• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *
3  * Copyright (c) 2011, Microsoft Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16  * Place - Suite 330, Boston, MA 02111-1307 USA.
17  *
18  * Authors:
19  *   Haiyang Zhang <haiyangz@microsoft.com>
20  *   Hank Janssen  <hjanssen@microsoft.com>
21  *   K. Y. Srinivasan <kys@microsoft.com>
22  *
23  */
24 
25 #ifndef _HYPERV_H
26 #define _HYPERV_H
27 
28 #include <uapi/linux/hyperv.h>
29 #include <uapi/asm/hyperv.h>
30 
31 #include <linux/types.h>
32 #include <linux/scatterlist.h>
33 #include <linux/list.h>
34 #include <linux/timer.h>
35 #include <linux/completion.h>
36 #include <linux/device.h>
37 #include <linux/mod_devicetable.h>
38 #include <linux/interrupt.h>
39 
40 #define MAX_PAGE_BUFFER_COUNT				32
41 #define MAX_MULTIPAGE_BUFFER_COUNT			32 /* 128K */
42 
43 #pragma pack(push, 1)
44 
45 /* Single-page buffer */
46 struct hv_page_buffer {
47 	u32 len;
48 	u32 offset;
49 	u64 pfn;
50 };
51 
52 /* Multiple-page buffer */
53 struct hv_multipage_buffer {
54 	/* Length and Offset determines the # of pfns in the array */
55 	u32 len;
56 	u32 offset;
57 	u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT];
58 };
59 
60 /*
61  * Multiple-page buffer array; the pfn array is variable size:
62  * The number of entries in the PFN array is determined by
63  * "len" and "offset".
64  */
65 struct hv_mpb_array {
66 	/* Length and Offset determines the # of pfns in the array */
67 	u32 len;
68 	u32 offset;
69 	u64 pfn_array[];
70 };
71 
72 /* 0x18 includes the proprietary packet header */
73 #define MAX_PAGE_BUFFER_PACKET		(0x18 +			\
74 					(sizeof(struct hv_page_buffer) * \
75 					 MAX_PAGE_BUFFER_COUNT))
76 #define MAX_MULTIPAGE_BUFFER_PACKET	(0x18 +			\
77 					 sizeof(struct hv_multipage_buffer))
78 
79 
80 #pragma pack(pop)
81 
82 struct hv_ring_buffer {
83 	/* Offset in bytes from the start of ring data below */
84 	u32 write_index;
85 
86 	/* Offset in bytes from the start of ring data below */
87 	u32 read_index;
88 
89 	u32 interrupt_mask;
90 
91 	/*
92 	 * Win8 uses some of the reserved bits to implement
93 	 * interrupt driven flow management. On the send side
94 	 * we can request that the receiver interrupt the sender
95 	 * when the ring transitions from being full to being able
96 	 * to handle a message of size "pending_send_sz".
97 	 *
98 	 * Add necessary state for this enhancement.
99 	 */
100 	u32 pending_send_sz;
101 
102 	u32 reserved1[12];
103 
104 	union {
105 		struct {
106 			u32 feat_pending_send_sz:1;
107 		};
108 		u32 value;
109 	} feature_bits;
110 
111 	/* Pad it to PAGE_SIZE so that data starts on page boundary */
112 	u8	reserved2[4028];
113 
114 	/*
115 	 * Ring data starts here + RingDataStartOffset
116 	 * !!! DO NOT place any fields below this !!!
117 	 */
118 	u8 buffer[0];
119 } __packed;
120 
121 struct hv_ring_buffer_info {
122 	struct hv_ring_buffer *ring_buffer;
123 	u32 ring_size;			/* Include the shared header */
124 	spinlock_t ring_lock;
125 
126 	u32 ring_datasize;		/* < ring_size */
127 	u32 priv_read_index;
128 };
129 
130 /*
131  *
132  * hv_get_ringbuffer_availbytes()
133  *
134  * Get number of bytes available to read and to write to
135  * for the specified ring buffer
136  */
137 static inline void
hv_get_ringbuffer_availbytes(const struct hv_ring_buffer_info * rbi,u32 * read,u32 * write)138 hv_get_ringbuffer_availbytes(const struct hv_ring_buffer_info *rbi,
139 			     u32 *read, u32 *write)
140 {
141 	u32 read_loc, write_loc, dsize;
142 
143 	/* Capture the read/write indices before they changed */
144 	read_loc = rbi->ring_buffer->read_index;
145 	write_loc = rbi->ring_buffer->write_index;
146 	dsize = rbi->ring_datasize;
147 
148 	*write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
149 		read_loc - write_loc;
150 	*read = dsize - *write;
151 }
152 
hv_get_bytes_to_read(const struct hv_ring_buffer_info * rbi)153 static inline u32 hv_get_bytes_to_read(const struct hv_ring_buffer_info *rbi)
154 {
155 	u32 read_loc, write_loc, dsize, read;
156 
157 	dsize = rbi->ring_datasize;
158 	read_loc = rbi->ring_buffer->read_index;
159 	write_loc = READ_ONCE(rbi->ring_buffer->write_index);
160 
161 	read = write_loc >= read_loc ? (write_loc - read_loc) :
162 		(dsize - read_loc) + write_loc;
163 
164 	return read;
165 }
166 
hv_get_bytes_to_write(const struct hv_ring_buffer_info * rbi)167 static inline u32 hv_get_bytes_to_write(const struct hv_ring_buffer_info *rbi)
168 {
169 	u32 read_loc, write_loc, dsize, write;
170 
171 	dsize = rbi->ring_datasize;
172 	read_loc = READ_ONCE(rbi->ring_buffer->read_index);
173 	write_loc = rbi->ring_buffer->write_index;
174 
175 	write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
176 		read_loc - write_loc;
177 	return write;
178 }
179 
180 /*
181  * VMBUS version is 32 bit entity broken up into
182  * two 16 bit quantities: major_number. minor_number.
183  *
184  * 0 . 13 (Windows Server 2008)
185  * 1 . 1  (Windows 7)
186  * 2 . 4  (Windows 8)
187  * 3 . 0  (Windows 8 R2)
188  * 4 . 0  (Windows 10)
189  */
190 
191 #define VERSION_WS2008  ((0 << 16) | (13))
192 #define VERSION_WIN7    ((1 << 16) | (1))
193 #define VERSION_WIN8    ((2 << 16) | (4))
194 #define VERSION_WIN8_1    ((3 << 16) | (0))
195 #define VERSION_WIN10	((4 << 16) | (0))
196 
197 #define VERSION_INVAL -1
198 
199 #define VERSION_CURRENT VERSION_WIN10
200 
201 /* Make maximum size of pipe payload of 16K */
202 #define MAX_PIPE_DATA_PAYLOAD		(sizeof(u8) * 16384)
203 
204 /* Define PipeMode values. */
205 #define VMBUS_PIPE_TYPE_BYTE		0x00000000
206 #define VMBUS_PIPE_TYPE_MESSAGE		0x00000004
207 
208 /* The size of the user defined data buffer for non-pipe offers. */
209 #define MAX_USER_DEFINED_BYTES		120
210 
211 /* The size of the user defined data buffer for pipe offers. */
212 #define MAX_PIPE_USER_DEFINED_BYTES	116
213 
214 /*
215  * At the center of the Channel Management library is the Channel Offer. This
216  * struct contains the fundamental information about an offer.
217  */
218 struct vmbus_channel_offer {
219 	uuid_le if_type;
220 	uuid_le if_instance;
221 
222 	/*
223 	 * These two fields are not currently used.
224 	 */
225 	u64 reserved1;
226 	u64 reserved2;
227 
228 	u16 chn_flags;
229 	u16 mmio_megabytes;		/* in bytes * 1024 * 1024 */
230 
231 	union {
232 		/* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */
233 		struct {
234 			unsigned char user_def[MAX_USER_DEFINED_BYTES];
235 		} std;
236 
237 		/*
238 		 * Pipes:
239 		 * The following sructure is an integrated pipe protocol, which
240 		 * is implemented on top of standard user-defined data. Pipe
241 		 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own
242 		 * use.
243 		 */
244 		struct {
245 			u32  pipe_mode;
246 			unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES];
247 		} pipe;
248 	} u;
249 	/*
250 	 * The sub_channel_index is defined in win8.
251 	 */
252 	u16 sub_channel_index;
253 	u16 reserved3;
254 } __packed;
255 
256 /* Server Flags */
257 #define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE	1
258 #define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES	2
259 #define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS		4
260 #define VMBUS_CHANNEL_NAMED_PIPE_MODE			0x10
261 #define VMBUS_CHANNEL_LOOPBACK_OFFER			0x100
262 #define VMBUS_CHANNEL_PARENT_OFFER			0x200
263 #define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION	0x400
264 #define VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER		0x2000
265 
266 struct vmpacket_descriptor {
267 	u16 type;
268 	u16 offset8;
269 	u16 len8;
270 	u16 flags;
271 	u64 trans_id;
272 } __packed;
273 
274 struct vmpacket_header {
275 	u32 prev_pkt_start_offset;
276 	struct vmpacket_descriptor descriptor;
277 } __packed;
278 
279 struct vmtransfer_page_range {
280 	u32 byte_count;
281 	u32 byte_offset;
282 } __packed;
283 
284 struct vmtransfer_page_packet_header {
285 	struct vmpacket_descriptor d;
286 	u16 xfer_pageset_id;
287 	u8  sender_owns_set;
288 	u8 reserved;
289 	u32 range_cnt;
290 	struct vmtransfer_page_range ranges[1];
291 } __packed;
292 
293 struct vmgpadl_packet_header {
294 	struct vmpacket_descriptor d;
295 	u32 gpadl;
296 	u32 reserved;
297 } __packed;
298 
299 struct vmadd_remove_transfer_page_set {
300 	struct vmpacket_descriptor d;
301 	u32 gpadl;
302 	u16 xfer_pageset_id;
303 	u16 reserved;
304 } __packed;
305 
306 /*
307  * This structure defines a range in guest physical space that can be made to
308  * look virtually contiguous.
309  */
310 struct gpa_range {
311 	u32 byte_count;
312 	u32 byte_offset;
313 	u64 pfn_array[0];
314 };
315 
316 /*
317  * This is the format for an Establish Gpadl packet, which contains a handle by
318  * which this GPADL will be known and a set of GPA ranges associated with it.
319  * This can be converted to a MDL by the guest OS.  If there are multiple GPA
320  * ranges, then the resulting MDL will be "chained," representing multiple VA
321  * ranges.
322  */
323 struct vmestablish_gpadl {
324 	struct vmpacket_descriptor d;
325 	u32 gpadl;
326 	u32 range_cnt;
327 	struct gpa_range range[1];
328 } __packed;
329 
330 /*
331  * This is the format for a Teardown Gpadl packet, which indicates that the
332  * GPADL handle in the Establish Gpadl packet will never be referenced again.
333  */
334 struct vmteardown_gpadl {
335 	struct vmpacket_descriptor d;
336 	u32 gpadl;
337 	u32 reserved;	/* for alignment to a 8-byte boundary */
338 } __packed;
339 
340 /*
341  * This is the format for a GPA-Direct packet, which contains a set of GPA
342  * ranges, in addition to commands and/or data.
343  */
344 struct vmdata_gpa_direct {
345 	struct vmpacket_descriptor d;
346 	u32 reserved;
347 	u32 range_cnt;
348 	struct gpa_range range[1];
349 } __packed;
350 
351 /* This is the format for a Additional Data Packet. */
352 struct vmadditional_data {
353 	struct vmpacket_descriptor d;
354 	u64 total_bytes;
355 	u32 offset;
356 	u32 byte_cnt;
357 	unsigned char data[1];
358 } __packed;
359 
360 union vmpacket_largest_possible_header {
361 	struct vmpacket_descriptor simple_hdr;
362 	struct vmtransfer_page_packet_header xfer_page_hdr;
363 	struct vmgpadl_packet_header gpadl_hdr;
364 	struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr;
365 	struct vmestablish_gpadl establish_gpadl_hdr;
366 	struct vmteardown_gpadl teardown_gpadl_hdr;
367 	struct vmdata_gpa_direct data_gpa_direct_hdr;
368 };
369 
370 #define VMPACKET_DATA_START_ADDRESS(__packet)	\
371 	(void *)(((unsigned char *)__packet) +	\
372 	 ((struct vmpacket_descriptor)__packet)->offset8 * 8)
373 
374 #define VMPACKET_DATA_LENGTH(__packet)		\
375 	((((struct vmpacket_descriptor)__packet)->len8 -	\
376 	  ((struct vmpacket_descriptor)__packet)->offset8) * 8)
377 
378 #define VMPACKET_TRANSFER_MODE(__packet)	\
379 	(((struct IMPACT)__packet)->type)
380 
381 enum vmbus_packet_type {
382 	VM_PKT_INVALID				= 0x0,
383 	VM_PKT_SYNCH				= 0x1,
384 	VM_PKT_ADD_XFER_PAGESET			= 0x2,
385 	VM_PKT_RM_XFER_PAGESET			= 0x3,
386 	VM_PKT_ESTABLISH_GPADL			= 0x4,
387 	VM_PKT_TEARDOWN_GPADL			= 0x5,
388 	VM_PKT_DATA_INBAND			= 0x6,
389 	VM_PKT_DATA_USING_XFER_PAGES		= 0x7,
390 	VM_PKT_DATA_USING_GPADL			= 0x8,
391 	VM_PKT_DATA_USING_GPA_DIRECT		= 0x9,
392 	VM_PKT_CANCEL_REQUEST			= 0xa,
393 	VM_PKT_COMP				= 0xb,
394 	VM_PKT_DATA_USING_ADDITIONAL_PKT	= 0xc,
395 	VM_PKT_ADDITIONAL_DATA			= 0xd
396 };
397 
398 #define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED	1
399 
400 
401 /* Version 1 messages */
402 enum vmbus_channel_message_type {
403 	CHANNELMSG_INVALID			=  0,
404 	CHANNELMSG_OFFERCHANNEL		=  1,
405 	CHANNELMSG_RESCIND_CHANNELOFFER	=  2,
406 	CHANNELMSG_REQUESTOFFERS		=  3,
407 	CHANNELMSG_ALLOFFERS_DELIVERED	=  4,
408 	CHANNELMSG_OPENCHANNEL		=  5,
409 	CHANNELMSG_OPENCHANNEL_RESULT		=  6,
410 	CHANNELMSG_CLOSECHANNEL		=  7,
411 	CHANNELMSG_GPADL_HEADER		=  8,
412 	CHANNELMSG_GPADL_BODY			=  9,
413 	CHANNELMSG_GPADL_CREATED		= 10,
414 	CHANNELMSG_GPADL_TEARDOWN		= 11,
415 	CHANNELMSG_GPADL_TORNDOWN		= 12,
416 	CHANNELMSG_RELID_RELEASED		= 13,
417 	CHANNELMSG_INITIATE_CONTACT		= 14,
418 	CHANNELMSG_VERSION_RESPONSE		= 15,
419 	CHANNELMSG_UNLOAD			= 16,
420 	CHANNELMSG_UNLOAD_RESPONSE		= 17,
421 	CHANNELMSG_18				= 18,
422 	CHANNELMSG_19				= 19,
423 	CHANNELMSG_20				= 20,
424 	CHANNELMSG_TL_CONNECT_REQUEST		= 21,
425 	CHANNELMSG_COUNT
426 };
427 
428 struct vmbus_channel_message_header {
429 	enum vmbus_channel_message_type msgtype;
430 	u32 padding;
431 } __packed;
432 
433 /* Query VMBus Version parameters */
434 struct vmbus_channel_query_vmbus_version {
435 	struct vmbus_channel_message_header header;
436 	u32 version;
437 } __packed;
438 
439 /* VMBus Version Supported parameters */
440 struct vmbus_channel_version_supported {
441 	struct vmbus_channel_message_header header;
442 	u8 version_supported;
443 } __packed;
444 
445 /* Offer Channel parameters */
446 struct vmbus_channel_offer_channel {
447 	struct vmbus_channel_message_header header;
448 	struct vmbus_channel_offer offer;
449 	u32 child_relid;
450 	u8 monitorid;
451 	/*
452 	 * win7 and beyond splits this field into a bit field.
453 	 */
454 	u8 monitor_allocated:1;
455 	u8 reserved:7;
456 	/*
457 	 * These are new fields added in win7 and later.
458 	 * Do not access these fields without checking the
459 	 * negotiated protocol.
460 	 *
461 	 * If "is_dedicated_interrupt" is set, we must not set the
462 	 * associated bit in the channel bitmap while sending the
463 	 * interrupt to the host.
464 	 *
465 	 * connection_id is to be used in signaling the host.
466 	 */
467 	u16 is_dedicated_interrupt:1;
468 	u16 reserved1:15;
469 	u32 connection_id;
470 } __packed;
471 
472 /* Rescind Offer parameters */
473 struct vmbus_channel_rescind_offer {
474 	struct vmbus_channel_message_header header;
475 	u32 child_relid;
476 } __packed;
477 
478 static inline u32
hv_ringbuffer_pending_size(const struct hv_ring_buffer_info * rbi)479 hv_ringbuffer_pending_size(const struct hv_ring_buffer_info *rbi)
480 {
481 	return rbi->ring_buffer->pending_send_sz;
482 }
483 
484 /*
485  * Request Offer -- no parameters, SynIC message contains the partition ID
486  * Set Snoop -- no parameters, SynIC message contains the partition ID
487  * Clear Snoop -- no parameters, SynIC message contains the partition ID
488  * All Offers Delivered -- no parameters, SynIC message contains the partition
489  *		           ID
490  * Flush Client -- no parameters, SynIC message contains the partition ID
491  */
492 
493 /* Open Channel parameters */
494 struct vmbus_channel_open_channel {
495 	struct vmbus_channel_message_header header;
496 
497 	/* Identifies the specific VMBus channel that is being opened. */
498 	u32 child_relid;
499 
500 	/* ID making a particular open request at a channel offer unique. */
501 	u32 openid;
502 
503 	/* GPADL for the channel's ring buffer. */
504 	u32 ringbuffer_gpadlhandle;
505 
506 	/*
507 	 * Starting with win8, this field will be used to specify
508 	 * the target virtual processor on which to deliver the interrupt for
509 	 * the host to guest communication.
510 	 * Prior to win8, incoming channel interrupts would only
511 	 * be delivered on cpu 0. Setting this value to 0 would
512 	 * preserve the earlier behavior.
513 	 */
514 	u32 target_vp;
515 
516 	/*
517 	 * The upstream ring buffer begins at offset zero in the memory
518 	 * described by RingBufferGpadlHandle. The downstream ring buffer
519 	 * follows it at this offset (in pages).
520 	 */
521 	u32 downstream_ringbuffer_pageoffset;
522 
523 	/* User-specific data to be passed along to the server endpoint. */
524 	unsigned char userdata[MAX_USER_DEFINED_BYTES];
525 } __packed;
526 
527 /* Open Channel Result parameters */
528 struct vmbus_channel_open_result {
529 	struct vmbus_channel_message_header header;
530 	u32 child_relid;
531 	u32 openid;
532 	u32 status;
533 } __packed;
534 
535 /* Close channel parameters; */
536 struct vmbus_channel_close_channel {
537 	struct vmbus_channel_message_header header;
538 	u32 child_relid;
539 } __packed;
540 
541 /* Channel Message GPADL */
542 #define GPADL_TYPE_RING_BUFFER		1
543 #define GPADL_TYPE_SERVER_SAVE_AREA	2
544 #define GPADL_TYPE_TRANSACTION		8
545 
546 /*
547  * The number of PFNs in a GPADL message is defined by the number of
548  * pages that would be spanned by ByteCount and ByteOffset.  If the
549  * implied number of PFNs won't fit in this packet, there will be a
550  * follow-up packet that contains more.
551  */
552 struct vmbus_channel_gpadl_header {
553 	struct vmbus_channel_message_header header;
554 	u32 child_relid;
555 	u32 gpadl;
556 	u16 range_buflen;
557 	u16 rangecount;
558 	struct gpa_range range[0];
559 } __packed;
560 
561 /* This is the followup packet that contains more PFNs. */
562 struct vmbus_channel_gpadl_body {
563 	struct vmbus_channel_message_header header;
564 	u32 msgnumber;
565 	u32 gpadl;
566 	u64 pfn[0];
567 } __packed;
568 
569 struct vmbus_channel_gpadl_created {
570 	struct vmbus_channel_message_header header;
571 	u32 child_relid;
572 	u32 gpadl;
573 	u32 creation_status;
574 } __packed;
575 
576 struct vmbus_channel_gpadl_teardown {
577 	struct vmbus_channel_message_header header;
578 	u32 child_relid;
579 	u32 gpadl;
580 } __packed;
581 
582 struct vmbus_channel_gpadl_torndown {
583 	struct vmbus_channel_message_header header;
584 	u32 gpadl;
585 } __packed;
586 
587 struct vmbus_channel_relid_released {
588 	struct vmbus_channel_message_header header;
589 	u32 child_relid;
590 } __packed;
591 
592 struct vmbus_channel_initiate_contact {
593 	struct vmbus_channel_message_header header;
594 	u32 vmbus_version_requested;
595 	u32 target_vcpu; /* The VCPU the host should respond to */
596 	u64 interrupt_page;
597 	u64 monitor_page1;
598 	u64 monitor_page2;
599 } __packed;
600 
601 /* Hyper-V socket: guest's connect()-ing to host */
602 struct vmbus_channel_tl_connect_request {
603 	struct vmbus_channel_message_header header;
604 	uuid_le guest_endpoint_id;
605 	uuid_le host_service_id;
606 } __packed;
607 
608 struct vmbus_channel_version_response {
609 	struct vmbus_channel_message_header header;
610 	u8 version_supported;
611 } __packed;
612 
613 enum vmbus_channel_state {
614 	CHANNEL_OFFER_STATE,
615 	CHANNEL_OPENING_STATE,
616 	CHANNEL_OPEN_STATE,
617 	CHANNEL_OPENED_STATE,
618 };
619 
620 /*
621  * Represents each channel msg on the vmbus connection This is a
622  * variable-size data structure depending on the msg type itself
623  */
624 struct vmbus_channel_msginfo {
625 	/* Bookkeeping stuff */
626 	struct list_head msglistentry;
627 
628 	/* So far, this is only used to handle gpadl body message */
629 	struct list_head submsglist;
630 
631 	/* Synchronize the request/response if needed */
632 	struct completion  waitevent;
633 	struct vmbus_channel *waiting_channel;
634 	union {
635 		struct vmbus_channel_version_supported version_supported;
636 		struct vmbus_channel_open_result open_result;
637 		struct vmbus_channel_gpadl_torndown gpadl_torndown;
638 		struct vmbus_channel_gpadl_created gpadl_created;
639 		struct vmbus_channel_version_response version_response;
640 	} response;
641 
642 	u32 msgsize;
643 	/*
644 	 * The channel message that goes out on the "wire".
645 	 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header
646 	 */
647 	unsigned char msg[0];
648 };
649 
650 struct vmbus_close_msg {
651 	struct vmbus_channel_msginfo info;
652 	struct vmbus_channel_close_channel msg;
653 };
654 
655 /* Define connection identifier type. */
656 union hv_connection_id {
657 	u32 asu32;
658 	struct {
659 		u32 id:24;
660 		u32 reserved:8;
661 	} u;
662 };
663 
664 enum hv_numa_policy {
665 	HV_BALANCED = 0,
666 	HV_LOCALIZED,
667 };
668 
669 enum vmbus_device_type {
670 	HV_IDE = 0,
671 	HV_SCSI,
672 	HV_FC,
673 	HV_NIC,
674 	HV_ND,
675 	HV_PCIE,
676 	HV_FB,
677 	HV_KBD,
678 	HV_MOUSE,
679 	HV_KVP,
680 	HV_TS,
681 	HV_HB,
682 	HV_SHUTDOWN,
683 	HV_FCOPY,
684 	HV_BACKUP,
685 	HV_DM,
686 	HV_UNKNOWN,
687 };
688 
689 struct vmbus_device {
690 	u16  dev_type;
691 	uuid_le guid;
692 	bool perf_device;
693 };
694 
695 struct vmbus_channel {
696 	struct list_head listentry;
697 
698 	struct hv_device *device_obj;
699 
700 	enum vmbus_channel_state state;
701 
702 	struct vmbus_channel_offer_channel offermsg;
703 	/*
704 	 * These are based on the OfferMsg.MonitorId.
705 	 * Save it here for easy access.
706 	 */
707 	u8 monitor_grp;
708 	u8 monitor_bit;
709 
710 	bool rescind; /* got rescind msg */
711 	struct completion rescind_event;
712 
713 	u32 ringbuffer_gpadlhandle;
714 
715 	/* Allocated memory for ring buffer */
716 	void *ringbuffer_pages;
717 	u32 ringbuffer_pagecount;
718 	struct hv_ring_buffer_info outbound;	/* send to parent */
719 	struct hv_ring_buffer_info inbound;	/* receive from parent */
720 
721 	struct vmbus_close_msg close_msg;
722 
723 	/* Channel callback's invoked in softirq context */
724 	struct tasklet_struct callback_event;
725 	void (*onchannel_callback)(void *context);
726 	void *channel_callback_context;
727 
728 	/*
729 	 * A channel can be marked for one of three modes of reading:
730 	 *   BATCHED - callback called from taslket and should read
731 	 *            channel until empty. Interrupts from the host
732 	 *            are masked while read is in process (default).
733 	 *   DIRECT - callback called from tasklet (softirq).
734 	 *   ISR - callback called in interrupt context and must
735 	 *         invoke its own deferred processing.
736 	 *         Host interrupts are disabled and must be re-enabled
737 	 *         when ring is empty.
738 	 */
739 	enum hv_callback_mode {
740 		HV_CALL_BATCHED,
741 		HV_CALL_DIRECT,
742 		HV_CALL_ISR
743 	} callback_mode;
744 
745 	bool is_dedicated_interrupt;
746 	u64 sig_event;
747 
748 	/*
749 	 * Starting with win8, this field will be used to specify
750 	 * the target virtual processor on which to deliver the interrupt for
751 	 * the host to guest communication.
752 	 * Prior to win8, incoming channel interrupts would only
753 	 * be delivered on cpu 0. Setting this value to 0 would
754 	 * preserve the earlier behavior.
755 	 */
756 	u32 target_vp;
757 	/* The corresponding CPUID in the guest */
758 	u32 target_cpu;
759 	/*
760 	 * State to manage the CPU affiliation of channels.
761 	 */
762 	struct cpumask alloced_cpus_in_node;
763 	int numa_node;
764 	/*
765 	 * Support for sub-channels. For high performance devices,
766 	 * it will be useful to have multiple sub-channels to support
767 	 * a scalable communication infrastructure with the host.
768 	 * The support for sub-channels is implemented as an extention
769 	 * to the current infrastructure.
770 	 * The initial offer is considered the primary channel and this
771 	 * offer message will indicate if the host supports sub-channels.
772 	 * The guest is free to ask for sub-channels to be offerred and can
773 	 * open these sub-channels as a normal "primary" channel. However,
774 	 * all sub-channels will have the same type and instance guids as the
775 	 * primary channel. Requests sent on a given channel will result in a
776 	 * response on the same channel.
777 	 */
778 
779 	/*
780 	 * Sub-channel creation callback. This callback will be called in
781 	 * process context when a sub-channel offer is received from the host.
782 	 * The guest can open the sub-channel in the context of this callback.
783 	 */
784 	void (*sc_creation_callback)(struct vmbus_channel *new_sc);
785 
786 	/*
787 	 * Channel rescind callback. Some channels (the hvsock ones), need to
788 	 * register a callback which is invoked in vmbus_onoffer_rescind().
789 	 */
790 	void (*chn_rescind_callback)(struct vmbus_channel *channel);
791 
792 	/*
793 	 * The spinlock to protect the structure. It is being used to protect
794 	 * test-and-set access to various attributes of the structure as well
795 	 * as all sc_list operations.
796 	 */
797 	spinlock_t lock;
798 	/*
799 	 * All Sub-channels of a primary channel are linked here.
800 	 */
801 	struct list_head sc_list;
802 	/*
803 	 * Current number of sub-channels.
804 	 */
805 	int num_sc;
806 	/*
807 	 * Number of a sub-channel (position within sc_list) which is supposed
808 	 * to be used as the next outgoing channel.
809 	 */
810 	int next_oc;
811 	/*
812 	 * The primary channel this sub-channel belongs to.
813 	 * This will be NULL for the primary channel.
814 	 */
815 	struct vmbus_channel *primary_channel;
816 	/*
817 	 * Support per-channel state for use by vmbus drivers.
818 	 */
819 	void *per_channel_state;
820 	/*
821 	 * To support per-cpu lookup mapping of relid to channel,
822 	 * link up channels based on their CPU affinity.
823 	 */
824 	struct list_head percpu_list;
825 
826 	/*
827 	 * Defer freeing channel until after all cpu's have
828 	 * gone through grace period.
829 	 */
830 	struct rcu_head rcu;
831 
832 	/*
833 	 * For performance critical channels (storage, networking
834 	 * etc,), Hyper-V has a mechanism to enhance the throughput
835 	 * at the expense of latency:
836 	 * When the host is to be signaled, we just set a bit in a shared page
837 	 * and this bit will be inspected by the hypervisor within a certain
838 	 * window and if the bit is set, the host will be signaled. The window
839 	 * of time is the monitor latency - currently around 100 usecs. This
840 	 * mechanism improves throughput by:
841 	 *
842 	 * A) Making the host more efficient - each time it wakes up,
843 	 *    potentially it will process morev number of packets. The
844 	 *    monitor latency allows a batch to build up.
845 	 * B) By deferring the hypercall to signal, we will also minimize
846 	 *    the interrupts.
847 	 *
848 	 * Clearly, these optimizations improve throughput at the expense of
849 	 * latency. Furthermore, since the channel is shared for both
850 	 * control and data messages, control messages currently suffer
851 	 * unnecessary latency adversley impacting performance and boot
852 	 * time. To fix this issue, permit tagging the channel as being
853 	 * in "low latency" mode. In this mode, we will bypass the monitor
854 	 * mechanism.
855 	 */
856 	bool low_latency;
857 
858 	/*
859 	 * NUMA distribution policy:
860 	 * We support teo policies:
861 	 * 1) Balanced: Here all performance critical channels are
862 	 *    distributed evenly amongst all the NUMA nodes.
863 	 *    This policy will be the default policy.
864 	 * 2) Localized: All channels of a given instance of a
865 	 *    performance critical service will be assigned CPUs
866 	 *    within a selected NUMA node.
867 	 */
868 	enum hv_numa_policy affinity_policy;
869 
870 	bool probe_done;
871 
872 	/*
873 	 * We must offload the handling of the primary/sub channels
874 	 * from the single-threaded vmbus_connection.work_queue to
875 	 * two different workqueue, otherwise we can block
876 	 * vmbus_connection.work_queue and hang: see vmbus_process_offer().
877 	 */
878 	struct work_struct add_channel_work;
879 };
880 
is_hvsock_channel(const struct vmbus_channel * c)881 static inline bool is_hvsock_channel(const struct vmbus_channel *c)
882 {
883 	return !!(c->offermsg.offer.chn_flags &
884 		  VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER);
885 }
886 
set_channel_affinity_state(struct vmbus_channel * c,enum hv_numa_policy policy)887 static inline void set_channel_affinity_state(struct vmbus_channel *c,
888 					      enum hv_numa_policy policy)
889 {
890 	c->affinity_policy = policy;
891 }
892 
set_channel_read_mode(struct vmbus_channel * c,enum hv_callback_mode mode)893 static inline void set_channel_read_mode(struct vmbus_channel *c,
894 					enum hv_callback_mode mode)
895 {
896 	c->callback_mode = mode;
897 }
898 
set_per_channel_state(struct vmbus_channel * c,void * s)899 static inline void set_per_channel_state(struct vmbus_channel *c, void *s)
900 {
901 	c->per_channel_state = s;
902 }
903 
get_per_channel_state(struct vmbus_channel * c)904 static inline void *get_per_channel_state(struct vmbus_channel *c)
905 {
906 	return c->per_channel_state;
907 }
908 
set_channel_pending_send_size(struct vmbus_channel * c,u32 size)909 static inline void set_channel_pending_send_size(struct vmbus_channel *c,
910 						 u32 size)
911 {
912 	c->outbound.ring_buffer->pending_send_sz = size;
913 }
914 
set_low_latency_mode(struct vmbus_channel * c)915 static inline void set_low_latency_mode(struct vmbus_channel *c)
916 {
917 	c->low_latency = true;
918 }
919 
clear_low_latency_mode(struct vmbus_channel * c)920 static inline void clear_low_latency_mode(struct vmbus_channel *c)
921 {
922 	c->low_latency = false;
923 }
924 
925 void vmbus_onmessage(void *context);
926 
927 int vmbus_request_offers(void);
928 
929 /*
930  * APIs for managing sub-channels.
931  */
932 
933 void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel,
934 			void (*sc_cr_cb)(struct vmbus_channel *new_sc));
935 
936 void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel,
937 		void (*chn_rescind_cb)(struct vmbus_channel *));
938 
939 /*
940  * Retrieve the (sub) channel on which to send an outgoing request.
941  * When a primary channel has multiple sub-channels, we choose a
942  * channel whose VCPU binding is closest to the VCPU on which
943  * this call is being made.
944  */
945 struct vmbus_channel *vmbus_get_outgoing_channel(struct vmbus_channel *primary);
946 
947 /*
948  * Check if sub-channels have already been offerred. This API will be useful
949  * when the driver is unloaded after establishing sub-channels. In this case,
950  * when the driver is re-loaded, the driver would have to check if the
951  * subchannels have already been established before attempting to request
952  * the creation of sub-channels.
953  * This function returns TRUE to indicate that subchannels have already been
954  * created.
955  * This function should be invoked after setting the callback function for
956  * sub-channel creation.
957  */
958 bool vmbus_are_subchannels_present(struct vmbus_channel *primary);
959 
960 /* The format must be the same as struct vmdata_gpa_direct */
961 struct vmbus_channel_packet_page_buffer {
962 	u16 type;
963 	u16 dataoffset8;
964 	u16 length8;
965 	u16 flags;
966 	u64 transactionid;
967 	u32 reserved;
968 	u32 rangecount;
969 	struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT];
970 } __packed;
971 
972 /* The format must be the same as struct vmdata_gpa_direct */
973 struct vmbus_channel_packet_multipage_buffer {
974 	u16 type;
975 	u16 dataoffset8;
976 	u16 length8;
977 	u16 flags;
978 	u64 transactionid;
979 	u32 reserved;
980 	u32 rangecount;		/* Always 1 in this case */
981 	struct hv_multipage_buffer range;
982 } __packed;
983 
984 /* The format must be the same as struct vmdata_gpa_direct */
985 struct vmbus_packet_mpb_array {
986 	u16 type;
987 	u16 dataoffset8;
988 	u16 length8;
989 	u16 flags;
990 	u64 transactionid;
991 	u32 reserved;
992 	u32 rangecount;         /* Always 1 in this case */
993 	struct hv_mpb_array range;
994 } __packed;
995 
996 
997 extern int vmbus_open(struct vmbus_channel *channel,
998 			    u32 send_ringbuffersize,
999 			    u32 recv_ringbuffersize,
1000 			    void *userdata,
1001 			    u32 userdatalen,
1002 			    void (*onchannel_callback)(void *context),
1003 			    void *context);
1004 
1005 extern void vmbus_close(struct vmbus_channel *channel);
1006 
1007 extern int vmbus_sendpacket(struct vmbus_channel *channel,
1008 				  void *buffer,
1009 				  u32 bufferLen,
1010 				  u64 requestid,
1011 				  enum vmbus_packet_type type,
1012 				  u32 flags);
1013 
1014 extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel,
1015 					    struct hv_page_buffer pagebuffers[],
1016 					    u32 pagecount,
1017 					    void *buffer,
1018 					    u32 bufferlen,
1019 					    u64 requestid);
1020 
1021 extern int vmbus_sendpacket_mpb_desc(struct vmbus_channel *channel,
1022 				     struct vmbus_packet_mpb_array *mpb,
1023 				     u32 desc_size,
1024 				     void *buffer,
1025 				     u32 bufferlen,
1026 				     u64 requestid);
1027 
1028 extern int vmbus_establish_gpadl(struct vmbus_channel *channel,
1029 				      void *kbuffer,
1030 				      u32 size,
1031 				      u32 *gpadl_handle);
1032 
1033 extern int vmbus_teardown_gpadl(struct vmbus_channel *channel,
1034 				     u32 gpadl_handle);
1035 
1036 void vmbus_reset_channel_cb(struct vmbus_channel *channel);
1037 
1038 extern int vmbus_recvpacket(struct vmbus_channel *channel,
1039 				  void *buffer,
1040 				  u32 bufferlen,
1041 				  u32 *buffer_actual_len,
1042 				  u64 *requestid);
1043 
1044 extern int vmbus_recvpacket_raw(struct vmbus_channel *channel,
1045 				     void *buffer,
1046 				     u32 bufferlen,
1047 				     u32 *buffer_actual_len,
1048 				     u64 *requestid);
1049 
1050 
1051 extern void vmbus_ontimer(unsigned long data);
1052 
1053 /* Base driver object */
1054 struct hv_driver {
1055 	const char *name;
1056 
1057 	/*
1058 	 * A hvsock offer, which has a VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER
1059 	 * channel flag, actually doesn't mean a synthetic device because the
1060 	 * offer's if_type/if_instance can change for every new hvsock
1061 	 * connection.
1062 	 *
1063 	 * However, to facilitate the notification of new-offer/rescind-offer
1064 	 * from vmbus driver to hvsock driver, we can handle hvsock offer as
1065 	 * a special vmbus device, and hence we need the below flag to
1066 	 * indicate if the driver is the hvsock driver or not: we need to
1067 	 * specially treat the hvosck offer & driver in vmbus_match().
1068 	 */
1069 	bool hvsock;
1070 
1071 	/* the device type supported by this driver */
1072 	uuid_le dev_type;
1073 	const struct hv_vmbus_device_id *id_table;
1074 
1075 	struct device_driver driver;
1076 
1077 	/* dynamic device GUID's */
1078 	struct  {
1079 		spinlock_t lock;
1080 		struct list_head list;
1081 	} dynids;
1082 
1083 	int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *);
1084 	int (*remove)(struct hv_device *);
1085 	void (*shutdown)(struct hv_device *);
1086 
1087 };
1088 
1089 /* Base device object */
1090 struct hv_device {
1091 	/* the device type id of this device */
1092 	uuid_le dev_type;
1093 
1094 	/* the device instance id of this device */
1095 	uuid_le dev_instance;
1096 	u16 vendor_id;
1097 	u16 device_id;
1098 
1099 	struct device device;
1100 
1101 	struct vmbus_channel *channel;
1102 };
1103 
1104 
device_to_hv_device(struct device * d)1105 static inline struct hv_device *device_to_hv_device(struct device *d)
1106 {
1107 	return container_of(d, struct hv_device, device);
1108 }
1109 
drv_to_hv_drv(struct device_driver * d)1110 static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d)
1111 {
1112 	return container_of(d, struct hv_driver, driver);
1113 }
1114 
hv_set_drvdata(struct hv_device * dev,void * data)1115 static inline void hv_set_drvdata(struct hv_device *dev, void *data)
1116 {
1117 	dev_set_drvdata(&dev->device, data);
1118 }
1119 
hv_get_drvdata(struct hv_device * dev)1120 static inline void *hv_get_drvdata(struct hv_device *dev)
1121 {
1122 	return dev_get_drvdata(&dev->device);
1123 }
1124 
1125 struct hv_ring_buffer_debug_info {
1126 	u32 current_interrupt_mask;
1127 	u32 current_read_index;
1128 	u32 current_write_index;
1129 	u32 bytes_avail_toread;
1130 	u32 bytes_avail_towrite;
1131 };
1132 
1133 
1134 int hv_ringbuffer_get_debuginfo(const struct hv_ring_buffer_info *ring_info,
1135 				struct hv_ring_buffer_debug_info *debug_info);
1136 
1137 /* Vmbus interface */
1138 #define vmbus_driver_register(driver)	\
1139 	__vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME)
1140 int __must_check __vmbus_driver_register(struct hv_driver *hv_driver,
1141 					 struct module *owner,
1142 					 const char *mod_name);
1143 void vmbus_driver_unregister(struct hv_driver *hv_driver);
1144 
1145 void vmbus_hvsock_device_unregister(struct vmbus_channel *channel);
1146 
1147 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1148 			resource_size_t min, resource_size_t max,
1149 			resource_size_t size, resource_size_t align,
1150 			bool fb_overlap_ok);
1151 void vmbus_free_mmio(resource_size_t start, resource_size_t size);
1152 
1153 /*
1154  * GUID definitions of various offer types - services offered to the guest.
1155  */
1156 
1157 /*
1158  * Network GUID
1159  * {f8615163-df3e-46c5-913f-f2d2f965ed0e}
1160  */
1161 #define HV_NIC_GUID \
1162 	.guid = UUID_LE(0xf8615163, 0xdf3e, 0x46c5, 0x91, 0x3f, \
1163 			0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e)
1164 
1165 /*
1166  * IDE GUID
1167  * {32412632-86cb-44a2-9b5c-50d1417354f5}
1168  */
1169 #define HV_IDE_GUID \
1170 	.guid = UUID_LE(0x32412632, 0x86cb, 0x44a2, 0x9b, 0x5c, \
1171 			0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5)
1172 
1173 /*
1174  * SCSI GUID
1175  * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f}
1176  */
1177 #define HV_SCSI_GUID \
1178 	.guid = UUID_LE(0xba6163d9, 0x04a1, 0x4d29, 0xb6, 0x05, \
1179 			0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f)
1180 
1181 /*
1182  * Shutdown GUID
1183  * {0e0b6031-5213-4934-818b-38d90ced39db}
1184  */
1185 #define HV_SHUTDOWN_GUID \
1186 	.guid = UUID_LE(0x0e0b6031, 0x5213, 0x4934, 0x81, 0x8b, \
1187 			0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb)
1188 
1189 /*
1190  * Time Synch GUID
1191  * {9527E630-D0AE-497b-ADCE-E80AB0175CAF}
1192  */
1193 #define HV_TS_GUID \
1194 	.guid = UUID_LE(0x9527e630, 0xd0ae, 0x497b, 0xad, 0xce, \
1195 			0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf)
1196 
1197 /*
1198  * Heartbeat GUID
1199  * {57164f39-9115-4e78-ab55-382f3bd5422d}
1200  */
1201 #define HV_HEART_BEAT_GUID \
1202 	.guid = UUID_LE(0x57164f39, 0x9115, 0x4e78, 0xab, 0x55, \
1203 			0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d)
1204 
1205 /*
1206  * KVP GUID
1207  * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6}
1208  */
1209 #define HV_KVP_GUID \
1210 	.guid = UUID_LE(0xa9a0f4e7, 0x5a45, 0x4d96, 0xb8, 0x27, \
1211 			0x8a, 0x84, 0x1e, 0x8c, 0x03, 0xe6)
1212 
1213 /*
1214  * Dynamic memory GUID
1215  * {525074dc-8985-46e2-8057-a307dc18a502}
1216  */
1217 #define HV_DM_GUID \
1218 	.guid = UUID_LE(0x525074dc, 0x8985, 0x46e2, 0x80, 0x57, \
1219 			0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02)
1220 
1221 /*
1222  * Mouse GUID
1223  * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a}
1224  */
1225 #define HV_MOUSE_GUID \
1226 	.guid = UUID_LE(0xcfa8b69e, 0x5b4a, 0x4cc0, 0xb9, 0x8b, \
1227 			0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a)
1228 
1229 /*
1230  * Keyboard GUID
1231  * {f912ad6d-2b17-48ea-bd65-f927a61c7684}
1232  */
1233 #define HV_KBD_GUID \
1234 	.guid = UUID_LE(0xf912ad6d, 0x2b17, 0x48ea, 0xbd, 0x65, \
1235 			0xf9, 0x27, 0xa6, 0x1c, 0x76, 0x84)
1236 
1237 /*
1238  * VSS (Backup/Restore) GUID
1239  */
1240 #define HV_VSS_GUID \
1241 	.guid = UUID_LE(0x35fa2e29, 0xea23, 0x4236, 0x96, 0xae, \
1242 			0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40)
1243 /*
1244  * Synthetic Video GUID
1245  * {DA0A7802-E377-4aac-8E77-0558EB1073F8}
1246  */
1247 #define HV_SYNTHVID_GUID \
1248 	.guid = UUID_LE(0xda0a7802, 0xe377, 0x4aac, 0x8e, 0x77, \
1249 			0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8)
1250 
1251 /*
1252  * Synthetic FC GUID
1253  * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda}
1254  */
1255 #define HV_SYNTHFC_GUID \
1256 	.guid = UUID_LE(0x2f9bcc4a, 0x0069, 0x4af3, 0xb7, 0x6b, \
1257 			0x6f, 0xd0, 0xbe, 0x52, 0x8c, 0xda)
1258 
1259 /*
1260  * Guest File Copy Service
1261  * {34D14BE3-DEE4-41c8-9AE7-6B174977C192}
1262  */
1263 
1264 #define HV_FCOPY_GUID \
1265 	.guid = UUID_LE(0x34d14be3, 0xdee4, 0x41c8, 0x9a, 0xe7, \
1266 			0x6b, 0x17, 0x49, 0x77, 0xc1, 0x92)
1267 
1268 /*
1269  * NetworkDirect. This is the guest RDMA service.
1270  * {8c2eaf3d-32a7-4b09-ab99-bd1f1c86b501}
1271  */
1272 #define HV_ND_GUID \
1273 	.guid = UUID_LE(0x8c2eaf3d, 0x32a7, 0x4b09, 0xab, 0x99, \
1274 			0xbd, 0x1f, 0x1c, 0x86, 0xb5, 0x01)
1275 
1276 /*
1277  * PCI Express Pass Through
1278  * {44C4F61D-4444-4400-9D52-802E27EDE19F}
1279  */
1280 
1281 #define HV_PCIE_GUID \
1282 	.guid = UUID_LE(0x44c4f61d, 0x4444, 0x4400, 0x9d, 0x52, \
1283 			0x80, 0x2e, 0x27, 0xed, 0xe1, 0x9f)
1284 
1285 /*
1286  * Linux doesn't support the 3 devices: the first two are for
1287  * Automatic Virtual Machine Activation, and the third is for
1288  * Remote Desktop Virtualization.
1289  * {f8e65716-3cb3-4a06-9a60-1889c5cccab5}
1290  * {3375baf4-9e15-4b30-b765-67acb10d607b}
1291  * {276aacf4-ac15-426c-98dd-7521ad3f01fe}
1292  */
1293 
1294 #define HV_AVMA1_GUID \
1295 	.guid = UUID_LE(0xf8e65716, 0x3cb3, 0x4a06, 0x9a, 0x60, \
1296 			0x18, 0x89, 0xc5, 0xcc, 0xca, 0xb5)
1297 
1298 #define HV_AVMA2_GUID \
1299 	.guid = UUID_LE(0x3375baf4, 0x9e15, 0x4b30, 0xb7, 0x65, \
1300 			0x67, 0xac, 0xb1, 0x0d, 0x60, 0x7b)
1301 
1302 #define HV_RDV_GUID \
1303 	.guid = UUID_LE(0x276aacf4, 0xac15, 0x426c, 0x98, 0xdd, \
1304 			0x75, 0x21, 0xad, 0x3f, 0x01, 0xfe)
1305 
1306 /*
1307  * Common header for Hyper-V ICs
1308  */
1309 
1310 #define ICMSGTYPE_NEGOTIATE		0
1311 #define ICMSGTYPE_HEARTBEAT		1
1312 #define ICMSGTYPE_KVPEXCHANGE		2
1313 #define ICMSGTYPE_SHUTDOWN		3
1314 #define ICMSGTYPE_TIMESYNC		4
1315 #define ICMSGTYPE_VSS			5
1316 
1317 #define ICMSGHDRFLAG_TRANSACTION	1
1318 #define ICMSGHDRFLAG_REQUEST		2
1319 #define ICMSGHDRFLAG_RESPONSE		4
1320 
1321 
1322 /*
1323  * While we want to handle util services as regular devices,
1324  * there is only one instance of each of these services; so
1325  * we statically allocate the service specific state.
1326  */
1327 
1328 struct hv_util_service {
1329 	u8 *recv_buffer;
1330 	void *channel;
1331 	void (*util_cb)(void *);
1332 	int (*util_init)(struct hv_util_service *);
1333 	void (*util_deinit)(void);
1334 };
1335 
1336 struct vmbuspipe_hdr {
1337 	u32 flags;
1338 	u32 msgsize;
1339 } __packed;
1340 
1341 struct ic_version {
1342 	u16 major;
1343 	u16 minor;
1344 } __packed;
1345 
1346 struct icmsg_hdr {
1347 	struct ic_version icverframe;
1348 	u16 icmsgtype;
1349 	struct ic_version icvermsg;
1350 	u16 icmsgsize;
1351 	u32 status;
1352 	u8 ictransaction_id;
1353 	u8 icflags;
1354 	u8 reserved[2];
1355 } __packed;
1356 
1357 struct icmsg_negotiate {
1358 	u16 icframe_vercnt;
1359 	u16 icmsg_vercnt;
1360 	u32 reserved;
1361 	struct ic_version icversion_data[1]; /* any size array */
1362 } __packed;
1363 
1364 struct shutdown_msg_data {
1365 	u32 reason_code;
1366 	u32 timeout_seconds;
1367 	u32 flags;
1368 	u8  display_message[2048];
1369 } __packed;
1370 
1371 struct heartbeat_msg_data {
1372 	u64 seq_num;
1373 	u32 reserved[8];
1374 } __packed;
1375 
1376 /* Time Sync IC defs */
1377 #define ICTIMESYNCFLAG_PROBE	0
1378 #define ICTIMESYNCFLAG_SYNC	1
1379 #define ICTIMESYNCFLAG_SAMPLE	2
1380 
1381 #ifdef __x86_64__
1382 #define WLTIMEDELTA	116444736000000000L	/* in 100ns unit */
1383 #else
1384 #define WLTIMEDELTA	116444736000000000LL
1385 #endif
1386 
1387 struct ictimesync_data {
1388 	u64 parenttime;
1389 	u64 childtime;
1390 	u64 roundtriptime;
1391 	u8 flags;
1392 } __packed;
1393 
1394 struct ictimesync_ref_data {
1395 	u64 parenttime;
1396 	u64 vmreferencetime;
1397 	u8 flags;
1398 	char leapflags;
1399 	char stratum;
1400 	u8 reserved[3];
1401 } __packed;
1402 
1403 struct hyperv_service_callback {
1404 	u8 msg_type;
1405 	char *log_msg;
1406 	uuid_le data;
1407 	struct vmbus_channel *channel;
1408 	void (*callback)(void *context);
1409 };
1410 
1411 #define MAX_SRV_VER	0x7ffffff
1412 extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *icmsghdrp, u8 *buf,
1413 				const int *fw_version, int fw_vercnt,
1414 				const int *srv_version, int srv_vercnt,
1415 				int *nego_fw_version, int *nego_srv_version);
1416 
1417 void hv_process_channel_removal(u32 relid);
1418 
1419 void vmbus_setevent(struct vmbus_channel *channel);
1420 /*
1421  * Negotiated version with the Host.
1422  */
1423 
1424 extern __u32 vmbus_proto_version;
1425 
1426 int vmbus_send_tl_connect_request(const uuid_le *shv_guest_servie_id,
1427 				  const uuid_le *shv_host_servie_id);
1428 void vmbus_set_event(struct vmbus_channel *channel);
1429 
1430 /* Get the start of the ring buffer. */
1431 static inline void *
hv_get_ring_buffer(const struct hv_ring_buffer_info * ring_info)1432 hv_get_ring_buffer(const struct hv_ring_buffer_info *ring_info)
1433 {
1434 	return ring_info->ring_buffer->buffer;
1435 }
1436 
1437 /*
1438  * Mask off host interrupt callback notifications
1439  */
hv_begin_read(struct hv_ring_buffer_info * rbi)1440 static inline void hv_begin_read(struct hv_ring_buffer_info *rbi)
1441 {
1442 	rbi->ring_buffer->interrupt_mask = 1;
1443 
1444 	/* make sure mask update is not reordered */
1445 	virt_mb();
1446 }
1447 
1448 /*
1449  * Re-enable host callback and return number of outstanding bytes
1450  */
hv_end_read(struct hv_ring_buffer_info * rbi)1451 static inline u32 hv_end_read(struct hv_ring_buffer_info *rbi)
1452 {
1453 
1454 	rbi->ring_buffer->interrupt_mask = 0;
1455 
1456 	/* make sure mask update is not reordered */
1457 	virt_mb();
1458 
1459 	/*
1460 	 * Now check to see if the ring buffer is still empty.
1461 	 * If it is not, we raced and we need to process new
1462 	 * incoming messages.
1463 	 */
1464 	return hv_get_bytes_to_read(rbi);
1465 }
1466 
1467 /*
1468  * An API to support in-place processing of incoming VMBUS packets.
1469  */
1470 
1471 /* Get data payload associated with descriptor */
hv_pkt_data(const struct vmpacket_descriptor * desc)1472 static inline void *hv_pkt_data(const struct vmpacket_descriptor *desc)
1473 {
1474 	return (void *)((unsigned long)desc + (desc->offset8 << 3));
1475 }
1476 
1477 /* Get data size associated with descriptor */
hv_pkt_datalen(const struct vmpacket_descriptor * desc)1478 static inline u32 hv_pkt_datalen(const struct vmpacket_descriptor *desc)
1479 {
1480 	return (desc->len8 << 3) - (desc->offset8 << 3);
1481 }
1482 
1483 
1484 struct vmpacket_descriptor *
1485 hv_pkt_iter_first(struct vmbus_channel *channel);
1486 
1487 struct vmpacket_descriptor *
1488 __hv_pkt_iter_next(struct vmbus_channel *channel,
1489 		   const struct vmpacket_descriptor *pkt);
1490 
1491 void hv_pkt_iter_close(struct vmbus_channel *channel);
1492 
1493 /*
1494  * Get next packet descriptor from iterator
1495  * If at end of list, return NULL and update host.
1496  */
1497 static inline struct vmpacket_descriptor *
hv_pkt_iter_next(struct vmbus_channel * channel,const struct vmpacket_descriptor * pkt)1498 hv_pkt_iter_next(struct vmbus_channel *channel,
1499 		 const struct vmpacket_descriptor *pkt)
1500 {
1501 	struct vmpacket_descriptor *nxt;
1502 
1503 	nxt = __hv_pkt_iter_next(channel, pkt);
1504 	if (!nxt)
1505 		hv_pkt_iter_close(channel);
1506 
1507 	return nxt;
1508 }
1509 
1510 #define foreach_vmbus_pkt(pkt, channel) \
1511 	for (pkt = hv_pkt_iter_first(channel); pkt; \
1512 	    pkt = hv_pkt_iter_next(channel, pkt))
1513 
1514 #endif /* _HYPERV_H */
1515