1 /*
2 * Procedures for creating, accessing and interpreting the device tree.
3 *
4 * Paul Mackerras August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
6 *
7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 * {engebret|bergner}@us.ibm.com
9 *
10 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
11 *
12 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13 * Grant Likely.
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
19 */
20
21 #define pr_fmt(fmt) "OF: " fmt
22
23 #include <linux/console.h>
24 #include <linux/ctype.h>
25 #include <linux/cpu.h>
26 #include <linux/module.h>
27 #include <linux/of.h>
28 #include <linux/of_device.h>
29 #include <linux/of_graph.h>
30 #include <linux/spinlock.h>
31 #include <linux/slab.h>
32 #include <linux/string.h>
33 #include <linux/proc_fs.h>
34
35 #include "of_private.h"
36
37 LIST_HEAD(aliases_lookup);
38
39 struct device_node *of_root;
40 EXPORT_SYMBOL(of_root);
41 struct device_node *of_chosen;
42 struct device_node *of_aliases;
43 struct device_node *of_stdout;
44 static const char *of_stdout_options;
45
46 struct kset *of_kset;
47
48 /*
49 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
50 * This mutex must be held whenever modifications are being made to the
51 * device tree. The of_{attach,detach}_node() and
52 * of_{add,remove,update}_property() helpers make sure this happens.
53 */
54 DEFINE_MUTEX(of_mutex);
55
56 /* use when traversing tree through the child, sibling,
57 * or parent members of struct device_node.
58 */
59 DEFINE_RAW_SPINLOCK(devtree_lock);
60
of_n_addr_cells(struct device_node * np)61 int of_n_addr_cells(struct device_node *np)
62 {
63 u32 cells;
64
65 do {
66 if (np->parent)
67 np = np->parent;
68 if (!of_property_read_u32(np, "#address-cells", &cells))
69 return cells;
70 } while (np->parent);
71 /* No #address-cells property for the root node */
72 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
73 }
74 EXPORT_SYMBOL(of_n_addr_cells);
75
of_n_size_cells(struct device_node * np)76 int of_n_size_cells(struct device_node *np)
77 {
78 u32 cells;
79
80 do {
81 if (np->parent)
82 np = np->parent;
83 if (!of_property_read_u32(np, "#size-cells", &cells))
84 return cells;
85 } while (np->parent);
86 /* No #size-cells property for the root node */
87 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
88 }
89 EXPORT_SYMBOL(of_n_size_cells);
90
91 #ifdef CONFIG_NUMA
of_node_to_nid(struct device_node * np)92 int __weak of_node_to_nid(struct device_node *np)
93 {
94 return NUMA_NO_NODE;
95 }
96 #endif
97
98 #ifndef CONFIG_OF_DYNAMIC
of_node_release(struct kobject * kobj)99 static void of_node_release(struct kobject *kobj)
100 {
101 /* Without CONFIG_OF_DYNAMIC, no nodes gets freed */
102 }
103 #endif /* CONFIG_OF_DYNAMIC */
104
105 struct kobj_type of_node_ktype = {
106 .release = of_node_release,
107 };
108
of_node_property_read(struct file * filp,struct kobject * kobj,struct bin_attribute * bin_attr,char * buf,loff_t offset,size_t count)109 static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj,
110 struct bin_attribute *bin_attr, char *buf,
111 loff_t offset, size_t count)
112 {
113 struct property *pp = container_of(bin_attr, struct property, attr);
114 return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length);
115 }
116
117 /* always return newly allocated name, caller must free after use */
safe_name(struct kobject * kobj,const char * orig_name)118 static const char *safe_name(struct kobject *kobj, const char *orig_name)
119 {
120 const char *name = orig_name;
121 struct kernfs_node *kn;
122 int i = 0;
123
124 /* don't be a hero. After 16 tries give up */
125 while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) {
126 sysfs_put(kn);
127 if (name != orig_name)
128 kfree(name);
129 name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i);
130 }
131
132 if (name == orig_name) {
133 name = kstrdup(orig_name, GFP_KERNEL);
134 } else {
135 pr_warn("Duplicate name in %s, renamed to \"%s\"\n",
136 kobject_name(kobj), name);
137 }
138 return name;
139 }
140
__of_add_property_sysfs(struct device_node * np,struct property * pp)141 int __of_add_property_sysfs(struct device_node *np, struct property *pp)
142 {
143 int rc;
144
145 /* Important: Don't leak passwords */
146 bool secure = strncmp(pp->name, "security-", 9) == 0;
147
148 if (!IS_ENABLED(CONFIG_SYSFS))
149 return 0;
150
151 if (!of_kset || !of_node_is_attached(np))
152 return 0;
153
154 sysfs_bin_attr_init(&pp->attr);
155 pp->attr.attr.name = safe_name(&np->kobj, pp->name);
156 pp->attr.attr.mode = secure ? 0400 : 0444;
157 pp->attr.size = secure ? 0 : pp->length;
158 pp->attr.read = of_node_property_read;
159
160 rc = sysfs_create_bin_file(&np->kobj, &pp->attr);
161 WARN(rc, "error adding attribute %s to node %pOF\n", pp->name, np);
162 return rc;
163 }
164
__of_attach_node_sysfs(struct device_node * np)165 int __of_attach_node_sysfs(struct device_node *np)
166 {
167 const char *name;
168 struct kobject *parent;
169 struct property *pp;
170 int rc;
171
172 if (!IS_ENABLED(CONFIG_SYSFS))
173 return 0;
174
175 if (!of_kset)
176 return 0;
177
178 np->kobj.kset = of_kset;
179 if (!np->parent) {
180 /* Nodes without parents are new top level trees */
181 name = safe_name(&of_kset->kobj, "base");
182 parent = NULL;
183 } else {
184 name = safe_name(&np->parent->kobj, kbasename(np->full_name));
185 parent = &np->parent->kobj;
186 }
187 if (!name)
188 return -ENOMEM;
189 rc = kobject_add(&np->kobj, parent, "%s", name);
190 kfree(name);
191 if (rc)
192 return rc;
193
194 for_each_property_of_node(np, pp)
195 __of_add_property_sysfs(np, pp);
196
197 return 0;
198 }
199
of_core_init(void)200 void __init of_core_init(void)
201 {
202 struct device_node *np;
203
204 /* Create the kset, and register existing nodes */
205 mutex_lock(&of_mutex);
206 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
207 if (!of_kset) {
208 mutex_unlock(&of_mutex);
209 pr_err("failed to register existing nodes\n");
210 return;
211 }
212 for_each_of_allnodes(np)
213 __of_attach_node_sysfs(np);
214 mutex_unlock(&of_mutex);
215
216 /* Symlink in /proc as required by userspace ABI */
217 if (of_root)
218 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
219 }
220
__of_find_property(const struct device_node * np,const char * name,int * lenp)221 static struct property *__of_find_property(const struct device_node *np,
222 const char *name, int *lenp)
223 {
224 struct property *pp;
225
226 if (!np)
227 return NULL;
228
229 for (pp = np->properties; pp; pp = pp->next) {
230 if (of_prop_cmp(pp->name, name) == 0) {
231 if (lenp)
232 *lenp = pp->length;
233 break;
234 }
235 }
236
237 return pp;
238 }
239
of_find_property(const struct device_node * np,const char * name,int * lenp)240 struct property *of_find_property(const struct device_node *np,
241 const char *name,
242 int *lenp)
243 {
244 struct property *pp;
245 unsigned long flags;
246
247 raw_spin_lock_irqsave(&devtree_lock, flags);
248 pp = __of_find_property(np, name, lenp);
249 raw_spin_unlock_irqrestore(&devtree_lock, flags);
250
251 return pp;
252 }
253 EXPORT_SYMBOL(of_find_property);
254
__of_find_all_nodes(struct device_node * prev)255 struct device_node *__of_find_all_nodes(struct device_node *prev)
256 {
257 struct device_node *np;
258 if (!prev) {
259 np = of_root;
260 } else if (prev->child) {
261 np = prev->child;
262 } else {
263 /* Walk back up looking for a sibling, or the end of the structure */
264 np = prev;
265 while (np->parent && !np->sibling)
266 np = np->parent;
267 np = np->sibling; /* Might be null at the end of the tree */
268 }
269 return np;
270 }
271
272 /**
273 * of_find_all_nodes - Get next node in global list
274 * @prev: Previous node or NULL to start iteration
275 * of_node_put() will be called on it
276 *
277 * Returns a node pointer with refcount incremented, use
278 * of_node_put() on it when done.
279 */
of_find_all_nodes(struct device_node * prev)280 struct device_node *of_find_all_nodes(struct device_node *prev)
281 {
282 struct device_node *np;
283 unsigned long flags;
284
285 raw_spin_lock_irqsave(&devtree_lock, flags);
286 np = __of_find_all_nodes(prev);
287 of_node_get(np);
288 of_node_put(prev);
289 raw_spin_unlock_irqrestore(&devtree_lock, flags);
290 return np;
291 }
292 EXPORT_SYMBOL(of_find_all_nodes);
293
294 /*
295 * Find a property with a given name for a given node
296 * and return the value.
297 */
__of_get_property(const struct device_node * np,const char * name,int * lenp)298 const void *__of_get_property(const struct device_node *np,
299 const char *name, int *lenp)
300 {
301 struct property *pp = __of_find_property(np, name, lenp);
302
303 return pp ? pp->value : NULL;
304 }
305
306 /*
307 * Find a property with a given name for a given node
308 * and return the value.
309 */
of_get_property(const struct device_node * np,const char * name,int * lenp)310 const void *of_get_property(const struct device_node *np, const char *name,
311 int *lenp)
312 {
313 struct property *pp = of_find_property(np, name, lenp);
314
315 return pp ? pp->value : NULL;
316 }
317 EXPORT_SYMBOL(of_get_property);
318
319 /*
320 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
321 *
322 * @cpu: logical cpu index of a core/thread
323 * @phys_id: physical identifier of a core/thread
324 *
325 * CPU logical to physical index mapping is architecture specific.
326 * However this __weak function provides a default match of physical
327 * id to logical cpu index. phys_id provided here is usually values read
328 * from the device tree which must match the hardware internal registers.
329 *
330 * Returns true if the physical identifier and the logical cpu index
331 * correspond to the same core/thread, false otherwise.
332 */
arch_match_cpu_phys_id(int cpu,u64 phys_id)333 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
334 {
335 return (u32)phys_id == cpu;
336 }
337
338 /**
339 * Checks if the given "prop_name" property holds the physical id of the
340 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
341 * NULL, local thread number within the core is returned in it.
342 */
__of_find_n_match_cpu_property(struct device_node * cpun,const char * prop_name,int cpu,unsigned int * thread)343 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
344 const char *prop_name, int cpu, unsigned int *thread)
345 {
346 const __be32 *cell;
347 int ac, prop_len, tid;
348 u64 hwid;
349
350 ac = of_n_addr_cells(cpun);
351 cell = of_get_property(cpun, prop_name, &prop_len);
352 if (!cell || !ac)
353 return false;
354 prop_len /= sizeof(*cell) * ac;
355 for (tid = 0; tid < prop_len; tid++) {
356 hwid = of_read_number(cell, ac);
357 if (arch_match_cpu_phys_id(cpu, hwid)) {
358 if (thread)
359 *thread = tid;
360 return true;
361 }
362 cell += ac;
363 }
364 return false;
365 }
366
367 /*
368 * arch_find_n_match_cpu_physical_id - See if the given device node is
369 * for the cpu corresponding to logical cpu 'cpu'. Return true if so,
370 * else false. If 'thread' is non-NULL, the local thread number within the
371 * core is returned in it.
372 */
arch_find_n_match_cpu_physical_id(struct device_node * cpun,int cpu,unsigned int * thread)373 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
374 int cpu, unsigned int *thread)
375 {
376 /* Check for non-standard "ibm,ppc-interrupt-server#s" property
377 * for thread ids on PowerPC. If it doesn't exist fallback to
378 * standard "reg" property.
379 */
380 if (IS_ENABLED(CONFIG_PPC) &&
381 __of_find_n_match_cpu_property(cpun,
382 "ibm,ppc-interrupt-server#s",
383 cpu, thread))
384 return true;
385
386 return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
387 }
388
389 /**
390 * of_get_cpu_node - Get device node associated with the given logical CPU
391 *
392 * @cpu: CPU number(logical index) for which device node is required
393 * @thread: if not NULL, local thread number within the physical core is
394 * returned
395 *
396 * The main purpose of this function is to retrieve the device node for the
397 * given logical CPU index. It should be used to initialize the of_node in
398 * cpu device. Once of_node in cpu device is populated, all the further
399 * references can use that instead.
400 *
401 * CPU logical to physical index mapping is architecture specific and is built
402 * before booting secondary cores. This function uses arch_match_cpu_phys_id
403 * which can be overridden by architecture specific implementation.
404 *
405 * Returns a node pointer for the logical cpu with refcount incremented, use
406 * of_node_put() on it when done. Returns NULL if not found.
407 */
of_get_cpu_node(int cpu,unsigned int * thread)408 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
409 {
410 struct device_node *cpun;
411
412 for_each_node_by_type(cpun, "cpu") {
413 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
414 return cpun;
415 }
416 return NULL;
417 }
418 EXPORT_SYMBOL(of_get_cpu_node);
419
420 /**
421 * __of_device_is_compatible() - Check if the node matches given constraints
422 * @device: pointer to node
423 * @compat: required compatible string, NULL or "" for any match
424 * @type: required device_type value, NULL or "" for any match
425 * @name: required node name, NULL or "" for any match
426 *
427 * Checks if the given @compat, @type and @name strings match the
428 * properties of the given @device. A constraints can be skipped by
429 * passing NULL or an empty string as the constraint.
430 *
431 * Returns 0 for no match, and a positive integer on match. The return
432 * value is a relative score with larger values indicating better
433 * matches. The score is weighted for the most specific compatible value
434 * to get the highest score. Matching type is next, followed by matching
435 * name. Practically speaking, this results in the following priority
436 * order for matches:
437 *
438 * 1. specific compatible && type && name
439 * 2. specific compatible && type
440 * 3. specific compatible && name
441 * 4. specific compatible
442 * 5. general compatible && type && name
443 * 6. general compatible && type
444 * 7. general compatible && name
445 * 8. general compatible
446 * 9. type && name
447 * 10. type
448 * 11. name
449 */
__of_device_is_compatible(const struct device_node * device,const char * compat,const char * type,const char * name)450 static int __of_device_is_compatible(const struct device_node *device,
451 const char *compat, const char *type, const char *name)
452 {
453 struct property *prop;
454 const char *cp;
455 int index = 0, score = 0;
456
457 /* Compatible match has highest priority */
458 if (compat && compat[0]) {
459 prop = __of_find_property(device, "compatible", NULL);
460 for (cp = of_prop_next_string(prop, NULL); cp;
461 cp = of_prop_next_string(prop, cp), index++) {
462 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
463 score = INT_MAX/2 - (index << 2);
464 break;
465 }
466 }
467 if (!score)
468 return 0;
469 }
470
471 /* Matching type is better than matching name */
472 if (type && type[0]) {
473 if (!device->type || of_node_cmp(type, device->type))
474 return 0;
475 score += 2;
476 }
477
478 /* Matching name is a bit better than not */
479 if (name && name[0]) {
480 if (!device->name || of_node_cmp(name, device->name))
481 return 0;
482 score++;
483 }
484
485 return score;
486 }
487
488 /** Checks if the given "compat" string matches one of the strings in
489 * the device's "compatible" property
490 */
of_device_is_compatible(const struct device_node * device,const char * compat)491 int of_device_is_compatible(const struct device_node *device,
492 const char *compat)
493 {
494 unsigned long flags;
495 int res;
496
497 raw_spin_lock_irqsave(&devtree_lock, flags);
498 res = __of_device_is_compatible(device, compat, NULL, NULL);
499 raw_spin_unlock_irqrestore(&devtree_lock, flags);
500 return res;
501 }
502 EXPORT_SYMBOL(of_device_is_compatible);
503
504 /** Checks if the device is compatible with any of the entries in
505 * a NULL terminated array of strings. Returns the best match
506 * score or 0.
507 */
of_device_compatible_match(struct device_node * device,const char * const * compat)508 int of_device_compatible_match(struct device_node *device,
509 const char *const *compat)
510 {
511 unsigned int tmp, score = 0;
512
513 if (!compat)
514 return 0;
515
516 while (*compat) {
517 tmp = of_device_is_compatible(device, *compat);
518 if (tmp > score)
519 score = tmp;
520 compat++;
521 }
522
523 return score;
524 }
525
526 /**
527 * of_machine_is_compatible - Test root of device tree for a given compatible value
528 * @compat: compatible string to look for in root node's compatible property.
529 *
530 * Returns a positive integer if the root node has the given value in its
531 * compatible property.
532 */
of_machine_is_compatible(const char * compat)533 int of_machine_is_compatible(const char *compat)
534 {
535 struct device_node *root;
536 int rc = 0;
537
538 root = of_find_node_by_path("/");
539 if (root) {
540 rc = of_device_is_compatible(root, compat);
541 of_node_put(root);
542 }
543 return rc;
544 }
545 EXPORT_SYMBOL(of_machine_is_compatible);
546
547 /**
548 * __of_device_is_available - check if a device is available for use
549 *
550 * @device: Node to check for availability, with locks already held
551 *
552 * Returns true if the status property is absent or set to "okay" or "ok",
553 * false otherwise
554 */
__of_device_is_available(const struct device_node * device)555 static bool __of_device_is_available(const struct device_node *device)
556 {
557 const char *status;
558 int statlen;
559
560 if (!device)
561 return false;
562
563 status = __of_get_property(device, "status", &statlen);
564 if (status == NULL)
565 return true;
566
567 if (statlen > 0) {
568 if (!strcmp(status, "okay") || !strcmp(status, "ok"))
569 return true;
570 }
571
572 return false;
573 }
574
575 /**
576 * of_device_is_available - check if a device is available for use
577 *
578 * @device: Node to check for availability
579 *
580 * Returns true if the status property is absent or set to "okay" or "ok",
581 * false otherwise
582 */
of_device_is_available(const struct device_node * device)583 bool of_device_is_available(const struct device_node *device)
584 {
585 unsigned long flags;
586 bool res;
587
588 raw_spin_lock_irqsave(&devtree_lock, flags);
589 res = __of_device_is_available(device);
590 raw_spin_unlock_irqrestore(&devtree_lock, flags);
591 return res;
592
593 }
594 EXPORT_SYMBOL(of_device_is_available);
595
596 /**
597 * of_device_is_big_endian - check if a device has BE registers
598 *
599 * @device: Node to check for endianness
600 *
601 * Returns true if the device has a "big-endian" property, or if the kernel
602 * was compiled for BE *and* the device has a "native-endian" property.
603 * Returns false otherwise.
604 *
605 * Callers would nominally use ioread32be/iowrite32be if
606 * of_device_is_big_endian() == true, or readl/writel otherwise.
607 */
of_device_is_big_endian(const struct device_node * device)608 bool of_device_is_big_endian(const struct device_node *device)
609 {
610 if (of_property_read_bool(device, "big-endian"))
611 return true;
612 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
613 of_property_read_bool(device, "native-endian"))
614 return true;
615 return false;
616 }
617 EXPORT_SYMBOL(of_device_is_big_endian);
618
619 /**
620 * of_get_parent - Get a node's parent if any
621 * @node: Node to get parent
622 *
623 * Returns a node pointer with refcount incremented, use
624 * of_node_put() on it when done.
625 */
of_get_parent(const struct device_node * node)626 struct device_node *of_get_parent(const struct device_node *node)
627 {
628 struct device_node *np;
629 unsigned long flags;
630
631 if (!node)
632 return NULL;
633
634 raw_spin_lock_irqsave(&devtree_lock, flags);
635 np = of_node_get(node->parent);
636 raw_spin_unlock_irqrestore(&devtree_lock, flags);
637 return np;
638 }
639 EXPORT_SYMBOL(of_get_parent);
640
641 /**
642 * of_get_next_parent - Iterate to a node's parent
643 * @node: Node to get parent of
644 *
645 * This is like of_get_parent() except that it drops the
646 * refcount on the passed node, making it suitable for iterating
647 * through a node's parents.
648 *
649 * Returns a node pointer with refcount incremented, use
650 * of_node_put() on it when done.
651 */
of_get_next_parent(struct device_node * node)652 struct device_node *of_get_next_parent(struct device_node *node)
653 {
654 struct device_node *parent;
655 unsigned long flags;
656
657 if (!node)
658 return NULL;
659
660 raw_spin_lock_irqsave(&devtree_lock, flags);
661 parent = of_node_get(node->parent);
662 of_node_put(node);
663 raw_spin_unlock_irqrestore(&devtree_lock, flags);
664 return parent;
665 }
666 EXPORT_SYMBOL(of_get_next_parent);
667
__of_get_next_child(const struct device_node * node,struct device_node * prev)668 static struct device_node *__of_get_next_child(const struct device_node *node,
669 struct device_node *prev)
670 {
671 struct device_node *next;
672
673 if (!node)
674 return NULL;
675
676 next = prev ? prev->sibling : node->child;
677 for (; next; next = next->sibling)
678 if (of_node_get(next))
679 break;
680 of_node_put(prev);
681 return next;
682 }
683 #define __for_each_child_of_node(parent, child) \
684 for (child = __of_get_next_child(parent, NULL); child != NULL; \
685 child = __of_get_next_child(parent, child))
686
687 /**
688 * of_get_next_child - Iterate a node childs
689 * @node: parent node
690 * @prev: previous child of the parent node, or NULL to get first
691 *
692 * Returns a node pointer with refcount incremented, use of_node_put() on
693 * it when done. Returns NULL when prev is the last child. Decrements the
694 * refcount of prev.
695 */
of_get_next_child(const struct device_node * node,struct device_node * prev)696 struct device_node *of_get_next_child(const struct device_node *node,
697 struct device_node *prev)
698 {
699 struct device_node *next;
700 unsigned long flags;
701
702 raw_spin_lock_irqsave(&devtree_lock, flags);
703 next = __of_get_next_child(node, prev);
704 raw_spin_unlock_irqrestore(&devtree_lock, flags);
705 return next;
706 }
707 EXPORT_SYMBOL(of_get_next_child);
708
709 /**
710 * of_get_next_available_child - Find the next available child node
711 * @node: parent node
712 * @prev: previous child of the parent node, or NULL to get first
713 *
714 * This function is like of_get_next_child(), except that it
715 * automatically skips any disabled nodes (i.e. status = "disabled").
716 */
of_get_next_available_child(const struct device_node * node,struct device_node * prev)717 struct device_node *of_get_next_available_child(const struct device_node *node,
718 struct device_node *prev)
719 {
720 struct device_node *next;
721 unsigned long flags;
722
723 if (!node)
724 return NULL;
725
726 raw_spin_lock_irqsave(&devtree_lock, flags);
727 next = prev ? prev->sibling : node->child;
728 for (; next; next = next->sibling) {
729 if (!__of_device_is_available(next))
730 continue;
731 if (of_node_get(next))
732 break;
733 }
734 of_node_put(prev);
735 raw_spin_unlock_irqrestore(&devtree_lock, flags);
736 return next;
737 }
738 EXPORT_SYMBOL(of_get_next_available_child);
739
740 /**
741 * of_get_compatible_child - Find compatible child node
742 * @parent: parent node
743 * @compatible: compatible string
744 *
745 * Lookup child node whose compatible property contains the given compatible
746 * string.
747 *
748 * Returns a node pointer with refcount incremented, use of_node_put() on it
749 * when done; or NULL if not found.
750 */
of_get_compatible_child(const struct device_node * parent,const char * compatible)751 struct device_node *of_get_compatible_child(const struct device_node *parent,
752 const char *compatible)
753 {
754 struct device_node *child;
755
756 for_each_child_of_node(parent, child) {
757 if (of_device_is_compatible(child, compatible))
758 break;
759 }
760
761 return child;
762 }
763 EXPORT_SYMBOL(of_get_compatible_child);
764
765 /**
766 * of_get_child_by_name - Find the child node by name for a given parent
767 * @node: parent node
768 * @name: child name to look for.
769 *
770 * This function looks for child node for given matching name
771 *
772 * Returns a node pointer if found, with refcount incremented, use
773 * of_node_put() on it when done.
774 * Returns NULL if node is not found.
775 */
of_get_child_by_name(const struct device_node * node,const char * name)776 struct device_node *of_get_child_by_name(const struct device_node *node,
777 const char *name)
778 {
779 struct device_node *child;
780
781 for_each_child_of_node(node, child)
782 if (child->name && (of_node_cmp(child->name, name) == 0))
783 break;
784 return child;
785 }
786 EXPORT_SYMBOL(of_get_child_by_name);
787
__of_find_node_by_path(struct device_node * parent,const char * path)788 static struct device_node *__of_find_node_by_path(struct device_node *parent,
789 const char *path)
790 {
791 struct device_node *child;
792 int len;
793
794 len = strcspn(path, "/:");
795 if (!len)
796 return NULL;
797
798 __for_each_child_of_node(parent, child) {
799 const char *name = kbasename(child->full_name);
800 if (strncmp(path, name, len) == 0 && (strlen(name) == len))
801 return child;
802 }
803 return NULL;
804 }
805
__of_find_node_by_full_path(struct device_node * node,const char * path)806 struct device_node *__of_find_node_by_full_path(struct device_node *node,
807 const char *path)
808 {
809 const char *separator = strchr(path, ':');
810
811 while (node && *path == '/') {
812 struct device_node *tmp = node;
813
814 path++; /* Increment past '/' delimiter */
815 node = __of_find_node_by_path(node, path);
816 of_node_put(tmp);
817 path = strchrnul(path, '/');
818 if (separator && separator < path)
819 break;
820 }
821 return node;
822 }
823
824 /**
825 * of_find_node_opts_by_path - Find a node matching a full OF path
826 * @path: Either the full path to match, or if the path does not
827 * start with '/', the name of a property of the /aliases
828 * node (an alias). In the case of an alias, the node
829 * matching the alias' value will be returned.
830 * @opts: Address of a pointer into which to store the start of
831 * an options string appended to the end of the path with
832 * a ':' separator.
833 *
834 * Valid paths:
835 * /foo/bar Full path
836 * foo Valid alias
837 * foo/bar Valid alias + relative path
838 *
839 * Returns a node pointer with refcount incremented, use
840 * of_node_put() on it when done.
841 */
of_find_node_opts_by_path(const char * path,const char ** opts)842 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
843 {
844 struct device_node *np = NULL;
845 struct property *pp;
846 unsigned long flags;
847 const char *separator = strchr(path, ':');
848
849 if (opts)
850 *opts = separator ? separator + 1 : NULL;
851
852 if (strcmp(path, "/") == 0)
853 return of_node_get(of_root);
854
855 /* The path could begin with an alias */
856 if (*path != '/') {
857 int len;
858 const char *p = separator;
859
860 if (!p)
861 p = strchrnul(path, '/');
862 len = p - path;
863
864 /* of_aliases must not be NULL */
865 if (!of_aliases)
866 return NULL;
867
868 for_each_property_of_node(of_aliases, pp) {
869 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
870 np = of_find_node_by_path(pp->value);
871 break;
872 }
873 }
874 if (!np)
875 return NULL;
876 path = p;
877 }
878
879 /* Step down the tree matching path components */
880 raw_spin_lock_irqsave(&devtree_lock, flags);
881 if (!np)
882 np = of_node_get(of_root);
883 np = __of_find_node_by_full_path(np, path);
884 raw_spin_unlock_irqrestore(&devtree_lock, flags);
885 return np;
886 }
887 EXPORT_SYMBOL(of_find_node_opts_by_path);
888
889 /**
890 * of_find_node_by_name - Find a node by its "name" property
891 * @from: The node to start searching from or NULL, the node
892 * you pass will not be searched, only the next one
893 * will; typically, you pass what the previous call
894 * returned. of_node_put() will be called on it
895 * @name: The name string to match against
896 *
897 * Returns a node pointer with refcount incremented, use
898 * of_node_put() on it when done.
899 */
of_find_node_by_name(struct device_node * from,const char * name)900 struct device_node *of_find_node_by_name(struct device_node *from,
901 const char *name)
902 {
903 struct device_node *np;
904 unsigned long flags;
905
906 raw_spin_lock_irqsave(&devtree_lock, flags);
907 for_each_of_allnodes_from(from, np)
908 if (np->name && (of_node_cmp(np->name, name) == 0)
909 && of_node_get(np))
910 break;
911 of_node_put(from);
912 raw_spin_unlock_irqrestore(&devtree_lock, flags);
913 return np;
914 }
915 EXPORT_SYMBOL(of_find_node_by_name);
916
917 /**
918 * of_find_node_by_type - Find a node by its "device_type" property
919 * @from: The node to start searching from, or NULL to start searching
920 * the entire device tree. The node you pass will not be
921 * searched, only the next one will; typically, you pass
922 * what the previous call returned. of_node_put() will be
923 * called on from for you.
924 * @type: The type string to match against
925 *
926 * Returns a node pointer with refcount incremented, use
927 * of_node_put() on it when done.
928 */
of_find_node_by_type(struct device_node * from,const char * type)929 struct device_node *of_find_node_by_type(struct device_node *from,
930 const char *type)
931 {
932 struct device_node *np;
933 unsigned long flags;
934
935 raw_spin_lock_irqsave(&devtree_lock, flags);
936 for_each_of_allnodes_from(from, np)
937 if (np->type && (of_node_cmp(np->type, type) == 0)
938 && of_node_get(np))
939 break;
940 of_node_put(from);
941 raw_spin_unlock_irqrestore(&devtree_lock, flags);
942 return np;
943 }
944 EXPORT_SYMBOL(of_find_node_by_type);
945
946 /**
947 * of_find_compatible_node - Find a node based on type and one of the
948 * tokens in its "compatible" property
949 * @from: The node to start searching from or NULL, the node
950 * you pass will not be searched, only the next one
951 * will; typically, you pass what the previous call
952 * returned. of_node_put() will be called on it
953 * @type: The type string to match "device_type" or NULL to ignore
954 * @compatible: The string to match to one of the tokens in the device
955 * "compatible" list.
956 *
957 * Returns a node pointer with refcount incremented, use
958 * of_node_put() on it when done.
959 */
of_find_compatible_node(struct device_node * from,const char * type,const char * compatible)960 struct device_node *of_find_compatible_node(struct device_node *from,
961 const char *type, const char *compatible)
962 {
963 struct device_node *np;
964 unsigned long flags;
965
966 raw_spin_lock_irqsave(&devtree_lock, flags);
967 for_each_of_allnodes_from(from, np)
968 if (__of_device_is_compatible(np, compatible, type, NULL) &&
969 of_node_get(np))
970 break;
971 of_node_put(from);
972 raw_spin_unlock_irqrestore(&devtree_lock, flags);
973 return np;
974 }
975 EXPORT_SYMBOL(of_find_compatible_node);
976
977 /**
978 * of_find_node_with_property - Find a node which has a property with
979 * the given name.
980 * @from: The node to start searching from or NULL, the node
981 * you pass will not be searched, only the next one
982 * will; typically, you pass what the previous call
983 * returned. of_node_put() will be called on it
984 * @prop_name: The name of the property to look for.
985 *
986 * Returns a node pointer with refcount incremented, use
987 * of_node_put() on it when done.
988 */
of_find_node_with_property(struct device_node * from,const char * prop_name)989 struct device_node *of_find_node_with_property(struct device_node *from,
990 const char *prop_name)
991 {
992 struct device_node *np;
993 struct property *pp;
994 unsigned long flags;
995
996 raw_spin_lock_irqsave(&devtree_lock, flags);
997 for_each_of_allnodes_from(from, np) {
998 for (pp = np->properties; pp; pp = pp->next) {
999 if (of_prop_cmp(pp->name, prop_name) == 0) {
1000 of_node_get(np);
1001 goto out;
1002 }
1003 }
1004 }
1005 out:
1006 of_node_put(from);
1007 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1008 return np;
1009 }
1010 EXPORT_SYMBOL(of_find_node_with_property);
1011
1012 static
__of_match_node(const struct of_device_id * matches,const struct device_node * node)1013 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
1014 const struct device_node *node)
1015 {
1016 const struct of_device_id *best_match = NULL;
1017 int score, best_score = 0;
1018
1019 if (!matches)
1020 return NULL;
1021
1022 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
1023 score = __of_device_is_compatible(node, matches->compatible,
1024 matches->type, matches->name);
1025 if (score > best_score) {
1026 best_match = matches;
1027 best_score = score;
1028 }
1029 }
1030
1031 return best_match;
1032 }
1033
1034 /**
1035 * of_match_node - Tell if a device_node has a matching of_match structure
1036 * @matches: array of of device match structures to search in
1037 * @node: the of device structure to match against
1038 *
1039 * Low level utility function used by device matching.
1040 */
of_match_node(const struct of_device_id * matches,const struct device_node * node)1041 const struct of_device_id *of_match_node(const struct of_device_id *matches,
1042 const struct device_node *node)
1043 {
1044 const struct of_device_id *match;
1045 unsigned long flags;
1046
1047 raw_spin_lock_irqsave(&devtree_lock, flags);
1048 match = __of_match_node(matches, node);
1049 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1050 return match;
1051 }
1052 EXPORT_SYMBOL(of_match_node);
1053
1054 /**
1055 * of_find_matching_node_and_match - Find a node based on an of_device_id
1056 * match table.
1057 * @from: The node to start searching from or NULL, the node
1058 * you pass will not be searched, only the next one
1059 * will; typically, you pass what the previous call
1060 * returned. of_node_put() will be called on it
1061 * @matches: array of of device match structures to search in
1062 * @match Updated to point at the matches entry which matched
1063 *
1064 * Returns a node pointer with refcount incremented, use
1065 * of_node_put() on it when done.
1066 */
of_find_matching_node_and_match(struct device_node * from,const struct of_device_id * matches,const struct of_device_id ** match)1067 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1068 const struct of_device_id *matches,
1069 const struct of_device_id **match)
1070 {
1071 struct device_node *np;
1072 const struct of_device_id *m;
1073 unsigned long flags;
1074
1075 if (match)
1076 *match = NULL;
1077
1078 raw_spin_lock_irqsave(&devtree_lock, flags);
1079 for_each_of_allnodes_from(from, np) {
1080 m = __of_match_node(matches, np);
1081 if (m && of_node_get(np)) {
1082 if (match)
1083 *match = m;
1084 break;
1085 }
1086 }
1087 of_node_put(from);
1088 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1089 return np;
1090 }
1091 EXPORT_SYMBOL(of_find_matching_node_and_match);
1092
1093 /**
1094 * of_modalias_node - Lookup appropriate modalias for a device node
1095 * @node: pointer to a device tree node
1096 * @modalias: Pointer to buffer that modalias value will be copied into
1097 * @len: Length of modalias value
1098 *
1099 * Based on the value of the compatible property, this routine will attempt
1100 * to choose an appropriate modalias value for a particular device tree node.
1101 * It does this by stripping the manufacturer prefix (as delimited by a ',')
1102 * from the first entry in the compatible list property.
1103 *
1104 * This routine returns 0 on success, <0 on failure.
1105 */
of_modalias_node(struct device_node * node,char * modalias,int len)1106 int of_modalias_node(struct device_node *node, char *modalias, int len)
1107 {
1108 const char *compatible, *p;
1109 int cplen;
1110
1111 compatible = of_get_property(node, "compatible", &cplen);
1112 if (!compatible || strlen(compatible) > cplen)
1113 return -ENODEV;
1114 p = strchr(compatible, ',');
1115 strlcpy(modalias, p ? p + 1 : compatible, len);
1116 return 0;
1117 }
1118 EXPORT_SYMBOL_GPL(of_modalias_node);
1119
1120 /**
1121 * of_find_node_by_phandle - Find a node given a phandle
1122 * @handle: phandle of the node to find
1123 *
1124 * Returns a node pointer with refcount incremented, use
1125 * of_node_put() on it when done.
1126 */
of_find_node_by_phandle(phandle handle)1127 struct device_node *of_find_node_by_phandle(phandle handle)
1128 {
1129 struct device_node *np;
1130 unsigned long flags;
1131
1132 if (!handle)
1133 return NULL;
1134
1135 raw_spin_lock_irqsave(&devtree_lock, flags);
1136 for_each_of_allnodes(np)
1137 if (np->phandle == handle)
1138 break;
1139 of_node_get(np);
1140 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1141 return np;
1142 }
1143 EXPORT_SYMBOL(of_find_node_by_phandle);
1144
of_print_phandle_args(const char * msg,const struct of_phandle_args * args)1145 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1146 {
1147 int i;
1148 printk("%s %pOF", msg, args->np);
1149 for (i = 0; i < args->args_count; i++) {
1150 const char delim = i ? ',' : ':';
1151
1152 pr_cont("%c%08x", delim, args->args[i]);
1153 }
1154 pr_cont("\n");
1155 }
1156
of_phandle_iterator_init(struct of_phandle_iterator * it,const struct device_node * np,const char * list_name,const char * cells_name,int cell_count)1157 int of_phandle_iterator_init(struct of_phandle_iterator *it,
1158 const struct device_node *np,
1159 const char *list_name,
1160 const char *cells_name,
1161 int cell_count)
1162 {
1163 const __be32 *list;
1164 int size;
1165
1166 memset(it, 0, sizeof(*it));
1167
1168 list = of_get_property(np, list_name, &size);
1169 if (!list)
1170 return -ENOENT;
1171
1172 it->cells_name = cells_name;
1173 it->cell_count = cell_count;
1174 it->parent = np;
1175 it->list_end = list + size / sizeof(*list);
1176 it->phandle_end = list;
1177 it->cur = list;
1178
1179 return 0;
1180 }
1181 EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1182
of_phandle_iterator_next(struct of_phandle_iterator * it)1183 int of_phandle_iterator_next(struct of_phandle_iterator *it)
1184 {
1185 uint32_t count = 0;
1186
1187 if (it->node) {
1188 of_node_put(it->node);
1189 it->node = NULL;
1190 }
1191
1192 if (!it->cur || it->phandle_end >= it->list_end)
1193 return -ENOENT;
1194
1195 it->cur = it->phandle_end;
1196
1197 /* If phandle is 0, then it is an empty entry with no arguments. */
1198 it->phandle = be32_to_cpup(it->cur++);
1199
1200 if (it->phandle) {
1201
1202 /*
1203 * Find the provider node and parse the #*-cells property to
1204 * determine the argument length.
1205 */
1206 it->node = of_find_node_by_phandle(it->phandle);
1207
1208 if (it->cells_name) {
1209 if (!it->node) {
1210 pr_err("%pOF: could not find phandle\n",
1211 it->parent);
1212 goto err;
1213 }
1214
1215 if (of_property_read_u32(it->node, it->cells_name,
1216 &count)) {
1217 pr_err("%pOF: could not get %s for %pOF\n",
1218 it->parent,
1219 it->cells_name,
1220 it->node);
1221 goto err;
1222 }
1223 } else {
1224 count = it->cell_count;
1225 }
1226
1227 /*
1228 * Make sure that the arguments actually fit in the remaining
1229 * property data length
1230 */
1231 if (it->cur + count > it->list_end) {
1232 pr_err("%pOF: arguments longer than property\n",
1233 it->parent);
1234 goto err;
1235 }
1236 }
1237
1238 it->phandle_end = it->cur + count;
1239 it->cur_count = count;
1240
1241 return 0;
1242
1243 err:
1244 if (it->node) {
1245 of_node_put(it->node);
1246 it->node = NULL;
1247 }
1248
1249 return -EINVAL;
1250 }
1251 EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1252
of_phandle_iterator_args(struct of_phandle_iterator * it,uint32_t * args,int size)1253 int of_phandle_iterator_args(struct of_phandle_iterator *it,
1254 uint32_t *args,
1255 int size)
1256 {
1257 int i, count;
1258
1259 count = it->cur_count;
1260
1261 if (WARN_ON(size < count))
1262 count = size;
1263
1264 for (i = 0; i < count; i++)
1265 args[i] = be32_to_cpup(it->cur++);
1266
1267 return count;
1268 }
1269
__of_parse_phandle_with_args(const struct device_node * np,const char * list_name,const char * cells_name,int cell_count,int index,struct of_phandle_args * out_args)1270 static int __of_parse_phandle_with_args(const struct device_node *np,
1271 const char *list_name,
1272 const char *cells_name,
1273 int cell_count, int index,
1274 struct of_phandle_args *out_args)
1275 {
1276 struct of_phandle_iterator it;
1277 int rc, cur_index = 0;
1278
1279 /* Loop over the phandles until all the requested entry is found */
1280 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1281 /*
1282 * All of the error cases bail out of the loop, so at
1283 * this point, the parsing is successful. If the requested
1284 * index matches, then fill the out_args structure and return,
1285 * or return -ENOENT for an empty entry.
1286 */
1287 rc = -ENOENT;
1288 if (cur_index == index) {
1289 if (!it.phandle)
1290 goto err;
1291
1292 if (out_args) {
1293 int c;
1294
1295 c = of_phandle_iterator_args(&it,
1296 out_args->args,
1297 MAX_PHANDLE_ARGS);
1298 out_args->np = it.node;
1299 out_args->args_count = c;
1300 } else {
1301 of_node_put(it.node);
1302 }
1303
1304 /* Found it! return success */
1305 return 0;
1306 }
1307
1308 cur_index++;
1309 }
1310
1311 /*
1312 * Unlock node before returning result; will be one of:
1313 * -ENOENT : index is for empty phandle
1314 * -EINVAL : parsing error on data
1315 */
1316
1317 err:
1318 of_node_put(it.node);
1319 return rc;
1320 }
1321
1322 /**
1323 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1324 * @np: Pointer to device node holding phandle property
1325 * @phandle_name: Name of property holding a phandle value
1326 * @index: For properties holding a table of phandles, this is the index into
1327 * the table
1328 *
1329 * Returns the device_node pointer with refcount incremented. Use
1330 * of_node_put() on it when done.
1331 */
of_parse_phandle(const struct device_node * np,const char * phandle_name,int index)1332 struct device_node *of_parse_phandle(const struct device_node *np,
1333 const char *phandle_name, int index)
1334 {
1335 struct of_phandle_args args;
1336
1337 if (index < 0)
1338 return NULL;
1339
1340 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1341 index, &args))
1342 return NULL;
1343
1344 return args.np;
1345 }
1346 EXPORT_SYMBOL(of_parse_phandle);
1347
1348 /**
1349 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1350 * @np: pointer to a device tree node containing a list
1351 * @list_name: property name that contains a list
1352 * @cells_name: property name that specifies phandles' arguments count
1353 * @index: index of a phandle to parse out
1354 * @out_args: optional pointer to output arguments structure (will be filled)
1355 *
1356 * This function is useful to parse lists of phandles and their arguments.
1357 * Returns 0 on success and fills out_args, on error returns appropriate
1358 * errno value.
1359 *
1360 * Caller is responsible to call of_node_put() on the returned out_args->np
1361 * pointer.
1362 *
1363 * Example:
1364 *
1365 * phandle1: node1 {
1366 * #list-cells = <2>;
1367 * }
1368 *
1369 * phandle2: node2 {
1370 * #list-cells = <1>;
1371 * }
1372 *
1373 * node3 {
1374 * list = <&phandle1 1 2 &phandle2 3>;
1375 * }
1376 *
1377 * To get a device_node of the `node2' node you may call this:
1378 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1379 */
of_parse_phandle_with_args(const struct device_node * np,const char * list_name,const char * cells_name,int index,struct of_phandle_args * out_args)1380 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1381 const char *cells_name, int index,
1382 struct of_phandle_args *out_args)
1383 {
1384 if (index < 0)
1385 return -EINVAL;
1386 return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1387 index, out_args);
1388 }
1389 EXPORT_SYMBOL(of_parse_phandle_with_args);
1390
1391 /**
1392 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1393 * @np: pointer to a device tree node containing a list
1394 * @list_name: property name that contains a list
1395 * @cell_count: number of argument cells following the phandle
1396 * @index: index of a phandle to parse out
1397 * @out_args: optional pointer to output arguments structure (will be filled)
1398 *
1399 * This function is useful to parse lists of phandles and their arguments.
1400 * Returns 0 on success and fills out_args, on error returns appropriate
1401 * errno value.
1402 *
1403 * Caller is responsible to call of_node_put() on the returned out_args->np
1404 * pointer.
1405 *
1406 * Example:
1407 *
1408 * phandle1: node1 {
1409 * }
1410 *
1411 * phandle2: node2 {
1412 * }
1413 *
1414 * node3 {
1415 * list = <&phandle1 0 2 &phandle2 2 3>;
1416 * }
1417 *
1418 * To get a device_node of the `node2' node you may call this:
1419 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1420 */
of_parse_phandle_with_fixed_args(const struct device_node * np,const char * list_name,int cell_count,int index,struct of_phandle_args * out_args)1421 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1422 const char *list_name, int cell_count,
1423 int index, struct of_phandle_args *out_args)
1424 {
1425 if (index < 0)
1426 return -EINVAL;
1427 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1428 index, out_args);
1429 }
1430 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1431
1432 /**
1433 * of_count_phandle_with_args() - Find the number of phandles references in a property
1434 * @np: pointer to a device tree node containing a list
1435 * @list_name: property name that contains a list
1436 * @cells_name: property name that specifies phandles' arguments count
1437 *
1438 * Returns the number of phandle + argument tuples within a property. It
1439 * is a typical pattern to encode a list of phandle and variable
1440 * arguments into a single property. The number of arguments is encoded
1441 * by a property in the phandle-target node. For example, a gpios
1442 * property would contain a list of GPIO specifies consisting of a
1443 * phandle and 1 or more arguments. The number of arguments are
1444 * determined by the #gpio-cells property in the node pointed to by the
1445 * phandle.
1446 */
of_count_phandle_with_args(const struct device_node * np,const char * list_name,const char * cells_name)1447 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1448 const char *cells_name)
1449 {
1450 struct of_phandle_iterator it;
1451 int rc, cur_index = 0;
1452
1453 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, 0);
1454 if (rc)
1455 return rc;
1456
1457 while ((rc = of_phandle_iterator_next(&it)) == 0)
1458 cur_index += 1;
1459
1460 if (rc != -ENOENT)
1461 return rc;
1462
1463 return cur_index;
1464 }
1465 EXPORT_SYMBOL(of_count_phandle_with_args);
1466
1467 /**
1468 * __of_add_property - Add a property to a node without lock operations
1469 */
__of_add_property(struct device_node * np,struct property * prop)1470 int __of_add_property(struct device_node *np, struct property *prop)
1471 {
1472 struct property **next;
1473
1474 prop->next = NULL;
1475 next = &np->properties;
1476 while (*next) {
1477 if (strcmp(prop->name, (*next)->name) == 0)
1478 /* duplicate ! don't insert it */
1479 return -EEXIST;
1480
1481 next = &(*next)->next;
1482 }
1483 *next = prop;
1484
1485 return 0;
1486 }
1487
1488 /**
1489 * of_add_property - Add a property to a node
1490 */
of_add_property(struct device_node * np,struct property * prop)1491 int of_add_property(struct device_node *np, struct property *prop)
1492 {
1493 unsigned long flags;
1494 int rc;
1495
1496 mutex_lock(&of_mutex);
1497
1498 raw_spin_lock_irqsave(&devtree_lock, flags);
1499 rc = __of_add_property(np, prop);
1500 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1501
1502 if (!rc)
1503 __of_add_property_sysfs(np, prop);
1504
1505 mutex_unlock(&of_mutex);
1506
1507 if (!rc)
1508 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1509
1510 return rc;
1511 }
1512
__of_remove_property(struct device_node * np,struct property * prop)1513 int __of_remove_property(struct device_node *np, struct property *prop)
1514 {
1515 struct property **next;
1516
1517 for (next = &np->properties; *next; next = &(*next)->next) {
1518 if (*next == prop)
1519 break;
1520 }
1521 if (*next == NULL)
1522 return -ENODEV;
1523
1524 /* found the node */
1525 *next = prop->next;
1526 prop->next = np->deadprops;
1527 np->deadprops = prop;
1528
1529 return 0;
1530 }
1531
__of_sysfs_remove_bin_file(struct device_node * np,struct property * prop)1532 void __of_sysfs_remove_bin_file(struct device_node *np, struct property *prop)
1533 {
1534 sysfs_remove_bin_file(&np->kobj, &prop->attr);
1535 kfree(prop->attr.attr.name);
1536 }
1537
__of_remove_property_sysfs(struct device_node * np,struct property * prop)1538 void __of_remove_property_sysfs(struct device_node *np, struct property *prop)
1539 {
1540 if (!IS_ENABLED(CONFIG_SYSFS))
1541 return;
1542
1543 /* at early boot, bail here and defer setup to of_init() */
1544 if (of_kset && of_node_is_attached(np))
1545 __of_sysfs_remove_bin_file(np, prop);
1546 }
1547
1548 /**
1549 * of_remove_property - Remove a property from a node.
1550 *
1551 * Note that we don't actually remove it, since we have given out
1552 * who-knows-how-many pointers to the data using get-property.
1553 * Instead we just move the property to the "dead properties"
1554 * list, so it won't be found any more.
1555 */
of_remove_property(struct device_node * np,struct property * prop)1556 int of_remove_property(struct device_node *np, struct property *prop)
1557 {
1558 unsigned long flags;
1559 int rc;
1560
1561 if (!prop)
1562 return -ENODEV;
1563
1564 mutex_lock(&of_mutex);
1565
1566 raw_spin_lock_irqsave(&devtree_lock, flags);
1567 rc = __of_remove_property(np, prop);
1568 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1569
1570 if (!rc)
1571 __of_remove_property_sysfs(np, prop);
1572
1573 mutex_unlock(&of_mutex);
1574
1575 if (!rc)
1576 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1577
1578 return rc;
1579 }
1580
__of_update_property(struct device_node * np,struct property * newprop,struct property ** oldpropp)1581 int __of_update_property(struct device_node *np, struct property *newprop,
1582 struct property **oldpropp)
1583 {
1584 struct property **next, *oldprop;
1585
1586 for (next = &np->properties; *next; next = &(*next)->next) {
1587 if (of_prop_cmp((*next)->name, newprop->name) == 0)
1588 break;
1589 }
1590 *oldpropp = oldprop = *next;
1591
1592 if (oldprop) {
1593 /* replace the node */
1594 newprop->next = oldprop->next;
1595 *next = newprop;
1596 oldprop->next = np->deadprops;
1597 np->deadprops = oldprop;
1598 } else {
1599 /* new node */
1600 newprop->next = NULL;
1601 *next = newprop;
1602 }
1603
1604 return 0;
1605 }
1606
__of_update_property_sysfs(struct device_node * np,struct property * newprop,struct property * oldprop)1607 void __of_update_property_sysfs(struct device_node *np, struct property *newprop,
1608 struct property *oldprop)
1609 {
1610 if (!IS_ENABLED(CONFIG_SYSFS))
1611 return;
1612
1613 /* At early boot, bail out and defer setup to of_init() */
1614 if (!of_kset)
1615 return;
1616
1617 if (oldprop)
1618 __of_sysfs_remove_bin_file(np, oldprop);
1619 __of_add_property_sysfs(np, newprop);
1620 }
1621
1622 /*
1623 * of_update_property - Update a property in a node, if the property does
1624 * not exist, add it.
1625 *
1626 * Note that we don't actually remove it, since we have given out
1627 * who-knows-how-many pointers to the data using get-property.
1628 * Instead we just move the property to the "dead properties" list,
1629 * and add the new property to the property list
1630 */
of_update_property(struct device_node * np,struct property * newprop)1631 int of_update_property(struct device_node *np, struct property *newprop)
1632 {
1633 struct property *oldprop;
1634 unsigned long flags;
1635 int rc;
1636
1637 if (!newprop->name)
1638 return -EINVAL;
1639
1640 mutex_lock(&of_mutex);
1641
1642 raw_spin_lock_irqsave(&devtree_lock, flags);
1643 rc = __of_update_property(np, newprop, &oldprop);
1644 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1645
1646 if (!rc)
1647 __of_update_property_sysfs(np, newprop, oldprop);
1648
1649 mutex_unlock(&of_mutex);
1650
1651 if (!rc)
1652 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1653
1654 return rc;
1655 }
1656
of_alias_add(struct alias_prop * ap,struct device_node * np,int id,const char * stem,int stem_len)1657 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1658 int id, const char *stem, int stem_len)
1659 {
1660 ap->np = np;
1661 ap->id = id;
1662 strncpy(ap->stem, stem, stem_len);
1663 ap->stem[stem_len] = 0;
1664 list_add_tail(&ap->link, &aliases_lookup);
1665 pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1666 ap->alias, ap->stem, ap->id, np);
1667 }
1668
1669 /**
1670 * of_alias_scan - Scan all properties of the 'aliases' node
1671 *
1672 * The function scans all the properties of the 'aliases' node and populates
1673 * the global lookup table with the properties. It returns the
1674 * number of alias properties found, or an error code in case of failure.
1675 *
1676 * @dt_alloc: An allocator that provides a virtual address to memory
1677 * for storing the resulting tree
1678 */
of_alias_scan(void * (* dt_alloc)(u64 size,u64 align))1679 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1680 {
1681 struct property *pp;
1682
1683 of_aliases = of_find_node_by_path("/aliases");
1684 of_chosen = of_find_node_by_path("/chosen");
1685 if (of_chosen == NULL)
1686 of_chosen = of_find_node_by_path("/chosen@0");
1687
1688 if (of_chosen) {
1689 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1690 const char *name = NULL;
1691
1692 if (of_property_read_string(of_chosen, "stdout-path", &name))
1693 of_property_read_string(of_chosen, "linux,stdout-path",
1694 &name);
1695 if (IS_ENABLED(CONFIG_PPC) && !name)
1696 of_property_read_string(of_aliases, "stdout", &name);
1697 if (name)
1698 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1699 }
1700
1701 if (!of_aliases)
1702 return;
1703
1704 for_each_property_of_node(of_aliases, pp) {
1705 const char *start = pp->name;
1706 const char *end = start + strlen(start);
1707 struct device_node *np;
1708 struct alias_prop *ap;
1709 int id, len;
1710
1711 /* Skip those we do not want to proceed */
1712 if (!strcmp(pp->name, "name") ||
1713 !strcmp(pp->name, "phandle") ||
1714 !strcmp(pp->name, "linux,phandle"))
1715 continue;
1716
1717 np = of_find_node_by_path(pp->value);
1718 if (!np)
1719 continue;
1720
1721 /* walk the alias backwards to extract the id and work out
1722 * the 'stem' string */
1723 while (isdigit(*(end-1)) && end > start)
1724 end--;
1725 len = end - start;
1726
1727 if (kstrtoint(end, 10, &id) < 0)
1728 continue;
1729
1730 /* Allocate an alias_prop with enough space for the stem */
1731 ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
1732 if (!ap)
1733 continue;
1734 memset(ap, 0, sizeof(*ap) + len + 1);
1735 ap->alias = start;
1736 of_alias_add(ap, np, id, start, len);
1737 }
1738 }
1739
1740 /**
1741 * of_alias_get_id - Get alias id for the given device_node
1742 * @np: Pointer to the given device_node
1743 * @stem: Alias stem of the given device_node
1744 *
1745 * The function travels the lookup table to get the alias id for the given
1746 * device_node and alias stem. It returns the alias id if found.
1747 */
of_alias_get_id(struct device_node * np,const char * stem)1748 int of_alias_get_id(struct device_node *np, const char *stem)
1749 {
1750 struct alias_prop *app;
1751 int id = -ENODEV;
1752
1753 mutex_lock(&of_mutex);
1754 list_for_each_entry(app, &aliases_lookup, link) {
1755 if (strcmp(app->stem, stem) != 0)
1756 continue;
1757
1758 if (np == app->np) {
1759 id = app->id;
1760 break;
1761 }
1762 }
1763 mutex_unlock(&of_mutex);
1764
1765 return id;
1766 }
1767 EXPORT_SYMBOL_GPL(of_alias_get_id);
1768
1769 /**
1770 * of_alias_get_highest_id - Get highest alias id for the given stem
1771 * @stem: Alias stem to be examined
1772 *
1773 * The function travels the lookup table to get the highest alias id for the
1774 * given alias stem. It returns the alias id if found.
1775 */
of_alias_get_highest_id(const char * stem)1776 int of_alias_get_highest_id(const char *stem)
1777 {
1778 struct alias_prop *app;
1779 int id = -ENODEV;
1780
1781 mutex_lock(&of_mutex);
1782 list_for_each_entry(app, &aliases_lookup, link) {
1783 if (strcmp(app->stem, stem) != 0)
1784 continue;
1785
1786 if (app->id > id)
1787 id = app->id;
1788 }
1789 mutex_unlock(&of_mutex);
1790
1791 return id;
1792 }
1793 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
1794
1795 /**
1796 * of_console_check() - Test and setup console for DT setup
1797 * @dn - Pointer to device node
1798 * @name - Name to use for preferred console without index. ex. "ttyS"
1799 * @index - Index to use for preferred console.
1800 *
1801 * Check if the given device node matches the stdout-path property in the
1802 * /chosen node. If it does then register it as the preferred console and return
1803 * TRUE. Otherwise return FALSE.
1804 */
of_console_check(struct device_node * dn,char * name,int index)1805 bool of_console_check(struct device_node *dn, char *name, int index)
1806 {
1807 if (!dn || dn != of_stdout || console_set_on_cmdline)
1808 return false;
1809
1810 /*
1811 * XXX: cast `options' to char pointer to suppress complication
1812 * warnings: printk, UART and console drivers expect char pointer.
1813 */
1814 return !add_preferred_console(name, index, (char *)of_stdout_options);
1815 }
1816 EXPORT_SYMBOL_GPL(of_console_check);
1817
1818 /**
1819 * of_find_next_cache_node - Find a node's subsidiary cache
1820 * @np: node of type "cpu" or "cache"
1821 *
1822 * Returns a node pointer with refcount incremented, use
1823 * of_node_put() on it when done. Caller should hold a reference
1824 * to np.
1825 */
of_find_next_cache_node(const struct device_node * np)1826 struct device_node *of_find_next_cache_node(const struct device_node *np)
1827 {
1828 struct device_node *child, *cache_node;
1829
1830 cache_node = of_parse_phandle(np, "l2-cache", 0);
1831 if (!cache_node)
1832 cache_node = of_parse_phandle(np, "next-level-cache", 0);
1833
1834 if (cache_node)
1835 return cache_node;
1836
1837 /* OF on pmac has nodes instead of properties named "l2-cache"
1838 * beneath CPU nodes.
1839 */
1840 if (IS_ENABLED(CONFIG_PPC_PMAC) && !strcmp(np->type, "cpu"))
1841 for_each_child_of_node(np, child)
1842 if (!strcmp(child->type, "cache"))
1843 return child;
1844
1845 return NULL;
1846 }
1847
1848 /**
1849 * of_find_last_cache_level - Find the level at which the last cache is
1850 * present for the given logical cpu
1851 *
1852 * @cpu: cpu number(logical index) for which the last cache level is needed
1853 *
1854 * Returns the the level at which the last cache is present. It is exactly
1855 * same as the total number of cache levels for the given logical cpu.
1856 */
of_find_last_cache_level(unsigned int cpu)1857 int of_find_last_cache_level(unsigned int cpu)
1858 {
1859 u32 cache_level = 0;
1860 struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
1861
1862 while (np) {
1863 prev = np;
1864 of_node_put(np);
1865 np = of_find_next_cache_node(np);
1866 }
1867
1868 of_property_read_u32(prev, "cache-level", &cache_level);
1869
1870 return cache_level;
1871 }
1872