• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * linux/fs/nfs/write.c
3  *
4  * Write file data over NFS.
5  *
6  * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
7  */
8 
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/file.h>
14 #include <linux/writeback.h>
15 #include <linux/swap.h>
16 #include <linux/migrate.h>
17 
18 #include <linux/sunrpc/clnt.h>
19 #include <linux/nfs_fs.h>
20 #include <linux/nfs_mount.h>
21 #include <linux/nfs_page.h>
22 #include <linux/backing-dev.h>
23 #include <linux/export.h>
24 #include <linux/freezer.h>
25 #include <linux/wait.h>
26 
27 #include <linux/uaccess.h>
28 
29 #include "delegation.h"
30 #include "internal.h"
31 #include "iostat.h"
32 #include "nfs4_fs.h"
33 #include "fscache.h"
34 #include "pnfs.h"
35 
36 #include "nfstrace.h"
37 
38 #define NFSDBG_FACILITY		NFSDBG_PAGECACHE
39 
40 #define MIN_POOL_WRITE		(32)
41 #define MIN_POOL_COMMIT		(4)
42 
43 struct nfs_io_completion {
44 	void (*complete)(void *data);
45 	void *data;
46 	struct kref refcount;
47 };
48 
49 /*
50  * Local function declarations
51  */
52 static void nfs_redirty_request(struct nfs_page *req);
53 static const struct rpc_call_ops nfs_commit_ops;
54 static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops;
55 static const struct nfs_commit_completion_ops nfs_commit_completion_ops;
56 static const struct nfs_rw_ops nfs_rw_write_ops;
57 static void nfs_clear_request_commit(struct nfs_page *req);
58 static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo,
59 				      struct inode *inode);
60 static struct nfs_page *
61 nfs_page_search_commits_for_head_request_locked(struct nfs_inode *nfsi,
62 						struct page *page);
63 
64 static struct kmem_cache *nfs_wdata_cachep;
65 static mempool_t *nfs_wdata_mempool;
66 static struct kmem_cache *nfs_cdata_cachep;
67 static mempool_t *nfs_commit_mempool;
68 
nfs_commitdata_alloc(bool never_fail)69 struct nfs_commit_data *nfs_commitdata_alloc(bool never_fail)
70 {
71 	struct nfs_commit_data *p;
72 
73 	if (never_fail)
74 		p = mempool_alloc(nfs_commit_mempool, GFP_NOIO);
75 	else {
76 		/* It is OK to do some reclaim, not no safe to wait
77 		 * for anything to be returned to the pool.
78 		 * mempool_alloc() cannot handle that particular combination,
79 		 * so we need two separate attempts.
80 		 */
81 		p = mempool_alloc(nfs_commit_mempool, GFP_NOWAIT);
82 		if (!p)
83 			p = kmem_cache_alloc(nfs_cdata_cachep, GFP_NOIO |
84 					     __GFP_NOWARN | __GFP_NORETRY);
85 		if (!p)
86 			return NULL;
87 	}
88 
89 	memset(p, 0, sizeof(*p));
90 	INIT_LIST_HEAD(&p->pages);
91 	return p;
92 }
93 EXPORT_SYMBOL_GPL(nfs_commitdata_alloc);
94 
nfs_commit_free(struct nfs_commit_data * p)95 void nfs_commit_free(struct nfs_commit_data *p)
96 {
97 	mempool_free(p, nfs_commit_mempool);
98 }
99 EXPORT_SYMBOL_GPL(nfs_commit_free);
100 
nfs_writehdr_alloc(void)101 static struct nfs_pgio_header *nfs_writehdr_alloc(void)
102 {
103 	struct nfs_pgio_header *p = mempool_alloc(nfs_wdata_mempool, GFP_NOIO);
104 
105 	memset(p, 0, sizeof(*p));
106 	p->rw_mode = FMODE_WRITE;
107 	return p;
108 }
109 
nfs_writehdr_free(struct nfs_pgio_header * hdr)110 static void nfs_writehdr_free(struct nfs_pgio_header *hdr)
111 {
112 	mempool_free(hdr, nfs_wdata_mempool);
113 }
114 
nfs_io_completion_alloc(gfp_t gfp_flags)115 static struct nfs_io_completion *nfs_io_completion_alloc(gfp_t gfp_flags)
116 {
117 	return kmalloc(sizeof(struct nfs_io_completion), gfp_flags);
118 }
119 
nfs_io_completion_init(struct nfs_io_completion * ioc,void (* complete)(void *),void * data)120 static void nfs_io_completion_init(struct nfs_io_completion *ioc,
121 		void (*complete)(void *), void *data)
122 {
123 	ioc->complete = complete;
124 	ioc->data = data;
125 	kref_init(&ioc->refcount);
126 }
127 
nfs_io_completion_release(struct kref * kref)128 static void nfs_io_completion_release(struct kref *kref)
129 {
130 	struct nfs_io_completion *ioc = container_of(kref,
131 			struct nfs_io_completion, refcount);
132 	ioc->complete(ioc->data);
133 	kfree(ioc);
134 }
135 
nfs_io_completion_get(struct nfs_io_completion * ioc)136 static void nfs_io_completion_get(struct nfs_io_completion *ioc)
137 {
138 	if (ioc != NULL)
139 		kref_get(&ioc->refcount);
140 }
141 
nfs_io_completion_put(struct nfs_io_completion * ioc)142 static void nfs_io_completion_put(struct nfs_io_completion *ioc)
143 {
144 	if (ioc != NULL)
145 		kref_put(&ioc->refcount, nfs_io_completion_release);
146 }
147 
148 static struct nfs_page *
nfs_page_private_request(struct page * page)149 nfs_page_private_request(struct page *page)
150 {
151 	if (!PagePrivate(page))
152 		return NULL;
153 	return (struct nfs_page *)page_private(page);
154 }
155 
156 /*
157  * nfs_page_find_head_request_locked - find head request associated with @page
158  *
159  * must be called while holding the inode lock.
160  *
161  * returns matching head request with reference held, or NULL if not found.
162  */
163 static struct nfs_page *
nfs_page_find_private_request(struct page * page)164 nfs_page_find_private_request(struct page *page)
165 {
166 	struct address_space *mapping = page_file_mapping(page);
167 	struct nfs_page *req;
168 
169 	if (!PagePrivate(page))
170 		return NULL;
171 	spin_lock(&mapping->private_lock);
172 	req = nfs_page_private_request(page);
173 	if (req) {
174 		WARN_ON_ONCE(req->wb_head != req);
175 		kref_get(&req->wb_kref);
176 	}
177 	spin_unlock(&mapping->private_lock);
178 	return req;
179 }
180 
181 static struct nfs_page *
nfs_page_find_swap_request(struct page * page)182 nfs_page_find_swap_request(struct page *page)
183 {
184 	struct inode *inode = page_file_mapping(page)->host;
185 	struct nfs_inode *nfsi = NFS_I(inode);
186 	struct nfs_page *req = NULL;
187 	if (!PageSwapCache(page))
188 		return NULL;
189 	mutex_lock(&nfsi->commit_mutex);
190 	if (PageSwapCache(page)) {
191 		req = nfs_page_search_commits_for_head_request_locked(nfsi,
192 			page);
193 		if (req) {
194 			WARN_ON_ONCE(req->wb_head != req);
195 			kref_get(&req->wb_kref);
196 		}
197 	}
198 	mutex_unlock(&nfsi->commit_mutex);
199 	return req;
200 }
201 
202 /*
203  * nfs_page_find_head_request - find head request associated with @page
204  *
205  * returns matching head request with reference held, or NULL if not found.
206  */
nfs_page_find_head_request(struct page * page)207 static struct nfs_page *nfs_page_find_head_request(struct page *page)
208 {
209 	struct nfs_page *req;
210 
211 	req = nfs_page_find_private_request(page);
212 	if (!req)
213 		req = nfs_page_find_swap_request(page);
214 	return req;
215 }
216 
217 /* Adjust the file length if we're writing beyond the end */
nfs_grow_file(struct page * page,unsigned int offset,unsigned int count)218 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
219 {
220 	struct inode *inode = page_file_mapping(page)->host;
221 	loff_t end, i_size;
222 	pgoff_t end_index;
223 
224 	spin_lock(&inode->i_lock);
225 	i_size = i_size_read(inode);
226 	end_index = (i_size - 1) >> PAGE_SHIFT;
227 	if (i_size > 0 && page_index(page) < end_index)
228 		goto out;
229 	end = page_file_offset(page) + ((loff_t)offset+count);
230 	if (i_size >= end)
231 		goto out;
232 	i_size_write(inode, end);
233 	nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
234 out:
235 	spin_unlock(&inode->i_lock);
236 }
237 
238 /* A writeback failed: mark the page as bad, and invalidate the page cache */
nfs_set_pageerror(struct address_space * mapping)239 static void nfs_set_pageerror(struct address_space *mapping)
240 {
241 	nfs_zap_mapping(mapping->host, mapping);
242 }
243 
244 /*
245  * nfs_page_group_search_locked
246  * @head - head request of page group
247  * @page_offset - offset into page
248  *
249  * Search page group with head @head to find a request that contains the
250  * page offset @page_offset.
251  *
252  * Returns a pointer to the first matching nfs request, or NULL if no
253  * match is found.
254  *
255  * Must be called with the page group lock held
256  */
257 static struct nfs_page *
nfs_page_group_search_locked(struct nfs_page * head,unsigned int page_offset)258 nfs_page_group_search_locked(struct nfs_page *head, unsigned int page_offset)
259 {
260 	struct nfs_page *req;
261 
262 	req = head;
263 	do {
264 		if (page_offset >= req->wb_pgbase &&
265 		    page_offset < (req->wb_pgbase + req->wb_bytes))
266 			return req;
267 
268 		req = req->wb_this_page;
269 	} while (req != head);
270 
271 	return NULL;
272 }
273 
274 /*
275  * nfs_page_group_covers_page
276  * @head - head request of page group
277  *
278  * Return true if the page group with head @head covers the whole page,
279  * returns false otherwise
280  */
nfs_page_group_covers_page(struct nfs_page * req)281 static bool nfs_page_group_covers_page(struct nfs_page *req)
282 {
283 	struct nfs_page *tmp;
284 	unsigned int pos = 0;
285 	unsigned int len = nfs_page_length(req->wb_page);
286 
287 	nfs_page_group_lock(req);
288 
289 	for (;;) {
290 		tmp = nfs_page_group_search_locked(req->wb_head, pos);
291 		if (!tmp)
292 			break;
293 		pos = tmp->wb_pgbase + tmp->wb_bytes;
294 	}
295 
296 	nfs_page_group_unlock(req);
297 	return pos >= len;
298 }
299 
300 /* We can set the PG_uptodate flag if we see that a write request
301  * covers the full page.
302  */
nfs_mark_uptodate(struct nfs_page * req)303 static void nfs_mark_uptodate(struct nfs_page *req)
304 {
305 	if (PageUptodate(req->wb_page))
306 		return;
307 	if (!nfs_page_group_covers_page(req))
308 		return;
309 	SetPageUptodate(req->wb_page);
310 }
311 
wb_priority(struct writeback_control * wbc)312 static int wb_priority(struct writeback_control *wbc)
313 {
314 	int ret = 0;
315 
316 	if (wbc->sync_mode == WB_SYNC_ALL)
317 		ret = FLUSH_COND_STABLE;
318 	return ret;
319 }
320 
321 /*
322  * NFS congestion control
323  */
324 
325 int nfs_congestion_kb;
326 
327 #define NFS_CONGESTION_ON_THRESH 	(nfs_congestion_kb >> (PAGE_SHIFT-10))
328 #define NFS_CONGESTION_OFF_THRESH	\
329 	(NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
330 
nfs_set_page_writeback(struct page * page)331 static void nfs_set_page_writeback(struct page *page)
332 {
333 	struct inode *inode = page_file_mapping(page)->host;
334 	struct nfs_server *nfss = NFS_SERVER(inode);
335 	int ret = test_set_page_writeback(page);
336 
337 	WARN_ON_ONCE(ret != 0);
338 
339 	if (atomic_long_inc_return(&nfss->writeback) >
340 			NFS_CONGESTION_ON_THRESH)
341 		set_bdi_congested(inode_to_bdi(inode), BLK_RW_ASYNC);
342 }
343 
nfs_end_page_writeback(struct nfs_page * req)344 static void nfs_end_page_writeback(struct nfs_page *req)
345 {
346 	struct inode *inode = page_file_mapping(req->wb_page)->host;
347 	struct nfs_server *nfss = NFS_SERVER(inode);
348 	bool is_done;
349 
350 	is_done = nfs_page_group_sync_on_bit(req, PG_WB_END);
351 	nfs_unlock_request(req);
352 	if (!is_done)
353 		return;
354 
355 	end_page_writeback(req->wb_page);
356 	if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
357 		clear_bdi_congested(inode_to_bdi(inode), BLK_RW_ASYNC);
358 }
359 
360 /*
361  * nfs_unroll_locks_and_wait -  unlock all newly locked reqs and wait on @req
362  *
363  * this is a helper function for nfs_lock_and_join_requests
364  *
365  * @inode - inode associated with request page group, must be holding inode lock
366  * @head  - head request of page group, must be holding head lock
367  * @req   - request that couldn't lock and needs to wait on the req bit lock
368  *
369  * NOTE: this must be called holding page_group bit lock
370  *       which will be released before returning.
371  *
372  * returns 0 on success, < 0 on error.
373  */
374 static void
nfs_unroll_locks(struct inode * inode,struct nfs_page * head,struct nfs_page * req)375 nfs_unroll_locks(struct inode *inode, struct nfs_page *head,
376 			  struct nfs_page *req)
377 {
378 	struct nfs_page *tmp;
379 
380 	/* relinquish all the locks successfully grabbed this run */
381 	for (tmp = head->wb_this_page ; tmp != req; tmp = tmp->wb_this_page) {
382 		if (!kref_read(&tmp->wb_kref))
383 			continue;
384 		nfs_unlock_and_release_request(tmp);
385 	}
386 }
387 
388 /*
389  * nfs_destroy_unlinked_subrequests - destroy recently unlinked subrequests
390  *
391  * @destroy_list - request list (using wb_this_page) terminated by @old_head
392  * @old_head - the old head of the list
393  *
394  * All subrequests must be locked and removed from all lists, so at this point
395  * they are only "active" in this function, and possibly in nfs_wait_on_request
396  * with a reference held by some other context.
397  */
398 static void
nfs_destroy_unlinked_subrequests(struct nfs_page * destroy_list,struct nfs_page * old_head,struct inode * inode)399 nfs_destroy_unlinked_subrequests(struct nfs_page *destroy_list,
400 				 struct nfs_page *old_head,
401 				 struct inode *inode)
402 {
403 	while (destroy_list) {
404 		struct nfs_page *subreq = destroy_list;
405 
406 		destroy_list = (subreq->wb_this_page == old_head) ?
407 				   NULL : subreq->wb_this_page;
408 
409 		WARN_ON_ONCE(old_head != subreq->wb_head);
410 
411 		/* make sure old group is not used */
412 		subreq->wb_this_page = subreq;
413 
414 		clear_bit(PG_REMOVE, &subreq->wb_flags);
415 
416 		/* Note: races with nfs_page_group_destroy() */
417 		if (!kref_read(&subreq->wb_kref)) {
418 			/* Check if we raced with nfs_page_group_destroy() */
419 			if (test_and_clear_bit(PG_TEARDOWN, &subreq->wb_flags))
420 				nfs_free_request(subreq);
421 			continue;
422 		}
423 
424 		subreq->wb_head = subreq;
425 
426 		if (test_and_clear_bit(PG_INODE_REF, &subreq->wb_flags)) {
427 			nfs_release_request(subreq);
428 			atomic_long_dec(&NFS_I(inode)->nrequests);
429 		}
430 
431 		/* subreq is now totally disconnected from page group or any
432 		 * write / commit lists. last chance to wake any waiters */
433 		nfs_unlock_and_release_request(subreq);
434 	}
435 }
436 
437 /*
438  * nfs_lock_and_join_requests - join all subreqs to the head req and return
439  *                              a locked reference, cancelling any pending
440  *                              operations for this page.
441  *
442  * @page - the page used to lookup the "page group" of nfs_page structures
443  *
444  * This function joins all sub requests to the head request by first
445  * locking all requests in the group, cancelling any pending operations
446  * and finally updating the head request to cover the whole range covered by
447  * the (former) group.  All subrequests are removed from any write or commit
448  * lists, unlinked from the group and destroyed.
449  *
450  * Returns a locked, referenced pointer to the head request - which after
451  * this call is guaranteed to be the only request associated with the page.
452  * Returns NULL if no requests are found for @page, or a ERR_PTR if an
453  * error was encountered.
454  */
455 static struct nfs_page *
nfs_lock_and_join_requests(struct page * page)456 nfs_lock_and_join_requests(struct page *page)
457 {
458 	struct inode *inode = page_file_mapping(page)->host;
459 	struct nfs_page *head, *subreq;
460 	struct nfs_page *destroy_list = NULL;
461 	unsigned int total_bytes;
462 	int ret;
463 
464 try_again:
465 	/*
466 	 * A reference is taken only on the head request which acts as a
467 	 * reference to the whole page group - the group will not be destroyed
468 	 * until the head reference is released.
469 	 */
470 	head = nfs_page_find_head_request(page);
471 	if (!head)
472 		return NULL;
473 
474 	/* lock the page head first in order to avoid an ABBA inefficiency */
475 	if (!nfs_lock_request(head)) {
476 		ret = nfs_wait_on_request(head);
477 		nfs_release_request(head);
478 		if (ret < 0)
479 			return ERR_PTR(ret);
480 		goto try_again;
481 	}
482 
483 	/* Ensure that nobody removed the request before we locked it */
484 	if (head != nfs_page_private_request(page) && !PageSwapCache(page)) {
485 		nfs_unlock_and_release_request(head);
486 		goto try_again;
487 	}
488 
489 	ret = nfs_page_group_lock(head);
490 	if (ret < 0) {
491 		nfs_unlock_and_release_request(head);
492 		return ERR_PTR(ret);
493 	}
494 
495 	/* lock each request in the page group */
496 	total_bytes = head->wb_bytes;
497 	for (subreq = head->wb_this_page; subreq != head;
498 			subreq = subreq->wb_this_page) {
499 
500 		if (!kref_get_unless_zero(&subreq->wb_kref)) {
501 			if (subreq->wb_offset == head->wb_offset + total_bytes)
502 				total_bytes += subreq->wb_bytes;
503 			continue;
504 		}
505 
506 		while (!nfs_lock_request(subreq)) {
507 			/*
508 			 * Unlock page to allow nfs_page_group_sync_on_bit()
509 			 * to succeed
510 			 */
511 			nfs_page_group_unlock(head);
512 			ret = nfs_wait_on_request(subreq);
513 			if (!ret)
514 				ret = nfs_page_group_lock(head);
515 			if (ret < 0) {
516 				nfs_unroll_locks(inode, head, subreq);
517 				nfs_release_request(subreq);
518 				nfs_unlock_and_release_request(head);
519 				return ERR_PTR(ret);
520 			}
521 		}
522 		/*
523 		 * Subrequests are always contiguous, non overlapping
524 		 * and in order - but may be repeated (mirrored writes).
525 		 */
526 		if (subreq->wb_offset == (head->wb_offset + total_bytes)) {
527 			/* keep track of how many bytes this group covers */
528 			total_bytes += subreq->wb_bytes;
529 		} else if (WARN_ON_ONCE(subreq->wb_offset < head->wb_offset ||
530 			    ((subreq->wb_offset + subreq->wb_bytes) >
531 			     (head->wb_offset + total_bytes)))) {
532 			nfs_page_group_unlock(head);
533 			nfs_unroll_locks(inode, head, subreq);
534 			nfs_unlock_and_release_request(subreq);
535 			nfs_unlock_and_release_request(head);
536 			return ERR_PTR(-EIO);
537 		}
538 	}
539 
540 	/* Now that all requests are locked, make sure they aren't on any list.
541 	 * Commit list removal accounting is done after locks are dropped */
542 	subreq = head;
543 	do {
544 		nfs_clear_request_commit(subreq);
545 		subreq = subreq->wb_this_page;
546 	} while (subreq != head);
547 
548 	/* unlink subrequests from head, destroy them later */
549 	if (head->wb_this_page != head) {
550 		/* destroy list will be terminated by head */
551 		destroy_list = head->wb_this_page;
552 		head->wb_this_page = head;
553 
554 		/* change head request to cover whole range that
555 		 * the former page group covered */
556 		head->wb_bytes = total_bytes;
557 	}
558 
559 	/* Postpone destruction of this request */
560 	if (test_and_clear_bit(PG_REMOVE, &head->wb_flags)) {
561 		set_bit(PG_INODE_REF, &head->wb_flags);
562 		kref_get(&head->wb_kref);
563 		atomic_long_inc(&NFS_I(inode)->nrequests);
564 	}
565 
566 	nfs_page_group_unlock(head);
567 
568 	nfs_destroy_unlinked_subrequests(destroy_list, head, inode);
569 
570 	/* Did we lose a race with nfs_inode_remove_request()? */
571 	if (!(PagePrivate(page) || PageSwapCache(page))) {
572 		nfs_unlock_and_release_request(head);
573 		return NULL;
574 	}
575 
576 	/* still holds ref on head from nfs_page_find_head_request
577 	 * and still has lock on head from lock loop */
578 	return head;
579 }
580 
nfs_write_error_remove_page(struct nfs_page * req)581 static void nfs_write_error_remove_page(struct nfs_page *req)
582 {
583 	nfs_end_page_writeback(req);
584 	generic_error_remove_page(page_file_mapping(req->wb_page),
585 				  req->wb_page);
586 	nfs_release_request(req);
587 }
588 
589 static bool
nfs_error_is_fatal_on_server(int err)590 nfs_error_is_fatal_on_server(int err)
591 {
592 	switch (err) {
593 	case 0:
594 	case -ERESTARTSYS:
595 	case -EINTR:
596 		return false;
597 	}
598 	return nfs_error_is_fatal(err);
599 }
600 
601 /*
602  * Find an associated nfs write request, and prepare to flush it out
603  * May return an error if the user signalled nfs_wait_on_request().
604  */
nfs_page_async_flush(struct nfs_pageio_descriptor * pgio,struct page * page)605 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
606 				struct page *page)
607 {
608 	struct nfs_page *req;
609 	int ret = 0;
610 
611 	req = nfs_lock_and_join_requests(page);
612 	if (!req)
613 		goto out;
614 	ret = PTR_ERR(req);
615 	if (IS_ERR(req))
616 		goto out;
617 
618 	nfs_set_page_writeback(page);
619 	WARN_ON_ONCE(test_bit(PG_CLEAN, &req->wb_flags));
620 
621 	ret = req->wb_context->error;
622 	/* If there is a fatal error that covers this write, just exit */
623 	if (nfs_error_is_fatal_on_server(ret))
624 		goto out_launder;
625 
626 	ret = 0;
627 	if (!nfs_pageio_add_request(pgio, req)) {
628 		ret = pgio->pg_error;
629 		/*
630 		 * Remove the problematic req upon fatal errors on the server
631 		 */
632 		if (nfs_error_is_fatal(ret)) {
633 			nfs_context_set_write_error(req->wb_context, ret);
634 			if (nfs_error_is_fatal_on_server(ret))
635 				goto out_launder;
636 		} else
637 			ret = -EAGAIN;
638 		nfs_redirty_request(req);
639 	} else
640 		nfs_add_stats(page_file_mapping(page)->host,
641 				NFSIOS_WRITEPAGES, 1);
642 out:
643 	return ret;
644 out_launder:
645 	nfs_write_error_remove_page(req);
646 	return 0;
647 }
648 
nfs_do_writepage(struct page * page,struct writeback_control * wbc,struct nfs_pageio_descriptor * pgio)649 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc,
650 			    struct nfs_pageio_descriptor *pgio)
651 {
652 	int ret;
653 
654 	nfs_pageio_cond_complete(pgio, page_index(page));
655 	ret = nfs_page_async_flush(pgio, page);
656 	if (ret == -EAGAIN) {
657 		redirty_page_for_writepage(wbc, page);
658 		ret = 0;
659 	}
660 	return ret;
661 }
662 
663 /*
664  * Write an mmapped page to the server.
665  */
nfs_writepage_locked(struct page * page,struct writeback_control * wbc)666 static int nfs_writepage_locked(struct page *page,
667 				struct writeback_control *wbc)
668 {
669 	struct nfs_pageio_descriptor pgio;
670 	struct inode *inode = page_file_mapping(page)->host;
671 	int err;
672 
673 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
674 	nfs_pageio_init_write(&pgio, inode, 0,
675 				false, &nfs_async_write_completion_ops);
676 	err = nfs_do_writepage(page, wbc, &pgio);
677 	nfs_pageio_complete(&pgio);
678 	if (err < 0)
679 		return err;
680 	if (pgio.pg_error < 0)
681 		return pgio.pg_error;
682 	return 0;
683 }
684 
nfs_writepage(struct page * page,struct writeback_control * wbc)685 int nfs_writepage(struct page *page, struct writeback_control *wbc)
686 {
687 	int ret;
688 
689 	ret = nfs_writepage_locked(page, wbc);
690 	unlock_page(page);
691 	return ret;
692 }
693 
nfs_writepages_callback(struct page * page,struct writeback_control * wbc,void * data)694 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
695 {
696 	int ret;
697 
698 	ret = nfs_do_writepage(page, wbc, data);
699 	unlock_page(page);
700 	return ret;
701 }
702 
nfs_io_completion_commit(void * inode)703 static void nfs_io_completion_commit(void *inode)
704 {
705 	nfs_commit_inode(inode, 0);
706 }
707 
nfs_writepages(struct address_space * mapping,struct writeback_control * wbc)708 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
709 {
710 	struct inode *inode = mapping->host;
711 	struct nfs_pageio_descriptor pgio;
712 	struct nfs_io_completion *ioc = nfs_io_completion_alloc(GFP_NOFS);
713 	int err;
714 
715 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
716 
717 	if (ioc)
718 		nfs_io_completion_init(ioc, nfs_io_completion_commit, inode);
719 
720 	nfs_pageio_init_write(&pgio, inode, wb_priority(wbc), false,
721 				&nfs_async_write_completion_ops);
722 	pgio.pg_io_completion = ioc;
723 	err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
724 	nfs_pageio_complete(&pgio);
725 	nfs_io_completion_put(ioc);
726 
727 	if (err < 0)
728 		goto out_err;
729 	err = pgio.pg_error;
730 	if (err < 0)
731 		goto out_err;
732 	return 0;
733 out_err:
734 	return err;
735 }
736 
737 /*
738  * Insert a write request into an inode
739  */
nfs_inode_add_request(struct inode * inode,struct nfs_page * req)740 static void nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
741 {
742 	struct address_space *mapping = page_file_mapping(req->wb_page);
743 	struct nfs_inode *nfsi = NFS_I(inode);
744 
745 	WARN_ON_ONCE(req->wb_this_page != req);
746 
747 	/* Lock the request! */
748 	nfs_lock_request(req);
749 
750 	/*
751 	 * Swap-space should not get truncated. Hence no need to plug the race
752 	 * with invalidate/truncate.
753 	 */
754 	spin_lock(&mapping->private_lock);
755 	if (!nfs_have_writebacks(inode) &&
756 	    NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE)) {
757 		spin_lock(&inode->i_lock);
758 		inode->i_version++;
759 		spin_unlock(&inode->i_lock);
760 	}
761 	if (likely(!PageSwapCache(req->wb_page))) {
762 		set_bit(PG_MAPPED, &req->wb_flags);
763 		SetPagePrivate(req->wb_page);
764 		set_page_private(req->wb_page, (unsigned long)req);
765 	}
766 	spin_unlock(&mapping->private_lock);
767 	atomic_long_inc(&nfsi->nrequests);
768 	/* this a head request for a page group - mark it as having an
769 	 * extra reference so sub groups can follow suit.
770 	 * This flag also informs pgio layer when to bump nrequests when
771 	 * adding subrequests. */
772 	WARN_ON(test_and_set_bit(PG_INODE_REF, &req->wb_flags));
773 	kref_get(&req->wb_kref);
774 }
775 
776 /*
777  * Remove a write request from an inode
778  */
nfs_inode_remove_request(struct nfs_page * req)779 static void nfs_inode_remove_request(struct nfs_page *req)
780 {
781 	struct address_space *mapping = page_file_mapping(req->wb_page);
782 	struct inode *inode = mapping->host;
783 	struct nfs_inode *nfsi = NFS_I(inode);
784 	struct nfs_page *head;
785 
786 	if (nfs_page_group_sync_on_bit(req, PG_REMOVE)) {
787 		head = req->wb_head;
788 
789 		spin_lock(&mapping->private_lock);
790 		if (likely(head->wb_page && !PageSwapCache(head->wb_page))) {
791 			set_page_private(head->wb_page, 0);
792 			ClearPagePrivate(head->wb_page);
793 			clear_bit(PG_MAPPED, &head->wb_flags);
794 		}
795 		spin_unlock(&mapping->private_lock);
796 	}
797 
798 	if (test_and_clear_bit(PG_INODE_REF, &req->wb_flags)) {
799 		nfs_release_request(req);
800 		atomic_long_dec(&nfsi->nrequests);
801 	}
802 }
803 
804 static void
nfs_mark_request_dirty(struct nfs_page * req)805 nfs_mark_request_dirty(struct nfs_page *req)
806 {
807 	if (req->wb_page)
808 		__set_page_dirty_nobuffers(req->wb_page);
809 }
810 
811 /*
812  * nfs_page_search_commits_for_head_request_locked
813  *
814  * Search through commit lists on @inode for the head request for @page.
815  * Must be called while holding the inode (which is cinfo) lock.
816  *
817  * Returns the head request if found, or NULL if not found.
818  */
819 static struct nfs_page *
nfs_page_search_commits_for_head_request_locked(struct nfs_inode * nfsi,struct page * page)820 nfs_page_search_commits_for_head_request_locked(struct nfs_inode *nfsi,
821 						struct page *page)
822 {
823 	struct nfs_page *freq, *t;
824 	struct nfs_commit_info cinfo;
825 	struct inode *inode = &nfsi->vfs_inode;
826 
827 	nfs_init_cinfo_from_inode(&cinfo, inode);
828 
829 	/* search through pnfs commit lists */
830 	freq = pnfs_search_commit_reqs(inode, &cinfo, page);
831 	if (freq)
832 		return freq->wb_head;
833 
834 	/* Linearly search the commit list for the correct request */
835 	list_for_each_entry_safe(freq, t, &cinfo.mds->list, wb_list) {
836 		if (freq->wb_page == page)
837 			return freq->wb_head;
838 	}
839 
840 	return NULL;
841 }
842 
843 /**
844  * nfs_request_add_commit_list_locked - add request to a commit list
845  * @req: pointer to a struct nfs_page
846  * @dst: commit list head
847  * @cinfo: holds list lock and accounting info
848  *
849  * This sets the PG_CLEAN bit, updates the cinfo count of
850  * number of outstanding requests requiring a commit as well as
851  * the MM page stats.
852  *
853  * The caller must hold NFS_I(cinfo->inode)->commit_mutex, and the
854  * nfs_page lock.
855  */
856 void
nfs_request_add_commit_list_locked(struct nfs_page * req,struct list_head * dst,struct nfs_commit_info * cinfo)857 nfs_request_add_commit_list_locked(struct nfs_page *req, struct list_head *dst,
858 			    struct nfs_commit_info *cinfo)
859 {
860 	set_bit(PG_CLEAN, &req->wb_flags);
861 	nfs_list_add_request(req, dst);
862 	atomic_long_inc(&cinfo->mds->ncommit);
863 }
864 EXPORT_SYMBOL_GPL(nfs_request_add_commit_list_locked);
865 
866 /**
867  * nfs_request_add_commit_list - add request to a commit list
868  * @req: pointer to a struct nfs_page
869  * @dst: commit list head
870  * @cinfo: holds list lock and accounting info
871  *
872  * This sets the PG_CLEAN bit, updates the cinfo count of
873  * number of outstanding requests requiring a commit as well as
874  * the MM page stats.
875  *
876  * The caller must _not_ hold the cinfo->lock, but must be
877  * holding the nfs_page lock.
878  */
879 void
nfs_request_add_commit_list(struct nfs_page * req,struct nfs_commit_info * cinfo)880 nfs_request_add_commit_list(struct nfs_page *req, struct nfs_commit_info *cinfo)
881 {
882 	mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
883 	nfs_request_add_commit_list_locked(req, &cinfo->mds->list, cinfo);
884 	mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
885 	if (req->wb_page)
886 		nfs_mark_page_unstable(req->wb_page, cinfo);
887 }
888 EXPORT_SYMBOL_GPL(nfs_request_add_commit_list);
889 
890 /**
891  * nfs_request_remove_commit_list - Remove request from a commit list
892  * @req: pointer to a nfs_page
893  * @cinfo: holds list lock and accounting info
894  *
895  * This clears the PG_CLEAN bit, and updates the cinfo's count of
896  * number of outstanding requests requiring a commit
897  * It does not update the MM page stats.
898  *
899  * The caller _must_ hold the cinfo->lock and the nfs_page lock.
900  */
901 void
nfs_request_remove_commit_list(struct nfs_page * req,struct nfs_commit_info * cinfo)902 nfs_request_remove_commit_list(struct nfs_page *req,
903 			       struct nfs_commit_info *cinfo)
904 {
905 	if (!test_and_clear_bit(PG_CLEAN, &(req)->wb_flags))
906 		return;
907 	nfs_list_remove_request(req);
908 	atomic_long_dec(&cinfo->mds->ncommit);
909 }
910 EXPORT_SYMBOL_GPL(nfs_request_remove_commit_list);
911 
nfs_init_cinfo_from_inode(struct nfs_commit_info * cinfo,struct inode * inode)912 static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo,
913 				      struct inode *inode)
914 {
915 	cinfo->inode = inode;
916 	cinfo->mds = &NFS_I(inode)->commit_info;
917 	cinfo->ds = pnfs_get_ds_info(inode);
918 	cinfo->dreq = NULL;
919 	cinfo->completion_ops = &nfs_commit_completion_ops;
920 }
921 
nfs_init_cinfo(struct nfs_commit_info * cinfo,struct inode * inode,struct nfs_direct_req * dreq)922 void nfs_init_cinfo(struct nfs_commit_info *cinfo,
923 		    struct inode *inode,
924 		    struct nfs_direct_req *dreq)
925 {
926 	if (dreq)
927 		nfs_init_cinfo_from_dreq(cinfo, dreq);
928 	else
929 		nfs_init_cinfo_from_inode(cinfo, inode);
930 }
931 EXPORT_SYMBOL_GPL(nfs_init_cinfo);
932 
933 /*
934  * Add a request to the inode's commit list.
935  */
936 void
nfs_mark_request_commit(struct nfs_page * req,struct pnfs_layout_segment * lseg,struct nfs_commit_info * cinfo,u32 ds_commit_idx)937 nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg,
938 			struct nfs_commit_info *cinfo, u32 ds_commit_idx)
939 {
940 	if (pnfs_mark_request_commit(req, lseg, cinfo, ds_commit_idx))
941 		return;
942 	nfs_request_add_commit_list(req, cinfo);
943 }
944 
945 static void
nfs_clear_page_commit(struct page * page)946 nfs_clear_page_commit(struct page *page)
947 {
948 	dec_node_page_state(page, NR_UNSTABLE_NFS);
949 	dec_wb_stat(&inode_to_bdi(page_file_mapping(page)->host)->wb,
950 		    WB_RECLAIMABLE);
951 }
952 
953 /* Called holding the request lock on @req */
954 static void
nfs_clear_request_commit(struct nfs_page * req)955 nfs_clear_request_commit(struct nfs_page *req)
956 {
957 	if (test_bit(PG_CLEAN, &req->wb_flags)) {
958 		struct inode *inode = d_inode(req->wb_context->dentry);
959 		struct nfs_commit_info cinfo;
960 
961 		nfs_init_cinfo_from_inode(&cinfo, inode);
962 		mutex_lock(&NFS_I(inode)->commit_mutex);
963 		if (!pnfs_clear_request_commit(req, &cinfo)) {
964 			nfs_request_remove_commit_list(req, &cinfo);
965 		}
966 		mutex_unlock(&NFS_I(inode)->commit_mutex);
967 		nfs_clear_page_commit(req->wb_page);
968 	}
969 }
970 
nfs_write_need_commit(struct nfs_pgio_header * hdr)971 int nfs_write_need_commit(struct nfs_pgio_header *hdr)
972 {
973 	if (hdr->verf.committed == NFS_DATA_SYNC)
974 		return hdr->lseg == NULL;
975 	return hdr->verf.committed != NFS_FILE_SYNC;
976 }
977 
nfs_async_write_init(struct nfs_pgio_header * hdr)978 static void nfs_async_write_init(struct nfs_pgio_header *hdr)
979 {
980 	nfs_io_completion_get(hdr->io_completion);
981 }
982 
nfs_write_completion(struct nfs_pgio_header * hdr)983 static void nfs_write_completion(struct nfs_pgio_header *hdr)
984 {
985 	struct nfs_commit_info cinfo;
986 	unsigned long bytes = 0;
987 
988 	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
989 		goto out;
990 	nfs_init_cinfo_from_inode(&cinfo, hdr->inode);
991 	while (!list_empty(&hdr->pages)) {
992 		struct nfs_page *req = nfs_list_entry(hdr->pages.next);
993 
994 		bytes += req->wb_bytes;
995 		nfs_list_remove_request(req);
996 		if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) &&
997 		    (hdr->good_bytes < bytes)) {
998 			nfs_set_pageerror(page_file_mapping(req->wb_page));
999 			nfs_context_set_write_error(req->wb_context, hdr->error);
1000 			goto remove_req;
1001 		}
1002 		if (nfs_write_need_commit(hdr)) {
1003 			memcpy(&req->wb_verf, &hdr->verf.verifier, sizeof(req->wb_verf));
1004 			nfs_mark_request_commit(req, hdr->lseg, &cinfo,
1005 				hdr->pgio_mirror_idx);
1006 			goto next;
1007 		}
1008 remove_req:
1009 		nfs_inode_remove_request(req);
1010 next:
1011 		nfs_end_page_writeback(req);
1012 		nfs_release_request(req);
1013 	}
1014 out:
1015 	nfs_io_completion_put(hdr->io_completion);
1016 	hdr->release(hdr);
1017 }
1018 
1019 unsigned long
nfs_reqs_to_commit(struct nfs_commit_info * cinfo)1020 nfs_reqs_to_commit(struct nfs_commit_info *cinfo)
1021 {
1022 	return atomic_long_read(&cinfo->mds->ncommit);
1023 }
1024 
1025 /* NFS_I(cinfo->inode)->commit_mutex held by caller */
1026 int
nfs_scan_commit_list(struct list_head * src,struct list_head * dst,struct nfs_commit_info * cinfo,int max)1027 nfs_scan_commit_list(struct list_head *src, struct list_head *dst,
1028 		     struct nfs_commit_info *cinfo, int max)
1029 {
1030 	struct nfs_page *req, *tmp;
1031 	int ret = 0;
1032 
1033 restart:
1034 	list_for_each_entry_safe(req, tmp, src, wb_list) {
1035 		kref_get(&req->wb_kref);
1036 		if (!nfs_lock_request(req)) {
1037 			int status;
1038 
1039 			/* Prevent deadlock with nfs_lock_and_join_requests */
1040 			if (!list_empty(dst)) {
1041 				nfs_release_request(req);
1042 				continue;
1043 			}
1044 			/* Ensure we make progress to prevent livelock */
1045 			mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
1046 			status = nfs_wait_on_request(req);
1047 			nfs_release_request(req);
1048 			mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
1049 			if (status < 0)
1050 				break;
1051 			goto restart;
1052 		}
1053 		nfs_request_remove_commit_list(req, cinfo);
1054 		clear_bit(PG_COMMIT_TO_DS, &req->wb_flags);
1055 		nfs_list_add_request(req, dst);
1056 		ret++;
1057 		if ((ret == max) && !cinfo->dreq)
1058 			break;
1059 		cond_resched();
1060 	}
1061 	return ret;
1062 }
1063 EXPORT_SYMBOL_GPL(nfs_scan_commit_list);
1064 
1065 /*
1066  * nfs_scan_commit - Scan an inode for commit requests
1067  * @inode: NFS inode to scan
1068  * @dst: mds destination list
1069  * @cinfo: mds and ds lists of reqs ready to commit
1070  *
1071  * Moves requests from the inode's 'commit' request list.
1072  * The requests are *not* checked to ensure that they form a contiguous set.
1073  */
1074 int
nfs_scan_commit(struct inode * inode,struct list_head * dst,struct nfs_commit_info * cinfo)1075 nfs_scan_commit(struct inode *inode, struct list_head *dst,
1076 		struct nfs_commit_info *cinfo)
1077 {
1078 	int ret = 0;
1079 
1080 	if (!atomic_long_read(&cinfo->mds->ncommit))
1081 		return 0;
1082 	mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
1083 	if (atomic_long_read(&cinfo->mds->ncommit) > 0) {
1084 		const int max = INT_MAX;
1085 
1086 		ret = nfs_scan_commit_list(&cinfo->mds->list, dst,
1087 					   cinfo, max);
1088 		ret += pnfs_scan_commit_lists(inode, cinfo, max - ret);
1089 	}
1090 	mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
1091 	return ret;
1092 }
1093 
1094 /*
1095  * Search for an existing write request, and attempt to update
1096  * it to reflect a new dirty region on a given page.
1097  *
1098  * If the attempt fails, then the existing request is flushed out
1099  * to disk.
1100  */
nfs_try_to_update_request(struct inode * inode,struct page * page,unsigned int offset,unsigned int bytes)1101 static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
1102 		struct page *page,
1103 		unsigned int offset,
1104 		unsigned int bytes)
1105 {
1106 	struct nfs_page *req;
1107 	unsigned int rqend;
1108 	unsigned int end;
1109 	int error;
1110 
1111 	end = offset + bytes;
1112 
1113 	req = nfs_lock_and_join_requests(page);
1114 	if (IS_ERR_OR_NULL(req))
1115 		return req;
1116 
1117 	rqend = req->wb_offset + req->wb_bytes;
1118 	/*
1119 	 * Tell the caller to flush out the request if
1120 	 * the offsets are non-contiguous.
1121 	 * Note: nfs_flush_incompatible() will already
1122 	 * have flushed out requests having wrong owners.
1123 	 */
1124 	if (offset > rqend || end < req->wb_offset)
1125 		goto out_flushme;
1126 
1127 	/* Okay, the request matches. Update the region */
1128 	if (offset < req->wb_offset) {
1129 		req->wb_offset = offset;
1130 		req->wb_pgbase = offset;
1131 	}
1132 	if (end > rqend)
1133 		req->wb_bytes = end - req->wb_offset;
1134 	else
1135 		req->wb_bytes = rqend - req->wb_offset;
1136 	return req;
1137 out_flushme:
1138 	/*
1139 	 * Note: we mark the request dirty here because
1140 	 * nfs_lock_and_join_requests() cannot preserve
1141 	 * commit flags, so we have to replay the write.
1142 	 */
1143 	nfs_mark_request_dirty(req);
1144 	nfs_unlock_and_release_request(req);
1145 	error = nfs_wb_page(inode, page);
1146 	return (error < 0) ? ERR_PTR(error) : NULL;
1147 }
1148 
1149 /*
1150  * Try to update an existing write request, or create one if there is none.
1151  *
1152  * Note: Should always be called with the Page Lock held to prevent races
1153  * if we have to add a new request. Also assumes that the caller has
1154  * already called nfs_flush_incompatible() if necessary.
1155  */
nfs_setup_write_request(struct nfs_open_context * ctx,struct page * page,unsigned int offset,unsigned int bytes)1156 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
1157 		struct page *page, unsigned int offset, unsigned int bytes)
1158 {
1159 	struct inode *inode = page_file_mapping(page)->host;
1160 	struct nfs_page	*req;
1161 
1162 	req = nfs_try_to_update_request(inode, page, offset, bytes);
1163 	if (req != NULL)
1164 		goto out;
1165 	req = nfs_create_request(ctx, page, NULL, offset, bytes);
1166 	if (IS_ERR(req))
1167 		goto out;
1168 	nfs_inode_add_request(inode, req);
1169 out:
1170 	return req;
1171 }
1172 
nfs_writepage_setup(struct nfs_open_context * ctx,struct page * page,unsigned int offset,unsigned int count)1173 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
1174 		unsigned int offset, unsigned int count)
1175 {
1176 	struct nfs_page	*req;
1177 
1178 	req = nfs_setup_write_request(ctx, page, offset, count);
1179 	if (IS_ERR(req))
1180 		return PTR_ERR(req);
1181 	/* Update file length */
1182 	nfs_grow_file(page, offset, count);
1183 	nfs_mark_uptodate(req);
1184 	nfs_mark_request_dirty(req);
1185 	nfs_unlock_and_release_request(req);
1186 	return 0;
1187 }
1188 
nfs_flush_incompatible(struct file * file,struct page * page)1189 int nfs_flush_incompatible(struct file *file, struct page *page)
1190 {
1191 	struct nfs_open_context *ctx = nfs_file_open_context(file);
1192 	struct nfs_lock_context *l_ctx;
1193 	struct file_lock_context *flctx = file_inode(file)->i_flctx;
1194 	struct nfs_page	*req;
1195 	int do_flush, status;
1196 	/*
1197 	 * Look for a request corresponding to this page. If there
1198 	 * is one, and it belongs to another file, we flush it out
1199 	 * before we try to copy anything into the page. Do this
1200 	 * due to the lack of an ACCESS-type call in NFSv2.
1201 	 * Also do the same if we find a request from an existing
1202 	 * dropped page.
1203 	 */
1204 	do {
1205 		req = nfs_page_find_head_request(page);
1206 		if (req == NULL)
1207 			return 0;
1208 		l_ctx = req->wb_lock_context;
1209 		do_flush = req->wb_page != page ||
1210 			!nfs_match_open_context(req->wb_context, ctx);
1211 		if (l_ctx && flctx &&
1212 		    !(list_empty_careful(&flctx->flc_posix) &&
1213 		      list_empty_careful(&flctx->flc_flock))) {
1214 			do_flush |= l_ctx->lockowner != current->files;
1215 		}
1216 		nfs_release_request(req);
1217 		if (!do_flush)
1218 			return 0;
1219 		status = nfs_wb_page(page_file_mapping(page)->host, page);
1220 	} while (status == 0);
1221 	return status;
1222 }
1223 
1224 /*
1225  * Avoid buffered writes when a open context credential's key would
1226  * expire soon.
1227  *
1228  * Returns -EACCES if the key will expire within RPC_KEY_EXPIRE_FAIL.
1229  *
1230  * Return 0 and set a credential flag which triggers the inode to flush
1231  * and performs  NFS_FILE_SYNC writes if the key will expired within
1232  * RPC_KEY_EXPIRE_TIMEO.
1233  */
1234 int
nfs_key_timeout_notify(struct file * filp,struct inode * inode)1235 nfs_key_timeout_notify(struct file *filp, struct inode *inode)
1236 {
1237 	struct nfs_open_context *ctx = nfs_file_open_context(filp);
1238 	struct rpc_auth *auth = NFS_SERVER(inode)->client->cl_auth;
1239 
1240 	return rpcauth_key_timeout_notify(auth, ctx->cred);
1241 }
1242 
1243 /*
1244  * Test if the open context credential key is marked to expire soon.
1245  */
nfs_ctx_key_to_expire(struct nfs_open_context * ctx,struct inode * inode)1246 bool nfs_ctx_key_to_expire(struct nfs_open_context *ctx, struct inode *inode)
1247 {
1248 	struct rpc_auth *auth = NFS_SERVER(inode)->client->cl_auth;
1249 
1250 	return rpcauth_cred_key_to_expire(auth, ctx->cred);
1251 }
1252 
1253 /*
1254  * If the page cache is marked as unsafe or invalid, then we can't rely on
1255  * the PageUptodate() flag. In this case, we will need to turn off
1256  * write optimisations that depend on the page contents being correct.
1257  */
nfs_write_pageuptodate(struct page * page,struct inode * inode)1258 static bool nfs_write_pageuptodate(struct page *page, struct inode *inode)
1259 {
1260 	struct nfs_inode *nfsi = NFS_I(inode);
1261 
1262 	if (nfs_have_delegated_attributes(inode))
1263 		goto out;
1264 	if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
1265 		return false;
1266 	smp_rmb();
1267 	if (test_bit(NFS_INO_INVALIDATING, &nfsi->flags))
1268 		return false;
1269 out:
1270 	if (nfsi->cache_validity & NFS_INO_INVALID_DATA)
1271 		return false;
1272 	return PageUptodate(page) != 0;
1273 }
1274 
1275 static bool
is_whole_file_wrlock(struct file_lock * fl)1276 is_whole_file_wrlock(struct file_lock *fl)
1277 {
1278 	return fl->fl_start == 0 && fl->fl_end == OFFSET_MAX &&
1279 			fl->fl_type == F_WRLCK;
1280 }
1281 
1282 /* If we know the page is up to date, and we're not using byte range locks (or
1283  * if we have the whole file locked for writing), it may be more efficient to
1284  * extend the write to cover the entire page in order to avoid fragmentation
1285  * inefficiencies.
1286  *
1287  * If the file is opened for synchronous writes then we can just skip the rest
1288  * of the checks.
1289  */
nfs_can_extend_write(struct file * file,struct page * page,struct inode * inode)1290 static int nfs_can_extend_write(struct file *file, struct page *page, struct inode *inode)
1291 {
1292 	int ret;
1293 	struct file_lock_context *flctx = inode->i_flctx;
1294 	struct file_lock *fl;
1295 
1296 	if (file->f_flags & O_DSYNC)
1297 		return 0;
1298 	if (!nfs_write_pageuptodate(page, inode))
1299 		return 0;
1300 	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE))
1301 		return 1;
1302 	if (!flctx || (list_empty_careful(&flctx->flc_flock) &&
1303 		       list_empty_careful(&flctx->flc_posix)))
1304 		return 1;
1305 
1306 	/* Check to see if there are whole file write locks */
1307 	ret = 0;
1308 	spin_lock(&flctx->flc_lock);
1309 	if (!list_empty(&flctx->flc_posix)) {
1310 		fl = list_first_entry(&flctx->flc_posix, struct file_lock,
1311 					fl_list);
1312 		if (is_whole_file_wrlock(fl))
1313 			ret = 1;
1314 	} else if (!list_empty(&flctx->flc_flock)) {
1315 		fl = list_first_entry(&flctx->flc_flock, struct file_lock,
1316 					fl_list);
1317 		if (fl->fl_type == F_WRLCK)
1318 			ret = 1;
1319 	}
1320 	spin_unlock(&flctx->flc_lock);
1321 	return ret;
1322 }
1323 
1324 /*
1325  * Update and possibly write a cached page of an NFS file.
1326  *
1327  * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
1328  * things with a page scheduled for an RPC call (e.g. invalidate it).
1329  */
nfs_updatepage(struct file * file,struct page * page,unsigned int offset,unsigned int count)1330 int nfs_updatepage(struct file *file, struct page *page,
1331 		unsigned int offset, unsigned int count)
1332 {
1333 	struct nfs_open_context *ctx = nfs_file_open_context(file);
1334 	struct address_space *mapping = page_file_mapping(page);
1335 	struct inode	*inode = mapping->host;
1336 	int		status = 0;
1337 
1338 	nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
1339 
1340 	dprintk("NFS:       nfs_updatepage(%pD2 %d@%lld)\n",
1341 		file, count, (long long)(page_file_offset(page) + offset));
1342 
1343 	if (!count)
1344 		goto out;
1345 
1346 	if (nfs_can_extend_write(file, page, inode)) {
1347 		count = max(count + offset, nfs_page_length(page));
1348 		offset = 0;
1349 	}
1350 
1351 	status = nfs_writepage_setup(ctx, page, offset, count);
1352 	if (status < 0)
1353 		nfs_set_pageerror(mapping);
1354 	else
1355 		__set_page_dirty_nobuffers(page);
1356 out:
1357 	dprintk("NFS:       nfs_updatepage returns %d (isize %lld)\n",
1358 			status, (long long)i_size_read(inode));
1359 	return status;
1360 }
1361 
flush_task_priority(int how)1362 static int flush_task_priority(int how)
1363 {
1364 	switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
1365 		case FLUSH_HIGHPRI:
1366 			return RPC_PRIORITY_HIGH;
1367 		case FLUSH_LOWPRI:
1368 			return RPC_PRIORITY_LOW;
1369 	}
1370 	return RPC_PRIORITY_NORMAL;
1371 }
1372 
nfs_initiate_write(struct nfs_pgio_header * hdr,struct rpc_message * msg,const struct nfs_rpc_ops * rpc_ops,struct rpc_task_setup * task_setup_data,int how)1373 static void nfs_initiate_write(struct nfs_pgio_header *hdr,
1374 			       struct rpc_message *msg,
1375 			       const struct nfs_rpc_ops *rpc_ops,
1376 			       struct rpc_task_setup *task_setup_data, int how)
1377 {
1378 	int priority = flush_task_priority(how);
1379 
1380 	task_setup_data->priority = priority;
1381 	rpc_ops->write_setup(hdr, msg);
1382 	trace_nfs_initiate_write(hdr->inode, hdr->io_start, hdr->good_bytes,
1383 				 hdr->args.stable);
1384 
1385 	nfs4_state_protect_write(NFS_SERVER(hdr->inode)->nfs_client,
1386 				 &task_setup_data->rpc_client, msg, hdr);
1387 }
1388 
1389 /* If a nfs_flush_* function fails, it should remove reqs from @head and
1390  * call this on each, which will prepare them to be retried on next
1391  * writeback using standard nfs.
1392  */
nfs_redirty_request(struct nfs_page * req)1393 static void nfs_redirty_request(struct nfs_page *req)
1394 {
1395 	nfs_mark_request_dirty(req);
1396 	set_bit(NFS_CONTEXT_RESEND_WRITES, &req->wb_context->flags);
1397 	nfs_end_page_writeback(req);
1398 	nfs_release_request(req);
1399 }
1400 
nfs_async_write_error(struct list_head * head,int error)1401 static void nfs_async_write_error(struct list_head *head, int error)
1402 {
1403 	struct nfs_page	*req;
1404 
1405 	while (!list_empty(head)) {
1406 		req = nfs_list_entry(head->next);
1407 		nfs_list_remove_request(req);
1408 		if (nfs_error_is_fatal(error)) {
1409 			nfs_context_set_write_error(req->wb_context, error);
1410 			if (nfs_error_is_fatal_on_server(error)) {
1411 				nfs_write_error_remove_page(req);
1412 				continue;
1413 			}
1414 		}
1415 		nfs_redirty_request(req);
1416 	}
1417 }
1418 
nfs_async_write_reschedule_io(struct nfs_pgio_header * hdr)1419 static void nfs_async_write_reschedule_io(struct nfs_pgio_header *hdr)
1420 {
1421 	nfs_async_write_error(&hdr->pages, 0);
1422 }
1423 
1424 static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops = {
1425 	.init_hdr = nfs_async_write_init,
1426 	.error_cleanup = nfs_async_write_error,
1427 	.completion = nfs_write_completion,
1428 	.reschedule_io = nfs_async_write_reschedule_io,
1429 };
1430 
nfs_pageio_init_write(struct nfs_pageio_descriptor * pgio,struct inode * inode,int ioflags,bool force_mds,const struct nfs_pgio_completion_ops * compl_ops)1431 void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
1432 			       struct inode *inode, int ioflags, bool force_mds,
1433 			       const struct nfs_pgio_completion_ops *compl_ops)
1434 {
1435 	struct nfs_server *server = NFS_SERVER(inode);
1436 	const struct nfs_pageio_ops *pg_ops = &nfs_pgio_rw_ops;
1437 
1438 #ifdef CONFIG_NFS_V4_1
1439 	if (server->pnfs_curr_ld && !force_mds)
1440 		pg_ops = server->pnfs_curr_ld->pg_write_ops;
1441 #endif
1442 	nfs_pageio_init(pgio, inode, pg_ops, compl_ops, &nfs_rw_write_ops,
1443 			server->wsize, ioflags);
1444 }
1445 EXPORT_SYMBOL_GPL(nfs_pageio_init_write);
1446 
nfs_pageio_reset_write_mds(struct nfs_pageio_descriptor * pgio)1447 void nfs_pageio_reset_write_mds(struct nfs_pageio_descriptor *pgio)
1448 {
1449 	struct nfs_pgio_mirror *mirror;
1450 
1451 	if (pgio->pg_ops && pgio->pg_ops->pg_cleanup)
1452 		pgio->pg_ops->pg_cleanup(pgio);
1453 
1454 	pgio->pg_ops = &nfs_pgio_rw_ops;
1455 
1456 	nfs_pageio_stop_mirroring(pgio);
1457 
1458 	mirror = &pgio->pg_mirrors[0];
1459 	mirror->pg_bsize = NFS_SERVER(pgio->pg_inode)->wsize;
1460 }
1461 EXPORT_SYMBOL_GPL(nfs_pageio_reset_write_mds);
1462 
1463 
nfs_commit_prepare(struct rpc_task * task,void * calldata)1464 void nfs_commit_prepare(struct rpc_task *task, void *calldata)
1465 {
1466 	struct nfs_commit_data *data = calldata;
1467 
1468 	NFS_PROTO(data->inode)->commit_rpc_prepare(task, data);
1469 }
1470 
1471 /*
1472  * Special version of should_remove_suid() that ignores capabilities.
1473  */
nfs_should_remove_suid(const struct inode * inode)1474 static int nfs_should_remove_suid(const struct inode *inode)
1475 {
1476 	umode_t mode = inode->i_mode;
1477 	int kill = 0;
1478 
1479 	/* suid always must be killed */
1480 	if (unlikely(mode & S_ISUID))
1481 		kill = ATTR_KILL_SUID;
1482 
1483 	/*
1484 	 * sgid without any exec bits is just a mandatory locking mark; leave
1485 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1486 	 */
1487 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1488 		kill |= ATTR_KILL_SGID;
1489 
1490 	if (unlikely(kill && S_ISREG(mode)))
1491 		return kill;
1492 
1493 	return 0;
1494 }
1495 
nfs_writeback_check_extend(struct nfs_pgio_header * hdr,struct nfs_fattr * fattr)1496 static void nfs_writeback_check_extend(struct nfs_pgio_header *hdr,
1497 		struct nfs_fattr *fattr)
1498 {
1499 	struct nfs_pgio_args *argp = &hdr->args;
1500 	struct nfs_pgio_res *resp = &hdr->res;
1501 	u64 size = argp->offset + resp->count;
1502 
1503 	if (!(fattr->valid & NFS_ATTR_FATTR_SIZE))
1504 		fattr->size = size;
1505 	if (nfs_size_to_loff_t(fattr->size) < i_size_read(hdr->inode)) {
1506 		fattr->valid &= ~NFS_ATTR_FATTR_SIZE;
1507 		return;
1508 	}
1509 	if (size != fattr->size)
1510 		return;
1511 	/* Set attribute barrier */
1512 	nfs_fattr_set_barrier(fattr);
1513 	/* ...and update size */
1514 	fattr->valid |= NFS_ATTR_FATTR_SIZE;
1515 }
1516 
nfs_writeback_update_inode(struct nfs_pgio_header * hdr)1517 void nfs_writeback_update_inode(struct nfs_pgio_header *hdr)
1518 {
1519 	struct nfs_fattr *fattr = &hdr->fattr;
1520 	struct inode *inode = hdr->inode;
1521 
1522 	spin_lock(&inode->i_lock);
1523 	nfs_writeback_check_extend(hdr, fattr);
1524 	nfs_post_op_update_inode_force_wcc_locked(inode, fattr);
1525 	spin_unlock(&inode->i_lock);
1526 }
1527 EXPORT_SYMBOL_GPL(nfs_writeback_update_inode);
1528 
1529 /*
1530  * This function is called when the WRITE call is complete.
1531  */
nfs_writeback_done(struct rpc_task * task,struct nfs_pgio_header * hdr,struct inode * inode)1532 static int nfs_writeback_done(struct rpc_task *task,
1533 			      struct nfs_pgio_header *hdr,
1534 			      struct inode *inode)
1535 {
1536 	int status;
1537 
1538 	/*
1539 	 * ->write_done will attempt to use post-op attributes to detect
1540 	 * conflicting writes by other clients.  A strict interpretation
1541 	 * of close-to-open would allow us to continue caching even if
1542 	 * another writer had changed the file, but some applications
1543 	 * depend on tighter cache coherency when writing.
1544 	 */
1545 	status = NFS_PROTO(inode)->write_done(task, hdr);
1546 	if (status != 0)
1547 		return status;
1548 
1549 	nfs_add_stats(inode, NFSIOS_SERVERWRITTENBYTES, hdr->res.count);
1550 	trace_nfs_writeback_done(inode, task->tk_status,
1551 				 hdr->args.offset, hdr->res.verf);
1552 
1553 	if (hdr->res.verf->committed < hdr->args.stable &&
1554 	    task->tk_status >= 0) {
1555 		/* We tried a write call, but the server did not
1556 		 * commit data to stable storage even though we
1557 		 * requested it.
1558 		 * Note: There is a known bug in Tru64 < 5.0 in which
1559 		 *	 the server reports NFS_DATA_SYNC, but performs
1560 		 *	 NFS_FILE_SYNC. We therefore implement this checking
1561 		 *	 as a dprintk() in order to avoid filling syslog.
1562 		 */
1563 		static unsigned long    complain;
1564 
1565 		/* Note this will print the MDS for a DS write */
1566 		if (time_before(complain, jiffies)) {
1567 			dprintk("NFS:       faulty NFS server %s:"
1568 				" (committed = %d) != (stable = %d)\n",
1569 				NFS_SERVER(inode)->nfs_client->cl_hostname,
1570 				hdr->res.verf->committed, hdr->args.stable);
1571 			complain = jiffies + 300 * HZ;
1572 		}
1573 	}
1574 
1575 	/* Deal with the suid/sgid bit corner case */
1576 	if (nfs_should_remove_suid(inode))
1577 		nfs_mark_for_revalidate(inode);
1578 	return 0;
1579 }
1580 
1581 /*
1582  * This function is called when the WRITE call is complete.
1583  */
nfs_writeback_result(struct rpc_task * task,struct nfs_pgio_header * hdr)1584 static void nfs_writeback_result(struct rpc_task *task,
1585 				 struct nfs_pgio_header *hdr)
1586 {
1587 	struct nfs_pgio_args	*argp = &hdr->args;
1588 	struct nfs_pgio_res	*resp = &hdr->res;
1589 
1590 	if (resp->count < argp->count) {
1591 		static unsigned long    complain;
1592 
1593 		/* This a short write! */
1594 		nfs_inc_stats(hdr->inode, NFSIOS_SHORTWRITE);
1595 
1596 		/* Has the server at least made some progress? */
1597 		if (resp->count == 0) {
1598 			if (time_before(complain, jiffies)) {
1599 				printk(KERN_WARNING
1600 				       "NFS: Server wrote zero bytes, expected %u.\n",
1601 				       argp->count);
1602 				complain = jiffies + 300 * HZ;
1603 			}
1604 			nfs_set_pgio_error(hdr, -EIO, argp->offset);
1605 			task->tk_status = -EIO;
1606 			return;
1607 		}
1608 
1609 		/* For non rpc-based layout drivers, retry-through-MDS */
1610 		if (!task->tk_ops) {
1611 			hdr->pnfs_error = -EAGAIN;
1612 			return;
1613 		}
1614 
1615 		/* Was this an NFSv2 write or an NFSv3 stable write? */
1616 		if (resp->verf->committed != NFS_UNSTABLE) {
1617 			/* Resend from where the server left off */
1618 			hdr->mds_offset += resp->count;
1619 			argp->offset += resp->count;
1620 			argp->pgbase += resp->count;
1621 			argp->count -= resp->count;
1622 		} else {
1623 			/* Resend as a stable write in order to avoid
1624 			 * headaches in the case of a server crash.
1625 			 */
1626 			argp->stable = NFS_FILE_SYNC;
1627 		}
1628 		rpc_restart_call_prepare(task);
1629 	}
1630 }
1631 
wait_on_commit(struct nfs_mds_commit_info * cinfo)1632 static int wait_on_commit(struct nfs_mds_commit_info *cinfo)
1633 {
1634 	return wait_on_atomic_t(&cinfo->rpcs_out,
1635 			nfs_wait_atomic_killable, TASK_KILLABLE);
1636 }
1637 
nfs_commit_begin(struct nfs_mds_commit_info * cinfo)1638 static void nfs_commit_begin(struct nfs_mds_commit_info *cinfo)
1639 {
1640 	atomic_inc(&cinfo->rpcs_out);
1641 }
1642 
nfs_commit_end(struct nfs_mds_commit_info * cinfo)1643 static void nfs_commit_end(struct nfs_mds_commit_info *cinfo)
1644 {
1645 	if (atomic_dec_and_test(&cinfo->rpcs_out))
1646 		wake_up_atomic_t(&cinfo->rpcs_out);
1647 }
1648 
nfs_commitdata_release(struct nfs_commit_data * data)1649 void nfs_commitdata_release(struct nfs_commit_data *data)
1650 {
1651 	put_nfs_open_context(data->context);
1652 	nfs_commit_free(data);
1653 }
1654 EXPORT_SYMBOL_GPL(nfs_commitdata_release);
1655 
nfs_initiate_commit(struct rpc_clnt * clnt,struct nfs_commit_data * data,const struct nfs_rpc_ops * nfs_ops,const struct rpc_call_ops * call_ops,int how,int flags)1656 int nfs_initiate_commit(struct rpc_clnt *clnt, struct nfs_commit_data *data,
1657 			const struct nfs_rpc_ops *nfs_ops,
1658 			const struct rpc_call_ops *call_ops,
1659 			int how, int flags)
1660 {
1661 	struct rpc_task *task;
1662 	int priority = flush_task_priority(how);
1663 	struct rpc_message msg = {
1664 		.rpc_argp = &data->args,
1665 		.rpc_resp = &data->res,
1666 		.rpc_cred = data->cred,
1667 	};
1668 	struct rpc_task_setup task_setup_data = {
1669 		.task = &data->task,
1670 		.rpc_client = clnt,
1671 		.rpc_message = &msg,
1672 		.callback_ops = call_ops,
1673 		.callback_data = data,
1674 		.workqueue = nfsiod_workqueue,
1675 		.flags = RPC_TASK_ASYNC | flags,
1676 		.priority = priority,
1677 	};
1678 	/* Set up the initial task struct.  */
1679 	nfs_ops->commit_setup(data, &msg);
1680 	trace_nfs_initiate_commit(data);
1681 
1682 	dprintk("NFS: initiated commit call\n");
1683 
1684 	nfs4_state_protect(NFS_SERVER(data->inode)->nfs_client,
1685 		NFS_SP4_MACH_CRED_COMMIT, &task_setup_data.rpc_client, &msg);
1686 
1687 	task = rpc_run_task(&task_setup_data);
1688 	if (IS_ERR(task))
1689 		return PTR_ERR(task);
1690 	if (how & FLUSH_SYNC)
1691 		rpc_wait_for_completion_task(task);
1692 	rpc_put_task(task);
1693 	return 0;
1694 }
1695 EXPORT_SYMBOL_GPL(nfs_initiate_commit);
1696 
nfs_get_lwb(struct list_head * head)1697 static loff_t nfs_get_lwb(struct list_head *head)
1698 {
1699 	loff_t lwb = 0;
1700 	struct nfs_page *req;
1701 
1702 	list_for_each_entry(req, head, wb_list)
1703 		if (lwb < (req_offset(req) + req->wb_bytes))
1704 			lwb = req_offset(req) + req->wb_bytes;
1705 
1706 	return lwb;
1707 }
1708 
1709 /*
1710  * Set up the argument/result storage required for the RPC call.
1711  */
nfs_init_commit(struct nfs_commit_data * data,struct list_head * head,struct pnfs_layout_segment * lseg,struct nfs_commit_info * cinfo)1712 void nfs_init_commit(struct nfs_commit_data *data,
1713 		     struct list_head *head,
1714 		     struct pnfs_layout_segment *lseg,
1715 		     struct nfs_commit_info *cinfo)
1716 {
1717 	struct nfs_page *first = nfs_list_entry(head->next);
1718 	struct inode *inode = d_inode(first->wb_context->dentry);
1719 
1720 	/* Set up the RPC argument and reply structs
1721 	 * NB: take care not to mess about with data->commit et al. */
1722 
1723 	list_splice_init(head, &data->pages);
1724 
1725 	data->inode	  = inode;
1726 	data->cred	  = first->wb_context->cred;
1727 	data->lseg	  = lseg; /* reference transferred */
1728 	/* only set lwb for pnfs commit */
1729 	if (lseg)
1730 		data->lwb = nfs_get_lwb(&data->pages);
1731 	data->mds_ops     = &nfs_commit_ops;
1732 	data->completion_ops = cinfo->completion_ops;
1733 	data->dreq	  = cinfo->dreq;
1734 
1735 	data->args.fh     = NFS_FH(data->inode);
1736 	/* Note: we always request a commit of the entire inode */
1737 	data->args.offset = 0;
1738 	data->args.count  = 0;
1739 	data->context     = get_nfs_open_context(first->wb_context);
1740 	data->res.fattr   = &data->fattr;
1741 	data->res.verf    = &data->verf;
1742 	nfs_fattr_init(&data->fattr);
1743 }
1744 EXPORT_SYMBOL_GPL(nfs_init_commit);
1745 
nfs_retry_commit(struct list_head * page_list,struct pnfs_layout_segment * lseg,struct nfs_commit_info * cinfo,u32 ds_commit_idx)1746 void nfs_retry_commit(struct list_head *page_list,
1747 		      struct pnfs_layout_segment *lseg,
1748 		      struct nfs_commit_info *cinfo,
1749 		      u32 ds_commit_idx)
1750 {
1751 	struct nfs_page *req;
1752 
1753 	while (!list_empty(page_list)) {
1754 		req = nfs_list_entry(page_list->next);
1755 		nfs_list_remove_request(req);
1756 		nfs_mark_request_commit(req, lseg, cinfo, ds_commit_idx);
1757 		if (!cinfo->dreq)
1758 			nfs_clear_page_commit(req->wb_page);
1759 		nfs_unlock_and_release_request(req);
1760 	}
1761 }
1762 EXPORT_SYMBOL_GPL(nfs_retry_commit);
1763 
1764 static void
nfs_commit_resched_write(struct nfs_commit_info * cinfo,struct nfs_page * req)1765 nfs_commit_resched_write(struct nfs_commit_info *cinfo,
1766 		struct nfs_page *req)
1767 {
1768 	__set_page_dirty_nobuffers(req->wb_page);
1769 }
1770 
1771 /*
1772  * Commit dirty pages
1773  */
1774 static int
nfs_commit_list(struct inode * inode,struct list_head * head,int how,struct nfs_commit_info * cinfo)1775 nfs_commit_list(struct inode *inode, struct list_head *head, int how,
1776 		struct nfs_commit_info *cinfo)
1777 {
1778 	struct nfs_commit_data	*data;
1779 
1780 	/* another commit raced with us */
1781 	if (list_empty(head))
1782 		return 0;
1783 
1784 	data = nfs_commitdata_alloc(true);
1785 
1786 	/* Set up the argument struct */
1787 	nfs_init_commit(data, head, NULL, cinfo);
1788 	atomic_inc(&cinfo->mds->rpcs_out);
1789 	return nfs_initiate_commit(NFS_CLIENT(inode), data, NFS_PROTO(inode),
1790 				   data->mds_ops, how, 0);
1791 }
1792 
1793 /*
1794  * COMMIT call returned
1795  */
nfs_commit_done(struct rpc_task * task,void * calldata)1796 static void nfs_commit_done(struct rpc_task *task, void *calldata)
1797 {
1798 	struct nfs_commit_data	*data = calldata;
1799 
1800         dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1801                                 task->tk_pid, task->tk_status);
1802 
1803 	/* Call the NFS version-specific code */
1804 	NFS_PROTO(data->inode)->commit_done(task, data);
1805 	trace_nfs_commit_done(data);
1806 }
1807 
nfs_commit_release_pages(struct nfs_commit_data * data)1808 static void nfs_commit_release_pages(struct nfs_commit_data *data)
1809 {
1810 	const struct nfs_writeverf *verf = data->res.verf;
1811 	struct nfs_page	*req;
1812 	int status = data->task.tk_status;
1813 	struct nfs_commit_info cinfo;
1814 	struct nfs_server *nfss;
1815 
1816 	while (!list_empty(&data->pages)) {
1817 		req = nfs_list_entry(data->pages.next);
1818 		nfs_list_remove_request(req);
1819 		if (req->wb_page)
1820 			nfs_clear_page_commit(req->wb_page);
1821 
1822 		dprintk("NFS:       commit (%s/%llu %d@%lld)",
1823 			req->wb_context->dentry->d_sb->s_id,
1824 			(unsigned long long)NFS_FILEID(d_inode(req->wb_context->dentry)),
1825 			req->wb_bytes,
1826 			(long long)req_offset(req));
1827 		if (status < 0) {
1828 			nfs_context_set_write_error(req->wb_context, status);
1829 			if (req->wb_page)
1830 				nfs_inode_remove_request(req);
1831 			dprintk_cont(", error = %d\n", status);
1832 			goto next;
1833 		}
1834 
1835 		/* Okay, COMMIT succeeded, apparently. Check the verifier
1836 		 * returned by the server against all stored verfs. */
1837 		if (verf->committed > NFS_UNSTABLE &&
1838 		    !nfs_write_verifier_cmp(&req->wb_verf, &verf->verifier)) {
1839 			/* We have a match */
1840 			if (req->wb_page)
1841 				nfs_inode_remove_request(req);
1842 			dprintk_cont(" OK\n");
1843 			goto next;
1844 		}
1845 		/* We have a mismatch. Write the page again */
1846 		dprintk_cont(" mismatch\n");
1847 		nfs_mark_request_dirty(req);
1848 		set_bit(NFS_CONTEXT_RESEND_WRITES, &req->wb_context->flags);
1849 	next:
1850 		nfs_unlock_and_release_request(req);
1851 		/* Latency breaker */
1852 		cond_resched();
1853 	}
1854 	nfss = NFS_SERVER(data->inode);
1855 	if (atomic_long_read(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
1856 		clear_bdi_congested(inode_to_bdi(data->inode), BLK_RW_ASYNC);
1857 
1858 	nfs_init_cinfo(&cinfo, data->inode, data->dreq);
1859 	nfs_commit_end(cinfo.mds);
1860 }
1861 
nfs_commit_release(void * calldata)1862 static void nfs_commit_release(void *calldata)
1863 {
1864 	struct nfs_commit_data *data = calldata;
1865 
1866 	data->completion_ops->completion(data);
1867 	nfs_commitdata_release(calldata);
1868 }
1869 
1870 static const struct rpc_call_ops nfs_commit_ops = {
1871 	.rpc_call_prepare = nfs_commit_prepare,
1872 	.rpc_call_done = nfs_commit_done,
1873 	.rpc_release = nfs_commit_release,
1874 };
1875 
1876 static const struct nfs_commit_completion_ops nfs_commit_completion_ops = {
1877 	.completion = nfs_commit_release_pages,
1878 	.resched_write = nfs_commit_resched_write,
1879 };
1880 
nfs_generic_commit_list(struct inode * inode,struct list_head * head,int how,struct nfs_commit_info * cinfo)1881 int nfs_generic_commit_list(struct inode *inode, struct list_head *head,
1882 			    int how, struct nfs_commit_info *cinfo)
1883 {
1884 	int status;
1885 
1886 	status = pnfs_commit_list(inode, head, how, cinfo);
1887 	if (status == PNFS_NOT_ATTEMPTED)
1888 		status = nfs_commit_list(inode, head, how, cinfo);
1889 	return status;
1890 }
1891 
__nfs_commit_inode(struct inode * inode,int how,struct writeback_control * wbc)1892 static int __nfs_commit_inode(struct inode *inode, int how,
1893 		struct writeback_control *wbc)
1894 {
1895 	LIST_HEAD(head);
1896 	struct nfs_commit_info cinfo;
1897 	int may_wait = how & FLUSH_SYNC;
1898 	int ret, nscan;
1899 
1900 	nfs_init_cinfo_from_inode(&cinfo, inode);
1901 	nfs_commit_begin(cinfo.mds);
1902 	for (;;) {
1903 		ret = nscan = nfs_scan_commit(inode, &head, &cinfo);
1904 		if (ret <= 0)
1905 			break;
1906 		ret = nfs_generic_commit_list(inode, &head, how, &cinfo);
1907 		if (ret < 0)
1908 			break;
1909 		ret = 0;
1910 		if (wbc && wbc->sync_mode == WB_SYNC_NONE) {
1911 			if (nscan < wbc->nr_to_write)
1912 				wbc->nr_to_write -= nscan;
1913 			else
1914 				wbc->nr_to_write = 0;
1915 		}
1916 		if (nscan < INT_MAX)
1917 			break;
1918 		cond_resched();
1919 	}
1920 	nfs_commit_end(cinfo.mds);
1921 	if (ret || !may_wait)
1922 		return ret;
1923 	return wait_on_commit(cinfo.mds);
1924 }
1925 
nfs_commit_inode(struct inode * inode,int how)1926 int nfs_commit_inode(struct inode *inode, int how)
1927 {
1928 	return __nfs_commit_inode(inode, how, NULL);
1929 }
1930 EXPORT_SYMBOL_GPL(nfs_commit_inode);
1931 
nfs_write_inode(struct inode * inode,struct writeback_control * wbc)1932 int nfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1933 {
1934 	struct nfs_inode *nfsi = NFS_I(inode);
1935 	int flags = FLUSH_SYNC;
1936 	int ret = 0;
1937 
1938 	if (wbc->sync_mode == WB_SYNC_NONE) {
1939 		/* no commits means nothing needs to be done */
1940 		if (!atomic_long_read(&nfsi->commit_info.ncommit))
1941 			goto check_requests_outstanding;
1942 
1943 		/* Don't commit yet if this is a non-blocking flush and there
1944 		 * are a lot of outstanding writes for this mapping.
1945 		 */
1946 		if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))
1947 			goto out_mark_dirty;
1948 
1949 		/* don't wait for the COMMIT response */
1950 		flags = 0;
1951 	}
1952 
1953 	ret = __nfs_commit_inode(inode, flags, wbc);
1954 	if (!ret) {
1955 		if (flags & FLUSH_SYNC)
1956 			return 0;
1957 	} else if (atomic_long_read(&nfsi->commit_info.ncommit))
1958 		goto out_mark_dirty;
1959 
1960 check_requests_outstanding:
1961 	if (!atomic_read(&nfsi->commit_info.rpcs_out))
1962 		return ret;
1963 out_mark_dirty:
1964 	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1965 	return ret;
1966 }
1967 EXPORT_SYMBOL_GPL(nfs_write_inode);
1968 
1969 /*
1970  * Wrapper for filemap_write_and_wait_range()
1971  *
1972  * Needed for pNFS in order to ensure data becomes visible to the
1973  * client.
1974  */
nfs_filemap_write_and_wait_range(struct address_space * mapping,loff_t lstart,loff_t lend)1975 int nfs_filemap_write_and_wait_range(struct address_space *mapping,
1976 		loff_t lstart, loff_t lend)
1977 {
1978 	int ret;
1979 
1980 	ret = filemap_write_and_wait_range(mapping, lstart, lend);
1981 	if (ret == 0)
1982 		ret = pnfs_sync_inode(mapping->host, true);
1983 	return ret;
1984 }
1985 EXPORT_SYMBOL_GPL(nfs_filemap_write_and_wait_range);
1986 
1987 /*
1988  * flush the inode to disk.
1989  */
nfs_wb_all(struct inode * inode)1990 int nfs_wb_all(struct inode *inode)
1991 {
1992 	int ret;
1993 
1994 	trace_nfs_writeback_inode_enter(inode);
1995 
1996 	ret = filemap_write_and_wait(inode->i_mapping);
1997 	if (ret)
1998 		goto out;
1999 	ret = nfs_commit_inode(inode, FLUSH_SYNC);
2000 	if (ret < 0)
2001 		goto out;
2002 	pnfs_sync_inode(inode, true);
2003 	ret = 0;
2004 
2005 out:
2006 	trace_nfs_writeback_inode_exit(inode, ret);
2007 	return ret;
2008 }
2009 EXPORT_SYMBOL_GPL(nfs_wb_all);
2010 
nfs_wb_page_cancel(struct inode * inode,struct page * page)2011 int nfs_wb_page_cancel(struct inode *inode, struct page *page)
2012 {
2013 	struct nfs_page *req;
2014 	int ret = 0;
2015 
2016 	wait_on_page_writeback(page);
2017 
2018 	/* blocking call to cancel all requests and join to a single (head)
2019 	 * request */
2020 	req = nfs_lock_and_join_requests(page);
2021 
2022 	if (IS_ERR(req)) {
2023 		ret = PTR_ERR(req);
2024 	} else if (req) {
2025 		/* all requests from this page have been cancelled by
2026 		 * nfs_lock_and_join_requests, so just remove the head
2027 		 * request from the inode / page_private pointer and
2028 		 * release it */
2029 		nfs_inode_remove_request(req);
2030 		nfs_unlock_and_release_request(req);
2031 	}
2032 
2033 	return ret;
2034 }
2035 
2036 /*
2037  * Write back all requests on one page - we do this before reading it.
2038  */
nfs_wb_page(struct inode * inode,struct page * page)2039 int nfs_wb_page(struct inode *inode, struct page *page)
2040 {
2041 	loff_t range_start = page_file_offset(page);
2042 	loff_t range_end = range_start + (loff_t)(PAGE_SIZE - 1);
2043 	struct writeback_control wbc = {
2044 		.sync_mode = WB_SYNC_ALL,
2045 		.nr_to_write = 0,
2046 		.range_start = range_start,
2047 		.range_end = range_end,
2048 	};
2049 	int ret;
2050 
2051 	trace_nfs_writeback_page_enter(inode);
2052 
2053 	for (;;) {
2054 		wait_on_page_writeback(page);
2055 		if (clear_page_dirty_for_io(page)) {
2056 			ret = nfs_writepage_locked(page, &wbc);
2057 			if (ret < 0)
2058 				goto out_error;
2059 			continue;
2060 		}
2061 		ret = 0;
2062 		if (!PagePrivate(page))
2063 			break;
2064 		ret = nfs_commit_inode(inode, FLUSH_SYNC);
2065 		if (ret < 0)
2066 			goto out_error;
2067 	}
2068 out_error:
2069 	trace_nfs_writeback_page_exit(inode, ret);
2070 	return ret;
2071 }
2072 
2073 #ifdef CONFIG_MIGRATION
nfs_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)2074 int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
2075 		struct page *page, enum migrate_mode mode)
2076 {
2077 	/*
2078 	 * If PagePrivate is set, then the page is currently associated with
2079 	 * an in-progress read or write request. Don't try to migrate it.
2080 	 *
2081 	 * FIXME: we could do this in principle, but we'll need a way to ensure
2082 	 *        that we can safely release the inode reference while holding
2083 	 *        the page lock.
2084 	 */
2085 	if (PagePrivate(page))
2086 		return -EBUSY;
2087 
2088 	if (!nfs_fscache_release_page(page, GFP_KERNEL))
2089 		return -EBUSY;
2090 
2091 	return migrate_page(mapping, newpage, page, mode);
2092 }
2093 #endif
2094 
nfs_init_writepagecache(void)2095 int __init nfs_init_writepagecache(void)
2096 {
2097 	nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
2098 					     sizeof(struct nfs_pgio_header),
2099 					     0, SLAB_HWCACHE_ALIGN,
2100 					     NULL);
2101 	if (nfs_wdata_cachep == NULL)
2102 		return -ENOMEM;
2103 
2104 	nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
2105 						     nfs_wdata_cachep);
2106 	if (nfs_wdata_mempool == NULL)
2107 		goto out_destroy_write_cache;
2108 
2109 	nfs_cdata_cachep = kmem_cache_create("nfs_commit_data",
2110 					     sizeof(struct nfs_commit_data),
2111 					     0, SLAB_HWCACHE_ALIGN,
2112 					     NULL);
2113 	if (nfs_cdata_cachep == NULL)
2114 		goto out_destroy_write_mempool;
2115 
2116 	nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
2117 						      nfs_cdata_cachep);
2118 	if (nfs_commit_mempool == NULL)
2119 		goto out_destroy_commit_cache;
2120 
2121 	/*
2122 	 * NFS congestion size, scale with available memory.
2123 	 *
2124 	 *  64MB:    8192k
2125 	 * 128MB:   11585k
2126 	 * 256MB:   16384k
2127 	 * 512MB:   23170k
2128 	 *   1GB:   32768k
2129 	 *   2GB:   46340k
2130 	 *   4GB:   65536k
2131 	 *   8GB:   92681k
2132 	 *  16GB:  131072k
2133 	 *
2134 	 * This allows larger machines to have larger/more transfers.
2135 	 * Limit the default to 256M
2136 	 */
2137 	nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
2138 	if (nfs_congestion_kb > 256*1024)
2139 		nfs_congestion_kb = 256*1024;
2140 
2141 	return 0;
2142 
2143 out_destroy_commit_cache:
2144 	kmem_cache_destroy(nfs_cdata_cachep);
2145 out_destroy_write_mempool:
2146 	mempool_destroy(nfs_wdata_mempool);
2147 out_destroy_write_cache:
2148 	kmem_cache_destroy(nfs_wdata_cachep);
2149 	return -ENOMEM;
2150 }
2151 
nfs_destroy_writepagecache(void)2152 void nfs_destroy_writepagecache(void)
2153 {
2154 	mempool_destroy(nfs_commit_mempool);
2155 	kmem_cache_destroy(nfs_cdata_cachep);
2156 	mempool_destroy(nfs_wdata_mempool);
2157 	kmem_cache_destroy(nfs_wdata_cachep);
2158 }
2159 
2160 static const struct nfs_rw_ops nfs_rw_write_ops = {
2161 	.rw_alloc_header	= nfs_writehdr_alloc,
2162 	.rw_free_header		= nfs_writehdr_free,
2163 	.rw_done		= nfs_writeback_done,
2164 	.rw_result		= nfs_writeback_result,
2165 	.rw_initiate		= nfs_initiate_write,
2166 };
2167