1 /*
2 * linux/fs/nfs/write.c
3 *
4 * Write file data over NFS.
5 *
6 * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
7 */
8
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/file.h>
14 #include <linux/writeback.h>
15 #include <linux/swap.h>
16 #include <linux/migrate.h>
17
18 #include <linux/sunrpc/clnt.h>
19 #include <linux/nfs_fs.h>
20 #include <linux/nfs_mount.h>
21 #include <linux/nfs_page.h>
22 #include <linux/backing-dev.h>
23 #include <linux/export.h>
24 #include <linux/freezer.h>
25 #include <linux/wait.h>
26
27 #include <linux/uaccess.h>
28
29 #include "delegation.h"
30 #include "internal.h"
31 #include "iostat.h"
32 #include "nfs4_fs.h"
33 #include "fscache.h"
34 #include "pnfs.h"
35
36 #include "nfstrace.h"
37
38 #define NFSDBG_FACILITY NFSDBG_PAGECACHE
39
40 #define MIN_POOL_WRITE (32)
41 #define MIN_POOL_COMMIT (4)
42
43 struct nfs_io_completion {
44 void (*complete)(void *data);
45 void *data;
46 struct kref refcount;
47 };
48
49 /*
50 * Local function declarations
51 */
52 static void nfs_redirty_request(struct nfs_page *req);
53 static const struct rpc_call_ops nfs_commit_ops;
54 static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops;
55 static const struct nfs_commit_completion_ops nfs_commit_completion_ops;
56 static const struct nfs_rw_ops nfs_rw_write_ops;
57 static void nfs_clear_request_commit(struct nfs_page *req);
58 static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo,
59 struct inode *inode);
60 static struct nfs_page *
61 nfs_page_search_commits_for_head_request_locked(struct nfs_inode *nfsi,
62 struct page *page);
63
64 static struct kmem_cache *nfs_wdata_cachep;
65 static mempool_t *nfs_wdata_mempool;
66 static struct kmem_cache *nfs_cdata_cachep;
67 static mempool_t *nfs_commit_mempool;
68
nfs_commitdata_alloc(bool never_fail)69 struct nfs_commit_data *nfs_commitdata_alloc(bool never_fail)
70 {
71 struct nfs_commit_data *p;
72
73 if (never_fail)
74 p = mempool_alloc(nfs_commit_mempool, GFP_NOIO);
75 else {
76 /* It is OK to do some reclaim, not no safe to wait
77 * for anything to be returned to the pool.
78 * mempool_alloc() cannot handle that particular combination,
79 * so we need two separate attempts.
80 */
81 p = mempool_alloc(nfs_commit_mempool, GFP_NOWAIT);
82 if (!p)
83 p = kmem_cache_alloc(nfs_cdata_cachep, GFP_NOIO |
84 __GFP_NOWARN | __GFP_NORETRY);
85 if (!p)
86 return NULL;
87 }
88
89 memset(p, 0, sizeof(*p));
90 INIT_LIST_HEAD(&p->pages);
91 return p;
92 }
93 EXPORT_SYMBOL_GPL(nfs_commitdata_alloc);
94
nfs_commit_free(struct nfs_commit_data * p)95 void nfs_commit_free(struct nfs_commit_data *p)
96 {
97 mempool_free(p, nfs_commit_mempool);
98 }
99 EXPORT_SYMBOL_GPL(nfs_commit_free);
100
nfs_writehdr_alloc(void)101 static struct nfs_pgio_header *nfs_writehdr_alloc(void)
102 {
103 struct nfs_pgio_header *p = mempool_alloc(nfs_wdata_mempool, GFP_NOIO);
104
105 memset(p, 0, sizeof(*p));
106 p->rw_mode = FMODE_WRITE;
107 return p;
108 }
109
nfs_writehdr_free(struct nfs_pgio_header * hdr)110 static void nfs_writehdr_free(struct nfs_pgio_header *hdr)
111 {
112 mempool_free(hdr, nfs_wdata_mempool);
113 }
114
nfs_io_completion_alloc(gfp_t gfp_flags)115 static struct nfs_io_completion *nfs_io_completion_alloc(gfp_t gfp_flags)
116 {
117 return kmalloc(sizeof(struct nfs_io_completion), gfp_flags);
118 }
119
nfs_io_completion_init(struct nfs_io_completion * ioc,void (* complete)(void *),void * data)120 static void nfs_io_completion_init(struct nfs_io_completion *ioc,
121 void (*complete)(void *), void *data)
122 {
123 ioc->complete = complete;
124 ioc->data = data;
125 kref_init(&ioc->refcount);
126 }
127
nfs_io_completion_release(struct kref * kref)128 static void nfs_io_completion_release(struct kref *kref)
129 {
130 struct nfs_io_completion *ioc = container_of(kref,
131 struct nfs_io_completion, refcount);
132 ioc->complete(ioc->data);
133 kfree(ioc);
134 }
135
nfs_io_completion_get(struct nfs_io_completion * ioc)136 static void nfs_io_completion_get(struct nfs_io_completion *ioc)
137 {
138 if (ioc != NULL)
139 kref_get(&ioc->refcount);
140 }
141
nfs_io_completion_put(struct nfs_io_completion * ioc)142 static void nfs_io_completion_put(struct nfs_io_completion *ioc)
143 {
144 if (ioc != NULL)
145 kref_put(&ioc->refcount, nfs_io_completion_release);
146 }
147
148 static struct nfs_page *
nfs_page_private_request(struct page * page)149 nfs_page_private_request(struct page *page)
150 {
151 if (!PagePrivate(page))
152 return NULL;
153 return (struct nfs_page *)page_private(page);
154 }
155
156 /*
157 * nfs_page_find_head_request_locked - find head request associated with @page
158 *
159 * must be called while holding the inode lock.
160 *
161 * returns matching head request with reference held, or NULL if not found.
162 */
163 static struct nfs_page *
nfs_page_find_private_request(struct page * page)164 nfs_page_find_private_request(struct page *page)
165 {
166 struct address_space *mapping = page_file_mapping(page);
167 struct nfs_page *req;
168
169 if (!PagePrivate(page))
170 return NULL;
171 spin_lock(&mapping->private_lock);
172 req = nfs_page_private_request(page);
173 if (req) {
174 WARN_ON_ONCE(req->wb_head != req);
175 kref_get(&req->wb_kref);
176 }
177 spin_unlock(&mapping->private_lock);
178 return req;
179 }
180
181 static struct nfs_page *
nfs_page_find_swap_request(struct page * page)182 nfs_page_find_swap_request(struct page *page)
183 {
184 struct inode *inode = page_file_mapping(page)->host;
185 struct nfs_inode *nfsi = NFS_I(inode);
186 struct nfs_page *req = NULL;
187 if (!PageSwapCache(page))
188 return NULL;
189 mutex_lock(&nfsi->commit_mutex);
190 if (PageSwapCache(page)) {
191 req = nfs_page_search_commits_for_head_request_locked(nfsi,
192 page);
193 if (req) {
194 WARN_ON_ONCE(req->wb_head != req);
195 kref_get(&req->wb_kref);
196 }
197 }
198 mutex_unlock(&nfsi->commit_mutex);
199 return req;
200 }
201
202 /*
203 * nfs_page_find_head_request - find head request associated with @page
204 *
205 * returns matching head request with reference held, or NULL if not found.
206 */
nfs_page_find_head_request(struct page * page)207 static struct nfs_page *nfs_page_find_head_request(struct page *page)
208 {
209 struct nfs_page *req;
210
211 req = nfs_page_find_private_request(page);
212 if (!req)
213 req = nfs_page_find_swap_request(page);
214 return req;
215 }
216
217 /* Adjust the file length if we're writing beyond the end */
nfs_grow_file(struct page * page,unsigned int offset,unsigned int count)218 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
219 {
220 struct inode *inode = page_file_mapping(page)->host;
221 loff_t end, i_size;
222 pgoff_t end_index;
223
224 spin_lock(&inode->i_lock);
225 i_size = i_size_read(inode);
226 end_index = (i_size - 1) >> PAGE_SHIFT;
227 if (i_size > 0 && page_index(page) < end_index)
228 goto out;
229 end = page_file_offset(page) + ((loff_t)offset+count);
230 if (i_size >= end)
231 goto out;
232 i_size_write(inode, end);
233 nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
234 out:
235 spin_unlock(&inode->i_lock);
236 }
237
238 /* A writeback failed: mark the page as bad, and invalidate the page cache */
nfs_set_pageerror(struct address_space * mapping)239 static void nfs_set_pageerror(struct address_space *mapping)
240 {
241 nfs_zap_mapping(mapping->host, mapping);
242 }
243
244 /*
245 * nfs_page_group_search_locked
246 * @head - head request of page group
247 * @page_offset - offset into page
248 *
249 * Search page group with head @head to find a request that contains the
250 * page offset @page_offset.
251 *
252 * Returns a pointer to the first matching nfs request, or NULL if no
253 * match is found.
254 *
255 * Must be called with the page group lock held
256 */
257 static struct nfs_page *
nfs_page_group_search_locked(struct nfs_page * head,unsigned int page_offset)258 nfs_page_group_search_locked(struct nfs_page *head, unsigned int page_offset)
259 {
260 struct nfs_page *req;
261
262 req = head;
263 do {
264 if (page_offset >= req->wb_pgbase &&
265 page_offset < (req->wb_pgbase + req->wb_bytes))
266 return req;
267
268 req = req->wb_this_page;
269 } while (req != head);
270
271 return NULL;
272 }
273
274 /*
275 * nfs_page_group_covers_page
276 * @head - head request of page group
277 *
278 * Return true if the page group with head @head covers the whole page,
279 * returns false otherwise
280 */
nfs_page_group_covers_page(struct nfs_page * req)281 static bool nfs_page_group_covers_page(struct nfs_page *req)
282 {
283 struct nfs_page *tmp;
284 unsigned int pos = 0;
285 unsigned int len = nfs_page_length(req->wb_page);
286
287 nfs_page_group_lock(req);
288
289 for (;;) {
290 tmp = nfs_page_group_search_locked(req->wb_head, pos);
291 if (!tmp)
292 break;
293 pos = tmp->wb_pgbase + tmp->wb_bytes;
294 }
295
296 nfs_page_group_unlock(req);
297 return pos >= len;
298 }
299
300 /* We can set the PG_uptodate flag if we see that a write request
301 * covers the full page.
302 */
nfs_mark_uptodate(struct nfs_page * req)303 static void nfs_mark_uptodate(struct nfs_page *req)
304 {
305 if (PageUptodate(req->wb_page))
306 return;
307 if (!nfs_page_group_covers_page(req))
308 return;
309 SetPageUptodate(req->wb_page);
310 }
311
wb_priority(struct writeback_control * wbc)312 static int wb_priority(struct writeback_control *wbc)
313 {
314 int ret = 0;
315
316 if (wbc->sync_mode == WB_SYNC_ALL)
317 ret = FLUSH_COND_STABLE;
318 return ret;
319 }
320
321 /*
322 * NFS congestion control
323 */
324
325 int nfs_congestion_kb;
326
327 #define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10))
328 #define NFS_CONGESTION_OFF_THRESH \
329 (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
330
nfs_set_page_writeback(struct page * page)331 static void nfs_set_page_writeback(struct page *page)
332 {
333 struct inode *inode = page_file_mapping(page)->host;
334 struct nfs_server *nfss = NFS_SERVER(inode);
335 int ret = test_set_page_writeback(page);
336
337 WARN_ON_ONCE(ret != 0);
338
339 if (atomic_long_inc_return(&nfss->writeback) >
340 NFS_CONGESTION_ON_THRESH)
341 set_bdi_congested(inode_to_bdi(inode), BLK_RW_ASYNC);
342 }
343
nfs_end_page_writeback(struct nfs_page * req)344 static void nfs_end_page_writeback(struct nfs_page *req)
345 {
346 struct inode *inode = page_file_mapping(req->wb_page)->host;
347 struct nfs_server *nfss = NFS_SERVER(inode);
348 bool is_done;
349
350 is_done = nfs_page_group_sync_on_bit(req, PG_WB_END);
351 nfs_unlock_request(req);
352 if (!is_done)
353 return;
354
355 end_page_writeback(req->wb_page);
356 if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
357 clear_bdi_congested(inode_to_bdi(inode), BLK_RW_ASYNC);
358 }
359
360 /*
361 * nfs_unroll_locks_and_wait - unlock all newly locked reqs and wait on @req
362 *
363 * this is a helper function for nfs_lock_and_join_requests
364 *
365 * @inode - inode associated with request page group, must be holding inode lock
366 * @head - head request of page group, must be holding head lock
367 * @req - request that couldn't lock and needs to wait on the req bit lock
368 *
369 * NOTE: this must be called holding page_group bit lock
370 * which will be released before returning.
371 *
372 * returns 0 on success, < 0 on error.
373 */
374 static void
nfs_unroll_locks(struct inode * inode,struct nfs_page * head,struct nfs_page * req)375 nfs_unroll_locks(struct inode *inode, struct nfs_page *head,
376 struct nfs_page *req)
377 {
378 struct nfs_page *tmp;
379
380 /* relinquish all the locks successfully grabbed this run */
381 for (tmp = head->wb_this_page ; tmp != req; tmp = tmp->wb_this_page) {
382 if (!kref_read(&tmp->wb_kref))
383 continue;
384 nfs_unlock_and_release_request(tmp);
385 }
386 }
387
388 /*
389 * nfs_destroy_unlinked_subrequests - destroy recently unlinked subrequests
390 *
391 * @destroy_list - request list (using wb_this_page) terminated by @old_head
392 * @old_head - the old head of the list
393 *
394 * All subrequests must be locked and removed from all lists, so at this point
395 * they are only "active" in this function, and possibly in nfs_wait_on_request
396 * with a reference held by some other context.
397 */
398 static void
nfs_destroy_unlinked_subrequests(struct nfs_page * destroy_list,struct nfs_page * old_head,struct inode * inode)399 nfs_destroy_unlinked_subrequests(struct nfs_page *destroy_list,
400 struct nfs_page *old_head,
401 struct inode *inode)
402 {
403 while (destroy_list) {
404 struct nfs_page *subreq = destroy_list;
405
406 destroy_list = (subreq->wb_this_page == old_head) ?
407 NULL : subreq->wb_this_page;
408
409 WARN_ON_ONCE(old_head != subreq->wb_head);
410
411 /* make sure old group is not used */
412 subreq->wb_this_page = subreq;
413
414 clear_bit(PG_REMOVE, &subreq->wb_flags);
415
416 /* Note: races with nfs_page_group_destroy() */
417 if (!kref_read(&subreq->wb_kref)) {
418 /* Check if we raced with nfs_page_group_destroy() */
419 if (test_and_clear_bit(PG_TEARDOWN, &subreq->wb_flags))
420 nfs_free_request(subreq);
421 continue;
422 }
423
424 subreq->wb_head = subreq;
425
426 if (test_and_clear_bit(PG_INODE_REF, &subreq->wb_flags)) {
427 nfs_release_request(subreq);
428 atomic_long_dec(&NFS_I(inode)->nrequests);
429 }
430
431 /* subreq is now totally disconnected from page group or any
432 * write / commit lists. last chance to wake any waiters */
433 nfs_unlock_and_release_request(subreq);
434 }
435 }
436
437 /*
438 * nfs_lock_and_join_requests - join all subreqs to the head req and return
439 * a locked reference, cancelling any pending
440 * operations for this page.
441 *
442 * @page - the page used to lookup the "page group" of nfs_page structures
443 *
444 * This function joins all sub requests to the head request by first
445 * locking all requests in the group, cancelling any pending operations
446 * and finally updating the head request to cover the whole range covered by
447 * the (former) group. All subrequests are removed from any write or commit
448 * lists, unlinked from the group and destroyed.
449 *
450 * Returns a locked, referenced pointer to the head request - which after
451 * this call is guaranteed to be the only request associated with the page.
452 * Returns NULL if no requests are found for @page, or a ERR_PTR if an
453 * error was encountered.
454 */
455 static struct nfs_page *
nfs_lock_and_join_requests(struct page * page)456 nfs_lock_and_join_requests(struct page *page)
457 {
458 struct inode *inode = page_file_mapping(page)->host;
459 struct nfs_page *head, *subreq;
460 struct nfs_page *destroy_list = NULL;
461 unsigned int total_bytes;
462 int ret;
463
464 try_again:
465 /*
466 * A reference is taken only on the head request which acts as a
467 * reference to the whole page group - the group will not be destroyed
468 * until the head reference is released.
469 */
470 head = nfs_page_find_head_request(page);
471 if (!head)
472 return NULL;
473
474 /* lock the page head first in order to avoid an ABBA inefficiency */
475 if (!nfs_lock_request(head)) {
476 ret = nfs_wait_on_request(head);
477 nfs_release_request(head);
478 if (ret < 0)
479 return ERR_PTR(ret);
480 goto try_again;
481 }
482
483 /* Ensure that nobody removed the request before we locked it */
484 if (head != nfs_page_private_request(page) && !PageSwapCache(page)) {
485 nfs_unlock_and_release_request(head);
486 goto try_again;
487 }
488
489 ret = nfs_page_group_lock(head);
490 if (ret < 0) {
491 nfs_unlock_and_release_request(head);
492 return ERR_PTR(ret);
493 }
494
495 /* lock each request in the page group */
496 total_bytes = head->wb_bytes;
497 for (subreq = head->wb_this_page; subreq != head;
498 subreq = subreq->wb_this_page) {
499
500 if (!kref_get_unless_zero(&subreq->wb_kref)) {
501 if (subreq->wb_offset == head->wb_offset + total_bytes)
502 total_bytes += subreq->wb_bytes;
503 continue;
504 }
505
506 while (!nfs_lock_request(subreq)) {
507 /*
508 * Unlock page to allow nfs_page_group_sync_on_bit()
509 * to succeed
510 */
511 nfs_page_group_unlock(head);
512 ret = nfs_wait_on_request(subreq);
513 if (!ret)
514 ret = nfs_page_group_lock(head);
515 if (ret < 0) {
516 nfs_unroll_locks(inode, head, subreq);
517 nfs_release_request(subreq);
518 nfs_unlock_and_release_request(head);
519 return ERR_PTR(ret);
520 }
521 }
522 /*
523 * Subrequests are always contiguous, non overlapping
524 * and in order - but may be repeated (mirrored writes).
525 */
526 if (subreq->wb_offset == (head->wb_offset + total_bytes)) {
527 /* keep track of how many bytes this group covers */
528 total_bytes += subreq->wb_bytes;
529 } else if (WARN_ON_ONCE(subreq->wb_offset < head->wb_offset ||
530 ((subreq->wb_offset + subreq->wb_bytes) >
531 (head->wb_offset + total_bytes)))) {
532 nfs_page_group_unlock(head);
533 nfs_unroll_locks(inode, head, subreq);
534 nfs_unlock_and_release_request(subreq);
535 nfs_unlock_and_release_request(head);
536 return ERR_PTR(-EIO);
537 }
538 }
539
540 /* Now that all requests are locked, make sure they aren't on any list.
541 * Commit list removal accounting is done after locks are dropped */
542 subreq = head;
543 do {
544 nfs_clear_request_commit(subreq);
545 subreq = subreq->wb_this_page;
546 } while (subreq != head);
547
548 /* unlink subrequests from head, destroy them later */
549 if (head->wb_this_page != head) {
550 /* destroy list will be terminated by head */
551 destroy_list = head->wb_this_page;
552 head->wb_this_page = head;
553
554 /* change head request to cover whole range that
555 * the former page group covered */
556 head->wb_bytes = total_bytes;
557 }
558
559 /* Postpone destruction of this request */
560 if (test_and_clear_bit(PG_REMOVE, &head->wb_flags)) {
561 set_bit(PG_INODE_REF, &head->wb_flags);
562 kref_get(&head->wb_kref);
563 atomic_long_inc(&NFS_I(inode)->nrequests);
564 }
565
566 nfs_page_group_unlock(head);
567
568 nfs_destroy_unlinked_subrequests(destroy_list, head, inode);
569
570 /* Did we lose a race with nfs_inode_remove_request()? */
571 if (!(PagePrivate(page) || PageSwapCache(page))) {
572 nfs_unlock_and_release_request(head);
573 return NULL;
574 }
575
576 /* still holds ref on head from nfs_page_find_head_request
577 * and still has lock on head from lock loop */
578 return head;
579 }
580
nfs_write_error_remove_page(struct nfs_page * req)581 static void nfs_write_error_remove_page(struct nfs_page *req)
582 {
583 nfs_end_page_writeback(req);
584 generic_error_remove_page(page_file_mapping(req->wb_page),
585 req->wb_page);
586 nfs_release_request(req);
587 }
588
589 static bool
nfs_error_is_fatal_on_server(int err)590 nfs_error_is_fatal_on_server(int err)
591 {
592 switch (err) {
593 case 0:
594 case -ERESTARTSYS:
595 case -EINTR:
596 return false;
597 }
598 return nfs_error_is_fatal(err);
599 }
600
601 /*
602 * Find an associated nfs write request, and prepare to flush it out
603 * May return an error if the user signalled nfs_wait_on_request().
604 */
nfs_page_async_flush(struct nfs_pageio_descriptor * pgio,struct page * page)605 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
606 struct page *page)
607 {
608 struct nfs_page *req;
609 int ret = 0;
610
611 req = nfs_lock_and_join_requests(page);
612 if (!req)
613 goto out;
614 ret = PTR_ERR(req);
615 if (IS_ERR(req))
616 goto out;
617
618 nfs_set_page_writeback(page);
619 WARN_ON_ONCE(test_bit(PG_CLEAN, &req->wb_flags));
620
621 ret = req->wb_context->error;
622 /* If there is a fatal error that covers this write, just exit */
623 if (nfs_error_is_fatal_on_server(ret))
624 goto out_launder;
625
626 ret = 0;
627 if (!nfs_pageio_add_request(pgio, req)) {
628 ret = pgio->pg_error;
629 /*
630 * Remove the problematic req upon fatal errors on the server
631 */
632 if (nfs_error_is_fatal(ret)) {
633 nfs_context_set_write_error(req->wb_context, ret);
634 if (nfs_error_is_fatal_on_server(ret))
635 goto out_launder;
636 } else
637 ret = -EAGAIN;
638 nfs_redirty_request(req);
639 } else
640 nfs_add_stats(page_file_mapping(page)->host,
641 NFSIOS_WRITEPAGES, 1);
642 out:
643 return ret;
644 out_launder:
645 nfs_write_error_remove_page(req);
646 return 0;
647 }
648
nfs_do_writepage(struct page * page,struct writeback_control * wbc,struct nfs_pageio_descriptor * pgio)649 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc,
650 struct nfs_pageio_descriptor *pgio)
651 {
652 int ret;
653
654 nfs_pageio_cond_complete(pgio, page_index(page));
655 ret = nfs_page_async_flush(pgio, page);
656 if (ret == -EAGAIN) {
657 redirty_page_for_writepage(wbc, page);
658 ret = 0;
659 }
660 return ret;
661 }
662
663 /*
664 * Write an mmapped page to the server.
665 */
nfs_writepage_locked(struct page * page,struct writeback_control * wbc)666 static int nfs_writepage_locked(struct page *page,
667 struct writeback_control *wbc)
668 {
669 struct nfs_pageio_descriptor pgio;
670 struct inode *inode = page_file_mapping(page)->host;
671 int err;
672
673 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
674 nfs_pageio_init_write(&pgio, inode, 0,
675 false, &nfs_async_write_completion_ops);
676 err = nfs_do_writepage(page, wbc, &pgio);
677 nfs_pageio_complete(&pgio);
678 if (err < 0)
679 return err;
680 if (pgio.pg_error < 0)
681 return pgio.pg_error;
682 return 0;
683 }
684
nfs_writepage(struct page * page,struct writeback_control * wbc)685 int nfs_writepage(struct page *page, struct writeback_control *wbc)
686 {
687 int ret;
688
689 ret = nfs_writepage_locked(page, wbc);
690 unlock_page(page);
691 return ret;
692 }
693
nfs_writepages_callback(struct page * page,struct writeback_control * wbc,void * data)694 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
695 {
696 int ret;
697
698 ret = nfs_do_writepage(page, wbc, data);
699 unlock_page(page);
700 return ret;
701 }
702
nfs_io_completion_commit(void * inode)703 static void nfs_io_completion_commit(void *inode)
704 {
705 nfs_commit_inode(inode, 0);
706 }
707
nfs_writepages(struct address_space * mapping,struct writeback_control * wbc)708 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
709 {
710 struct inode *inode = mapping->host;
711 struct nfs_pageio_descriptor pgio;
712 struct nfs_io_completion *ioc = nfs_io_completion_alloc(GFP_NOFS);
713 int err;
714
715 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
716
717 if (ioc)
718 nfs_io_completion_init(ioc, nfs_io_completion_commit, inode);
719
720 nfs_pageio_init_write(&pgio, inode, wb_priority(wbc), false,
721 &nfs_async_write_completion_ops);
722 pgio.pg_io_completion = ioc;
723 err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
724 nfs_pageio_complete(&pgio);
725 nfs_io_completion_put(ioc);
726
727 if (err < 0)
728 goto out_err;
729 err = pgio.pg_error;
730 if (err < 0)
731 goto out_err;
732 return 0;
733 out_err:
734 return err;
735 }
736
737 /*
738 * Insert a write request into an inode
739 */
nfs_inode_add_request(struct inode * inode,struct nfs_page * req)740 static void nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
741 {
742 struct address_space *mapping = page_file_mapping(req->wb_page);
743 struct nfs_inode *nfsi = NFS_I(inode);
744
745 WARN_ON_ONCE(req->wb_this_page != req);
746
747 /* Lock the request! */
748 nfs_lock_request(req);
749
750 /*
751 * Swap-space should not get truncated. Hence no need to plug the race
752 * with invalidate/truncate.
753 */
754 spin_lock(&mapping->private_lock);
755 if (!nfs_have_writebacks(inode) &&
756 NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE)) {
757 spin_lock(&inode->i_lock);
758 inode->i_version++;
759 spin_unlock(&inode->i_lock);
760 }
761 if (likely(!PageSwapCache(req->wb_page))) {
762 set_bit(PG_MAPPED, &req->wb_flags);
763 SetPagePrivate(req->wb_page);
764 set_page_private(req->wb_page, (unsigned long)req);
765 }
766 spin_unlock(&mapping->private_lock);
767 atomic_long_inc(&nfsi->nrequests);
768 /* this a head request for a page group - mark it as having an
769 * extra reference so sub groups can follow suit.
770 * This flag also informs pgio layer when to bump nrequests when
771 * adding subrequests. */
772 WARN_ON(test_and_set_bit(PG_INODE_REF, &req->wb_flags));
773 kref_get(&req->wb_kref);
774 }
775
776 /*
777 * Remove a write request from an inode
778 */
nfs_inode_remove_request(struct nfs_page * req)779 static void nfs_inode_remove_request(struct nfs_page *req)
780 {
781 struct address_space *mapping = page_file_mapping(req->wb_page);
782 struct inode *inode = mapping->host;
783 struct nfs_inode *nfsi = NFS_I(inode);
784 struct nfs_page *head;
785
786 if (nfs_page_group_sync_on_bit(req, PG_REMOVE)) {
787 head = req->wb_head;
788
789 spin_lock(&mapping->private_lock);
790 if (likely(head->wb_page && !PageSwapCache(head->wb_page))) {
791 set_page_private(head->wb_page, 0);
792 ClearPagePrivate(head->wb_page);
793 clear_bit(PG_MAPPED, &head->wb_flags);
794 }
795 spin_unlock(&mapping->private_lock);
796 }
797
798 if (test_and_clear_bit(PG_INODE_REF, &req->wb_flags)) {
799 nfs_release_request(req);
800 atomic_long_dec(&nfsi->nrequests);
801 }
802 }
803
804 static void
nfs_mark_request_dirty(struct nfs_page * req)805 nfs_mark_request_dirty(struct nfs_page *req)
806 {
807 if (req->wb_page)
808 __set_page_dirty_nobuffers(req->wb_page);
809 }
810
811 /*
812 * nfs_page_search_commits_for_head_request_locked
813 *
814 * Search through commit lists on @inode for the head request for @page.
815 * Must be called while holding the inode (which is cinfo) lock.
816 *
817 * Returns the head request if found, or NULL if not found.
818 */
819 static struct nfs_page *
nfs_page_search_commits_for_head_request_locked(struct nfs_inode * nfsi,struct page * page)820 nfs_page_search_commits_for_head_request_locked(struct nfs_inode *nfsi,
821 struct page *page)
822 {
823 struct nfs_page *freq, *t;
824 struct nfs_commit_info cinfo;
825 struct inode *inode = &nfsi->vfs_inode;
826
827 nfs_init_cinfo_from_inode(&cinfo, inode);
828
829 /* search through pnfs commit lists */
830 freq = pnfs_search_commit_reqs(inode, &cinfo, page);
831 if (freq)
832 return freq->wb_head;
833
834 /* Linearly search the commit list for the correct request */
835 list_for_each_entry_safe(freq, t, &cinfo.mds->list, wb_list) {
836 if (freq->wb_page == page)
837 return freq->wb_head;
838 }
839
840 return NULL;
841 }
842
843 /**
844 * nfs_request_add_commit_list_locked - add request to a commit list
845 * @req: pointer to a struct nfs_page
846 * @dst: commit list head
847 * @cinfo: holds list lock and accounting info
848 *
849 * This sets the PG_CLEAN bit, updates the cinfo count of
850 * number of outstanding requests requiring a commit as well as
851 * the MM page stats.
852 *
853 * The caller must hold NFS_I(cinfo->inode)->commit_mutex, and the
854 * nfs_page lock.
855 */
856 void
nfs_request_add_commit_list_locked(struct nfs_page * req,struct list_head * dst,struct nfs_commit_info * cinfo)857 nfs_request_add_commit_list_locked(struct nfs_page *req, struct list_head *dst,
858 struct nfs_commit_info *cinfo)
859 {
860 set_bit(PG_CLEAN, &req->wb_flags);
861 nfs_list_add_request(req, dst);
862 atomic_long_inc(&cinfo->mds->ncommit);
863 }
864 EXPORT_SYMBOL_GPL(nfs_request_add_commit_list_locked);
865
866 /**
867 * nfs_request_add_commit_list - add request to a commit list
868 * @req: pointer to a struct nfs_page
869 * @dst: commit list head
870 * @cinfo: holds list lock and accounting info
871 *
872 * This sets the PG_CLEAN bit, updates the cinfo count of
873 * number of outstanding requests requiring a commit as well as
874 * the MM page stats.
875 *
876 * The caller must _not_ hold the cinfo->lock, but must be
877 * holding the nfs_page lock.
878 */
879 void
nfs_request_add_commit_list(struct nfs_page * req,struct nfs_commit_info * cinfo)880 nfs_request_add_commit_list(struct nfs_page *req, struct nfs_commit_info *cinfo)
881 {
882 mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
883 nfs_request_add_commit_list_locked(req, &cinfo->mds->list, cinfo);
884 mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
885 if (req->wb_page)
886 nfs_mark_page_unstable(req->wb_page, cinfo);
887 }
888 EXPORT_SYMBOL_GPL(nfs_request_add_commit_list);
889
890 /**
891 * nfs_request_remove_commit_list - Remove request from a commit list
892 * @req: pointer to a nfs_page
893 * @cinfo: holds list lock and accounting info
894 *
895 * This clears the PG_CLEAN bit, and updates the cinfo's count of
896 * number of outstanding requests requiring a commit
897 * It does not update the MM page stats.
898 *
899 * The caller _must_ hold the cinfo->lock and the nfs_page lock.
900 */
901 void
nfs_request_remove_commit_list(struct nfs_page * req,struct nfs_commit_info * cinfo)902 nfs_request_remove_commit_list(struct nfs_page *req,
903 struct nfs_commit_info *cinfo)
904 {
905 if (!test_and_clear_bit(PG_CLEAN, &(req)->wb_flags))
906 return;
907 nfs_list_remove_request(req);
908 atomic_long_dec(&cinfo->mds->ncommit);
909 }
910 EXPORT_SYMBOL_GPL(nfs_request_remove_commit_list);
911
nfs_init_cinfo_from_inode(struct nfs_commit_info * cinfo,struct inode * inode)912 static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo,
913 struct inode *inode)
914 {
915 cinfo->inode = inode;
916 cinfo->mds = &NFS_I(inode)->commit_info;
917 cinfo->ds = pnfs_get_ds_info(inode);
918 cinfo->dreq = NULL;
919 cinfo->completion_ops = &nfs_commit_completion_ops;
920 }
921
nfs_init_cinfo(struct nfs_commit_info * cinfo,struct inode * inode,struct nfs_direct_req * dreq)922 void nfs_init_cinfo(struct nfs_commit_info *cinfo,
923 struct inode *inode,
924 struct nfs_direct_req *dreq)
925 {
926 if (dreq)
927 nfs_init_cinfo_from_dreq(cinfo, dreq);
928 else
929 nfs_init_cinfo_from_inode(cinfo, inode);
930 }
931 EXPORT_SYMBOL_GPL(nfs_init_cinfo);
932
933 /*
934 * Add a request to the inode's commit list.
935 */
936 void
nfs_mark_request_commit(struct nfs_page * req,struct pnfs_layout_segment * lseg,struct nfs_commit_info * cinfo,u32 ds_commit_idx)937 nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg,
938 struct nfs_commit_info *cinfo, u32 ds_commit_idx)
939 {
940 if (pnfs_mark_request_commit(req, lseg, cinfo, ds_commit_idx))
941 return;
942 nfs_request_add_commit_list(req, cinfo);
943 }
944
945 static void
nfs_clear_page_commit(struct page * page)946 nfs_clear_page_commit(struct page *page)
947 {
948 dec_node_page_state(page, NR_UNSTABLE_NFS);
949 dec_wb_stat(&inode_to_bdi(page_file_mapping(page)->host)->wb,
950 WB_RECLAIMABLE);
951 }
952
953 /* Called holding the request lock on @req */
954 static void
nfs_clear_request_commit(struct nfs_page * req)955 nfs_clear_request_commit(struct nfs_page *req)
956 {
957 if (test_bit(PG_CLEAN, &req->wb_flags)) {
958 struct inode *inode = d_inode(req->wb_context->dentry);
959 struct nfs_commit_info cinfo;
960
961 nfs_init_cinfo_from_inode(&cinfo, inode);
962 mutex_lock(&NFS_I(inode)->commit_mutex);
963 if (!pnfs_clear_request_commit(req, &cinfo)) {
964 nfs_request_remove_commit_list(req, &cinfo);
965 }
966 mutex_unlock(&NFS_I(inode)->commit_mutex);
967 nfs_clear_page_commit(req->wb_page);
968 }
969 }
970
nfs_write_need_commit(struct nfs_pgio_header * hdr)971 int nfs_write_need_commit(struct nfs_pgio_header *hdr)
972 {
973 if (hdr->verf.committed == NFS_DATA_SYNC)
974 return hdr->lseg == NULL;
975 return hdr->verf.committed != NFS_FILE_SYNC;
976 }
977
nfs_async_write_init(struct nfs_pgio_header * hdr)978 static void nfs_async_write_init(struct nfs_pgio_header *hdr)
979 {
980 nfs_io_completion_get(hdr->io_completion);
981 }
982
nfs_write_completion(struct nfs_pgio_header * hdr)983 static void nfs_write_completion(struct nfs_pgio_header *hdr)
984 {
985 struct nfs_commit_info cinfo;
986 unsigned long bytes = 0;
987
988 if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
989 goto out;
990 nfs_init_cinfo_from_inode(&cinfo, hdr->inode);
991 while (!list_empty(&hdr->pages)) {
992 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
993
994 bytes += req->wb_bytes;
995 nfs_list_remove_request(req);
996 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) &&
997 (hdr->good_bytes < bytes)) {
998 nfs_set_pageerror(page_file_mapping(req->wb_page));
999 nfs_context_set_write_error(req->wb_context, hdr->error);
1000 goto remove_req;
1001 }
1002 if (nfs_write_need_commit(hdr)) {
1003 memcpy(&req->wb_verf, &hdr->verf.verifier, sizeof(req->wb_verf));
1004 nfs_mark_request_commit(req, hdr->lseg, &cinfo,
1005 hdr->pgio_mirror_idx);
1006 goto next;
1007 }
1008 remove_req:
1009 nfs_inode_remove_request(req);
1010 next:
1011 nfs_end_page_writeback(req);
1012 nfs_release_request(req);
1013 }
1014 out:
1015 nfs_io_completion_put(hdr->io_completion);
1016 hdr->release(hdr);
1017 }
1018
1019 unsigned long
nfs_reqs_to_commit(struct nfs_commit_info * cinfo)1020 nfs_reqs_to_commit(struct nfs_commit_info *cinfo)
1021 {
1022 return atomic_long_read(&cinfo->mds->ncommit);
1023 }
1024
1025 /* NFS_I(cinfo->inode)->commit_mutex held by caller */
1026 int
nfs_scan_commit_list(struct list_head * src,struct list_head * dst,struct nfs_commit_info * cinfo,int max)1027 nfs_scan_commit_list(struct list_head *src, struct list_head *dst,
1028 struct nfs_commit_info *cinfo, int max)
1029 {
1030 struct nfs_page *req, *tmp;
1031 int ret = 0;
1032
1033 restart:
1034 list_for_each_entry_safe(req, tmp, src, wb_list) {
1035 kref_get(&req->wb_kref);
1036 if (!nfs_lock_request(req)) {
1037 int status;
1038
1039 /* Prevent deadlock with nfs_lock_and_join_requests */
1040 if (!list_empty(dst)) {
1041 nfs_release_request(req);
1042 continue;
1043 }
1044 /* Ensure we make progress to prevent livelock */
1045 mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
1046 status = nfs_wait_on_request(req);
1047 nfs_release_request(req);
1048 mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
1049 if (status < 0)
1050 break;
1051 goto restart;
1052 }
1053 nfs_request_remove_commit_list(req, cinfo);
1054 clear_bit(PG_COMMIT_TO_DS, &req->wb_flags);
1055 nfs_list_add_request(req, dst);
1056 ret++;
1057 if ((ret == max) && !cinfo->dreq)
1058 break;
1059 cond_resched();
1060 }
1061 return ret;
1062 }
1063 EXPORT_SYMBOL_GPL(nfs_scan_commit_list);
1064
1065 /*
1066 * nfs_scan_commit - Scan an inode for commit requests
1067 * @inode: NFS inode to scan
1068 * @dst: mds destination list
1069 * @cinfo: mds and ds lists of reqs ready to commit
1070 *
1071 * Moves requests from the inode's 'commit' request list.
1072 * The requests are *not* checked to ensure that they form a contiguous set.
1073 */
1074 int
nfs_scan_commit(struct inode * inode,struct list_head * dst,struct nfs_commit_info * cinfo)1075 nfs_scan_commit(struct inode *inode, struct list_head *dst,
1076 struct nfs_commit_info *cinfo)
1077 {
1078 int ret = 0;
1079
1080 if (!atomic_long_read(&cinfo->mds->ncommit))
1081 return 0;
1082 mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
1083 if (atomic_long_read(&cinfo->mds->ncommit) > 0) {
1084 const int max = INT_MAX;
1085
1086 ret = nfs_scan_commit_list(&cinfo->mds->list, dst,
1087 cinfo, max);
1088 ret += pnfs_scan_commit_lists(inode, cinfo, max - ret);
1089 }
1090 mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
1091 return ret;
1092 }
1093
1094 /*
1095 * Search for an existing write request, and attempt to update
1096 * it to reflect a new dirty region on a given page.
1097 *
1098 * If the attempt fails, then the existing request is flushed out
1099 * to disk.
1100 */
nfs_try_to_update_request(struct inode * inode,struct page * page,unsigned int offset,unsigned int bytes)1101 static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
1102 struct page *page,
1103 unsigned int offset,
1104 unsigned int bytes)
1105 {
1106 struct nfs_page *req;
1107 unsigned int rqend;
1108 unsigned int end;
1109 int error;
1110
1111 end = offset + bytes;
1112
1113 req = nfs_lock_and_join_requests(page);
1114 if (IS_ERR_OR_NULL(req))
1115 return req;
1116
1117 rqend = req->wb_offset + req->wb_bytes;
1118 /*
1119 * Tell the caller to flush out the request if
1120 * the offsets are non-contiguous.
1121 * Note: nfs_flush_incompatible() will already
1122 * have flushed out requests having wrong owners.
1123 */
1124 if (offset > rqend || end < req->wb_offset)
1125 goto out_flushme;
1126
1127 /* Okay, the request matches. Update the region */
1128 if (offset < req->wb_offset) {
1129 req->wb_offset = offset;
1130 req->wb_pgbase = offset;
1131 }
1132 if (end > rqend)
1133 req->wb_bytes = end - req->wb_offset;
1134 else
1135 req->wb_bytes = rqend - req->wb_offset;
1136 return req;
1137 out_flushme:
1138 /*
1139 * Note: we mark the request dirty here because
1140 * nfs_lock_and_join_requests() cannot preserve
1141 * commit flags, so we have to replay the write.
1142 */
1143 nfs_mark_request_dirty(req);
1144 nfs_unlock_and_release_request(req);
1145 error = nfs_wb_page(inode, page);
1146 return (error < 0) ? ERR_PTR(error) : NULL;
1147 }
1148
1149 /*
1150 * Try to update an existing write request, or create one if there is none.
1151 *
1152 * Note: Should always be called with the Page Lock held to prevent races
1153 * if we have to add a new request. Also assumes that the caller has
1154 * already called nfs_flush_incompatible() if necessary.
1155 */
nfs_setup_write_request(struct nfs_open_context * ctx,struct page * page,unsigned int offset,unsigned int bytes)1156 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
1157 struct page *page, unsigned int offset, unsigned int bytes)
1158 {
1159 struct inode *inode = page_file_mapping(page)->host;
1160 struct nfs_page *req;
1161
1162 req = nfs_try_to_update_request(inode, page, offset, bytes);
1163 if (req != NULL)
1164 goto out;
1165 req = nfs_create_request(ctx, page, NULL, offset, bytes);
1166 if (IS_ERR(req))
1167 goto out;
1168 nfs_inode_add_request(inode, req);
1169 out:
1170 return req;
1171 }
1172
nfs_writepage_setup(struct nfs_open_context * ctx,struct page * page,unsigned int offset,unsigned int count)1173 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
1174 unsigned int offset, unsigned int count)
1175 {
1176 struct nfs_page *req;
1177
1178 req = nfs_setup_write_request(ctx, page, offset, count);
1179 if (IS_ERR(req))
1180 return PTR_ERR(req);
1181 /* Update file length */
1182 nfs_grow_file(page, offset, count);
1183 nfs_mark_uptodate(req);
1184 nfs_mark_request_dirty(req);
1185 nfs_unlock_and_release_request(req);
1186 return 0;
1187 }
1188
nfs_flush_incompatible(struct file * file,struct page * page)1189 int nfs_flush_incompatible(struct file *file, struct page *page)
1190 {
1191 struct nfs_open_context *ctx = nfs_file_open_context(file);
1192 struct nfs_lock_context *l_ctx;
1193 struct file_lock_context *flctx = file_inode(file)->i_flctx;
1194 struct nfs_page *req;
1195 int do_flush, status;
1196 /*
1197 * Look for a request corresponding to this page. If there
1198 * is one, and it belongs to another file, we flush it out
1199 * before we try to copy anything into the page. Do this
1200 * due to the lack of an ACCESS-type call in NFSv2.
1201 * Also do the same if we find a request from an existing
1202 * dropped page.
1203 */
1204 do {
1205 req = nfs_page_find_head_request(page);
1206 if (req == NULL)
1207 return 0;
1208 l_ctx = req->wb_lock_context;
1209 do_flush = req->wb_page != page ||
1210 !nfs_match_open_context(req->wb_context, ctx);
1211 if (l_ctx && flctx &&
1212 !(list_empty_careful(&flctx->flc_posix) &&
1213 list_empty_careful(&flctx->flc_flock))) {
1214 do_flush |= l_ctx->lockowner != current->files;
1215 }
1216 nfs_release_request(req);
1217 if (!do_flush)
1218 return 0;
1219 status = nfs_wb_page(page_file_mapping(page)->host, page);
1220 } while (status == 0);
1221 return status;
1222 }
1223
1224 /*
1225 * Avoid buffered writes when a open context credential's key would
1226 * expire soon.
1227 *
1228 * Returns -EACCES if the key will expire within RPC_KEY_EXPIRE_FAIL.
1229 *
1230 * Return 0 and set a credential flag which triggers the inode to flush
1231 * and performs NFS_FILE_SYNC writes if the key will expired within
1232 * RPC_KEY_EXPIRE_TIMEO.
1233 */
1234 int
nfs_key_timeout_notify(struct file * filp,struct inode * inode)1235 nfs_key_timeout_notify(struct file *filp, struct inode *inode)
1236 {
1237 struct nfs_open_context *ctx = nfs_file_open_context(filp);
1238 struct rpc_auth *auth = NFS_SERVER(inode)->client->cl_auth;
1239
1240 return rpcauth_key_timeout_notify(auth, ctx->cred);
1241 }
1242
1243 /*
1244 * Test if the open context credential key is marked to expire soon.
1245 */
nfs_ctx_key_to_expire(struct nfs_open_context * ctx,struct inode * inode)1246 bool nfs_ctx_key_to_expire(struct nfs_open_context *ctx, struct inode *inode)
1247 {
1248 struct rpc_auth *auth = NFS_SERVER(inode)->client->cl_auth;
1249
1250 return rpcauth_cred_key_to_expire(auth, ctx->cred);
1251 }
1252
1253 /*
1254 * If the page cache is marked as unsafe or invalid, then we can't rely on
1255 * the PageUptodate() flag. In this case, we will need to turn off
1256 * write optimisations that depend on the page contents being correct.
1257 */
nfs_write_pageuptodate(struct page * page,struct inode * inode)1258 static bool nfs_write_pageuptodate(struct page *page, struct inode *inode)
1259 {
1260 struct nfs_inode *nfsi = NFS_I(inode);
1261
1262 if (nfs_have_delegated_attributes(inode))
1263 goto out;
1264 if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
1265 return false;
1266 smp_rmb();
1267 if (test_bit(NFS_INO_INVALIDATING, &nfsi->flags))
1268 return false;
1269 out:
1270 if (nfsi->cache_validity & NFS_INO_INVALID_DATA)
1271 return false;
1272 return PageUptodate(page) != 0;
1273 }
1274
1275 static bool
is_whole_file_wrlock(struct file_lock * fl)1276 is_whole_file_wrlock(struct file_lock *fl)
1277 {
1278 return fl->fl_start == 0 && fl->fl_end == OFFSET_MAX &&
1279 fl->fl_type == F_WRLCK;
1280 }
1281
1282 /* If we know the page is up to date, and we're not using byte range locks (or
1283 * if we have the whole file locked for writing), it may be more efficient to
1284 * extend the write to cover the entire page in order to avoid fragmentation
1285 * inefficiencies.
1286 *
1287 * If the file is opened for synchronous writes then we can just skip the rest
1288 * of the checks.
1289 */
nfs_can_extend_write(struct file * file,struct page * page,struct inode * inode)1290 static int nfs_can_extend_write(struct file *file, struct page *page, struct inode *inode)
1291 {
1292 int ret;
1293 struct file_lock_context *flctx = inode->i_flctx;
1294 struct file_lock *fl;
1295
1296 if (file->f_flags & O_DSYNC)
1297 return 0;
1298 if (!nfs_write_pageuptodate(page, inode))
1299 return 0;
1300 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE))
1301 return 1;
1302 if (!flctx || (list_empty_careful(&flctx->flc_flock) &&
1303 list_empty_careful(&flctx->flc_posix)))
1304 return 1;
1305
1306 /* Check to see if there are whole file write locks */
1307 ret = 0;
1308 spin_lock(&flctx->flc_lock);
1309 if (!list_empty(&flctx->flc_posix)) {
1310 fl = list_first_entry(&flctx->flc_posix, struct file_lock,
1311 fl_list);
1312 if (is_whole_file_wrlock(fl))
1313 ret = 1;
1314 } else if (!list_empty(&flctx->flc_flock)) {
1315 fl = list_first_entry(&flctx->flc_flock, struct file_lock,
1316 fl_list);
1317 if (fl->fl_type == F_WRLCK)
1318 ret = 1;
1319 }
1320 spin_unlock(&flctx->flc_lock);
1321 return ret;
1322 }
1323
1324 /*
1325 * Update and possibly write a cached page of an NFS file.
1326 *
1327 * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
1328 * things with a page scheduled for an RPC call (e.g. invalidate it).
1329 */
nfs_updatepage(struct file * file,struct page * page,unsigned int offset,unsigned int count)1330 int nfs_updatepage(struct file *file, struct page *page,
1331 unsigned int offset, unsigned int count)
1332 {
1333 struct nfs_open_context *ctx = nfs_file_open_context(file);
1334 struct address_space *mapping = page_file_mapping(page);
1335 struct inode *inode = mapping->host;
1336 int status = 0;
1337
1338 nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
1339
1340 dprintk("NFS: nfs_updatepage(%pD2 %d@%lld)\n",
1341 file, count, (long long)(page_file_offset(page) + offset));
1342
1343 if (!count)
1344 goto out;
1345
1346 if (nfs_can_extend_write(file, page, inode)) {
1347 count = max(count + offset, nfs_page_length(page));
1348 offset = 0;
1349 }
1350
1351 status = nfs_writepage_setup(ctx, page, offset, count);
1352 if (status < 0)
1353 nfs_set_pageerror(mapping);
1354 else
1355 __set_page_dirty_nobuffers(page);
1356 out:
1357 dprintk("NFS: nfs_updatepage returns %d (isize %lld)\n",
1358 status, (long long)i_size_read(inode));
1359 return status;
1360 }
1361
flush_task_priority(int how)1362 static int flush_task_priority(int how)
1363 {
1364 switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
1365 case FLUSH_HIGHPRI:
1366 return RPC_PRIORITY_HIGH;
1367 case FLUSH_LOWPRI:
1368 return RPC_PRIORITY_LOW;
1369 }
1370 return RPC_PRIORITY_NORMAL;
1371 }
1372
nfs_initiate_write(struct nfs_pgio_header * hdr,struct rpc_message * msg,const struct nfs_rpc_ops * rpc_ops,struct rpc_task_setup * task_setup_data,int how)1373 static void nfs_initiate_write(struct nfs_pgio_header *hdr,
1374 struct rpc_message *msg,
1375 const struct nfs_rpc_ops *rpc_ops,
1376 struct rpc_task_setup *task_setup_data, int how)
1377 {
1378 int priority = flush_task_priority(how);
1379
1380 task_setup_data->priority = priority;
1381 rpc_ops->write_setup(hdr, msg);
1382 trace_nfs_initiate_write(hdr->inode, hdr->io_start, hdr->good_bytes,
1383 hdr->args.stable);
1384
1385 nfs4_state_protect_write(NFS_SERVER(hdr->inode)->nfs_client,
1386 &task_setup_data->rpc_client, msg, hdr);
1387 }
1388
1389 /* If a nfs_flush_* function fails, it should remove reqs from @head and
1390 * call this on each, which will prepare them to be retried on next
1391 * writeback using standard nfs.
1392 */
nfs_redirty_request(struct nfs_page * req)1393 static void nfs_redirty_request(struct nfs_page *req)
1394 {
1395 nfs_mark_request_dirty(req);
1396 set_bit(NFS_CONTEXT_RESEND_WRITES, &req->wb_context->flags);
1397 nfs_end_page_writeback(req);
1398 nfs_release_request(req);
1399 }
1400
nfs_async_write_error(struct list_head * head,int error)1401 static void nfs_async_write_error(struct list_head *head, int error)
1402 {
1403 struct nfs_page *req;
1404
1405 while (!list_empty(head)) {
1406 req = nfs_list_entry(head->next);
1407 nfs_list_remove_request(req);
1408 if (nfs_error_is_fatal(error)) {
1409 nfs_context_set_write_error(req->wb_context, error);
1410 if (nfs_error_is_fatal_on_server(error)) {
1411 nfs_write_error_remove_page(req);
1412 continue;
1413 }
1414 }
1415 nfs_redirty_request(req);
1416 }
1417 }
1418
nfs_async_write_reschedule_io(struct nfs_pgio_header * hdr)1419 static void nfs_async_write_reschedule_io(struct nfs_pgio_header *hdr)
1420 {
1421 nfs_async_write_error(&hdr->pages, 0);
1422 }
1423
1424 static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops = {
1425 .init_hdr = nfs_async_write_init,
1426 .error_cleanup = nfs_async_write_error,
1427 .completion = nfs_write_completion,
1428 .reschedule_io = nfs_async_write_reschedule_io,
1429 };
1430
nfs_pageio_init_write(struct nfs_pageio_descriptor * pgio,struct inode * inode,int ioflags,bool force_mds,const struct nfs_pgio_completion_ops * compl_ops)1431 void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
1432 struct inode *inode, int ioflags, bool force_mds,
1433 const struct nfs_pgio_completion_ops *compl_ops)
1434 {
1435 struct nfs_server *server = NFS_SERVER(inode);
1436 const struct nfs_pageio_ops *pg_ops = &nfs_pgio_rw_ops;
1437
1438 #ifdef CONFIG_NFS_V4_1
1439 if (server->pnfs_curr_ld && !force_mds)
1440 pg_ops = server->pnfs_curr_ld->pg_write_ops;
1441 #endif
1442 nfs_pageio_init(pgio, inode, pg_ops, compl_ops, &nfs_rw_write_ops,
1443 server->wsize, ioflags);
1444 }
1445 EXPORT_SYMBOL_GPL(nfs_pageio_init_write);
1446
nfs_pageio_reset_write_mds(struct nfs_pageio_descriptor * pgio)1447 void nfs_pageio_reset_write_mds(struct nfs_pageio_descriptor *pgio)
1448 {
1449 struct nfs_pgio_mirror *mirror;
1450
1451 if (pgio->pg_ops && pgio->pg_ops->pg_cleanup)
1452 pgio->pg_ops->pg_cleanup(pgio);
1453
1454 pgio->pg_ops = &nfs_pgio_rw_ops;
1455
1456 nfs_pageio_stop_mirroring(pgio);
1457
1458 mirror = &pgio->pg_mirrors[0];
1459 mirror->pg_bsize = NFS_SERVER(pgio->pg_inode)->wsize;
1460 }
1461 EXPORT_SYMBOL_GPL(nfs_pageio_reset_write_mds);
1462
1463
nfs_commit_prepare(struct rpc_task * task,void * calldata)1464 void nfs_commit_prepare(struct rpc_task *task, void *calldata)
1465 {
1466 struct nfs_commit_data *data = calldata;
1467
1468 NFS_PROTO(data->inode)->commit_rpc_prepare(task, data);
1469 }
1470
1471 /*
1472 * Special version of should_remove_suid() that ignores capabilities.
1473 */
nfs_should_remove_suid(const struct inode * inode)1474 static int nfs_should_remove_suid(const struct inode *inode)
1475 {
1476 umode_t mode = inode->i_mode;
1477 int kill = 0;
1478
1479 /* suid always must be killed */
1480 if (unlikely(mode & S_ISUID))
1481 kill = ATTR_KILL_SUID;
1482
1483 /*
1484 * sgid without any exec bits is just a mandatory locking mark; leave
1485 * it alone. If some exec bits are set, it's a real sgid; kill it.
1486 */
1487 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1488 kill |= ATTR_KILL_SGID;
1489
1490 if (unlikely(kill && S_ISREG(mode)))
1491 return kill;
1492
1493 return 0;
1494 }
1495
nfs_writeback_check_extend(struct nfs_pgio_header * hdr,struct nfs_fattr * fattr)1496 static void nfs_writeback_check_extend(struct nfs_pgio_header *hdr,
1497 struct nfs_fattr *fattr)
1498 {
1499 struct nfs_pgio_args *argp = &hdr->args;
1500 struct nfs_pgio_res *resp = &hdr->res;
1501 u64 size = argp->offset + resp->count;
1502
1503 if (!(fattr->valid & NFS_ATTR_FATTR_SIZE))
1504 fattr->size = size;
1505 if (nfs_size_to_loff_t(fattr->size) < i_size_read(hdr->inode)) {
1506 fattr->valid &= ~NFS_ATTR_FATTR_SIZE;
1507 return;
1508 }
1509 if (size != fattr->size)
1510 return;
1511 /* Set attribute barrier */
1512 nfs_fattr_set_barrier(fattr);
1513 /* ...and update size */
1514 fattr->valid |= NFS_ATTR_FATTR_SIZE;
1515 }
1516
nfs_writeback_update_inode(struct nfs_pgio_header * hdr)1517 void nfs_writeback_update_inode(struct nfs_pgio_header *hdr)
1518 {
1519 struct nfs_fattr *fattr = &hdr->fattr;
1520 struct inode *inode = hdr->inode;
1521
1522 spin_lock(&inode->i_lock);
1523 nfs_writeback_check_extend(hdr, fattr);
1524 nfs_post_op_update_inode_force_wcc_locked(inode, fattr);
1525 spin_unlock(&inode->i_lock);
1526 }
1527 EXPORT_SYMBOL_GPL(nfs_writeback_update_inode);
1528
1529 /*
1530 * This function is called when the WRITE call is complete.
1531 */
nfs_writeback_done(struct rpc_task * task,struct nfs_pgio_header * hdr,struct inode * inode)1532 static int nfs_writeback_done(struct rpc_task *task,
1533 struct nfs_pgio_header *hdr,
1534 struct inode *inode)
1535 {
1536 int status;
1537
1538 /*
1539 * ->write_done will attempt to use post-op attributes to detect
1540 * conflicting writes by other clients. A strict interpretation
1541 * of close-to-open would allow us to continue caching even if
1542 * another writer had changed the file, but some applications
1543 * depend on tighter cache coherency when writing.
1544 */
1545 status = NFS_PROTO(inode)->write_done(task, hdr);
1546 if (status != 0)
1547 return status;
1548
1549 nfs_add_stats(inode, NFSIOS_SERVERWRITTENBYTES, hdr->res.count);
1550 trace_nfs_writeback_done(inode, task->tk_status,
1551 hdr->args.offset, hdr->res.verf);
1552
1553 if (hdr->res.verf->committed < hdr->args.stable &&
1554 task->tk_status >= 0) {
1555 /* We tried a write call, but the server did not
1556 * commit data to stable storage even though we
1557 * requested it.
1558 * Note: There is a known bug in Tru64 < 5.0 in which
1559 * the server reports NFS_DATA_SYNC, but performs
1560 * NFS_FILE_SYNC. We therefore implement this checking
1561 * as a dprintk() in order to avoid filling syslog.
1562 */
1563 static unsigned long complain;
1564
1565 /* Note this will print the MDS for a DS write */
1566 if (time_before(complain, jiffies)) {
1567 dprintk("NFS: faulty NFS server %s:"
1568 " (committed = %d) != (stable = %d)\n",
1569 NFS_SERVER(inode)->nfs_client->cl_hostname,
1570 hdr->res.verf->committed, hdr->args.stable);
1571 complain = jiffies + 300 * HZ;
1572 }
1573 }
1574
1575 /* Deal with the suid/sgid bit corner case */
1576 if (nfs_should_remove_suid(inode))
1577 nfs_mark_for_revalidate(inode);
1578 return 0;
1579 }
1580
1581 /*
1582 * This function is called when the WRITE call is complete.
1583 */
nfs_writeback_result(struct rpc_task * task,struct nfs_pgio_header * hdr)1584 static void nfs_writeback_result(struct rpc_task *task,
1585 struct nfs_pgio_header *hdr)
1586 {
1587 struct nfs_pgio_args *argp = &hdr->args;
1588 struct nfs_pgio_res *resp = &hdr->res;
1589
1590 if (resp->count < argp->count) {
1591 static unsigned long complain;
1592
1593 /* This a short write! */
1594 nfs_inc_stats(hdr->inode, NFSIOS_SHORTWRITE);
1595
1596 /* Has the server at least made some progress? */
1597 if (resp->count == 0) {
1598 if (time_before(complain, jiffies)) {
1599 printk(KERN_WARNING
1600 "NFS: Server wrote zero bytes, expected %u.\n",
1601 argp->count);
1602 complain = jiffies + 300 * HZ;
1603 }
1604 nfs_set_pgio_error(hdr, -EIO, argp->offset);
1605 task->tk_status = -EIO;
1606 return;
1607 }
1608
1609 /* For non rpc-based layout drivers, retry-through-MDS */
1610 if (!task->tk_ops) {
1611 hdr->pnfs_error = -EAGAIN;
1612 return;
1613 }
1614
1615 /* Was this an NFSv2 write or an NFSv3 stable write? */
1616 if (resp->verf->committed != NFS_UNSTABLE) {
1617 /* Resend from where the server left off */
1618 hdr->mds_offset += resp->count;
1619 argp->offset += resp->count;
1620 argp->pgbase += resp->count;
1621 argp->count -= resp->count;
1622 } else {
1623 /* Resend as a stable write in order to avoid
1624 * headaches in the case of a server crash.
1625 */
1626 argp->stable = NFS_FILE_SYNC;
1627 }
1628 rpc_restart_call_prepare(task);
1629 }
1630 }
1631
wait_on_commit(struct nfs_mds_commit_info * cinfo)1632 static int wait_on_commit(struct nfs_mds_commit_info *cinfo)
1633 {
1634 return wait_on_atomic_t(&cinfo->rpcs_out,
1635 nfs_wait_atomic_killable, TASK_KILLABLE);
1636 }
1637
nfs_commit_begin(struct nfs_mds_commit_info * cinfo)1638 static void nfs_commit_begin(struct nfs_mds_commit_info *cinfo)
1639 {
1640 atomic_inc(&cinfo->rpcs_out);
1641 }
1642
nfs_commit_end(struct nfs_mds_commit_info * cinfo)1643 static void nfs_commit_end(struct nfs_mds_commit_info *cinfo)
1644 {
1645 if (atomic_dec_and_test(&cinfo->rpcs_out))
1646 wake_up_atomic_t(&cinfo->rpcs_out);
1647 }
1648
nfs_commitdata_release(struct nfs_commit_data * data)1649 void nfs_commitdata_release(struct nfs_commit_data *data)
1650 {
1651 put_nfs_open_context(data->context);
1652 nfs_commit_free(data);
1653 }
1654 EXPORT_SYMBOL_GPL(nfs_commitdata_release);
1655
nfs_initiate_commit(struct rpc_clnt * clnt,struct nfs_commit_data * data,const struct nfs_rpc_ops * nfs_ops,const struct rpc_call_ops * call_ops,int how,int flags)1656 int nfs_initiate_commit(struct rpc_clnt *clnt, struct nfs_commit_data *data,
1657 const struct nfs_rpc_ops *nfs_ops,
1658 const struct rpc_call_ops *call_ops,
1659 int how, int flags)
1660 {
1661 struct rpc_task *task;
1662 int priority = flush_task_priority(how);
1663 struct rpc_message msg = {
1664 .rpc_argp = &data->args,
1665 .rpc_resp = &data->res,
1666 .rpc_cred = data->cred,
1667 };
1668 struct rpc_task_setup task_setup_data = {
1669 .task = &data->task,
1670 .rpc_client = clnt,
1671 .rpc_message = &msg,
1672 .callback_ops = call_ops,
1673 .callback_data = data,
1674 .workqueue = nfsiod_workqueue,
1675 .flags = RPC_TASK_ASYNC | flags,
1676 .priority = priority,
1677 };
1678 /* Set up the initial task struct. */
1679 nfs_ops->commit_setup(data, &msg);
1680 trace_nfs_initiate_commit(data);
1681
1682 dprintk("NFS: initiated commit call\n");
1683
1684 nfs4_state_protect(NFS_SERVER(data->inode)->nfs_client,
1685 NFS_SP4_MACH_CRED_COMMIT, &task_setup_data.rpc_client, &msg);
1686
1687 task = rpc_run_task(&task_setup_data);
1688 if (IS_ERR(task))
1689 return PTR_ERR(task);
1690 if (how & FLUSH_SYNC)
1691 rpc_wait_for_completion_task(task);
1692 rpc_put_task(task);
1693 return 0;
1694 }
1695 EXPORT_SYMBOL_GPL(nfs_initiate_commit);
1696
nfs_get_lwb(struct list_head * head)1697 static loff_t nfs_get_lwb(struct list_head *head)
1698 {
1699 loff_t lwb = 0;
1700 struct nfs_page *req;
1701
1702 list_for_each_entry(req, head, wb_list)
1703 if (lwb < (req_offset(req) + req->wb_bytes))
1704 lwb = req_offset(req) + req->wb_bytes;
1705
1706 return lwb;
1707 }
1708
1709 /*
1710 * Set up the argument/result storage required for the RPC call.
1711 */
nfs_init_commit(struct nfs_commit_data * data,struct list_head * head,struct pnfs_layout_segment * lseg,struct nfs_commit_info * cinfo)1712 void nfs_init_commit(struct nfs_commit_data *data,
1713 struct list_head *head,
1714 struct pnfs_layout_segment *lseg,
1715 struct nfs_commit_info *cinfo)
1716 {
1717 struct nfs_page *first = nfs_list_entry(head->next);
1718 struct inode *inode = d_inode(first->wb_context->dentry);
1719
1720 /* Set up the RPC argument and reply structs
1721 * NB: take care not to mess about with data->commit et al. */
1722
1723 list_splice_init(head, &data->pages);
1724
1725 data->inode = inode;
1726 data->cred = first->wb_context->cred;
1727 data->lseg = lseg; /* reference transferred */
1728 /* only set lwb for pnfs commit */
1729 if (lseg)
1730 data->lwb = nfs_get_lwb(&data->pages);
1731 data->mds_ops = &nfs_commit_ops;
1732 data->completion_ops = cinfo->completion_ops;
1733 data->dreq = cinfo->dreq;
1734
1735 data->args.fh = NFS_FH(data->inode);
1736 /* Note: we always request a commit of the entire inode */
1737 data->args.offset = 0;
1738 data->args.count = 0;
1739 data->context = get_nfs_open_context(first->wb_context);
1740 data->res.fattr = &data->fattr;
1741 data->res.verf = &data->verf;
1742 nfs_fattr_init(&data->fattr);
1743 }
1744 EXPORT_SYMBOL_GPL(nfs_init_commit);
1745
nfs_retry_commit(struct list_head * page_list,struct pnfs_layout_segment * lseg,struct nfs_commit_info * cinfo,u32 ds_commit_idx)1746 void nfs_retry_commit(struct list_head *page_list,
1747 struct pnfs_layout_segment *lseg,
1748 struct nfs_commit_info *cinfo,
1749 u32 ds_commit_idx)
1750 {
1751 struct nfs_page *req;
1752
1753 while (!list_empty(page_list)) {
1754 req = nfs_list_entry(page_list->next);
1755 nfs_list_remove_request(req);
1756 nfs_mark_request_commit(req, lseg, cinfo, ds_commit_idx);
1757 if (!cinfo->dreq)
1758 nfs_clear_page_commit(req->wb_page);
1759 nfs_unlock_and_release_request(req);
1760 }
1761 }
1762 EXPORT_SYMBOL_GPL(nfs_retry_commit);
1763
1764 static void
nfs_commit_resched_write(struct nfs_commit_info * cinfo,struct nfs_page * req)1765 nfs_commit_resched_write(struct nfs_commit_info *cinfo,
1766 struct nfs_page *req)
1767 {
1768 __set_page_dirty_nobuffers(req->wb_page);
1769 }
1770
1771 /*
1772 * Commit dirty pages
1773 */
1774 static int
nfs_commit_list(struct inode * inode,struct list_head * head,int how,struct nfs_commit_info * cinfo)1775 nfs_commit_list(struct inode *inode, struct list_head *head, int how,
1776 struct nfs_commit_info *cinfo)
1777 {
1778 struct nfs_commit_data *data;
1779
1780 /* another commit raced with us */
1781 if (list_empty(head))
1782 return 0;
1783
1784 data = nfs_commitdata_alloc(true);
1785
1786 /* Set up the argument struct */
1787 nfs_init_commit(data, head, NULL, cinfo);
1788 atomic_inc(&cinfo->mds->rpcs_out);
1789 return nfs_initiate_commit(NFS_CLIENT(inode), data, NFS_PROTO(inode),
1790 data->mds_ops, how, 0);
1791 }
1792
1793 /*
1794 * COMMIT call returned
1795 */
nfs_commit_done(struct rpc_task * task,void * calldata)1796 static void nfs_commit_done(struct rpc_task *task, void *calldata)
1797 {
1798 struct nfs_commit_data *data = calldata;
1799
1800 dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1801 task->tk_pid, task->tk_status);
1802
1803 /* Call the NFS version-specific code */
1804 NFS_PROTO(data->inode)->commit_done(task, data);
1805 trace_nfs_commit_done(data);
1806 }
1807
nfs_commit_release_pages(struct nfs_commit_data * data)1808 static void nfs_commit_release_pages(struct nfs_commit_data *data)
1809 {
1810 const struct nfs_writeverf *verf = data->res.verf;
1811 struct nfs_page *req;
1812 int status = data->task.tk_status;
1813 struct nfs_commit_info cinfo;
1814 struct nfs_server *nfss;
1815
1816 while (!list_empty(&data->pages)) {
1817 req = nfs_list_entry(data->pages.next);
1818 nfs_list_remove_request(req);
1819 if (req->wb_page)
1820 nfs_clear_page_commit(req->wb_page);
1821
1822 dprintk("NFS: commit (%s/%llu %d@%lld)",
1823 req->wb_context->dentry->d_sb->s_id,
1824 (unsigned long long)NFS_FILEID(d_inode(req->wb_context->dentry)),
1825 req->wb_bytes,
1826 (long long)req_offset(req));
1827 if (status < 0) {
1828 nfs_context_set_write_error(req->wb_context, status);
1829 if (req->wb_page)
1830 nfs_inode_remove_request(req);
1831 dprintk_cont(", error = %d\n", status);
1832 goto next;
1833 }
1834
1835 /* Okay, COMMIT succeeded, apparently. Check the verifier
1836 * returned by the server against all stored verfs. */
1837 if (verf->committed > NFS_UNSTABLE &&
1838 !nfs_write_verifier_cmp(&req->wb_verf, &verf->verifier)) {
1839 /* We have a match */
1840 if (req->wb_page)
1841 nfs_inode_remove_request(req);
1842 dprintk_cont(" OK\n");
1843 goto next;
1844 }
1845 /* We have a mismatch. Write the page again */
1846 dprintk_cont(" mismatch\n");
1847 nfs_mark_request_dirty(req);
1848 set_bit(NFS_CONTEXT_RESEND_WRITES, &req->wb_context->flags);
1849 next:
1850 nfs_unlock_and_release_request(req);
1851 /* Latency breaker */
1852 cond_resched();
1853 }
1854 nfss = NFS_SERVER(data->inode);
1855 if (atomic_long_read(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
1856 clear_bdi_congested(inode_to_bdi(data->inode), BLK_RW_ASYNC);
1857
1858 nfs_init_cinfo(&cinfo, data->inode, data->dreq);
1859 nfs_commit_end(cinfo.mds);
1860 }
1861
nfs_commit_release(void * calldata)1862 static void nfs_commit_release(void *calldata)
1863 {
1864 struct nfs_commit_data *data = calldata;
1865
1866 data->completion_ops->completion(data);
1867 nfs_commitdata_release(calldata);
1868 }
1869
1870 static const struct rpc_call_ops nfs_commit_ops = {
1871 .rpc_call_prepare = nfs_commit_prepare,
1872 .rpc_call_done = nfs_commit_done,
1873 .rpc_release = nfs_commit_release,
1874 };
1875
1876 static const struct nfs_commit_completion_ops nfs_commit_completion_ops = {
1877 .completion = nfs_commit_release_pages,
1878 .resched_write = nfs_commit_resched_write,
1879 };
1880
nfs_generic_commit_list(struct inode * inode,struct list_head * head,int how,struct nfs_commit_info * cinfo)1881 int nfs_generic_commit_list(struct inode *inode, struct list_head *head,
1882 int how, struct nfs_commit_info *cinfo)
1883 {
1884 int status;
1885
1886 status = pnfs_commit_list(inode, head, how, cinfo);
1887 if (status == PNFS_NOT_ATTEMPTED)
1888 status = nfs_commit_list(inode, head, how, cinfo);
1889 return status;
1890 }
1891
__nfs_commit_inode(struct inode * inode,int how,struct writeback_control * wbc)1892 static int __nfs_commit_inode(struct inode *inode, int how,
1893 struct writeback_control *wbc)
1894 {
1895 LIST_HEAD(head);
1896 struct nfs_commit_info cinfo;
1897 int may_wait = how & FLUSH_SYNC;
1898 int ret, nscan;
1899
1900 nfs_init_cinfo_from_inode(&cinfo, inode);
1901 nfs_commit_begin(cinfo.mds);
1902 for (;;) {
1903 ret = nscan = nfs_scan_commit(inode, &head, &cinfo);
1904 if (ret <= 0)
1905 break;
1906 ret = nfs_generic_commit_list(inode, &head, how, &cinfo);
1907 if (ret < 0)
1908 break;
1909 ret = 0;
1910 if (wbc && wbc->sync_mode == WB_SYNC_NONE) {
1911 if (nscan < wbc->nr_to_write)
1912 wbc->nr_to_write -= nscan;
1913 else
1914 wbc->nr_to_write = 0;
1915 }
1916 if (nscan < INT_MAX)
1917 break;
1918 cond_resched();
1919 }
1920 nfs_commit_end(cinfo.mds);
1921 if (ret || !may_wait)
1922 return ret;
1923 return wait_on_commit(cinfo.mds);
1924 }
1925
nfs_commit_inode(struct inode * inode,int how)1926 int nfs_commit_inode(struct inode *inode, int how)
1927 {
1928 return __nfs_commit_inode(inode, how, NULL);
1929 }
1930 EXPORT_SYMBOL_GPL(nfs_commit_inode);
1931
nfs_write_inode(struct inode * inode,struct writeback_control * wbc)1932 int nfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1933 {
1934 struct nfs_inode *nfsi = NFS_I(inode);
1935 int flags = FLUSH_SYNC;
1936 int ret = 0;
1937
1938 if (wbc->sync_mode == WB_SYNC_NONE) {
1939 /* no commits means nothing needs to be done */
1940 if (!atomic_long_read(&nfsi->commit_info.ncommit))
1941 goto check_requests_outstanding;
1942
1943 /* Don't commit yet if this is a non-blocking flush and there
1944 * are a lot of outstanding writes for this mapping.
1945 */
1946 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))
1947 goto out_mark_dirty;
1948
1949 /* don't wait for the COMMIT response */
1950 flags = 0;
1951 }
1952
1953 ret = __nfs_commit_inode(inode, flags, wbc);
1954 if (!ret) {
1955 if (flags & FLUSH_SYNC)
1956 return 0;
1957 } else if (atomic_long_read(&nfsi->commit_info.ncommit))
1958 goto out_mark_dirty;
1959
1960 check_requests_outstanding:
1961 if (!atomic_read(&nfsi->commit_info.rpcs_out))
1962 return ret;
1963 out_mark_dirty:
1964 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1965 return ret;
1966 }
1967 EXPORT_SYMBOL_GPL(nfs_write_inode);
1968
1969 /*
1970 * Wrapper for filemap_write_and_wait_range()
1971 *
1972 * Needed for pNFS in order to ensure data becomes visible to the
1973 * client.
1974 */
nfs_filemap_write_and_wait_range(struct address_space * mapping,loff_t lstart,loff_t lend)1975 int nfs_filemap_write_and_wait_range(struct address_space *mapping,
1976 loff_t lstart, loff_t lend)
1977 {
1978 int ret;
1979
1980 ret = filemap_write_and_wait_range(mapping, lstart, lend);
1981 if (ret == 0)
1982 ret = pnfs_sync_inode(mapping->host, true);
1983 return ret;
1984 }
1985 EXPORT_SYMBOL_GPL(nfs_filemap_write_and_wait_range);
1986
1987 /*
1988 * flush the inode to disk.
1989 */
nfs_wb_all(struct inode * inode)1990 int nfs_wb_all(struct inode *inode)
1991 {
1992 int ret;
1993
1994 trace_nfs_writeback_inode_enter(inode);
1995
1996 ret = filemap_write_and_wait(inode->i_mapping);
1997 if (ret)
1998 goto out;
1999 ret = nfs_commit_inode(inode, FLUSH_SYNC);
2000 if (ret < 0)
2001 goto out;
2002 pnfs_sync_inode(inode, true);
2003 ret = 0;
2004
2005 out:
2006 trace_nfs_writeback_inode_exit(inode, ret);
2007 return ret;
2008 }
2009 EXPORT_SYMBOL_GPL(nfs_wb_all);
2010
nfs_wb_page_cancel(struct inode * inode,struct page * page)2011 int nfs_wb_page_cancel(struct inode *inode, struct page *page)
2012 {
2013 struct nfs_page *req;
2014 int ret = 0;
2015
2016 wait_on_page_writeback(page);
2017
2018 /* blocking call to cancel all requests and join to a single (head)
2019 * request */
2020 req = nfs_lock_and_join_requests(page);
2021
2022 if (IS_ERR(req)) {
2023 ret = PTR_ERR(req);
2024 } else if (req) {
2025 /* all requests from this page have been cancelled by
2026 * nfs_lock_and_join_requests, so just remove the head
2027 * request from the inode / page_private pointer and
2028 * release it */
2029 nfs_inode_remove_request(req);
2030 nfs_unlock_and_release_request(req);
2031 }
2032
2033 return ret;
2034 }
2035
2036 /*
2037 * Write back all requests on one page - we do this before reading it.
2038 */
nfs_wb_page(struct inode * inode,struct page * page)2039 int nfs_wb_page(struct inode *inode, struct page *page)
2040 {
2041 loff_t range_start = page_file_offset(page);
2042 loff_t range_end = range_start + (loff_t)(PAGE_SIZE - 1);
2043 struct writeback_control wbc = {
2044 .sync_mode = WB_SYNC_ALL,
2045 .nr_to_write = 0,
2046 .range_start = range_start,
2047 .range_end = range_end,
2048 };
2049 int ret;
2050
2051 trace_nfs_writeback_page_enter(inode);
2052
2053 for (;;) {
2054 wait_on_page_writeback(page);
2055 if (clear_page_dirty_for_io(page)) {
2056 ret = nfs_writepage_locked(page, &wbc);
2057 if (ret < 0)
2058 goto out_error;
2059 continue;
2060 }
2061 ret = 0;
2062 if (!PagePrivate(page))
2063 break;
2064 ret = nfs_commit_inode(inode, FLUSH_SYNC);
2065 if (ret < 0)
2066 goto out_error;
2067 }
2068 out_error:
2069 trace_nfs_writeback_page_exit(inode, ret);
2070 return ret;
2071 }
2072
2073 #ifdef CONFIG_MIGRATION
nfs_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)2074 int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
2075 struct page *page, enum migrate_mode mode)
2076 {
2077 /*
2078 * If PagePrivate is set, then the page is currently associated with
2079 * an in-progress read or write request. Don't try to migrate it.
2080 *
2081 * FIXME: we could do this in principle, but we'll need a way to ensure
2082 * that we can safely release the inode reference while holding
2083 * the page lock.
2084 */
2085 if (PagePrivate(page))
2086 return -EBUSY;
2087
2088 if (!nfs_fscache_release_page(page, GFP_KERNEL))
2089 return -EBUSY;
2090
2091 return migrate_page(mapping, newpage, page, mode);
2092 }
2093 #endif
2094
nfs_init_writepagecache(void)2095 int __init nfs_init_writepagecache(void)
2096 {
2097 nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
2098 sizeof(struct nfs_pgio_header),
2099 0, SLAB_HWCACHE_ALIGN,
2100 NULL);
2101 if (nfs_wdata_cachep == NULL)
2102 return -ENOMEM;
2103
2104 nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
2105 nfs_wdata_cachep);
2106 if (nfs_wdata_mempool == NULL)
2107 goto out_destroy_write_cache;
2108
2109 nfs_cdata_cachep = kmem_cache_create("nfs_commit_data",
2110 sizeof(struct nfs_commit_data),
2111 0, SLAB_HWCACHE_ALIGN,
2112 NULL);
2113 if (nfs_cdata_cachep == NULL)
2114 goto out_destroy_write_mempool;
2115
2116 nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
2117 nfs_cdata_cachep);
2118 if (nfs_commit_mempool == NULL)
2119 goto out_destroy_commit_cache;
2120
2121 /*
2122 * NFS congestion size, scale with available memory.
2123 *
2124 * 64MB: 8192k
2125 * 128MB: 11585k
2126 * 256MB: 16384k
2127 * 512MB: 23170k
2128 * 1GB: 32768k
2129 * 2GB: 46340k
2130 * 4GB: 65536k
2131 * 8GB: 92681k
2132 * 16GB: 131072k
2133 *
2134 * This allows larger machines to have larger/more transfers.
2135 * Limit the default to 256M
2136 */
2137 nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
2138 if (nfs_congestion_kb > 256*1024)
2139 nfs_congestion_kb = 256*1024;
2140
2141 return 0;
2142
2143 out_destroy_commit_cache:
2144 kmem_cache_destroy(nfs_cdata_cachep);
2145 out_destroy_write_mempool:
2146 mempool_destroy(nfs_wdata_mempool);
2147 out_destroy_write_cache:
2148 kmem_cache_destroy(nfs_wdata_cachep);
2149 return -ENOMEM;
2150 }
2151
nfs_destroy_writepagecache(void)2152 void nfs_destroy_writepagecache(void)
2153 {
2154 mempool_destroy(nfs_commit_mempool);
2155 kmem_cache_destroy(nfs_cdata_cachep);
2156 mempool_destroy(nfs_wdata_mempool);
2157 kmem_cache_destroy(nfs_wdata_cachep);
2158 }
2159
2160 static const struct nfs_rw_ops nfs_rw_write_ops = {
2161 .rw_alloc_header = nfs_writehdr_alloc,
2162 .rw_free_header = nfs_writehdr_free,
2163 .rw_done = nfs_writeback_done,
2164 .rw_result = nfs_writeback_result,
2165 .rw_initiate = nfs_initiate_write,
2166 };
2167