1 /*
2 Copyright (C) 2002 Richard Henderson
3 Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19 #include <linux/export.h>
20 #include <linux/extable.h>
21 #include <linux/moduleloader.h>
22 #include <linux/trace_events.h>
23 #include <linux/init.h>
24 #include <linux/kallsyms.h>
25 #include <linux/file.h>
26 #include <linux/fs.h>
27 #include <linux/sysfs.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/vmalloc.h>
31 #include <linux/elf.h>
32 #include <linux/proc_fs.h>
33 #include <linux/security.h>
34 #include <linux/seq_file.h>
35 #include <linux/syscalls.h>
36 #include <linux/fcntl.h>
37 #include <linux/rcupdate.h>
38 #include <linux/capability.h>
39 #include <linux/cpu.h>
40 #include <linux/moduleparam.h>
41 #include <linux/errno.h>
42 #include <linux/err.h>
43 #include <linux/vermagic.h>
44 #include <linux/notifier.h>
45 #include <linux/sched.h>
46 #include <linux/device.h>
47 #include <linux/string.h>
48 #include <linux/mutex.h>
49 #include <linux/rculist.h>
50 #include <linux/uaccess.h>
51 #include <asm/cacheflush.h>
52 #include <linux/set_memory.h>
53 #include <asm/mmu_context.h>
54 #include <linux/license.h>
55 #include <asm/sections.h>
56 #include <linux/tracepoint.h>
57 #include <linux/ftrace.h>
58 #include <linux/livepatch.h>
59 #include <linux/async.h>
60 #include <linux/percpu.h>
61 #include <linux/kmemleak.h>
62 #include <linux/jump_label.h>
63 #include <linux/pfn.h>
64 #include <linux/bsearch.h>
65 #include <linux/dynamic_debug.h>
66 #include <linux/audit.h>
67 #include <uapi/linux/module.h>
68 #include "module-internal.h"
69
70 #define CREATE_TRACE_POINTS
71 #include <trace/events/module.h>
72
73 #ifndef ARCH_SHF_SMALL
74 #define ARCH_SHF_SMALL 0
75 #endif
76
77 /*
78 * Modules' sections will be aligned on page boundaries
79 * to ensure complete separation of code and data, but
80 * only when CONFIG_STRICT_MODULE_RWX=y
81 */
82 #ifdef CONFIG_STRICT_MODULE_RWX
83 # define debug_align(X) ALIGN(X, PAGE_SIZE)
84 #else
85 # define debug_align(X) (X)
86 #endif
87
88 /* If this is set, the section belongs in the init part of the module */
89 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
90
91 /*
92 * Mutex protects:
93 * 1) List of modules (also safely readable with preempt_disable),
94 * 2) module_use links,
95 * 3) module_addr_min/module_addr_max.
96 * (delete and add uses RCU list operations). */
97 DEFINE_MUTEX(module_mutex);
98 EXPORT_SYMBOL_GPL(module_mutex);
99 static LIST_HEAD(modules);
100
101 #ifdef CONFIG_MODULES_TREE_LOOKUP
102
103 /*
104 * Use a latched RB-tree for __module_address(); this allows us to use
105 * RCU-sched lookups of the address from any context.
106 *
107 * This is conditional on PERF_EVENTS || TRACING because those can really hit
108 * __module_address() hard by doing a lot of stack unwinding; potentially from
109 * NMI context.
110 */
111
__mod_tree_val(struct latch_tree_node * n)112 static __always_inline unsigned long __mod_tree_val(struct latch_tree_node *n)
113 {
114 struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
115
116 return (unsigned long)layout->base;
117 }
118
__mod_tree_size(struct latch_tree_node * n)119 static __always_inline unsigned long __mod_tree_size(struct latch_tree_node *n)
120 {
121 struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
122
123 return (unsigned long)layout->size;
124 }
125
126 static __always_inline bool
mod_tree_less(struct latch_tree_node * a,struct latch_tree_node * b)127 mod_tree_less(struct latch_tree_node *a, struct latch_tree_node *b)
128 {
129 return __mod_tree_val(a) < __mod_tree_val(b);
130 }
131
132 static __always_inline int
mod_tree_comp(void * key,struct latch_tree_node * n)133 mod_tree_comp(void *key, struct latch_tree_node *n)
134 {
135 unsigned long val = (unsigned long)key;
136 unsigned long start, end;
137
138 start = __mod_tree_val(n);
139 if (val < start)
140 return -1;
141
142 end = start + __mod_tree_size(n);
143 if (val >= end)
144 return 1;
145
146 return 0;
147 }
148
149 static const struct latch_tree_ops mod_tree_ops = {
150 .less = mod_tree_less,
151 .comp = mod_tree_comp,
152 };
153
154 static struct mod_tree_root {
155 struct latch_tree_root root;
156 unsigned long addr_min;
157 unsigned long addr_max;
158 } mod_tree __cacheline_aligned = {
159 .addr_min = -1UL,
160 };
161
162 #define module_addr_min mod_tree.addr_min
163 #define module_addr_max mod_tree.addr_max
164
__mod_tree_insert(struct mod_tree_node * node)165 static noinline void __mod_tree_insert(struct mod_tree_node *node)
166 {
167 latch_tree_insert(&node->node, &mod_tree.root, &mod_tree_ops);
168 }
169
__mod_tree_remove(struct mod_tree_node * node)170 static void __mod_tree_remove(struct mod_tree_node *node)
171 {
172 latch_tree_erase(&node->node, &mod_tree.root, &mod_tree_ops);
173 }
174
175 /*
176 * These modifications: insert, remove_init and remove; are serialized by the
177 * module_mutex.
178 */
mod_tree_insert(struct module * mod)179 static void mod_tree_insert(struct module *mod)
180 {
181 mod->core_layout.mtn.mod = mod;
182 mod->init_layout.mtn.mod = mod;
183
184 __mod_tree_insert(&mod->core_layout.mtn);
185 if (mod->init_layout.size)
186 __mod_tree_insert(&mod->init_layout.mtn);
187 }
188
mod_tree_remove_init(struct module * mod)189 static void mod_tree_remove_init(struct module *mod)
190 {
191 if (mod->init_layout.size)
192 __mod_tree_remove(&mod->init_layout.mtn);
193 }
194
mod_tree_remove(struct module * mod)195 static void mod_tree_remove(struct module *mod)
196 {
197 __mod_tree_remove(&mod->core_layout.mtn);
198 mod_tree_remove_init(mod);
199 }
200
mod_find(unsigned long addr)201 static struct module *mod_find(unsigned long addr)
202 {
203 struct latch_tree_node *ltn;
204
205 ltn = latch_tree_find((void *)addr, &mod_tree.root, &mod_tree_ops);
206 if (!ltn)
207 return NULL;
208
209 return container_of(ltn, struct mod_tree_node, node)->mod;
210 }
211
212 #else /* MODULES_TREE_LOOKUP */
213
214 static unsigned long module_addr_min = -1UL, module_addr_max = 0;
215
mod_tree_insert(struct module * mod)216 static void mod_tree_insert(struct module *mod) { }
mod_tree_remove_init(struct module * mod)217 static void mod_tree_remove_init(struct module *mod) { }
mod_tree_remove(struct module * mod)218 static void mod_tree_remove(struct module *mod) { }
219
mod_find(unsigned long addr)220 static struct module *mod_find(unsigned long addr)
221 {
222 struct module *mod;
223
224 list_for_each_entry_rcu(mod, &modules, list) {
225 if (within_module(addr, mod))
226 return mod;
227 }
228
229 return NULL;
230 }
231
232 #endif /* MODULES_TREE_LOOKUP */
233
234 /*
235 * Bounds of module text, for speeding up __module_address.
236 * Protected by module_mutex.
237 */
__mod_update_bounds(void * base,unsigned int size)238 static void __mod_update_bounds(void *base, unsigned int size)
239 {
240 unsigned long min = (unsigned long)base;
241 unsigned long max = min + size;
242
243 if (min < module_addr_min)
244 module_addr_min = min;
245 if (max > module_addr_max)
246 module_addr_max = max;
247 }
248
mod_update_bounds(struct module * mod)249 static void mod_update_bounds(struct module *mod)
250 {
251 __mod_update_bounds(mod->core_layout.base, mod->core_layout.size);
252 if (mod->init_layout.size)
253 __mod_update_bounds(mod->init_layout.base, mod->init_layout.size);
254 }
255
256 #ifdef CONFIG_KGDB_KDB
257 struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
258 #endif /* CONFIG_KGDB_KDB */
259
module_assert_mutex(void)260 static void module_assert_mutex(void)
261 {
262 lockdep_assert_held(&module_mutex);
263 }
264
module_assert_mutex_or_preempt(void)265 static void module_assert_mutex_or_preempt(void)
266 {
267 #ifdef CONFIG_LOCKDEP
268 if (unlikely(!debug_locks))
269 return;
270
271 WARN_ON_ONCE(!rcu_read_lock_sched_held() &&
272 !lockdep_is_held(&module_mutex));
273 #endif
274 }
275
276 static bool sig_enforce = IS_ENABLED(CONFIG_MODULE_SIG_FORCE);
277 #ifndef CONFIG_MODULE_SIG_FORCE
278 module_param(sig_enforce, bool_enable_only, 0644);
279 #endif /* !CONFIG_MODULE_SIG_FORCE */
280
281 /* Block module loading/unloading? */
282 int modules_disabled = 0;
283 core_param(nomodule, modules_disabled, bint, 0);
284
285 /* Waiting for a module to finish initializing? */
286 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
287
288 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
289
register_module_notifier(struct notifier_block * nb)290 int register_module_notifier(struct notifier_block *nb)
291 {
292 return blocking_notifier_chain_register(&module_notify_list, nb);
293 }
294 EXPORT_SYMBOL(register_module_notifier);
295
unregister_module_notifier(struct notifier_block * nb)296 int unregister_module_notifier(struct notifier_block *nb)
297 {
298 return blocking_notifier_chain_unregister(&module_notify_list, nb);
299 }
300 EXPORT_SYMBOL(unregister_module_notifier);
301
302 struct load_info {
303 const char *name;
304 Elf_Ehdr *hdr;
305 unsigned long len;
306 Elf_Shdr *sechdrs;
307 char *secstrings, *strtab;
308 unsigned long symoffs, stroffs;
309 struct _ddebug *debug;
310 unsigned int num_debug;
311 bool sig_ok;
312 #ifdef CONFIG_KALLSYMS
313 unsigned long mod_kallsyms_init_off;
314 #endif
315 struct {
316 unsigned int sym, str, mod, vers, info, pcpu;
317 } index;
318 };
319
320 /*
321 * We require a truly strong try_module_get(): 0 means success.
322 * Otherwise an error is returned due to ongoing or failed
323 * initialization etc.
324 */
strong_try_module_get(struct module * mod)325 static inline int strong_try_module_get(struct module *mod)
326 {
327 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
328 if (mod && mod->state == MODULE_STATE_COMING)
329 return -EBUSY;
330 if (try_module_get(mod))
331 return 0;
332 else
333 return -ENOENT;
334 }
335
add_taint_module(struct module * mod,unsigned flag,enum lockdep_ok lockdep_ok)336 static inline void add_taint_module(struct module *mod, unsigned flag,
337 enum lockdep_ok lockdep_ok)
338 {
339 add_taint(flag, lockdep_ok);
340 set_bit(flag, &mod->taints);
341 }
342
343 /*
344 * A thread that wants to hold a reference to a module only while it
345 * is running can call this to safely exit. nfsd and lockd use this.
346 */
__module_put_and_exit(struct module * mod,long code)347 void __noreturn __module_put_and_exit(struct module *mod, long code)
348 {
349 module_put(mod);
350 do_exit(code);
351 }
352 EXPORT_SYMBOL(__module_put_and_exit);
353
354 /* Find a module section: 0 means not found. */
find_sec(const struct load_info * info,const char * name)355 static unsigned int find_sec(const struct load_info *info, const char *name)
356 {
357 unsigned int i;
358
359 for (i = 1; i < info->hdr->e_shnum; i++) {
360 Elf_Shdr *shdr = &info->sechdrs[i];
361 /* Alloc bit cleared means "ignore it." */
362 if ((shdr->sh_flags & SHF_ALLOC)
363 && strcmp(info->secstrings + shdr->sh_name, name) == 0)
364 return i;
365 }
366 return 0;
367 }
368
369 /* Find a module section, or NULL. */
section_addr(const struct load_info * info,const char * name)370 static void *section_addr(const struct load_info *info, const char *name)
371 {
372 /* Section 0 has sh_addr 0. */
373 return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
374 }
375
376 /* Find a module section, or NULL. Fill in number of "objects" in section. */
section_objs(const struct load_info * info,const char * name,size_t object_size,unsigned int * num)377 static void *section_objs(const struct load_info *info,
378 const char *name,
379 size_t object_size,
380 unsigned int *num)
381 {
382 unsigned int sec = find_sec(info, name);
383
384 /* Section 0 has sh_addr 0 and sh_size 0. */
385 *num = info->sechdrs[sec].sh_size / object_size;
386 return (void *)info->sechdrs[sec].sh_addr;
387 }
388
389 /* Provided by the linker */
390 extern const struct kernel_symbol __start___ksymtab[];
391 extern const struct kernel_symbol __stop___ksymtab[];
392 extern const struct kernel_symbol __start___ksymtab_gpl[];
393 extern const struct kernel_symbol __stop___ksymtab_gpl[];
394 extern const struct kernel_symbol __start___ksymtab_gpl_future[];
395 extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
396 extern const s32 __start___kcrctab[];
397 extern const s32 __start___kcrctab_gpl[];
398 extern const s32 __start___kcrctab_gpl_future[];
399 #ifdef CONFIG_UNUSED_SYMBOLS
400 extern const struct kernel_symbol __start___ksymtab_unused[];
401 extern const struct kernel_symbol __stop___ksymtab_unused[];
402 extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
403 extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
404 extern const s32 __start___kcrctab_unused[];
405 extern const s32 __start___kcrctab_unused_gpl[];
406 #endif
407
408 #ifndef CONFIG_MODVERSIONS
409 #define symversion(base, idx) NULL
410 #else
411 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
412 #endif
413
each_symbol_in_section(const struct symsearch * arr,unsigned int arrsize,struct module * owner,bool (* fn)(const struct symsearch * syms,struct module * owner,void * data),void * data)414 static bool each_symbol_in_section(const struct symsearch *arr,
415 unsigned int arrsize,
416 struct module *owner,
417 bool (*fn)(const struct symsearch *syms,
418 struct module *owner,
419 void *data),
420 void *data)
421 {
422 unsigned int j;
423
424 for (j = 0; j < arrsize; j++) {
425 if (fn(&arr[j], owner, data))
426 return true;
427 }
428
429 return false;
430 }
431
432 /* Returns true as soon as fn returns true, otherwise false. */
each_symbol_section(bool (* fn)(const struct symsearch * arr,struct module * owner,void * data),void * data)433 bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
434 struct module *owner,
435 void *data),
436 void *data)
437 {
438 struct module *mod;
439 static const struct symsearch arr[] = {
440 { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
441 NOT_GPL_ONLY, false },
442 { __start___ksymtab_gpl, __stop___ksymtab_gpl,
443 __start___kcrctab_gpl,
444 GPL_ONLY, false },
445 { __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
446 __start___kcrctab_gpl_future,
447 WILL_BE_GPL_ONLY, false },
448 #ifdef CONFIG_UNUSED_SYMBOLS
449 { __start___ksymtab_unused, __stop___ksymtab_unused,
450 __start___kcrctab_unused,
451 NOT_GPL_ONLY, true },
452 { __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
453 __start___kcrctab_unused_gpl,
454 GPL_ONLY, true },
455 #endif
456 };
457
458 module_assert_mutex_or_preempt();
459
460 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
461 return true;
462
463 list_for_each_entry_rcu(mod, &modules, list) {
464 struct symsearch arr[] = {
465 { mod->syms, mod->syms + mod->num_syms, mod->crcs,
466 NOT_GPL_ONLY, false },
467 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
468 mod->gpl_crcs,
469 GPL_ONLY, false },
470 { mod->gpl_future_syms,
471 mod->gpl_future_syms + mod->num_gpl_future_syms,
472 mod->gpl_future_crcs,
473 WILL_BE_GPL_ONLY, false },
474 #ifdef CONFIG_UNUSED_SYMBOLS
475 { mod->unused_syms,
476 mod->unused_syms + mod->num_unused_syms,
477 mod->unused_crcs,
478 NOT_GPL_ONLY, true },
479 { mod->unused_gpl_syms,
480 mod->unused_gpl_syms + mod->num_unused_gpl_syms,
481 mod->unused_gpl_crcs,
482 GPL_ONLY, true },
483 #endif
484 };
485
486 if (mod->state == MODULE_STATE_UNFORMED)
487 continue;
488
489 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
490 return true;
491 }
492 return false;
493 }
494 EXPORT_SYMBOL_GPL(each_symbol_section);
495
496 struct find_symbol_arg {
497 /* Input */
498 const char *name;
499 bool gplok;
500 bool warn;
501
502 /* Output */
503 struct module *owner;
504 const s32 *crc;
505 const struct kernel_symbol *sym;
506 };
507
check_symbol(const struct symsearch * syms,struct module * owner,unsigned int symnum,void * data)508 static bool check_symbol(const struct symsearch *syms,
509 struct module *owner,
510 unsigned int symnum, void *data)
511 {
512 struct find_symbol_arg *fsa = data;
513
514 if (!fsa->gplok) {
515 if (syms->licence == GPL_ONLY)
516 return false;
517 if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
518 pr_warn("Symbol %s is being used by a non-GPL module, "
519 "which will not be allowed in the future\n",
520 fsa->name);
521 }
522 }
523
524 #ifdef CONFIG_UNUSED_SYMBOLS
525 if (syms->unused && fsa->warn) {
526 pr_warn("Symbol %s is marked as UNUSED, however this module is "
527 "using it.\n", fsa->name);
528 pr_warn("This symbol will go away in the future.\n");
529 pr_warn("Please evaluate if this is the right api to use and "
530 "if it really is, submit a report to the linux kernel "
531 "mailing list together with submitting your code for "
532 "inclusion.\n");
533 }
534 #endif
535
536 fsa->owner = owner;
537 fsa->crc = symversion(syms->crcs, symnum);
538 fsa->sym = &syms->start[symnum];
539 return true;
540 }
541
cmp_name(const void * va,const void * vb)542 static int cmp_name(const void *va, const void *vb)
543 {
544 const char *a;
545 const struct kernel_symbol *b;
546 a = va; b = vb;
547 return strcmp(a, b->name);
548 }
549
find_symbol_in_section(const struct symsearch * syms,struct module * owner,void * data)550 static bool find_symbol_in_section(const struct symsearch *syms,
551 struct module *owner,
552 void *data)
553 {
554 struct find_symbol_arg *fsa = data;
555 struct kernel_symbol *sym;
556
557 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
558 sizeof(struct kernel_symbol), cmp_name);
559
560 if (sym != NULL && check_symbol(syms, owner, sym - syms->start, data))
561 return true;
562
563 return false;
564 }
565
566 /* Find a symbol and return it, along with, (optional) crc and
567 * (optional) module which owns it. Needs preempt disabled or module_mutex. */
find_symbol(const char * name,struct module ** owner,const s32 ** crc,bool gplok,bool warn)568 const struct kernel_symbol *find_symbol(const char *name,
569 struct module **owner,
570 const s32 **crc,
571 bool gplok,
572 bool warn)
573 {
574 struct find_symbol_arg fsa;
575
576 fsa.name = name;
577 fsa.gplok = gplok;
578 fsa.warn = warn;
579
580 if (each_symbol_section(find_symbol_in_section, &fsa)) {
581 if (owner)
582 *owner = fsa.owner;
583 if (crc)
584 *crc = fsa.crc;
585 return fsa.sym;
586 }
587
588 pr_debug("Failed to find symbol %s\n", name);
589 return NULL;
590 }
591 EXPORT_SYMBOL_GPL(find_symbol);
592
593 /*
594 * Search for module by name: must hold module_mutex (or preempt disabled
595 * for read-only access).
596 */
find_module_all(const char * name,size_t len,bool even_unformed)597 static struct module *find_module_all(const char *name, size_t len,
598 bool even_unformed)
599 {
600 struct module *mod;
601
602 module_assert_mutex_or_preempt();
603
604 list_for_each_entry_rcu(mod, &modules, list) {
605 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
606 continue;
607 if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
608 return mod;
609 }
610 return NULL;
611 }
612
find_module(const char * name)613 struct module *find_module(const char *name)
614 {
615 module_assert_mutex();
616 return find_module_all(name, strlen(name), false);
617 }
618 EXPORT_SYMBOL_GPL(find_module);
619
620 #ifdef CONFIG_SMP
621
mod_percpu(struct module * mod)622 static inline void __percpu *mod_percpu(struct module *mod)
623 {
624 return mod->percpu;
625 }
626
percpu_modalloc(struct module * mod,struct load_info * info)627 static int percpu_modalloc(struct module *mod, struct load_info *info)
628 {
629 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
630 unsigned long align = pcpusec->sh_addralign;
631
632 if (!pcpusec->sh_size)
633 return 0;
634
635 if (align > PAGE_SIZE) {
636 pr_warn("%s: per-cpu alignment %li > %li\n",
637 mod->name, align, PAGE_SIZE);
638 align = PAGE_SIZE;
639 }
640
641 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
642 if (!mod->percpu) {
643 pr_warn("%s: Could not allocate %lu bytes percpu data\n",
644 mod->name, (unsigned long)pcpusec->sh_size);
645 return -ENOMEM;
646 }
647 mod->percpu_size = pcpusec->sh_size;
648 return 0;
649 }
650
percpu_modfree(struct module * mod)651 static void percpu_modfree(struct module *mod)
652 {
653 free_percpu(mod->percpu);
654 }
655
find_pcpusec(struct load_info * info)656 static unsigned int find_pcpusec(struct load_info *info)
657 {
658 return find_sec(info, ".data..percpu");
659 }
660
percpu_modcopy(struct module * mod,const void * from,unsigned long size)661 static void percpu_modcopy(struct module *mod,
662 const void *from, unsigned long size)
663 {
664 int cpu;
665
666 for_each_possible_cpu(cpu)
667 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
668 }
669
__is_module_percpu_address(unsigned long addr,unsigned long * can_addr)670 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
671 {
672 struct module *mod;
673 unsigned int cpu;
674
675 preempt_disable();
676
677 list_for_each_entry_rcu(mod, &modules, list) {
678 if (mod->state == MODULE_STATE_UNFORMED)
679 continue;
680 if (!mod->percpu_size)
681 continue;
682 for_each_possible_cpu(cpu) {
683 void *start = per_cpu_ptr(mod->percpu, cpu);
684 void *va = (void *)addr;
685
686 if (va >= start && va < start + mod->percpu_size) {
687 if (can_addr) {
688 *can_addr = (unsigned long) (va - start);
689 *can_addr += (unsigned long)
690 per_cpu_ptr(mod->percpu,
691 get_boot_cpu_id());
692 }
693 preempt_enable();
694 return true;
695 }
696 }
697 }
698
699 preempt_enable();
700 return false;
701 }
702
703 /**
704 * is_module_percpu_address - test whether address is from module static percpu
705 * @addr: address to test
706 *
707 * Test whether @addr belongs to module static percpu area.
708 *
709 * RETURNS:
710 * %true if @addr is from module static percpu area
711 */
is_module_percpu_address(unsigned long addr)712 bool is_module_percpu_address(unsigned long addr)
713 {
714 return __is_module_percpu_address(addr, NULL);
715 }
716
717 #else /* ... !CONFIG_SMP */
718
mod_percpu(struct module * mod)719 static inline void __percpu *mod_percpu(struct module *mod)
720 {
721 return NULL;
722 }
percpu_modalloc(struct module * mod,struct load_info * info)723 static int percpu_modalloc(struct module *mod, struct load_info *info)
724 {
725 /* UP modules shouldn't have this section: ENOMEM isn't quite right */
726 if (info->sechdrs[info->index.pcpu].sh_size != 0)
727 return -ENOMEM;
728 return 0;
729 }
percpu_modfree(struct module * mod)730 static inline void percpu_modfree(struct module *mod)
731 {
732 }
find_pcpusec(struct load_info * info)733 static unsigned int find_pcpusec(struct load_info *info)
734 {
735 return 0;
736 }
percpu_modcopy(struct module * mod,const void * from,unsigned long size)737 static inline void percpu_modcopy(struct module *mod,
738 const void *from, unsigned long size)
739 {
740 /* pcpusec should be 0, and size of that section should be 0. */
741 BUG_ON(size != 0);
742 }
is_module_percpu_address(unsigned long addr)743 bool is_module_percpu_address(unsigned long addr)
744 {
745 return false;
746 }
747
__is_module_percpu_address(unsigned long addr,unsigned long * can_addr)748 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
749 {
750 return false;
751 }
752
753 #endif /* CONFIG_SMP */
754
755 #define MODINFO_ATTR(field) \
756 static void setup_modinfo_##field(struct module *mod, const char *s) \
757 { \
758 mod->field = kstrdup(s, GFP_KERNEL); \
759 } \
760 static ssize_t show_modinfo_##field(struct module_attribute *mattr, \
761 struct module_kobject *mk, char *buffer) \
762 { \
763 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \
764 } \
765 static int modinfo_##field##_exists(struct module *mod) \
766 { \
767 return mod->field != NULL; \
768 } \
769 static void free_modinfo_##field(struct module *mod) \
770 { \
771 kfree(mod->field); \
772 mod->field = NULL; \
773 } \
774 static struct module_attribute modinfo_##field = { \
775 .attr = { .name = __stringify(field), .mode = 0444 }, \
776 .show = show_modinfo_##field, \
777 .setup = setup_modinfo_##field, \
778 .test = modinfo_##field##_exists, \
779 .free = free_modinfo_##field, \
780 };
781
782 MODINFO_ATTR(version);
783 MODINFO_ATTR(srcversion);
784
785 static char last_unloaded_module[MODULE_NAME_LEN+1];
786
787 #ifdef CONFIG_MODULE_UNLOAD
788
789 EXPORT_TRACEPOINT_SYMBOL(module_get);
790
791 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
792 #define MODULE_REF_BASE 1
793
794 /* Init the unload section of the module. */
module_unload_init(struct module * mod)795 static int module_unload_init(struct module *mod)
796 {
797 /*
798 * Initialize reference counter to MODULE_REF_BASE.
799 * refcnt == 0 means module is going.
800 */
801 atomic_set(&mod->refcnt, MODULE_REF_BASE);
802
803 INIT_LIST_HEAD(&mod->source_list);
804 INIT_LIST_HEAD(&mod->target_list);
805
806 /* Hold reference count during initialization. */
807 atomic_inc(&mod->refcnt);
808
809 return 0;
810 }
811
812 /* Does a already use b? */
already_uses(struct module * a,struct module * b)813 static int already_uses(struct module *a, struct module *b)
814 {
815 struct module_use *use;
816
817 list_for_each_entry(use, &b->source_list, source_list) {
818 if (use->source == a) {
819 pr_debug("%s uses %s!\n", a->name, b->name);
820 return 1;
821 }
822 }
823 pr_debug("%s does not use %s!\n", a->name, b->name);
824 return 0;
825 }
826
827 /*
828 * Module a uses b
829 * - we add 'a' as a "source", 'b' as a "target" of module use
830 * - the module_use is added to the list of 'b' sources (so
831 * 'b' can walk the list to see who sourced them), and of 'a'
832 * targets (so 'a' can see what modules it targets).
833 */
add_module_usage(struct module * a,struct module * b)834 static int add_module_usage(struct module *a, struct module *b)
835 {
836 struct module_use *use;
837
838 pr_debug("Allocating new usage for %s.\n", a->name);
839 use = kmalloc(sizeof(*use), GFP_ATOMIC);
840 if (!use) {
841 pr_warn("%s: out of memory loading\n", a->name);
842 return -ENOMEM;
843 }
844
845 use->source = a;
846 use->target = b;
847 list_add(&use->source_list, &b->source_list);
848 list_add(&use->target_list, &a->target_list);
849 return 0;
850 }
851
852 /* Module a uses b: caller needs module_mutex() */
ref_module(struct module * a,struct module * b)853 int ref_module(struct module *a, struct module *b)
854 {
855 int err;
856
857 if (b == NULL || already_uses(a, b))
858 return 0;
859
860 /* If module isn't available, we fail. */
861 err = strong_try_module_get(b);
862 if (err)
863 return err;
864
865 err = add_module_usage(a, b);
866 if (err) {
867 module_put(b);
868 return err;
869 }
870 return 0;
871 }
872 EXPORT_SYMBOL_GPL(ref_module);
873
874 /* Clear the unload stuff of the module. */
module_unload_free(struct module * mod)875 static void module_unload_free(struct module *mod)
876 {
877 struct module_use *use, *tmp;
878
879 mutex_lock(&module_mutex);
880 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
881 struct module *i = use->target;
882 pr_debug("%s unusing %s\n", mod->name, i->name);
883 module_put(i);
884 list_del(&use->source_list);
885 list_del(&use->target_list);
886 kfree(use);
887 }
888 mutex_unlock(&module_mutex);
889 }
890
891 #ifdef CONFIG_MODULE_FORCE_UNLOAD
try_force_unload(unsigned int flags)892 static inline int try_force_unload(unsigned int flags)
893 {
894 int ret = (flags & O_TRUNC);
895 if (ret)
896 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
897 return ret;
898 }
899 #else
try_force_unload(unsigned int flags)900 static inline int try_force_unload(unsigned int flags)
901 {
902 return 0;
903 }
904 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
905
906 /* Try to release refcount of module, 0 means success. */
try_release_module_ref(struct module * mod)907 static int try_release_module_ref(struct module *mod)
908 {
909 int ret;
910
911 /* Try to decrement refcnt which we set at loading */
912 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
913 BUG_ON(ret < 0);
914 if (ret)
915 /* Someone can put this right now, recover with checking */
916 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
917
918 return ret;
919 }
920
try_stop_module(struct module * mod,int flags,int * forced)921 static int try_stop_module(struct module *mod, int flags, int *forced)
922 {
923 /* If it's not unused, quit unless we're forcing. */
924 if (try_release_module_ref(mod) != 0) {
925 *forced = try_force_unload(flags);
926 if (!(*forced))
927 return -EWOULDBLOCK;
928 }
929
930 /* Mark it as dying. */
931 mod->state = MODULE_STATE_GOING;
932
933 return 0;
934 }
935
936 /**
937 * module_refcount - return the refcount or -1 if unloading
938 *
939 * @mod: the module we're checking
940 *
941 * Returns:
942 * -1 if the module is in the process of unloading
943 * otherwise the number of references in the kernel to the module
944 */
module_refcount(struct module * mod)945 int module_refcount(struct module *mod)
946 {
947 return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
948 }
949 EXPORT_SYMBOL(module_refcount);
950
951 /* This exists whether we can unload or not */
952 static void free_module(struct module *mod);
953
SYSCALL_DEFINE2(delete_module,const char __user *,name_user,unsigned int,flags)954 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
955 unsigned int, flags)
956 {
957 struct module *mod;
958 char name[MODULE_NAME_LEN];
959 int ret, forced = 0;
960
961 if (!capable(CAP_SYS_MODULE) || modules_disabled)
962 return -EPERM;
963
964 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
965 return -EFAULT;
966 name[MODULE_NAME_LEN-1] = '\0';
967
968 audit_log_kern_module(name);
969
970 if (mutex_lock_interruptible(&module_mutex) != 0)
971 return -EINTR;
972
973 mod = find_module(name);
974 if (!mod) {
975 ret = -ENOENT;
976 goto out;
977 }
978
979 if (!list_empty(&mod->source_list)) {
980 /* Other modules depend on us: get rid of them first. */
981 ret = -EWOULDBLOCK;
982 goto out;
983 }
984
985 /* Doing init or already dying? */
986 if (mod->state != MODULE_STATE_LIVE) {
987 /* FIXME: if (force), slam module count damn the torpedoes */
988 pr_debug("%s already dying\n", mod->name);
989 ret = -EBUSY;
990 goto out;
991 }
992
993 /* If it has an init func, it must have an exit func to unload */
994 if (mod->init && !mod->exit) {
995 forced = try_force_unload(flags);
996 if (!forced) {
997 /* This module can't be removed */
998 ret = -EBUSY;
999 goto out;
1000 }
1001 }
1002
1003 /* Stop the machine so refcounts can't move and disable module. */
1004 ret = try_stop_module(mod, flags, &forced);
1005 if (ret != 0)
1006 goto out;
1007
1008 mutex_unlock(&module_mutex);
1009 /* Final destruction now no one is using it. */
1010 if (mod->exit != NULL)
1011 mod->exit();
1012 blocking_notifier_call_chain(&module_notify_list,
1013 MODULE_STATE_GOING, mod);
1014 klp_module_going(mod);
1015 ftrace_release_mod(mod);
1016
1017 async_synchronize_full();
1018
1019 /* Store the name of the last unloaded module for diagnostic purposes */
1020 strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
1021
1022 free_module(mod);
1023 /* someone could wait for the module in add_unformed_module() */
1024 wake_up_all(&module_wq);
1025 return 0;
1026 out:
1027 mutex_unlock(&module_mutex);
1028 return ret;
1029 }
1030
print_unload_info(struct seq_file * m,struct module * mod)1031 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1032 {
1033 struct module_use *use;
1034 int printed_something = 0;
1035
1036 seq_printf(m, " %i ", module_refcount(mod));
1037
1038 /*
1039 * Always include a trailing , so userspace can differentiate
1040 * between this and the old multi-field proc format.
1041 */
1042 list_for_each_entry(use, &mod->source_list, source_list) {
1043 printed_something = 1;
1044 seq_printf(m, "%s,", use->source->name);
1045 }
1046
1047 if (mod->init != NULL && mod->exit == NULL) {
1048 printed_something = 1;
1049 seq_puts(m, "[permanent],");
1050 }
1051
1052 if (!printed_something)
1053 seq_puts(m, "-");
1054 }
1055
__symbol_put(const char * symbol)1056 void __symbol_put(const char *symbol)
1057 {
1058 struct module *owner;
1059
1060 preempt_disable();
1061 if (!find_symbol(symbol, &owner, NULL, true, false))
1062 BUG();
1063 module_put(owner);
1064 preempt_enable();
1065 }
1066 EXPORT_SYMBOL(__symbol_put);
1067
1068 /* Note this assumes addr is a function, which it currently always is. */
symbol_put_addr(void * addr)1069 void symbol_put_addr(void *addr)
1070 {
1071 struct module *modaddr;
1072 unsigned long a = (unsigned long)dereference_function_descriptor(addr);
1073
1074 if (core_kernel_text(a))
1075 return;
1076
1077 /*
1078 * Even though we hold a reference on the module; we still need to
1079 * disable preemption in order to safely traverse the data structure.
1080 */
1081 preempt_disable();
1082 modaddr = __module_text_address(a);
1083 BUG_ON(!modaddr);
1084 module_put(modaddr);
1085 preempt_enable();
1086 }
1087 EXPORT_SYMBOL_GPL(symbol_put_addr);
1088
show_refcnt(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1089 static ssize_t show_refcnt(struct module_attribute *mattr,
1090 struct module_kobject *mk, char *buffer)
1091 {
1092 return sprintf(buffer, "%i\n", module_refcount(mk->mod));
1093 }
1094
1095 static struct module_attribute modinfo_refcnt =
1096 __ATTR(refcnt, 0444, show_refcnt, NULL);
1097
__module_get(struct module * module)1098 void __module_get(struct module *module)
1099 {
1100 if (module) {
1101 preempt_disable();
1102 atomic_inc(&module->refcnt);
1103 trace_module_get(module, _RET_IP_);
1104 preempt_enable();
1105 }
1106 }
1107 EXPORT_SYMBOL(__module_get);
1108
try_module_get(struct module * module)1109 bool try_module_get(struct module *module)
1110 {
1111 bool ret = true;
1112
1113 if (module) {
1114 preempt_disable();
1115 /* Note: here, we can fail to get a reference */
1116 if (likely(module_is_live(module) &&
1117 atomic_inc_not_zero(&module->refcnt) != 0))
1118 trace_module_get(module, _RET_IP_);
1119 else
1120 ret = false;
1121
1122 preempt_enable();
1123 }
1124 return ret;
1125 }
1126 EXPORT_SYMBOL(try_module_get);
1127
module_put(struct module * module)1128 void module_put(struct module *module)
1129 {
1130 int ret;
1131
1132 if (module) {
1133 preempt_disable();
1134 ret = atomic_dec_if_positive(&module->refcnt);
1135 WARN_ON(ret < 0); /* Failed to put refcount */
1136 trace_module_put(module, _RET_IP_);
1137 preempt_enable();
1138 }
1139 }
1140 EXPORT_SYMBOL(module_put);
1141
1142 #else /* !CONFIG_MODULE_UNLOAD */
print_unload_info(struct seq_file * m,struct module * mod)1143 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1144 {
1145 /* We don't know the usage count, or what modules are using. */
1146 seq_puts(m, " - -");
1147 }
1148
module_unload_free(struct module * mod)1149 static inline void module_unload_free(struct module *mod)
1150 {
1151 }
1152
ref_module(struct module * a,struct module * b)1153 int ref_module(struct module *a, struct module *b)
1154 {
1155 return strong_try_module_get(b);
1156 }
1157 EXPORT_SYMBOL_GPL(ref_module);
1158
module_unload_init(struct module * mod)1159 static inline int module_unload_init(struct module *mod)
1160 {
1161 return 0;
1162 }
1163 #endif /* CONFIG_MODULE_UNLOAD */
1164
module_flags_taint(struct module * mod,char * buf)1165 static size_t module_flags_taint(struct module *mod, char *buf)
1166 {
1167 size_t l = 0;
1168 int i;
1169
1170 for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
1171 if (taint_flags[i].module && test_bit(i, &mod->taints))
1172 buf[l++] = taint_flags[i].c_true;
1173 }
1174
1175 return l;
1176 }
1177
show_initstate(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1178 static ssize_t show_initstate(struct module_attribute *mattr,
1179 struct module_kobject *mk, char *buffer)
1180 {
1181 const char *state = "unknown";
1182
1183 switch (mk->mod->state) {
1184 case MODULE_STATE_LIVE:
1185 state = "live";
1186 break;
1187 case MODULE_STATE_COMING:
1188 state = "coming";
1189 break;
1190 case MODULE_STATE_GOING:
1191 state = "going";
1192 break;
1193 default:
1194 BUG();
1195 }
1196 return sprintf(buffer, "%s\n", state);
1197 }
1198
1199 static struct module_attribute modinfo_initstate =
1200 __ATTR(initstate, 0444, show_initstate, NULL);
1201
store_uevent(struct module_attribute * mattr,struct module_kobject * mk,const char * buffer,size_t count)1202 static ssize_t store_uevent(struct module_attribute *mattr,
1203 struct module_kobject *mk,
1204 const char *buffer, size_t count)
1205 {
1206 int rc;
1207
1208 rc = kobject_synth_uevent(&mk->kobj, buffer, count);
1209 return rc ? rc : count;
1210 }
1211
1212 struct module_attribute module_uevent =
1213 __ATTR(uevent, 0200, NULL, store_uevent);
1214
show_coresize(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1215 static ssize_t show_coresize(struct module_attribute *mattr,
1216 struct module_kobject *mk, char *buffer)
1217 {
1218 return sprintf(buffer, "%u\n", mk->mod->core_layout.size);
1219 }
1220
1221 static struct module_attribute modinfo_coresize =
1222 __ATTR(coresize, 0444, show_coresize, NULL);
1223
show_initsize(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1224 static ssize_t show_initsize(struct module_attribute *mattr,
1225 struct module_kobject *mk, char *buffer)
1226 {
1227 return sprintf(buffer, "%u\n", mk->mod->init_layout.size);
1228 }
1229
1230 static struct module_attribute modinfo_initsize =
1231 __ATTR(initsize, 0444, show_initsize, NULL);
1232
show_taint(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1233 static ssize_t show_taint(struct module_attribute *mattr,
1234 struct module_kobject *mk, char *buffer)
1235 {
1236 size_t l;
1237
1238 l = module_flags_taint(mk->mod, buffer);
1239 buffer[l++] = '\n';
1240 return l;
1241 }
1242
1243 static struct module_attribute modinfo_taint =
1244 __ATTR(taint, 0444, show_taint, NULL);
1245
1246 static struct module_attribute *modinfo_attrs[] = {
1247 &module_uevent,
1248 &modinfo_version,
1249 &modinfo_srcversion,
1250 &modinfo_initstate,
1251 &modinfo_coresize,
1252 &modinfo_initsize,
1253 &modinfo_taint,
1254 #ifdef CONFIG_MODULE_UNLOAD
1255 &modinfo_refcnt,
1256 #endif
1257 NULL,
1258 };
1259
1260 static const char vermagic[] = VERMAGIC_STRING;
1261
try_to_force_load(struct module * mod,const char * reason)1262 static int try_to_force_load(struct module *mod, const char *reason)
1263 {
1264 #ifdef CONFIG_MODULE_FORCE_LOAD
1265 if (!test_taint(TAINT_FORCED_MODULE))
1266 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1267 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1268 return 0;
1269 #else
1270 return -ENOEXEC;
1271 #endif
1272 }
1273
1274 #ifdef CONFIG_MODVERSIONS
1275
resolve_rel_crc(const s32 * crc)1276 static u32 resolve_rel_crc(const s32 *crc)
1277 {
1278 return *(u32 *)((void *)crc + *crc);
1279 }
1280
check_version(const struct load_info * info,const char * symname,struct module * mod,const s32 * crc)1281 static int check_version(const struct load_info *info,
1282 const char *symname,
1283 struct module *mod,
1284 const s32 *crc)
1285 {
1286 Elf_Shdr *sechdrs = info->sechdrs;
1287 unsigned int versindex = info->index.vers;
1288 unsigned int i, num_versions;
1289 struct modversion_info *versions;
1290
1291 /* Exporting module didn't supply crcs? OK, we're already tainted. */
1292 if (!crc)
1293 return 1;
1294
1295 /* No versions at all? modprobe --force does this. */
1296 if (versindex == 0)
1297 return try_to_force_load(mod, symname) == 0;
1298
1299 versions = (void *) sechdrs[versindex].sh_addr;
1300 num_versions = sechdrs[versindex].sh_size
1301 / sizeof(struct modversion_info);
1302
1303 for (i = 0; i < num_versions; i++) {
1304 u32 crcval;
1305
1306 if (strcmp(versions[i].name, symname) != 0)
1307 continue;
1308
1309 if (IS_ENABLED(CONFIG_MODULE_REL_CRCS))
1310 crcval = resolve_rel_crc(crc);
1311 else
1312 crcval = *crc;
1313 if (versions[i].crc == crcval)
1314 return 1;
1315 pr_debug("Found checksum %X vs module %lX\n",
1316 crcval, versions[i].crc);
1317 goto bad_version;
1318 }
1319
1320 /* Broken toolchain. Warn once, then let it go.. */
1321 pr_warn_once("%s: no symbol version for %s\n", info->name, symname);
1322 return 1;
1323
1324 bad_version:
1325 pr_warn("%s: disagrees about version of symbol %s\n",
1326 info->name, symname);
1327 return 0;
1328 }
1329
check_modstruct_version(const struct load_info * info,struct module * mod)1330 static inline int check_modstruct_version(const struct load_info *info,
1331 struct module *mod)
1332 {
1333 const s32 *crc;
1334
1335 /*
1336 * Since this should be found in kernel (which can't be removed), no
1337 * locking is necessary -- use preempt_disable() to placate lockdep.
1338 */
1339 preempt_disable();
1340 if (!find_symbol(VMLINUX_SYMBOL_STR(module_layout), NULL,
1341 &crc, true, false)) {
1342 preempt_enable();
1343 BUG();
1344 }
1345 preempt_enable();
1346 return check_version(info, VMLINUX_SYMBOL_STR(module_layout),
1347 mod, crc);
1348 }
1349
1350 /* First part is kernel version, which we ignore if module has crcs. */
same_magic(const char * amagic,const char * bmagic,bool has_crcs)1351 static inline int same_magic(const char *amagic, const char *bmagic,
1352 bool has_crcs)
1353 {
1354 if (has_crcs) {
1355 amagic += strcspn(amagic, " ");
1356 bmagic += strcspn(bmagic, " ");
1357 }
1358 return strcmp(amagic, bmagic) == 0;
1359 }
1360 #else
check_version(const struct load_info * info,const char * symname,struct module * mod,const s32 * crc)1361 static inline int check_version(const struct load_info *info,
1362 const char *symname,
1363 struct module *mod,
1364 const s32 *crc)
1365 {
1366 return 1;
1367 }
1368
check_modstruct_version(const struct load_info * info,struct module * mod)1369 static inline int check_modstruct_version(const struct load_info *info,
1370 struct module *mod)
1371 {
1372 return 1;
1373 }
1374
same_magic(const char * amagic,const char * bmagic,bool has_crcs)1375 static inline int same_magic(const char *amagic, const char *bmagic,
1376 bool has_crcs)
1377 {
1378 return strcmp(amagic, bmagic) == 0;
1379 }
1380 #endif /* CONFIG_MODVERSIONS */
1381
1382 /* Resolve a symbol for this module. I.e. if we find one, record usage. */
resolve_symbol(struct module * mod,const struct load_info * info,const char * name,char ownername[])1383 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1384 const struct load_info *info,
1385 const char *name,
1386 char ownername[])
1387 {
1388 struct module *owner;
1389 const struct kernel_symbol *sym;
1390 const s32 *crc;
1391 int err;
1392
1393 /*
1394 * The module_mutex should not be a heavily contended lock;
1395 * if we get the occasional sleep here, we'll go an extra iteration
1396 * in the wait_event_interruptible(), which is harmless.
1397 */
1398 sched_annotate_sleep();
1399 mutex_lock(&module_mutex);
1400 sym = find_symbol(name, &owner, &crc,
1401 !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1402 if (!sym)
1403 goto unlock;
1404
1405 if (!check_version(info, name, mod, crc)) {
1406 sym = ERR_PTR(-EINVAL);
1407 goto getname;
1408 }
1409
1410 err = ref_module(mod, owner);
1411 if (err) {
1412 sym = ERR_PTR(err);
1413 goto getname;
1414 }
1415
1416 getname:
1417 /* We must make copy under the lock if we failed to get ref. */
1418 strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1419 unlock:
1420 mutex_unlock(&module_mutex);
1421 return sym;
1422 }
1423
1424 static const struct kernel_symbol *
resolve_symbol_wait(struct module * mod,const struct load_info * info,const char * name)1425 resolve_symbol_wait(struct module *mod,
1426 const struct load_info *info,
1427 const char *name)
1428 {
1429 const struct kernel_symbol *ksym;
1430 char owner[MODULE_NAME_LEN];
1431
1432 if (wait_event_interruptible_timeout(module_wq,
1433 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1434 || PTR_ERR(ksym) != -EBUSY,
1435 30 * HZ) <= 0) {
1436 pr_warn("%s: gave up waiting for init of module %s.\n",
1437 mod->name, owner);
1438 }
1439 return ksym;
1440 }
1441
1442 /*
1443 * /sys/module/foo/sections stuff
1444 * J. Corbet <corbet@lwn.net>
1445 */
1446 #ifdef CONFIG_SYSFS
1447
1448 #ifdef CONFIG_KALLSYMS
sect_empty(const Elf_Shdr * sect)1449 static inline bool sect_empty(const Elf_Shdr *sect)
1450 {
1451 return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1452 }
1453
1454 struct module_sect_attr {
1455 struct module_attribute mattr;
1456 char *name;
1457 unsigned long address;
1458 };
1459
1460 struct module_sect_attrs {
1461 struct attribute_group grp;
1462 unsigned int nsections;
1463 struct module_sect_attr attrs[0];
1464 };
1465
module_sect_show(struct module_attribute * mattr,struct module_kobject * mk,char * buf)1466 static ssize_t module_sect_show(struct module_attribute *mattr,
1467 struct module_kobject *mk, char *buf)
1468 {
1469 struct module_sect_attr *sattr =
1470 container_of(mattr, struct module_sect_attr, mattr);
1471 return sprintf(buf, "0x%pK\n", (void *)sattr->address);
1472 }
1473
free_sect_attrs(struct module_sect_attrs * sect_attrs)1474 static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1475 {
1476 unsigned int section;
1477
1478 for (section = 0; section < sect_attrs->nsections; section++)
1479 kfree(sect_attrs->attrs[section].name);
1480 kfree(sect_attrs);
1481 }
1482
add_sect_attrs(struct module * mod,const struct load_info * info)1483 static void add_sect_attrs(struct module *mod, const struct load_info *info)
1484 {
1485 unsigned int nloaded = 0, i, size[2];
1486 struct module_sect_attrs *sect_attrs;
1487 struct module_sect_attr *sattr;
1488 struct attribute **gattr;
1489
1490 /* Count loaded sections and allocate structures */
1491 for (i = 0; i < info->hdr->e_shnum; i++)
1492 if (!sect_empty(&info->sechdrs[i]))
1493 nloaded++;
1494 size[0] = ALIGN(sizeof(*sect_attrs)
1495 + nloaded * sizeof(sect_attrs->attrs[0]),
1496 sizeof(sect_attrs->grp.attrs[0]));
1497 size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
1498 sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1499 if (sect_attrs == NULL)
1500 return;
1501
1502 /* Setup section attributes. */
1503 sect_attrs->grp.name = "sections";
1504 sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
1505
1506 sect_attrs->nsections = 0;
1507 sattr = §_attrs->attrs[0];
1508 gattr = §_attrs->grp.attrs[0];
1509 for (i = 0; i < info->hdr->e_shnum; i++) {
1510 Elf_Shdr *sec = &info->sechdrs[i];
1511 if (sect_empty(sec))
1512 continue;
1513 sattr->address = sec->sh_addr;
1514 sattr->name = kstrdup(info->secstrings + sec->sh_name,
1515 GFP_KERNEL);
1516 if (sattr->name == NULL)
1517 goto out;
1518 sect_attrs->nsections++;
1519 sysfs_attr_init(&sattr->mattr.attr);
1520 sattr->mattr.show = module_sect_show;
1521 sattr->mattr.store = NULL;
1522 sattr->mattr.attr.name = sattr->name;
1523 sattr->mattr.attr.mode = S_IRUGO;
1524 *(gattr++) = &(sattr++)->mattr.attr;
1525 }
1526 *gattr = NULL;
1527
1528 if (sysfs_create_group(&mod->mkobj.kobj, §_attrs->grp))
1529 goto out;
1530
1531 mod->sect_attrs = sect_attrs;
1532 return;
1533 out:
1534 free_sect_attrs(sect_attrs);
1535 }
1536
remove_sect_attrs(struct module * mod)1537 static void remove_sect_attrs(struct module *mod)
1538 {
1539 if (mod->sect_attrs) {
1540 sysfs_remove_group(&mod->mkobj.kobj,
1541 &mod->sect_attrs->grp);
1542 /* We are positive that no one is using any sect attrs
1543 * at this point. Deallocate immediately. */
1544 free_sect_attrs(mod->sect_attrs);
1545 mod->sect_attrs = NULL;
1546 }
1547 }
1548
1549 /*
1550 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1551 */
1552
1553 struct module_notes_attrs {
1554 struct kobject *dir;
1555 unsigned int notes;
1556 struct bin_attribute attrs[0];
1557 };
1558
module_notes_read(struct file * filp,struct kobject * kobj,struct bin_attribute * bin_attr,char * buf,loff_t pos,size_t count)1559 static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1560 struct bin_attribute *bin_attr,
1561 char *buf, loff_t pos, size_t count)
1562 {
1563 /*
1564 * The caller checked the pos and count against our size.
1565 */
1566 memcpy(buf, bin_attr->private + pos, count);
1567 return count;
1568 }
1569
free_notes_attrs(struct module_notes_attrs * notes_attrs,unsigned int i)1570 static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1571 unsigned int i)
1572 {
1573 if (notes_attrs->dir) {
1574 while (i-- > 0)
1575 sysfs_remove_bin_file(notes_attrs->dir,
1576 ¬es_attrs->attrs[i]);
1577 kobject_put(notes_attrs->dir);
1578 }
1579 kfree(notes_attrs);
1580 }
1581
add_notes_attrs(struct module * mod,const struct load_info * info)1582 static void add_notes_attrs(struct module *mod, const struct load_info *info)
1583 {
1584 unsigned int notes, loaded, i;
1585 struct module_notes_attrs *notes_attrs;
1586 struct bin_attribute *nattr;
1587
1588 /* failed to create section attributes, so can't create notes */
1589 if (!mod->sect_attrs)
1590 return;
1591
1592 /* Count notes sections and allocate structures. */
1593 notes = 0;
1594 for (i = 0; i < info->hdr->e_shnum; i++)
1595 if (!sect_empty(&info->sechdrs[i]) &&
1596 (info->sechdrs[i].sh_type == SHT_NOTE))
1597 ++notes;
1598
1599 if (notes == 0)
1600 return;
1601
1602 notes_attrs = kzalloc(sizeof(*notes_attrs)
1603 + notes * sizeof(notes_attrs->attrs[0]),
1604 GFP_KERNEL);
1605 if (notes_attrs == NULL)
1606 return;
1607
1608 notes_attrs->notes = notes;
1609 nattr = ¬es_attrs->attrs[0];
1610 for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1611 if (sect_empty(&info->sechdrs[i]))
1612 continue;
1613 if (info->sechdrs[i].sh_type == SHT_NOTE) {
1614 sysfs_bin_attr_init(nattr);
1615 nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
1616 nattr->attr.mode = S_IRUGO;
1617 nattr->size = info->sechdrs[i].sh_size;
1618 nattr->private = (void *) info->sechdrs[i].sh_addr;
1619 nattr->read = module_notes_read;
1620 ++nattr;
1621 }
1622 ++loaded;
1623 }
1624
1625 notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1626 if (!notes_attrs->dir)
1627 goto out;
1628
1629 for (i = 0; i < notes; ++i)
1630 if (sysfs_create_bin_file(notes_attrs->dir,
1631 ¬es_attrs->attrs[i]))
1632 goto out;
1633
1634 mod->notes_attrs = notes_attrs;
1635 return;
1636
1637 out:
1638 free_notes_attrs(notes_attrs, i);
1639 }
1640
remove_notes_attrs(struct module * mod)1641 static void remove_notes_attrs(struct module *mod)
1642 {
1643 if (mod->notes_attrs)
1644 free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1645 }
1646
1647 #else
1648
add_sect_attrs(struct module * mod,const struct load_info * info)1649 static inline void add_sect_attrs(struct module *mod,
1650 const struct load_info *info)
1651 {
1652 }
1653
remove_sect_attrs(struct module * mod)1654 static inline void remove_sect_attrs(struct module *mod)
1655 {
1656 }
1657
add_notes_attrs(struct module * mod,const struct load_info * info)1658 static inline void add_notes_attrs(struct module *mod,
1659 const struct load_info *info)
1660 {
1661 }
1662
remove_notes_attrs(struct module * mod)1663 static inline void remove_notes_attrs(struct module *mod)
1664 {
1665 }
1666 #endif /* CONFIG_KALLSYMS */
1667
del_usage_links(struct module * mod)1668 static void del_usage_links(struct module *mod)
1669 {
1670 #ifdef CONFIG_MODULE_UNLOAD
1671 struct module_use *use;
1672
1673 mutex_lock(&module_mutex);
1674 list_for_each_entry(use, &mod->target_list, target_list)
1675 sysfs_remove_link(use->target->holders_dir, mod->name);
1676 mutex_unlock(&module_mutex);
1677 #endif
1678 }
1679
add_usage_links(struct module * mod)1680 static int add_usage_links(struct module *mod)
1681 {
1682 int ret = 0;
1683 #ifdef CONFIG_MODULE_UNLOAD
1684 struct module_use *use;
1685
1686 mutex_lock(&module_mutex);
1687 list_for_each_entry(use, &mod->target_list, target_list) {
1688 ret = sysfs_create_link(use->target->holders_dir,
1689 &mod->mkobj.kobj, mod->name);
1690 if (ret)
1691 break;
1692 }
1693 mutex_unlock(&module_mutex);
1694 if (ret)
1695 del_usage_links(mod);
1696 #endif
1697 return ret;
1698 }
1699
1700 static void module_remove_modinfo_attrs(struct module *mod, int end);
1701
module_add_modinfo_attrs(struct module * mod)1702 static int module_add_modinfo_attrs(struct module *mod)
1703 {
1704 struct module_attribute *attr;
1705 struct module_attribute *temp_attr;
1706 int error = 0;
1707 int i;
1708
1709 mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1710 (ARRAY_SIZE(modinfo_attrs) + 1)),
1711 GFP_KERNEL);
1712 if (!mod->modinfo_attrs)
1713 return -ENOMEM;
1714
1715 temp_attr = mod->modinfo_attrs;
1716 for (i = 0; (attr = modinfo_attrs[i]); i++) {
1717 if (!attr->test || attr->test(mod)) {
1718 memcpy(temp_attr, attr, sizeof(*temp_attr));
1719 sysfs_attr_init(&temp_attr->attr);
1720 error = sysfs_create_file(&mod->mkobj.kobj,
1721 &temp_attr->attr);
1722 if (error)
1723 goto error_out;
1724 ++temp_attr;
1725 }
1726 }
1727
1728 return 0;
1729
1730 error_out:
1731 if (i > 0)
1732 module_remove_modinfo_attrs(mod, --i);
1733 else
1734 kfree(mod->modinfo_attrs);
1735 return error;
1736 }
1737
module_remove_modinfo_attrs(struct module * mod,int end)1738 static void module_remove_modinfo_attrs(struct module *mod, int end)
1739 {
1740 struct module_attribute *attr;
1741 int i;
1742
1743 for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1744 if (end >= 0 && i > end)
1745 break;
1746 /* pick a field to test for end of list */
1747 if (!attr->attr.name)
1748 break;
1749 sysfs_remove_file(&mod->mkobj.kobj, &attr->attr);
1750 if (attr->free)
1751 attr->free(mod);
1752 }
1753 kfree(mod->modinfo_attrs);
1754 }
1755
mod_kobject_put(struct module * mod)1756 static void mod_kobject_put(struct module *mod)
1757 {
1758 DECLARE_COMPLETION_ONSTACK(c);
1759 mod->mkobj.kobj_completion = &c;
1760 kobject_put(&mod->mkobj.kobj);
1761 wait_for_completion(&c);
1762 }
1763
mod_sysfs_init(struct module * mod)1764 static int mod_sysfs_init(struct module *mod)
1765 {
1766 int err;
1767 struct kobject *kobj;
1768
1769 if (!module_sysfs_initialized) {
1770 pr_err("%s: module sysfs not initialized\n", mod->name);
1771 err = -EINVAL;
1772 goto out;
1773 }
1774
1775 kobj = kset_find_obj(module_kset, mod->name);
1776 if (kobj) {
1777 pr_err("%s: module is already loaded\n", mod->name);
1778 kobject_put(kobj);
1779 err = -EINVAL;
1780 goto out;
1781 }
1782
1783 mod->mkobj.mod = mod;
1784
1785 memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1786 mod->mkobj.kobj.kset = module_kset;
1787 err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1788 "%s", mod->name);
1789 if (err)
1790 mod_kobject_put(mod);
1791
1792 /* delay uevent until full sysfs population */
1793 out:
1794 return err;
1795 }
1796
mod_sysfs_setup(struct module * mod,const struct load_info * info,struct kernel_param * kparam,unsigned int num_params)1797 static int mod_sysfs_setup(struct module *mod,
1798 const struct load_info *info,
1799 struct kernel_param *kparam,
1800 unsigned int num_params)
1801 {
1802 int err;
1803
1804 err = mod_sysfs_init(mod);
1805 if (err)
1806 goto out;
1807
1808 mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1809 if (!mod->holders_dir) {
1810 err = -ENOMEM;
1811 goto out_unreg;
1812 }
1813
1814 err = module_param_sysfs_setup(mod, kparam, num_params);
1815 if (err)
1816 goto out_unreg_holders;
1817
1818 err = module_add_modinfo_attrs(mod);
1819 if (err)
1820 goto out_unreg_param;
1821
1822 err = add_usage_links(mod);
1823 if (err)
1824 goto out_unreg_modinfo_attrs;
1825
1826 add_sect_attrs(mod, info);
1827 add_notes_attrs(mod, info);
1828
1829 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1830 return 0;
1831
1832 out_unreg_modinfo_attrs:
1833 module_remove_modinfo_attrs(mod, -1);
1834 out_unreg_param:
1835 module_param_sysfs_remove(mod);
1836 out_unreg_holders:
1837 kobject_put(mod->holders_dir);
1838 out_unreg:
1839 mod_kobject_put(mod);
1840 out:
1841 return err;
1842 }
1843
mod_sysfs_fini(struct module * mod)1844 static void mod_sysfs_fini(struct module *mod)
1845 {
1846 remove_notes_attrs(mod);
1847 remove_sect_attrs(mod);
1848 mod_kobject_put(mod);
1849 }
1850
init_param_lock(struct module * mod)1851 static void init_param_lock(struct module *mod)
1852 {
1853 mutex_init(&mod->param_lock);
1854 }
1855 #else /* !CONFIG_SYSFS */
1856
mod_sysfs_setup(struct module * mod,const struct load_info * info,struct kernel_param * kparam,unsigned int num_params)1857 static int mod_sysfs_setup(struct module *mod,
1858 const struct load_info *info,
1859 struct kernel_param *kparam,
1860 unsigned int num_params)
1861 {
1862 return 0;
1863 }
1864
mod_sysfs_fini(struct module * mod)1865 static void mod_sysfs_fini(struct module *mod)
1866 {
1867 }
1868
module_remove_modinfo_attrs(struct module * mod,int end)1869 static void module_remove_modinfo_attrs(struct module *mod, int end)
1870 {
1871 }
1872
del_usage_links(struct module * mod)1873 static void del_usage_links(struct module *mod)
1874 {
1875 }
1876
init_param_lock(struct module * mod)1877 static void init_param_lock(struct module *mod)
1878 {
1879 }
1880 #endif /* CONFIG_SYSFS */
1881
mod_sysfs_teardown(struct module * mod)1882 static void mod_sysfs_teardown(struct module *mod)
1883 {
1884 del_usage_links(mod);
1885 module_remove_modinfo_attrs(mod, -1);
1886 module_param_sysfs_remove(mod);
1887 kobject_put(mod->mkobj.drivers_dir);
1888 kobject_put(mod->holders_dir);
1889 mod_sysfs_fini(mod);
1890 }
1891
1892 #ifdef CONFIG_STRICT_MODULE_RWX
1893 /*
1894 * LKM RO/NX protection: protect module's text/ro-data
1895 * from modification and any data from execution.
1896 *
1897 * General layout of module is:
1898 * [text] [read-only-data] [ro-after-init] [writable data]
1899 * text_size -----^ ^ ^ ^
1900 * ro_size ------------------------| | |
1901 * ro_after_init_size -----------------------------| |
1902 * size -----------------------------------------------------------|
1903 *
1904 * These values are always page-aligned (as is base)
1905 */
frob_text(const struct module_layout * layout,int (* set_memory)(unsigned long start,int num_pages))1906 static void frob_text(const struct module_layout *layout,
1907 int (*set_memory)(unsigned long start, int num_pages))
1908 {
1909 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1910 BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1911 set_memory((unsigned long)layout->base,
1912 layout->text_size >> PAGE_SHIFT);
1913 }
1914
frob_rodata(const struct module_layout * layout,int (* set_memory)(unsigned long start,int num_pages))1915 static void frob_rodata(const struct module_layout *layout,
1916 int (*set_memory)(unsigned long start, int num_pages))
1917 {
1918 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1919 BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1920 BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1921 set_memory((unsigned long)layout->base + layout->text_size,
1922 (layout->ro_size - layout->text_size) >> PAGE_SHIFT);
1923 }
1924
frob_ro_after_init(const struct module_layout * layout,int (* set_memory)(unsigned long start,int num_pages))1925 static void frob_ro_after_init(const struct module_layout *layout,
1926 int (*set_memory)(unsigned long start, int num_pages))
1927 {
1928 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1929 BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1930 BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
1931 set_memory((unsigned long)layout->base + layout->ro_size,
1932 (layout->ro_after_init_size - layout->ro_size) >> PAGE_SHIFT);
1933 }
1934
frob_writable_data(const struct module_layout * layout,int (* set_memory)(unsigned long start,int num_pages))1935 static void frob_writable_data(const struct module_layout *layout,
1936 int (*set_memory)(unsigned long start, int num_pages))
1937 {
1938 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1939 BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
1940 BUG_ON((unsigned long)layout->size & (PAGE_SIZE-1));
1941 set_memory((unsigned long)layout->base + layout->ro_after_init_size,
1942 (layout->size - layout->ro_after_init_size) >> PAGE_SHIFT);
1943 }
1944
1945 /* livepatching wants to disable read-only so it can frob module. */
module_disable_ro(const struct module * mod)1946 void module_disable_ro(const struct module *mod)
1947 {
1948 if (!rodata_enabled)
1949 return;
1950
1951 frob_text(&mod->core_layout, set_memory_rw);
1952 frob_rodata(&mod->core_layout, set_memory_rw);
1953 frob_ro_after_init(&mod->core_layout, set_memory_rw);
1954 frob_text(&mod->init_layout, set_memory_rw);
1955 frob_rodata(&mod->init_layout, set_memory_rw);
1956 }
1957
module_enable_ro(const struct module * mod,bool after_init)1958 void module_enable_ro(const struct module *mod, bool after_init)
1959 {
1960 if (!rodata_enabled)
1961 return;
1962
1963 frob_text(&mod->core_layout, set_memory_ro);
1964 frob_rodata(&mod->core_layout, set_memory_ro);
1965 frob_text(&mod->init_layout, set_memory_ro);
1966 frob_rodata(&mod->init_layout, set_memory_ro);
1967
1968 if (after_init)
1969 frob_ro_after_init(&mod->core_layout, set_memory_ro);
1970 }
1971
module_enable_nx(const struct module * mod)1972 static void module_enable_nx(const struct module *mod)
1973 {
1974 frob_rodata(&mod->core_layout, set_memory_nx);
1975 frob_ro_after_init(&mod->core_layout, set_memory_nx);
1976 frob_writable_data(&mod->core_layout, set_memory_nx);
1977 frob_rodata(&mod->init_layout, set_memory_nx);
1978 frob_writable_data(&mod->init_layout, set_memory_nx);
1979 }
1980
module_disable_nx(const struct module * mod)1981 static void module_disable_nx(const struct module *mod)
1982 {
1983 frob_rodata(&mod->core_layout, set_memory_x);
1984 frob_ro_after_init(&mod->core_layout, set_memory_x);
1985 frob_writable_data(&mod->core_layout, set_memory_x);
1986 frob_rodata(&mod->init_layout, set_memory_x);
1987 frob_writable_data(&mod->init_layout, set_memory_x);
1988 }
1989
1990 /* Iterate through all modules and set each module's text as RW */
set_all_modules_text_rw(void)1991 void set_all_modules_text_rw(void)
1992 {
1993 struct module *mod;
1994
1995 if (!rodata_enabled)
1996 return;
1997
1998 mutex_lock(&module_mutex);
1999 list_for_each_entry_rcu(mod, &modules, list) {
2000 if (mod->state == MODULE_STATE_UNFORMED)
2001 continue;
2002
2003 frob_text(&mod->core_layout, set_memory_rw);
2004 frob_text(&mod->init_layout, set_memory_rw);
2005 }
2006 mutex_unlock(&module_mutex);
2007 }
2008
2009 /* Iterate through all modules and set each module's text as RO */
set_all_modules_text_ro(void)2010 void set_all_modules_text_ro(void)
2011 {
2012 struct module *mod;
2013
2014 if (!rodata_enabled)
2015 return;
2016
2017 mutex_lock(&module_mutex);
2018 list_for_each_entry_rcu(mod, &modules, list) {
2019 /*
2020 * Ignore going modules since it's possible that ro
2021 * protection has already been disabled, otherwise we'll
2022 * run into protection faults at module deallocation.
2023 */
2024 if (mod->state == MODULE_STATE_UNFORMED ||
2025 mod->state == MODULE_STATE_GOING)
2026 continue;
2027
2028 frob_text(&mod->core_layout, set_memory_ro);
2029 frob_text(&mod->init_layout, set_memory_ro);
2030 }
2031 mutex_unlock(&module_mutex);
2032 }
2033
disable_ro_nx(const struct module_layout * layout)2034 static void disable_ro_nx(const struct module_layout *layout)
2035 {
2036 if (rodata_enabled) {
2037 frob_text(layout, set_memory_rw);
2038 frob_rodata(layout, set_memory_rw);
2039 frob_ro_after_init(layout, set_memory_rw);
2040 }
2041 frob_rodata(layout, set_memory_x);
2042 frob_ro_after_init(layout, set_memory_x);
2043 frob_writable_data(layout, set_memory_x);
2044 }
2045
2046 #else
disable_ro_nx(const struct module_layout * layout)2047 static void disable_ro_nx(const struct module_layout *layout) { }
module_enable_nx(const struct module * mod)2048 static void module_enable_nx(const struct module *mod) { }
module_disable_nx(const struct module * mod)2049 static void module_disable_nx(const struct module *mod) { }
2050 #endif
2051
2052 #ifdef CONFIG_LIVEPATCH
2053 /*
2054 * Persist Elf information about a module. Copy the Elf header,
2055 * section header table, section string table, and symtab section
2056 * index from info to mod->klp_info.
2057 */
copy_module_elf(struct module * mod,struct load_info * info)2058 static int copy_module_elf(struct module *mod, struct load_info *info)
2059 {
2060 unsigned int size, symndx;
2061 int ret;
2062
2063 size = sizeof(*mod->klp_info);
2064 mod->klp_info = kmalloc(size, GFP_KERNEL);
2065 if (mod->klp_info == NULL)
2066 return -ENOMEM;
2067
2068 /* Elf header */
2069 size = sizeof(mod->klp_info->hdr);
2070 memcpy(&mod->klp_info->hdr, info->hdr, size);
2071
2072 /* Elf section header table */
2073 size = sizeof(*info->sechdrs) * info->hdr->e_shnum;
2074 mod->klp_info->sechdrs = kmalloc(size, GFP_KERNEL);
2075 if (mod->klp_info->sechdrs == NULL) {
2076 ret = -ENOMEM;
2077 goto free_info;
2078 }
2079 memcpy(mod->klp_info->sechdrs, info->sechdrs, size);
2080
2081 /* Elf section name string table */
2082 size = info->sechdrs[info->hdr->e_shstrndx].sh_size;
2083 mod->klp_info->secstrings = kmalloc(size, GFP_KERNEL);
2084 if (mod->klp_info->secstrings == NULL) {
2085 ret = -ENOMEM;
2086 goto free_sechdrs;
2087 }
2088 memcpy(mod->klp_info->secstrings, info->secstrings, size);
2089
2090 /* Elf symbol section index */
2091 symndx = info->index.sym;
2092 mod->klp_info->symndx = symndx;
2093
2094 /*
2095 * For livepatch modules, core_kallsyms.symtab is a complete
2096 * copy of the original symbol table. Adjust sh_addr to point
2097 * to core_kallsyms.symtab since the copy of the symtab in module
2098 * init memory is freed at the end of do_init_module().
2099 */
2100 mod->klp_info->sechdrs[symndx].sh_addr = \
2101 (unsigned long) mod->core_kallsyms.symtab;
2102
2103 return 0;
2104
2105 free_sechdrs:
2106 kfree(mod->klp_info->sechdrs);
2107 free_info:
2108 kfree(mod->klp_info);
2109 return ret;
2110 }
2111
free_module_elf(struct module * mod)2112 static void free_module_elf(struct module *mod)
2113 {
2114 kfree(mod->klp_info->sechdrs);
2115 kfree(mod->klp_info->secstrings);
2116 kfree(mod->klp_info);
2117 }
2118 #else /* !CONFIG_LIVEPATCH */
copy_module_elf(struct module * mod,struct load_info * info)2119 static int copy_module_elf(struct module *mod, struct load_info *info)
2120 {
2121 return 0;
2122 }
2123
free_module_elf(struct module * mod)2124 static void free_module_elf(struct module *mod)
2125 {
2126 }
2127 #endif /* CONFIG_LIVEPATCH */
2128
module_memfree(void * module_region)2129 void __weak module_memfree(void *module_region)
2130 {
2131 vfree(module_region);
2132 }
2133
module_arch_cleanup(struct module * mod)2134 void __weak module_arch_cleanup(struct module *mod)
2135 {
2136 }
2137
module_arch_freeing_init(struct module * mod)2138 void __weak module_arch_freeing_init(struct module *mod)
2139 {
2140 }
2141
2142 static void cfi_cleanup(struct module *mod);
2143
2144 /* Free a module, remove from lists, etc. */
free_module(struct module * mod)2145 static void free_module(struct module *mod)
2146 {
2147 trace_module_free(mod);
2148
2149 mod_sysfs_teardown(mod);
2150
2151 /* We leave it in list to prevent duplicate loads, but make sure
2152 * that noone uses it while it's being deconstructed. */
2153 mutex_lock(&module_mutex);
2154 mod->state = MODULE_STATE_UNFORMED;
2155 mutex_unlock(&module_mutex);
2156
2157 /* Remove dynamic debug info */
2158 ddebug_remove_module(mod->name);
2159
2160 /* Arch-specific cleanup. */
2161 module_arch_cleanup(mod);
2162
2163 /* Module unload stuff */
2164 module_unload_free(mod);
2165
2166 /* Free any allocated parameters. */
2167 destroy_params(mod->kp, mod->num_kp);
2168
2169 if (is_livepatch_module(mod))
2170 free_module_elf(mod);
2171
2172 /* Now we can delete it from the lists */
2173 mutex_lock(&module_mutex);
2174 /* Unlink carefully: kallsyms could be walking list. */
2175 list_del_rcu(&mod->list);
2176 mod_tree_remove(mod);
2177 /* Remove this module from bug list, this uses list_del_rcu */
2178 module_bug_cleanup(mod);
2179 /* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
2180 synchronize_sched();
2181 mutex_unlock(&module_mutex);
2182
2183 /* This may be empty, but that's OK */
2184 disable_ro_nx(&mod->init_layout);
2185
2186 /* Clean up CFI for the module. */
2187 cfi_cleanup(mod);
2188
2189 module_arch_freeing_init(mod);
2190 module_memfree(mod->init_layout.base);
2191 kfree(mod->args);
2192 percpu_modfree(mod);
2193
2194 /* Free lock-classes; relies on the preceding sync_rcu(). */
2195 lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
2196
2197 /* Finally, free the core (containing the module structure) */
2198 disable_ro_nx(&mod->core_layout);
2199 module_memfree(mod->core_layout.base);
2200
2201 #ifdef CONFIG_MPU
2202 update_protections(current->mm);
2203 #endif
2204 }
2205
__symbol_get(const char * symbol)2206 void *__symbol_get(const char *symbol)
2207 {
2208 struct module *owner;
2209 const struct kernel_symbol *sym;
2210
2211 preempt_disable();
2212 sym = find_symbol(symbol, &owner, NULL, true, true);
2213 if (sym && strong_try_module_get(owner))
2214 sym = NULL;
2215 preempt_enable();
2216
2217 return sym ? (void *)sym->value : NULL;
2218 }
2219 EXPORT_SYMBOL_GPL(__symbol_get);
2220
2221 /*
2222 * Ensure that an exported symbol [global namespace] does not already exist
2223 * in the kernel or in some other module's exported symbol table.
2224 *
2225 * You must hold the module_mutex.
2226 */
verify_export_symbols(struct module * mod)2227 static int verify_export_symbols(struct module *mod)
2228 {
2229 unsigned int i;
2230 struct module *owner;
2231 const struct kernel_symbol *s;
2232 struct {
2233 const struct kernel_symbol *sym;
2234 unsigned int num;
2235 } arr[] = {
2236 { mod->syms, mod->num_syms },
2237 { mod->gpl_syms, mod->num_gpl_syms },
2238 { mod->gpl_future_syms, mod->num_gpl_future_syms },
2239 #ifdef CONFIG_UNUSED_SYMBOLS
2240 { mod->unused_syms, mod->num_unused_syms },
2241 { mod->unused_gpl_syms, mod->num_unused_gpl_syms },
2242 #endif
2243 };
2244
2245 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2246 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
2247 if (find_symbol(s->name, &owner, NULL, true, false)) {
2248 pr_err("%s: exports duplicate symbol %s"
2249 " (owned by %s)\n",
2250 mod->name, s->name, module_name(owner));
2251 return -ENOEXEC;
2252 }
2253 }
2254 }
2255 return 0;
2256 }
2257
2258 /* Change all symbols so that st_value encodes the pointer directly. */
simplify_symbols(struct module * mod,const struct load_info * info)2259 static int simplify_symbols(struct module *mod, const struct load_info *info)
2260 {
2261 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2262 Elf_Sym *sym = (void *)symsec->sh_addr;
2263 unsigned long secbase;
2264 unsigned int i;
2265 int ret = 0;
2266 const struct kernel_symbol *ksym;
2267
2268 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
2269 const char *name = info->strtab + sym[i].st_name;
2270
2271 switch (sym[i].st_shndx) {
2272 case SHN_COMMON:
2273 /* Ignore common symbols */
2274 if (!strncmp(name, "__gnu_lto", 9))
2275 break;
2276
2277 /* We compiled with -fno-common. These are not
2278 supposed to happen. */
2279 pr_debug("Common symbol: %s\n", name);
2280 pr_warn("%s: please compile with -fno-common\n",
2281 mod->name);
2282 ret = -ENOEXEC;
2283 break;
2284
2285 case SHN_ABS:
2286 /* Don't need to do anything */
2287 pr_debug("Absolute symbol: 0x%08lx\n",
2288 (long)sym[i].st_value);
2289 break;
2290
2291 case SHN_LIVEPATCH:
2292 /* Livepatch symbols are resolved by livepatch */
2293 break;
2294
2295 case SHN_UNDEF:
2296 ksym = resolve_symbol_wait(mod, info, name);
2297 /* Ok if resolved. */
2298 if (ksym && !IS_ERR(ksym)) {
2299 sym[i].st_value = ksym->value;
2300 break;
2301 }
2302
2303 /* Ok if weak. */
2304 if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
2305 break;
2306
2307 pr_warn("%s: Unknown symbol %s (err %li)\n",
2308 mod->name, name, PTR_ERR(ksym));
2309 ret = PTR_ERR(ksym) ?: -ENOENT;
2310 break;
2311
2312 default:
2313 /* Divert to percpu allocation if a percpu var. */
2314 if (sym[i].st_shndx == info->index.pcpu)
2315 secbase = (unsigned long)mod_percpu(mod);
2316 else
2317 secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
2318 sym[i].st_value += secbase;
2319 break;
2320 }
2321 }
2322
2323 return ret;
2324 }
2325
apply_relocations(struct module * mod,const struct load_info * info)2326 static int apply_relocations(struct module *mod, const struct load_info *info)
2327 {
2328 unsigned int i;
2329 int err = 0;
2330
2331 /* Now do relocations. */
2332 for (i = 1; i < info->hdr->e_shnum; i++) {
2333 unsigned int infosec = info->sechdrs[i].sh_info;
2334
2335 /* Not a valid relocation section? */
2336 if (infosec >= info->hdr->e_shnum)
2337 continue;
2338
2339 /* Don't bother with non-allocated sections */
2340 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2341 continue;
2342
2343 /* Livepatch relocation sections are applied by livepatch */
2344 if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
2345 continue;
2346
2347 if (info->sechdrs[i].sh_type == SHT_REL)
2348 err = apply_relocate(info->sechdrs, info->strtab,
2349 info->index.sym, i, mod);
2350 else if (info->sechdrs[i].sh_type == SHT_RELA)
2351 err = apply_relocate_add(info->sechdrs, info->strtab,
2352 info->index.sym, i, mod);
2353 if (err < 0)
2354 break;
2355 }
2356 return err;
2357 }
2358
2359 /* Additional bytes needed by arch in front of individual sections */
arch_mod_section_prepend(struct module * mod,unsigned int section)2360 unsigned int __weak arch_mod_section_prepend(struct module *mod,
2361 unsigned int section)
2362 {
2363 /* default implementation just returns zero */
2364 return 0;
2365 }
2366
2367 /* Update size with this section: return offset. */
get_offset(struct module * mod,unsigned int * size,Elf_Shdr * sechdr,unsigned int section)2368 static long get_offset(struct module *mod, unsigned int *size,
2369 Elf_Shdr *sechdr, unsigned int section)
2370 {
2371 long ret;
2372
2373 *size += arch_mod_section_prepend(mod, section);
2374 ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2375 *size = ret + sechdr->sh_size;
2376 return ret;
2377 }
2378
2379 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2380 might -- code, read-only data, read-write data, small data. Tally
2381 sizes, and place the offsets into sh_entsize fields: high bit means it
2382 belongs in init. */
layout_sections(struct module * mod,struct load_info * info)2383 static void layout_sections(struct module *mod, struct load_info *info)
2384 {
2385 static unsigned long const masks[][2] = {
2386 /* NOTE: all executable code must be the first section
2387 * in this array; otherwise modify the text_size
2388 * finder in the two loops below */
2389 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2390 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2391 { SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
2392 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2393 { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2394 };
2395 unsigned int m, i;
2396
2397 for (i = 0; i < info->hdr->e_shnum; i++)
2398 info->sechdrs[i].sh_entsize = ~0UL;
2399
2400 pr_debug("Core section allocation order:\n");
2401 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2402 for (i = 0; i < info->hdr->e_shnum; ++i) {
2403 Elf_Shdr *s = &info->sechdrs[i];
2404 const char *sname = info->secstrings + s->sh_name;
2405
2406 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2407 || (s->sh_flags & masks[m][1])
2408 || s->sh_entsize != ~0UL
2409 || strstarts(sname, ".init"))
2410 continue;
2411 s->sh_entsize = get_offset(mod, &mod->core_layout.size, s, i);
2412 pr_debug("\t%s\n", sname);
2413 }
2414 switch (m) {
2415 case 0: /* executable */
2416 mod->core_layout.size = debug_align(mod->core_layout.size);
2417 mod->core_layout.text_size = mod->core_layout.size;
2418 break;
2419 case 1: /* RO: text and ro-data */
2420 mod->core_layout.size = debug_align(mod->core_layout.size);
2421 mod->core_layout.ro_size = mod->core_layout.size;
2422 break;
2423 case 2: /* RO after init */
2424 mod->core_layout.size = debug_align(mod->core_layout.size);
2425 mod->core_layout.ro_after_init_size = mod->core_layout.size;
2426 break;
2427 case 4: /* whole core */
2428 mod->core_layout.size = debug_align(mod->core_layout.size);
2429 break;
2430 }
2431 }
2432
2433 pr_debug("Init section allocation order:\n");
2434 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2435 for (i = 0; i < info->hdr->e_shnum; ++i) {
2436 Elf_Shdr *s = &info->sechdrs[i];
2437 const char *sname = info->secstrings + s->sh_name;
2438
2439 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2440 || (s->sh_flags & masks[m][1])
2441 || s->sh_entsize != ~0UL
2442 || !strstarts(sname, ".init"))
2443 continue;
2444 s->sh_entsize = (get_offset(mod, &mod->init_layout.size, s, i)
2445 | INIT_OFFSET_MASK);
2446 pr_debug("\t%s\n", sname);
2447 }
2448 switch (m) {
2449 case 0: /* executable */
2450 mod->init_layout.size = debug_align(mod->init_layout.size);
2451 mod->init_layout.text_size = mod->init_layout.size;
2452 break;
2453 case 1: /* RO: text and ro-data */
2454 mod->init_layout.size = debug_align(mod->init_layout.size);
2455 mod->init_layout.ro_size = mod->init_layout.size;
2456 break;
2457 case 2:
2458 /*
2459 * RO after init doesn't apply to init_layout (only
2460 * core_layout), so it just takes the value of ro_size.
2461 */
2462 mod->init_layout.ro_after_init_size = mod->init_layout.ro_size;
2463 break;
2464 case 4: /* whole init */
2465 mod->init_layout.size = debug_align(mod->init_layout.size);
2466 break;
2467 }
2468 }
2469 }
2470
set_license(struct module * mod,const char * license)2471 static void set_license(struct module *mod, const char *license)
2472 {
2473 if (!license)
2474 license = "unspecified";
2475
2476 if (!license_is_gpl_compatible(license)) {
2477 if (!test_taint(TAINT_PROPRIETARY_MODULE))
2478 pr_warn("%s: module license '%s' taints kernel.\n",
2479 mod->name, license);
2480 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2481 LOCKDEP_NOW_UNRELIABLE);
2482 }
2483 }
2484
2485 /* Parse tag=value strings from .modinfo section */
next_string(char * string,unsigned long * secsize)2486 static char *next_string(char *string, unsigned long *secsize)
2487 {
2488 /* Skip non-zero chars */
2489 while (string[0]) {
2490 string++;
2491 if ((*secsize)-- <= 1)
2492 return NULL;
2493 }
2494
2495 /* Skip any zero padding. */
2496 while (!string[0]) {
2497 string++;
2498 if ((*secsize)-- <= 1)
2499 return NULL;
2500 }
2501 return string;
2502 }
2503
get_modinfo(struct load_info * info,const char * tag)2504 static char *get_modinfo(struct load_info *info, const char *tag)
2505 {
2506 char *p;
2507 unsigned int taglen = strlen(tag);
2508 Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2509 unsigned long size = infosec->sh_size;
2510
2511 for (p = (char *)infosec->sh_addr; p; p = next_string(p, &size)) {
2512 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2513 return p + taglen + 1;
2514 }
2515 return NULL;
2516 }
2517
setup_modinfo(struct module * mod,struct load_info * info)2518 static void setup_modinfo(struct module *mod, struct load_info *info)
2519 {
2520 struct module_attribute *attr;
2521 int i;
2522
2523 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2524 if (attr->setup)
2525 attr->setup(mod, get_modinfo(info, attr->attr.name));
2526 }
2527 }
2528
free_modinfo(struct module * mod)2529 static void free_modinfo(struct module *mod)
2530 {
2531 struct module_attribute *attr;
2532 int i;
2533
2534 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2535 if (attr->free)
2536 attr->free(mod);
2537 }
2538 }
2539
2540 #ifdef CONFIG_KALLSYMS
2541
2542 /* lookup symbol in given range of kernel_symbols */
lookup_symbol(const char * name,const struct kernel_symbol * start,const struct kernel_symbol * stop)2543 static const struct kernel_symbol *lookup_symbol(const char *name,
2544 const struct kernel_symbol *start,
2545 const struct kernel_symbol *stop)
2546 {
2547 return bsearch(name, start, stop - start,
2548 sizeof(struct kernel_symbol), cmp_name);
2549 }
2550
is_exported(const char * name,unsigned long value,const struct module * mod)2551 static int is_exported(const char *name, unsigned long value,
2552 const struct module *mod)
2553 {
2554 const struct kernel_symbol *ks;
2555 if (!mod)
2556 ks = lookup_symbol(name, __start___ksymtab, __stop___ksymtab);
2557 else
2558 ks = lookup_symbol(name, mod->syms, mod->syms + mod->num_syms);
2559 return ks != NULL && ks->value == value;
2560 }
2561
2562 /* As per nm */
elf_type(const Elf_Sym * sym,const struct load_info * info)2563 static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2564 {
2565 const Elf_Shdr *sechdrs = info->sechdrs;
2566
2567 if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2568 if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2569 return 'v';
2570 else
2571 return 'w';
2572 }
2573 if (sym->st_shndx == SHN_UNDEF)
2574 return 'U';
2575 if (sym->st_shndx == SHN_ABS || sym->st_shndx == info->index.pcpu)
2576 return 'a';
2577 if (sym->st_shndx >= SHN_LORESERVE)
2578 return '?';
2579 if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2580 return 't';
2581 if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2582 && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2583 if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2584 return 'r';
2585 else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2586 return 'g';
2587 else
2588 return 'd';
2589 }
2590 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2591 if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2592 return 's';
2593 else
2594 return 'b';
2595 }
2596 if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2597 ".debug")) {
2598 return 'n';
2599 }
2600 return '?';
2601 }
2602
is_core_symbol(const Elf_Sym * src,const Elf_Shdr * sechdrs,unsigned int shnum,unsigned int pcpundx)2603 static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2604 unsigned int shnum, unsigned int pcpundx)
2605 {
2606 const Elf_Shdr *sec;
2607
2608 if (src->st_shndx == SHN_UNDEF
2609 || src->st_shndx >= shnum
2610 || !src->st_name)
2611 return false;
2612
2613 #ifdef CONFIG_KALLSYMS_ALL
2614 if (src->st_shndx == pcpundx)
2615 return true;
2616 #endif
2617
2618 sec = sechdrs + src->st_shndx;
2619 if (!(sec->sh_flags & SHF_ALLOC)
2620 #ifndef CONFIG_KALLSYMS_ALL
2621 || !(sec->sh_flags & SHF_EXECINSTR)
2622 #endif
2623 || (sec->sh_entsize & INIT_OFFSET_MASK))
2624 return false;
2625
2626 return true;
2627 }
2628
2629 /*
2630 * We only allocate and copy the strings needed by the parts of symtab
2631 * we keep. This is simple, but has the effect of making multiple
2632 * copies of duplicates. We could be more sophisticated, see
2633 * linux-kernel thread starting with
2634 * <73defb5e4bca04a6431392cc341112b1@localhost>.
2635 */
layout_symtab(struct module * mod,struct load_info * info)2636 static void layout_symtab(struct module *mod, struct load_info *info)
2637 {
2638 Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2639 Elf_Shdr *strsect = info->sechdrs + info->index.str;
2640 const Elf_Sym *src;
2641 unsigned int i, nsrc, ndst, strtab_size = 0;
2642
2643 /* Put symbol section at end of init part of module. */
2644 symsect->sh_flags |= SHF_ALLOC;
2645 symsect->sh_entsize = get_offset(mod, &mod->init_layout.size, symsect,
2646 info->index.sym) | INIT_OFFSET_MASK;
2647 pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2648
2649 src = (void *)info->hdr + symsect->sh_offset;
2650 nsrc = symsect->sh_size / sizeof(*src);
2651
2652 /* Compute total space required for the core symbols' strtab. */
2653 for (ndst = i = 0; i < nsrc; i++) {
2654 if (i == 0 || is_livepatch_module(mod) ||
2655 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2656 info->index.pcpu)) {
2657 strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2658 ndst++;
2659 }
2660 }
2661
2662 /* Append room for core symbols at end of core part. */
2663 info->symoffs = ALIGN(mod->core_layout.size, symsect->sh_addralign ?: 1);
2664 info->stroffs = mod->core_layout.size = info->symoffs + ndst * sizeof(Elf_Sym);
2665 mod->core_layout.size += strtab_size;
2666 mod->core_layout.size = debug_align(mod->core_layout.size);
2667
2668 /* Put string table section at end of init part of module. */
2669 strsect->sh_flags |= SHF_ALLOC;
2670 strsect->sh_entsize = get_offset(mod, &mod->init_layout.size, strsect,
2671 info->index.str) | INIT_OFFSET_MASK;
2672 pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2673
2674 /* We'll tack temporary mod_kallsyms on the end. */
2675 mod->init_layout.size = ALIGN(mod->init_layout.size,
2676 __alignof__(struct mod_kallsyms));
2677 info->mod_kallsyms_init_off = mod->init_layout.size;
2678 mod->init_layout.size += sizeof(struct mod_kallsyms);
2679 mod->init_layout.size = debug_align(mod->init_layout.size);
2680 }
2681
2682 /*
2683 * We use the full symtab and strtab which layout_symtab arranged to
2684 * be appended to the init section. Later we switch to the cut-down
2685 * core-only ones.
2686 */
add_kallsyms(struct module * mod,const struct load_info * info)2687 static void add_kallsyms(struct module *mod, const struct load_info *info)
2688 {
2689 unsigned int i, ndst;
2690 const Elf_Sym *src;
2691 Elf_Sym *dst;
2692 char *s;
2693 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2694
2695 /* Set up to point into init section. */
2696 mod->kallsyms = mod->init_layout.base + info->mod_kallsyms_init_off;
2697
2698 mod->kallsyms->symtab = (void *)symsec->sh_addr;
2699 mod->kallsyms->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2700 /* Make sure we get permanent strtab: don't use info->strtab. */
2701 mod->kallsyms->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2702
2703 /* Set types up while we still have access to sections. */
2704 for (i = 0; i < mod->kallsyms->num_symtab; i++)
2705 mod->kallsyms->symtab[i].st_info
2706 = elf_type(&mod->kallsyms->symtab[i], info);
2707
2708 /* Now populate the cut down core kallsyms for after init. */
2709 mod->core_kallsyms.symtab = dst = mod->core_layout.base + info->symoffs;
2710 mod->core_kallsyms.strtab = s = mod->core_layout.base + info->stroffs;
2711 src = mod->kallsyms->symtab;
2712 for (ndst = i = 0; i < mod->kallsyms->num_symtab; i++) {
2713 if (i == 0 || is_livepatch_module(mod) ||
2714 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2715 info->index.pcpu)) {
2716 dst[ndst] = src[i];
2717 dst[ndst++].st_name = s - mod->core_kallsyms.strtab;
2718 s += strlcpy(s, &mod->kallsyms->strtab[src[i].st_name],
2719 KSYM_NAME_LEN) + 1;
2720 }
2721 }
2722 mod->core_kallsyms.num_symtab = ndst;
2723 }
2724 #else
layout_symtab(struct module * mod,struct load_info * info)2725 static inline void layout_symtab(struct module *mod, struct load_info *info)
2726 {
2727 }
2728
add_kallsyms(struct module * mod,const struct load_info * info)2729 static void add_kallsyms(struct module *mod, const struct load_info *info)
2730 {
2731 }
2732 #endif /* CONFIG_KALLSYMS */
2733
dynamic_debug_setup(struct module * mod,struct _ddebug * debug,unsigned int num)2734 static void dynamic_debug_setup(struct module *mod, struct _ddebug *debug, unsigned int num)
2735 {
2736 if (!debug)
2737 return;
2738 #ifdef CONFIG_DYNAMIC_DEBUG
2739 if (ddebug_add_module(debug, num, mod->name))
2740 pr_err("dynamic debug error adding module: %s\n",
2741 debug->modname);
2742 #endif
2743 }
2744
dynamic_debug_remove(struct module * mod,struct _ddebug * debug)2745 static void dynamic_debug_remove(struct module *mod, struct _ddebug *debug)
2746 {
2747 if (debug)
2748 ddebug_remove_module(mod->name);
2749 }
2750
module_alloc(unsigned long size)2751 void * __weak module_alloc(unsigned long size)
2752 {
2753 return vmalloc_exec(size);
2754 }
2755
2756 #ifdef CONFIG_DEBUG_KMEMLEAK
kmemleak_load_module(const struct module * mod,const struct load_info * info)2757 static void kmemleak_load_module(const struct module *mod,
2758 const struct load_info *info)
2759 {
2760 unsigned int i;
2761
2762 /* only scan the sections containing data */
2763 kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2764
2765 for (i = 1; i < info->hdr->e_shnum; i++) {
2766 /* Scan all writable sections that's not executable */
2767 if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2768 !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2769 (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2770 continue;
2771
2772 kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2773 info->sechdrs[i].sh_size, GFP_KERNEL);
2774 }
2775 }
2776 #else
kmemleak_load_module(const struct module * mod,const struct load_info * info)2777 static inline void kmemleak_load_module(const struct module *mod,
2778 const struct load_info *info)
2779 {
2780 }
2781 #endif
2782
2783 #ifdef CONFIG_MODULE_SIG
module_sig_check(struct load_info * info,int flags)2784 static int module_sig_check(struct load_info *info, int flags)
2785 {
2786 int err = -ENOKEY;
2787 const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2788 const void *mod = info->hdr;
2789
2790 /*
2791 * Require flags == 0, as a module with version information
2792 * removed is no longer the module that was signed
2793 */
2794 if (flags == 0 &&
2795 info->len > markerlen &&
2796 memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2797 /* We truncate the module to discard the signature */
2798 info->len -= markerlen;
2799 err = mod_verify_sig(mod, &info->len);
2800 }
2801
2802 if (!err) {
2803 info->sig_ok = true;
2804 return 0;
2805 }
2806
2807 /* Not having a signature is only an error if we're strict. */
2808 if (err == -ENOKEY && !sig_enforce)
2809 err = 0;
2810
2811 return err;
2812 }
2813 #else /* !CONFIG_MODULE_SIG */
module_sig_check(struct load_info * info,int flags)2814 static int module_sig_check(struct load_info *info, int flags)
2815 {
2816 return 0;
2817 }
2818 #endif /* !CONFIG_MODULE_SIG */
2819
2820 /* Sanity checks against invalid binaries, wrong arch, weird elf version. */
elf_header_check(struct load_info * info)2821 static int elf_header_check(struct load_info *info)
2822 {
2823 if (info->len < sizeof(*(info->hdr)))
2824 return -ENOEXEC;
2825
2826 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
2827 || info->hdr->e_type != ET_REL
2828 || !elf_check_arch(info->hdr)
2829 || info->hdr->e_shentsize != sizeof(Elf_Shdr))
2830 return -ENOEXEC;
2831
2832 if (info->hdr->e_shoff >= info->len
2833 || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
2834 info->len - info->hdr->e_shoff))
2835 return -ENOEXEC;
2836
2837 return 0;
2838 }
2839
2840 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2841
copy_chunked_from_user(void * dst,const void __user * usrc,unsigned long len)2842 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2843 {
2844 do {
2845 unsigned long n = min(len, COPY_CHUNK_SIZE);
2846
2847 if (copy_from_user(dst, usrc, n) != 0)
2848 return -EFAULT;
2849 cond_resched();
2850 dst += n;
2851 usrc += n;
2852 len -= n;
2853 } while (len);
2854 return 0;
2855 }
2856
2857 #ifdef CONFIG_LIVEPATCH
check_modinfo_livepatch(struct module * mod,struct load_info * info)2858 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2859 {
2860 if (get_modinfo(info, "livepatch")) {
2861 mod->klp = true;
2862 add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
2863 pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
2864 mod->name);
2865 }
2866
2867 return 0;
2868 }
2869 #else /* !CONFIG_LIVEPATCH */
check_modinfo_livepatch(struct module * mod,struct load_info * info)2870 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2871 {
2872 if (get_modinfo(info, "livepatch")) {
2873 pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
2874 mod->name);
2875 return -ENOEXEC;
2876 }
2877
2878 return 0;
2879 }
2880 #endif /* CONFIG_LIVEPATCH */
2881
check_modinfo_retpoline(struct module * mod,struct load_info * info)2882 static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
2883 {
2884 if (retpoline_module_ok(get_modinfo(info, "retpoline")))
2885 return;
2886
2887 pr_warn("%s: loading module not compiled with retpoline compiler.\n",
2888 mod->name);
2889 }
2890
2891 /* Sets info->hdr and info->len. */
copy_module_from_user(const void __user * umod,unsigned long len,struct load_info * info)2892 static int copy_module_from_user(const void __user *umod, unsigned long len,
2893 struct load_info *info)
2894 {
2895 int err;
2896
2897 info->len = len;
2898 if (info->len < sizeof(*(info->hdr)))
2899 return -ENOEXEC;
2900
2901 err = security_kernel_read_file(NULL, READING_MODULE);
2902 if (err)
2903 return err;
2904
2905 /* Suck in entire file: we'll want most of it. */
2906 info->hdr = __vmalloc(info->len,
2907 GFP_KERNEL | __GFP_NOWARN, PAGE_KERNEL);
2908 if (!info->hdr)
2909 return -ENOMEM;
2910
2911 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
2912 vfree(info->hdr);
2913 return -EFAULT;
2914 }
2915
2916 return 0;
2917 }
2918
free_copy(struct load_info * info)2919 static void free_copy(struct load_info *info)
2920 {
2921 vfree(info->hdr);
2922 }
2923
rewrite_section_headers(struct load_info * info,int flags)2924 static int rewrite_section_headers(struct load_info *info, int flags)
2925 {
2926 unsigned int i;
2927
2928 /* This should always be true, but let's be sure. */
2929 info->sechdrs[0].sh_addr = 0;
2930
2931 for (i = 1; i < info->hdr->e_shnum; i++) {
2932 Elf_Shdr *shdr = &info->sechdrs[i];
2933 if (shdr->sh_type != SHT_NOBITS
2934 && info->len < shdr->sh_offset + shdr->sh_size) {
2935 pr_err("Module len %lu truncated\n", info->len);
2936 return -ENOEXEC;
2937 }
2938
2939 /* Mark all sections sh_addr with their address in the
2940 temporary image. */
2941 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2942
2943 #ifndef CONFIG_MODULE_UNLOAD
2944 /* Don't load .exit sections */
2945 if (strstarts(info->secstrings+shdr->sh_name, ".exit"))
2946 shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
2947 #endif
2948 }
2949
2950 /* Track but don't keep modinfo and version sections. */
2951 if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
2952 info->index.vers = 0; /* Pretend no __versions section! */
2953 else
2954 info->index.vers = find_sec(info, "__versions");
2955 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2956
2957 info->index.info = find_sec(info, ".modinfo");
2958 if (!info->index.info)
2959 info->name = "(missing .modinfo section)";
2960 else
2961 info->name = get_modinfo(info, "name");
2962 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2963
2964 return 0;
2965 }
2966
2967 /*
2968 * Set up our basic convenience variables (pointers to section headers,
2969 * search for module section index etc), and do some basic section
2970 * verification.
2971 *
2972 * Return the temporary module pointer (we'll replace it with the final
2973 * one when we move the module sections around).
2974 */
setup_load_info(struct load_info * info,int flags)2975 static struct module *setup_load_info(struct load_info *info, int flags)
2976 {
2977 unsigned int i;
2978 int err;
2979 struct module *mod;
2980
2981 /* Set up the convenience variables */
2982 info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
2983 info->secstrings = (void *)info->hdr
2984 + info->sechdrs[info->hdr->e_shstrndx].sh_offset;
2985
2986 err = rewrite_section_headers(info, flags);
2987 if (err)
2988 return ERR_PTR(err);
2989
2990 /* Find internal symbols and strings. */
2991 for (i = 1; i < info->hdr->e_shnum; i++) {
2992 if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2993 info->index.sym = i;
2994 info->index.str = info->sechdrs[i].sh_link;
2995 info->strtab = (char *)info->hdr
2996 + info->sechdrs[info->index.str].sh_offset;
2997 break;
2998 }
2999 }
3000
3001 info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
3002 if (!info->index.mod) {
3003 pr_warn("%s: No module found in object\n",
3004 info->name ?: "(missing .modinfo name field)");
3005 return ERR_PTR(-ENOEXEC);
3006 }
3007 /* This is temporary: point mod into copy of data. */
3008 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
3009
3010 /*
3011 * If we didn't load the .modinfo 'name' field, fall back to
3012 * on-disk struct mod 'name' field.
3013 */
3014 if (!info->name)
3015 info->name = mod->name;
3016
3017 if (info->index.sym == 0) {
3018 pr_warn("%s: module has no symbols (stripped?)\n", info->name);
3019 return ERR_PTR(-ENOEXEC);
3020 }
3021
3022 info->index.pcpu = find_pcpusec(info);
3023
3024 /* Check module struct version now, before we try to use module. */
3025 if (!check_modstruct_version(info, mod))
3026 return ERR_PTR(-ENOEXEC);
3027
3028 return mod;
3029 }
3030
check_modinfo(struct module * mod,struct load_info * info,int flags)3031 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
3032 {
3033 const char *modmagic = get_modinfo(info, "vermagic");
3034 int err;
3035
3036 if (flags & MODULE_INIT_IGNORE_VERMAGIC)
3037 modmagic = NULL;
3038
3039 /* This is allowed: modprobe --force will invalidate it. */
3040 if (!modmagic) {
3041 err = try_to_force_load(mod, "bad vermagic");
3042 if (err)
3043 return err;
3044 } else if (!same_magic(modmagic, vermagic, info->index.vers)) {
3045 pr_err("%s: version magic '%s' should be '%s'\n",
3046 info->name, modmagic, vermagic);
3047 return -ENOEXEC;
3048 }
3049
3050 if (!get_modinfo(info, "intree")) {
3051 if (!test_taint(TAINT_OOT_MODULE))
3052 pr_warn("%s: loading out-of-tree module taints kernel.\n",
3053 mod->name);
3054 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
3055 }
3056
3057 check_modinfo_retpoline(mod, info);
3058
3059 if (get_modinfo(info, "staging")) {
3060 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
3061 pr_warn("%s: module is from the staging directory, the quality "
3062 "is unknown, you have been warned.\n", mod->name);
3063 }
3064
3065 err = check_modinfo_livepatch(mod, info);
3066 if (err)
3067 return err;
3068
3069 /* Set up license info based on the info section */
3070 set_license(mod, get_modinfo(info, "license"));
3071
3072 return 0;
3073 }
3074
find_module_sections(struct module * mod,struct load_info * info)3075 static int find_module_sections(struct module *mod, struct load_info *info)
3076 {
3077 mod->kp = section_objs(info, "__param",
3078 sizeof(*mod->kp), &mod->num_kp);
3079 mod->syms = section_objs(info, "__ksymtab",
3080 sizeof(*mod->syms), &mod->num_syms);
3081 mod->crcs = section_addr(info, "__kcrctab");
3082 mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
3083 sizeof(*mod->gpl_syms),
3084 &mod->num_gpl_syms);
3085 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
3086 mod->gpl_future_syms = section_objs(info,
3087 "__ksymtab_gpl_future",
3088 sizeof(*mod->gpl_future_syms),
3089 &mod->num_gpl_future_syms);
3090 mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
3091
3092 #ifdef CONFIG_UNUSED_SYMBOLS
3093 mod->unused_syms = section_objs(info, "__ksymtab_unused",
3094 sizeof(*mod->unused_syms),
3095 &mod->num_unused_syms);
3096 mod->unused_crcs = section_addr(info, "__kcrctab_unused");
3097 mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
3098 sizeof(*mod->unused_gpl_syms),
3099 &mod->num_unused_gpl_syms);
3100 mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
3101 #endif
3102 #ifdef CONFIG_CONSTRUCTORS
3103 mod->ctors = section_objs(info, ".ctors",
3104 sizeof(*mod->ctors), &mod->num_ctors);
3105 if (!mod->ctors)
3106 mod->ctors = section_objs(info, ".init_array",
3107 sizeof(*mod->ctors), &mod->num_ctors);
3108 else if (find_sec(info, ".init_array")) {
3109 /*
3110 * This shouldn't happen with same compiler and binutils
3111 * building all parts of the module.
3112 */
3113 pr_warn("%s: has both .ctors and .init_array.\n",
3114 mod->name);
3115 return -EINVAL;
3116 }
3117 #endif
3118
3119 #ifdef CONFIG_TRACEPOINTS
3120 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
3121 sizeof(*mod->tracepoints_ptrs),
3122 &mod->num_tracepoints);
3123 #endif
3124 #ifdef HAVE_JUMP_LABEL
3125 mod->jump_entries = section_objs(info, "__jump_table",
3126 sizeof(*mod->jump_entries),
3127 &mod->num_jump_entries);
3128 #endif
3129 #ifdef CONFIG_EVENT_TRACING
3130 mod->trace_events = section_objs(info, "_ftrace_events",
3131 sizeof(*mod->trace_events),
3132 &mod->num_trace_events);
3133 mod->trace_evals = section_objs(info, "_ftrace_eval_map",
3134 sizeof(*mod->trace_evals),
3135 &mod->num_trace_evals);
3136 #endif
3137 #ifdef CONFIG_TRACING
3138 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
3139 sizeof(*mod->trace_bprintk_fmt_start),
3140 &mod->num_trace_bprintk_fmt);
3141 #endif
3142 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
3143 /* sechdrs[0].sh_size is always zero */
3144 mod->ftrace_callsites = section_objs(info, "__mcount_loc",
3145 sizeof(*mod->ftrace_callsites),
3146 &mod->num_ftrace_callsites);
3147 #endif
3148
3149 mod->extable = section_objs(info, "__ex_table",
3150 sizeof(*mod->extable), &mod->num_exentries);
3151
3152 if (section_addr(info, "__obsparm"))
3153 pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
3154
3155 info->debug = section_objs(info, "__verbose",
3156 sizeof(*info->debug), &info->num_debug);
3157
3158 return 0;
3159 }
3160
move_module(struct module * mod,struct load_info * info)3161 static int move_module(struct module *mod, struct load_info *info)
3162 {
3163 int i;
3164 void *ptr;
3165
3166 /* Do the allocs. */
3167 ptr = module_alloc(mod->core_layout.size);
3168 /*
3169 * The pointer to this block is stored in the module structure
3170 * which is inside the block. Just mark it as not being a
3171 * leak.
3172 */
3173 kmemleak_not_leak(ptr);
3174 if (!ptr)
3175 return -ENOMEM;
3176
3177 memset(ptr, 0, mod->core_layout.size);
3178 mod->core_layout.base = ptr;
3179
3180 if (mod->init_layout.size) {
3181 ptr = module_alloc(mod->init_layout.size);
3182 /*
3183 * The pointer to this block is stored in the module structure
3184 * which is inside the block. This block doesn't need to be
3185 * scanned as it contains data and code that will be freed
3186 * after the module is initialized.
3187 */
3188 kmemleak_ignore(ptr);
3189 if (!ptr) {
3190 module_memfree(mod->core_layout.base);
3191 return -ENOMEM;
3192 }
3193 memset(ptr, 0, mod->init_layout.size);
3194 mod->init_layout.base = ptr;
3195 } else
3196 mod->init_layout.base = NULL;
3197
3198 /* Transfer each section which specifies SHF_ALLOC */
3199 pr_debug("final section addresses:\n");
3200 for (i = 0; i < info->hdr->e_shnum; i++) {
3201 void *dest;
3202 Elf_Shdr *shdr = &info->sechdrs[i];
3203
3204 if (!(shdr->sh_flags & SHF_ALLOC))
3205 continue;
3206
3207 if (shdr->sh_entsize & INIT_OFFSET_MASK)
3208 dest = mod->init_layout.base
3209 + (shdr->sh_entsize & ~INIT_OFFSET_MASK);
3210 else
3211 dest = mod->core_layout.base + shdr->sh_entsize;
3212
3213 if (shdr->sh_type != SHT_NOBITS)
3214 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
3215 /* Update sh_addr to point to copy in image. */
3216 shdr->sh_addr = (unsigned long)dest;
3217 pr_debug("\t0x%lx %s\n",
3218 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
3219 }
3220
3221 return 0;
3222 }
3223
check_module_license_and_versions(struct module * mod)3224 static int check_module_license_and_versions(struct module *mod)
3225 {
3226 int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
3227
3228 /*
3229 * ndiswrapper is under GPL by itself, but loads proprietary modules.
3230 * Don't use add_taint_module(), as it would prevent ndiswrapper from
3231 * using GPL-only symbols it needs.
3232 */
3233 if (strcmp(mod->name, "ndiswrapper") == 0)
3234 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
3235
3236 /* driverloader was caught wrongly pretending to be under GPL */
3237 if (strcmp(mod->name, "driverloader") == 0)
3238 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3239 LOCKDEP_NOW_UNRELIABLE);
3240
3241 /* lve claims to be GPL but upstream won't provide source */
3242 if (strcmp(mod->name, "lve") == 0)
3243 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3244 LOCKDEP_NOW_UNRELIABLE);
3245
3246 if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
3247 pr_warn("%s: module license taints kernel.\n", mod->name);
3248
3249 #ifdef CONFIG_MODVERSIONS
3250 if ((mod->num_syms && !mod->crcs)
3251 || (mod->num_gpl_syms && !mod->gpl_crcs)
3252 || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
3253 #ifdef CONFIG_UNUSED_SYMBOLS
3254 || (mod->num_unused_syms && !mod->unused_crcs)
3255 || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
3256 #endif
3257 ) {
3258 return try_to_force_load(mod,
3259 "no versions for exported symbols");
3260 }
3261 #endif
3262 return 0;
3263 }
3264
flush_module_icache(const struct module * mod)3265 static void flush_module_icache(const struct module *mod)
3266 {
3267 mm_segment_t old_fs;
3268
3269 /* flush the icache in correct context */
3270 old_fs = get_fs();
3271 set_fs(KERNEL_DS);
3272
3273 /*
3274 * Flush the instruction cache, since we've played with text.
3275 * Do it before processing of module parameters, so the module
3276 * can provide parameter accessor functions of its own.
3277 */
3278 if (mod->init_layout.base)
3279 flush_icache_range((unsigned long)mod->init_layout.base,
3280 (unsigned long)mod->init_layout.base
3281 + mod->init_layout.size);
3282 flush_icache_range((unsigned long)mod->core_layout.base,
3283 (unsigned long)mod->core_layout.base + mod->core_layout.size);
3284
3285 set_fs(old_fs);
3286 }
3287
module_frob_arch_sections(Elf_Ehdr * hdr,Elf_Shdr * sechdrs,char * secstrings,struct module * mod)3288 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
3289 Elf_Shdr *sechdrs,
3290 char *secstrings,
3291 struct module *mod)
3292 {
3293 return 0;
3294 }
3295
3296 /* module_blacklist is a comma-separated list of module names */
3297 static char *module_blacklist;
blacklisted(const char * module_name)3298 static bool blacklisted(const char *module_name)
3299 {
3300 const char *p;
3301 size_t len;
3302
3303 if (!module_blacklist)
3304 return false;
3305
3306 for (p = module_blacklist; *p; p += len) {
3307 len = strcspn(p, ",");
3308 if (strlen(module_name) == len && !memcmp(module_name, p, len))
3309 return true;
3310 if (p[len] == ',')
3311 len++;
3312 }
3313 return false;
3314 }
3315 core_param(module_blacklist, module_blacklist, charp, 0400);
3316
layout_and_allocate(struct load_info * info,int flags)3317 static struct module *layout_and_allocate(struct load_info *info, int flags)
3318 {
3319 /* Module within temporary copy. */
3320 struct module *mod;
3321 unsigned int ndx;
3322 int err;
3323
3324 mod = setup_load_info(info, flags);
3325 if (IS_ERR(mod))
3326 return mod;
3327
3328 if (blacklisted(info->name))
3329 return ERR_PTR(-EPERM);
3330
3331 err = check_modinfo(mod, info, flags);
3332 if (err)
3333 return ERR_PTR(err);
3334
3335 /* Allow arches to frob section contents and sizes. */
3336 err = module_frob_arch_sections(info->hdr, info->sechdrs,
3337 info->secstrings, mod);
3338 if (err < 0)
3339 return ERR_PTR(err);
3340
3341 /* We will do a special allocation for per-cpu sections later. */
3342 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
3343
3344 /*
3345 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
3346 * layout_sections() can put it in the right place.
3347 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
3348 */
3349 ndx = find_sec(info, ".data..ro_after_init");
3350 if (ndx)
3351 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3352
3353 /* Determine total sizes, and put offsets in sh_entsize. For now
3354 this is done generically; there doesn't appear to be any
3355 special cases for the architectures. */
3356 layout_sections(mod, info);
3357 layout_symtab(mod, info);
3358
3359 /* Allocate and move to the final place */
3360 err = move_module(mod, info);
3361 if (err)
3362 return ERR_PTR(err);
3363
3364 /* Module has been copied to its final place now: return it. */
3365 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
3366 kmemleak_load_module(mod, info);
3367 return mod;
3368 }
3369
3370 /* mod is no longer valid after this! */
module_deallocate(struct module * mod,struct load_info * info)3371 static void module_deallocate(struct module *mod, struct load_info *info)
3372 {
3373 percpu_modfree(mod);
3374 module_arch_freeing_init(mod);
3375 module_memfree(mod->init_layout.base);
3376 module_memfree(mod->core_layout.base);
3377 }
3378
module_finalize(const Elf_Ehdr * hdr,const Elf_Shdr * sechdrs,struct module * me)3379 int __weak module_finalize(const Elf_Ehdr *hdr,
3380 const Elf_Shdr *sechdrs,
3381 struct module *me)
3382 {
3383 return 0;
3384 }
3385
3386 static void cfi_init(struct module *mod);
3387
post_relocation(struct module * mod,const struct load_info * info)3388 static int post_relocation(struct module *mod, const struct load_info *info)
3389 {
3390 /* Sort exception table now relocations are done. */
3391 sort_extable(mod->extable, mod->extable + mod->num_exentries);
3392
3393 /* Copy relocated percpu area over. */
3394 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
3395 info->sechdrs[info->index.pcpu].sh_size);
3396
3397 /* Setup kallsyms-specific fields. */
3398 add_kallsyms(mod, info);
3399
3400 /* Setup CFI for the module. */
3401 cfi_init(mod);
3402
3403 /* Arch-specific module finalizing. */
3404 return module_finalize(info->hdr, info->sechdrs, mod);
3405 }
3406
3407 /* Is this module of this name done loading? No locks held. */
finished_loading(const char * name)3408 static bool finished_loading(const char *name)
3409 {
3410 struct module *mod;
3411 bool ret;
3412
3413 /*
3414 * The module_mutex should not be a heavily contended lock;
3415 * if we get the occasional sleep here, we'll go an extra iteration
3416 * in the wait_event_interruptible(), which is harmless.
3417 */
3418 sched_annotate_sleep();
3419 mutex_lock(&module_mutex);
3420 mod = find_module_all(name, strlen(name), true);
3421 ret = !mod || mod->state == MODULE_STATE_LIVE;
3422 mutex_unlock(&module_mutex);
3423
3424 return ret;
3425 }
3426
3427 /* Call module constructors. */
do_mod_ctors(struct module * mod)3428 static void do_mod_ctors(struct module *mod)
3429 {
3430 #ifdef CONFIG_CONSTRUCTORS
3431 unsigned long i;
3432
3433 for (i = 0; i < mod->num_ctors; i++)
3434 mod->ctors[i]();
3435 #endif
3436 }
3437
3438 /* For freeing module_init on success, in case kallsyms traversing */
3439 struct mod_initfree {
3440 struct rcu_head rcu;
3441 void *module_init;
3442 };
3443
do_free_init(struct rcu_head * head)3444 static void do_free_init(struct rcu_head *head)
3445 {
3446 struct mod_initfree *m = container_of(head, struct mod_initfree, rcu);
3447 module_memfree(m->module_init);
3448 kfree(m);
3449 }
3450
3451 /*
3452 * This is where the real work happens.
3453 *
3454 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
3455 * helper command 'lx-symbols'.
3456 */
do_init_module(struct module * mod)3457 static noinline int do_init_module(struct module *mod)
3458 {
3459 int ret = 0;
3460 struct mod_initfree *freeinit;
3461
3462 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3463 if (!freeinit) {
3464 ret = -ENOMEM;
3465 goto fail;
3466 }
3467 freeinit->module_init = mod->init_layout.base;
3468
3469 /*
3470 * We want to find out whether @mod uses async during init. Clear
3471 * PF_USED_ASYNC. async_schedule*() will set it.
3472 */
3473 current->flags &= ~PF_USED_ASYNC;
3474
3475 do_mod_ctors(mod);
3476 /* Start the module */
3477 if (mod->init != NULL)
3478 ret = do_one_initcall(mod->init);
3479 if (ret < 0) {
3480 goto fail_free_freeinit;
3481 }
3482 if (ret > 0) {
3483 pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3484 "follow 0/-E convention\n"
3485 "%s: loading module anyway...\n",
3486 __func__, mod->name, ret, __func__);
3487 dump_stack();
3488 }
3489
3490 /* Now it's a first class citizen! */
3491 mod->state = MODULE_STATE_LIVE;
3492 blocking_notifier_call_chain(&module_notify_list,
3493 MODULE_STATE_LIVE, mod);
3494
3495 /*
3496 * We need to finish all async code before the module init sequence
3497 * is done. This has potential to deadlock. For example, a newly
3498 * detected block device can trigger request_module() of the
3499 * default iosched from async probing task. Once userland helper
3500 * reaches here, async_synchronize_full() will wait on the async
3501 * task waiting on request_module() and deadlock.
3502 *
3503 * This deadlock is avoided by perfomring async_synchronize_full()
3504 * iff module init queued any async jobs. This isn't a full
3505 * solution as it will deadlock the same if module loading from
3506 * async jobs nests more than once; however, due to the various
3507 * constraints, this hack seems to be the best option for now.
3508 * Please refer to the following thread for details.
3509 *
3510 * http://thread.gmane.org/gmane.linux.kernel/1420814
3511 */
3512 if (!mod->async_probe_requested && (current->flags & PF_USED_ASYNC))
3513 async_synchronize_full();
3514
3515 mutex_lock(&module_mutex);
3516 /* Drop initial reference. */
3517 module_put(mod);
3518 trim_init_extable(mod);
3519 #ifdef CONFIG_KALLSYMS
3520 /* Switch to core kallsyms now init is done: kallsyms may be walking! */
3521 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3522 #endif
3523 module_enable_ro(mod, true);
3524 mod_tree_remove_init(mod);
3525 disable_ro_nx(&mod->init_layout);
3526 module_arch_freeing_init(mod);
3527 mod->init_layout.base = NULL;
3528 mod->init_layout.size = 0;
3529 mod->init_layout.ro_size = 0;
3530 mod->init_layout.ro_after_init_size = 0;
3531 mod->init_layout.text_size = 0;
3532 /*
3533 * We want to free module_init, but be aware that kallsyms may be
3534 * walking this with preempt disabled. In all the failure paths, we
3535 * call synchronize_sched(), but we don't want to slow down the success
3536 * path, so use actual RCU here.
3537 * Note that module_alloc() on most architectures creates W+X page
3538 * mappings which won't be cleaned up until do_free_init() runs. Any
3539 * code such as mark_rodata_ro() which depends on those mappings to
3540 * be cleaned up needs to sync with the queued work - ie
3541 * rcu_barrier_sched()
3542 */
3543 call_rcu_sched(&freeinit->rcu, do_free_init);
3544 mutex_unlock(&module_mutex);
3545 wake_up_all(&module_wq);
3546
3547 return 0;
3548
3549 fail_free_freeinit:
3550 kfree(freeinit);
3551 fail:
3552 /* Try to protect us from buggy refcounters. */
3553 mod->state = MODULE_STATE_GOING;
3554 synchronize_sched();
3555 module_put(mod);
3556 blocking_notifier_call_chain(&module_notify_list,
3557 MODULE_STATE_GOING, mod);
3558 klp_module_going(mod);
3559 ftrace_release_mod(mod);
3560 free_module(mod);
3561 wake_up_all(&module_wq);
3562 return ret;
3563 }
3564
may_init_module(void)3565 static int may_init_module(void)
3566 {
3567 if (!capable(CAP_SYS_MODULE) || modules_disabled)
3568 return -EPERM;
3569
3570 return 0;
3571 }
3572
3573 /*
3574 * We try to place it in the list now to make sure it's unique before
3575 * we dedicate too many resources. In particular, temporary percpu
3576 * memory exhaustion.
3577 */
add_unformed_module(struct module * mod)3578 static int add_unformed_module(struct module *mod)
3579 {
3580 int err;
3581 struct module *old;
3582
3583 mod->state = MODULE_STATE_UNFORMED;
3584
3585 again:
3586 mutex_lock(&module_mutex);
3587 old = find_module_all(mod->name, strlen(mod->name), true);
3588 if (old != NULL) {
3589 if (old->state != MODULE_STATE_LIVE) {
3590 /* Wait in case it fails to load. */
3591 mutex_unlock(&module_mutex);
3592 err = wait_event_interruptible(module_wq,
3593 finished_loading(mod->name));
3594 if (err)
3595 goto out_unlocked;
3596 goto again;
3597 }
3598 err = -EEXIST;
3599 goto out;
3600 }
3601 mod_update_bounds(mod);
3602 list_add_rcu(&mod->list, &modules);
3603 mod_tree_insert(mod);
3604 err = 0;
3605
3606 out:
3607 mutex_unlock(&module_mutex);
3608 out_unlocked:
3609 return err;
3610 }
3611
complete_formation(struct module * mod,struct load_info * info)3612 static int complete_formation(struct module *mod, struct load_info *info)
3613 {
3614 int err;
3615
3616 mutex_lock(&module_mutex);
3617
3618 /* Find duplicate symbols (must be called under lock). */
3619 err = verify_export_symbols(mod);
3620 if (err < 0)
3621 goto out;
3622
3623 /* This relies on module_mutex for list integrity. */
3624 module_bug_finalize(info->hdr, info->sechdrs, mod);
3625
3626 module_enable_ro(mod, false);
3627 module_enable_nx(mod);
3628
3629 /* Mark state as coming so strong_try_module_get() ignores us,
3630 * but kallsyms etc. can see us. */
3631 mod->state = MODULE_STATE_COMING;
3632 mutex_unlock(&module_mutex);
3633
3634 return 0;
3635
3636 out:
3637 mutex_unlock(&module_mutex);
3638 return err;
3639 }
3640
prepare_coming_module(struct module * mod)3641 static int prepare_coming_module(struct module *mod)
3642 {
3643 int err;
3644
3645 ftrace_module_enable(mod);
3646 err = klp_module_coming(mod);
3647 if (err)
3648 return err;
3649
3650 blocking_notifier_call_chain(&module_notify_list,
3651 MODULE_STATE_COMING, mod);
3652 return 0;
3653 }
3654
unknown_module_param_cb(char * param,char * val,const char * modname,void * arg)3655 static int unknown_module_param_cb(char *param, char *val, const char *modname,
3656 void *arg)
3657 {
3658 struct module *mod = arg;
3659 int ret;
3660
3661 if (strcmp(param, "async_probe") == 0) {
3662 mod->async_probe_requested = true;
3663 return 0;
3664 }
3665
3666 /* Check for magic 'dyndbg' arg */
3667 ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3668 if (ret != 0)
3669 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3670 return 0;
3671 }
3672
3673 /* Allocate and load the module: note that size of section 0 is always
3674 zero, and we rely on this for optional sections. */
load_module(struct load_info * info,const char __user * uargs,int flags)3675 static int load_module(struct load_info *info, const char __user *uargs,
3676 int flags)
3677 {
3678 struct module *mod;
3679 long err;
3680 char *after_dashes;
3681
3682 err = module_sig_check(info, flags);
3683 if (err)
3684 goto free_copy;
3685
3686 err = elf_header_check(info);
3687 if (err)
3688 goto free_copy;
3689
3690 /* Figure out module layout, and allocate all the memory. */
3691 mod = layout_and_allocate(info, flags);
3692 if (IS_ERR(mod)) {
3693 err = PTR_ERR(mod);
3694 goto free_copy;
3695 }
3696
3697 audit_log_kern_module(mod->name);
3698
3699 /* Reserve our place in the list. */
3700 err = add_unformed_module(mod);
3701 if (err)
3702 goto free_module;
3703
3704 #ifdef CONFIG_MODULE_SIG
3705 mod->sig_ok = info->sig_ok;
3706 if (!mod->sig_ok) {
3707 pr_notice_once("%s: module verification failed: signature "
3708 "and/or required key missing - tainting "
3709 "kernel\n", mod->name);
3710 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
3711 }
3712 #endif
3713
3714 /* To avoid stressing percpu allocator, do this once we're unique. */
3715 err = percpu_modalloc(mod, info);
3716 if (err)
3717 goto unlink_mod;
3718
3719 /* Now module is in final location, initialize linked lists, etc. */
3720 err = module_unload_init(mod);
3721 if (err)
3722 goto unlink_mod;
3723
3724 init_param_lock(mod);
3725
3726 /* Now we've got everything in the final locations, we can
3727 * find optional sections. */
3728 err = find_module_sections(mod, info);
3729 if (err)
3730 goto free_unload;
3731
3732 err = check_module_license_and_versions(mod);
3733 if (err)
3734 goto free_unload;
3735
3736 /* Set up MODINFO_ATTR fields */
3737 setup_modinfo(mod, info);
3738
3739 /* Fix up syms, so that st_value is a pointer to location. */
3740 err = simplify_symbols(mod, info);
3741 if (err < 0)
3742 goto free_modinfo;
3743
3744 err = apply_relocations(mod, info);
3745 if (err < 0)
3746 goto free_modinfo;
3747
3748 err = post_relocation(mod, info);
3749 if (err < 0)
3750 goto free_modinfo;
3751
3752 flush_module_icache(mod);
3753
3754 /* Now copy in args */
3755 mod->args = strndup_user(uargs, ~0UL >> 1);
3756 if (IS_ERR(mod->args)) {
3757 err = PTR_ERR(mod->args);
3758 goto free_arch_cleanup;
3759 }
3760
3761 dynamic_debug_setup(mod, info->debug, info->num_debug);
3762
3763 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3764 ftrace_module_init(mod);
3765
3766 /* Finally it's fully formed, ready to start executing. */
3767 err = complete_formation(mod, info);
3768 if (err)
3769 goto ddebug_cleanup;
3770
3771 err = prepare_coming_module(mod);
3772 if (err)
3773 goto bug_cleanup;
3774
3775 /* Module is ready to execute: parsing args may do that. */
3776 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3777 -32768, 32767, mod,
3778 unknown_module_param_cb);
3779 if (IS_ERR(after_dashes)) {
3780 err = PTR_ERR(after_dashes);
3781 goto coming_cleanup;
3782 } else if (after_dashes) {
3783 pr_warn("%s: parameters '%s' after `--' ignored\n",
3784 mod->name, after_dashes);
3785 }
3786
3787 /* Link in to sysfs. */
3788 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3789 if (err < 0)
3790 goto coming_cleanup;
3791
3792 if (is_livepatch_module(mod)) {
3793 err = copy_module_elf(mod, info);
3794 if (err < 0)
3795 goto sysfs_cleanup;
3796 }
3797
3798 /* Get rid of temporary copy. */
3799 free_copy(info);
3800
3801 /* Done! */
3802 trace_module_load(mod);
3803
3804 return do_init_module(mod);
3805
3806 sysfs_cleanup:
3807 mod_sysfs_teardown(mod);
3808 coming_cleanup:
3809 mod->state = MODULE_STATE_GOING;
3810 destroy_params(mod->kp, mod->num_kp);
3811 blocking_notifier_call_chain(&module_notify_list,
3812 MODULE_STATE_GOING, mod);
3813 klp_module_going(mod);
3814 bug_cleanup:
3815 /* module_bug_cleanup needs module_mutex protection */
3816 mutex_lock(&module_mutex);
3817 module_bug_cleanup(mod);
3818 mutex_unlock(&module_mutex);
3819
3820 /* we can't deallocate the module until we clear memory protection */
3821 module_disable_ro(mod);
3822 module_disable_nx(mod);
3823
3824 ddebug_cleanup:
3825 dynamic_debug_remove(mod, info->debug);
3826 synchronize_sched();
3827 kfree(mod->args);
3828 free_arch_cleanup:
3829 module_arch_cleanup(mod);
3830 free_modinfo:
3831 free_modinfo(mod);
3832 free_unload:
3833 module_unload_free(mod);
3834 unlink_mod:
3835 mutex_lock(&module_mutex);
3836 /* Unlink carefully: kallsyms could be walking list. */
3837 list_del_rcu(&mod->list);
3838 mod_tree_remove(mod);
3839 wake_up_all(&module_wq);
3840 /* Wait for RCU-sched synchronizing before releasing mod->list. */
3841 synchronize_sched();
3842 mutex_unlock(&module_mutex);
3843 free_module:
3844 /*
3845 * Ftrace needs to clean up what it initialized.
3846 * This does nothing if ftrace_module_init() wasn't called,
3847 * but it must be called outside of module_mutex.
3848 */
3849 ftrace_release_mod(mod);
3850 /* Free lock-classes; relies on the preceding sync_rcu() */
3851 lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
3852
3853 module_deallocate(mod, info);
3854 free_copy:
3855 free_copy(info);
3856 return err;
3857 }
3858
SYSCALL_DEFINE3(init_module,void __user *,umod,unsigned long,len,const char __user *,uargs)3859 SYSCALL_DEFINE3(init_module, void __user *, umod,
3860 unsigned long, len, const char __user *, uargs)
3861 {
3862 int err;
3863 struct load_info info = { };
3864
3865 err = may_init_module();
3866 if (err)
3867 return err;
3868
3869 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3870 umod, len, uargs);
3871
3872 err = copy_module_from_user(umod, len, &info);
3873 if (err)
3874 return err;
3875
3876 return load_module(&info, uargs, 0);
3877 }
3878
SYSCALL_DEFINE3(finit_module,int,fd,const char __user *,uargs,int,flags)3879 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3880 {
3881 struct load_info info = { };
3882 loff_t size;
3883 void *hdr;
3884 int err;
3885
3886 err = may_init_module();
3887 if (err)
3888 return err;
3889
3890 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3891
3892 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3893 |MODULE_INIT_IGNORE_VERMAGIC))
3894 return -EINVAL;
3895
3896 err = kernel_read_file_from_fd(fd, &hdr, &size, INT_MAX,
3897 READING_MODULE);
3898 if (err)
3899 return err;
3900 info.hdr = hdr;
3901 info.len = size;
3902
3903 return load_module(&info, uargs, flags);
3904 }
3905
within(unsigned long addr,void * start,unsigned long size)3906 static inline int within(unsigned long addr, void *start, unsigned long size)
3907 {
3908 return ((void *)addr >= start && (void *)addr < start + size);
3909 }
3910
3911 #ifdef CONFIG_KALLSYMS
3912 /*
3913 * This ignores the intensely annoying "mapping symbols" found
3914 * in ARM ELF files: $a, $t and $d.
3915 */
is_arm_mapping_symbol(const char * str)3916 static inline int is_arm_mapping_symbol(const char *str)
3917 {
3918 if (str[0] == '.' && str[1] == 'L')
3919 return true;
3920 return str[0] == '$' && strchr("axtd", str[1])
3921 && (str[2] == '\0' || str[2] == '.');
3922 }
3923
symname(struct mod_kallsyms * kallsyms,unsigned int symnum)3924 static const char *symname(struct mod_kallsyms *kallsyms, unsigned int symnum)
3925 {
3926 return kallsyms->strtab + kallsyms->symtab[symnum].st_name;
3927 }
3928
get_ksymbol(struct module * mod,unsigned long addr,unsigned long * size,unsigned long * offset)3929 static const char *get_ksymbol(struct module *mod,
3930 unsigned long addr,
3931 unsigned long *size,
3932 unsigned long *offset)
3933 {
3934 unsigned int i, best = 0;
3935 unsigned long nextval;
3936 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
3937
3938 /* At worse, next value is at end of module */
3939 if (within_module_init(addr, mod))
3940 nextval = (unsigned long)mod->init_layout.base+mod->init_layout.text_size;
3941 else
3942 nextval = (unsigned long)mod->core_layout.base+mod->core_layout.text_size;
3943
3944 /* Scan for closest preceding symbol, and next symbol. (ELF
3945 starts real symbols at 1). */
3946 for (i = 1; i < kallsyms->num_symtab; i++) {
3947 if (kallsyms->symtab[i].st_shndx == SHN_UNDEF)
3948 continue;
3949
3950 /* We ignore unnamed symbols: they're uninformative
3951 * and inserted at a whim. */
3952 if (*symname(kallsyms, i) == '\0'
3953 || is_arm_mapping_symbol(symname(kallsyms, i)))
3954 continue;
3955
3956 if (kallsyms->symtab[i].st_value <= addr
3957 && kallsyms->symtab[i].st_value > kallsyms->symtab[best].st_value)
3958 best = i;
3959 if (kallsyms->symtab[i].st_value > addr
3960 && kallsyms->symtab[i].st_value < nextval)
3961 nextval = kallsyms->symtab[i].st_value;
3962 }
3963
3964 if (!best)
3965 return NULL;
3966
3967 if (size)
3968 *size = nextval - kallsyms->symtab[best].st_value;
3969 if (offset)
3970 *offset = addr - kallsyms->symtab[best].st_value;
3971 return symname(kallsyms, best);
3972 }
3973
3974 /* For kallsyms to ask for address resolution. NULL means not found. Careful
3975 * not to lock to avoid deadlock on oopses, simply disable preemption. */
module_address_lookup(unsigned long addr,unsigned long * size,unsigned long * offset,char ** modname,char * namebuf)3976 const char *module_address_lookup(unsigned long addr,
3977 unsigned long *size,
3978 unsigned long *offset,
3979 char **modname,
3980 char *namebuf)
3981 {
3982 const char *ret = NULL;
3983 struct module *mod;
3984
3985 preempt_disable();
3986 mod = __module_address(addr);
3987 if (mod) {
3988 if (modname)
3989 *modname = mod->name;
3990 ret = get_ksymbol(mod, addr, size, offset);
3991 }
3992 /* Make a copy in here where it's safe */
3993 if (ret) {
3994 strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
3995 ret = namebuf;
3996 }
3997 preempt_enable();
3998
3999 return ret;
4000 }
4001
lookup_module_symbol_name(unsigned long addr,char * symname)4002 int lookup_module_symbol_name(unsigned long addr, char *symname)
4003 {
4004 struct module *mod;
4005
4006 preempt_disable();
4007 list_for_each_entry_rcu(mod, &modules, list) {
4008 if (mod->state == MODULE_STATE_UNFORMED)
4009 continue;
4010 if (within_module(addr, mod)) {
4011 const char *sym;
4012
4013 sym = get_ksymbol(mod, addr, NULL, NULL);
4014 if (!sym)
4015 goto out;
4016 strlcpy(symname, sym, KSYM_NAME_LEN);
4017 preempt_enable();
4018 return 0;
4019 }
4020 }
4021 out:
4022 preempt_enable();
4023 return -ERANGE;
4024 }
4025
lookup_module_symbol_attrs(unsigned long addr,unsigned long * size,unsigned long * offset,char * modname,char * name)4026 int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
4027 unsigned long *offset, char *modname, char *name)
4028 {
4029 struct module *mod;
4030
4031 preempt_disable();
4032 list_for_each_entry_rcu(mod, &modules, list) {
4033 if (mod->state == MODULE_STATE_UNFORMED)
4034 continue;
4035 if (within_module(addr, mod)) {
4036 const char *sym;
4037
4038 sym = get_ksymbol(mod, addr, size, offset);
4039 if (!sym)
4040 goto out;
4041 if (modname)
4042 strlcpy(modname, mod->name, MODULE_NAME_LEN);
4043 if (name)
4044 strlcpy(name, sym, KSYM_NAME_LEN);
4045 preempt_enable();
4046 return 0;
4047 }
4048 }
4049 out:
4050 preempt_enable();
4051 return -ERANGE;
4052 }
4053
module_get_kallsym(unsigned int symnum,unsigned long * value,char * type,char * name,char * module_name,int * exported)4054 int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
4055 char *name, char *module_name, int *exported)
4056 {
4057 struct module *mod;
4058
4059 preempt_disable();
4060 list_for_each_entry_rcu(mod, &modules, list) {
4061 struct mod_kallsyms *kallsyms;
4062
4063 if (mod->state == MODULE_STATE_UNFORMED)
4064 continue;
4065 kallsyms = rcu_dereference_sched(mod->kallsyms);
4066 if (symnum < kallsyms->num_symtab) {
4067 *value = kallsyms->symtab[symnum].st_value;
4068 *type = kallsyms->symtab[symnum].st_info;
4069 strlcpy(name, symname(kallsyms, symnum), KSYM_NAME_LEN);
4070 strlcpy(module_name, mod->name, MODULE_NAME_LEN);
4071 *exported = is_exported(name, *value, mod);
4072 preempt_enable();
4073 return 0;
4074 }
4075 symnum -= kallsyms->num_symtab;
4076 }
4077 preempt_enable();
4078 return -ERANGE;
4079 }
4080
mod_find_symname(struct module * mod,const char * name)4081 static unsigned long mod_find_symname(struct module *mod, const char *name)
4082 {
4083 unsigned int i;
4084 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
4085
4086 for (i = 0; i < kallsyms->num_symtab; i++)
4087 if (strcmp(name, symname(kallsyms, i)) == 0 &&
4088 kallsyms->symtab[i].st_shndx != SHN_UNDEF)
4089 return kallsyms->symtab[i].st_value;
4090 return 0;
4091 }
4092
4093 /* Look for this name: can be of form module:name. */
module_kallsyms_lookup_name(const char * name)4094 unsigned long module_kallsyms_lookup_name(const char *name)
4095 {
4096 struct module *mod;
4097 char *colon;
4098 unsigned long ret = 0;
4099
4100 /* Don't lock: we're in enough trouble already. */
4101 preempt_disable();
4102 if ((colon = strnchr(name, MODULE_NAME_LEN, ':')) != NULL) {
4103 if ((mod = find_module_all(name, colon - name, false)) != NULL)
4104 ret = mod_find_symname(mod, colon+1);
4105 } else {
4106 list_for_each_entry_rcu(mod, &modules, list) {
4107 if (mod->state == MODULE_STATE_UNFORMED)
4108 continue;
4109 if ((ret = mod_find_symname(mod, name)) != 0)
4110 break;
4111 }
4112 }
4113 preempt_enable();
4114 return ret;
4115 }
4116
module_kallsyms_on_each_symbol(int (* fn)(void *,const char *,struct module *,unsigned long),void * data)4117 int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
4118 struct module *, unsigned long),
4119 void *data)
4120 {
4121 struct module *mod;
4122 unsigned int i;
4123 int ret;
4124
4125 module_assert_mutex();
4126
4127 list_for_each_entry(mod, &modules, list) {
4128 /* We hold module_mutex: no need for rcu_dereference_sched */
4129 struct mod_kallsyms *kallsyms = mod->kallsyms;
4130
4131 if (mod->state == MODULE_STATE_UNFORMED)
4132 continue;
4133 for (i = 0; i < kallsyms->num_symtab; i++) {
4134
4135 if (kallsyms->symtab[i].st_shndx == SHN_UNDEF)
4136 continue;
4137
4138 ret = fn(data, symname(kallsyms, i),
4139 mod, kallsyms->symtab[i].st_value);
4140 if (ret != 0)
4141 return ret;
4142 }
4143 }
4144 return 0;
4145 }
4146 #endif /* CONFIG_KALLSYMS */
4147
cfi_init(struct module * mod)4148 static void cfi_init(struct module *mod)
4149 {
4150 #ifdef CONFIG_CFI_CLANG
4151 mod->cfi_check =
4152 (cfi_check_fn)mod_find_symname(mod, CFI_CHECK_FN_NAME);
4153 cfi_module_add(mod, module_addr_min, module_addr_max);
4154 #endif
4155 }
4156
cfi_cleanup(struct module * mod)4157 static void cfi_cleanup(struct module *mod)
4158 {
4159 #ifdef CONFIG_CFI_CLANG
4160 cfi_module_remove(mod, module_addr_min, module_addr_max);
4161 #endif
4162 }
4163
4164 /* Maximum number of characters written by module_flags() */
4165 #define MODULE_FLAGS_BUF_SIZE (TAINT_FLAGS_COUNT + 4)
4166
4167 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
module_flags(struct module * mod,char * buf)4168 static char *module_flags(struct module *mod, char *buf)
4169 {
4170 int bx = 0;
4171
4172 BUG_ON(mod->state == MODULE_STATE_UNFORMED);
4173 if (mod->taints ||
4174 mod->state == MODULE_STATE_GOING ||
4175 mod->state == MODULE_STATE_COMING) {
4176 buf[bx++] = '(';
4177 bx += module_flags_taint(mod, buf + bx);
4178 /* Show a - for module-is-being-unloaded */
4179 if (mod->state == MODULE_STATE_GOING)
4180 buf[bx++] = '-';
4181 /* Show a + for module-is-being-loaded */
4182 if (mod->state == MODULE_STATE_COMING)
4183 buf[bx++] = '+';
4184 buf[bx++] = ')';
4185 }
4186 buf[bx] = '\0';
4187
4188 return buf;
4189 }
4190
4191 #ifdef CONFIG_PROC_FS
4192 /* Called by the /proc file system to return a list of modules. */
m_start(struct seq_file * m,loff_t * pos)4193 static void *m_start(struct seq_file *m, loff_t *pos)
4194 {
4195 mutex_lock(&module_mutex);
4196 return seq_list_start(&modules, *pos);
4197 }
4198
m_next(struct seq_file * m,void * p,loff_t * pos)4199 static void *m_next(struct seq_file *m, void *p, loff_t *pos)
4200 {
4201 return seq_list_next(p, &modules, pos);
4202 }
4203
m_stop(struct seq_file * m,void * p)4204 static void m_stop(struct seq_file *m, void *p)
4205 {
4206 mutex_unlock(&module_mutex);
4207 }
4208
m_show(struct seq_file * m,void * p)4209 static int m_show(struct seq_file *m, void *p)
4210 {
4211 struct module *mod = list_entry(p, struct module, list);
4212 char buf[MODULE_FLAGS_BUF_SIZE];
4213
4214 /* We always ignore unformed modules. */
4215 if (mod->state == MODULE_STATE_UNFORMED)
4216 return 0;
4217
4218 seq_printf(m, "%s %u",
4219 mod->name, mod->init_layout.size + mod->core_layout.size);
4220 print_unload_info(m, mod);
4221
4222 /* Informative for users. */
4223 seq_printf(m, " %s",
4224 mod->state == MODULE_STATE_GOING ? "Unloading" :
4225 mod->state == MODULE_STATE_COMING ? "Loading" :
4226 "Live");
4227 /* Used by oprofile and other similar tools. */
4228 seq_printf(m, " 0x%pK", mod->core_layout.base);
4229
4230 /* Taints info */
4231 if (mod->taints)
4232 seq_printf(m, " %s", module_flags(mod, buf));
4233
4234 seq_puts(m, "\n");
4235 return 0;
4236 }
4237
4238 /* Format: modulename size refcount deps address
4239
4240 Where refcount is a number or -, and deps is a comma-separated list
4241 of depends or -.
4242 */
4243 static const struct seq_operations modules_op = {
4244 .start = m_start,
4245 .next = m_next,
4246 .stop = m_stop,
4247 .show = m_show
4248 };
4249
modules_open(struct inode * inode,struct file * file)4250 static int modules_open(struct inode *inode, struct file *file)
4251 {
4252 return seq_open(file, &modules_op);
4253 }
4254
4255 static const struct file_operations proc_modules_operations = {
4256 .open = modules_open,
4257 .read = seq_read,
4258 .llseek = seq_lseek,
4259 .release = seq_release,
4260 };
4261
proc_modules_init(void)4262 static int __init proc_modules_init(void)
4263 {
4264 proc_create("modules", 0, NULL, &proc_modules_operations);
4265 return 0;
4266 }
4267 module_init(proc_modules_init);
4268 #endif
4269
4270 /* Given an address, look for it in the module exception tables. */
search_module_extables(unsigned long addr)4271 const struct exception_table_entry *search_module_extables(unsigned long addr)
4272 {
4273 const struct exception_table_entry *e = NULL;
4274 struct module *mod;
4275
4276 preempt_disable();
4277 mod = __module_address(addr);
4278 if (!mod)
4279 goto out;
4280
4281 if (!mod->num_exentries)
4282 goto out;
4283
4284 e = search_extable(mod->extable,
4285 mod->num_exentries,
4286 addr);
4287 out:
4288 preempt_enable();
4289
4290 /*
4291 * Now, if we found one, we are running inside it now, hence
4292 * we cannot unload the module, hence no refcnt needed.
4293 */
4294 return e;
4295 }
4296
4297 /*
4298 * is_module_address - is this address inside a module?
4299 * @addr: the address to check.
4300 *
4301 * See is_module_text_address() if you simply want to see if the address
4302 * is code (not data).
4303 */
is_module_address(unsigned long addr)4304 bool is_module_address(unsigned long addr)
4305 {
4306 bool ret;
4307
4308 preempt_disable();
4309 ret = __module_address(addr) != NULL;
4310 preempt_enable();
4311
4312 return ret;
4313 }
4314
4315 /*
4316 * __module_address - get the module which contains an address.
4317 * @addr: the address.
4318 *
4319 * Must be called with preempt disabled or module mutex held so that
4320 * module doesn't get freed during this.
4321 */
__module_address(unsigned long addr)4322 struct module *__module_address(unsigned long addr)
4323 {
4324 struct module *mod;
4325
4326 if (addr < module_addr_min || addr > module_addr_max)
4327 return NULL;
4328
4329 module_assert_mutex_or_preempt();
4330
4331 mod = mod_find(addr);
4332 if (mod) {
4333 BUG_ON(!within_module(addr, mod));
4334 if (mod->state == MODULE_STATE_UNFORMED)
4335 mod = NULL;
4336 }
4337 return mod;
4338 }
4339 EXPORT_SYMBOL_GPL(__module_address);
4340
4341 /*
4342 * is_module_text_address - is this address inside module code?
4343 * @addr: the address to check.
4344 *
4345 * See is_module_address() if you simply want to see if the address is
4346 * anywhere in a module. See kernel_text_address() for testing if an
4347 * address corresponds to kernel or module code.
4348 */
is_module_text_address(unsigned long addr)4349 bool is_module_text_address(unsigned long addr)
4350 {
4351 bool ret;
4352
4353 preempt_disable();
4354 ret = __module_text_address(addr) != NULL;
4355 preempt_enable();
4356
4357 return ret;
4358 }
4359
4360 /*
4361 * __module_text_address - get the module whose code contains an address.
4362 * @addr: the address.
4363 *
4364 * Must be called with preempt disabled or module mutex held so that
4365 * module doesn't get freed during this.
4366 */
__module_text_address(unsigned long addr)4367 struct module *__module_text_address(unsigned long addr)
4368 {
4369 struct module *mod = __module_address(addr);
4370 if (mod) {
4371 /* Make sure it's within the text section. */
4372 if (!within(addr, mod->init_layout.base, mod->init_layout.text_size)
4373 && !within(addr, mod->core_layout.base, mod->core_layout.text_size))
4374 mod = NULL;
4375 }
4376 return mod;
4377 }
4378 EXPORT_SYMBOL_GPL(__module_text_address);
4379
4380 /* Don't grab lock, we're oopsing. */
print_modules(void)4381 void print_modules(void)
4382 {
4383 struct module *mod;
4384 char buf[MODULE_FLAGS_BUF_SIZE];
4385
4386 printk(KERN_DEFAULT "Modules linked in:");
4387 /* Most callers should already have preempt disabled, but make sure */
4388 preempt_disable();
4389 list_for_each_entry_rcu(mod, &modules, list) {
4390 if (mod->state == MODULE_STATE_UNFORMED)
4391 continue;
4392 pr_cont(" %s%s", mod->name, module_flags(mod, buf));
4393 }
4394 preempt_enable();
4395 if (last_unloaded_module[0])
4396 pr_cont(" [last unloaded: %s]", last_unloaded_module);
4397 pr_cont("\n");
4398 }
4399
4400 #ifdef CONFIG_MODVERSIONS
4401 /* Generate the signature for all relevant module structures here.
4402 * If these change, we don't want to try to parse the module. */
module_layout(struct module * mod,struct modversion_info * ver,struct kernel_param * kp,struct kernel_symbol * ks,struct tracepoint * const * tp)4403 void module_layout(struct module *mod,
4404 struct modversion_info *ver,
4405 struct kernel_param *kp,
4406 struct kernel_symbol *ks,
4407 struct tracepoint * const *tp)
4408 {
4409 }
4410 EXPORT_SYMBOL(module_layout);
4411 #endif
4412