1 /*
2 * Copyright (C) 2015-2017 Netronome Systems, Inc.
3 *
4 * This software is dual licensed under the GNU General License Version 2,
5 * June 1991 as shown in the file COPYING in the top-level directory of this
6 * source tree or the BSD 2-Clause License provided below. You have the
7 * option to license this software under the complete terms of either license.
8 *
9 * The BSD 2-Clause License:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * 1. Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * 2. Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34 /*
35 * nfp_net_common.c
36 * Netronome network device driver: Common functions between PF and VF
37 * Authors: Jakub Kicinski <jakub.kicinski@netronome.com>
38 * Jason McMullan <jason.mcmullan@netronome.com>
39 * Rolf Neugebauer <rolf.neugebauer@netronome.com>
40 * Brad Petrus <brad.petrus@netronome.com>
41 * Chris Telfer <chris.telfer@netronome.com>
42 */
43
44 #include <linux/bitfield.h>
45 #include <linux/bpf.h>
46 #include <linux/bpf_trace.h>
47 #include <linux/module.h>
48 #include <linux/kernel.h>
49 #include <linux/init.h>
50 #include <linux/fs.h>
51 #include <linux/netdevice.h>
52 #include <linux/etherdevice.h>
53 #include <linux/interrupt.h>
54 #include <linux/ip.h>
55 #include <linux/ipv6.h>
56 #include <linux/page_ref.h>
57 #include <linux/pci.h>
58 #include <linux/pci_regs.h>
59 #include <linux/msi.h>
60 #include <linux/ethtool.h>
61 #include <linux/log2.h>
62 #include <linux/if_vlan.h>
63 #include <linux/random.h>
64 #include <linux/vmalloc.h>
65 #include <linux/ktime.h>
66
67 #include <net/switchdev.h>
68 #include <net/vxlan.h>
69
70 #include "nfpcore/nfp_nsp.h"
71 #include "nfp_app.h"
72 #include "nfp_net_ctrl.h"
73 #include "nfp_net.h"
74 #include "nfp_net_sriov.h"
75 #include "nfp_port.h"
76
77 /**
78 * nfp_net_get_fw_version() - Read and parse the FW version
79 * @fw_ver: Output fw_version structure to read to
80 * @ctrl_bar: Mapped address of the control BAR
81 */
nfp_net_get_fw_version(struct nfp_net_fw_version * fw_ver,void __iomem * ctrl_bar)82 void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver,
83 void __iomem *ctrl_bar)
84 {
85 u32 reg;
86
87 reg = readl(ctrl_bar + NFP_NET_CFG_VERSION);
88 put_unaligned_le32(reg, fw_ver);
89 }
90
nfp_net_dma_map_rx(struct nfp_net_dp * dp,void * frag)91 static dma_addr_t nfp_net_dma_map_rx(struct nfp_net_dp *dp, void *frag)
92 {
93 return dma_map_single_attrs(dp->dev, frag + NFP_NET_RX_BUF_HEADROOM,
94 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
95 dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC);
96 }
97
98 static void
nfp_net_dma_sync_dev_rx(const struct nfp_net_dp * dp,dma_addr_t dma_addr)99 nfp_net_dma_sync_dev_rx(const struct nfp_net_dp *dp, dma_addr_t dma_addr)
100 {
101 dma_sync_single_for_device(dp->dev, dma_addr,
102 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
103 dp->rx_dma_dir);
104 }
105
nfp_net_dma_unmap_rx(struct nfp_net_dp * dp,dma_addr_t dma_addr)106 static void nfp_net_dma_unmap_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr)
107 {
108 dma_unmap_single_attrs(dp->dev, dma_addr,
109 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
110 dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC);
111 }
112
nfp_net_dma_sync_cpu_rx(struct nfp_net_dp * dp,dma_addr_t dma_addr,unsigned int len)113 static void nfp_net_dma_sync_cpu_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr,
114 unsigned int len)
115 {
116 dma_sync_single_for_cpu(dp->dev, dma_addr - NFP_NET_RX_BUF_HEADROOM,
117 len, dp->rx_dma_dir);
118 }
119
120 /* Firmware reconfig
121 *
122 * Firmware reconfig may take a while so we have two versions of it -
123 * synchronous and asynchronous (posted). All synchronous callers are holding
124 * RTNL so we don't have to worry about serializing them.
125 */
nfp_net_reconfig_start(struct nfp_net * nn,u32 update)126 static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update)
127 {
128 nn_writel(nn, NFP_NET_CFG_UPDATE, update);
129 /* ensure update is written before pinging HW */
130 nn_pci_flush(nn);
131 nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1);
132 }
133
134 /* Pass 0 as update to run posted reconfigs. */
nfp_net_reconfig_start_async(struct nfp_net * nn,u32 update)135 static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update)
136 {
137 update |= nn->reconfig_posted;
138 nn->reconfig_posted = 0;
139
140 nfp_net_reconfig_start(nn, update);
141
142 nn->reconfig_timer_active = true;
143 mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ);
144 }
145
nfp_net_reconfig_check_done(struct nfp_net * nn,bool last_check)146 static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check)
147 {
148 u32 reg;
149
150 reg = nn_readl(nn, NFP_NET_CFG_UPDATE);
151 if (reg == 0)
152 return true;
153 if (reg & NFP_NET_CFG_UPDATE_ERR) {
154 nn_err(nn, "Reconfig error: 0x%08x\n", reg);
155 return true;
156 } else if (last_check) {
157 nn_err(nn, "Reconfig timeout: 0x%08x\n", reg);
158 return true;
159 }
160
161 return false;
162 }
163
nfp_net_reconfig_wait(struct nfp_net * nn,unsigned long deadline)164 static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline)
165 {
166 bool timed_out = false;
167
168 /* Poll update field, waiting for NFP to ack the config */
169 while (!nfp_net_reconfig_check_done(nn, timed_out)) {
170 msleep(1);
171 timed_out = time_is_before_eq_jiffies(deadline);
172 }
173
174 if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR)
175 return -EIO;
176
177 return timed_out ? -EIO : 0;
178 }
179
nfp_net_reconfig_timer(unsigned long data)180 static void nfp_net_reconfig_timer(unsigned long data)
181 {
182 struct nfp_net *nn = (void *)data;
183
184 spin_lock_bh(&nn->reconfig_lock);
185
186 nn->reconfig_timer_active = false;
187
188 /* If sync caller is present it will take over from us */
189 if (nn->reconfig_sync_present)
190 goto done;
191
192 /* Read reconfig status and report errors */
193 nfp_net_reconfig_check_done(nn, true);
194
195 if (nn->reconfig_posted)
196 nfp_net_reconfig_start_async(nn, 0);
197 done:
198 spin_unlock_bh(&nn->reconfig_lock);
199 }
200
201 /**
202 * nfp_net_reconfig_post() - Post async reconfig request
203 * @nn: NFP Net device to reconfigure
204 * @update: The value for the update field in the BAR config
205 *
206 * Record FW reconfiguration request. Reconfiguration will be kicked off
207 * whenever reconfiguration machinery is idle. Multiple requests can be
208 * merged together!
209 */
nfp_net_reconfig_post(struct nfp_net * nn,u32 update)210 static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update)
211 {
212 spin_lock_bh(&nn->reconfig_lock);
213
214 /* Sync caller will kick off async reconf when it's done, just post */
215 if (nn->reconfig_sync_present) {
216 nn->reconfig_posted |= update;
217 goto done;
218 }
219
220 /* Opportunistically check if the previous command is done */
221 if (!nn->reconfig_timer_active ||
222 nfp_net_reconfig_check_done(nn, false))
223 nfp_net_reconfig_start_async(nn, update);
224 else
225 nn->reconfig_posted |= update;
226 done:
227 spin_unlock_bh(&nn->reconfig_lock);
228 }
229
nfp_net_reconfig_sync_enter(struct nfp_net * nn)230 static void nfp_net_reconfig_sync_enter(struct nfp_net *nn)
231 {
232 bool cancelled_timer = false;
233 u32 pre_posted_requests;
234
235 spin_lock_bh(&nn->reconfig_lock);
236
237 nn->reconfig_sync_present = true;
238
239 if (nn->reconfig_timer_active) {
240 nn->reconfig_timer_active = false;
241 cancelled_timer = true;
242 }
243 pre_posted_requests = nn->reconfig_posted;
244 nn->reconfig_posted = 0;
245
246 spin_unlock_bh(&nn->reconfig_lock);
247
248 if (cancelled_timer) {
249 del_timer_sync(&nn->reconfig_timer);
250 nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires);
251 }
252
253 /* Run the posted reconfigs which were issued before we started */
254 if (pre_posted_requests) {
255 nfp_net_reconfig_start(nn, pre_posted_requests);
256 nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);
257 }
258 }
259
nfp_net_reconfig_wait_posted(struct nfp_net * nn)260 static void nfp_net_reconfig_wait_posted(struct nfp_net *nn)
261 {
262 nfp_net_reconfig_sync_enter(nn);
263
264 spin_lock_bh(&nn->reconfig_lock);
265 nn->reconfig_sync_present = false;
266 spin_unlock_bh(&nn->reconfig_lock);
267 }
268
269 /**
270 * nfp_net_reconfig() - Reconfigure the firmware
271 * @nn: NFP Net device to reconfigure
272 * @update: The value for the update field in the BAR config
273 *
274 * Write the update word to the BAR and ping the reconfig queue. The
275 * poll until the firmware has acknowledged the update by zeroing the
276 * update word.
277 *
278 * Return: Negative errno on error, 0 on success
279 */
nfp_net_reconfig(struct nfp_net * nn,u32 update)280 int nfp_net_reconfig(struct nfp_net *nn, u32 update)
281 {
282 int ret;
283
284 nfp_net_reconfig_sync_enter(nn);
285
286 nfp_net_reconfig_start(nn, update);
287 ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);
288
289 spin_lock_bh(&nn->reconfig_lock);
290
291 if (nn->reconfig_posted)
292 nfp_net_reconfig_start_async(nn, 0);
293
294 nn->reconfig_sync_present = false;
295
296 spin_unlock_bh(&nn->reconfig_lock);
297
298 return ret;
299 }
300
301 /**
302 * nfp_net_reconfig_mbox() - Reconfigure the firmware via the mailbox
303 * @nn: NFP Net device to reconfigure
304 * @mbox_cmd: The value for the mailbox command
305 *
306 * Helper function for mailbox updates
307 *
308 * Return: Negative errno on error, 0 on success
309 */
nfp_net_reconfig_mbox(struct nfp_net * nn,u32 mbox_cmd)310 static int nfp_net_reconfig_mbox(struct nfp_net *nn, u32 mbox_cmd)
311 {
312 int ret;
313
314 nn_writeq(nn, NFP_NET_CFG_MBOX_CMD, mbox_cmd);
315
316 ret = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MBOX);
317 if (ret) {
318 nn_err(nn, "Mailbox update error\n");
319 return ret;
320 }
321
322 return -nn_readl(nn, NFP_NET_CFG_MBOX_RET);
323 }
324
325 /* Interrupt configuration and handling
326 */
327
328 /**
329 * nfp_net_irq_unmask() - Unmask automasked interrupt
330 * @nn: NFP Network structure
331 * @entry_nr: MSI-X table entry
332 *
333 * Clear the ICR for the IRQ entry.
334 */
nfp_net_irq_unmask(struct nfp_net * nn,unsigned int entry_nr)335 static void nfp_net_irq_unmask(struct nfp_net *nn, unsigned int entry_nr)
336 {
337 nn_writeb(nn, NFP_NET_CFG_ICR(entry_nr), NFP_NET_CFG_ICR_UNMASKED);
338 nn_pci_flush(nn);
339 }
340
341 /**
342 * nfp_net_irqs_alloc() - allocates MSI-X irqs
343 * @pdev: PCI device structure
344 * @irq_entries: Array to be initialized and used to hold the irq entries
345 * @min_irqs: Minimal acceptable number of interrupts
346 * @wanted_irqs: Target number of interrupts to allocate
347 *
348 * Return: Number of irqs obtained or 0 on error.
349 */
350 unsigned int
nfp_net_irqs_alloc(struct pci_dev * pdev,struct msix_entry * irq_entries,unsigned int min_irqs,unsigned int wanted_irqs)351 nfp_net_irqs_alloc(struct pci_dev *pdev, struct msix_entry *irq_entries,
352 unsigned int min_irqs, unsigned int wanted_irqs)
353 {
354 unsigned int i;
355 int got_irqs;
356
357 for (i = 0; i < wanted_irqs; i++)
358 irq_entries[i].entry = i;
359
360 got_irqs = pci_enable_msix_range(pdev, irq_entries,
361 min_irqs, wanted_irqs);
362 if (got_irqs < 0) {
363 dev_err(&pdev->dev, "Failed to enable %d-%d MSI-X (err=%d)\n",
364 min_irqs, wanted_irqs, got_irqs);
365 return 0;
366 }
367
368 if (got_irqs < wanted_irqs)
369 dev_warn(&pdev->dev, "Unable to allocate %d IRQs got only %d\n",
370 wanted_irqs, got_irqs);
371
372 return got_irqs;
373 }
374
375 /**
376 * nfp_net_irqs_assign() - Assign interrupts allocated externally to netdev
377 * @nn: NFP Network structure
378 * @irq_entries: Table of allocated interrupts
379 * @n: Size of @irq_entries (number of entries to grab)
380 *
381 * After interrupts are allocated with nfp_net_irqs_alloc() this function
382 * should be called to assign them to a specific netdev (port).
383 */
384 void
nfp_net_irqs_assign(struct nfp_net * nn,struct msix_entry * irq_entries,unsigned int n)385 nfp_net_irqs_assign(struct nfp_net *nn, struct msix_entry *irq_entries,
386 unsigned int n)
387 {
388 struct nfp_net_dp *dp = &nn->dp;
389
390 nn->max_r_vecs = n - NFP_NET_NON_Q_VECTORS;
391 dp->num_r_vecs = nn->max_r_vecs;
392
393 memcpy(nn->irq_entries, irq_entries, sizeof(*irq_entries) * n);
394
395 if (dp->num_rx_rings > dp->num_r_vecs ||
396 dp->num_tx_rings > dp->num_r_vecs)
397 dev_warn(nn->dp.dev, "More rings (%d,%d) than vectors (%d).\n",
398 dp->num_rx_rings, dp->num_tx_rings,
399 dp->num_r_vecs);
400
401 dp->num_rx_rings = min(dp->num_r_vecs, dp->num_rx_rings);
402 dp->num_tx_rings = min(dp->num_r_vecs, dp->num_tx_rings);
403 dp->num_stack_tx_rings = dp->num_tx_rings;
404 }
405
406 /**
407 * nfp_net_irqs_disable() - Disable interrupts
408 * @pdev: PCI device structure
409 *
410 * Undoes what @nfp_net_irqs_alloc() does.
411 */
nfp_net_irqs_disable(struct pci_dev * pdev)412 void nfp_net_irqs_disable(struct pci_dev *pdev)
413 {
414 pci_disable_msix(pdev);
415 }
416
417 /**
418 * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings.
419 * @irq: Interrupt
420 * @data: Opaque data structure
421 *
422 * Return: Indicate if the interrupt has been handled.
423 */
nfp_net_irq_rxtx(int irq,void * data)424 static irqreturn_t nfp_net_irq_rxtx(int irq, void *data)
425 {
426 struct nfp_net_r_vector *r_vec = data;
427
428 napi_schedule_irqoff(&r_vec->napi);
429
430 /* The FW auto-masks any interrupt, either via the MASK bit in
431 * the MSI-X table or via the per entry ICR field. So there
432 * is no need to disable interrupts here.
433 */
434 return IRQ_HANDLED;
435 }
436
nfp_ctrl_irq_rxtx(int irq,void * data)437 static irqreturn_t nfp_ctrl_irq_rxtx(int irq, void *data)
438 {
439 struct nfp_net_r_vector *r_vec = data;
440
441 tasklet_schedule(&r_vec->tasklet);
442
443 return IRQ_HANDLED;
444 }
445
446 /**
447 * nfp_net_read_link_status() - Reread link status from control BAR
448 * @nn: NFP Network structure
449 */
nfp_net_read_link_status(struct nfp_net * nn)450 static void nfp_net_read_link_status(struct nfp_net *nn)
451 {
452 unsigned long flags;
453 bool link_up;
454 u32 sts;
455
456 spin_lock_irqsave(&nn->link_status_lock, flags);
457
458 sts = nn_readl(nn, NFP_NET_CFG_STS);
459 link_up = !!(sts & NFP_NET_CFG_STS_LINK);
460
461 if (nn->link_up == link_up)
462 goto out;
463
464 nn->link_up = link_up;
465 if (nn->port)
466 set_bit(NFP_PORT_CHANGED, &nn->port->flags);
467
468 if (nn->link_up) {
469 netif_carrier_on(nn->dp.netdev);
470 netdev_info(nn->dp.netdev, "NIC Link is Up\n");
471 } else {
472 netif_carrier_off(nn->dp.netdev);
473 netdev_info(nn->dp.netdev, "NIC Link is Down\n");
474 }
475 out:
476 spin_unlock_irqrestore(&nn->link_status_lock, flags);
477 }
478
479 /**
480 * nfp_net_irq_lsc() - Interrupt service routine for link state changes
481 * @irq: Interrupt
482 * @data: Opaque data structure
483 *
484 * Return: Indicate if the interrupt has been handled.
485 */
nfp_net_irq_lsc(int irq,void * data)486 static irqreturn_t nfp_net_irq_lsc(int irq, void *data)
487 {
488 struct nfp_net *nn = data;
489 struct msix_entry *entry;
490
491 entry = &nn->irq_entries[NFP_NET_IRQ_LSC_IDX];
492
493 nfp_net_read_link_status(nn);
494
495 nfp_net_irq_unmask(nn, entry->entry);
496
497 return IRQ_HANDLED;
498 }
499
500 /**
501 * nfp_net_irq_exn() - Interrupt service routine for exceptions
502 * @irq: Interrupt
503 * @data: Opaque data structure
504 *
505 * Return: Indicate if the interrupt has been handled.
506 */
nfp_net_irq_exn(int irq,void * data)507 static irqreturn_t nfp_net_irq_exn(int irq, void *data)
508 {
509 struct nfp_net *nn = data;
510
511 nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__);
512 /* XXX TO BE IMPLEMENTED */
513 return IRQ_HANDLED;
514 }
515
516 /**
517 * nfp_net_tx_ring_init() - Fill in the boilerplate for a TX ring
518 * @tx_ring: TX ring structure
519 * @r_vec: IRQ vector servicing this ring
520 * @idx: Ring index
521 * @is_xdp: Is this an XDP TX ring?
522 */
523 static void
nfp_net_tx_ring_init(struct nfp_net_tx_ring * tx_ring,struct nfp_net_r_vector * r_vec,unsigned int idx,bool is_xdp)524 nfp_net_tx_ring_init(struct nfp_net_tx_ring *tx_ring,
525 struct nfp_net_r_vector *r_vec, unsigned int idx,
526 bool is_xdp)
527 {
528 struct nfp_net *nn = r_vec->nfp_net;
529
530 tx_ring->idx = idx;
531 tx_ring->r_vec = r_vec;
532 tx_ring->is_xdp = is_xdp;
533 u64_stats_init(&tx_ring->r_vec->tx_sync);
534
535 tx_ring->qcidx = tx_ring->idx * nn->stride_tx;
536 tx_ring->qcp_q = nn->tx_bar + NFP_QCP_QUEUE_OFF(tx_ring->qcidx);
537 }
538
539 /**
540 * nfp_net_rx_ring_init() - Fill in the boilerplate for a RX ring
541 * @rx_ring: RX ring structure
542 * @r_vec: IRQ vector servicing this ring
543 * @idx: Ring index
544 */
545 static void
nfp_net_rx_ring_init(struct nfp_net_rx_ring * rx_ring,struct nfp_net_r_vector * r_vec,unsigned int idx)546 nfp_net_rx_ring_init(struct nfp_net_rx_ring *rx_ring,
547 struct nfp_net_r_vector *r_vec, unsigned int idx)
548 {
549 struct nfp_net *nn = r_vec->nfp_net;
550
551 rx_ring->idx = idx;
552 rx_ring->r_vec = r_vec;
553 u64_stats_init(&rx_ring->r_vec->rx_sync);
554
555 rx_ring->fl_qcidx = rx_ring->idx * nn->stride_rx;
556 rx_ring->qcp_fl = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->fl_qcidx);
557 }
558
559 /**
560 * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN)
561 * @nn: NFP Network structure
562 * @ctrl_offset: Control BAR offset where IRQ configuration should be written
563 * @format: printf-style format to construct the interrupt name
564 * @name: Pointer to allocated space for interrupt name
565 * @name_sz: Size of space for interrupt name
566 * @vector_idx: Index of MSI-X vector used for this interrupt
567 * @handler: IRQ handler to register for this interrupt
568 */
569 static int
nfp_net_aux_irq_request(struct nfp_net * nn,u32 ctrl_offset,const char * format,char * name,size_t name_sz,unsigned int vector_idx,irq_handler_t handler)570 nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset,
571 const char *format, char *name, size_t name_sz,
572 unsigned int vector_idx, irq_handler_t handler)
573 {
574 struct msix_entry *entry;
575 int err;
576
577 entry = &nn->irq_entries[vector_idx];
578
579 snprintf(name, name_sz, format, nfp_net_name(nn));
580 err = request_irq(entry->vector, handler, 0, name, nn);
581 if (err) {
582 nn_err(nn, "Failed to request IRQ %d (err=%d).\n",
583 entry->vector, err);
584 return err;
585 }
586 nn_writeb(nn, ctrl_offset, entry->entry);
587 nfp_net_irq_unmask(nn, entry->entry);
588
589 return 0;
590 }
591
592 /**
593 * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN)
594 * @nn: NFP Network structure
595 * @ctrl_offset: Control BAR offset where IRQ configuration should be written
596 * @vector_idx: Index of MSI-X vector used for this interrupt
597 */
nfp_net_aux_irq_free(struct nfp_net * nn,u32 ctrl_offset,unsigned int vector_idx)598 static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset,
599 unsigned int vector_idx)
600 {
601 nn_writeb(nn, ctrl_offset, 0xff);
602 nn_pci_flush(nn);
603 free_irq(nn->irq_entries[vector_idx].vector, nn);
604 }
605
606 /* Transmit
607 *
608 * One queue controller peripheral queue is used for transmit. The
609 * driver en-queues packets for transmit by advancing the write
610 * pointer. The device indicates that packets have transmitted by
611 * advancing the read pointer. The driver maintains a local copy of
612 * the read and write pointer in @struct nfp_net_tx_ring. The driver
613 * keeps @wr_p in sync with the queue controller write pointer and can
614 * determine how many packets have been transmitted by comparing its
615 * copy of the read pointer @rd_p with the read pointer maintained by
616 * the queue controller peripheral.
617 */
618
619 /**
620 * nfp_net_tx_full() - Check if the TX ring is full
621 * @tx_ring: TX ring to check
622 * @dcnt: Number of descriptors that need to be enqueued (must be >= 1)
623 *
624 * This function checks, based on the *host copy* of read/write
625 * pointer if a given TX ring is full. The real TX queue may have
626 * some newly made available slots.
627 *
628 * Return: True if the ring is full.
629 */
nfp_net_tx_full(struct nfp_net_tx_ring * tx_ring,int dcnt)630 static int nfp_net_tx_full(struct nfp_net_tx_ring *tx_ring, int dcnt)
631 {
632 return (tx_ring->wr_p - tx_ring->rd_p) >= (tx_ring->cnt - dcnt);
633 }
634
635 /* Wrappers for deciding when to stop and restart TX queues */
nfp_net_tx_ring_should_wake(struct nfp_net_tx_ring * tx_ring)636 static int nfp_net_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring)
637 {
638 return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4);
639 }
640
nfp_net_tx_ring_should_stop(struct nfp_net_tx_ring * tx_ring)641 static int nfp_net_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring)
642 {
643 return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1);
644 }
645
646 /**
647 * nfp_net_tx_ring_stop() - stop tx ring
648 * @nd_q: netdev queue
649 * @tx_ring: driver tx queue structure
650 *
651 * Safely stop TX ring. Remember that while we are running .start_xmit()
652 * someone else may be cleaning the TX ring completions so we need to be
653 * extra careful here.
654 */
nfp_net_tx_ring_stop(struct netdev_queue * nd_q,struct nfp_net_tx_ring * tx_ring)655 static void nfp_net_tx_ring_stop(struct netdev_queue *nd_q,
656 struct nfp_net_tx_ring *tx_ring)
657 {
658 netif_tx_stop_queue(nd_q);
659
660 /* We can race with the TX completion out of NAPI so recheck */
661 smp_mb();
662 if (unlikely(nfp_net_tx_ring_should_wake(tx_ring)))
663 netif_tx_start_queue(nd_q);
664 }
665
666 /**
667 * nfp_net_tx_tso() - Set up Tx descriptor for LSO
668 * @r_vec: per-ring structure
669 * @txbuf: Pointer to driver soft TX descriptor
670 * @txd: Pointer to HW TX descriptor
671 * @skb: Pointer to SKB
672 *
673 * Set up Tx descriptor for LSO, do nothing for non-LSO skbs.
674 * Return error on packet header greater than maximum supported LSO header size.
675 */
nfp_net_tx_tso(struct nfp_net_r_vector * r_vec,struct nfp_net_tx_buf * txbuf,struct nfp_net_tx_desc * txd,struct sk_buff * skb)676 static void nfp_net_tx_tso(struct nfp_net_r_vector *r_vec,
677 struct nfp_net_tx_buf *txbuf,
678 struct nfp_net_tx_desc *txd, struct sk_buff *skb)
679 {
680 u32 hdrlen;
681 u16 mss;
682
683 if (!skb_is_gso(skb))
684 return;
685
686 if (!skb->encapsulation) {
687 txd->l3_offset = skb_network_offset(skb);
688 txd->l4_offset = skb_transport_offset(skb);
689 hdrlen = skb_transport_offset(skb) + tcp_hdrlen(skb);
690 } else {
691 txd->l3_offset = skb_inner_network_offset(skb);
692 txd->l4_offset = skb_inner_transport_offset(skb);
693 hdrlen = skb_inner_transport_header(skb) - skb->data +
694 inner_tcp_hdrlen(skb);
695 }
696
697 txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs;
698 txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1);
699
700 mss = skb_shinfo(skb)->gso_size & PCIE_DESC_TX_MSS_MASK;
701 txd->lso_hdrlen = hdrlen;
702 txd->mss = cpu_to_le16(mss);
703 txd->flags |= PCIE_DESC_TX_LSO;
704
705 u64_stats_update_begin(&r_vec->tx_sync);
706 r_vec->tx_lso++;
707 u64_stats_update_end(&r_vec->tx_sync);
708 }
709
710 /**
711 * nfp_net_tx_csum() - Set TX CSUM offload flags in TX descriptor
712 * @dp: NFP Net data path struct
713 * @r_vec: per-ring structure
714 * @txbuf: Pointer to driver soft TX descriptor
715 * @txd: Pointer to TX descriptor
716 * @skb: Pointer to SKB
717 *
718 * This function sets the TX checksum flags in the TX descriptor based
719 * on the configuration and the protocol of the packet to be transmitted.
720 */
nfp_net_tx_csum(struct nfp_net_dp * dp,struct nfp_net_r_vector * r_vec,struct nfp_net_tx_buf * txbuf,struct nfp_net_tx_desc * txd,struct sk_buff * skb)721 static void nfp_net_tx_csum(struct nfp_net_dp *dp,
722 struct nfp_net_r_vector *r_vec,
723 struct nfp_net_tx_buf *txbuf,
724 struct nfp_net_tx_desc *txd, struct sk_buff *skb)
725 {
726 struct ipv6hdr *ipv6h;
727 struct iphdr *iph;
728 u8 l4_hdr;
729
730 if (!(dp->ctrl & NFP_NET_CFG_CTRL_TXCSUM))
731 return;
732
733 if (skb->ip_summed != CHECKSUM_PARTIAL)
734 return;
735
736 txd->flags |= PCIE_DESC_TX_CSUM;
737 if (skb->encapsulation)
738 txd->flags |= PCIE_DESC_TX_ENCAP;
739
740 iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
741 ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
742
743 if (iph->version == 4) {
744 txd->flags |= PCIE_DESC_TX_IP4_CSUM;
745 l4_hdr = iph->protocol;
746 } else if (ipv6h->version == 6) {
747 l4_hdr = ipv6h->nexthdr;
748 } else {
749 nn_dp_warn(dp, "partial checksum but ipv=%x!\n", iph->version);
750 return;
751 }
752
753 switch (l4_hdr) {
754 case IPPROTO_TCP:
755 txd->flags |= PCIE_DESC_TX_TCP_CSUM;
756 break;
757 case IPPROTO_UDP:
758 txd->flags |= PCIE_DESC_TX_UDP_CSUM;
759 break;
760 default:
761 nn_dp_warn(dp, "partial checksum but l4 proto=%x!\n", l4_hdr);
762 return;
763 }
764
765 u64_stats_update_begin(&r_vec->tx_sync);
766 if (skb->encapsulation)
767 r_vec->hw_csum_tx_inner += txbuf->pkt_cnt;
768 else
769 r_vec->hw_csum_tx += txbuf->pkt_cnt;
770 u64_stats_update_end(&r_vec->tx_sync);
771 }
772
nfp_net_tx_xmit_more_flush(struct nfp_net_tx_ring * tx_ring)773 static void nfp_net_tx_xmit_more_flush(struct nfp_net_tx_ring *tx_ring)
774 {
775 wmb();
776 nfp_qcp_wr_ptr_add(tx_ring->qcp_q, tx_ring->wr_ptr_add);
777 tx_ring->wr_ptr_add = 0;
778 }
779
nfp_net_prep_port_id(struct sk_buff * skb)780 static int nfp_net_prep_port_id(struct sk_buff *skb)
781 {
782 struct metadata_dst *md_dst = skb_metadata_dst(skb);
783 unsigned char *data;
784
785 if (likely(!md_dst))
786 return 0;
787 if (unlikely(md_dst->type != METADATA_HW_PORT_MUX))
788 return 0;
789
790 if (unlikely(skb_cow_head(skb, 8)))
791 return -ENOMEM;
792
793 data = skb_push(skb, 8);
794 put_unaligned_be32(NFP_NET_META_PORTID, data);
795 put_unaligned_be32(md_dst->u.port_info.port_id, data + 4);
796
797 return 8;
798 }
799
800 /**
801 * nfp_net_tx() - Main transmit entry point
802 * @skb: SKB to transmit
803 * @netdev: netdev structure
804 *
805 * Return: NETDEV_TX_OK on success.
806 */
nfp_net_tx(struct sk_buff * skb,struct net_device * netdev)807 static int nfp_net_tx(struct sk_buff *skb, struct net_device *netdev)
808 {
809 struct nfp_net *nn = netdev_priv(netdev);
810 const struct skb_frag_struct *frag;
811 struct nfp_net_tx_desc *txd, txdg;
812 int f, nr_frags, wr_idx, md_bytes;
813 struct nfp_net_tx_ring *tx_ring;
814 struct nfp_net_r_vector *r_vec;
815 struct nfp_net_tx_buf *txbuf;
816 struct netdev_queue *nd_q;
817 struct nfp_net_dp *dp;
818 dma_addr_t dma_addr;
819 unsigned int fsize;
820 u16 qidx;
821
822 dp = &nn->dp;
823 qidx = skb_get_queue_mapping(skb);
824 tx_ring = &dp->tx_rings[qidx];
825 r_vec = tx_ring->r_vec;
826 nd_q = netdev_get_tx_queue(dp->netdev, qidx);
827
828 nr_frags = skb_shinfo(skb)->nr_frags;
829
830 if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) {
831 nn_dp_warn(dp, "TX ring %d busy. wrp=%u rdp=%u\n",
832 qidx, tx_ring->wr_p, tx_ring->rd_p);
833 netif_tx_stop_queue(nd_q);
834 nfp_net_tx_xmit_more_flush(tx_ring);
835 u64_stats_update_begin(&r_vec->tx_sync);
836 r_vec->tx_busy++;
837 u64_stats_update_end(&r_vec->tx_sync);
838 return NETDEV_TX_BUSY;
839 }
840
841 md_bytes = nfp_net_prep_port_id(skb);
842 if (unlikely(md_bytes < 0)) {
843 nfp_net_tx_xmit_more_flush(tx_ring);
844 dev_kfree_skb_any(skb);
845 return NETDEV_TX_OK;
846 }
847
848 /* Start with the head skbuf */
849 dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb),
850 DMA_TO_DEVICE);
851 if (dma_mapping_error(dp->dev, dma_addr))
852 goto err_free;
853
854 wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
855
856 /* Stash the soft descriptor of the head then initialize it */
857 txbuf = &tx_ring->txbufs[wr_idx];
858 txbuf->skb = skb;
859 txbuf->dma_addr = dma_addr;
860 txbuf->fidx = -1;
861 txbuf->pkt_cnt = 1;
862 txbuf->real_len = skb->len;
863
864 /* Build TX descriptor */
865 txd = &tx_ring->txds[wr_idx];
866 txd->offset_eop = (nr_frags ? 0 : PCIE_DESC_TX_EOP) | md_bytes;
867 txd->dma_len = cpu_to_le16(skb_headlen(skb));
868 nfp_desc_set_dma_addr(txd, dma_addr);
869 txd->data_len = cpu_to_le16(skb->len);
870
871 txd->flags = 0;
872 txd->mss = 0;
873 txd->lso_hdrlen = 0;
874
875 /* Do not reorder - tso may adjust pkt cnt, vlan may override fields */
876 nfp_net_tx_tso(r_vec, txbuf, txd, skb);
877 nfp_net_tx_csum(dp, r_vec, txbuf, txd, skb);
878 if (skb_vlan_tag_present(skb) && dp->ctrl & NFP_NET_CFG_CTRL_TXVLAN) {
879 txd->flags |= PCIE_DESC_TX_VLAN;
880 txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
881 }
882
883 /* Gather DMA */
884 if (nr_frags > 0) {
885 /* all descs must match except for in addr, length and eop */
886 txdg = *txd;
887
888 for (f = 0; f < nr_frags; f++) {
889 frag = &skb_shinfo(skb)->frags[f];
890 fsize = skb_frag_size(frag);
891
892 dma_addr = skb_frag_dma_map(dp->dev, frag, 0,
893 fsize, DMA_TO_DEVICE);
894 if (dma_mapping_error(dp->dev, dma_addr))
895 goto err_unmap;
896
897 wr_idx = D_IDX(tx_ring, wr_idx + 1);
898 tx_ring->txbufs[wr_idx].skb = skb;
899 tx_ring->txbufs[wr_idx].dma_addr = dma_addr;
900 tx_ring->txbufs[wr_idx].fidx = f;
901
902 txd = &tx_ring->txds[wr_idx];
903 *txd = txdg;
904 txd->dma_len = cpu_to_le16(fsize);
905 nfp_desc_set_dma_addr(txd, dma_addr);
906 txd->offset_eop |=
907 (f == nr_frags - 1) ? PCIE_DESC_TX_EOP : 0;
908 }
909
910 u64_stats_update_begin(&r_vec->tx_sync);
911 r_vec->tx_gather++;
912 u64_stats_update_end(&r_vec->tx_sync);
913 }
914
915 netdev_tx_sent_queue(nd_q, txbuf->real_len);
916
917 skb_tx_timestamp(skb);
918
919 tx_ring->wr_p += nr_frags + 1;
920 if (nfp_net_tx_ring_should_stop(tx_ring))
921 nfp_net_tx_ring_stop(nd_q, tx_ring);
922
923 tx_ring->wr_ptr_add += nr_frags + 1;
924 if (!skb->xmit_more || netif_xmit_stopped(nd_q))
925 nfp_net_tx_xmit_more_flush(tx_ring);
926
927 return NETDEV_TX_OK;
928
929 err_unmap:
930 while (--f >= 0) {
931 frag = &skb_shinfo(skb)->frags[f];
932 dma_unmap_page(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
933 skb_frag_size(frag), DMA_TO_DEVICE);
934 tx_ring->txbufs[wr_idx].skb = NULL;
935 tx_ring->txbufs[wr_idx].dma_addr = 0;
936 tx_ring->txbufs[wr_idx].fidx = -2;
937 wr_idx = wr_idx - 1;
938 if (wr_idx < 0)
939 wr_idx += tx_ring->cnt;
940 }
941 dma_unmap_single(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
942 skb_headlen(skb), DMA_TO_DEVICE);
943 tx_ring->txbufs[wr_idx].skb = NULL;
944 tx_ring->txbufs[wr_idx].dma_addr = 0;
945 tx_ring->txbufs[wr_idx].fidx = -2;
946 err_free:
947 nn_dp_warn(dp, "Failed to map DMA TX buffer\n");
948 nfp_net_tx_xmit_more_flush(tx_ring);
949 u64_stats_update_begin(&r_vec->tx_sync);
950 r_vec->tx_errors++;
951 u64_stats_update_end(&r_vec->tx_sync);
952 dev_kfree_skb_any(skb);
953 return NETDEV_TX_OK;
954 }
955
956 /**
957 * nfp_net_tx_complete() - Handled completed TX packets
958 * @tx_ring: TX ring structure
959 *
960 * Return: Number of completed TX descriptors
961 */
nfp_net_tx_complete(struct nfp_net_tx_ring * tx_ring)962 static void nfp_net_tx_complete(struct nfp_net_tx_ring *tx_ring)
963 {
964 struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
965 struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
966 const struct skb_frag_struct *frag;
967 struct netdev_queue *nd_q;
968 u32 done_pkts = 0, done_bytes = 0;
969 struct sk_buff *skb;
970 int todo, nr_frags;
971 u32 qcp_rd_p;
972 int fidx;
973 int idx;
974
975 if (tx_ring->wr_p == tx_ring->rd_p)
976 return;
977
978 /* Work out how many descriptors have been transmitted */
979 qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);
980
981 if (qcp_rd_p == tx_ring->qcp_rd_p)
982 return;
983
984 todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p);
985
986 while (todo--) {
987 idx = D_IDX(tx_ring, tx_ring->rd_p++);
988
989 skb = tx_ring->txbufs[idx].skb;
990 if (!skb)
991 continue;
992
993 nr_frags = skb_shinfo(skb)->nr_frags;
994 fidx = tx_ring->txbufs[idx].fidx;
995
996 if (fidx == -1) {
997 /* unmap head */
998 dma_unmap_single(dp->dev, tx_ring->txbufs[idx].dma_addr,
999 skb_headlen(skb), DMA_TO_DEVICE);
1000
1001 done_pkts += tx_ring->txbufs[idx].pkt_cnt;
1002 done_bytes += tx_ring->txbufs[idx].real_len;
1003 } else {
1004 /* unmap fragment */
1005 frag = &skb_shinfo(skb)->frags[fidx];
1006 dma_unmap_page(dp->dev, tx_ring->txbufs[idx].dma_addr,
1007 skb_frag_size(frag), DMA_TO_DEVICE);
1008 }
1009
1010 /* check for last gather fragment */
1011 if (fidx == nr_frags - 1)
1012 dev_consume_skb_any(skb);
1013
1014 tx_ring->txbufs[idx].dma_addr = 0;
1015 tx_ring->txbufs[idx].skb = NULL;
1016 tx_ring->txbufs[idx].fidx = -2;
1017 }
1018
1019 tx_ring->qcp_rd_p = qcp_rd_p;
1020
1021 u64_stats_update_begin(&r_vec->tx_sync);
1022 r_vec->tx_bytes += done_bytes;
1023 r_vec->tx_pkts += done_pkts;
1024 u64_stats_update_end(&r_vec->tx_sync);
1025
1026 if (!dp->netdev)
1027 return;
1028
1029 nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
1030 netdev_tx_completed_queue(nd_q, done_pkts, done_bytes);
1031 if (nfp_net_tx_ring_should_wake(tx_ring)) {
1032 /* Make sure TX thread will see updated tx_ring->rd_p */
1033 smp_mb();
1034
1035 if (unlikely(netif_tx_queue_stopped(nd_q)))
1036 netif_tx_wake_queue(nd_q);
1037 }
1038
1039 WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
1040 "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
1041 tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
1042 }
1043
nfp_net_xdp_complete(struct nfp_net_tx_ring * tx_ring)1044 static bool nfp_net_xdp_complete(struct nfp_net_tx_ring *tx_ring)
1045 {
1046 struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
1047 u32 done_pkts = 0, done_bytes = 0;
1048 bool done_all;
1049 int idx, todo;
1050 u32 qcp_rd_p;
1051
1052 /* Work out how many descriptors have been transmitted */
1053 qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);
1054
1055 if (qcp_rd_p == tx_ring->qcp_rd_p)
1056 return true;
1057
1058 todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p);
1059
1060 done_all = todo <= NFP_NET_XDP_MAX_COMPLETE;
1061 todo = min(todo, NFP_NET_XDP_MAX_COMPLETE);
1062
1063 tx_ring->qcp_rd_p = D_IDX(tx_ring, tx_ring->qcp_rd_p + todo);
1064
1065 done_pkts = todo;
1066 while (todo--) {
1067 idx = D_IDX(tx_ring, tx_ring->rd_p);
1068 tx_ring->rd_p++;
1069
1070 done_bytes += tx_ring->txbufs[idx].real_len;
1071 }
1072
1073 u64_stats_update_begin(&r_vec->tx_sync);
1074 r_vec->tx_bytes += done_bytes;
1075 r_vec->tx_pkts += done_pkts;
1076 u64_stats_update_end(&r_vec->tx_sync);
1077
1078 WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
1079 "XDP TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
1080 tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
1081
1082 return done_all;
1083 }
1084
1085 /**
1086 * nfp_net_tx_ring_reset() - Free any untransmitted buffers and reset pointers
1087 * @dp: NFP Net data path struct
1088 * @tx_ring: TX ring structure
1089 *
1090 * Assumes that the device is stopped, must be idempotent.
1091 */
1092 static void
nfp_net_tx_ring_reset(struct nfp_net_dp * dp,struct nfp_net_tx_ring * tx_ring)1093 nfp_net_tx_ring_reset(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring)
1094 {
1095 const struct skb_frag_struct *frag;
1096 struct netdev_queue *nd_q;
1097
1098 while (!tx_ring->is_xdp && tx_ring->rd_p != tx_ring->wr_p) {
1099 struct nfp_net_tx_buf *tx_buf;
1100 struct sk_buff *skb;
1101 int idx, nr_frags;
1102
1103 idx = D_IDX(tx_ring, tx_ring->rd_p);
1104 tx_buf = &tx_ring->txbufs[idx];
1105
1106 skb = tx_ring->txbufs[idx].skb;
1107 nr_frags = skb_shinfo(skb)->nr_frags;
1108
1109 if (tx_buf->fidx == -1) {
1110 /* unmap head */
1111 dma_unmap_single(dp->dev, tx_buf->dma_addr,
1112 skb_headlen(skb), DMA_TO_DEVICE);
1113 } else {
1114 /* unmap fragment */
1115 frag = &skb_shinfo(skb)->frags[tx_buf->fidx];
1116 dma_unmap_page(dp->dev, tx_buf->dma_addr,
1117 skb_frag_size(frag), DMA_TO_DEVICE);
1118 }
1119
1120 /* check for last gather fragment */
1121 if (tx_buf->fidx == nr_frags - 1)
1122 dev_kfree_skb_any(skb);
1123
1124 tx_buf->dma_addr = 0;
1125 tx_buf->skb = NULL;
1126 tx_buf->fidx = -2;
1127
1128 tx_ring->qcp_rd_p++;
1129 tx_ring->rd_p++;
1130 }
1131
1132 memset(tx_ring->txds, 0, sizeof(*tx_ring->txds) * tx_ring->cnt);
1133 tx_ring->wr_p = 0;
1134 tx_ring->rd_p = 0;
1135 tx_ring->qcp_rd_p = 0;
1136 tx_ring->wr_ptr_add = 0;
1137
1138 if (tx_ring->is_xdp || !dp->netdev)
1139 return;
1140
1141 nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
1142 netdev_tx_reset_queue(nd_q);
1143 }
1144
nfp_net_tx_timeout(struct net_device * netdev)1145 static void nfp_net_tx_timeout(struct net_device *netdev)
1146 {
1147 struct nfp_net *nn = netdev_priv(netdev);
1148 int i;
1149
1150 for (i = 0; i < nn->dp.netdev->real_num_tx_queues; i++) {
1151 if (!netif_tx_queue_stopped(netdev_get_tx_queue(netdev, i)))
1152 continue;
1153 nn_warn(nn, "TX timeout on ring: %d\n", i);
1154 }
1155 nn_warn(nn, "TX watchdog timeout\n");
1156 }
1157
1158 /* Receive processing
1159 */
1160 static unsigned int
nfp_net_calc_fl_bufsz(struct nfp_net_dp * dp)1161 nfp_net_calc_fl_bufsz(struct nfp_net_dp *dp)
1162 {
1163 unsigned int fl_bufsz;
1164
1165 fl_bufsz = NFP_NET_RX_BUF_HEADROOM;
1166 fl_bufsz += dp->rx_dma_off;
1167 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1168 fl_bufsz += NFP_NET_MAX_PREPEND;
1169 else
1170 fl_bufsz += dp->rx_offset;
1171 fl_bufsz += ETH_HLEN + VLAN_HLEN * 2 + dp->mtu;
1172
1173 fl_bufsz = SKB_DATA_ALIGN(fl_bufsz);
1174 fl_bufsz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1175
1176 return fl_bufsz;
1177 }
1178
1179 static void
nfp_net_free_frag(void * frag,bool xdp)1180 nfp_net_free_frag(void *frag, bool xdp)
1181 {
1182 if (!xdp)
1183 skb_free_frag(frag);
1184 else
1185 __free_page(virt_to_page(frag));
1186 }
1187
1188 /**
1189 * nfp_net_rx_alloc_one() - Allocate and map page frag for RX
1190 * @dp: NFP Net data path struct
1191 * @dma_addr: Pointer to storage for DMA address (output param)
1192 *
1193 * This function will allcate a new page frag, map it for DMA.
1194 *
1195 * Return: allocated page frag or NULL on failure.
1196 */
nfp_net_rx_alloc_one(struct nfp_net_dp * dp,dma_addr_t * dma_addr)1197 static void *nfp_net_rx_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr)
1198 {
1199 void *frag;
1200
1201 if (!dp->xdp_prog) {
1202 frag = netdev_alloc_frag(dp->fl_bufsz);
1203 } else {
1204 struct page *page;
1205
1206 page = alloc_page(GFP_KERNEL | __GFP_COLD);
1207 frag = page ? page_address(page) : NULL;
1208 }
1209 if (!frag) {
1210 nn_dp_warn(dp, "Failed to alloc receive page frag\n");
1211 return NULL;
1212 }
1213
1214 *dma_addr = nfp_net_dma_map_rx(dp, frag);
1215 if (dma_mapping_error(dp->dev, *dma_addr)) {
1216 nfp_net_free_frag(frag, dp->xdp_prog);
1217 nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
1218 return NULL;
1219 }
1220
1221 return frag;
1222 }
1223
nfp_net_napi_alloc_one(struct nfp_net_dp * dp,dma_addr_t * dma_addr)1224 static void *nfp_net_napi_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr)
1225 {
1226 void *frag;
1227
1228 if (!dp->xdp_prog) {
1229 frag = napi_alloc_frag(dp->fl_bufsz);
1230 } else {
1231 struct page *page;
1232
1233 page = alloc_page(GFP_ATOMIC | __GFP_COLD);
1234 frag = page ? page_address(page) : NULL;
1235 }
1236 if (!frag) {
1237 nn_dp_warn(dp, "Failed to alloc receive page frag\n");
1238 return NULL;
1239 }
1240
1241 *dma_addr = nfp_net_dma_map_rx(dp, frag);
1242 if (dma_mapping_error(dp->dev, *dma_addr)) {
1243 nfp_net_free_frag(frag, dp->xdp_prog);
1244 nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
1245 return NULL;
1246 }
1247
1248 return frag;
1249 }
1250
1251 /**
1252 * nfp_net_rx_give_one() - Put mapped skb on the software and hardware rings
1253 * @dp: NFP Net data path struct
1254 * @rx_ring: RX ring structure
1255 * @frag: page fragment buffer
1256 * @dma_addr: DMA address of skb mapping
1257 */
nfp_net_rx_give_one(const struct nfp_net_dp * dp,struct nfp_net_rx_ring * rx_ring,void * frag,dma_addr_t dma_addr)1258 static void nfp_net_rx_give_one(const struct nfp_net_dp *dp,
1259 struct nfp_net_rx_ring *rx_ring,
1260 void *frag, dma_addr_t dma_addr)
1261 {
1262 unsigned int wr_idx;
1263
1264 wr_idx = D_IDX(rx_ring, rx_ring->wr_p);
1265
1266 nfp_net_dma_sync_dev_rx(dp, dma_addr);
1267
1268 /* Stash SKB and DMA address away */
1269 rx_ring->rxbufs[wr_idx].frag = frag;
1270 rx_ring->rxbufs[wr_idx].dma_addr = dma_addr;
1271
1272 /* Fill freelist descriptor */
1273 rx_ring->rxds[wr_idx].fld.reserved = 0;
1274 rx_ring->rxds[wr_idx].fld.meta_len_dd = 0;
1275 nfp_desc_set_dma_addr(&rx_ring->rxds[wr_idx].fld,
1276 dma_addr + dp->rx_dma_off);
1277
1278 rx_ring->wr_p++;
1279 if (!(rx_ring->wr_p % NFP_NET_FL_BATCH)) {
1280 /* Update write pointer of the freelist queue. Make
1281 * sure all writes are flushed before telling the hardware.
1282 */
1283 wmb();
1284 nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, NFP_NET_FL_BATCH);
1285 }
1286 }
1287
1288 /**
1289 * nfp_net_rx_ring_reset() - Reflect in SW state of freelist after disable
1290 * @rx_ring: RX ring structure
1291 *
1292 * Assumes that the device is stopped, must be idempotent.
1293 */
nfp_net_rx_ring_reset(struct nfp_net_rx_ring * rx_ring)1294 static void nfp_net_rx_ring_reset(struct nfp_net_rx_ring *rx_ring)
1295 {
1296 unsigned int wr_idx, last_idx;
1297
1298 /* wr_p == rd_p means ring was never fed FL bufs. RX rings are always
1299 * kept at cnt - 1 FL bufs.
1300 */
1301 if (rx_ring->wr_p == 0 && rx_ring->rd_p == 0)
1302 return;
1303
1304 /* Move the empty entry to the end of the list */
1305 wr_idx = D_IDX(rx_ring, rx_ring->wr_p);
1306 last_idx = rx_ring->cnt - 1;
1307 rx_ring->rxbufs[wr_idx].dma_addr = rx_ring->rxbufs[last_idx].dma_addr;
1308 rx_ring->rxbufs[wr_idx].frag = rx_ring->rxbufs[last_idx].frag;
1309 rx_ring->rxbufs[last_idx].dma_addr = 0;
1310 rx_ring->rxbufs[last_idx].frag = NULL;
1311
1312 memset(rx_ring->rxds, 0, sizeof(*rx_ring->rxds) * rx_ring->cnt);
1313 rx_ring->wr_p = 0;
1314 rx_ring->rd_p = 0;
1315 }
1316
1317 /**
1318 * nfp_net_rx_ring_bufs_free() - Free any buffers currently on the RX ring
1319 * @dp: NFP Net data path struct
1320 * @rx_ring: RX ring to remove buffers from
1321 *
1322 * Assumes that the device is stopped and buffers are in [0, ring->cnt - 1)
1323 * entries. After device is disabled nfp_net_rx_ring_reset() must be called
1324 * to restore required ring geometry.
1325 */
1326 static void
nfp_net_rx_ring_bufs_free(struct nfp_net_dp * dp,struct nfp_net_rx_ring * rx_ring)1327 nfp_net_rx_ring_bufs_free(struct nfp_net_dp *dp,
1328 struct nfp_net_rx_ring *rx_ring)
1329 {
1330 unsigned int i;
1331
1332 for (i = 0; i < rx_ring->cnt - 1; i++) {
1333 /* NULL skb can only happen when initial filling of the ring
1334 * fails to allocate enough buffers and calls here to free
1335 * already allocated ones.
1336 */
1337 if (!rx_ring->rxbufs[i].frag)
1338 continue;
1339
1340 nfp_net_dma_unmap_rx(dp, rx_ring->rxbufs[i].dma_addr);
1341 nfp_net_free_frag(rx_ring->rxbufs[i].frag, dp->xdp_prog);
1342 rx_ring->rxbufs[i].dma_addr = 0;
1343 rx_ring->rxbufs[i].frag = NULL;
1344 }
1345 }
1346
1347 /**
1348 * nfp_net_rx_ring_bufs_alloc() - Fill RX ring with buffers (don't give to FW)
1349 * @dp: NFP Net data path struct
1350 * @rx_ring: RX ring to remove buffers from
1351 */
1352 static int
nfp_net_rx_ring_bufs_alloc(struct nfp_net_dp * dp,struct nfp_net_rx_ring * rx_ring)1353 nfp_net_rx_ring_bufs_alloc(struct nfp_net_dp *dp,
1354 struct nfp_net_rx_ring *rx_ring)
1355 {
1356 struct nfp_net_rx_buf *rxbufs;
1357 unsigned int i;
1358
1359 rxbufs = rx_ring->rxbufs;
1360
1361 for (i = 0; i < rx_ring->cnt - 1; i++) {
1362 rxbufs[i].frag = nfp_net_rx_alloc_one(dp, &rxbufs[i].dma_addr);
1363 if (!rxbufs[i].frag) {
1364 nfp_net_rx_ring_bufs_free(dp, rx_ring);
1365 return -ENOMEM;
1366 }
1367 }
1368
1369 return 0;
1370 }
1371
1372 /**
1373 * nfp_net_rx_ring_fill_freelist() - Give buffers from the ring to FW
1374 * @dp: NFP Net data path struct
1375 * @rx_ring: RX ring to fill
1376 */
1377 static void
nfp_net_rx_ring_fill_freelist(struct nfp_net_dp * dp,struct nfp_net_rx_ring * rx_ring)1378 nfp_net_rx_ring_fill_freelist(struct nfp_net_dp *dp,
1379 struct nfp_net_rx_ring *rx_ring)
1380 {
1381 unsigned int i;
1382
1383 for (i = 0; i < rx_ring->cnt - 1; i++)
1384 nfp_net_rx_give_one(dp, rx_ring, rx_ring->rxbufs[i].frag,
1385 rx_ring->rxbufs[i].dma_addr);
1386 }
1387
1388 /**
1389 * nfp_net_rx_csum_has_errors() - group check if rxd has any csum errors
1390 * @flags: RX descriptor flags field in CPU byte order
1391 */
nfp_net_rx_csum_has_errors(u16 flags)1392 static int nfp_net_rx_csum_has_errors(u16 flags)
1393 {
1394 u16 csum_all_checked, csum_all_ok;
1395
1396 csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL;
1397 csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK;
1398
1399 return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT);
1400 }
1401
1402 /**
1403 * nfp_net_rx_csum() - set SKB checksum field based on RX descriptor flags
1404 * @dp: NFP Net data path struct
1405 * @r_vec: per-ring structure
1406 * @rxd: Pointer to RX descriptor
1407 * @meta: Parsed metadata prepend
1408 * @skb: Pointer to SKB
1409 */
nfp_net_rx_csum(struct nfp_net_dp * dp,struct nfp_net_r_vector * r_vec,struct nfp_net_rx_desc * rxd,struct nfp_meta_parsed * meta,struct sk_buff * skb)1410 static void nfp_net_rx_csum(struct nfp_net_dp *dp,
1411 struct nfp_net_r_vector *r_vec,
1412 struct nfp_net_rx_desc *rxd,
1413 struct nfp_meta_parsed *meta, struct sk_buff *skb)
1414 {
1415 skb_checksum_none_assert(skb);
1416
1417 if (!(dp->netdev->features & NETIF_F_RXCSUM))
1418 return;
1419
1420 if (meta->csum_type) {
1421 skb->ip_summed = meta->csum_type;
1422 skb->csum = meta->csum;
1423 u64_stats_update_begin(&r_vec->rx_sync);
1424 r_vec->hw_csum_rx_ok++;
1425 u64_stats_update_end(&r_vec->rx_sync);
1426 return;
1427 }
1428
1429 if (nfp_net_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) {
1430 u64_stats_update_begin(&r_vec->rx_sync);
1431 r_vec->hw_csum_rx_error++;
1432 u64_stats_update_end(&r_vec->rx_sync);
1433 return;
1434 }
1435
1436 /* Assume that the firmware will never report inner CSUM_OK unless outer
1437 * L4 headers were successfully parsed. FW will always report zero UDP
1438 * checksum as CSUM_OK.
1439 */
1440 if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK ||
1441 rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) {
1442 __skb_incr_checksum_unnecessary(skb);
1443 u64_stats_update_begin(&r_vec->rx_sync);
1444 r_vec->hw_csum_rx_ok++;
1445 u64_stats_update_end(&r_vec->rx_sync);
1446 }
1447
1448 if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK ||
1449 rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) {
1450 __skb_incr_checksum_unnecessary(skb);
1451 u64_stats_update_begin(&r_vec->rx_sync);
1452 r_vec->hw_csum_rx_inner_ok++;
1453 u64_stats_update_end(&r_vec->rx_sync);
1454 }
1455 }
1456
1457 static void
nfp_net_set_hash(struct net_device * netdev,struct nfp_meta_parsed * meta,unsigned int type,__be32 * hash)1458 nfp_net_set_hash(struct net_device *netdev, struct nfp_meta_parsed *meta,
1459 unsigned int type, __be32 *hash)
1460 {
1461 if (!(netdev->features & NETIF_F_RXHASH))
1462 return;
1463
1464 switch (type) {
1465 case NFP_NET_RSS_IPV4:
1466 case NFP_NET_RSS_IPV6:
1467 case NFP_NET_RSS_IPV6_EX:
1468 meta->hash_type = PKT_HASH_TYPE_L3;
1469 break;
1470 default:
1471 meta->hash_type = PKT_HASH_TYPE_L4;
1472 break;
1473 }
1474
1475 meta->hash = get_unaligned_be32(hash);
1476 }
1477
1478 static void
nfp_net_set_hash_desc(struct net_device * netdev,struct nfp_meta_parsed * meta,void * data,struct nfp_net_rx_desc * rxd)1479 nfp_net_set_hash_desc(struct net_device *netdev, struct nfp_meta_parsed *meta,
1480 void *data, struct nfp_net_rx_desc *rxd)
1481 {
1482 struct nfp_net_rx_hash *rx_hash = data;
1483
1484 if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS))
1485 return;
1486
1487 nfp_net_set_hash(netdev, meta, get_unaligned_be32(&rx_hash->hash_type),
1488 &rx_hash->hash);
1489 }
1490
1491 static void *
nfp_net_parse_meta(struct net_device * netdev,struct nfp_meta_parsed * meta,void * data,int meta_len)1492 nfp_net_parse_meta(struct net_device *netdev, struct nfp_meta_parsed *meta,
1493 void *data, int meta_len)
1494 {
1495 u32 meta_info;
1496
1497 meta_info = get_unaligned_be32(data);
1498 data += 4;
1499
1500 while (meta_info) {
1501 switch (meta_info & NFP_NET_META_FIELD_MASK) {
1502 case NFP_NET_META_HASH:
1503 meta_info >>= NFP_NET_META_FIELD_SIZE;
1504 nfp_net_set_hash(netdev, meta,
1505 meta_info & NFP_NET_META_FIELD_MASK,
1506 (__be32 *)data);
1507 data += 4;
1508 break;
1509 case NFP_NET_META_MARK:
1510 meta->mark = get_unaligned_be32(data);
1511 data += 4;
1512 break;
1513 case NFP_NET_META_PORTID:
1514 meta->portid = get_unaligned_be32(data);
1515 data += 4;
1516 break;
1517 case NFP_NET_META_CSUM:
1518 meta->csum_type = CHECKSUM_COMPLETE;
1519 meta->csum =
1520 (__force __wsum)__get_unaligned_cpu32(data);
1521 data += 4;
1522 break;
1523 default:
1524 return NULL;
1525 }
1526
1527 meta_info >>= NFP_NET_META_FIELD_SIZE;
1528 }
1529
1530 return data;
1531 }
1532
1533 static void
nfp_net_rx_drop(const struct nfp_net_dp * dp,struct nfp_net_r_vector * r_vec,struct nfp_net_rx_ring * rx_ring,struct nfp_net_rx_buf * rxbuf,struct sk_buff * skb)1534 nfp_net_rx_drop(const struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec,
1535 struct nfp_net_rx_ring *rx_ring, struct nfp_net_rx_buf *rxbuf,
1536 struct sk_buff *skb)
1537 {
1538 u64_stats_update_begin(&r_vec->rx_sync);
1539 r_vec->rx_drops++;
1540 u64_stats_update_end(&r_vec->rx_sync);
1541
1542 /* skb is build based on the frag, free_skb() would free the frag
1543 * so to be able to reuse it we need an extra ref.
1544 */
1545 if (skb && rxbuf && skb->head == rxbuf->frag)
1546 page_ref_inc(virt_to_head_page(rxbuf->frag));
1547 if (rxbuf)
1548 nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, rxbuf->dma_addr);
1549 if (skb)
1550 dev_kfree_skb_any(skb);
1551 }
1552
1553 static bool
nfp_net_tx_xdp_buf(struct nfp_net_dp * dp,struct nfp_net_rx_ring * rx_ring,struct nfp_net_tx_ring * tx_ring,struct nfp_net_rx_buf * rxbuf,unsigned int dma_off,unsigned int pkt_len,bool * completed)1554 nfp_net_tx_xdp_buf(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring,
1555 struct nfp_net_tx_ring *tx_ring,
1556 struct nfp_net_rx_buf *rxbuf, unsigned int dma_off,
1557 unsigned int pkt_len, bool *completed)
1558 {
1559 struct nfp_net_tx_buf *txbuf;
1560 struct nfp_net_tx_desc *txd;
1561 int wr_idx;
1562
1563 if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
1564 if (!*completed) {
1565 nfp_net_xdp_complete(tx_ring);
1566 *completed = true;
1567 }
1568
1569 if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
1570 nfp_net_rx_drop(dp, rx_ring->r_vec, rx_ring, rxbuf,
1571 NULL);
1572 return false;
1573 }
1574 }
1575
1576 wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
1577
1578 /* Stash the soft descriptor of the head then initialize it */
1579 txbuf = &tx_ring->txbufs[wr_idx];
1580
1581 nfp_net_rx_give_one(dp, rx_ring, txbuf->frag, txbuf->dma_addr);
1582
1583 txbuf->frag = rxbuf->frag;
1584 txbuf->dma_addr = rxbuf->dma_addr;
1585 txbuf->fidx = -1;
1586 txbuf->pkt_cnt = 1;
1587 txbuf->real_len = pkt_len;
1588
1589 dma_sync_single_for_device(dp->dev, rxbuf->dma_addr + dma_off,
1590 pkt_len, DMA_BIDIRECTIONAL);
1591
1592 /* Build TX descriptor */
1593 txd = &tx_ring->txds[wr_idx];
1594 txd->offset_eop = PCIE_DESC_TX_EOP;
1595 txd->dma_len = cpu_to_le16(pkt_len);
1596 nfp_desc_set_dma_addr(txd, rxbuf->dma_addr + dma_off);
1597 txd->data_len = cpu_to_le16(pkt_len);
1598
1599 txd->flags = 0;
1600 txd->mss = 0;
1601 txd->lso_hdrlen = 0;
1602
1603 tx_ring->wr_p++;
1604 tx_ring->wr_ptr_add++;
1605 return true;
1606 }
1607
nfp_net_run_xdp(struct bpf_prog * prog,void * data,void * hard_start,unsigned int * off,unsigned int * len)1608 static int nfp_net_run_xdp(struct bpf_prog *prog, void *data, void *hard_start,
1609 unsigned int *off, unsigned int *len)
1610 {
1611 struct xdp_buff xdp;
1612 void *orig_data;
1613 int ret;
1614
1615 xdp.data_hard_start = hard_start;
1616 xdp.data = data + *off;
1617 xdp.data_end = data + *off + *len;
1618
1619 orig_data = xdp.data;
1620 ret = bpf_prog_run_xdp(prog, &xdp);
1621
1622 *len -= xdp.data - orig_data;
1623 *off += xdp.data - orig_data;
1624
1625 return ret;
1626 }
1627
1628 /**
1629 * nfp_net_rx() - receive up to @budget packets on @rx_ring
1630 * @rx_ring: RX ring to receive from
1631 * @budget: NAPI budget
1632 *
1633 * Note, this function is separated out from the napi poll function to
1634 * more cleanly separate packet receive code from other bookkeeping
1635 * functions performed in the napi poll function.
1636 *
1637 * Return: Number of packets received.
1638 */
nfp_net_rx(struct nfp_net_rx_ring * rx_ring,int budget)1639 static int nfp_net_rx(struct nfp_net_rx_ring *rx_ring, int budget)
1640 {
1641 struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
1642 struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
1643 struct nfp_net_tx_ring *tx_ring;
1644 struct bpf_prog *xdp_prog;
1645 bool xdp_tx_cmpl = false;
1646 unsigned int true_bufsz;
1647 struct sk_buff *skb;
1648 int pkts_polled = 0;
1649 int idx;
1650
1651 rcu_read_lock();
1652 xdp_prog = READ_ONCE(dp->xdp_prog);
1653 true_bufsz = xdp_prog ? PAGE_SIZE : dp->fl_bufsz;
1654 tx_ring = r_vec->xdp_ring;
1655
1656 while (pkts_polled < budget) {
1657 unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off;
1658 struct nfp_net_rx_buf *rxbuf;
1659 struct nfp_net_rx_desc *rxd;
1660 struct nfp_meta_parsed meta;
1661 struct net_device *netdev;
1662 dma_addr_t new_dma_addr;
1663 void *new_frag;
1664
1665 idx = D_IDX(rx_ring, rx_ring->rd_p);
1666
1667 rxd = &rx_ring->rxds[idx];
1668 if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD))
1669 break;
1670
1671 /* Memory barrier to ensure that we won't do other reads
1672 * before the DD bit.
1673 */
1674 dma_rmb();
1675
1676 memset(&meta, 0, sizeof(meta));
1677
1678 rx_ring->rd_p++;
1679 pkts_polled++;
1680
1681 rxbuf = &rx_ring->rxbufs[idx];
1682 /* < meta_len >
1683 * <-- [rx_offset] -->
1684 * ---------------------------------------------------------
1685 * | [XX] | metadata | packet | XXXX |
1686 * ---------------------------------------------------------
1687 * <---------------- data_len --------------->
1688 *
1689 * The rx_offset is fixed for all packets, the meta_len can vary
1690 * on a packet by packet basis. If rx_offset is set to zero
1691 * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the
1692 * buffer and is immediately followed by the packet (no [XX]).
1693 */
1694 meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
1695 data_len = le16_to_cpu(rxd->rxd.data_len);
1696 pkt_len = data_len - meta_len;
1697
1698 pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off;
1699 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1700 pkt_off += meta_len;
1701 else
1702 pkt_off += dp->rx_offset;
1703 meta_off = pkt_off - meta_len;
1704
1705 /* Stats update */
1706 u64_stats_update_begin(&r_vec->rx_sync);
1707 r_vec->rx_pkts++;
1708 r_vec->rx_bytes += pkt_len;
1709 u64_stats_update_end(&r_vec->rx_sync);
1710
1711 if (unlikely(meta_len > NFP_NET_MAX_PREPEND ||
1712 (dp->rx_offset && meta_len > dp->rx_offset))) {
1713 nn_dp_warn(dp, "oversized RX packet metadata %u\n",
1714 meta_len);
1715 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1716 continue;
1717 }
1718
1719 nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off,
1720 data_len);
1721
1722 if (!dp->chained_metadata_format) {
1723 nfp_net_set_hash_desc(dp->netdev, &meta,
1724 rxbuf->frag + meta_off, rxd);
1725 } else if (meta_len) {
1726 void *end;
1727
1728 end = nfp_net_parse_meta(dp->netdev, &meta,
1729 rxbuf->frag + meta_off,
1730 meta_len);
1731 if (unlikely(end != rxbuf->frag + pkt_off)) {
1732 nn_dp_warn(dp, "invalid RX packet metadata\n");
1733 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf,
1734 NULL);
1735 continue;
1736 }
1737 }
1738
1739 if (xdp_prog && !(rxd->rxd.flags & PCIE_DESC_RX_BPF &&
1740 dp->bpf_offload_xdp) && !meta.portid) {
1741 unsigned int dma_off;
1742 void *hard_start;
1743 int act;
1744
1745 hard_start = rxbuf->frag + NFP_NET_RX_BUF_HEADROOM;
1746
1747 act = nfp_net_run_xdp(xdp_prog, rxbuf->frag, hard_start,
1748 &pkt_off, &pkt_len);
1749 switch (act) {
1750 case XDP_PASS:
1751 break;
1752 case XDP_TX:
1753 dma_off = pkt_off - NFP_NET_RX_BUF_HEADROOM;
1754 if (unlikely(!nfp_net_tx_xdp_buf(dp, rx_ring,
1755 tx_ring, rxbuf,
1756 dma_off,
1757 pkt_len,
1758 &xdp_tx_cmpl)))
1759 trace_xdp_exception(dp->netdev,
1760 xdp_prog, act);
1761 continue;
1762 default:
1763 bpf_warn_invalid_xdp_action(act);
1764 /* fall through */
1765 case XDP_ABORTED:
1766 trace_xdp_exception(dp->netdev, xdp_prog, act);
1767 /* fall through */
1768 case XDP_DROP:
1769 nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag,
1770 rxbuf->dma_addr);
1771 continue;
1772 }
1773 }
1774
1775 skb = build_skb(rxbuf->frag, true_bufsz);
1776 if (unlikely(!skb)) {
1777 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1778 continue;
1779 }
1780 new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr);
1781 if (unlikely(!new_frag)) {
1782 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb);
1783 continue;
1784 }
1785
1786 nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr);
1787
1788 nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr);
1789
1790 if (likely(!meta.portid)) {
1791 netdev = dp->netdev;
1792 } else {
1793 struct nfp_net *nn;
1794
1795 nn = netdev_priv(dp->netdev);
1796 netdev = nfp_app_repr_get(nn->app, meta.portid);
1797 if (unlikely(!netdev)) {
1798 nfp_net_rx_drop(dp, r_vec, rx_ring, NULL, skb);
1799 continue;
1800 }
1801 nfp_repr_inc_rx_stats(netdev, pkt_len);
1802 }
1803
1804 skb_reserve(skb, pkt_off);
1805 skb_put(skb, pkt_len);
1806
1807 skb->mark = meta.mark;
1808 skb_set_hash(skb, meta.hash, meta.hash_type);
1809
1810 skb_record_rx_queue(skb, rx_ring->idx);
1811 skb->protocol = eth_type_trans(skb, netdev);
1812
1813 nfp_net_rx_csum(dp, r_vec, rxd, &meta, skb);
1814
1815 if (rxd->rxd.flags & PCIE_DESC_RX_VLAN)
1816 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1817 le16_to_cpu(rxd->rxd.vlan));
1818
1819 napi_gro_receive(&rx_ring->r_vec->napi, skb);
1820 }
1821
1822 if (xdp_prog) {
1823 if (tx_ring->wr_ptr_add)
1824 nfp_net_tx_xmit_more_flush(tx_ring);
1825 else if (unlikely(tx_ring->wr_p != tx_ring->rd_p) &&
1826 !xdp_tx_cmpl)
1827 if (!nfp_net_xdp_complete(tx_ring))
1828 pkts_polled = budget;
1829 }
1830 rcu_read_unlock();
1831
1832 return pkts_polled;
1833 }
1834
1835 /**
1836 * nfp_net_poll() - napi poll function
1837 * @napi: NAPI structure
1838 * @budget: NAPI budget
1839 *
1840 * Return: number of packets polled.
1841 */
nfp_net_poll(struct napi_struct * napi,int budget)1842 static int nfp_net_poll(struct napi_struct *napi, int budget)
1843 {
1844 struct nfp_net_r_vector *r_vec =
1845 container_of(napi, struct nfp_net_r_vector, napi);
1846 unsigned int pkts_polled = 0;
1847
1848 if (r_vec->tx_ring)
1849 nfp_net_tx_complete(r_vec->tx_ring);
1850 if (r_vec->rx_ring)
1851 pkts_polled = nfp_net_rx(r_vec->rx_ring, budget);
1852
1853 if (pkts_polled < budget)
1854 if (napi_complete_done(napi, pkts_polled))
1855 nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry);
1856
1857 return pkts_polled;
1858 }
1859
1860 /* Control device data path
1861 */
1862
1863 static bool
nfp_ctrl_tx_one(struct nfp_net * nn,struct nfp_net_r_vector * r_vec,struct sk_buff * skb,bool old)1864 nfp_ctrl_tx_one(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
1865 struct sk_buff *skb, bool old)
1866 {
1867 unsigned int real_len = skb->len, meta_len = 0;
1868 struct nfp_net_tx_ring *tx_ring;
1869 struct nfp_net_tx_buf *txbuf;
1870 struct nfp_net_tx_desc *txd;
1871 struct nfp_net_dp *dp;
1872 dma_addr_t dma_addr;
1873 int wr_idx;
1874
1875 dp = &r_vec->nfp_net->dp;
1876 tx_ring = r_vec->tx_ring;
1877
1878 if (WARN_ON_ONCE(skb_shinfo(skb)->nr_frags)) {
1879 nn_dp_warn(dp, "Driver's CTRL TX does not implement gather\n");
1880 goto err_free;
1881 }
1882
1883 if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
1884 u64_stats_update_begin(&r_vec->tx_sync);
1885 r_vec->tx_busy++;
1886 u64_stats_update_end(&r_vec->tx_sync);
1887 if (!old)
1888 __skb_queue_tail(&r_vec->queue, skb);
1889 else
1890 __skb_queue_head(&r_vec->queue, skb);
1891 return true;
1892 }
1893
1894 if (nfp_app_ctrl_has_meta(nn->app)) {
1895 if (unlikely(skb_headroom(skb) < 8)) {
1896 nn_dp_warn(dp, "CTRL TX on skb without headroom\n");
1897 goto err_free;
1898 }
1899 meta_len = 8;
1900 put_unaligned_be32(NFP_META_PORT_ID_CTRL, skb_push(skb, 4));
1901 put_unaligned_be32(NFP_NET_META_PORTID, skb_push(skb, 4));
1902 }
1903
1904 /* Start with the head skbuf */
1905 dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb),
1906 DMA_TO_DEVICE);
1907 if (dma_mapping_error(dp->dev, dma_addr))
1908 goto err_dma_warn;
1909
1910 wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
1911
1912 /* Stash the soft descriptor of the head then initialize it */
1913 txbuf = &tx_ring->txbufs[wr_idx];
1914 txbuf->skb = skb;
1915 txbuf->dma_addr = dma_addr;
1916 txbuf->fidx = -1;
1917 txbuf->pkt_cnt = 1;
1918 txbuf->real_len = real_len;
1919
1920 /* Build TX descriptor */
1921 txd = &tx_ring->txds[wr_idx];
1922 txd->offset_eop = meta_len | PCIE_DESC_TX_EOP;
1923 txd->dma_len = cpu_to_le16(skb_headlen(skb));
1924 nfp_desc_set_dma_addr(txd, dma_addr);
1925 txd->data_len = cpu_to_le16(skb->len);
1926
1927 txd->flags = 0;
1928 txd->mss = 0;
1929 txd->lso_hdrlen = 0;
1930
1931 tx_ring->wr_p++;
1932 tx_ring->wr_ptr_add++;
1933 nfp_net_tx_xmit_more_flush(tx_ring);
1934
1935 return false;
1936
1937 err_dma_warn:
1938 nn_dp_warn(dp, "Failed to DMA map TX CTRL buffer\n");
1939 err_free:
1940 u64_stats_update_begin(&r_vec->tx_sync);
1941 r_vec->tx_errors++;
1942 u64_stats_update_end(&r_vec->tx_sync);
1943 dev_kfree_skb_any(skb);
1944 return false;
1945 }
1946
nfp_ctrl_tx(struct nfp_net * nn,struct sk_buff * skb)1947 bool nfp_ctrl_tx(struct nfp_net *nn, struct sk_buff *skb)
1948 {
1949 struct nfp_net_r_vector *r_vec = &nn->r_vecs[0];
1950 bool ret;
1951
1952 spin_lock_bh(&r_vec->lock);
1953 ret = nfp_ctrl_tx_one(nn, r_vec, skb, false);
1954 spin_unlock_bh(&r_vec->lock);
1955
1956 return ret;
1957 }
1958
__nfp_ctrl_tx_queued(struct nfp_net_r_vector * r_vec)1959 static void __nfp_ctrl_tx_queued(struct nfp_net_r_vector *r_vec)
1960 {
1961 struct sk_buff *skb;
1962
1963 while ((skb = __skb_dequeue(&r_vec->queue)))
1964 if (nfp_ctrl_tx_one(r_vec->nfp_net, r_vec, skb, true))
1965 return;
1966 }
1967
1968 static bool
nfp_ctrl_meta_ok(struct nfp_net * nn,void * data,unsigned int meta_len)1969 nfp_ctrl_meta_ok(struct nfp_net *nn, void *data, unsigned int meta_len)
1970 {
1971 u32 meta_type, meta_tag;
1972
1973 if (!nfp_app_ctrl_has_meta(nn->app))
1974 return !meta_len;
1975
1976 if (meta_len != 8)
1977 return false;
1978
1979 meta_type = get_unaligned_be32(data);
1980 meta_tag = get_unaligned_be32(data + 4);
1981
1982 return (meta_type == NFP_NET_META_PORTID &&
1983 meta_tag == NFP_META_PORT_ID_CTRL);
1984 }
1985
1986 static bool
nfp_ctrl_rx_one(struct nfp_net * nn,struct nfp_net_dp * dp,struct nfp_net_r_vector * r_vec,struct nfp_net_rx_ring * rx_ring)1987 nfp_ctrl_rx_one(struct nfp_net *nn, struct nfp_net_dp *dp,
1988 struct nfp_net_r_vector *r_vec, struct nfp_net_rx_ring *rx_ring)
1989 {
1990 unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off;
1991 struct nfp_net_rx_buf *rxbuf;
1992 struct nfp_net_rx_desc *rxd;
1993 dma_addr_t new_dma_addr;
1994 struct sk_buff *skb;
1995 void *new_frag;
1996 int idx;
1997
1998 idx = D_IDX(rx_ring, rx_ring->rd_p);
1999
2000 rxd = &rx_ring->rxds[idx];
2001 if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD))
2002 return false;
2003
2004 /* Memory barrier to ensure that we won't do other reads
2005 * before the DD bit.
2006 */
2007 dma_rmb();
2008
2009 rx_ring->rd_p++;
2010
2011 rxbuf = &rx_ring->rxbufs[idx];
2012 meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
2013 data_len = le16_to_cpu(rxd->rxd.data_len);
2014 pkt_len = data_len - meta_len;
2015
2016 pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off;
2017 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
2018 pkt_off += meta_len;
2019 else
2020 pkt_off += dp->rx_offset;
2021 meta_off = pkt_off - meta_len;
2022
2023 /* Stats update */
2024 u64_stats_update_begin(&r_vec->rx_sync);
2025 r_vec->rx_pkts++;
2026 r_vec->rx_bytes += pkt_len;
2027 u64_stats_update_end(&r_vec->rx_sync);
2028
2029 nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off, data_len);
2030
2031 if (unlikely(!nfp_ctrl_meta_ok(nn, rxbuf->frag + meta_off, meta_len))) {
2032 nn_dp_warn(dp, "incorrect metadata for ctrl packet (%d)\n",
2033 meta_len);
2034 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
2035 return true;
2036 }
2037
2038 skb = build_skb(rxbuf->frag, dp->fl_bufsz);
2039 if (unlikely(!skb)) {
2040 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
2041 return true;
2042 }
2043 new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr);
2044 if (unlikely(!new_frag)) {
2045 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb);
2046 return true;
2047 }
2048
2049 nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr);
2050
2051 nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr);
2052
2053 skb_reserve(skb, pkt_off);
2054 skb_put(skb, pkt_len);
2055
2056 nfp_app_ctrl_rx(nn->app, skb);
2057
2058 return true;
2059 }
2060
nfp_ctrl_rx(struct nfp_net_r_vector * r_vec)2061 static bool nfp_ctrl_rx(struct nfp_net_r_vector *r_vec)
2062 {
2063 struct nfp_net_rx_ring *rx_ring = r_vec->rx_ring;
2064 struct nfp_net *nn = r_vec->nfp_net;
2065 struct nfp_net_dp *dp = &nn->dp;
2066 unsigned int budget = 512;
2067
2068 while (nfp_ctrl_rx_one(nn, dp, r_vec, rx_ring) && budget--)
2069 continue;
2070
2071 return budget;
2072 }
2073
nfp_ctrl_poll(unsigned long arg)2074 static void nfp_ctrl_poll(unsigned long arg)
2075 {
2076 struct nfp_net_r_vector *r_vec = (void *)arg;
2077
2078 spin_lock_bh(&r_vec->lock);
2079 nfp_net_tx_complete(r_vec->tx_ring);
2080 __nfp_ctrl_tx_queued(r_vec);
2081 spin_unlock_bh(&r_vec->lock);
2082
2083 if (nfp_ctrl_rx(r_vec)) {
2084 nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry);
2085 } else {
2086 tasklet_schedule(&r_vec->tasklet);
2087 nn_dp_warn(&r_vec->nfp_net->dp,
2088 "control message budget exceeded!\n");
2089 }
2090 }
2091
2092 /* Setup and Configuration
2093 */
2094
2095 /**
2096 * nfp_net_vecs_init() - Assign IRQs and setup rvecs.
2097 * @nn: NFP Network structure
2098 */
nfp_net_vecs_init(struct nfp_net * nn)2099 static void nfp_net_vecs_init(struct nfp_net *nn)
2100 {
2101 struct nfp_net_r_vector *r_vec;
2102 int r;
2103
2104 nn->lsc_handler = nfp_net_irq_lsc;
2105 nn->exn_handler = nfp_net_irq_exn;
2106
2107 for (r = 0; r < nn->max_r_vecs; r++) {
2108 struct msix_entry *entry;
2109
2110 entry = &nn->irq_entries[NFP_NET_NON_Q_VECTORS + r];
2111
2112 r_vec = &nn->r_vecs[r];
2113 r_vec->nfp_net = nn;
2114 r_vec->irq_entry = entry->entry;
2115 r_vec->irq_vector = entry->vector;
2116
2117 if (nn->dp.netdev) {
2118 r_vec->handler = nfp_net_irq_rxtx;
2119 } else {
2120 r_vec->handler = nfp_ctrl_irq_rxtx;
2121
2122 __skb_queue_head_init(&r_vec->queue);
2123 spin_lock_init(&r_vec->lock);
2124 tasklet_init(&r_vec->tasklet, nfp_ctrl_poll,
2125 (unsigned long)r_vec);
2126 tasklet_disable(&r_vec->tasklet);
2127 }
2128
2129 cpumask_set_cpu(r, &r_vec->affinity_mask);
2130 }
2131 }
2132
2133 /**
2134 * nfp_net_tx_ring_free() - Free resources allocated to a TX ring
2135 * @tx_ring: TX ring to free
2136 */
nfp_net_tx_ring_free(struct nfp_net_tx_ring * tx_ring)2137 static void nfp_net_tx_ring_free(struct nfp_net_tx_ring *tx_ring)
2138 {
2139 struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
2140 struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
2141
2142 kfree(tx_ring->txbufs);
2143
2144 if (tx_ring->txds)
2145 dma_free_coherent(dp->dev, tx_ring->size,
2146 tx_ring->txds, tx_ring->dma);
2147
2148 tx_ring->cnt = 0;
2149 tx_ring->txbufs = NULL;
2150 tx_ring->txds = NULL;
2151 tx_ring->dma = 0;
2152 tx_ring->size = 0;
2153 }
2154
2155 /**
2156 * nfp_net_tx_ring_alloc() - Allocate resource for a TX ring
2157 * @dp: NFP Net data path struct
2158 * @tx_ring: TX Ring structure to allocate
2159 *
2160 * Return: 0 on success, negative errno otherwise.
2161 */
2162 static int
nfp_net_tx_ring_alloc(struct nfp_net_dp * dp,struct nfp_net_tx_ring * tx_ring)2163 nfp_net_tx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring)
2164 {
2165 struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
2166 int sz;
2167
2168 tx_ring->cnt = dp->txd_cnt;
2169
2170 tx_ring->size = sizeof(*tx_ring->txds) * tx_ring->cnt;
2171 tx_ring->txds = dma_zalloc_coherent(dp->dev, tx_ring->size,
2172 &tx_ring->dma,
2173 GFP_KERNEL | __GFP_NOWARN);
2174 if (!tx_ring->txds) {
2175 netdev_warn(dp->netdev, "failed to allocate TX descriptor ring memory, requested descriptor count: %d, consider lowering descriptor count\n",
2176 tx_ring->cnt);
2177 goto err_alloc;
2178 }
2179
2180 sz = sizeof(*tx_ring->txbufs) * tx_ring->cnt;
2181 tx_ring->txbufs = kzalloc(sz, GFP_KERNEL);
2182 if (!tx_ring->txbufs)
2183 goto err_alloc;
2184
2185 if (!tx_ring->is_xdp && dp->netdev)
2186 netif_set_xps_queue(dp->netdev, &r_vec->affinity_mask,
2187 tx_ring->idx);
2188
2189 return 0;
2190
2191 err_alloc:
2192 nfp_net_tx_ring_free(tx_ring);
2193 return -ENOMEM;
2194 }
2195
2196 static void
nfp_net_tx_ring_bufs_free(struct nfp_net_dp * dp,struct nfp_net_tx_ring * tx_ring)2197 nfp_net_tx_ring_bufs_free(struct nfp_net_dp *dp,
2198 struct nfp_net_tx_ring *tx_ring)
2199 {
2200 unsigned int i;
2201
2202 if (!tx_ring->is_xdp)
2203 return;
2204
2205 for (i = 0; i < tx_ring->cnt; i++) {
2206 if (!tx_ring->txbufs[i].frag)
2207 return;
2208
2209 nfp_net_dma_unmap_rx(dp, tx_ring->txbufs[i].dma_addr);
2210 __free_page(virt_to_page(tx_ring->txbufs[i].frag));
2211 }
2212 }
2213
2214 static int
nfp_net_tx_ring_bufs_alloc(struct nfp_net_dp * dp,struct nfp_net_tx_ring * tx_ring)2215 nfp_net_tx_ring_bufs_alloc(struct nfp_net_dp *dp,
2216 struct nfp_net_tx_ring *tx_ring)
2217 {
2218 struct nfp_net_tx_buf *txbufs = tx_ring->txbufs;
2219 unsigned int i;
2220
2221 if (!tx_ring->is_xdp)
2222 return 0;
2223
2224 for (i = 0; i < tx_ring->cnt; i++) {
2225 txbufs[i].frag = nfp_net_rx_alloc_one(dp, &txbufs[i].dma_addr);
2226 if (!txbufs[i].frag) {
2227 nfp_net_tx_ring_bufs_free(dp, tx_ring);
2228 return -ENOMEM;
2229 }
2230 }
2231
2232 return 0;
2233 }
2234
nfp_net_tx_rings_prepare(struct nfp_net * nn,struct nfp_net_dp * dp)2235 static int nfp_net_tx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp)
2236 {
2237 unsigned int r;
2238
2239 dp->tx_rings = kcalloc(dp->num_tx_rings, sizeof(*dp->tx_rings),
2240 GFP_KERNEL);
2241 if (!dp->tx_rings)
2242 return -ENOMEM;
2243
2244 for (r = 0; r < dp->num_tx_rings; r++) {
2245 int bias = 0;
2246
2247 if (r >= dp->num_stack_tx_rings)
2248 bias = dp->num_stack_tx_rings;
2249
2250 nfp_net_tx_ring_init(&dp->tx_rings[r], &nn->r_vecs[r - bias],
2251 r, bias);
2252
2253 if (nfp_net_tx_ring_alloc(dp, &dp->tx_rings[r]))
2254 goto err_free_prev;
2255
2256 if (nfp_net_tx_ring_bufs_alloc(dp, &dp->tx_rings[r]))
2257 goto err_free_ring;
2258 }
2259
2260 return 0;
2261
2262 err_free_prev:
2263 while (r--) {
2264 nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]);
2265 err_free_ring:
2266 nfp_net_tx_ring_free(&dp->tx_rings[r]);
2267 }
2268 kfree(dp->tx_rings);
2269 return -ENOMEM;
2270 }
2271
nfp_net_tx_rings_free(struct nfp_net_dp * dp)2272 static void nfp_net_tx_rings_free(struct nfp_net_dp *dp)
2273 {
2274 unsigned int r;
2275
2276 for (r = 0; r < dp->num_tx_rings; r++) {
2277 nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]);
2278 nfp_net_tx_ring_free(&dp->tx_rings[r]);
2279 }
2280
2281 kfree(dp->tx_rings);
2282 }
2283
2284 /**
2285 * nfp_net_rx_ring_free() - Free resources allocated to a RX ring
2286 * @rx_ring: RX ring to free
2287 */
nfp_net_rx_ring_free(struct nfp_net_rx_ring * rx_ring)2288 static void nfp_net_rx_ring_free(struct nfp_net_rx_ring *rx_ring)
2289 {
2290 struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
2291 struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
2292
2293 kfree(rx_ring->rxbufs);
2294
2295 if (rx_ring->rxds)
2296 dma_free_coherent(dp->dev, rx_ring->size,
2297 rx_ring->rxds, rx_ring->dma);
2298
2299 rx_ring->cnt = 0;
2300 rx_ring->rxbufs = NULL;
2301 rx_ring->rxds = NULL;
2302 rx_ring->dma = 0;
2303 rx_ring->size = 0;
2304 }
2305
2306 /**
2307 * nfp_net_rx_ring_alloc() - Allocate resource for a RX ring
2308 * @dp: NFP Net data path struct
2309 * @rx_ring: RX ring to allocate
2310 *
2311 * Return: 0 on success, negative errno otherwise.
2312 */
2313 static int
nfp_net_rx_ring_alloc(struct nfp_net_dp * dp,struct nfp_net_rx_ring * rx_ring)2314 nfp_net_rx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring)
2315 {
2316 int sz;
2317
2318 rx_ring->cnt = dp->rxd_cnt;
2319 rx_ring->size = sizeof(*rx_ring->rxds) * rx_ring->cnt;
2320 rx_ring->rxds = dma_zalloc_coherent(dp->dev, rx_ring->size,
2321 &rx_ring->dma,
2322 GFP_KERNEL | __GFP_NOWARN);
2323 if (!rx_ring->rxds) {
2324 netdev_warn(dp->netdev, "failed to allocate RX descriptor ring memory, requested descriptor count: %d, consider lowering descriptor count\n",
2325 rx_ring->cnt);
2326 goto err_alloc;
2327 }
2328
2329 sz = sizeof(*rx_ring->rxbufs) * rx_ring->cnt;
2330 rx_ring->rxbufs = kzalloc(sz, GFP_KERNEL);
2331 if (!rx_ring->rxbufs)
2332 goto err_alloc;
2333
2334 return 0;
2335
2336 err_alloc:
2337 nfp_net_rx_ring_free(rx_ring);
2338 return -ENOMEM;
2339 }
2340
nfp_net_rx_rings_prepare(struct nfp_net * nn,struct nfp_net_dp * dp)2341 static int nfp_net_rx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp)
2342 {
2343 unsigned int r;
2344
2345 dp->rx_rings = kcalloc(dp->num_rx_rings, sizeof(*dp->rx_rings),
2346 GFP_KERNEL);
2347 if (!dp->rx_rings)
2348 return -ENOMEM;
2349
2350 for (r = 0; r < dp->num_rx_rings; r++) {
2351 nfp_net_rx_ring_init(&dp->rx_rings[r], &nn->r_vecs[r], r);
2352
2353 if (nfp_net_rx_ring_alloc(dp, &dp->rx_rings[r]))
2354 goto err_free_prev;
2355
2356 if (nfp_net_rx_ring_bufs_alloc(dp, &dp->rx_rings[r]))
2357 goto err_free_ring;
2358 }
2359
2360 return 0;
2361
2362 err_free_prev:
2363 while (r--) {
2364 nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]);
2365 err_free_ring:
2366 nfp_net_rx_ring_free(&dp->rx_rings[r]);
2367 }
2368 kfree(dp->rx_rings);
2369 return -ENOMEM;
2370 }
2371
nfp_net_rx_rings_free(struct nfp_net_dp * dp)2372 static void nfp_net_rx_rings_free(struct nfp_net_dp *dp)
2373 {
2374 unsigned int r;
2375
2376 for (r = 0; r < dp->num_rx_rings; r++) {
2377 nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]);
2378 nfp_net_rx_ring_free(&dp->rx_rings[r]);
2379 }
2380
2381 kfree(dp->rx_rings);
2382 }
2383
2384 static void
nfp_net_vector_assign_rings(struct nfp_net_dp * dp,struct nfp_net_r_vector * r_vec,int idx)2385 nfp_net_vector_assign_rings(struct nfp_net_dp *dp,
2386 struct nfp_net_r_vector *r_vec, int idx)
2387 {
2388 r_vec->rx_ring = idx < dp->num_rx_rings ? &dp->rx_rings[idx] : NULL;
2389 r_vec->tx_ring =
2390 idx < dp->num_stack_tx_rings ? &dp->tx_rings[idx] : NULL;
2391
2392 r_vec->xdp_ring = idx < dp->num_tx_rings - dp->num_stack_tx_rings ?
2393 &dp->tx_rings[dp->num_stack_tx_rings + idx] : NULL;
2394 }
2395
2396 static int
nfp_net_prepare_vector(struct nfp_net * nn,struct nfp_net_r_vector * r_vec,int idx)2397 nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
2398 int idx)
2399 {
2400 int err;
2401
2402 /* Setup NAPI */
2403 if (nn->dp.netdev)
2404 netif_napi_add(nn->dp.netdev, &r_vec->napi,
2405 nfp_net_poll, NAPI_POLL_WEIGHT);
2406 else
2407 tasklet_enable(&r_vec->tasklet);
2408
2409 snprintf(r_vec->name, sizeof(r_vec->name),
2410 "%s-rxtx-%d", nfp_net_name(nn), idx);
2411 err = request_irq(r_vec->irq_vector, r_vec->handler, 0, r_vec->name,
2412 r_vec);
2413 if (err) {
2414 if (nn->dp.netdev)
2415 netif_napi_del(&r_vec->napi);
2416 else
2417 tasklet_disable(&r_vec->tasklet);
2418
2419 nn_err(nn, "Error requesting IRQ %d\n", r_vec->irq_vector);
2420 return err;
2421 }
2422 disable_irq(r_vec->irq_vector);
2423
2424 irq_set_affinity_hint(r_vec->irq_vector, &r_vec->affinity_mask);
2425
2426 nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, r_vec->irq_vector,
2427 r_vec->irq_entry);
2428
2429 return 0;
2430 }
2431
2432 static void
nfp_net_cleanup_vector(struct nfp_net * nn,struct nfp_net_r_vector * r_vec)2433 nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec)
2434 {
2435 irq_set_affinity_hint(r_vec->irq_vector, NULL);
2436 if (nn->dp.netdev)
2437 netif_napi_del(&r_vec->napi);
2438 else
2439 tasklet_disable(&r_vec->tasklet);
2440
2441 free_irq(r_vec->irq_vector, r_vec);
2442 }
2443
2444 /**
2445 * nfp_net_rss_write_itbl() - Write RSS indirection table to device
2446 * @nn: NFP Net device to reconfigure
2447 */
nfp_net_rss_write_itbl(struct nfp_net * nn)2448 void nfp_net_rss_write_itbl(struct nfp_net *nn)
2449 {
2450 int i;
2451
2452 for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4)
2453 nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i,
2454 get_unaligned_le32(nn->rss_itbl + i));
2455 }
2456
2457 /**
2458 * nfp_net_rss_write_key() - Write RSS hash key to device
2459 * @nn: NFP Net device to reconfigure
2460 */
nfp_net_rss_write_key(struct nfp_net * nn)2461 void nfp_net_rss_write_key(struct nfp_net *nn)
2462 {
2463 int i;
2464
2465 for (i = 0; i < nfp_net_rss_key_sz(nn); i += 4)
2466 nn_writel(nn, NFP_NET_CFG_RSS_KEY + i,
2467 get_unaligned_le32(nn->rss_key + i));
2468 }
2469
2470 /**
2471 * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW
2472 * @nn: NFP Net device to reconfigure
2473 */
nfp_net_coalesce_write_cfg(struct nfp_net * nn)2474 void nfp_net_coalesce_write_cfg(struct nfp_net *nn)
2475 {
2476 u8 i;
2477 u32 factor;
2478 u32 value;
2479
2480 /* Compute factor used to convert coalesce '_usecs' parameters to
2481 * ME timestamp ticks. There are 16 ME clock cycles for each timestamp
2482 * count.
2483 */
2484 factor = nn->me_freq_mhz / 16;
2485
2486 /* copy RX interrupt coalesce parameters */
2487 value = (nn->rx_coalesce_max_frames << 16) |
2488 (factor * nn->rx_coalesce_usecs);
2489 for (i = 0; i < nn->dp.num_rx_rings; i++)
2490 nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value);
2491
2492 /* copy TX interrupt coalesce parameters */
2493 value = (nn->tx_coalesce_max_frames << 16) |
2494 (factor * nn->tx_coalesce_usecs);
2495 for (i = 0; i < nn->dp.num_tx_rings; i++)
2496 nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value);
2497 }
2498
2499 /**
2500 * nfp_net_write_mac_addr() - Write mac address to the device control BAR
2501 * @nn: NFP Net device to reconfigure
2502 * @addr: MAC address to write
2503 *
2504 * Writes the MAC address from the netdev to the device control BAR. Does not
2505 * perform the required reconfig. We do a bit of byte swapping dance because
2506 * firmware is LE.
2507 */
nfp_net_write_mac_addr(struct nfp_net * nn,const u8 * addr)2508 static void nfp_net_write_mac_addr(struct nfp_net *nn, const u8 *addr)
2509 {
2510 nn_writel(nn, NFP_NET_CFG_MACADDR + 0, get_unaligned_be32(addr));
2511 nn_writew(nn, NFP_NET_CFG_MACADDR + 6, get_unaligned_be16(addr + 4));
2512 }
2513
nfp_net_vec_clear_ring_data(struct nfp_net * nn,unsigned int idx)2514 static void nfp_net_vec_clear_ring_data(struct nfp_net *nn, unsigned int idx)
2515 {
2516 nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), 0);
2517 nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), 0);
2518 nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), 0);
2519
2520 nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), 0);
2521 nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), 0);
2522 nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), 0);
2523 }
2524
2525 /**
2526 * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP
2527 * @nn: NFP Net device to reconfigure
2528 *
2529 * Warning: must be fully idempotent.
2530 */
nfp_net_clear_config_and_disable(struct nfp_net * nn)2531 static void nfp_net_clear_config_and_disable(struct nfp_net *nn)
2532 {
2533 u32 new_ctrl, update;
2534 unsigned int r;
2535 int err;
2536
2537 new_ctrl = nn->dp.ctrl;
2538 new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE;
2539 update = NFP_NET_CFG_UPDATE_GEN;
2540 update |= NFP_NET_CFG_UPDATE_MSIX;
2541 update |= NFP_NET_CFG_UPDATE_RING;
2542
2543 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
2544 new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG;
2545
2546 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
2547 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);
2548
2549 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2550 err = nfp_net_reconfig(nn, update);
2551 if (err)
2552 nn_err(nn, "Could not disable device: %d\n", err);
2553
2554 for (r = 0; r < nn->dp.num_rx_rings; r++)
2555 nfp_net_rx_ring_reset(&nn->dp.rx_rings[r]);
2556 for (r = 0; r < nn->dp.num_tx_rings; r++)
2557 nfp_net_tx_ring_reset(&nn->dp, &nn->dp.tx_rings[r]);
2558 for (r = 0; r < nn->dp.num_r_vecs; r++)
2559 nfp_net_vec_clear_ring_data(nn, r);
2560
2561 nn->dp.ctrl = new_ctrl;
2562 }
2563
2564 static void
nfp_net_rx_ring_hw_cfg_write(struct nfp_net * nn,struct nfp_net_rx_ring * rx_ring,unsigned int idx)2565 nfp_net_rx_ring_hw_cfg_write(struct nfp_net *nn,
2566 struct nfp_net_rx_ring *rx_ring, unsigned int idx)
2567 {
2568 /* Write the DMA address, size and MSI-X info to the device */
2569 nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), rx_ring->dma);
2570 nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), ilog2(rx_ring->cnt));
2571 nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), rx_ring->r_vec->irq_entry);
2572 }
2573
2574 static void
nfp_net_tx_ring_hw_cfg_write(struct nfp_net * nn,struct nfp_net_tx_ring * tx_ring,unsigned int idx)2575 nfp_net_tx_ring_hw_cfg_write(struct nfp_net *nn,
2576 struct nfp_net_tx_ring *tx_ring, unsigned int idx)
2577 {
2578 nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), tx_ring->dma);
2579 nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), ilog2(tx_ring->cnt));
2580 nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), tx_ring->r_vec->irq_entry);
2581 }
2582
2583 /**
2584 * nfp_net_set_config_and_enable() - Write control BAR and enable NFP
2585 * @nn: NFP Net device to reconfigure
2586 */
nfp_net_set_config_and_enable(struct nfp_net * nn)2587 static int nfp_net_set_config_and_enable(struct nfp_net *nn)
2588 {
2589 u32 bufsz, new_ctrl, update = 0;
2590 unsigned int r;
2591 int err;
2592
2593 new_ctrl = nn->dp.ctrl;
2594
2595 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_RSS_ANY) {
2596 nfp_net_rss_write_key(nn);
2597 nfp_net_rss_write_itbl(nn);
2598 nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg);
2599 update |= NFP_NET_CFG_UPDATE_RSS;
2600 }
2601
2602 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_IRQMOD) {
2603 nfp_net_coalesce_write_cfg(nn);
2604 update |= NFP_NET_CFG_UPDATE_IRQMOD;
2605 }
2606
2607 for (r = 0; r < nn->dp.num_tx_rings; r++)
2608 nfp_net_tx_ring_hw_cfg_write(nn, &nn->dp.tx_rings[r], r);
2609 for (r = 0; r < nn->dp.num_rx_rings; r++)
2610 nfp_net_rx_ring_hw_cfg_write(nn, &nn->dp.rx_rings[r], r);
2611
2612 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, nn->dp.num_tx_rings == 64 ?
2613 0xffffffffffffffffULL : ((u64)1 << nn->dp.num_tx_rings) - 1);
2614
2615 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, nn->dp.num_rx_rings == 64 ?
2616 0xffffffffffffffffULL : ((u64)1 << nn->dp.num_rx_rings) - 1);
2617
2618 if (nn->dp.netdev)
2619 nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr);
2620
2621 nn_writel(nn, NFP_NET_CFG_MTU, nn->dp.mtu);
2622
2623 bufsz = nn->dp.fl_bufsz - nn->dp.rx_dma_off - NFP_NET_RX_BUF_NON_DATA;
2624 nn_writel(nn, NFP_NET_CFG_FLBUFSZ, bufsz);
2625
2626 /* Enable device */
2627 new_ctrl |= NFP_NET_CFG_CTRL_ENABLE;
2628 update |= NFP_NET_CFG_UPDATE_GEN;
2629 update |= NFP_NET_CFG_UPDATE_MSIX;
2630 update |= NFP_NET_CFG_UPDATE_RING;
2631 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
2632 new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG;
2633
2634 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2635 err = nfp_net_reconfig(nn, update);
2636 if (err) {
2637 nfp_net_clear_config_and_disable(nn);
2638 return err;
2639 }
2640
2641 nn->dp.ctrl = new_ctrl;
2642
2643 for (r = 0; r < nn->dp.num_rx_rings; r++)
2644 nfp_net_rx_ring_fill_freelist(&nn->dp, &nn->dp.rx_rings[r]);
2645
2646 /* Since reconfiguration requests while NFP is down are ignored we
2647 * have to wipe the entire VXLAN configuration and reinitialize it.
2648 */
2649 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN) {
2650 memset(&nn->vxlan_ports, 0, sizeof(nn->vxlan_ports));
2651 memset(&nn->vxlan_usecnt, 0, sizeof(nn->vxlan_usecnt));
2652 udp_tunnel_get_rx_info(nn->dp.netdev);
2653 }
2654
2655 return 0;
2656 }
2657
2658 /**
2659 * nfp_net_close_stack() - Quiesce the stack (part of close)
2660 * @nn: NFP Net device to reconfigure
2661 */
nfp_net_close_stack(struct nfp_net * nn)2662 static void nfp_net_close_stack(struct nfp_net *nn)
2663 {
2664 unsigned int r;
2665
2666 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2667 netif_carrier_off(nn->dp.netdev);
2668 nn->link_up = false;
2669
2670 for (r = 0; r < nn->dp.num_r_vecs; r++) {
2671 disable_irq(nn->r_vecs[r].irq_vector);
2672 napi_disable(&nn->r_vecs[r].napi);
2673 }
2674
2675 netif_tx_disable(nn->dp.netdev);
2676 }
2677
2678 /**
2679 * nfp_net_close_free_all() - Free all runtime resources
2680 * @nn: NFP Net device to reconfigure
2681 */
nfp_net_close_free_all(struct nfp_net * nn)2682 static void nfp_net_close_free_all(struct nfp_net *nn)
2683 {
2684 unsigned int r;
2685
2686 nfp_net_tx_rings_free(&nn->dp);
2687 nfp_net_rx_rings_free(&nn->dp);
2688
2689 for (r = 0; r < nn->dp.num_r_vecs; r++)
2690 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2691
2692 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
2693 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
2694 }
2695
2696 /**
2697 * nfp_net_netdev_close() - Called when the device is downed
2698 * @netdev: netdev structure
2699 */
nfp_net_netdev_close(struct net_device * netdev)2700 static int nfp_net_netdev_close(struct net_device *netdev)
2701 {
2702 struct nfp_net *nn = netdev_priv(netdev);
2703
2704 /* Step 1: Disable RX and TX rings from the Linux kernel perspective
2705 */
2706 nfp_net_close_stack(nn);
2707
2708 /* Step 2: Tell NFP
2709 */
2710 nfp_net_clear_config_and_disable(nn);
2711 nfp_port_configure(netdev, false);
2712
2713 /* Step 3: Free resources
2714 */
2715 nfp_net_close_free_all(nn);
2716
2717 nn_dbg(nn, "%s down", netdev->name);
2718 return 0;
2719 }
2720
nfp_ctrl_close(struct nfp_net * nn)2721 void nfp_ctrl_close(struct nfp_net *nn)
2722 {
2723 int r;
2724
2725 rtnl_lock();
2726
2727 for (r = 0; r < nn->dp.num_r_vecs; r++) {
2728 disable_irq(nn->r_vecs[r].irq_vector);
2729 tasklet_disable(&nn->r_vecs[r].tasklet);
2730 }
2731
2732 nfp_net_clear_config_and_disable(nn);
2733
2734 nfp_net_close_free_all(nn);
2735
2736 rtnl_unlock();
2737 }
2738
2739 /**
2740 * nfp_net_open_stack() - Start the device from stack's perspective
2741 * @nn: NFP Net device to reconfigure
2742 */
nfp_net_open_stack(struct nfp_net * nn)2743 static void nfp_net_open_stack(struct nfp_net *nn)
2744 {
2745 unsigned int r;
2746
2747 for (r = 0; r < nn->dp.num_r_vecs; r++) {
2748 napi_enable(&nn->r_vecs[r].napi);
2749 enable_irq(nn->r_vecs[r].irq_vector);
2750 }
2751
2752 netif_tx_wake_all_queues(nn->dp.netdev);
2753
2754 enable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2755 nfp_net_read_link_status(nn);
2756 }
2757
nfp_net_open_alloc_all(struct nfp_net * nn)2758 static int nfp_net_open_alloc_all(struct nfp_net *nn)
2759 {
2760 int err, r;
2761
2762 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn",
2763 nn->exn_name, sizeof(nn->exn_name),
2764 NFP_NET_IRQ_EXN_IDX, nn->exn_handler);
2765 if (err)
2766 return err;
2767 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc",
2768 nn->lsc_name, sizeof(nn->lsc_name),
2769 NFP_NET_IRQ_LSC_IDX, nn->lsc_handler);
2770 if (err)
2771 goto err_free_exn;
2772 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2773
2774 for (r = 0; r < nn->dp.num_r_vecs; r++) {
2775 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
2776 if (err)
2777 goto err_cleanup_vec_p;
2778 }
2779
2780 err = nfp_net_rx_rings_prepare(nn, &nn->dp);
2781 if (err)
2782 goto err_cleanup_vec;
2783
2784 err = nfp_net_tx_rings_prepare(nn, &nn->dp);
2785 if (err)
2786 goto err_free_rx_rings;
2787
2788 for (r = 0; r < nn->max_r_vecs; r++)
2789 nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r);
2790
2791 return 0;
2792
2793 err_free_rx_rings:
2794 nfp_net_rx_rings_free(&nn->dp);
2795 err_cleanup_vec:
2796 r = nn->dp.num_r_vecs;
2797 err_cleanup_vec_p:
2798 while (r--)
2799 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2800 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
2801 err_free_exn:
2802 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
2803 return err;
2804 }
2805
nfp_net_netdev_open(struct net_device * netdev)2806 static int nfp_net_netdev_open(struct net_device *netdev)
2807 {
2808 struct nfp_net *nn = netdev_priv(netdev);
2809 int err;
2810
2811 /* Step 1: Allocate resources for rings and the like
2812 * - Request interrupts
2813 * - Allocate RX and TX ring resources
2814 * - Setup initial RSS table
2815 */
2816 err = nfp_net_open_alloc_all(nn);
2817 if (err)
2818 return err;
2819
2820 err = netif_set_real_num_tx_queues(netdev, nn->dp.num_stack_tx_rings);
2821 if (err)
2822 goto err_free_all;
2823
2824 err = netif_set_real_num_rx_queues(netdev, nn->dp.num_rx_rings);
2825 if (err)
2826 goto err_free_all;
2827
2828 /* Step 2: Configure the NFP
2829 * - Ifup the physical interface if it exists
2830 * - Enable rings from 0 to tx_rings/rx_rings - 1.
2831 * - Write MAC address (in case it changed)
2832 * - Set the MTU
2833 * - Set the Freelist buffer size
2834 * - Enable the FW
2835 */
2836 err = nfp_port_configure(netdev, true);
2837 if (err)
2838 goto err_free_all;
2839
2840 err = nfp_net_set_config_and_enable(nn);
2841 if (err)
2842 goto err_port_disable;
2843
2844 /* Step 3: Enable for kernel
2845 * - put some freelist descriptors on each RX ring
2846 * - enable NAPI on each ring
2847 * - enable all TX queues
2848 * - set link state
2849 */
2850 nfp_net_open_stack(nn);
2851
2852 return 0;
2853
2854 err_port_disable:
2855 nfp_port_configure(netdev, false);
2856 err_free_all:
2857 nfp_net_close_free_all(nn);
2858 return err;
2859 }
2860
nfp_ctrl_open(struct nfp_net * nn)2861 int nfp_ctrl_open(struct nfp_net *nn)
2862 {
2863 int err, r;
2864
2865 /* ring dumping depends on vNICs being opened/closed under rtnl */
2866 rtnl_lock();
2867
2868 err = nfp_net_open_alloc_all(nn);
2869 if (err)
2870 goto err_unlock;
2871
2872 err = nfp_net_set_config_and_enable(nn);
2873 if (err)
2874 goto err_free_all;
2875
2876 for (r = 0; r < nn->dp.num_r_vecs; r++)
2877 enable_irq(nn->r_vecs[r].irq_vector);
2878
2879 rtnl_unlock();
2880
2881 return 0;
2882
2883 err_free_all:
2884 nfp_net_close_free_all(nn);
2885 err_unlock:
2886 rtnl_unlock();
2887 return err;
2888 }
2889
nfp_net_set_rx_mode(struct net_device * netdev)2890 static void nfp_net_set_rx_mode(struct net_device *netdev)
2891 {
2892 struct nfp_net *nn = netdev_priv(netdev);
2893 u32 new_ctrl;
2894
2895 new_ctrl = nn->dp.ctrl;
2896
2897 if (netdev->flags & IFF_PROMISC) {
2898 if (nn->cap & NFP_NET_CFG_CTRL_PROMISC)
2899 new_ctrl |= NFP_NET_CFG_CTRL_PROMISC;
2900 else
2901 nn_warn(nn, "FW does not support promiscuous mode\n");
2902 } else {
2903 new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC;
2904 }
2905
2906 if (new_ctrl == nn->dp.ctrl)
2907 return;
2908
2909 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2910 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN);
2911
2912 nn->dp.ctrl = new_ctrl;
2913 }
2914
nfp_net_rss_init_itbl(struct nfp_net * nn)2915 static void nfp_net_rss_init_itbl(struct nfp_net *nn)
2916 {
2917 int i;
2918
2919 for (i = 0; i < sizeof(nn->rss_itbl); i++)
2920 nn->rss_itbl[i] =
2921 ethtool_rxfh_indir_default(i, nn->dp.num_rx_rings);
2922 }
2923
nfp_net_dp_swap(struct nfp_net * nn,struct nfp_net_dp * dp)2924 static void nfp_net_dp_swap(struct nfp_net *nn, struct nfp_net_dp *dp)
2925 {
2926 struct nfp_net_dp new_dp = *dp;
2927
2928 *dp = nn->dp;
2929 nn->dp = new_dp;
2930
2931 nn->dp.netdev->mtu = new_dp.mtu;
2932
2933 if (!netif_is_rxfh_configured(nn->dp.netdev))
2934 nfp_net_rss_init_itbl(nn);
2935 }
2936
nfp_net_dp_swap_enable(struct nfp_net * nn,struct nfp_net_dp * dp)2937 static int nfp_net_dp_swap_enable(struct nfp_net *nn, struct nfp_net_dp *dp)
2938 {
2939 unsigned int r;
2940 int err;
2941
2942 nfp_net_dp_swap(nn, dp);
2943
2944 for (r = 0; r < nn->max_r_vecs; r++)
2945 nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r);
2946
2947 err = netif_set_real_num_rx_queues(nn->dp.netdev, nn->dp.num_rx_rings);
2948 if (err)
2949 return err;
2950
2951 if (nn->dp.netdev->real_num_tx_queues != nn->dp.num_stack_tx_rings) {
2952 err = netif_set_real_num_tx_queues(nn->dp.netdev,
2953 nn->dp.num_stack_tx_rings);
2954 if (err)
2955 return err;
2956 }
2957
2958 return nfp_net_set_config_and_enable(nn);
2959 }
2960
nfp_net_clone_dp(struct nfp_net * nn)2961 struct nfp_net_dp *nfp_net_clone_dp(struct nfp_net *nn)
2962 {
2963 struct nfp_net_dp *new;
2964
2965 new = kmalloc(sizeof(*new), GFP_KERNEL);
2966 if (!new)
2967 return NULL;
2968
2969 *new = nn->dp;
2970
2971 /* Clear things which need to be recomputed */
2972 new->fl_bufsz = 0;
2973 new->tx_rings = NULL;
2974 new->rx_rings = NULL;
2975 new->num_r_vecs = 0;
2976 new->num_stack_tx_rings = 0;
2977
2978 return new;
2979 }
2980
2981 static int
nfp_net_check_config(struct nfp_net * nn,struct nfp_net_dp * dp,struct netlink_ext_ack * extack)2982 nfp_net_check_config(struct nfp_net *nn, struct nfp_net_dp *dp,
2983 struct netlink_ext_ack *extack)
2984 {
2985 /* XDP-enabled tests */
2986 if (!dp->xdp_prog)
2987 return 0;
2988 if (dp->fl_bufsz > PAGE_SIZE) {
2989 NL_SET_ERR_MSG_MOD(extack, "MTU too large w/ XDP enabled");
2990 return -EINVAL;
2991 }
2992 if (dp->num_tx_rings > nn->max_tx_rings) {
2993 NL_SET_ERR_MSG_MOD(extack, "Insufficient number of TX rings w/ XDP enabled");
2994 return -EINVAL;
2995 }
2996
2997 return 0;
2998 }
2999
nfp_net_ring_reconfig(struct nfp_net * nn,struct nfp_net_dp * dp,struct netlink_ext_ack * extack)3000 int nfp_net_ring_reconfig(struct nfp_net *nn, struct nfp_net_dp *dp,
3001 struct netlink_ext_ack *extack)
3002 {
3003 int r, err;
3004
3005 dp->fl_bufsz = nfp_net_calc_fl_bufsz(dp);
3006
3007 dp->num_stack_tx_rings = dp->num_tx_rings;
3008 if (dp->xdp_prog)
3009 dp->num_stack_tx_rings -= dp->num_rx_rings;
3010
3011 dp->num_r_vecs = max(dp->num_rx_rings, dp->num_stack_tx_rings);
3012
3013 err = nfp_net_check_config(nn, dp, extack);
3014 if (err)
3015 goto exit_free_dp;
3016
3017 if (!netif_running(dp->netdev)) {
3018 nfp_net_dp_swap(nn, dp);
3019 err = 0;
3020 goto exit_free_dp;
3021 }
3022
3023 /* Prepare new rings */
3024 for (r = nn->dp.num_r_vecs; r < dp->num_r_vecs; r++) {
3025 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
3026 if (err) {
3027 dp->num_r_vecs = r;
3028 goto err_cleanup_vecs;
3029 }
3030 }
3031
3032 err = nfp_net_rx_rings_prepare(nn, dp);
3033 if (err)
3034 goto err_cleanup_vecs;
3035
3036 err = nfp_net_tx_rings_prepare(nn, dp);
3037 if (err)
3038 goto err_free_rx;
3039
3040 /* Stop device, swap in new rings, try to start the firmware */
3041 nfp_net_close_stack(nn);
3042 nfp_net_clear_config_and_disable(nn);
3043
3044 err = nfp_net_dp_swap_enable(nn, dp);
3045 if (err) {
3046 int err2;
3047
3048 nfp_net_clear_config_and_disable(nn);
3049
3050 /* Try with old configuration and old rings */
3051 err2 = nfp_net_dp_swap_enable(nn, dp);
3052 if (err2)
3053 nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n",
3054 err, err2);
3055 }
3056 for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--)
3057 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
3058
3059 nfp_net_rx_rings_free(dp);
3060 nfp_net_tx_rings_free(dp);
3061
3062 nfp_net_open_stack(nn);
3063 exit_free_dp:
3064 kfree(dp);
3065
3066 return err;
3067
3068 err_free_rx:
3069 nfp_net_rx_rings_free(dp);
3070 err_cleanup_vecs:
3071 for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--)
3072 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
3073 kfree(dp);
3074 return err;
3075 }
3076
nfp_net_change_mtu(struct net_device * netdev,int new_mtu)3077 static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu)
3078 {
3079 struct nfp_net *nn = netdev_priv(netdev);
3080 struct nfp_net_dp *dp;
3081
3082 dp = nfp_net_clone_dp(nn);
3083 if (!dp)
3084 return -ENOMEM;
3085
3086 dp->mtu = new_mtu;
3087
3088 return nfp_net_ring_reconfig(nn, dp, NULL);
3089 }
3090
3091 static int
nfp_net_vlan_rx_add_vid(struct net_device * netdev,__be16 proto,u16 vid)3092 nfp_net_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3093 {
3094 struct nfp_net *nn = netdev_priv(netdev);
3095
3096 /* Priority tagged packets with vlan id 0 are processed by the
3097 * NFP as untagged packets
3098 */
3099 if (!vid)
3100 return 0;
3101
3102 nn_writew(nn, NFP_NET_CFG_VLAN_FILTER_VID, vid);
3103 nn_writew(nn, NFP_NET_CFG_VLAN_FILTER_PROTO, ETH_P_8021Q);
3104
3105 return nfp_net_reconfig_mbox(nn, NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_ADD);
3106 }
3107
3108 static int
nfp_net_vlan_rx_kill_vid(struct net_device * netdev,__be16 proto,u16 vid)3109 nfp_net_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3110 {
3111 struct nfp_net *nn = netdev_priv(netdev);
3112
3113 /* Priority tagged packets with vlan id 0 are processed by the
3114 * NFP as untagged packets
3115 */
3116 if (!vid)
3117 return 0;
3118
3119 nn_writew(nn, NFP_NET_CFG_VLAN_FILTER_VID, vid);
3120 nn_writew(nn, NFP_NET_CFG_VLAN_FILTER_PROTO, ETH_P_8021Q);
3121
3122 return nfp_net_reconfig_mbox(nn, NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_KILL);
3123 }
3124
nfp_net_stat64(struct net_device * netdev,struct rtnl_link_stats64 * stats)3125 static void nfp_net_stat64(struct net_device *netdev,
3126 struct rtnl_link_stats64 *stats)
3127 {
3128 struct nfp_net *nn = netdev_priv(netdev);
3129 int r;
3130
3131 for (r = 0; r < nn->dp.num_r_vecs; r++) {
3132 struct nfp_net_r_vector *r_vec = &nn->r_vecs[r];
3133 u64 data[3];
3134 unsigned int start;
3135
3136 do {
3137 start = u64_stats_fetch_begin(&r_vec->rx_sync);
3138 data[0] = r_vec->rx_pkts;
3139 data[1] = r_vec->rx_bytes;
3140 data[2] = r_vec->rx_drops;
3141 } while (u64_stats_fetch_retry(&r_vec->rx_sync, start));
3142 stats->rx_packets += data[0];
3143 stats->rx_bytes += data[1];
3144 stats->rx_dropped += data[2];
3145
3146 do {
3147 start = u64_stats_fetch_begin(&r_vec->tx_sync);
3148 data[0] = r_vec->tx_pkts;
3149 data[1] = r_vec->tx_bytes;
3150 data[2] = r_vec->tx_errors;
3151 } while (u64_stats_fetch_retry(&r_vec->tx_sync, start));
3152 stats->tx_packets += data[0];
3153 stats->tx_bytes += data[1];
3154 stats->tx_errors += data[2];
3155 }
3156 }
3157
nfp_net_set_features(struct net_device * netdev,netdev_features_t features)3158 static int nfp_net_set_features(struct net_device *netdev,
3159 netdev_features_t features)
3160 {
3161 netdev_features_t changed = netdev->features ^ features;
3162 struct nfp_net *nn = netdev_priv(netdev);
3163 u32 new_ctrl;
3164 int err;
3165
3166 /* Assume this is not called with features we have not advertised */
3167
3168 new_ctrl = nn->dp.ctrl;
3169
3170 if (changed & NETIF_F_RXCSUM) {
3171 if (features & NETIF_F_RXCSUM)
3172 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY;
3173 else
3174 new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM_ANY;
3175 }
3176
3177 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3178 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
3179 new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
3180 else
3181 new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM;
3182 }
3183
3184 if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) {
3185 if (features & (NETIF_F_TSO | NETIF_F_TSO6))
3186 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?:
3187 NFP_NET_CFG_CTRL_LSO;
3188 else
3189 new_ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY;
3190 }
3191
3192 if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
3193 if (features & NETIF_F_HW_VLAN_CTAG_RX)
3194 new_ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
3195 else
3196 new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN;
3197 }
3198
3199 if (changed & NETIF_F_HW_VLAN_CTAG_TX) {
3200 if (features & NETIF_F_HW_VLAN_CTAG_TX)
3201 new_ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
3202 else
3203 new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN;
3204 }
3205
3206 if (changed & NETIF_F_HW_VLAN_CTAG_FILTER) {
3207 if (features & NETIF_F_HW_VLAN_CTAG_FILTER)
3208 new_ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER;
3209 else
3210 new_ctrl &= ~NFP_NET_CFG_CTRL_CTAG_FILTER;
3211 }
3212
3213 if (changed & NETIF_F_SG) {
3214 if (features & NETIF_F_SG)
3215 new_ctrl |= NFP_NET_CFG_CTRL_GATHER;
3216 else
3217 new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER;
3218 }
3219
3220 if (changed & NETIF_F_HW_TC && nfp_app_tc_busy(nn->app, nn)) {
3221 nn_err(nn, "Cannot disable HW TC offload while in use\n");
3222 return -EBUSY;
3223 }
3224
3225 nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n",
3226 netdev->features, features, changed);
3227
3228 if (new_ctrl == nn->dp.ctrl)
3229 return 0;
3230
3231 nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->dp.ctrl, new_ctrl);
3232 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
3233 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN);
3234 if (err)
3235 return err;
3236
3237 nn->dp.ctrl = new_ctrl;
3238
3239 return 0;
3240 }
3241
3242 static netdev_features_t
nfp_net_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3243 nfp_net_features_check(struct sk_buff *skb, struct net_device *dev,
3244 netdev_features_t features)
3245 {
3246 u8 l4_hdr;
3247
3248 /* We can't do TSO over double tagged packets (802.1AD) */
3249 features &= vlan_features_check(skb, features);
3250
3251 if (!skb->encapsulation)
3252 return features;
3253
3254 /* Ensure that inner L4 header offset fits into TX descriptor field */
3255 if (skb_is_gso(skb)) {
3256 u32 hdrlen;
3257
3258 hdrlen = skb_inner_transport_header(skb) - skb->data +
3259 inner_tcp_hdrlen(skb);
3260
3261 if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ))
3262 features &= ~NETIF_F_GSO_MASK;
3263 }
3264
3265 /* VXLAN/GRE check */
3266 switch (vlan_get_protocol(skb)) {
3267 case htons(ETH_P_IP):
3268 l4_hdr = ip_hdr(skb)->protocol;
3269 break;
3270 case htons(ETH_P_IPV6):
3271 l4_hdr = ipv6_hdr(skb)->nexthdr;
3272 break;
3273 default:
3274 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3275 }
3276
3277 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
3278 skb->inner_protocol != htons(ETH_P_TEB) ||
3279 (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) ||
3280 (l4_hdr == IPPROTO_UDP &&
3281 (skb_inner_mac_header(skb) - skb_transport_header(skb) !=
3282 sizeof(struct udphdr) + sizeof(struct vxlanhdr))))
3283 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3284
3285 return features;
3286 }
3287
3288 /**
3289 * nfp_net_set_vxlan_port() - set vxlan port in SW and reconfigure HW
3290 * @nn: NFP Net device to reconfigure
3291 * @idx: Index into the port table where new port should be written
3292 * @port: UDP port to configure (pass zero to remove VXLAN port)
3293 */
nfp_net_set_vxlan_port(struct nfp_net * nn,int idx,__be16 port)3294 static void nfp_net_set_vxlan_port(struct nfp_net *nn, int idx, __be16 port)
3295 {
3296 int i;
3297
3298 nn->vxlan_ports[idx] = port;
3299
3300 if (!(nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN))
3301 return;
3302
3303 BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1);
3304 for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2)
3305 nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(port),
3306 be16_to_cpu(nn->vxlan_ports[i + 1]) << 16 |
3307 be16_to_cpu(nn->vxlan_ports[i]));
3308
3309 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_VXLAN);
3310 }
3311
3312 /**
3313 * nfp_net_find_vxlan_idx() - find table entry of the port or a free one
3314 * @nn: NFP Network structure
3315 * @port: UDP port to look for
3316 *
3317 * Return: if the port is already in the table -- it's position;
3318 * if the port is not in the table -- free position to use;
3319 * if the table is full -- -ENOSPC.
3320 */
nfp_net_find_vxlan_idx(struct nfp_net * nn,__be16 port)3321 static int nfp_net_find_vxlan_idx(struct nfp_net *nn, __be16 port)
3322 {
3323 int i, free_idx = -ENOSPC;
3324
3325 for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i++) {
3326 if (nn->vxlan_ports[i] == port)
3327 return i;
3328 if (!nn->vxlan_usecnt[i])
3329 free_idx = i;
3330 }
3331
3332 return free_idx;
3333 }
3334
nfp_net_add_vxlan_port(struct net_device * netdev,struct udp_tunnel_info * ti)3335 static void nfp_net_add_vxlan_port(struct net_device *netdev,
3336 struct udp_tunnel_info *ti)
3337 {
3338 struct nfp_net *nn = netdev_priv(netdev);
3339 int idx;
3340
3341 if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
3342 return;
3343
3344 idx = nfp_net_find_vxlan_idx(nn, ti->port);
3345 if (idx == -ENOSPC)
3346 return;
3347
3348 if (!nn->vxlan_usecnt[idx]++)
3349 nfp_net_set_vxlan_port(nn, idx, ti->port);
3350 }
3351
nfp_net_del_vxlan_port(struct net_device * netdev,struct udp_tunnel_info * ti)3352 static void nfp_net_del_vxlan_port(struct net_device *netdev,
3353 struct udp_tunnel_info *ti)
3354 {
3355 struct nfp_net *nn = netdev_priv(netdev);
3356 int idx;
3357
3358 if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
3359 return;
3360
3361 idx = nfp_net_find_vxlan_idx(nn, ti->port);
3362 if (idx == -ENOSPC || !nn->vxlan_usecnt[idx])
3363 return;
3364
3365 if (!--nn->vxlan_usecnt[idx])
3366 nfp_net_set_vxlan_port(nn, idx, 0);
3367 }
3368
3369 static int
nfp_net_xdp_setup_drv(struct nfp_net * nn,struct bpf_prog * prog,struct netlink_ext_ack * extack)3370 nfp_net_xdp_setup_drv(struct nfp_net *nn, struct bpf_prog *prog,
3371 struct netlink_ext_ack *extack)
3372 {
3373 struct nfp_net_dp *dp;
3374
3375 if (!prog == !nn->dp.xdp_prog) {
3376 WRITE_ONCE(nn->dp.xdp_prog, prog);
3377 return 0;
3378 }
3379
3380 dp = nfp_net_clone_dp(nn);
3381 if (!dp)
3382 return -ENOMEM;
3383
3384 dp->xdp_prog = prog;
3385 dp->num_tx_rings += prog ? nn->dp.num_rx_rings : -nn->dp.num_rx_rings;
3386 dp->rx_dma_dir = prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
3387 dp->rx_dma_off = prog ? XDP_PACKET_HEADROOM - nn->dp.rx_offset : 0;
3388
3389 /* We need RX reconfig to remap the buffers (BIDIR vs FROM_DEV) */
3390 return nfp_net_ring_reconfig(nn, dp, extack);
3391 }
3392
3393 static int
nfp_net_xdp_setup(struct nfp_net * nn,struct bpf_prog * prog,u32 flags,struct netlink_ext_ack * extack)3394 nfp_net_xdp_setup(struct nfp_net *nn, struct bpf_prog *prog, u32 flags,
3395 struct netlink_ext_ack *extack)
3396 {
3397 struct bpf_prog *drv_prog, *offload_prog;
3398 int err;
3399
3400 if (nn->xdp_prog && (flags ^ nn->xdp_flags) & XDP_FLAGS_MODES)
3401 return -EBUSY;
3402
3403 /* Load both when no flags set to allow easy activation of driver path
3404 * when program is replaced by one which can't be offloaded.
3405 */
3406 drv_prog = flags & XDP_FLAGS_HW_MODE ? NULL : prog;
3407 offload_prog = flags & XDP_FLAGS_DRV_MODE ? NULL : prog;
3408
3409 err = nfp_net_xdp_setup_drv(nn, drv_prog, extack);
3410 if (err)
3411 return err;
3412
3413 err = nfp_app_xdp_offload(nn->app, nn, offload_prog);
3414 if (err && flags & XDP_FLAGS_HW_MODE)
3415 return err;
3416
3417 if (nn->xdp_prog)
3418 bpf_prog_put(nn->xdp_prog);
3419 nn->xdp_prog = prog;
3420 nn->xdp_flags = flags;
3421
3422 return 0;
3423 }
3424
nfp_net_xdp(struct net_device * netdev,struct netdev_xdp * xdp)3425 static int nfp_net_xdp(struct net_device *netdev, struct netdev_xdp *xdp)
3426 {
3427 struct nfp_net *nn = netdev_priv(netdev);
3428
3429 switch (xdp->command) {
3430 case XDP_SETUP_PROG:
3431 case XDP_SETUP_PROG_HW:
3432 return nfp_net_xdp_setup(nn, xdp->prog, xdp->flags,
3433 xdp->extack);
3434 case XDP_QUERY_PROG:
3435 xdp->prog_attached = !!nn->xdp_prog;
3436 if (nn->dp.bpf_offload_xdp)
3437 xdp->prog_attached = XDP_ATTACHED_HW;
3438 xdp->prog_id = nn->xdp_prog ? nn->xdp_prog->aux->id : 0;
3439 return 0;
3440 default:
3441 return -EINVAL;
3442 }
3443 }
3444
nfp_net_set_mac_address(struct net_device * netdev,void * addr)3445 static int nfp_net_set_mac_address(struct net_device *netdev, void *addr)
3446 {
3447 struct nfp_net *nn = netdev_priv(netdev);
3448 struct sockaddr *saddr = addr;
3449 int err;
3450
3451 err = eth_prepare_mac_addr_change(netdev, addr);
3452 if (err)
3453 return err;
3454
3455 nfp_net_write_mac_addr(nn, saddr->sa_data);
3456
3457 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MACADDR);
3458 if (err)
3459 return err;
3460
3461 eth_commit_mac_addr_change(netdev, addr);
3462
3463 return 0;
3464 }
3465
3466 const struct net_device_ops nfp_net_netdev_ops = {
3467 .ndo_open = nfp_net_netdev_open,
3468 .ndo_stop = nfp_net_netdev_close,
3469 .ndo_start_xmit = nfp_net_tx,
3470 .ndo_get_stats64 = nfp_net_stat64,
3471 .ndo_vlan_rx_add_vid = nfp_net_vlan_rx_add_vid,
3472 .ndo_vlan_rx_kill_vid = nfp_net_vlan_rx_kill_vid,
3473 .ndo_set_vf_mac = nfp_app_set_vf_mac,
3474 .ndo_set_vf_vlan = nfp_app_set_vf_vlan,
3475 .ndo_set_vf_spoofchk = nfp_app_set_vf_spoofchk,
3476 .ndo_get_vf_config = nfp_app_get_vf_config,
3477 .ndo_set_vf_link_state = nfp_app_set_vf_link_state,
3478 .ndo_setup_tc = nfp_port_setup_tc,
3479 .ndo_tx_timeout = nfp_net_tx_timeout,
3480 .ndo_set_rx_mode = nfp_net_set_rx_mode,
3481 .ndo_change_mtu = nfp_net_change_mtu,
3482 .ndo_set_mac_address = nfp_net_set_mac_address,
3483 .ndo_set_features = nfp_net_set_features,
3484 .ndo_features_check = nfp_net_features_check,
3485 .ndo_get_phys_port_name = nfp_port_get_phys_port_name,
3486 .ndo_udp_tunnel_add = nfp_net_add_vxlan_port,
3487 .ndo_udp_tunnel_del = nfp_net_del_vxlan_port,
3488 .ndo_xdp = nfp_net_xdp,
3489 };
3490
3491 /**
3492 * nfp_net_info() - Print general info about the NIC
3493 * @nn: NFP Net device to reconfigure
3494 */
nfp_net_info(struct nfp_net * nn)3495 void nfp_net_info(struct nfp_net *nn)
3496 {
3497 nn_info(nn, "Netronome NFP-6xxx %sNetdev: TxQs=%d/%d RxQs=%d/%d\n",
3498 nn->dp.is_vf ? "VF " : "",
3499 nn->dp.num_tx_rings, nn->max_tx_rings,
3500 nn->dp.num_rx_rings, nn->max_rx_rings);
3501 nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n",
3502 nn->fw_ver.resv, nn->fw_ver.class,
3503 nn->fw_ver.major, nn->fw_ver.minor,
3504 nn->max_mtu);
3505 nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
3506 nn->cap,
3507 nn->cap & NFP_NET_CFG_CTRL_PROMISC ? "PROMISC " : "",
3508 nn->cap & NFP_NET_CFG_CTRL_L2BC ? "L2BCFILT " : "",
3509 nn->cap & NFP_NET_CFG_CTRL_L2MC ? "L2MCFILT " : "",
3510 nn->cap & NFP_NET_CFG_CTRL_RXCSUM ? "RXCSUM " : "",
3511 nn->cap & NFP_NET_CFG_CTRL_TXCSUM ? "TXCSUM " : "",
3512 nn->cap & NFP_NET_CFG_CTRL_RXVLAN ? "RXVLAN " : "",
3513 nn->cap & NFP_NET_CFG_CTRL_TXVLAN ? "TXVLAN " : "",
3514 nn->cap & NFP_NET_CFG_CTRL_SCATTER ? "SCATTER " : "",
3515 nn->cap & NFP_NET_CFG_CTRL_GATHER ? "GATHER " : "",
3516 nn->cap & NFP_NET_CFG_CTRL_LSO ? "TSO1 " : "",
3517 nn->cap & NFP_NET_CFG_CTRL_LSO2 ? "TSO2 " : "",
3518 nn->cap & NFP_NET_CFG_CTRL_RSS ? "RSS1 " : "",
3519 nn->cap & NFP_NET_CFG_CTRL_RSS2 ? "RSS2 " : "",
3520 nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER ? "CTAG_FILTER " : "",
3521 nn->cap & NFP_NET_CFG_CTRL_L2SWITCH ? "L2SWITCH " : "",
3522 nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "",
3523 nn->cap & NFP_NET_CFG_CTRL_IRQMOD ? "IRQMOD " : "",
3524 nn->cap & NFP_NET_CFG_CTRL_VXLAN ? "VXLAN " : "",
3525 nn->cap & NFP_NET_CFG_CTRL_NVGRE ? "NVGRE " : "",
3526 nn->cap & NFP_NET_CFG_CTRL_CSUM_COMPLETE ?
3527 "RXCSUM_COMPLETE " : "",
3528 nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR ? "LIVE_ADDR " : "",
3529 nfp_app_extra_cap(nn->app, nn));
3530 }
3531
3532 /**
3533 * nfp_net_alloc() - Allocate netdev and related structure
3534 * @pdev: PCI device
3535 * @needs_netdev: Whether to allocate a netdev for this vNIC
3536 * @max_tx_rings: Maximum number of TX rings supported by device
3537 * @max_rx_rings: Maximum number of RX rings supported by device
3538 *
3539 * This function allocates a netdev device and fills in the initial
3540 * part of the @struct nfp_net structure. In case of control device
3541 * nfp_net structure is allocated without the netdev.
3542 *
3543 * Return: NFP Net device structure, or ERR_PTR on error.
3544 */
nfp_net_alloc(struct pci_dev * pdev,bool needs_netdev,unsigned int max_tx_rings,unsigned int max_rx_rings)3545 struct nfp_net *nfp_net_alloc(struct pci_dev *pdev, bool needs_netdev,
3546 unsigned int max_tx_rings,
3547 unsigned int max_rx_rings)
3548 {
3549 struct nfp_net *nn;
3550
3551 if (needs_netdev) {
3552 struct net_device *netdev;
3553
3554 netdev = alloc_etherdev_mqs(sizeof(struct nfp_net),
3555 max_tx_rings, max_rx_rings);
3556 if (!netdev)
3557 return ERR_PTR(-ENOMEM);
3558
3559 SET_NETDEV_DEV(netdev, &pdev->dev);
3560 nn = netdev_priv(netdev);
3561 nn->dp.netdev = netdev;
3562 } else {
3563 nn = vzalloc(sizeof(*nn));
3564 if (!nn)
3565 return ERR_PTR(-ENOMEM);
3566 }
3567
3568 nn->dp.dev = &pdev->dev;
3569 nn->pdev = pdev;
3570
3571 nn->max_tx_rings = max_tx_rings;
3572 nn->max_rx_rings = max_rx_rings;
3573
3574 nn->dp.num_tx_rings = min_t(unsigned int,
3575 max_tx_rings, num_online_cpus());
3576 nn->dp.num_rx_rings = min_t(unsigned int, max_rx_rings,
3577 netif_get_num_default_rss_queues());
3578
3579 nn->dp.num_r_vecs = max(nn->dp.num_tx_rings, nn->dp.num_rx_rings);
3580 nn->dp.num_r_vecs = min_t(unsigned int,
3581 nn->dp.num_r_vecs, num_online_cpus());
3582
3583 nn->dp.txd_cnt = NFP_NET_TX_DESCS_DEFAULT;
3584 nn->dp.rxd_cnt = NFP_NET_RX_DESCS_DEFAULT;
3585
3586 spin_lock_init(&nn->reconfig_lock);
3587 spin_lock_init(&nn->link_status_lock);
3588
3589 setup_timer(&nn->reconfig_timer,
3590 nfp_net_reconfig_timer, (unsigned long)nn);
3591
3592 return nn;
3593 }
3594
3595 /**
3596 * nfp_net_free() - Undo what @nfp_net_alloc() did
3597 * @nn: NFP Net device to reconfigure
3598 */
nfp_net_free(struct nfp_net * nn)3599 void nfp_net_free(struct nfp_net *nn)
3600 {
3601 WARN_ON(timer_pending(&nn->reconfig_timer) || nn->reconfig_posted);
3602 if (nn->xdp_prog)
3603 bpf_prog_put(nn->xdp_prog);
3604
3605 if (nn->dp.netdev)
3606 free_netdev(nn->dp.netdev);
3607 else
3608 vfree(nn);
3609 }
3610
3611 /**
3612 * nfp_net_rss_key_sz() - Get current size of the RSS key
3613 * @nn: NFP Net device instance
3614 *
3615 * Return: size of the RSS key for currently selected hash function.
3616 */
nfp_net_rss_key_sz(struct nfp_net * nn)3617 unsigned int nfp_net_rss_key_sz(struct nfp_net *nn)
3618 {
3619 switch (nn->rss_hfunc) {
3620 case ETH_RSS_HASH_TOP:
3621 return NFP_NET_CFG_RSS_KEY_SZ;
3622 case ETH_RSS_HASH_XOR:
3623 return 0;
3624 case ETH_RSS_HASH_CRC32:
3625 return 4;
3626 }
3627
3628 nn_warn(nn, "Unknown hash function: %u\n", nn->rss_hfunc);
3629 return 0;
3630 }
3631
3632 /**
3633 * nfp_net_rss_init() - Set the initial RSS parameters
3634 * @nn: NFP Net device to reconfigure
3635 */
nfp_net_rss_init(struct nfp_net * nn)3636 static void nfp_net_rss_init(struct nfp_net *nn)
3637 {
3638 unsigned long func_bit, rss_cap_hfunc;
3639 u32 reg;
3640
3641 /* Read the RSS function capability and select first supported func */
3642 reg = nn_readl(nn, NFP_NET_CFG_RSS_CAP);
3643 rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, reg);
3644 if (!rss_cap_hfunc)
3645 rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC,
3646 NFP_NET_CFG_RSS_TOEPLITZ);
3647
3648 func_bit = find_first_bit(&rss_cap_hfunc, NFP_NET_CFG_RSS_HFUNCS);
3649 if (func_bit == NFP_NET_CFG_RSS_HFUNCS) {
3650 dev_warn(nn->dp.dev,
3651 "Bad RSS config, defaulting to Toeplitz hash\n");
3652 func_bit = ETH_RSS_HASH_TOP_BIT;
3653 }
3654 nn->rss_hfunc = 1 << func_bit;
3655
3656 netdev_rss_key_fill(nn->rss_key, nfp_net_rss_key_sz(nn));
3657
3658 nfp_net_rss_init_itbl(nn);
3659
3660 /* Enable IPv4/IPv6 TCP by default */
3661 nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP |
3662 NFP_NET_CFG_RSS_IPV6_TCP |
3663 FIELD_PREP(NFP_NET_CFG_RSS_HFUNC, nn->rss_hfunc) |
3664 NFP_NET_CFG_RSS_MASK;
3665 }
3666
3667 /**
3668 * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters
3669 * @nn: NFP Net device to reconfigure
3670 */
nfp_net_irqmod_init(struct nfp_net * nn)3671 static void nfp_net_irqmod_init(struct nfp_net *nn)
3672 {
3673 nn->rx_coalesce_usecs = 50;
3674 nn->rx_coalesce_max_frames = 64;
3675 nn->tx_coalesce_usecs = 50;
3676 nn->tx_coalesce_max_frames = 64;
3677 }
3678
nfp_net_netdev_init(struct nfp_net * nn)3679 static void nfp_net_netdev_init(struct nfp_net *nn)
3680 {
3681 struct net_device *netdev = nn->dp.netdev;
3682
3683 nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr);
3684
3685 netdev->mtu = nn->dp.mtu;
3686
3687 /* Advertise/enable offloads based on capabilities
3688 *
3689 * Note: netdev->features show the currently enabled features
3690 * and netdev->hw_features advertises which features are
3691 * supported. By default we enable most features.
3692 */
3693 if (nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR)
3694 netdev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
3695
3696 netdev->hw_features = NETIF_F_HIGHDMA;
3697 if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY) {
3698 netdev->hw_features |= NETIF_F_RXCSUM;
3699 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY;
3700 }
3701 if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) {
3702 netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
3703 nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
3704 }
3705 if (nn->cap & NFP_NET_CFG_CTRL_GATHER) {
3706 netdev->hw_features |= NETIF_F_SG;
3707 nn->dp.ctrl |= NFP_NET_CFG_CTRL_GATHER;
3708 }
3709 if ((nn->cap & NFP_NET_CFG_CTRL_LSO && nn->fw_ver.major > 2) ||
3710 nn->cap & NFP_NET_CFG_CTRL_LSO2) {
3711 netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
3712 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?:
3713 NFP_NET_CFG_CTRL_LSO;
3714 }
3715 if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY)
3716 netdev->hw_features |= NETIF_F_RXHASH;
3717 if (nn->cap & NFP_NET_CFG_CTRL_VXLAN &&
3718 nn->cap & NFP_NET_CFG_CTRL_NVGRE) {
3719 if (nn->cap & NFP_NET_CFG_CTRL_LSO)
3720 netdev->hw_features |= NETIF_F_GSO_GRE |
3721 NETIF_F_GSO_UDP_TUNNEL;
3722 nn->dp.ctrl |= NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE;
3723
3724 netdev->hw_enc_features = netdev->hw_features;
3725 }
3726
3727 netdev->vlan_features = netdev->hw_features;
3728
3729 if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN) {
3730 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
3731 nn->dp.ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
3732 }
3733 if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN) {
3734 if (nn->cap & NFP_NET_CFG_CTRL_LSO2) {
3735 nn_warn(nn, "Device advertises both TSO2 and TXVLAN. Refusing to enable TXVLAN.\n");
3736 } else {
3737 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
3738 nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
3739 }
3740 }
3741 if (nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER) {
3742 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3743 nn->dp.ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER;
3744 }
3745
3746 netdev->features = netdev->hw_features;
3747
3748 if (nfp_app_has_tc(nn->app))
3749 netdev->hw_features |= NETIF_F_HW_TC;
3750
3751 /* Advertise but disable TSO by default. */
3752 netdev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
3753 nn->dp.ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY;
3754
3755 /* Finalise the netdev setup */
3756 netdev->netdev_ops = &nfp_net_netdev_ops;
3757 netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000);
3758
3759 SWITCHDEV_SET_OPS(netdev, &nfp_port_switchdev_ops);
3760
3761 /* MTU range: 68 - hw-specific max */
3762 netdev->min_mtu = ETH_MIN_MTU;
3763 netdev->max_mtu = nn->max_mtu;
3764
3765 netif_carrier_off(netdev);
3766
3767 nfp_net_set_ethtool_ops(netdev);
3768 }
3769
3770 /**
3771 * nfp_net_init() - Initialise/finalise the nfp_net structure
3772 * @nn: NFP Net device structure
3773 *
3774 * Return: 0 on success or negative errno on error.
3775 */
nfp_net_init(struct nfp_net * nn)3776 int nfp_net_init(struct nfp_net *nn)
3777 {
3778 int err;
3779
3780 nn->dp.rx_dma_dir = DMA_FROM_DEVICE;
3781
3782 /* Get some of the read-only fields from the BAR */
3783 nn->cap = nn_readl(nn, NFP_NET_CFG_CAP);
3784 nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU);
3785
3786 /* ABI 4.x and ctrl vNIC always use chained metadata, in other cases
3787 * we allow use of non-chained metadata if RSS(v1) is the only
3788 * advertised capability requiring metadata.
3789 */
3790 nn->dp.chained_metadata_format = nn->fw_ver.major == 4 ||
3791 !nn->dp.netdev ||
3792 !(nn->cap & NFP_NET_CFG_CTRL_RSS) ||
3793 nn->cap & NFP_NET_CFG_CTRL_CHAIN_META;
3794 /* RSS(v1) uses non-chained metadata format, except in ABI 4.x where
3795 * it has the same meaning as RSSv2.
3796 */
3797 if (nn->dp.chained_metadata_format && nn->fw_ver.major != 4)
3798 nn->cap &= ~NFP_NET_CFG_CTRL_RSS;
3799
3800 /* Determine RX packet/metadata boundary offset */
3801 if (nn->fw_ver.major >= 2) {
3802 u32 reg;
3803
3804 reg = nn_readl(nn, NFP_NET_CFG_RX_OFFSET);
3805 if (reg > NFP_NET_MAX_PREPEND) {
3806 nn_err(nn, "Invalid rx offset: %d\n", reg);
3807 return -EINVAL;
3808 }
3809 nn->dp.rx_offset = reg;
3810 } else {
3811 nn->dp.rx_offset = NFP_NET_RX_OFFSET;
3812 }
3813
3814 /* Set default MTU and Freelist buffer size */
3815 if (nn->max_mtu < NFP_NET_DEFAULT_MTU)
3816 nn->dp.mtu = nn->max_mtu;
3817 else
3818 nn->dp.mtu = NFP_NET_DEFAULT_MTU;
3819 nn->dp.fl_bufsz = nfp_net_calc_fl_bufsz(&nn->dp);
3820
3821 if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) {
3822 nfp_net_rss_init(nn);
3823 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RSS2 ?:
3824 NFP_NET_CFG_CTRL_RSS;
3825 }
3826
3827 /* Allow L2 Broadcast and Multicast through by default, if supported */
3828 if (nn->cap & NFP_NET_CFG_CTRL_L2BC)
3829 nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2BC;
3830 if (nn->cap & NFP_NET_CFG_CTRL_L2MC)
3831 nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2MC;
3832
3833 /* Allow IRQ moderation, if supported */
3834 if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) {
3835 nfp_net_irqmod_init(nn);
3836 nn->dp.ctrl |= NFP_NET_CFG_CTRL_IRQMOD;
3837 }
3838
3839 if (nn->dp.netdev)
3840 nfp_net_netdev_init(nn);
3841
3842 /* Stash the re-configuration queue away. First odd queue in TX Bar */
3843 nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ;
3844
3845 /* Make sure the FW knows the netdev is supposed to be disabled here */
3846 nn_writel(nn, NFP_NET_CFG_CTRL, 0);
3847 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
3848 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);
3849 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING |
3850 NFP_NET_CFG_UPDATE_GEN);
3851 if (err)
3852 return err;
3853
3854 nfp_net_vecs_init(nn);
3855
3856 if (!nn->dp.netdev)
3857 return 0;
3858 return register_netdev(nn->dp.netdev);
3859 }
3860
3861 /**
3862 * nfp_net_clean() - Undo what nfp_net_init() did.
3863 * @nn: NFP Net device structure
3864 */
nfp_net_clean(struct nfp_net * nn)3865 void nfp_net_clean(struct nfp_net *nn)
3866 {
3867 if (!nn->dp.netdev)
3868 return;
3869
3870 unregister_netdev(nn->dp.netdev);
3871 nfp_net_reconfig_wait_posted(nn);
3872 }
3873