmcs_write64(VMCS_LINK_POINTER, -1ull);
11034
11035 exec_control = vmcs12->pin_based_vm_exec_control;
11036
11037 /* Preemption timer setting is only taken from vmcs01. */
11038 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
11039 exec_control |= vmcs_config.pin_based_exec_ctrl;
11040 if (vmx->hv_deadline_tsc == -1)
11041 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
11042
11043 /* Posted interrupts setting is only taken from vmcs12. */
11044 if (nested_cpu_has_posted_intr(vmcs12)) {
11045 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
11046 vmx->nested.pi_pending = false;
11047 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
11048 } else {
11049 exec_control &= ~PIN_BASED_POSTED_INTR;
11050 }
11051
11052 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
11053
11054 vmx->nested.preemption_timer_expired = false;
11055 if (nested_cpu_has_preemption_timer(vmcs12))
11056 vmx_start_preemption_timer(vcpu);
11057
11058 /*
11059 * Whether page-faults are trapped is determined by a combination of
11060 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
11061 * If enable_ept, L0 doesn't care about page faults and we should
11062 * set all of these to L1's desires. However, if !enable_ept, L0 does
11063 * care about (at least some) page faults, and because it is not easy
11064 * (if at all possible?) to merge L0 and L1's desires, we simply ask
11065 * to exit on each and every L2 page fault. This is done by setting
11066 * MASK=MATCH=0 and (see below) EB.PF=1.
11067 * Note that below we don't need special code to set EB.PF beyond the
11068 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
11069 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
11070 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
11071 */
11072 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
11073 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
11074 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
11075 enable_ept ? vmcs12->page_fault_error_code_match : 0);
11076
11077 if (cpu_has_secondary_exec_ctrls()) {
11078 exec_control = vmx->secondary_exec_control;
11079
11080 /* Take the following fields only from vmcs12 */
11081 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
11082 SECONDARY_EXEC_ENABLE_INVPCID |
11083 SECONDARY_EXEC_RDTSCP |
11084 SECONDARY_EXEC_XSAVES |
11085 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
11086 SECONDARY_EXEC_APIC_REGISTER_VIRT |
11087 SECONDARY_EXEC_ENABLE_VMFUNC);
11088 if (nested_cpu_has(vmcs12,
11089 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
11090 vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
11091 ~SECONDARY_EXEC_ENABLE_PML;
11092 exec_control |= vmcs12_exec_ctrl;
11093 }
11094
11095 /* All VMFUNCs are currently emulated through L0 vmexits. */
11096 if (exec_control & SECONDARY_EXEC_ENABLE_VMFUNC)
11097 vmcs_write64(VM_FUNCTION_CONTROL, 0);
11098
11099 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
11100 vmcs_write64(EOI_EXIT_BITMAP0,
11101 vmcs12->eoi_exit_bitmap0);
11102 vmcs_write64(EOI_EXIT_BITMAP1,
11103 vmcs12->eoi_exit_bitmap1);
11104 vmcs_write64(EOI_EXIT_BITMAP2,
11105 vmcs12->eoi_exit_bitmap2);
11106 vmcs_write64(EOI_EXIT_BITMAP3,
11107 vmcs12->eoi_exit_bitmap3);
11108 vmcs_write16(GUEST_INTR_STATUS,
11109 vmcs12->guest_intr_status);
11110 }
11111
11112 /*
11113 * Write an illegal value to APIC_ACCESS_ADDR. Later,
11114 * nested_get_vmcs12_pages will either fix it up or
11115 * remove the VM execution control.
11116 */
11117 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
11118 vmcs_write64(APIC_ACCESS_ADDR, -1ull);
11119
11120 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
11121 }
11122
11123
11124 /*
11125 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
11126 * Some constant fields are set here by vmx_set_constant_host_state().
11127 * Other fields are different per CPU, and will be set later when
11128 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
11129 */
11130 vmx_set_constant_host_state(vmx);
11131
11132 /*
11133 * Set the MSR load/store lists to match L0's settings.
11134 */
11135 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
11136 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
11137 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
11138 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
11139 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
11140
11141 /*
11142 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
11143 * entry, but only if the current (host) sp changed from the value
11144 * we wrote last (vmx->host_rsp). This cache is no longer relevant
11145 * if we switch vmcs, and rather than hold a separate cache per vmcs,
11146 * here we just force the write to happen on entry.
11147 */
11148 vmx->host_rsp = 0;
11149
11150 exec_control = vmx_exec_control(vmx); /* L0's desires */
11151 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
11152 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
11153 exec_control &= ~CPU_BASED_TPR_SHADOW;
11154 exec_control |= vmcs12->cpu_based_vm_exec_control;
11155
11156 /*
11157 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
11158 * nested_get_vmcs12_pages can't fix it up, the illegal value
11159 * will result in a VM entry failure.
11160 */
11161 if (exec_control & CPU_BASED_TPR_SHADOW) {
11162 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
11163 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
11164 } else {
11165 #ifdef CONFIG_X86_64
11166 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
11167 CPU_BASED_CR8_STORE_EXITING;
11168 #endif
11169 }
11170
11171 /*
11172 * Merging of IO bitmap not currently supported.
11173 * Rather, exit every time.
11174 */
11175 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
11176 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
11177
11178 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
11179
11180 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
11181 * bitwise-or of what L1 wants to trap for L2, and what we want to
11182 * trap. Note that CR0.TS also needs updating - we do this later.
11183 */
11184 update_exception_bitmap(vcpu);
11185 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
11186 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
11187
11188 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
11189 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
11190 * bits are further modified by vmx_set_efer() below.
11191 */
11192 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
11193
11194 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
11195 * emulated by vmx_set_efer(), below.
11196 */
11197 vm_entry_controls_init(vmx,
11198 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
11199 ~VM_ENTRY_IA32E_MODE) |
11200 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
11201
11202 if (from_vmentry &&
11203 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
11204 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
11205 vcpu->arch.pat = vmcs12->guest_ia32_pat;
11206 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
11207 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
11208 }
11209
11210 set_cr4_guest_host_mask(vmx);
11211
11212 if (from_vmentry &&
11213 vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
11214 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
11215
11216 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
11217 vmcs_write64(TSC_OFFSET,
11218 vcpu->arch.tsc_offset + vmcs12->tsc_offset);
11219 else
11220 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
11221 if (kvm_has_tsc_control)
11222 decache_tsc_multiplier(vmx);
11223
11224 if (cpu_has_vmx_msr_bitmap())
11225 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
11226
11227 if (enable_vpid) {
11228 /*
11229 * There is no direct mapping between vpid02 and vpid12, the
11230 * vpid02 is per-vCPU for L0 and reused while the value of
11231 * vpid12 is changed w/ one invvpid during nested vmentry.
11232 * The vpid12 is allocated by L1 for L2, so it will not
11233 * influence global bitmap(for vpid01 and vpid02 allocation)
11234 * even if spawn a lot of nested vCPUs.
11235 */
11236 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
11237 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
11238 if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
11239 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
11240 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02, true);
11241 }
11242 } else {
11243 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
11244 vmx_flush_tlb(vcpu, true);
11245 }
11246
11247 }
11248
11249 if (enable_pml) {
11250 /*
11251 * Conceptually we want to copy the PML address and index from
11252 * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
11253 * since we always flush the log on each vmexit, this happens
11254 * to be equivalent to simply resetting the fields in vmcs02.
11255 */
11256 ASSERT(vmx->pml_pg);
11257 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
11258 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
11259 }
11260
11261 if (nested_cpu_has_ept(vmcs12)) {
11262 if (nested_ept_init_mmu_context(vcpu)) {
11263 *entry_failure_code = ENTRY_FAIL_DEFAULT;
11264 return 1;
11265 }
11266 } else if (nested_cpu_has2(vmcs12,
11267 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
11268 vmx_flush_tlb(vcpu, true);
11269 }
11270
11271 /*
11272 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
11273 * bits which we consider mandatory enabled.
11274 * The CR0_READ_SHADOW is what L2 should have expected to read given
11275 * the specifications by L1; It's not enough to take
11276 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
11277 * have more bits than L1 expected.
11278 */
11279 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
11280 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
11281
11282 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
11283 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
11284
11285 if (from_vmentry &&
11286 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
11287 vcpu->arch.efer = vmcs12->guest_ia32_efer;
11288 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
11289 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
11290 else
11291 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
11292 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
11293 vmx_set_efer(vcpu, vcpu->arch.efer);
11294
11295 /* Shadow page tables on either EPT or shadow page tables. */
11296 if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
11297 entry_failure_code))
11298 return 1;
11299
11300 if (!enable_ept)
11301 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
11302
11303 /*
11304 * L1 may access the L2's PDPTR, so save them to construct vmcs12
11305 */
11306 if (enable_ept) {
11307 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
11308 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
11309 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
11310 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
11311 }
11312
11313 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
11314 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
11315 return 0;
11316 }
11317
check_vmentry_prereqs(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)11318 static int check_vmentry_prereqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
11319 {
11320 struct vcpu_vmx *vmx = to_vmx(vcpu);
11321
11322 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
11323 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
11324 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
11325
11326 if (nested_vmx_check_io_bitmap_controls(vcpu, vmcs12))
11327 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
11328
11329 if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12))
11330 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
11331
11332 if (nested_vmx_check_apic_access_controls(vcpu, vmcs12))
11333 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
11334
11335 if (nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12))
11336 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
11337
11338 if (nested_vmx_check_apicv_controls(vcpu, vmcs12))
11339 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
11340
11341 if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12))
11342 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
11343
11344 if (nested_vmx_check_pml_controls(vcpu, vmcs12))
11345 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
11346
11347 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
11348 vmx->nested.nested_vmx_procbased_ctls_low,
11349 vmx->nested.nested_vmx_procbased_ctls_high) ||
11350 (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
11351 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
11352 vmx->nested.nested_vmx_secondary_ctls_low,
11353 vmx->nested.nested_vmx_secondary_ctls_high)) ||
11354 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
11355 vmx->nested.nested_vmx_pinbased_ctls_low,
11356 vmx->nested.nested_vmx_pinbased_ctls_high) ||
11357 !vmx_control_verify(vmcs12->vm_exit_controls,
11358 vmx->nested.nested_vmx_exit_ctls_low,
11359 vmx->nested.nested_vmx_exit_ctls_high) ||
11360 !vmx_control_verify(vmcs12->vm_entry_controls,
11361 vmx->nested.nested_vmx_entry_ctls_low,
11362 vmx->nested.nested_vmx_entry_ctls_high))
11363 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
11364
11365 if (nested_cpu_has_vmfunc(vmcs12)) {
11366 if (vmcs12->vm_function_control &
11367 ~vmx->nested.nested_vmx_vmfunc_controls)
11368 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
11369
11370 if (nested_cpu_has_eptp_switching(vmcs12)) {
11371 if (!nested_cpu_has_ept(vmcs12) ||
11372 !page_address_valid(vcpu, vmcs12->eptp_list_address))
11373 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
11374 }
11375 }
11376
11377 if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu))
11378 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
11379
11380 if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
11381 !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
11382 !nested_cr3_valid(vcpu, vmcs12->host_cr3))
11383 return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
11384
11385 return 0;
11386 }
11387
check_vmentry_postreqs(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 * exit_qual)11388 static int check_vmentry_postreqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
11389 u32 *exit_qual)
11390 {
11391 bool ia32e;
11392
11393 *exit_qual = ENTRY_FAIL_DEFAULT;
11394
11395 if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
11396 !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
11397 return 1;
11398
11399 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_SHADOW_VMCS) &&
11400 vmcs12->vmcs_link_pointer != -1ull) {
11401 *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
11402 return 1;
11403 }
11404
11405 /*
11406 * If the load IA32_EFER VM-entry control is 1, the following checks
11407 * are performed on the field for the IA32_EFER MSR:
11408 * - Bits reserved in the IA32_EFER MSR must be 0.
11409 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
11410 * the IA-32e mode guest VM-exit control. It must also be identical
11411 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
11412 * CR0.PG) is 1.
11413 */
11414 if (to_vmx(vcpu)->nested.nested_run_pending &&
11415 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
11416 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
11417 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
11418 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
11419 ((vmcs12->guest_cr0 & X86_CR0_PG) &&
11420 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
11421 return 1;
11422 }
11423
11424 /*
11425 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
11426 * IA32_EFER MSR must be 0 in the field for that register. In addition,
11427 * the values of the LMA and LME bits in the field must each be that of
11428 * the host address-space size VM-exit control.
11429 */
11430 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
11431 ia32e = (vmcs12->vm_exit_controls &
11432 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
11433 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
11434 ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
11435 ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
11436 return 1;
11437 }
11438
11439 return 0;
11440 }
11441
enter_vmx_non_root_mode(struct kvm_vcpu * vcpu,bool from_vmentry)11442 static int enter_vmx_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry)
11443 {
11444 struct vcpu_vmx *vmx = to_vmx(vcpu);
11445 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
11446 u32 msr_entry_idx;
11447 u32 exit_qual;
11448
11449 enter_guest_mode(vcpu);
11450
11451 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
11452 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
11453
11454 vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
11455 vmx_segment_cache_clear(vmx);
11456
11457 if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &exit_qual)) {
11458 leave_guest_mode(vcpu);
11459 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
11460 nested_vmx_entry_failure(vcpu, vmcs12,
11461 EXIT_REASON_INVALID_STATE, exit_qual);
11462 return 1;
11463 }
11464
11465 nested_get_vmcs12_pages(vcpu, vmcs12);
11466
11467 msr_entry_idx = nested_vmx_load_msr(vcpu,
11468 vmcs12->vm_entry_msr_load_addr,
11469 vmcs12->vm_entry_msr_load_count);
11470 if (msr_entry_idx) {
11471 leave_guest_mode(vcpu);
11472 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
11473 nested_vmx_entry_failure(vcpu, vmcs12,
11474 EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
11475 return 1;
11476 }
11477
11478 /*
11479 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
11480 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
11481 * returned as far as L1 is concerned. It will only return (and set
11482 * the success flag) when L2 exits (see nested_vmx_vmexit()).
11483 */
11484 return 0;
11485 }
11486
11487 /*
11488 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
11489 * for running an L2 nested guest.
11490 */
nested_vmx_run(struct kvm_vcpu * vcpu,bool launch)11491 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
11492 {
11493 struct vmcs12 *vmcs12;
11494 struct vcpu_vmx *vmx = to_vmx(vcpu);
11495 u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
11496 u32 exit_qual;
11497 int ret;
11498
11499 if (!nested_vmx_check_permission(vcpu))
11500 return 1;
11501
11502 if (!nested_vmx_check_vmcs12(vcpu))
11503 goto out;
11504
11505 vmcs12 = get_vmcs12(vcpu);
11506
11507 if (enable_shadow_vmcs)
11508 copy_shadow_to_vmcs12(vmx);
11509
11510 /*
11511 * The nested entry process starts with enforcing various prerequisites
11512 * on vmcs12 as required by the Intel SDM, and act appropriately when
11513 * they fail: As the SDM explains, some conditions should cause the
11514 * instruction to fail, while others will cause the instruction to seem
11515 * to succeed, but return an EXIT_REASON_INVALID_STATE.
11516 * To speed up the normal (success) code path, we should avoid checking
11517 * for misconfigurations which will anyway be caught by the processor
11518 * when using the merged vmcs02.
11519 */
11520 if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS) {
11521 nested_vmx_failValid(vcpu,
11522 VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
11523 goto out;
11524 }
11525
11526 if (vmcs12->launch_state == launch) {
11527 nested_vmx_failValid(vcpu,
11528 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
11529 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
11530 goto out;
11531 }
11532
11533 ret = check_vmentry_prereqs(vcpu, vmcs12);
11534 if (ret) {
11535 nested_vmx_failValid(vcpu, ret);
11536 goto out;
11537 }
11538
11539 /*
11540 * After this point, the trap flag no longer triggers a singlestep trap
11541 * on the vm entry instructions; don't call kvm_skip_emulated_instruction.
11542 * This is not 100% correct; for performance reasons, we delegate most
11543 * of the checks on host state to the processor. If those fail,
11544 * the singlestep trap is missed.
11545 */
11546 skip_emulated_instruction(vcpu);
11547
11548 ret = check_vmentry_postreqs(vcpu, vmcs12, &exit_qual);
11549 if (ret) {
11550 nested_vmx_entry_failure(vcpu, vmcs12,
11551 EXIT_REASON_INVALID_STATE, exit_qual);
11552 return 1;
11553 }
11554
11555 /*
11556 * We're finally done with prerequisite checking, and can start with
11557 * the nested entry.
11558 */
11559
11560 ret = enter_vmx_non_root_mode(vcpu, true);
11561 if (ret)
11562 return ret;
11563
11564 /* Hide L1D cache contents from the nested guest. */
11565 vmx->vcpu.arch.l1tf_flush_l1d = true;
11566
11567 /*
11568 * If we're entering a halted L2 vcpu and the L2 vcpu won't be woken
11569 * by event injection, halt vcpu.
11570 */
11571 if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) &&
11572 !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK))
11573 return kvm_vcpu_halt(vcpu);
11574
11575 vmx->nested.nested_run_pending = 1;
11576
11577 return 1;
11578
11579 out:
11580 return kvm_skip_emulated_instruction(vcpu);
11581 }
11582
11583 /*
11584 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
11585 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
11586 * This function returns the new value we should put in vmcs12.guest_cr0.
11587 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
11588 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
11589 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
11590 * didn't trap the bit, because if L1 did, so would L0).
11591 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
11592 * been modified by L2, and L1 knows it. So just leave the old value of
11593 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
11594 * isn't relevant, because if L0 traps this bit it can set it to anything.
11595 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
11596 * changed these bits, and therefore they need to be updated, but L0
11597 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
11598 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
11599 */
11600 static inline unsigned long
vmcs12_guest_cr0(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)11601 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
11602 {
11603 return
11604 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
11605 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
11606 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
11607 vcpu->arch.cr0_guest_owned_bits));
11608 }
11609
11610 static inline unsigned long
vmcs12_guest_cr4(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)11611 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
11612 {
11613 return
11614 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
11615 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
11616 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
11617 vcpu->arch.cr4_guest_owned_bits));
11618 }
11619
vmcs12_save_pending_event(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)11620 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
11621 struct vmcs12 *vmcs12)
11622 {
11623 u32 idt_vectoring;
11624 unsigned int nr;
11625
11626 if (vcpu->arch.exception.injected) {
11627 nr = vcpu->arch.exception.nr;
11628 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
11629
11630 if (kvm_exception_is_soft(nr)) {
11631 vmcs12->vm_exit_instruction_len =
11632 vcpu->arch.event_exit_inst_len;
11633 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
11634 } else
11635 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
11636
11637 if (vcpu->arch.exception.has_error_code) {
11638 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
11639 vmcs12->idt_vectoring_error_code =
11640 vcpu->arch.exception.error_code;
11641 }
11642
11643 vmcs12->idt_vectoring_info_field = idt_vectoring;
11644 } else if (vcpu->arch.nmi_injected) {
11645 vmcs12->idt_vectoring_info_field =
11646 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
11647 } else if (vcpu->arch.interrupt.pending) {
11648 nr = vcpu->arch.interrupt.nr;
11649 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
11650
11651 if (vcpu->arch.interrupt.soft) {
11652 idt_vectoring |= INTR_TYPE_SOFT_INTR;
11653 vmcs12->vm_entry_instruction_len =
11654 vcpu->arch.event_exit_inst_len;
11655 } else
11656 idt_vectoring |= INTR_TYPE_EXT_INTR;
11657
11658 vmcs12->idt_vectoring_info_field = idt_vectoring;
11659 }
11660 }
11661
vmx_check_nested_events(struct kvm_vcpu * vcpu,bool external_intr)11662 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
11663 {
11664 struct vcpu_vmx *vmx = to_vmx(vcpu);
11665 unsigned long exit_qual;
11666 bool block_nested_events =
11667 vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
11668
11669 if (vcpu->arch.exception.pending &&
11670 nested_vmx_check_exception(vcpu, &exit_qual)) {
11671 if (block_nested_events)
11672 return -EBUSY;
11673 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
11674 return 0;
11675 }
11676
11677 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
11678 vmx->nested.preemption_timer_expired) {
11679 if (block_nested_events)
11680 return -EBUSY;
11681 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
11682 return 0;
11683 }
11684
11685 if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
11686 if (block_nested_events)
11687 return -EBUSY;
11688 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
11689 NMI_VECTOR | INTR_TYPE_NMI_INTR |
11690 INTR_INFO_VALID_MASK, 0);
11691 /*
11692 * The NMI-triggered VM exit counts as injection:
11693 * clear this one and block further NMIs.
11694 */
11695 vcpu->arch.nmi_pending = 0;
11696 vmx_set_nmi_mask(vcpu, true);
11697 return 0;
11698 }
11699
11700 if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
11701 nested_exit_on_intr(vcpu)) {
11702 if (block_nested_events)
11703 return -EBUSY;
11704 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
11705 return 0;
11706 }
11707
11708 vmx_complete_nested_posted_interrupt(vcpu);
11709 return 0;
11710 }
11711
vmx_get_preemption_timer_value(struct kvm_vcpu * vcpu)11712 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
11713 {
11714 ktime_t remaining =
11715 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
11716 u64 value;
11717
11718 if (ktime_to_ns(remaining) <= 0)
11719 return 0;
11720
11721 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
11722 do_div(value, 1000000);
11723 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
11724 }
11725
11726 /*
11727 * Update the guest state fields of vmcs12 to reflect changes that
11728 * occurred while L2 was running. (The "IA-32e mode guest" bit of the
11729 * VM-entry controls is also updated, since this is really a guest
11730 * state bit.)
11731 */
sync_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)11732 static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
11733 {
11734 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
11735 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
11736
11737 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
11738 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
11739 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
11740
11741 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
11742 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
11743 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
11744 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
11745 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
11746 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
11747 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
11748 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
11749 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
11750 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
11751 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
11752 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
11753 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
11754 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
11755 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
11756 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
11757 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
11758 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
11759 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
11760 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
11761 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
11762 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
11763 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
11764 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
11765 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
11766 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
11767 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
11768 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
11769 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
11770 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
11771 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
11772 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
11773 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
11774 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
11775 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
11776 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
11777
11778 vmcs12->guest_interruptibility_info =
11779 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
11780 vmcs12->guest_pending_dbg_exceptions =
11781 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
11782 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
11783 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
11784 else
11785 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
11786
11787 if (nested_cpu_has_preemption_timer(vmcs12)) {
11788 if (vmcs12->vm_exit_controls &
11789 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
11790 vmcs12->vmx_preemption_timer_value =
11791 vmx_get_preemption_timer_value(vcpu);
11792 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
11793 }
11794
11795 /*
11796 * In some cases (usually, nested EPT), L2 is allowed to change its
11797 * own CR3 without exiting. If it has changed it, we must keep it.
11798 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
11799 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
11800 *
11801 * Additionally, restore L2's PDPTR to vmcs12.
11802 */
11803 if (enable_ept) {
11804 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
11805 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
11806 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
11807 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
11808 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
11809 }
11810
11811 vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
11812
11813 if (nested_cpu_has_vid(vmcs12))
11814 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
11815
11816 vmcs12->vm_entry_controls =
11817 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
11818 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
11819
11820 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
11821 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
11822 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
11823 }
11824
11825 /* TODO: These cannot have changed unless we have MSR bitmaps and
11826 * the relevant bit asks not to trap the change */
11827 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
11828 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
11829 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
11830 vmcs12->guest_ia32_efer = vcpu->arch.efer;
11831 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
11832 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
11833 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
11834 if (kvm_mpx_supported())
11835 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
11836 }
11837
11838 /*
11839 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
11840 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
11841 * and this function updates it to reflect the changes to the guest state while
11842 * L2 was running (and perhaps made some exits which were handled directly by L0
11843 * without going back to L1), and to reflect the exit reason.
11844 * Note that we do not have to copy here all VMCS fields, just those that
11845 * could have changed by the L2 guest or the exit - i.e., the guest-state and
11846 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
11847 * which already writes to vmcs12 directly.
11848 */
prepare_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 exit_reason,u32 exit_intr_info,unsigned long exit_qualification)11849 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
11850 u32 exit_reason, u32 exit_intr_info,
11851 unsigned long exit_qualification)
11852 {
11853 /* update guest state fields: */
11854 sync_vmcs12(vcpu, vmcs12);
11855
11856 /* update exit information fields: */
11857
11858 vmcs12->vm_exit_reason = exit_reason;
11859 vmcs12->exit_qualification = exit_qualification;
11860 vmcs12->vm_exit_intr_info = exit_intr_info;
11861
11862 vmcs12->idt_vectoring_info_field = 0;
11863 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
11864 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
11865
11866 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
11867 vmcs12->launch_state = 1;
11868
11869 /* vm_entry_intr_info_field is cleared on exit. Emulate this
11870 * instead of reading the real value. */
11871 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
11872
11873 /*
11874 * Transfer the event that L0 or L1 may wanted to inject into
11875 * L2 to IDT_VECTORING_INFO_FIELD.
11876 */
11877 vmcs12_save_pending_event(vcpu, vmcs12);
11878 }
11879
11880 /*
11881 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
11882 * preserved above and would only end up incorrectly in L1.
11883 */
11884 vcpu->arch.nmi_injected = false;
11885 kvm_clear_exception_queue(vcpu);
11886 kvm_clear_interrupt_queue(vcpu);
11887 }
11888
11889 /*
11890 * A part of what we need to when the nested L2 guest exits and we want to
11891 * run its L1 parent, is to reset L1's guest state to the host state specified
11892 * in vmcs12.
11893 * This function is to be called not only on normal nested exit, but also on
11894 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
11895 * Failures During or After Loading Guest State").
11896 * This function should be called when the active VMCS is L1's (vmcs01).
11897 */
load_vmcs12_host_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)11898 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
11899 struct vmcs12 *vmcs12)
11900 {
11901 struct kvm_segment seg;
11902 u32 entry_failure_code;
11903
11904 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
11905 vcpu->arch.efer = vmcs12->host_ia32_efer;
11906 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
11907 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
11908 else
11909 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
11910 vmx_set_efer(vcpu, vcpu->arch.efer);
11911
11912 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
11913 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
11914 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
11915 /*
11916 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
11917 * actually changed, because vmx_set_cr0 refers to efer set above.
11918 *
11919 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
11920 * (KVM doesn't change it);
11921 */
11922 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
11923 vmx_set_cr0(vcpu, vmcs12->host_cr0);
11924
11925 /* Same as above - no reason to call set_cr4_guest_host_mask(). */
11926 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
11927 vmx_set_cr4(vcpu, vmcs12->host_cr4);
11928
11929 nested_ept_uninit_mmu_context(vcpu);
11930
11931 /*
11932 * Only PDPTE load can fail as the value of cr3 was checked on entry and
11933 * couldn't have changed.
11934 */
11935 if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
11936 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
11937
11938 if (!enable_ept)
11939 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
11940
11941 if (enable_vpid) {
11942 /*
11943 * Trivially support vpid by letting L2s share their parent
11944 * L1's vpid. TODO: move to a more elaborate solution, giving
11945 * each L2 its own vpid and exposing the vpid feature to L1.
11946 */
11947 vmx_flush_tlb(vcpu, true);
11948 }
11949 /* Restore posted intr vector. */
11950 if (nested_cpu_has_posted_intr(vmcs12))
11951 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
11952
11953 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
11954 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
11955 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
11956 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
11957 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
11958 vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
11959 vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
11960
11961 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
11962 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
11963 vmcs_write64(GUEST_BNDCFGS, 0);
11964
11965 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
11966 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
11967 vcpu->arch.pat = vmcs12->host_ia32_pat;
11968 }
11969 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
11970 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
11971 vmcs12->host_ia32_perf_global_ctrl);
11972
11973 /* Set L1 segment info according to Intel SDM
11974 27.5.2 Loading Host Segment and Descriptor-Table Registers */
11975 seg = (struct kvm_segment) {
11976 .base = 0,
11977 .limit = 0xFFFFFFFF,
11978 .selector = vmcs12->host_cs_selector,
11979 .type = 11,
11980 .present = 1,
11981 .s = 1,
11982 .g = 1
11983 };
11984 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
11985 seg.l = 1;
11986 else
11987 seg.db = 1;
11988 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
11989 seg = (struct kvm_segment) {
11990 .base = 0,
11991 .limit = 0xFFFFFFFF,
11992 .type = 3,
11993 .present = 1,
11994 .s = 1,
11995 .db = 1,
11996 .g = 1
11997 };
11998 seg.selector = vmcs12->host_ds_selector;
11999 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
12000 seg.selector = vmcs12->host_es_selector;
12001 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
12002 seg.selector = vmcs12->host_ss_selector;
12003 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
12004 seg.selector = vmcs12->host_fs_selector;
12005 seg.base = vmcs12->host_fs_base;
12006 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
12007 seg.selector = vmcs12->host_gs_selector;
12008 seg.base = vmcs12->host_gs_base;
12009 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
12010 seg = (struct kvm_segment) {
12011 .base = vmcs12->host_tr_base,
12012 .limit = 0x67,
12013 .selector = vmcs12->host_tr_selector,
12014 .type = 11,
12015 .present = 1
12016 };
12017 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
12018
12019 kvm_set_dr(vcpu, 7, 0x400);
12020 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
12021
12022 if (cpu_has_vmx_msr_bitmap())
12023 vmx_update_msr_bitmap(vcpu);
12024
12025 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
12026 vmcs12->vm_exit_msr_load_count))
12027 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
12028 }
12029
nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx * vmx)12030 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
12031 {
12032 struct shared_msr_entry *efer_msr;
12033 unsigned int i;
12034
12035 if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
12036 return vmcs_read64(GUEST_IA32_EFER);
12037
12038 if (cpu_has_load_ia32_efer)
12039 return host_efer;
12040
12041 for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
12042 if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
12043 return vmx->msr_autoload.guest.val[i].value;
12044 }
12045
12046 efer_msr = find_msr_entry(vmx, MSR_EFER);
12047 if (efer_msr)
12048 return efer_msr->data;
12049
12050 return host_efer;
12051 }
12052
nested_vmx_restore_host_state(struct kvm_vcpu * vcpu)12053 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
12054 {
12055 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
12056 struct vcpu_vmx *vmx = to_vmx(vcpu);
12057 struct vmx_msr_entry g, h;
12058 struct msr_data msr;
12059 gpa_t gpa;
12060 u32 i, j;
12061
12062 vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
12063
12064 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
12065 /*
12066 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
12067 * as vmcs01.GUEST_DR7 contains a userspace defined value
12068 * and vcpu->arch.dr7 is not squirreled away before the
12069 * nested VMENTER (not worth adding a variable in nested_vmx).
12070 */
12071 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
12072 kvm_set_dr(vcpu, 7, DR7_FIXED_1);
12073 else
12074 WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
12075 }
12076
12077 /*
12078 * Note that calling vmx_set_{efer,cr0,cr4} is important as they
12079 * handle a variety of side effects to KVM's software model.
12080 */
12081 vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
12082
12083 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
12084 vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
12085
12086 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
12087 vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
12088
12089 nested_ept_uninit_mmu_context(vcpu);
12090 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
12091 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
12092
12093 /*
12094 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
12095 * from vmcs01 (if necessary). The PDPTRs are not loaded on
12096 * VMFail, like everything else we just need to ensure our
12097 * software model is up-to-date.
12098 */
12099 ept_save_pdptrs(vcpu);
12100
12101 kvm_mmu_reset_context(vcpu);
12102
12103 if (cpu_has_vmx_msr_bitmap())
12104 vmx_update_msr_bitmap(vcpu);
12105
12106 /*
12107 * This nasty bit of open coding is a compromise between blindly
12108 * loading L1's MSRs using the exit load lists (incorrect emulation
12109 * of VMFail), leaving the nested VM's MSRs in the software model
12110 * (incorrect behavior) and snapshotting the modified MSRs (too
12111 * expensive since the lists are unbound by hardware). For each
12112 * MSR that was (prematurely) loaded from the nested VMEntry load
12113 * list, reload it from the exit load list if it exists and differs
12114 * from the guest value. The intent is to stuff host state as
12115 * silently as possible, not to fully process the exit load list.
12116 */
12117 msr.host_initiated = false;
12118 for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
12119 gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
12120 if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
12121 pr_debug_ratelimited(
12122 "%s read MSR index failed (%u, 0x%08llx)\n",
12123 __func__, i, gpa);
12124 goto vmabort;
12125 }
12126
12127 for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
12128 gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
12129 if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
12130 pr_debug_ratelimited(
12131 "%s read MSR failed (%u, 0x%08llx)\n",
12132 __func__, j, gpa);
12133 goto vmabort;
12134 }
12135 if (h.index != g.index)
12136 continue;
12137 if (h.value == g.value)
12138 break;
12139
12140 if (nested_vmx_load_msr_check(vcpu, &h)) {
12141 pr_debug_ratelimited(
12142 "%s check failed (%u, 0x%x, 0x%x)\n",
12143 __func__, j, h.index, h.reserved);
12144 goto vmabort;
12145 }
12146
12147 msr.index = h.index;
12148 msr.data = h.value;
12149 if (kvm_set_msr(vcpu, &msr)) {
12150 pr_debug_ratelimited(
12151 "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
12152 __func__, j, h.index, h.value);
12153 goto vmabort;
12154 }
12155 }
12156 }
12157
12158 return;
12159
12160 vmabort:
12161 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
12162 }
12163
12164 /*
12165 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
12166 * and modify vmcs12 to make it see what it would expect to see there if
12167 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
12168 */
nested_vmx_vmexit(struct kvm_vcpu * vcpu,u32 exit_reason,u32 exit_intr_info,unsigned long exit_qualification)12169 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
12170 u32 exit_intr_info,
12171 unsigned long exit_qualification)
12172 {
12173 struct vcpu_vmx *vmx = to_vmx(vcpu);
12174 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
12175
12176 /* trying to cancel vmlaunch/vmresume is a bug */
12177 WARN_ON_ONCE(vmx->nested.nested_run_pending);
12178
12179 /*
12180 * The only expected VM-instruction error is "VM entry with
12181 * invalid control field(s)." Anything else indicates a
12182 * problem with L0.
12183 */
12184 WARN_ON_ONCE(vmx->fail && (vmcs_read32(VM_INSTRUCTION_ERROR) !=
12185 VMXERR_ENTRY_INVALID_CONTROL_FIELD));
12186
12187 leave_guest_mode(vcpu);
12188
12189 if (likely(!vmx->fail)) {
12190 prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
12191 exit_qualification);
12192
12193 if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
12194 vmcs12->vm_exit_msr_store_count))
12195 nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
12196 }
12197
12198 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
12199 vm_entry_controls_reset_shadow(vmx);
12200 vm_exit_controls_reset_shadow(vmx);
12201 vmx_segment_cache_clear(vmx);
12202
12203 /* Update any VMCS fields that might have changed while L2 ran */
12204 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
12205 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
12206 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
12207 if (vmx->hv_deadline_tsc == -1)
12208 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
12209 PIN_BASED_VMX_PREEMPTION_TIMER);
12210 else
12211 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
12212 PIN_BASED_VMX_PREEMPTION_TIMER);
12213 if (kvm_has_tsc_control)
12214 decache_tsc_multiplier(vmx);
12215
12216 if (vmx->nested.change_vmcs01_virtual_apic_mode) {
12217 vmx->nested.change_vmcs01_virtual_apic_mode = false;
12218 vmx_set_virtual_apic_mode(vcpu);
12219 } else if (!nested_cpu_has_ept(vmcs12) &&
12220 nested_cpu_has2(vmcs12,
12221 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
12222 vmx_flush_tlb(vcpu, true);
12223 }
12224
12225 /* This is needed for same reason as it was needed in prepare_vmcs02 */
12226 vmx->host_rsp = 0;
12227
12228 /* Unpin physical memory we referred to in vmcs02 */
12229 if (vmx->nested.apic_access_page) {
12230 kvm_release_page_dirty(vmx->nested.apic_access_page);
12231 vmx->nested.apic_access_page = NULL;
12232 }
12233 if (vmx->nested.virtual_apic_page) {
12234 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
12235 vmx->nested.virtual_apic_page = NULL;
12236 }
12237 if (vmx->nested.pi_desc_page) {
12238 kunmap(vmx->nested.pi_desc_page);
12239 kvm_release_page_dirty(vmx->nested.pi_desc_page);
12240 vmx->nested.pi_desc_page = NULL;
12241 vmx->nested.pi_desc = NULL;
12242 }
12243
12244 /*
12245 * We are now running in L2, mmu_notifier will force to reload the
12246 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
12247 */
12248 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
12249
12250 if (enable_shadow_vmcs)
12251 vmx->nested.sync_shadow_vmcs = true;
12252
12253 /* in case we halted in L2 */
12254 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12255
12256 if (likely(!vmx->fail)) {
12257 /*
12258 * TODO: SDM says that with acknowledge interrupt on
12259 * exit, bit 31 of the VM-exit interrupt information
12260 * (valid interrupt) is always set to 1 on
12261 * EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't
12262 * need kvm_cpu_has_interrupt(). See the commit
12263 * message for details.
12264 */
12265 if (nested_exit_intr_ack_set(vcpu) &&
12266 exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
12267 kvm_cpu_has_interrupt(vcpu)) {
12268 int irq = kvm_cpu_get_interrupt(vcpu);
12269 WARN_ON(irq < 0);
12270 vmcs12->vm_exit_intr_info = irq |
12271 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
12272 }
12273
12274 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
12275 vmcs12->exit_qualification,
12276 vmcs12->idt_vectoring_info_field,
12277 vmcs12->vm_exit_intr_info,
12278 vmcs12->vm_exit_intr_error_code,
12279 KVM_ISA_VMX);
12280
12281 load_vmcs12_host_state(vcpu, vmcs12);
12282
12283 return;
12284 }
12285
12286 /*
12287 * After an early L2 VM-entry failure, we're now back
12288 * in L1 which thinks it just finished a VMLAUNCH or
12289 * VMRESUME instruction, so we need to set the failure
12290 * flag and the VM-instruction error field of the VMCS
12291 * accordingly.
12292 */
12293 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
12294
12295 /*
12296 * Restore L1's host state to KVM's software model. We're here
12297 * because a consistency check was caught by hardware, which
12298 * means some amount of guest state has been propagated to KVM's
12299 * model and needs to be unwound to the host's state.
12300 */
12301 nested_vmx_restore_host_state(vcpu);
12302
12303 /*
12304 * The emulated instruction was already skipped in
12305 * nested_vmx_run, but the updated RIP was never
12306 * written back to the vmcs01.
12307 */
12308 skip_emulated_instruction(vcpu);
12309 vmx->fail = 0;
12310 }
12311
12312 /*
12313 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
12314 */
vmx_leave_nested(struct kvm_vcpu * vcpu)12315 static void vmx_leave_nested(struct kvm_vcpu *vcpu)
12316 {
12317 if (is_guest_mode(vcpu)) {
12318 to_vmx(vcpu)->nested.nested_run_pending = 0;
12319 nested_vmx_vmexit(vcpu, -1, 0, 0);
12320 }
12321 free_nested(to_vmx(vcpu));
12322 }
12323
12324 /*
12325 * L1's failure to enter L2 is a subset of a normal exit, as explained in
12326 * 23.7 "VM-entry failures during or after loading guest state" (this also
12327 * lists the acceptable exit-reason and exit-qualification parameters).
12328 * It should only be called before L2 actually succeeded to run, and when
12329 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
12330 */
nested_vmx_entry_failure(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 reason,unsigned long qualification)12331 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
12332 struct vmcs12 *vmcs12,
12333 u32 reason, unsigned long qualification)
12334 {
12335 load_vmcs12_host_state(vcpu, vmcs12);
12336 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
12337 vmcs12->exit_qualification = qualification;
12338 nested_vmx_succeed(vcpu);
12339 if (enable_shadow_vmcs)
12340 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
12341 }
12342
vmx_check_intercept_io(struct kvm_vcpu * vcpu,struct x86_instruction_info * info)12343 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
12344 struct x86_instruction_info *info)
12345 {
12346 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
12347 unsigned short port;
12348 bool intercept;
12349 int size;
12350
12351 if (info->intercept == x86_intercept_in ||
12352 info->intercept == x86_intercept_ins) {
12353 port = info->src_val;
12354 size = info->dst_bytes;
12355 } else {
12356 port = info->dst_val;
12357 size = info->src_bytes;
12358 }
12359
12360 /*
12361 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
12362 * VM-exits depend on the 'unconditional IO exiting' VM-execution
12363 * control.
12364 *
12365 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
12366 */
12367 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
12368 intercept = nested_cpu_has(vmcs12,
12369 CPU_BASED_UNCOND_IO_EXITING);
12370 else
12371 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
12372
12373 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */
12374 return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
12375 }
12376
vmx_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage)12377 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
12378 struct x86_instruction_info *info,
12379 enum x86_intercept_stage stage)
12380 {
12381 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
12382 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
12383
12384 switch (info->intercept) {
12385 /*
12386 * RDPID causes #UD if disabled through secondary execution controls.
12387 * Because it is marked as EmulateOnUD, we need to intercept it here.
12388 */
12389 case x86_intercept_rdtscp:
12390 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) {
12391 ctxt->exception.vector = UD_VECTOR;
12392 ctxt->exception.error_code_valid = false;
12393 return X86EMUL_PROPAGATE_FAULT;
12394 }
12395 break;
12396
12397 case x86_intercept_in:
12398 case x86_intercept_ins:
12399 case x86_intercept_out:
12400 case x86_intercept_outs:
12401 return vmx_check_intercept_io(vcpu, info);
12402
12403 case x86_intercept_lgdt:
12404 case x86_intercept_lidt:
12405 case x86_intercept_lldt:
12406 case x86_intercept_ltr:
12407 case x86_intercept_sgdt:
12408 case x86_intercept_sidt:
12409 case x86_intercept_sldt:
12410 case x86_intercept_str:
12411 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
12412 return X86EMUL_CONTINUE;
12413
12414 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */
12415 break;
12416
12417 /* TODO: check more intercepts... */
12418 default:
12419 break;
12420 }
12421
12422 return X86EMUL_UNHANDLEABLE;
12423 }
12424
12425 #ifdef CONFIG_X86_64
12426 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
u64_shl_div_u64(u64 a,unsigned int shift,u64 divisor,u64 * result)12427 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
12428 u64 divisor, u64 *result)
12429 {
12430 u64 low = a << shift, high = a >> (64 - shift);
12431
12432 /* To avoid the overflow on divq */
12433 if (high >= divisor)
12434 return 1;
12435
12436 /* Low hold the result, high hold rem which is discarded */
12437 asm("divq %2\n\t" : "=a" (low), "=d" (high) :
12438 "rm" (divisor), "0" (low), "1" (high));
12439 *result = low;
12440
12441 return 0;
12442 }
12443
vmx_set_hv_timer(struct kvm_vcpu * vcpu,u64 guest_deadline_tsc)12444 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc)
12445 {
12446 struct vcpu_vmx *vmx = to_vmx(vcpu);
12447 u64 tscl = rdtsc();
12448 u64 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
12449 u64 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
12450
12451 /* Convert to host delta tsc if tsc scaling is enabled */
12452 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
12453 u64_shl_div_u64(delta_tsc,
12454 kvm_tsc_scaling_ratio_frac_bits,
12455 vcpu->arch.tsc_scaling_ratio,
12456 &delta_tsc))
12457 return -ERANGE;
12458
12459 /*
12460 * If the delta tsc can't fit in the 32 bit after the multi shift,
12461 * we can't use the preemption timer.
12462 * It's possible that it fits on later vmentries, but checking
12463 * on every vmentry is costly so we just use an hrtimer.
12464 */
12465 if (delta_tsc >> (cpu_preemption_timer_multi + 32))
12466 return -ERANGE;
12467
12468 vmx->hv_deadline_tsc = tscl + delta_tsc;
12469 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
12470 PIN_BASED_VMX_PREEMPTION_TIMER);
12471
12472 return delta_tsc == 0;
12473 }
12474
vmx_cancel_hv_timer(struct kvm_vcpu * vcpu)12475 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
12476 {
12477 struct vcpu_vmx *vmx = to_vmx(vcpu);
12478 vmx->hv_deadline_tsc = -1;
12479 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
12480 PIN_BASED_VMX_PREEMPTION_TIMER);
12481 }
12482 #endif
12483
vmx_sched_in(struct kvm_vcpu * vcpu,int cpu)12484 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
12485 {
12486 if (ple_gap)
12487 shrink_ple_window(vcpu);
12488 }
12489
vmx_slot_enable_log_dirty(struct kvm * kvm,struct kvm_memory_slot * slot)12490 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
12491 struct kvm_memory_slot *slot)
12492 {
12493 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
12494 kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
12495 }
12496
vmx_slot_disable_log_dirty(struct kvm * kvm,struct kvm_memory_slot * slot)12497 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
12498 struct kvm_memory_slot *slot)
12499 {
12500 kvm_mmu_slot_set_dirty(kvm, slot);
12501 }
12502
vmx_flush_log_dirty(struct kvm * kvm)12503 static void vmx_flush_log_dirty(struct kvm *kvm)
12504 {
12505 kvm_flush_pml_buffers(kvm);
12506 }
12507
vmx_write_pml_buffer(struct kvm_vcpu * vcpu)12508 static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
12509 {
12510 struct vmcs12 *vmcs12;
12511 struct vcpu_vmx *vmx = to_vmx(vcpu);
12512 gpa_t gpa;
12513 struct page *page = NULL;
12514 u64 *pml_address;
12515
12516 if (is_guest_mode(vcpu)) {
12517 WARN_ON_ONCE(vmx->nested.pml_full);
12518
12519 /*
12520 * Check if PML is enabled for the nested guest.
12521 * Whether eptp bit 6 is set is already checked
12522 * as part of A/D emulation.
12523 */
12524 vmcs12 = get_vmcs12(vcpu);
12525 if (!nested_cpu_has_pml(vmcs12))
12526 return 0;
12527
12528 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
12529 vmx->nested.pml_full = true;
12530 return 1;
12531 }
12532
12533 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
12534
12535 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->pml_address);
12536 if (is_error_page(page))
12537 return 0;
12538
12539 pml_address = kmap(page);
12540 pml_address[vmcs12->guest_pml_index--] = gpa;
12541 kunmap(page);
12542 kvm_release_page_clean(page);
12543 }
12544
12545 return 0;
12546 }
12547
vmx_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * memslot,gfn_t offset,unsigned long mask)12548 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
12549 struct kvm_memory_slot *memslot,
12550 gfn_t offset, unsigned long mask)
12551 {
12552 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
12553 }
12554
__pi_post_block(struct kvm_vcpu * vcpu)12555 static void __pi_post_block(struct kvm_vcpu *vcpu)
12556 {
12557 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
12558 struct pi_desc old, new;
12559 unsigned int dest;
12560
12561 do {
12562 old.control = new.control = pi_desc->control;
12563 WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
12564 "Wakeup handler not enabled while the VCPU is blocked\n");
12565
12566 dest = cpu_physical_id(vcpu->cpu);
12567
12568 if (x2apic_enabled())
12569 new.ndst = dest;
12570 else
12571 new.ndst = (dest << 8) & 0xFF00;
12572
12573 /* set 'NV' to 'notification vector' */
12574 new.nv = POSTED_INTR_VECTOR;
12575 } while (cmpxchg64(&pi_desc->control, old.control,
12576 new.control) != old.control);
12577
12578 if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
12579 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
12580 list_del(&vcpu->blocked_vcpu_list);
12581 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
12582 vcpu->pre_pcpu = -1;
12583 }
12584 }
12585
12586 /*
12587 * This routine does the following things for vCPU which is going
12588 * to be blocked if VT-d PI is enabled.
12589 * - Store the vCPU to the wakeup list, so when interrupts happen
12590 * we can find the right vCPU to wake up.
12591 * - Change the Posted-interrupt descriptor as below:
12592 * 'NDST' <-- vcpu->pre_pcpu
12593 * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR
12594 * - If 'ON' is set during this process, which means at least one
12595 * interrupt is posted for this vCPU, we cannot block it, in
12596 * this case, return 1, otherwise, return 0.
12597 *
12598 */
pi_pre_block(struct kvm_vcpu * vcpu)12599 static int pi_pre_block(struct kvm_vcpu *vcpu)
12600 {
12601 unsigned int dest;
12602 struct pi_desc old, new;
12603 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
12604
12605 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
12606 !irq_remapping_cap(IRQ_POSTING_CAP) ||
12607 !kvm_vcpu_apicv_active(vcpu))
12608 return 0;
12609
12610 WARN_ON(irqs_disabled());
12611 local_irq_disable();
12612 if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
12613 vcpu->pre_pcpu = vcpu->cpu;
12614 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
12615 list_add_tail(&vcpu->blocked_vcpu_list,
12616 &per_cpu(blocked_vcpu_on_cpu,
12617 vcpu->pre_pcpu));
12618 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
12619 }
12620
12621 do {
12622 old.control = new.control = pi_desc->control;
12623
12624 WARN((pi_desc->sn == 1),
12625 "Warning: SN field of posted-interrupts "
12626 "is set before blocking\n");
12627
12628 /*
12629 * Since vCPU can be preempted during this process,
12630 * vcpu->cpu could be different with pre_pcpu, we
12631 * need to set pre_pcpu as the destination of wakeup
12632 * notification event, then we can find the right vCPU
12633 * to wakeup in wakeup handler if interrupts happen
12634 * when the vCPU is in blocked state.
12635 */
12636 dest = cpu_physical_id(vcpu->pre_pcpu);
12637
12638 if (x2apic_enabled())
12639 new.ndst = dest;
12640 else
12641 new.ndst = (dest << 8) & 0xFF00;
12642
12643 /* set 'NV' to 'wakeup vector' */
12644 new.nv = POSTED_INTR_WAKEUP_VECTOR;
12645 } while (cmpxchg64(&pi_desc->control, old.control,
12646 new.control) != old.control);
12647
12648 /* We should not block the vCPU if an interrupt is posted for it. */
12649 if (pi_test_on(pi_desc) == 1)
12650 __pi_post_block(vcpu);
12651
12652 local_irq_enable();
12653 return (vcpu->pre_pcpu == -1);
12654 }
12655
vmx_pre_block(struct kvm_vcpu * vcpu)12656 static int vmx_pre_block(struct kvm_vcpu *vcpu)
12657 {
12658 if (pi_pre_block(vcpu))
12659 return 1;
12660
12661 if (kvm_lapic_hv_timer_in_use(vcpu))
12662 kvm_lapic_switch_to_sw_timer(vcpu);
12663
12664 return 0;
12665 }
12666
pi_post_block(struct kvm_vcpu * vcpu)12667 static void pi_post_block(struct kvm_vcpu *vcpu)
12668 {
12669 if (vcpu->pre_pcpu == -1)
12670 return;
12671
12672 WARN_ON(irqs_disabled());
12673 local_irq_disable();
12674 __pi_post_block(vcpu);
12675 local_irq_enable();
12676 }
12677
vmx_post_block(struct kvm_vcpu * vcpu)12678 static void vmx_post_block(struct kvm_vcpu *vcpu)
12679 {
12680 if (kvm_x86_ops->set_hv_timer)
12681 kvm_lapic_switch_to_hv_timer(vcpu);
12682
12683 pi_post_block(vcpu);
12684 }
12685
12686 /*
12687 * vmx_update_pi_irte - set IRTE for Posted-Interrupts
12688 *
12689 * @kvm: kvm
12690 * @host_irq: host irq of the interrupt
12691 * @guest_irq: gsi of the interrupt
12692 * @set: set or unset PI
12693 * returns 0 on success, < 0 on failure
12694 */
vmx_update_pi_irte(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)12695 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
12696 uint32_t guest_irq, bool set)
12697 {
12698 struct kvm_kernel_irq_routing_entry *e;
12699 struct kvm_irq_routing_table *irq_rt;
12700 struct kvm_lapic_irq irq;
12701 struct kvm_vcpu *vcpu;
12702 struct vcpu_data vcpu_info;
12703 int idx, ret = 0;
12704
12705 if (!kvm_arch_has_assigned_device(kvm) ||
12706 !irq_remapping_cap(IRQ_POSTING_CAP) ||
12707 !kvm_vcpu_apicv_active(kvm->vcpus[0]))
12708 return 0;
12709
12710 idx = srcu_read_lock(&kvm->irq_srcu);
12711 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
12712 if (guest_irq >= irq_rt->nr_rt_entries ||
12713 hlist_empty(&irq_rt->map[guest_irq])) {
12714 pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
12715 guest_irq, irq_rt->nr_rt_entries);
12716 goto out;
12717 }
12718
12719 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
12720 if (e->type != KVM_IRQ_ROUTING_MSI)
12721 continue;
12722 /*
12723 * VT-d PI cannot support posting multicast/broadcast
12724 * interrupts to a vCPU, we still use interrupt remapping
12725 * for these kind of interrupts.
12726 *
12727 * For lowest-priority interrupts, we only support
12728 * those with single CPU as the destination, e.g. user
12729 * configures the interrupts via /proc/irq or uses
12730 * irqbalance to make the interrupts single-CPU.
12731 *
12732 * We will support full lowest-priority interrupt later.
12733 */
12734
12735 kvm_set_msi_irq(kvm, e, &irq);
12736 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
12737 /*
12738 * Make sure the IRTE is in remapped mode if
12739 * we don't handle it in posted mode.
12740 */
12741 ret = irq_set_vcpu_affinity(host_irq, NULL);
12742 if (ret < 0) {
12743 printk(KERN_INFO
12744 "failed to back to remapped mode, irq: %u\n",
12745 host_irq);
12746 goto out;
12747 }
12748
12749 continue;
12750 }
12751
12752 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
12753 vcpu_info.vector = irq.vector;
12754
12755 trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi,
12756 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
12757
12758 if (set)
12759 ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
12760 else
12761 ret = irq_set_vcpu_affinity(host_irq, NULL);
12762
12763 if (ret < 0) {
12764 printk(KERN_INFO "%s: failed to update PI IRTE\n",
12765 __func__);
12766 goto out;
12767 }
12768 }
12769
12770 ret = 0;
12771 out:
12772 srcu_read_unlock(&kvm->irq_srcu, idx);
12773 return ret;
12774 }
12775
vmx_setup_mce(struct kvm_vcpu * vcpu)12776 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
12777 {
12778 if (vcpu->arch.mcg_cap & MCG_LMCE_P)
12779 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
12780 FEATURE_CONTROL_LMCE;
12781 else
12782 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
12783 ~FEATURE_CONTROL_LMCE;
12784 }
12785
12786 static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
12787 .cpu_has_kvm_support = cpu_has_kvm_support,
12788 .disabled_by_bios = vmx_disabled_by_bios,
12789 .hardware_setup = hardware_setup,
12790 .hardware_unsetup = hardware_unsetup,
12791 .check_processor_compatibility = vmx_check_processor_compat,
12792 .hardware_enable = hardware_enable,
12793 .hardware_disable = hardware_disable,
12794 .cpu_has_accelerated_tpr = report_flexpriority,
12795 .has_emulated_msr = vmx_has_emulated_msr,
12796
12797 .vm_init = vmx_vm_init,
12798
12799 .vcpu_create = vmx_create_vcpu,
12800 .vcpu_free = vmx_free_vcpu,
12801 .vcpu_reset = vmx_vcpu_reset,
12802
12803 .prepare_guest_switch = vmx_save_host_state,
12804 .vcpu_load = vmx_vcpu_load,
12805 .vcpu_put = vmx_vcpu_put,
12806
12807 .update_bp_intercept = update_exception_bitmap,
12808 .get_msr_feature = vmx_get_msr_feature,
12809 .get_msr = vmx_get_msr,
12810 .set_msr = vmx_set_msr,
12811 .get_segment_base = vmx_get_segment_base,
12812 .get_segment = vmx_get_segment,
12813 .set_segment = vmx_set_segment,
12814 .get_cpl = vmx_get_cpl,
12815 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
12816 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
12817 .decache_cr3 = vmx_decache_cr3,
12818 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
12819 .set_cr0 = vmx_set_cr0,
12820 .set_cr3 = vmx_set_cr3,
12821 .set_cr4 = vmx_set_cr4,
12822 .set_efer = vmx_set_efer,
12823 .get_idt = vmx_get_idt,
12824 .set_idt = vmx_set_idt,
12825 .get_gdt = vmx_get_gdt,
12826 .set_gdt = vmx_set_gdt,
12827 .get_dr6 = vmx_get_dr6,
12828 .set_dr6 = vmx_set_dr6,
12829 .set_dr7 = vmx_set_dr7,
12830 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
12831 .cache_reg = vmx_cache_reg,
12832 .get_rflags = vmx_get_rflags,
12833 .set_rflags = vmx_set_rflags,
12834
12835 .tlb_flush = vmx_flush_tlb,
12836
12837 .run = vmx_vcpu_run,
12838 .handle_exit = vmx_handle_exit,
12839 .skip_emulated_instruction = skip_emulated_instruction,
12840 .set_interrupt_shadow = vmx_set_interrupt_shadow,
12841 .get_interrupt_shadow = vmx_get_interrupt_shadow,
12842 .patch_hypercall = vmx_patch_hypercall,
12843 .set_irq = vmx_inject_irq,
12844 .set_nmi = vmx_inject_nmi,
12845 .queue_exception = vmx_queue_exception,
12846 .cancel_injection = vmx_cancel_injection,
12847 .interrupt_allowed = vmx_interrupt_allowed,
12848 .nmi_allowed = vmx_nmi_allowed,
12849 .get_nmi_mask = vmx_get_nmi_mask,
12850 .set_nmi_mask = vmx_set_nmi_mask,
12851 .enable_nmi_window = enable_nmi_window,
12852 .enable_irq_window = enable_irq_window,
12853 .update_cr8_intercept = update_cr8_intercept,
12854 .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
12855 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
12856 .get_enable_apicv = vmx_get_enable_apicv,
12857 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
12858 .load_eoi_exitmap = vmx_load_eoi_exitmap,
12859 .apicv_post_state_restore = vmx_apicv_post_state_restore,
12860 .hwapic_irr_update = vmx_hwapic_irr_update,
12861 .hwapic_isr_update = vmx_hwapic_isr_update,
12862 .sync_pir_to_irr = vmx_sync_pir_to_irr,
12863 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
12864 .dy_apicv_has_pending_interrupt = vmx_dy_apicv_has_pending_interrupt,
12865
12866 .set_tss_addr = vmx_set_tss_addr,
12867 .get_tdp_level = get_ept_level,
12868 .get_mt_mask = vmx_get_mt_mask,
12869
12870 .get_exit_info = vmx_get_exit_info,
12871
12872 .get_lpage_level = vmx_get_lpage_level,
12873
12874 .cpuid_update = vmx_cpuid_update,
12875
12876 .rdtscp_supported = vmx_rdtscp_supported,
12877 .invpcid_supported = vmx_invpcid_supported,
12878
12879 .set_supported_cpuid = vmx_set_supported_cpuid,
12880
12881 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
12882
12883 .write_tsc_offset = vmx_write_tsc_offset,
12884
12885 .set_tdp_cr3 = vmx_set_cr3,
12886
12887 .check_intercept = vmx_check_intercept,
12888 .handle_external_intr = vmx_handle_external_intr,
12889 .mpx_supported = vmx_mpx_supported,
12890 .xsaves_supported = vmx_xsaves_supported,
12891
12892 .check_nested_events = vmx_check_nested_events,
12893
12894 .sched_in = vmx_sched_in,
12895
12896 .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
12897 .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
12898 .flush_log_dirty = vmx_flush_log_dirty,
12899 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
12900 .write_log_dirty = vmx_write_pml_buffer,
12901
12902 .pre_block = vmx_pre_block,
12903 .post_block = vmx_post_block,
12904
12905 .pmu_ops = &intel_pmu_ops,
12906
12907 .update_pi_irte = vmx_update_pi_irte,
12908
12909 #ifdef CONFIG_X86_64
12910 .set_hv_timer = vmx_set_hv_timer,
12911 .cancel_hv_timer = vmx_cancel_hv_timer,
12912 #endif
12913
12914 .setup_mce = vmx_setup_mce,
12915 };
12916
vmx_cleanup_l1d_flush(void)12917 static void vmx_cleanup_l1d_flush(void)
12918 {
12919 if (vmx_l1d_flush_pages) {
12920 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
12921 vmx_l1d_flush_pages = NULL;
12922 }
12923 /* Restore state so sysfs ignores VMX */
12924 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
12925 }
12926
12927
vmx_exit(void)12928 static void vmx_exit(void)
12929 {
12930 #ifdef CONFIG_KEXEC_CORE
12931 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
12932 synchronize_rcu();
12933 #endif
12934
12935 kvm_exit();
12936
12937 vmx_cleanup_l1d_flush();
12938 }
module_exit(vmx_exit)12939 module_exit(vmx_exit)
12940
12941 static int __init vmx_init(void)
12942 {
12943 int r;
12944
12945 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
12946 __alignof__(struct vcpu_vmx), THIS_MODULE);
12947 if (r)
12948 return r;
12949
12950 /*
12951 * Must be called after kvm_init() so enable_ept is properly set
12952 * up. Hand the parameter mitigation value in which was stored in
12953 * the pre module init parser. If no parameter was given, it will
12954 * contain 'auto' which will be turned into the default 'cond'
12955 * mitigation mode.
12956 */
12957 if (boot_cpu_has(X86_BUG_L1TF)) {
12958 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
12959 if (r) {
12960 vmx_exit();
12961 return r;
12962 }
12963 }
12964
12965 #ifdef CONFIG_KEXEC_CORE
12966 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
12967 crash_vmclear_local_loaded_vmcss);
12968 #endif
12969
12970 return 0;
12971 }
12972 module_init(vmx_init)
12973