1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h> /* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/page_counter.h>
58 #include <linux/memcontrol.h>
59 #include <linux/static_key.h>
60 #include <linux/sched.h>
61 #include <linux/wait.h>
62 #include <linux/cgroup-defs.h>
63
64 #include <linux/filter.h>
65 #include <linux/rculist_nulls.h>
66 #include <linux/poll.h>
67
68 #include <linux/atomic.h>
69 #include <linux/refcount.h>
70 #include <net/dst.h>
71 #include <net/checksum.h>
72 #include <net/tcp_states.h>
73 #include <linux/net_tstamp.h>
74 #include <net/smc.h>
75
76 /*
77 * This structure really needs to be cleaned up.
78 * Most of it is for TCP, and not used by any of
79 * the other protocols.
80 */
81
82 /* Define this to get the SOCK_DBG debugging facility. */
83 #define SOCK_DEBUGGING
84 #ifdef SOCK_DEBUGGING
85 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
86 printk(KERN_DEBUG msg); } while (0)
87 #else
88 /* Validate arguments and do nothing */
89 static inline __printf(2, 3)
SOCK_DEBUG(const struct sock * sk,const char * msg,...)90 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
91 {
92 }
93 #endif
94
95 /* This is the per-socket lock. The spinlock provides a synchronization
96 * between user contexts and software interrupt processing, whereas the
97 * mini-semaphore synchronizes multiple users amongst themselves.
98 */
99 typedef struct {
100 spinlock_t slock;
101 int owned;
102 wait_queue_head_t wq;
103 /*
104 * We express the mutex-alike socket_lock semantics
105 * to the lock validator by explicitly managing
106 * the slock as a lock variant (in addition to
107 * the slock itself):
108 */
109 #ifdef CONFIG_DEBUG_LOCK_ALLOC
110 struct lockdep_map dep_map;
111 #endif
112 } socket_lock_t;
113
114 struct sock;
115 struct proto;
116 struct net;
117
118 typedef __u32 __bitwise __portpair;
119 typedef __u64 __bitwise __addrpair;
120
121 /**
122 * struct sock_common - minimal network layer representation of sockets
123 * @skc_daddr: Foreign IPv4 addr
124 * @skc_rcv_saddr: Bound local IPv4 addr
125 * @skc_hash: hash value used with various protocol lookup tables
126 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
127 * @skc_dport: placeholder for inet_dport/tw_dport
128 * @skc_num: placeholder for inet_num/tw_num
129 * @skc_family: network address family
130 * @skc_state: Connection state
131 * @skc_reuse: %SO_REUSEADDR setting
132 * @skc_reuseport: %SO_REUSEPORT setting
133 * @skc_bound_dev_if: bound device index if != 0
134 * @skc_bind_node: bind hash linkage for various protocol lookup tables
135 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
136 * @skc_prot: protocol handlers inside a network family
137 * @skc_net: reference to the network namespace of this socket
138 * @skc_node: main hash linkage for various protocol lookup tables
139 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
140 * @skc_tx_queue_mapping: tx queue number for this connection
141 * @skc_flags: place holder for sk_flags
142 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
143 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
144 * @skc_incoming_cpu: record/match cpu processing incoming packets
145 * @skc_refcnt: reference count
146 *
147 * This is the minimal network layer representation of sockets, the header
148 * for struct sock and struct inet_timewait_sock.
149 */
150 struct sock_common {
151 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
152 * address on 64bit arches : cf INET_MATCH()
153 */
154 union {
155 __addrpair skc_addrpair;
156 struct {
157 __be32 skc_daddr;
158 __be32 skc_rcv_saddr;
159 };
160 };
161 union {
162 unsigned int skc_hash;
163 __u16 skc_u16hashes[2];
164 };
165 /* skc_dport && skc_num must be grouped as well */
166 union {
167 __portpair skc_portpair;
168 struct {
169 __be16 skc_dport;
170 __u16 skc_num;
171 };
172 };
173
174 unsigned short skc_family;
175 volatile unsigned char skc_state;
176 unsigned char skc_reuse:4;
177 unsigned char skc_reuseport:1;
178 unsigned char skc_ipv6only:1;
179 unsigned char skc_net_refcnt:1;
180 int skc_bound_dev_if;
181 union {
182 struct hlist_node skc_bind_node;
183 struct hlist_node skc_portaddr_node;
184 };
185 struct proto *skc_prot;
186 possible_net_t skc_net;
187
188 #if IS_ENABLED(CONFIG_IPV6)
189 struct in6_addr skc_v6_daddr;
190 struct in6_addr skc_v6_rcv_saddr;
191 #endif
192
193 atomic64_t skc_cookie;
194
195 /* following fields are padding to force
196 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
197 * assuming IPV6 is enabled. We use this padding differently
198 * for different kind of 'sockets'
199 */
200 union {
201 unsigned long skc_flags;
202 struct sock *skc_listener; /* request_sock */
203 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
204 };
205 /*
206 * fields between dontcopy_begin/dontcopy_end
207 * are not copied in sock_copy()
208 */
209 /* private: */
210 int skc_dontcopy_begin[0];
211 /* public: */
212 union {
213 struct hlist_node skc_node;
214 struct hlist_nulls_node skc_nulls_node;
215 };
216 int skc_tx_queue_mapping;
217 union {
218 int skc_incoming_cpu;
219 u32 skc_rcv_wnd;
220 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
221 };
222
223 refcount_t skc_refcnt;
224 /* private: */
225 int skc_dontcopy_end[0];
226 union {
227 u32 skc_rxhash;
228 u32 skc_window_clamp;
229 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
230 };
231 /* public: */
232 };
233
234 /**
235 * struct sock - network layer representation of sockets
236 * @__sk_common: shared layout with inet_timewait_sock
237 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
238 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
239 * @sk_lock: synchronizer
240 * @sk_kern_sock: True if sock is using kernel lock classes
241 * @sk_rcvbuf: size of receive buffer in bytes
242 * @sk_wq: sock wait queue and async head
243 * @sk_rx_dst: receive input route used by early demux
244 * @sk_dst_cache: destination cache
245 * @sk_dst_pending_confirm: need to confirm neighbour
246 * @sk_policy: flow policy
247 * @sk_receive_queue: incoming packets
248 * @sk_wmem_alloc: transmit queue bytes committed
249 * @sk_tsq_flags: TCP Small Queues flags
250 * @sk_write_queue: Packet sending queue
251 * @sk_omem_alloc: "o" is "option" or "other"
252 * @sk_wmem_queued: persistent queue size
253 * @sk_forward_alloc: space allocated forward
254 * @sk_napi_id: id of the last napi context to receive data for sk
255 * @sk_ll_usec: usecs to busypoll when there is no data
256 * @sk_allocation: allocation mode
257 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
258 * @sk_pacing_status: Pacing status (requested, handled by sch_fq)
259 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
260 * @sk_sndbuf: size of send buffer in bytes
261 * @__sk_flags_offset: empty field used to determine location of bitfield
262 * @sk_padding: unused element for alignment
263 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
264 * @sk_no_check_rx: allow zero checksum in RX packets
265 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
266 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
267 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
268 * @sk_gso_max_size: Maximum GSO segment size to build
269 * @sk_gso_max_segs: Maximum number of GSO segments
270 * @sk_lingertime: %SO_LINGER l_linger setting
271 * @sk_backlog: always used with the per-socket spinlock held
272 * @sk_callback_lock: used with the callbacks in the end of this struct
273 * @sk_error_queue: rarely used
274 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
275 * IPV6_ADDRFORM for instance)
276 * @sk_err: last error
277 * @sk_err_soft: errors that don't cause failure but are the cause of a
278 * persistent failure not just 'timed out'
279 * @sk_drops: raw/udp drops counter
280 * @sk_ack_backlog: current listen backlog
281 * @sk_max_ack_backlog: listen backlog set in listen()
282 * @sk_uid: user id of owner
283 * @sk_priority: %SO_PRIORITY setting
284 * @sk_type: socket type (%SOCK_STREAM, etc)
285 * @sk_protocol: which protocol this socket belongs in this network family
286 * @sk_peer_pid: &struct pid for this socket's peer
287 * @sk_peer_cred: %SO_PEERCRED setting
288 * @sk_rcvlowat: %SO_RCVLOWAT setting
289 * @sk_rcvtimeo: %SO_RCVTIMEO setting
290 * @sk_sndtimeo: %SO_SNDTIMEO setting
291 * @sk_txhash: computed flow hash for use on transmit
292 * @sk_filter: socket filtering instructions
293 * @sk_timer: sock cleanup timer
294 * @sk_stamp: time stamp of last packet received
295 * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
296 * @sk_tsflags: SO_TIMESTAMPING socket options
297 * @sk_tskey: counter to disambiguate concurrent tstamp requests
298 * @sk_zckey: counter to order MSG_ZEROCOPY notifications
299 * @sk_socket: Identd and reporting IO signals
300 * @sk_user_data: RPC layer private data
301 * @sk_frag: cached page frag
302 * @sk_peek_off: current peek_offset value
303 * @sk_send_head: front of stuff to transmit
304 * @sk_security: used by security modules
305 * @sk_mark: generic packet mark
306 * @sk_cgrp_data: cgroup data for this cgroup
307 * @sk_memcg: this socket's memory cgroup association
308 * @sk_write_pending: a write to stream socket waits to start
309 * @sk_state_change: callback to indicate change in the state of the sock
310 * @sk_data_ready: callback to indicate there is data to be processed
311 * @sk_write_space: callback to indicate there is bf sending space available
312 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
313 * @sk_backlog_rcv: callback to process the backlog
314 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
315 * @sk_reuseport_cb: reuseport group container
316 * @sk_rcu: used during RCU grace period
317 */
318 struct sock {
319 /*
320 * Now struct inet_timewait_sock also uses sock_common, so please just
321 * don't add nothing before this first member (__sk_common) --acme
322 */
323 struct sock_common __sk_common;
324 #define sk_node __sk_common.skc_node
325 #define sk_nulls_node __sk_common.skc_nulls_node
326 #define sk_refcnt __sk_common.skc_refcnt
327 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
328
329 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
330 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
331 #define sk_hash __sk_common.skc_hash
332 #define sk_portpair __sk_common.skc_portpair
333 #define sk_num __sk_common.skc_num
334 #define sk_dport __sk_common.skc_dport
335 #define sk_addrpair __sk_common.skc_addrpair
336 #define sk_daddr __sk_common.skc_daddr
337 #define sk_rcv_saddr __sk_common.skc_rcv_saddr
338 #define sk_family __sk_common.skc_family
339 #define sk_state __sk_common.skc_state
340 #define sk_reuse __sk_common.skc_reuse
341 #define sk_reuseport __sk_common.skc_reuseport
342 #define sk_ipv6only __sk_common.skc_ipv6only
343 #define sk_net_refcnt __sk_common.skc_net_refcnt
344 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
345 #define sk_bind_node __sk_common.skc_bind_node
346 #define sk_prot __sk_common.skc_prot
347 #define sk_net __sk_common.skc_net
348 #define sk_v6_daddr __sk_common.skc_v6_daddr
349 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
350 #define sk_cookie __sk_common.skc_cookie
351 #define sk_incoming_cpu __sk_common.skc_incoming_cpu
352 #define sk_flags __sk_common.skc_flags
353 #define sk_rxhash __sk_common.skc_rxhash
354
355 socket_lock_t sk_lock;
356 atomic_t sk_drops;
357 int sk_rcvlowat;
358 struct sk_buff_head sk_error_queue;
359 struct sk_buff_head sk_receive_queue;
360 /*
361 * The backlog queue is special, it is always used with
362 * the per-socket spinlock held and requires low latency
363 * access. Therefore we special case it's implementation.
364 * Note : rmem_alloc is in this structure to fill a hole
365 * on 64bit arches, not because its logically part of
366 * backlog.
367 */
368 struct {
369 atomic_t rmem_alloc;
370 int len;
371 struct sk_buff *head;
372 struct sk_buff *tail;
373 } sk_backlog;
374 #define sk_rmem_alloc sk_backlog.rmem_alloc
375
376 int sk_forward_alloc;
377 #ifdef CONFIG_NET_RX_BUSY_POLL
378 unsigned int sk_ll_usec;
379 /* ===== mostly read cache line ===== */
380 unsigned int sk_napi_id;
381 #endif
382 int sk_rcvbuf;
383
384 struct sk_filter __rcu *sk_filter;
385 union {
386 struct socket_wq __rcu *sk_wq;
387 struct socket_wq *sk_wq_raw;
388 };
389 #ifdef CONFIG_XFRM
390 struct xfrm_policy __rcu *sk_policy[2];
391 #endif
392 struct dst_entry *sk_rx_dst;
393 struct dst_entry __rcu *sk_dst_cache;
394 atomic_t sk_omem_alloc;
395 int sk_sndbuf;
396
397 /* ===== cache line for TX ===== */
398 int sk_wmem_queued;
399 refcount_t sk_wmem_alloc;
400 unsigned long sk_tsq_flags;
401 struct sk_buff *sk_send_head;
402 struct sk_buff_head sk_write_queue;
403 __s32 sk_peek_off;
404 int sk_write_pending;
405 __u32 sk_dst_pending_confirm;
406 u32 sk_pacing_status; /* see enum sk_pacing */
407 long sk_sndtimeo;
408 struct timer_list sk_timer;
409 __u32 sk_priority;
410 __u32 sk_mark;
411 u32 sk_pacing_rate; /* bytes per second */
412 u32 sk_max_pacing_rate;
413 struct page_frag sk_frag;
414 netdev_features_t sk_route_caps;
415 netdev_features_t sk_route_nocaps;
416 int sk_gso_type;
417 unsigned int sk_gso_max_size;
418 gfp_t sk_allocation;
419 __u32 sk_txhash;
420
421 /*
422 * Because of non atomicity rules, all
423 * changes are protected by socket lock.
424 */
425 unsigned int __sk_flags_offset[0];
426 #ifdef __BIG_ENDIAN_BITFIELD
427 #define SK_FL_PROTO_SHIFT 16
428 #define SK_FL_PROTO_MASK 0x00ff0000
429
430 #define SK_FL_TYPE_SHIFT 0
431 #define SK_FL_TYPE_MASK 0x0000ffff
432 #else
433 #define SK_FL_PROTO_SHIFT 8
434 #define SK_FL_PROTO_MASK 0x0000ff00
435
436 #define SK_FL_TYPE_SHIFT 16
437 #define SK_FL_TYPE_MASK 0xffff0000
438 #endif
439
440 unsigned int sk_padding : 1,
441 sk_kern_sock : 1,
442 sk_no_check_tx : 1,
443 sk_no_check_rx : 1,
444 sk_userlocks : 4,
445 sk_protocol : 8,
446 sk_type : 16;
447 #define SK_PROTOCOL_MAX U8_MAX
448 u16 sk_gso_max_segs;
449 unsigned long sk_lingertime;
450 struct proto *sk_prot_creator;
451 rwlock_t sk_callback_lock;
452 int sk_err,
453 sk_err_soft;
454 u32 sk_ack_backlog;
455 u32 sk_max_ack_backlog;
456 kuid_t sk_uid;
457 struct pid *sk_peer_pid;
458 const struct cred *sk_peer_cred;
459 long sk_rcvtimeo;
460 ktime_t sk_stamp;
461 #if BITS_PER_LONG==32
462 seqlock_t sk_stamp_seq;
463 #endif
464 u16 sk_tsflags;
465 u8 sk_shutdown;
466 u32 sk_tskey;
467 atomic_t sk_zckey;
468 struct socket *sk_socket;
469 void *sk_user_data;
470 #ifdef CONFIG_SECURITY
471 void *sk_security;
472 #endif
473 struct sock_cgroup_data sk_cgrp_data;
474 struct mem_cgroup *sk_memcg;
475 void (*sk_state_change)(struct sock *sk);
476 void (*sk_data_ready)(struct sock *sk);
477 void (*sk_write_space)(struct sock *sk);
478 void (*sk_error_report)(struct sock *sk);
479 int (*sk_backlog_rcv)(struct sock *sk,
480 struct sk_buff *skb);
481 void (*sk_destruct)(struct sock *sk);
482 struct sock_reuseport __rcu *sk_reuseport_cb;
483 struct rcu_head sk_rcu;
484 };
485
486 enum sk_pacing {
487 SK_PACING_NONE = 0,
488 SK_PACING_NEEDED = 1,
489 SK_PACING_FQ = 2,
490 };
491
492 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
493
494 #define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk)))
495 #define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr)
496
497 /*
498 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
499 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
500 * on a socket means that the socket will reuse everybody else's port
501 * without looking at the other's sk_reuse value.
502 */
503
504 #define SK_NO_REUSE 0
505 #define SK_CAN_REUSE 1
506 #define SK_FORCE_REUSE 2
507
508 int sk_set_peek_off(struct sock *sk, int val);
509
sk_peek_offset(struct sock * sk,int flags)510 static inline int sk_peek_offset(struct sock *sk, int flags)
511 {
512 if (unlikely(flags & MSG_PEEK)) {
513 return READ_ONCE(sk->sk_peek_off);
514 }
515
516 return 0;
517 }
518
sk_peek_offset_bwd(struct sock * sk,int val)519 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
520 {
521 s32 off = READ_ONCE(sk->sk_peek_off);
522
523 if (unlikely(off >= 0)) {
524 off = max_t(s32, off - val, 0);
525 WRITE_ONCE(sk->sk_peek_off, off);
526 }
527 }
528
sk_peek_offset_fwd(struct sock * sk,int val)529 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
530 {
531 sk_peek_offset_bwd(sk, -val);
532 }
533
534 /*
535 * Hashed lists helper routines
536 */
sk_entry(const struct hlist_node * node)537 static inline struct sock *sk_entry(const struct hlist_node *node)
538 {
539 return hlist_entry(node, struct sock, sk_node);
540 }
541
__sk_head(const struct hlist_head * head)542 static inline struct sock *__sk_head(const struct hlist_head *head)
543 {
544 return hlist_entry(head->first, struct sock, sk_node);
545 }
546
sk_head(const struct hlist_head * head)547 static inline struct sock *sk_head(const struct hlist_head *head)
548 {
549 return hlist_empty(head) ? NULL : __sk_head(head);
550 }
551
__sk_nulls_head(const struct hlist_nulls_head * head)552 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
553 {
554 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
555 }
556
sk_nulls_head(const struct hlist_nulls_head * head)557 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
558 {
559 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
560 }
561
sk_next(const struct sock * sk)562 static inline struct sock *sk_next(const struct sock *sk)
563 {
564 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
565 }
566
sk_nulls_next(const struct sock * sk)567 static inline struct sock *sk_nulls_next(const struct sock *sk)
568 {
569 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
570 hlist_nulls_entry(sk->sk_nulls_node.next,
571 struct sock, sk_nulls_node) :
572 NULL;
573 }
574
sk_unhashed(const struct sock * sk)575 static inline bool sk_unhashed(const struct sock *sk)
576 {
577 return hlist_unhashed(&sk->sk_node);
578 }
579
sk_hashed(const struct sock * sk)580 static inline bool sk_hashed(const struct sock *sk)
581 {
582 return !sk_unhashed(sk);
583 }
584
sk_node_init(struct hlist_node * node)585 static inline void sk_node_init(struct hlist_node *node)
586 {
587 node->pprev = NULL;
588 }
589
sk_nulls_node_init(struct hlist_nulls_node * node)590 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
591 {
592 node->pprev = NULL;
593 }
594
__sk_del_node(struct sock * sk)595 static inline void __sk_del_node(struct sock *sk)
596 {
597 __hlist_del(&sk->sk_node);
598 }
599
600 /* NB: equivalent to hlist_del_init_rcu */
__sk_del_node_init(struct sock * sk)601 static inline bool __sk_del_node_init(struct sock *sk)
602 {
603 if (sk_hashed(sk)) {
604 __sk_del_node(sk);
605 sk_node_init(&sk->sk_node);
606 return true;
607 }
608 return false;
609 }
610
611 /* Grab socket reference count. This operation is valid only
612 when sk is ALREADY grabbed f.e. it is found in hash table
613 or a list and the lookup is made under lock preventing hash table
614 modifications.
615 */
616
sock_hold(struct sock * sk)617 static __always_inline void sock_hold(struct sock *sk)
618 {
619 refcount_inc(&sk->sk_refcnt);
620 }
621
622 /* Ungrab socket in the context, which assumes that socket refcnt
623 cannot hit zero, f.e. it is true in context of any socketcall.
624 */
__sock_put(struct sock * sk)625 static __always_inline void __sock_put(struct sock *sk)
626 {
627 refcount_dec(&sk->sk_refcnt);
628 }
629
sk_del_node_init(struct sock * sk)630 static inline bool sk_del_node_init(struct sock *sk)
631 {
632 bool rc = __sk_del_node_init(sk);
633
634 if (rc) {
635 /* paranoid for a while -acme */
636 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
637 __sock_put(sk);
638 }
639 return rc;
640 }
641 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
642
__sk_nulls_del_node_init_rcu(struct sock * sk)643 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
644 {
645 if (sk_hashed(sk)) {
646 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
647 return true;
648 }
649 return false;
650 }
651
sk_nulls_del_node_init_rcu(struct sock * sk)652 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
653 {
654 bool rc = __sk_nulls_del_node_init_rcu(sk);
655
656 if (rc) {
657 /* paranoid for a while -acme */
658 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
659 __sock_put(sk);
660 }
661 return rc;
662 }
663
__sk_add_node(struct sock * sk,struct hlist_head * list)664 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
665 {
666 hlist_add_head(&sk->sk_node, list);
667 }
668
sk_add_node(struct sock * sk,struct hlist_head * list)669 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
670 {
671 sock_hold(sk);
672 __sk_add_node(sk, list);
673 }
674
sk_add_node_rcu(struct sock * sk,struct hlist_head * list)675 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
676 {
677 sock_hold(sk);
678 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
679 sk->sk_family == AF_INET6)
680 hlist_add_tail_rcu(&sk->sk_node, list);
681 else
682 hlist_add_head_rcu(&sk->sk_node, list);
683 }
684
sk_add_node_tail_rcu(struct sock * sk,struct hlist_head * list)685 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
686 {
687 sock_hold(sk);
688 hlist_add_tail_rcu(&sk->sk_node, list);
689 }
690
__sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)691 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
692 {
693 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
694 }
695
__sk_nulls_add_node_tail_rcu(struct sock * sk,struct hlist_nulls_head * list)696 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
697 {
698 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
699 }
700
sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)701 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
702 {
703 sock_hold(sk);
704 __sk_nulls_add_node_rcu(sk, list);
705 }
706
__sk_del_bind_node(struct sock * sk)707 static inline void __sk_del_bind_node(struct sock *sk)
708 {
709 __hlist_del(&sk->sk_bind_node);
710 }
711
sk_add_bind_node(struct sock * sk,struct hlist_head * list)712 static inline void sk_add_bind_node(struct sock *sk,
713 struct hlist_head *list)
714 {
715 hlist_add_head(&sk->sk_bind_node, list);
716 }
717
718 #define sk_for_each(__sk, list) \
719 hlist_for_each_entry(__sk, list, sk_node)
720 #define sk_for_each_rcu(__sk, list) \
721 hlist_for_each_entry_rcu(__sk, list, sk_node)
722 #define sk_nulls_for_each(__sk, node, list) \
723 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
724 #define sk_nulls_for_each_rcu(__sk, node, list) \
725 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
726 #define sk_for_each_from(__sk) \
727 hlist_for_each_entry_from(__sk, sk_node)
728 #define sk_nulls_for_each_from(__sk, node) \
729 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
730 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
731 #define sk_for_each_safe(__sk, tmp, list) \
732 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
733 #define sk_for_each_bound(__sk, list) \
734 hlist_for_each_entry(__sk, list, sk_bind_node)
735
736 /**
737 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
738 * @tpos: the type * to use as a loop cursor.
739 * @pos: the &struct hlist_node to use as a loop cursor.
740 * @head: the head for your list.
741 * @offset: offset of hlist_node within the struct.
742 *
743 */
744 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \
745 for (pos = rcu_dereference((head)->first); \
746 pos != NULL && \
747 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
748 pos = rcu_dereference(pos->next))
749
sk_user_ns(struct sock * sk)750 static inline struct user_namespace *sk_user_ns(struct sock *sk)
751 {
752 /* Careful only use this in a context where these parameters
753 * can not change and must all be valid, such as recvmsg from
754 * userspace.
755 */
756 return sk->sk_socket->file->f_cred->user_ns;
757 }
758
759 /* Sock flags */
760 enum sock_flags {
761 SOCK_DEAD,
762 SOCK_DONE,
763 SOCK_URGINLINE,
764 SOCK_KEEPOPEN,
765 SOCK_LINGER,
766 SOCK_DESTROY,
767 SOCK_BROADCAST,
768 SOCK_TIMESTAMP,
769 SOCK_ZAPPED,
770 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
771 SOCK_DBG, /* %SO_DEBUG setting */
772 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
773 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
774 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
775 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
776 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
777 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
778 SOCK_FASYNC, /* fasync() active */
779 SOCK_RXQ_OVFL,
780 SOCK_ZEROCOPY, /* buffers from userspace */
781 SOCK_WIFI_STATUS, /* push wifi status to userspace */
782 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
783 * Will use last 4 bytes of packet sent from
784 * user-space instead.
785 */
786 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
787 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
788 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
789 };
790
791 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
792
sock_copy_flags(struct sock * nsk,struct sock * osk)793 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
794 {
795 nsk->sk_flags = osk->sk_flags;
796 }
797
sock_set_flag(struct sock * sk,enum sock_flags flag)798 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
799 {
800 __set_bit(flag, &sk->sk_flags);
801 }
802
sock_reset_flag(struct sock * sk,enum sock_flags flag)803 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
804 {
805 __clear_bit(flag, &sk->sk_flags);
806 }
807
sock_flag(const struct sock * sk,enum sock_flags flag)808 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
809 {
810 return test_bit(flag, &sk->sk_flags);
811 }
812
813 #ifdef CONFIG_NET
814 extern struct static_key memalloc_socks;
sk_memalloc_socks(void)815 static inline int sk_memalloc_socks(void)
816 {
817 return static_key_false(&memalloc_socks);
818 }
819 #else
820
sk_memalloc_socks(void)821 static inline int sk_memalloc_socks(void)
822 {
823 return 0;
824 }
825
826 #endif
827
sk_gfp_mask(const struct sock * sk,gfp_t gfp_mask)828 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
829 {
830 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
831 }
832
sk_acceptq_removed(struct sock * sk)833 static inline void sk_acceptq_removed(struct sock *sk)
834 {
835 sk->sk_ack_backlog--;
836 }
837
sk_acceptq_added(struct sock * sk)838 static inline void sk_acceptq_added(struct sock *sk)
839 {
840 sk->sk_ack_backlog++;
841 }
842
sk_acceptq_is_full(const struct sock * sk)843 static inline bool sk_acceptq_is_full(const struct sock *sk)
844 {
845 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
846 }
847
848 /*
849 * Compute minimal free write space needed to queue new packets.
850 */
sk_stream_min_wspace(const struct sock * sk)851 static inline int sk_stream_min_wspace(const struct sock *sk)
852 {
853 return sk->sk_wmem_queued >> 1;
854 }
855
sk_stream_wspace(const struct sock * sk)856 static inline int sk_stream_wspace(const struct sock *sk)
857 {
858 return sk->sk_sndbuf - sk->sk_wmem_queued;
859 }
860
861 void sk_stream_write_space(struct sock *sk);
862
863 /* OOB backlog add */
__sk_add_backlog(struct sock * sk,struct sk_buff * skb)864 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
865 {
866 /* dont let skb dst not refcounted, we are going to leave rcu lock */
867 skb_dst_force(skb);
868
869 if (!sk->sk_backlog.tail)
870 sk->sk_backlog.head = skb;
871 else
872 sk->sk_backlog.tail->next = skb;
873
874 sk->sk_backlog.tail = skb;
875 skb->next = NULL;
876 }
877
878 /*
879 * Take into account size of receive queue and backlog queue
880 * Do not take into account this skb truesize,
881 * to allow even a single big packet to come.
882 */
sk_rcvqueues_full(const struct sock * sk,unsigned int limit)883 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
884 {
885 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
886
887 return qsize > limit;
888 }
889
890 /* The per-socket spinlock must be held here. */
sk_add_backlog(struct sock * sk,struct sk_buff * skb,unsigned int limit)891 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
892 unsigned int limit)
893 {
894 if (sk_rcvqueues_full(sk, limit))
895 return -ENOBUFS;
896
897 /*
898 * If the skb was allocated from pfmemalloc reserves, only
899 * allow SOCK_MEMALLOC sockets to use it as this socket is
900 * helping free memory
901 */
902 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
903 return -ENOMEM;
904
905 __sk_add_backlog(sk, skb);
906 sk->sk_backlog.len += skb->truesize;
907 return 0;
908 }
909
910 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
911
sk_backlog_rcv(struct sock * sk,struct sk_buff * skb)912 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
913 {
914 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
915 return __sk_backlog_rcv(sk, skb);
916
917 return sk->sk_backlog_rcv(sk, skb);
918 }
919
sk_incoming_cpu_update(struct sock * sk)920 static inline void sk_incoming_cpu_update(struct sock *sk)
921 {
922 int cpu = raw_smp_processor_id();
923
924 if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
925 WRITE_ONCE(sk->sk_incoming_cpu, cpu);
926 }
927
sock_rps_record_flow_hash(__u32 hash)928 static inline void sock_rps_record_flow_hash(__u32 hash)
929 {
930 #ifdef CONFIG_RPS
931 struct rps_sock_flow_table *sock_flow_table;
932
933 rcu_read_lock();
934 sock_flow_table = rcu_dereference(rps_sock_flow_table);
935 rps_record_sock_flow(sock_flow_table, hash);
936 rcu_read_unlock();
937 #endif
938 }
939
sock_rps_record_flow(const struct sock * sk)940 static inline void sock_rps_record_flow(const struct sock *sk)
941 {
942 #ifdef CONFIG_RPS
943 if (static_key_false(&rfs_needed)) {
944 /* Reading sk->sk_rxhash might incur an expensive cache line
945 * miss.
946 *
947 * TCP_ESTABLISHED does cover almost all states where RFS
948 * might be useful, and is cheaper [1] than testing :
949 * IPv4: inet_sk(sk)->inet_daddr
950 * IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
951 * OR an additional socket flag
952 * [1] : sk_state and sk_prot are in the same cache line.
953 */
954 if (sk->sk_state == TCP_ESTABLISHED)
955 sock_rps_record_flow_hash(sk->sk_rxhash);
956 }
957 #endif
958 }
959
sock_rps_save_rxhash(struct sock * sk,const struct sk_buff * skb)960 static inline void sock_rps_save_rxhash(struct sock *sk,
961 const struct sk_buff *skb)
962 {
963 #ifdef CONFIG_RPS
964 if (unlikely(sk->sk_rxhash != skb->hash))
965 sk->sk_rxhash = skb->hash;
966 #endif
967 }
968
sock_rps_reset_rxhash(struct sock * sk)969 static inline void sock_rps_reset_rxhash(struct sock *sk)
970 {
971 #ifdef CONFIG_RPS
972 sk->sk_rxhash = 0;
973 #endif
974 }
975
976 #define sk_wait_event(__sk, __timeo, __condition, __wait) \
977 ({ int __rc; \
978 release_sock(__sk); \
979 __rc = __condition; \
980 if (!__rc) { \
981 *(__timeo) = wait_woken(__wait, \
982 TASK_INTERRUPTIBLE, \
983 *(__timeo)); \
984 } \
985 sched_annotate_sleep(); \
986 lock_sock(__sk); \
987 __rc = __condition; \
988 __rc; \
989 })
990
991 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
992 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
993 void sk_stream_wait_close(struct sock *sk, long timeo_p);
994 int sk_stream_error(struct sock *sk, int flags, int err);
995 void sk_stream_kill_queues(struct sock *sk);
996 void sk_set_memalloc(struct sock *sk);
997 void sk_clear_memalloc(struct sock *sk);
998
999 void __sk_flush_backlog(struct sock *sk);
1000
sk_flush_backlog(struct sock * sk)1001 static inline bool sk_flush_backlog(struct sock *sk)
1002 {
1003 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1004 __sk_flush_backlog(sk);
1005 return true;
1006 }
1007 return false;
1008 }
1009
1010 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1011
1012 struct request_sock_ops;
1013 struct timewait_sock_ops;
1014 struct inet_hashinfo;
1015 struct raw_hashinfo;
1016 struct smc_hashinfo;
1017 struct module;
1018
1019 /*
1020 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1021 * un-modified. Special care is taken when initializing object to zero.
1022 */
sk_prot_clear_nulls(struct sock * sk,int size)1023 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1024 {
1025 if (offsetof(struct sock, sk_node.next) != 0)
1026 memset(sk, 0, offsetof(struct sock, sk_node.next));
1027 memset(&sk->sk_node.pprev, 0,
1028 size - offsetof(struct sock, sk_node.pprev));
1029 }
1030
1031 /* Networking protocol blocks we attach to sockets.
1032 * socket layer -> transport layer interface
1033 */
1034 struct proto {
1035 void (*close)(struct sock *sk,
1036 long timeout);
1037 int (*connect)(struct sock *sk,
1038 struct sockaddr *uaddr,
1039 int addr_len);
1040 int (*disconnect)(struct sock *sk, int flags);
1041
1042 struct sock * (*accept)(struct sock *sk, int flags, int *err,
1043 bool kern);
1044
1045 int (*ioctl)(struct sock *sk, int cmd,
1046 unsigned long arg);
1047 int (*init)(struct sock *sk);
1048 void (*destroy)(struct sock *sk);
1049 void (*shutdown)(struct sock *sk, int how);
1050 int (*setsockopt)(struct sock *sk, int level,
1051 int optname, char __user *optval,
1052 unsigned int optlen);
1053 int (*getsockopt)(struct sock *sk, int level,
1054 int optname, char __user *optval,
1055 int __user *option);
1056 void (*keepalive)(struct sock *sk, int valbool);
1057 #ifdef CONFIG_COMPAT
1058 int (*compat_setsockopt)(struct sock *sk,
1059 int level,
1060 int optname, char __user *optval,
1061 unsigned int optlen);
1062 int (*compat_getsockopt)(struct sock *sk,
1063 int level,
1064 int optname, char __user *optval,
1065 int __user *option);
1066 int (*compat_ioctl)(struct sock *sk,
1067 unsigned int cmd, unsigned long arg);
1068 #endif
1069 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
1070 size_t len);
1071 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
1072 size_t len, int noblock, int flags,
1073 int *addr_len);
1074 int (*sendpage)(struct sock *sk, struct page *page,
1075 int offset, size_t size, int flags);
1076 int (*bind)(struct sock *sk,
1077 struct sockaddr *uaddr, int addr_len);
1078
1079 int (*backlog_rcv) (struct sock *sk,
1080 struct sk_buff *skb);
1081
1082 void (*release_cb)(struct sock *sk);
1083
1084 /* Keeping track of sk's, looking them up, and port selection methods. */
1085 int (*hash)(struct sock *sk);
1086 void (*unhash)(struct sock *sk);
1087 void (*rehash)(struct sock *sk);
1088 int (*get_port)(struct sock *sk, unsigned short snum);
1089
1090 /* Keeping track of sockets in use */
1091 #ifdef CONFIG_PROC_FS
1092 unsigned int inuse_idx;
1093 #endif
1094
1095 bool (*stream_memory_free)(const struct sock *sk);
1096 /* Memory pressure */
1097 void (*enter_memory_pressure)(struct sock *sk);
1098 void (*leave_memory_pressure)(struct sock *sk);
1099 atomic_long_t *memory_allocated; /* Current allocated memory. */
1100 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1101 /*
1102 * Pressure flag: try to collapse.
1103 * Technical note: it is used by multiple contexts non atomically.
1104 * All the __sk_mem_schedule() is of this nature: accounting
1105 * is strict, actions are advisory and have some latency.
1106 */
1107 unsigned long *memory_pressure;
1108 long *sysctl_mem;
1109 int *sysctl_wmem;
1110 int *sysctl_rmem;
1111 int max_header;
1112 bool no_autobind;
1113
1114 struct kmem_cache *slab;
1115 unsigned int obj_size;
1116 int slab_flags;
1117
1118 struct percpu_counter *orphan_count;
1119
1120 struct request_sock_ops *rsk_prot;
1121 struct timewait_sock_ops *twsk_prot;
1122
1123 union {
1124 struct inet_hashinfo *hashinfo;
1125 struct udp_table *udp_table;
1126 struct raw_hashinfo *raw_hash;
1127 struct smc_hashinfo *smc_hash;
1128 } h;
1129
1130 struct module *owner;
1131
1132 char name[32];
1133
1134 struct list_head node;
1135 #ifdef SOCK_REFCNT_DEBUG
1136 atomic_t socks;
1137 #endif
1138 int (*diag_destroy)(struct sock *sk, int err);
1139 } __randomize_layout;
1140
1141 int proto_register(struct proto *prot, int alloc_slab);
1142 void proto_unregister(struct proto *prot);
1143
1144 #ifdef SOCK_REFCNT_DEBUG
sk_refcnt_debug_inc(struct sock * sk)1145 static inline void sk_refcnt_debug_inc(struct sock *sk)
1146 {
1147 atomic_inc(&sk->sk_prot->socks);
1148 }
1149
sk_refcnt_debug_dec(struct sock * sk)1150 static inline void sk_refcnt_debug_dec(struct sock *sk)
1151 {
1152 atomic_dec(&sk->sk_prot->socks);
1153 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1154 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1155 }
1156
sk_refcnt_debug_release(const struct sock * sk)1157 static inline void sk_refcnt_debug_release(const struct sock *sk)
1158 {
1159 if (refcount_read(&sk->sk_refcnt) != 1)
1160 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1161 sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1162 }
1163 #else /* SOCK_REFCNT_DEBUG */
1164 #define sk_refcnt_debug_inc(sk) do { } while (0)
1165 #define sk_refcnt_debug_dec(sk) do { } while (0)
1166 #define sk_refcnt_debug_release(sk) do { } while (0)
1167 #endif /* SOCK_REFCNT_DEBUG */
1168
sk_stream_memory_free(const struct sock * sk)1169 static inline bool sk_stream_memory_free(const struct sock *sk)
1170 {
1171 if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1172 return false;
1173
1174 return sk->sk_prot->stream_memory_free ?
1175 sk->sk_prot->stream_memory_free(sk) : true;
1176 }
1177
sk_stream_is_writeable(const struct sock * sk)1178 static inline bool sk_stream_is_writeable(const struct sock *sk)
1179 {
1180 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1181 sk_stream_memory_free(sk);
1182 }
1183
sk_under_cgroup_hierarchy(struct sock * sk,struct cgroup * ancestor)1184 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1185 struct cgroup *ancestor)
1186 {
1187 #ifdef CONFIG_SOCK_CGROUP_DATA
1188 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1189 ancestor);
1190 #else
1191 return -ENOTSUPP;
1192 #endif
1193 }
1194
sk_has_memory_pressure(const struct sock * sk)1195 static inline bool sk_has_memory_pressure(const struct sock *sk)
1196 {
1197 return sk->sk_prot->memory_pressure != NULL;
1198 }
1199
sk_under_memory_pressure(const struct sock * sk)1200 static inline bool sk_under_memory_pressure(const struct sock *sk)
1201 {
1202 if (!sk->sk_prot->memory_pressure)
1203 return false;
1204
1205 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1206 mem_cgroup_under_socket_pressure(sk->sk_memcg))
1207 return true;
1208
1209 return !!*sk->sk_prot->memory_pressure;
1210 }
1211
1212 static inline long
sk_memory_allocated(const struct sock * sk)1213 sk_memory_allocated(const struct sock *sk)
1214 {
1215 return atomic_long_read(sk->sk_prot->memory_allocated);
1216 }
1217
1218 static inline long
sk_memory_allocated_add(struct sock * sk,int amt)1219 sk_memory_allocated_add(struct sock *sk, int amt)
1220 {
1221 return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1222 }
1223
1224 static inline void
sk_memory_allocated_sub(struct sock * sk,int amt)1225 sk_memory_allocated_sub(struct sock *sk, int amt)
1226 {
1227 atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1228 }
1229
sk_sockets_allocated_dec(struct sock * sk)1230 static inline void sk_sockets_allocated_dec(struct sock *sk)
1231 {
1232 percpu_counter_dec(sk->sk_prot->sockets_allocated);
1233 }
1234
sk_sockets_allocated_inc(struct sock * sk)1235 static inline void sk_sockets_allocated_inc(struct sock *sk)
1236 {
1237 percpu_counter_inc(sk->sk_prot->sockets_allocated);
1238 }
1239
1240 static inline u64
sk_sockets_allocated_read_positive(struct sock * sk)1241 sk_sockets_allocated_read_positive(struct sock *sk)
1242 {
1243 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1244 }
1245
1246 static inline int
proto_sockets_allocated_sum_positive(struct proto * prot)1247 proto_sockets_allocated_sum_positive(struct proto *prot)
1248 {
1249 return percpu_counter_sum_positive(prot->sockets_allocated);
1250 }
1251
1252 static inline long
proto_memory_allocated(struct proto * prot)1253 proto_memory_allocated(struct proto *prot)
1254 {
1255 return atomic_long_read(prot->memory_allocated);
1256 }
1257
1258 static inline bool
proto_memory_pressure(struct proto * prot)1259 proto_memory_pressure(struct proto *prot)
1260 {
1261 if (!prot->memory_pressure)
1262 return false;
1263 return !!*prot->memory_pressure;
1264 }
1265
1266
1267 #ifdef CONFIG_PROC_FS
1268 /* Called with local bh disabled */
1269 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1270 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1271 #else
sock_prot_inuse_add(struct net * net,struct proto * prot,int inc)1272 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1273 int inc)
1274 {
1275 }
1276 #endif
1277
1278
1279 /* With per-bucket locks this operation is not-atomic, so that
1280 * this version is not worse.
1281 */
__sk_prot_rehash(struct sock * sk)1282 static inline int __sk_prot_rehash(struct sock *sk)
1283 {
1284 sk->sk_prot->unhash(sk);
1285 return sk->sk_prot->hash(sk);
1286 }
1287
1288 /* About 10 seconds */
1289 #define SOCK_DESTROY_TIME (10*HZ)
1290
1291 /* Sockets 0-1023 can't be bound to unless you are superuser */
1292 #define PROT_SOCK 1024
1293
1294 #define SHUTDOWN_MASK 3
1295 #define RCV_SHUTDOWN 1
1296 #define SEND_SHUTDOWN 2
1297
1298 #define SOCK_SNDBUF_LOCK 1
1299 #define SOCK_RCVBUF_LOCK 2
1300 #define SOCK_BINDADDR_LOCK 4
1301 #define SOCK_BINDPORT_LOCK 8
1302
1303 struct socket_alloc {
1304 struct socket socket;
1305 struct inode vfs_inode;
1306 };
1307
SOCKET_I(struct inode * inode)1308 static inline struct socket *SOCKET_I(struct inode *inode)
1309 {
1310 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1311 }
1312
SOCK_INODE(struct socket * socket)1313 static inline struct inode *SOCK_INODE(struct socket *socket)
1314 {
1315 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1316 }
1317
1318 /*
1319 * Functions for memory accounting
1320 */
1321 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1322 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1323 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1324 void __sk_mem_reclaim(struct sock *sk, int amount);
1325
1326 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1327 * do not necessarily have 16x time more memory than 4KB ones.
1328 */
1329 #define SK_MEM_QUANTUM 4096
1330 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1331 #define SK_MEM_SEND 0
1332 #define SK_MEM_RECV 1
1333
1334 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
sk_prot_mem_limits(const struct sock * sk,int index)1335 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1336 {
1337 long val = sk->sk_prot->sysctl_mem[index];
1338
1339 #if PAGE_SIZE > SK_MEM_QUANTUM
1340 val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1341 #elif PAGE_SIZE < SK_MEM_QUANTUM
1342 val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1343 #endif
1344 return val;
1345 }
1346
sk_mem_pages(int amt)1347 static inline int sk_mem_pages(int amt)
1348 {
1349 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1350 }
1351
sk_has_account(struct sock * sk)1352 static inline bool sk_has_account(struct sock *sk)
1353 {
1354 /* return true if protocol supports memory accounting */
1355 return !!sk->sk_prot->memory_allocated;
1356 }
1357
sk_wmem_schedule(struct sock * sk,int size)1358 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1359 {
1360 if (!sk_has_account(sk))
1361 return true;
1362 return size <= sk->sk_forward_alloc ||
1363 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1364 }
1365
1366 static inline bool
sk_rmem_schedule(struct sock * sk,struct sk_buff * skb,int size)1367 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1368 {
1369 if (!sk_has_account(sk))
1370 return true;
1371 return size<= sk->sk_forward_alloc ||
1372 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1373 skb_pfmemalloc(skb);
1374 }
1375
sk_mem_reclaim(struct sock * sk)1376 static inline void sk_mem_reclaim(struct sock *sk)
1377 {
1378 if (!sk_has_account(sk))
1379 return;
1380 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1381 __sk_mem_reclaim(sk, sk->sk_forward_alloc);
1382 }
1383
sk_mem_reclaim_partial(struct sock * sk)1384 static inline void sk_mem_reclaim_partial(struct sock *sk)
1385 {
1386 if (!sk_has_account(sk))
1387 return;
1388 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1389 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1390 }
1391
sk_mem_charge(struct sock * sk,int size)1392 static inline void sk_mem_charge(struct sock *sk, int size)
1393 {
1394 if (!sk_has_account(sk))
1395 return;
1396 sk->sk_forward_alloc -= size;
1397 }
1398
sk_mem_uncharge(struct sock * sk,int size)1399 static inline void sk_mem_uncharge(struct sock *sk, int size)
1400 {
1401 if (!sk_has_account(sk))
1402 return;
1403 sk->sk_forward_alloc += size;
1404
1405 /* Avoid a possible overflow.
1406 * TCP send queues can make this happen, if sk_mem_reclaim()
1407 * is not called and more than 2 GBytes are released at once.
1408 *
1409 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1410 * no need to hold that much forward allocation anyway.
1411 */
1412 if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1413 __sk_mem_reclaim(sk, 1 << 20);
1414 }
1415
sk_wmem_free_skb(struct sock * sk,struct sk_buff * skb)1416 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1417 {
1418 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1419 sk->sk_wmem_queued -= skb->truesize;
1420 sk_mem_uncharge(sk, skb->truesize);
1421 __kfree_skb(skb);
1422 }
1423
sock_release_ownership(struct sock * sk)1424 static inline void sock_release_ownership(struct sock *sk)
1425 {
1426 if (sk->sk_lock.owned) {
1427 sk->sk_lock.owned = 0;
1428
1429 /* The sk_lock has mutex_unlock() semantics: */
1430 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1431 }
1432 }
1433
1434 /*
1435 * Macro so as to not evaluate some arguments when
1436 * lockdep is not enabled.
1437 *
1438 * Mark both the sk_lock and the sk_lock.slock as a
1439 * per-address-family lock class.
1440 */
1441 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1442 do { \
1443 sk->sk_lock.owned = 0; \
1444 init_waitqueue_head(&sk->sk_lock.wq); \
1445 spin_lock_init(&(sk)->sk_lock.slock); \
1446 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1447 sizeof((sk)->sk_lock)); \
1448 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1449 (skey), (sname)); \
1450 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1451 } while (0)
1452
1453 #ifdef CONFIG_LOCKDEP
lockdep_sock_is_held(const struct sock * csk)1454 static inline bool lockdep_sock_is_held(const struct sock *csk)
1455 {
1456 struct sock *sk = (struct sock *)csk;
1457
1458 return lockdep_is_held(&sk->sk_lock) ||
1459 lockdep_is_held(&sk->sk_lock.slock);
1460 }
1461 #endif
1462
1463 void lock_sock_nested(struct sock *sk, int subclass);
1464
lock_sock(struct sock * sk)1465 static inline void lock_sock(struct sock *sk)
1466 {
1467 lock_sock_nested(sk, 0);
1468 }
1469
1470 void __release_sock(struct sock *sk);
1471 void release_sock(struct sock *sk);
1472
1473 /* BH context may only use the following locking interface. */
1474 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1475 #define bh_lock_sock_nested(__sk) \
1476 spin_lock_nested(&((__sk)->sk_lock.slock), \
1477 SINGLE_DEPTH_NESTING)
1478 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1479
1480 bool lock_sock_fast(struct sock *sk);
1481 /**
1482 * unlock_sock_fast - complement of lock_sock_fast
1483 * @sk: socket
1484 * @slow: slow mode
1485 *
1486 * fast unlock socket for user context.
1487 * If slow mode is on, we call regular release_sock()
1488 */
unlock_sock_fast(struct sock * sk,bool slow)1489 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1490 {
1491 if (slow)
1492 release_sock(sk);
1493 else
1494 spin_unlock_bh(&sk->sk_lock.slock);
1495 }
1496
1497 /* Used by processes to "lock" a socket state, so that
1498 * interrupts and bottom half handlers won't change it
1499 * from under us. It essentially blocks any incoming
1500 * packets, so that we won't get any new data or any
1501 * packets that change the state of the socket.
1502 *
1503 * While locked, BH processing will add new packets to
1504 * the backlog queue. This queue is processed by the
1505 * owner of the socket lock right before it is released.
1506 *
1507 * Since ~2.3.5 it is also exclusive sleep lock serializing
1508 * accesses from user process context.
1509 */
1510
sock_owned_by_me(const struct sock * sk)1511 static inline void sock_owned_by_me(const struct sock *sk)
1512 {
1513 #ifdef CONFIG_LOCKDEP
1514 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1515 #endif
1516 }
1517
sock_owned_by_user(const struct sock * sk)1518 static inline bool sock_owned_by_user(const struct sock *sk)
1519 {
1520 sock_owned_by_me(sk);
1521 return sk->sk_lock.owned;
1522 }
1523
1524 /* no reclassification while locks are held */
sock_allow_reclassification(const struct sock * csk)1525 static inline bool sock_allow_reclassification(const struct sock *csk)
1526 {
1527 struct sock *sk = (struct sock *)csk;
1528
1529 return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1530 }
1531
1532 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1533 struct proto *prot, int kern);
1534 void sk_free(struct sock *sk);
1535 void sk_destruct(struct sock *sk);
1536 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1537 void sk_free_unlock_clone(struct sock *sk);
1538
1539 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1540 gfp_t priority);
1541 void __sock_wfree(struct sk_buff *skb);
1542 void sock_wfree(struct sk_buff *skb);
1543 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1544 gfp_t priority);
1545 void skb_orphan_partial(struct sk_buff *skb);
1546 void sock_rfree(struct sk_buff *skb);
1547 void sock_efree(struct sk_buff *skb);
1548 #ifdef CONFIG_INET
1549 void sock_edemux(struct sk_buff *skb);
1550 #else
1551 #define sock_edemux sock_efree
1552 #endif
1553
1554 int sock_setsockopt(struct socket *sock, int level, int op,
1555 char __user *optval, unsigned int optlen);
1556
1557 int sock_getsockopt(struct socket *sock, int level, int op,
1558 char __user *optval, int __user *optlen);
1559 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1560 int noblock, int *errcode);
1561 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1562 unsigned long data_len, int noblock,
1563 int *errcode, int max_page_order);
1564 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1565 void sock_kfree_s(struct sock *sk, void *mem, int size);
1566 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1567 void sk_send_sigurg(struct sock *sk);
1568
1569 struct sockcm_cookie {
1570 u32 mark;
1571 u16 tsflags;
1572 };
1573
1574 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1575 struct sockcm_cookie *sockc);
1576 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1577 struct sockcm_cookie *sockc);
1578
1579 /*
1580 * Functions to fill in entries in struct proto_ops when a protocol
1581 * does not implement a particular function.
1582 */
1583 int sock_no_bind(struct socket *, struct sockaddr *, int);
1584 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1585 int sock_no_socketpair(struct socket *, struct socket *);
1586 int sock_no_accept(struct socket *, struct socket *, int, bool);
1587 int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1588 unsigned int sock_no_poll(struct file *, struct socket *,
1589 struct poll_table_struct *);
1590 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1591 int sock_no_listen(struct socket *, int);
1592 int sock_no_shutdown(struct socket *, int);
1593 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1594 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1595 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1596 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1597 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1598 int sock_no_mmap(struct file *file, struct socket *sock,
1599 struct vm_area_struct *vma);
1600 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1601 size_t size, int flags);
1602 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1603 int offset, size_t size, int flags);
1604
1605 /*
1606 * Functions to fill in entries in struct proto_ops when a protocol
1607 * uses the inet style.
1608 */
1609 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1610 char __user *optval, int __user *optlen);
1611 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1612 int flags);
1613 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1614 char __user *optval, unsigned int optlen);
1615 int compat_sock_common_getsockopt(struct socket *sock, int level,
1616 int optname, char __user *optval, int __user *optlen);
1617 int compat_sock_common_setsockopt(struct socket *sock, int level,
1618 int optname, char __user *optval, unsigned int optlen);
1619
1620 void sk_common_release(struct sock *sk);
1621
1622 /*
1623 * Default socket callbacks and setup code
1624 */
1625
1626 /* Initialise core socket variables */
1627 void sock_init_data(struct socket *sock, struct sock *sk);
1628
1629 /*
1630 * Socket reference counting postulates.
1631 *
1632 * * Each user of socket SHOULD hold a reference count.
1633 * * Each access point to socket (an hash table bucket, reference from a list,
1634 * running timer, skb in flight MUST hold a reference count.
1635 * * When reference count hits 0, it means it will never increase back.
1636 * * When reference count hits 0, it means that no references from
1637 * outside exist to this socket and current process on current CPU
1638 * is last user and may/should destroy this socket.
1639 * * sk_free is called from any context: process, BH, IRQ. When
1640 * it is called, socket has no references from outside -> sk_free
1641 * may release descendant resources allocated by the socket, but
1642 * to the time when it is called, socket is NOT referenced by any
1643 * hash tables, lists etc.
1644 * * Packets, delivered from outside (from network or from another process)
1645 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1646 * when they sit in queue. Otherwise, packets will leak to hole, when
1647 * socket is looked up by one cpu and unhasing is made by another CPU.
1648 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1649 * (leak to backlog). Packet socket does all the processing inside
1650 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1651 * use separate SMP lock, so that they are prone too.
1652 */
1653
1654 /* Ungrab socket and destroy it, if it was the last reference. */
sock_put(struct sock * sk)1655 static inline void sock_put(struct sock *sk)
1656 {
1657 if (refcount_dec_and_test(&sk->sk_refcnt))
1658 sk_free(sk);
1659 }
1660 /* Generic version of sock_put(), dealing with all sockets
1661 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1662 */
1663 void sock_gen_put(struct sock *sk);
1664
1665 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1666 unsigned int trim_cap, bool refcounted);
sk_receive_skb(struct sock * sk,struct sk_buff * skb,const int nested)1667 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1668 const int nested)
1669 {
1670 return __sk_receive_skb(sk, skb, nested, 1, true);
1671 }
1672
sk_tx_queue_set(struct sock * sk,int tx_queue)1673 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1674 {
1675 sk->sk_tx_queue_mapping = tx_queue;
1676 }
1677
sk_tx_queue_clear(struct sock * sk)1678 static inline void sk_tx_queue_clear(struct sock *sk)
1679 {
1680 sk->sk_tx_queue_mapping = -1;
1681 }
1682
sk_tx_queue_get(const struct sock * sk)1683 static inline int sk_tx_queue_get(const struct sock *sk)
1684 {
1685 return sk ? sk->sk_tx_queue_mapping : -1;
1686 }
1687
sk_set_socket(struct sock * sk,struct socket * sock)1688 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1689 {
1690 sk_tx_queue_clear(sk);
1691 sk->sk_socket = sock;
1692 }
1693
sk_sleep(struct sock * sk)1694 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1695 {
1696 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1697 return &rcu_dereference_raw(sk->sk_wq)->wait;
1698 }
1699 /* Detach socket from process context.
1700 * Announce socket dead, detach it from wait queue and inode.
1701 * Note that parent inode held reference count on this struct sock,
1702 * we do not release it in this function, because protocol
1703 * probably wants some additional cleanups or even continuing
1704 * to work with this socket (TCP).
1705 */
sock_orphan(struct sock * sk)1706 static inline void sock_orphan(struct sock *sk)
1707 {
1708 write_lock_bh(&sk->sk_callback_lock);
1709 sock_set_flag(sk, SOCK_DEAD);
1710 sk_set_socket(sk, NULL);
1711 sk->sk_wq = NULL;
1712 write_unlock_bh(&sk->sk_callback_lock);
1713 }
1714
sock_graft(struct sock * sk,struct socket * parent)1715 static inline void sock_graft(struct sock *sk, struct socket *parent)
1716 {
1717 WARN_ON(parent->sk);
1718 write_lock_bh(&sk->sk_callback_lock);
1719 sk->sk_wq = parent->wq;
1720 parent->sk = sk;
1721 sk_set_socket(sk, parent);
1722 sk->sk_uid = SOCK_INODE(parent)->i_uid;
1723 security_sock_graft(sk, parent);
1724 write_unlock_bh(&sk->sk_callback_lock);
1725 }
1726
1727 kuid_t sock_i_uid(struct sock *sk);
1728 unsigned long sock_i_ino(struct sock *sk);
1729
sock_net_uid(const struct net * net,const struct sock * sk)1730 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1731 {
1732 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1733 }
1734
net_tx_rndhash(void)1735 static inline u32 net_tx_rndhash(void)
1736 {
1737 u32 v = prandom_u32();
1738
1739 return v ?: 1;
1740 }
1741
sk_set_txhash(struct sock * sk)1742 static inline void sk_set_txhash(struct sock *sk)
1743 {
1744 sk->sk_txhash = net_tx_rndhash();
1745 }
1746
sk_rethink_txhash(struct sock * sk)1747 static inline void sk_rethink_txhash(struct sock *sk)
1748 {
1749 if (sk->sk_txhash)
1750 sk_set_txhash(sk);
1751 }
1752
1753 static inline struct dst_entry *
__sk_dst_get(struct sock * sk)1754 __sk_dst_get(struct sock *sk)
1755 {
1756 return rcu_dereference_check(sk->sk_dst_cache,
1757 lockdep_sock_is_held(sk));
1758 }
1759
1760 static inline struct dst_entry *
sk_dst_get(struct sock * sk)1761 sk_dst_get(struct sock *sk)
1762 {
1763 struct dst_entry *dst;
1764
1765 rcu_read_lock();
1766 dst = rcu_dereference(sk->sk_dst_cache);
1767 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1768 dst = NULL;
1769 rcu_read_unlock();
1770 return dst;
1771 }
1772
dst_negative_advice(struct sock * sk)1773 static inline void dst_negative_advice(struct sock *sk)
1774 {
1775 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1776
1777 sk_rethink_txhash(sk);
1778
1779 if (dst && dst->ops->negative_advice) {
1780 ndst = dst->ops->negative_advice(dst);
1781
1782 if (ndst != dst) {
1783 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1784 sk_tx_queue_clear(sk);
1785 sk->sk_dst_pending_confirm = 0;
1786 }
1787 }
1788 }
1789
1790 static inline void
__sk_dst_set(struct sock * sk,struct dst_entry * dst)1791 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1792 {
1793 struct dst_entry *old_dst;
1794
1795 sk_tx_queue_clear(sk);
1796 sk->sk_dst_pending_confirm = 0;
1797 old_dst = rcu_dereference_protected(sk->sk_dst_cache,
1798 lockdep_sock_is_held(sk));
1799 rcu_assign_pointer(sk->sk_dst_cache, dst);
1800 dst_release(old_dst);
1801 }
1802
1803 static inline void
sk_dst_set(struct sock * sk,struct dst_entry * dst)1804 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1805 {
1806 struct dst_entry *old_dst;
1807
1808 sk_tx_queue_clear(sk);
1809 sk->sk_dst_pending_confirm = 0;
1810 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1811 dst_release(old_dst);
1812 }
1813
1814 static inline void
__sk_dst_reset(struct sock * sk)1815 __sk_dst_reset(struct sock *sk)
1816 {
1817 __sk_dst_set(sk, NULL);
1818 }
1819
1820 static inline void
sk_dst_reset(struct sock * sk)1821 sk_dst_reset(struct sock *sk)
1822 {
1823 sk_dst_set(sk, NULL);
1824 }
1825
1826 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1827
1828 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1829
sk_dst_confirm(struct sock * sk)1830 static inline void sk_dst_confirm(struct sock *sk)
1831 {
1832 if (!sk->sk_dst_pending_confirm)
1833 sk->sk_dst_pending_confirm = 1;
1834 }
1835
sock_confirm_neigh(struct sk_buff * skb,struct neighbour * n)1836 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
1837 {
1838 if (skb_get_dst_pending_confirm(skb)) {
1839 struct sock *sk = skb->sk;
1840 unsigned long now = jiffies;
1841
1842 /* avoid dirtying neighbour */
1843 if (n->confirmed != now)
1844 n->confirmed = now;
1845 if (sk && sk->sk_dst_pending_confirm)
1846 sk->sk_dst_pending_confirm = 0;
1847 }
1848 }
1849
1850 bool sk_mc_loop(struct sock *sk);
1851
sk_can_gso(const struct sock * sk)1852 static inline bool sk_can_gso(const struct sock *sk)
1853 {
1854 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1855 }
1856
1857 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1858
sk_nocaps_add(struct sock * sk,netdev_features_t flags)1859 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1860 {
1861 sk->sk_route_nocaps |= flags;
1862 sk->sk_route_caps &= ~flags;
1863 }
1864
sk_check_csum_caps(struct sock * sk)1865 static inline bool sk_check_csum_caps(struct sock *sk)
1866 {
1867 return (sk->sk_route_caps & NETIF_F_HW_CSUM) ||
1868 (sk->sk_family == PF_INET &&
1869 (sk->sk_route_caps & NETIF_F_IP_CSUM)) ||
1870 (sk->sk_family == PF_INET6 &&
1871 (sk->sk_route_caps & NETIF_F_IPV6_CSUM));
1872 }
1873
skb_do_copy_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,char * to,int copy,int offset)1874 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1875 struct iov_iter *from, char *to,
1876 int copy, int offset)
1877 {
1878 if (skb->ip_summed == CHECKSUM_NONE) {
1879 __wsum csum = 0;
1880 if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
1881 return -EFAULT;
1882 skb->csum = csum_block_add(skb->csum, csum, offset);
1883 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1884 if (!copy_from_iter_full_nocache(to, copy, from))
1885 return -EFAULT;
1886 } else if (!copy_from_iter_full(to, copy, from))
1887 return -EFAULT;
1888
1889 return 0;
1890 }
1891
skb_add_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,int copy)1892 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1893 struct iov_iter *from, int copy)
1894 {
1895 int err, offset = skb->len;
1896
1897 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1898 copy, offset);
1899 if (err)
1900 __skb_trim(skb, offset);
1901
1902 return err;
1903 }
1904
skb_copy_to_page_nocache(struct sock * sk,struct iov_iter * from,struct sk_buff * skb,struct page * page,int off,int copy)1905 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1906 struct sk_buff *skb,
1907 struct page *page,
1908 int off, int copy)
1909 {
1910 int err;
1911
1912 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1913 copy, skb->len);
1914 if (err)
1915 return err;
1916
1917 skb->len += copy;
1918 skb->data_len += copy;
1919 skb->truesize += copy;
1920 sk->sk_wmem_queued += copy;
1921 sk_mem_charge(sk, copy);
1922 return 0;
1923 }
1924
1925 /**
1926 * sk_wmem_alloc_get - returns write allocations
1927 * @sk: socket
1928 *
1929 * Returns sk_wmem_alloc minus initial offset of one
1930 */
sk_wmem_alloc_get(const struct sock * sk)1931 static inline int sk_wmem_alloc_get(const struct sock *sk)
1932 {
1933 return refcount_read(&sk->sk_wmem_alloc) - 1;
1934 }
1935
1936 /**
1937 * sk_rmem_alloc_get - returns read allocations
1938 * @sk: socket
1939 *
1940 * Returns sk_rmem_alloc
1941 */
sk_rmem_alloc_get(const struct sock * sk)1942 static inline int sk_rmem_alloc_get(const struct sock *sk)
1943 {
1944 return atomic_read(&sk->sk_rmem_alloc);
1945 }
1946
1947 /**
1948 * sk_has_allocations - check if allocations are outstanding
1949 * @sk: socket
1950 *
1951 * Returns true if socket has write or read allocations
1952 */
sk_has_allocations(const struct sock * sk)1953 static inline bool sk_has_allocations(const struct sock *sk)
1954 {
1955 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1956 }
1957
1958 /**
1959 * skwq_has_sleeper - check if there are any waiting processes
1960 * @wq: struct socket_wq
1961 *
1962 * Returns true if socket_wq has waiting processes
1963 *
1964 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
1965 * barrier call. They were added due to the race found within the tcp code.
1966 *
1967 * Consider following tcp code paths::
1968 *
1969 * CPU1 CPU2
1970 * sys_select receive packet
1971 * ... ...
1972 * __add_wait_queue update tp->rcv_nxt
1973 * ... ...
1974 * tp->rcv_nxt check sock_def_readable
1975 * ... {
1976 * schedule rcu_read_lock();
1977 * wq = rcu_dereference(sk->sk_wq);
1978 * if (wq && waitqueue_active(&wq->wait))
1979 * wake_up_interruptible(&wq->wait)
1980 * ...
1981 * }
1982 *
1983 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1984 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1985 * could then endup calling schedule and sleep forever if there are no more
1986 * data on the socket.
1987 *
1988 */
skwq_has_sleeper(struct socket_wq * wq)1989 static inline bool skwq_has_sleeper(struct socket_wq *wq)
1990 {
1991 return wq && wq_has_sleeper(&wq->wait);
1992 }
1993
1994 /**
1995 * sock_poll_wait - place memory barrier behind the poll_wait call.
1996 * @filp: file
1997 * @wait_address: socket wait queue
1998 * @p: poll_table
1999 *
2000 * See the comments in the wq_has_sleeper function.
2001 */
sock_poll_wait(struct file * filp,wait_queue_head_t * wait_address,poll_table * p)2002 static inline void sock_poll_wait(struct file *filp,
2003 wait_queue_head_t *wait_address, poll_table *p)
2004 {
2005 if (!poll_does_not_wait(p) && wait_address) {
2006 poll_wait(filp, wait_address, p);
2007 /* We need to be sure we are in sync with the
2008 * socket flags modification.
2009 *
2010 * This memory barrier is paired in the wq_has_sleeper.
2011 */
2012 smp_mb();
2013 }
2014 }
2015
skb_set_hash_from_sk(struct sk_buff * skb,struct sock * sk)2016 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2017 {
2018 if (sk->sk_txhash) {
2019 skb->l4_hash = 1;
2020 skb->hash = sk->sk_txhash;
2021 }
2022 }
2023
2024 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2025
2026 /*
2027 * Queue a received datagram if it will fit. Stream and sequenced
2028 * protocols can't normally use this as they need to fit buffers in
2029 * and play with them.
2030 *
2031 * Inlined as it's very short and called for pretty much every
2032 * packet ever received.
2033 */
skb_set_owner_r(struct sk_buff * skb,struct sock * sk)2034 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2035 {
2036 skb_orphan(skb);
2037 skb->sk = sk;
2038 skb->destructor = sock_rfree;
2039 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2040 sk_mem_charge(sk, skb->truesize);
2041 }
2042
2043 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2044 unsigned long expires);
2045
2046 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2047
2048 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2049 struct sk_buff *skb, unsigned int flags,
2050 void (*destructor)(struct sock *sk,
2051 struct sk_buff *skb));
2052 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2053 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2054
2055 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2056 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2057
2058 /*
2059 * Recover an error report and clear atomically
2060 */
2061
sock_error(struct sock * sk)2062 static inline int sock_error(struct sock *sk)
2063 {
2064 int err;
2065 if (likely(!sk->sk_err))
2066 return 0;
2067 err = xchg(&sk->sk_err, 0);
2068 return -err;
2069 }
2070
sock_wspace(struct sock * sk)2071 static inline unsigned long sock_wspace(struct sock *sk)
2072 {
2073 int amt = 0;
2074
2075 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2076 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2077 if (amt < 0)
2078 amt = 0;
2079 }
2080 return amt;
2081 }
2082
2083 /* Note:
2084 * We use sk->sk_wq_raw, from contexts knowing this
2085 * pointer is not NULL and cannot disappear/change.
2086 */
sk_set_bit(int nr,struct sock * sk)2087 static inline void sk_set_bit(int nr, struct sock *sk)
2088 {
2089 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2090 !sock_flag(sk, SOCK_FASYNC))
2091 return;
2092
2093 set_bit(nr, &sk->sk_wq_raw->flags);
2094 }
2095
sk_clear_bit(int nr,struct sock * sk)2096 static inline void sk_clear_bit(int nr, struct sock *sk)
2097 {
2098 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2099 !sock_flag(sk, SOCK_FASYNC))
2100 return;
2101
2102 clear_bit(nr, &sk->sk_wq_raw->flags);
2103 }
2104
sk_wake_async(const struct sock * sk,int how,int band)2105 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2106 {
2107 if (sock_flag(sk, SOCK_FASYNC)) {
2108 rcu_read_lock();
2109 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2110 rcu_read_unlock();
2111 }
2112 }
2113
2114 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2115 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2116 * Note: for send buffers, TCP works better if we can build two skbs at
2117 * minimum.
2118 */
2119 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2120
2121 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2122 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2123
sk_stream_moderate_sndbuf(struct sock * sk)2124 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2125 {
2126 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2127 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2128 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2129 }
2130 }
2131
2132 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2133 bool force_schedule);
2134
2135 /**
2136 * sk_page_frag - return an appropriate page_frag
2137 * @sk: socket
2138 *
2139 * Use the per task page_frag instead of the per socket one for
2140 * optimization when we know that we're in the normal context and owns
2141 * everything that's associated with %current.
2142 *
2143 * gfpflags_allow_blocking() isn't enough here as direct reclaim may nest
2144 * inside other socket operations and end up recursing into sk_page_frag()
2145 * while it's already in use.
2146 */
sk_page_frag(struct sock * sk)2147 static inline struct page_frag *sk_page_frag(struct sock *sk)
2148 {
2149 if (gfpflags_normal_context(sk->sk_allocation))
2150 return ¤t->task_frag;
2151
2152 return &sk->sk_frag;
2153 }
2154
2155 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2156
2157 /*
2158 * Default write policy as shown to user space via poll/select/SIGIO
2159 */
sock_writeable(const struct sock * sk)2160 static inline bool sock_writeable(const struct sock *sk)
2161 {
2162 return refcount_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2163 }
2164
gfp_any(void)2165 static inline gfp_t gfp_any(void)
2166 {
2167 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2168 }
2169
sock_rcvtimeo(const struct sock * sk,bool noblock)2170 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2171 {
2172 return noblock ? 0 : sk->sk_rcvtimeo;
2173 }
2174
sock_sndtimeo(const struct sock * sk,bool noblock)2175 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2176 {
2177 return noblock ? 0 : sk->sk_sndtimeo;
2178 }
2179
sock_rcvlowat(const struct sock * sk,int waitall,int len)2180 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2181 {
2182 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2183 }
2184
2185 /* Alas, with timeout socket operations are not restartable.
2186 * Compare this to poll().
2187 */
sock_intr_errno(long timeo)2188 static inline int sock_intr_errno(long timeo)
2189 {
2190 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2191 }
2192
2193 struct sock_skb_cb {
2194 u32 dropcount;
2195 };
2196
2197 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2198 * using skb->cb[] would keep using it directly and utilize its
2199 * alignement guarantee.
2200 */
2201 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2202 sizeof(struct sock_skb_cb)))
2203
2204 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2205 SOCK_SKB_CB_OFFSET))
2206
2207 #define sock_skb_cb_check_size(size) \
2208 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2209
2210 static inline void
sock_skb_set_dropcount(const struct sock * sk,struct sk_buff * skb)2211 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2212 {
2213 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2214 atomic_read(&sk->sk_drops) : 0;
2215 }
2216
sk_drops_add(struct sock * sk,const struct sk_buff * skb)2217 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2218 {
2219 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2220
2221 atomic_add(segs, &sk->sk_drops);
2222 }
2223
sock_read_timestamp(struct sock * sk)2224 static inline ktime_t sock_read_timestamp(struct sock *sk)
2225 {
2226 #if BITS_PER_LONG==32
2227 unsigned int seq;
2228 ktime_t kt;
2229
2230 do {
2231 seq = read_seqbegin(&sk->sk_stamp_seq);
2232 kt = sk->sk_stamp;
2233 } while (read_seqretry(&sk->sk_stamp_seq, seq));
2234
2235 return kt;
2236 #else
2237 return READ_ONCE(sk->sk_stamp);
2238 #endif
2239 }
2240
sock_write_timestamp(struct sock * sk,ktime_t kt)2241 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2242 {
2243 #if BITS_PER_LONG==32
2244 write_seqlock(&sk->sk_stamp_seq);
2245 sk->sk_stamp = kt;
2246 write_sequnlock(&sk->sk_stamp_seq);
2247 #else
2248 WRITE_ONCE(sk->sk_stamp, kt);
2249 #endif
2250 }
2251
2252 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2253 struct sk_buff *skb);
2254 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2255 struct sk_buff *skb);
2256
2257 static inline void
sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2258 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2259 {
2260 ktime_t kt = skb->tstamp;
2261 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2262
2263 /*
2264 * generate control messages if
2265 * - receive time stamping in software requested
2266 * - software time stamp available and wanted
2267 * - hardware time stamps available and wanted
2268 */
2269 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2270 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2271 (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2272 (hwtstamps->hwtstamp &&
2273 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2274 __sock_recv_timestamp(msg, sk, skb);
2275 else
2276 sock_write_timestamp(sk, kt);
2277
2278 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2279 __sock_recv_wifi_status(msg, sk, skb);
2280 }
2281
2282 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2283 struct sk_buff *skb);
2284
2285 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
sock_recv_ts_and_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2286 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2287 struct sk_buff *skb)
2288 {
2289 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2290 (1UL << SOCK_RCVTSTAMP))
2291 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2292 SOF_TIMESTAMPING_RAW_HARDWARE)
2293
2294 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2295 __sock_recv_ts_and_drops(msg, sk, skb);
2296 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2297 sock_write_timestamp(sk, skb->tstamp);
2298 else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2299 sock_write_timestamp(sk, 0);
2300 }
2301
2302 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2303
2304 /**
2305 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2306 * @sk: socket sending this packet
2307 * @tsflags: timestamping flags to use
2308 * @tx_flags: completed with instructions for time stamping
2309 *
2310 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2311 */
sock_tx_timestamp(const struct sock * sk,__u16 tsflags,__u8 * tx_flags)2312 static inline void sock_tx_timestamp(const struct sock *sk, __u16 tsflags,
2313 __u8 *tx_flags)
2314 {
2315 if (unlikely(tsflags))
2316 __sock_tx_timestamp(tsflags, tx_flags);
2317 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2318 *tx_flags |= SKBTX_WIFI_STATUS;
2319 }
2320
2321 /**
2322 * sk_eat_skb - Release a skb if it is no longer needed
2323 * @sk: socket to eat this skb from
2324 * @skb: socket buffer to eat
2325 *
2326 * This routine must be called with interrupts disabled or with the socket
2327 * locked so that the sk_buff queue operation is ok.
2328 */
sk_eat_skb(struct sock * sk,struct sk_buff * skb)2329 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2330 {
2331 __skb_unlink(skb, &sk->sk_receive_queue);
2332 __kfree_skb(skb);
2333 }
2334
2335 static inline
sock_net(const struct sock * sk)2336 struct net *sock_net(const struct sock *sk)
2337 {
2338 return read_pnet(&sk->sk_net);
2339 }
2340
2341 static inline
sock_net_set(struct sock * sk,struct net * net)2342 void sock_net_set(struct sock *sk, struct net *net)
2343 {
2344 write_pnet(&sk->sk_net, net);
2345 }
2346
skb_steal_sock(struct sk_buff * skb)2347 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2348 {
2349 if (skb->sk) {
2350 struct sock *sk = skb->sk;
2351
2352 skb->destructor = NULL;
2353 skb->sk = NULL;
2354 return sk;
2355 }
2356 return NULL;
2357 }
2358
2359 /* This helper checks if a socket is a full socket,
2360 * ie _not_ a timewait or request socket.
2361 */
sk_fullsock(const struct sock * sk)2362 static inline bool sk_fullsock(const struct sock *sk)
2363 {
2364 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2365 }
2366
2367 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2368 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2369 */
sk_listener(const struct sock * sk)2370 static inline bool sk_listener(const struct sock *sk)
2371 {
2372 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2373 }
2374
2375 /**
2376 * sk_state_load - read sk->sk_state for lockless contexts
2377 * @sk: socket pointer
2378 *
2379 * Paired with sk_state_store(). Used in places we do not hold socket lock :
2380 * tcp_diag_get_info(), tcp_get_info(), tcp_poll(), get_tcp4_sock() ...
2381 */
sk_state_load(const struct sock * sk)2382 static inline int sk_state_load(const struct sock *sk)
2383 {
2384 return smp_load_acquire(&sk->sk_state);
2385 }
2386
2387 /**
2388 * sk_state_store - update sk->sk_state
2389 * @sk: socket pointer
2390 * @newstate: new state
2391 *
2392 * Paired with sk_state_load(). Should be used in contexts where
2393 * state change might impact lockless readers.
2394 */
sk_state_store(struct sock * sk,int newstate)2395 static inline void sk_state_store(struct sock *sk, int newstate)
2396 {
2397 smp_store_release(&sk->sk_state, newstate);
2398 }
2399
2400 void sock_enable_timestamp(struct sock *sk, int flag);
2401 int sock_get_timestamp(struct sock *, struct timeval __user *);
2402 int sock_get_timestampns(struct sock *, struct timespec __user *);
2403 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2404 int type);
2405
2406 bool sk_ns_capable(const struct sock *sk,
2407 struct user_namespace *user_ns, int cap);
2408 bool sk_capable(const struct sock *sk, int cap);
2409 bool sk_net_capable(const struct sock *sk, int cap);
2410
2411 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2412
2413 /* Take into consideration the size of the struct sk_buff overhead in the
2414 * determination of these values, since that is non-constant across
2415 * platforms. This makes socket queueing behavior and performance
2416 * not depend upon such differences.
2417 */
2418 #define _SK_MEM_PACKETS 256
2419 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
2420 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2421 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2422
2423 extern __u32 sysctl_wmem_max;
2424 extern __u32 sysctl_rmem_max;
2425
2426 extern int sysctl_tstamp_allow_data;
2427 extern int sysctl_optmem_max;
2428
2429 extern __u32 sysctl_wmem_default;
2430 extern __u32 sysctl_rmem_default;
2431
2432 #endif /* _SOCK_H */
2433