1 /*
2 * Copyright(c) 2015 - 2017 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47
48 #include <linux/firmware.h>
49 #include <linux/mutex.h>
50 #include <linux/module.h>
51 #include <linux/delay.h>
52 #include <linux/crc32.h>
53
54 #include "hfi.h"
55 #include "trace.h"
56
57 /*
58 * Make it easy to toggle firmware file name and if it gets loaded by
59 * editing the following. This may be something we do while in development
60 * but not necessarily something a user would ever need to use.
61 */
62 #define DEFAULT_FW_8051_NAME_FPGA "hfi_dc8051.bin"
63 #define DEFAULT_FW_8051_NAME_ASIC "hfi1_dc8051.fw"
64 #define DEFAULT_FW_FABRIC_NAME "hfi1_fabric.fw"
65 #define DEFAULT_FW_SBUS_NAME "hfi1_sbus.fw"
66 #define DEFAULT_FW_PCIE_NAME "hfi1_pcie.fw"
67 #define ALT_FW_8051_NAME_ASIC "hfi1_dc8051_d.fw"
68 #define ALT_FW_FABRIC_NAME "hfi1_fabric_d.fw"
69 #define ALT_FW_SBUS_NAME "hfi1_sbus_d.fw"
70 #define ALT_FW_PCIE_NAME "hfi1_pcie_d.fw"
71 #define HOST_INTERFACE_VERSION 1
72
73 static uint fw_8051_load = 1;
74 static uint fw_fabric_serdes_load = 1;
75 static uint fw_pcie_serdes_load = 1;
76 static uint fw_sbus_load = 1;
77
78 /* Firmware file names get set in hfi1_firmware_init() based on the above */
79 static char *fw_8051_name;
80 static char *fw_fabric_serdes_name;
81 static char *fw_sbus_name;
82 static char *fw_pcie_serdes_name;
83
84 #define SBUS_MAX_POLL_COUNT 100
85 #define SBUS_COUNTER(reg, name) \
86 (((reg) >> ASIC_STS_SBUS_COUNTERS_##name##_CNT_SHIFT) & \
87 ASIC_STS_SBUS_COUNTERS_##name##_CNT_MASK)
88
89 /*
90 * Firmware security header.
91 */
92 struct css_header {
93 u32 module_type;
94 u32 header_len;
95 u32 header_version;
96 u32 module_id;
97 u32 module_vendor;
98 u32 date; /* BCD yyyymmdd */
99 u32 size; /* in DWORDs */
100 u32 key_size; /* in DWORDs */
101 u32 modulus_size; /* in DWORDs */
102 u32 exponent_size; /* in DWORDs */
103 u32 reserved[22];
104 };
105
106 /* expected field values */
107 #define CSS_MODULE_TYPE 0x00000006
108 #define CSS_HEADER_LEN 0x000000a1
109 #define CSS_HEADER_VERSION 0x00010000
110 #define CSS_MODULE_VENDOR 0x00008086
111
112 #define KEY_SIZE 256
113 #define MU_SIZE 8
114 #define EXPONENT_SIZE 4
115
116 /* the file itself */
117 struct firmware_file {
118 struct css_header css_header;
119 u8 modulus[KEY_SIZE];
120 u8 exponent[EXPONENT_SIZE];
121 u8 signature[KEY_SIZE];
122 u8 firmware[];
123 };
124
125 struct augmented_firmware_file {
126 struct css_header css_header;
127 u8 modulus[KEY_SIZE];
128 u8 exponent[EXPONENT_SIZE];
129 u8 signature[KEY_SIZE];
130 u8 r2[KEY_SIZE];
131 u8 mu[MU_SIZE];
132 u8 firmware[];
133 };
134
135 /* augmented file size difference */
136 #define AUGMENT_SIZE (sizeof(struct augmented_firmware_file) - \
137 sizeof(struct firmware_file))
138
139 struct firmware_details {
140 /* Linux core piece */
141 const struct firmware *fw;
142
143 struct css_header *css_header;
144 u8 *firmware_ptr; /* pointer to binary data */
145 u32 firmware_len; /* length in bytes */
146 u8 *modulus; /* pointer to the modulus */
147 u8 *exponent; /* pointer to the exponent */
148 u8 *signature; /* pointer to the signature */
149 u8 *r2; /* pointer to r2 */
150 u8 *mu; /* pointer to mu */
151 struct augmented_firmware_file dummy_header;
152 };
153
154 /*
155 * The mutex protects fw_state, fw_err, and all of the firmware_details
156 * variables.
157 */
158 static DEFINE_MUTEX(fw_mutex);
159 enum fw_state {
160 FW_EMPTY,
161 FW_TRY,
162 FW_FINAL,
163 FW_ERR
164 };
165
166 static enum fw_state fw_state = FW_EMPTY;
167 static int fw_err;
168 static struct firmware_details fw_8051;
169 static struct firmware_details fw_fabric;
170 static struct firmware_details fw_pcie;
171 static struct firmware_details fw_sbus;
172
173 /* flags for turn_off_spicos() */
174 #define SPICO_SBUS 0x1
175 #define SPICO_FABRIC 0x2
176 #define ENABLE_SPICO_SMASK 0x1
177
178 /* security block commands */
179 #define RSA_CMD_INIT 0x1
180 #define RSA_CMD_START 0x2
181
182 /* security block status */
183 #define RSA_STATUS_IDLE 0x0
184 #define RSA_STATUS_ACTIVE 0x1
185 #define RSA_STATUS_DONE 0x2
186 #define RSA_STATUS_FAILED 0x3
187
188 /* RSA engine timeout, in ms */
189 #define RSA_ENGINE_TIMEOUT 100 /* ms */
190
191 /* hardware mutex timeout, in ms */
192 #define HM_TIMEOUT 10 /* ms */
193
194 /* 8051 memory access timeout, in us */
195 #define DC8051_ACCESS_TIMEOUT 100 /* us */
196
197 /* the number of fabric SerDes on the SBus */
198 #define NUM_FABRIC_SERDES 4
199
200 /* ASIC_STS_SBUS_RESULT.RESULT_CODE value */
201 #define SBUS_READ_COMPLETE 0x4
202
203 /* SBus fabric SerDes addresses, one set per HFI */
204 static const u8 fabric_serdes_addrs[2][NUM_FABRIC_SERDES] = {
205 { 0x01, 0x02, 0x03, 0x04 },
206 { 0x28, 0x29, 0x2a, 0x2b }
207 };
208
209 /* SBus PCIe SerDes addresses, one set per HFI */
210 static const u8 pcie_serdes_addrs[2][NUM_PCIE_SERDES] = {
211 { 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16,
212 0x18, 0x1a, 0x1c, 0x1e, 0x20, 0x22, 0x24, 0x26 },
213 { 0x2f, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3b, 0x3d,
214 0x3f, 0x41, 0x43, 0x45, 0x47, 0x49, 0x4b, 0x4d }
215 };
216
217 /* SBus PCIe PCS addresses, one set per HFI */
218 const u8 pcie_pcs_addrs[2][NUM_PCIE_SERDES] = {
219 { 0x09, 0x0b, 0x0d, 0x0f, 0x11, 0x13, 0x15, 0x17,
220 0x19, 0x1b, 0x1d, 0x1f, 0x21, 0x23, 0x25, 0x27 },
221 { 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
222 0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e }
223 };
224
225 /* SBus fabric SerDes broadcast addresses, one per HFI */
226 static const u8 fabric_serdes_broadcast[2] = { 0xe4, 0xe5 };
227 static const u8 all_fabric_serdes_broadcast = 0xe1;
228
229 /* SBus PCIe SerDes broadcast addresses, one per HFI */
230 const u8 pcie_serdes_broadcast[2] = { 0xe2, 0xe3 };
231 static const u8 all_pcie_serdes_broadcast = 0xe0;
232
233 static const u32 platform_config_table_limits[PLATFORM_CONFIG_TABLE_MAX] = {
234 0,
235 SYSTEM_TABLE_MAX,
236 PORT_TABLE_MAX,
237 RX_PRESET_TABLE_MAX,
238 TX_PRESET_TABLE_MAX,
239 QSFP_ATTEN_TABLE_MAX,
240 VARIABLE_SETTINGS_TABLE_MAX
241 };
242
243 /* forwards */
244 static void dispose_one_firmware(struct firmware_details *fdet);
245 static int load_fabric_serdes_firmware(struct hfi1_devdata *dd,
246 struct firmware_details *fdet);
247 static void dump_fw_version(struct hfi1_devdata *dd);
248
249 /*
250 * Read a single 64-bit value from 8051 data memory.
251 *
252 * Expects:
253 * o caller to have already set up data read, no auto increment
254 * o caller to turn off read enable when finished
255 *
256 * The address argument is a byte offset. Bits 0:2 in the address are
257 * ignored - i.e. the hardware will always do aligned 8-byte reads as if
258 * the lower bits are zero.
259 *
260 * Return 0 on success, -ENXIO on a read error (timeout).
261 */
__read_8051_data(struct hfi1_devdata * dd,u32 addr,u64 * result)262 static int __read_8051_data(struct hfi1_devdata *dd, u32 addr, u64 *result)
263 {
264 u64 reg;
265 int count;
266
267 /* step 1: set the address, clear enable */
268 reg = (addr & DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_MASK)
269 << DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_SHIFT;
270 write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, reg);
271 /* step 2: enable */
272 write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL,
273 reg | DC_DC8051_CFG_RAM_ACCESS_CTRL_READ_ENA_SMASK);
274
275 /* wait until ACCESS_COMPLETED is set */
276 count = 0;
277 while ((read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_STATUS)
278 & DC_DC8051_CFG_RAM_ACCESS_STATUS_ACCESS_COMPLETED_SMASK)
279 == 0) {
280 count++;
281 if (count > DC8051_ACCESS_TIMEOUT) {
282 dd_dev_err(dd, "timeout reading 8051 data\n");
283 return -ENXIO;
284 }
285 ndelay(10);
286 }
287
288 /* gather the data */
289 *result = read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_RD_DATA);
290
291 return 0;
292 }
293
294 /*
295 * Read 8051 data starting at addr, for len bytes. Will read in 8-byte chunks.
296 * Return 0 on success, -errno on error.
297 */
read_8051_data(struct hfi1_devdata * dd,u32 addr,u32 len,u64 * result)298 int read_8051_data(struct hfi1_devdata *dd, u32 addr, u32 len, u64 *result)
299 {
300 unsigned long flags;
301 u32 done;
302 int ret = 0;
303
304 spin_lock_irqsave(&dd->dc8051_memlock, flags);
305
306 /* data read set-up, no auto-increment */
307 write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, 0);
308
309 for (done = 0; done < len; addr += 8, done += 8, result++) {
310 ret = __read_8051_data(dd, addr, result);
311 if (ret)
312 break;
313 }
314
315 /* turn off read enable */
316 write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, 0);
317
318 spin_unlock_irqrestore(&dd->dc8051_memlock, flags);
319
320 return ret;
321 }
322
323 /*
324 * Write data or code to the 8051 code or data RAM.
325 */
write_8051(struct hfi1_devdata * dd,int code,u32 start,const u8 * data,u32 len)326 static int write_8051(struct hfi1_devdata *dd, int code, u32 start,
327 const u8 *data, u32 len)
328 {
329 u64 reg;
330 u32 offset;
331 int aligned, count;
332
333 /* check alignment */
334 aligned = ((unsigned long)data & 0x7) == 0;
335
336 /* write set-up */
337 reg = (code ? DC_DC8051_CFG_RAM_ACCESS_SETUP_RAM_SEL_SMASK : 0ull)
338 | DC_DC8051_CFG_RAM_ACCESS_SETUP_AUTO_INCR_ADDR_SMASK;
339 write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, reg);
340
341 reg = ((start & DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_MASK)
342 << DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_SHIFT)
343 | DC_DC8051_CFG_RAM_ACCESS_CTRL_WRITE_ENA_SMASK;
344 write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, reg);
345
346 /* write */
347 for (offset = 0; offset < len; offset += 8) {
348 int bytes = len - offset;
349
350 if (bytes < 8) {
351 reg = 0;
352 memcpy(®, &data[offset], bytes);
353 } else if (aligned) {
354 reg = *(u64 *)&data[offset];
355 } else {
356 memcpy(®, &data[offset], 8);
357 }
358 write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_WR_DATA, reg);
359
360 /* wait until ACCESS_COMPLETED is set */
361 count = 0;
362 while ((read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_STATUS)
363 & DC_DC8051_CFG_RAM_ACCESS_STATUS_ACCESS_COMPLETED_SMASK)
364 == 0) {
365 count++;
366 if (count > DC8051_ACCESS_TIMEOUT) {
367 dd_dev_err(dd, "timeout writing 8051 data\n");
368 return -ENXIO;
369 }
370 udelay(1);
371 }
372 }
373
374 /* turn off write access, auto increment (also sets to data access) */
375 write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, 0);
376 write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, 0);
377
378 return 0;
379 }
380
381 /* return 0 if values match, non-zero and complain otherwise */
invalid_header(struct hfi1_devdata * dd,const char * what,u32 actual,u32 expected)382 static int invalid_header(struct hfi1_devdata *dd, const char *what,
383 u32 actual, u32 expected)
384 {
385 if (actual == expected)
386 return 0;
387
388 dd_dev_err(dd,
389 "invalid firmware header field %s: expected 0x%x, actual 0x%x\n",
390 what, expected, actual);
391 return 1;
392 }
393
394 /*
395 * Verify that the static fields in the CSS header match.
396 */
verify_css_header(struct hfi1_devdata * dd,struct css_header * css)397 static int verify_css_header(struct hfi1_devdata *dd, struct css_header *css)
398 {
399 /* verify CSS header fields (most sizes are in DW, so add /4) */
400 if (invalid_header(dd, "module_type", css->module_type,
401 CSS_MODULE_TYPE) ||
402 invalid_header(dd, "header_len", css->header_len,
403 (sizeof(struct firmware_file) / 4)) ||
404 invalid_header(dd, "header_version", css->header_version,
405 CSS_HEADER_VERSION) ||
406 invalid_header(dd, "module_vendor", css->module_vendor,
407 CSS_MODULE_VENDOR) ||
408 invalid_header(dd, "key_size", css->key_size, KEY_SIZE / 4) ||
409 invalid_header(dd, "modulus_size", css->modulus_size,
410 KEY_SIZE / 4) ||
411 invalid_header(dd, "exponent_size", css->exponent_size,
412 EXPONENT_SIZE / 4)) {
413 return -EINVAL;
414 }
415 return 0;
416 }
417
418 /*
419 * Make sure there are at least some bytes after the prefix.
420 */
payload_check(struct hfi1_devdata * dd,const char * name,long file_size,long prefix_size)421 static int payload_check(struct hfi1_devdata *dd, const char *name,
422 long file_size, long prefix_size)
423 {
424 /* make sure we have some payload */
425 if (prefix_size >= file_size) {
426 dd_dev_err(dd,
427 "firmware \"%s\", size %ld, must be larger than %ld bytes\n",
428 name, file_size, prefix_size);
429 return -EINVAL;
430 }
431
432 return 0;
433 }
434
435 /*
436 * Request the firmware from the system. Extract the pieces and fill in
437 * fdet. If successful, the caller will need to call dispose_one_firmware().
438 * Returns 0 on success, -ERRNO on error.
439 */
obtain_one_firmware(struct hfi1_devdata * dd,const char * name,struct firmware_details * fdet)440 static int obtain_one_firmware(struct hfi1_devdata *dd, const char *name,
441 struct firmware_details *fdet)
442 {
443 struct css_header *css;
444 int ret;
445
446 memset(fdet, 0, sizeof(*fdet));
447
448 ret = request_firmware(&fdet->fw, name, &dd->pcidev->dev);
449 if (ret) {
450 dd_dev_warn(dd, "cannot find firmware \"%s\", err %d\n",
451 name, ret);
452 return ret;
453 }
454
455 /* verify the firmware */
456 if (fdet->fw->size < sizeof(struct css_header)) {
457 dd_dev_err(dd, "firmware \"%s\" is too small\n", name);
458 ret = -EINVAL;
459 goto done;
460 }
461 css = (struct css_header *)fdet->fw->data;
462
463 hfi1_cdbg(FIRMWARE, "Firmware %s details:", name);
464 hfi1_cdbg(FIRMWARE, "file size: 0x%lx bytes", fdet->fw->size);
465 hfi1_cdbg(FIRMWARE, "CSS structure:");
466 hfi1_cdbg(FIRMWARE, " module_type 0x%x", css->module_type);
467 hfi1_cdbg(FIRMWARE, " header_len 0x%03x (0x%03x bytes)",
468 css->header_len, 4 * css->header_len);
469 hfi1_cdbg(FIRMWARE, " header_version 0x%x", css->header_version);
470 hfi1_cdbg(FIRMWARE, " module_id 0x%x", css->module_id);
471 hfi1_cdbg(FIRMWARE, " module_vendor 0x%x", css->module_vendor);
472 hfi1_cdbg(FIRMWARE, " date 0x%x", css->date);
473 hfi1_cdbg(FIRMWARE, " size 0x%03x (0x%03x bytes)",
474 css->size, 4 * css->size);
475 hfi1_cdbg(FIRMWARE, " key_size 0x%03x (0x%03x bytes)",
476 css->key_size, 4 * css->key_size);
477 hfi1_cdbg(FIRMWARE, " modulus_size 0x%03x (0x%03x bytes)",
478 css->modulus_size, 4 * css->modulus_size);
479 hfi1_cdbg(FIRMWARE, " exponent_size 0x%03x (0x%03x bytes)",
480 css->exponent_size, 4 * css->exponent_size);
481 hfi1_cdbg(FIRMWARE, "firmware size: 0x%lx bytes",
482 fdet->fw->size - sizeof(struct firmware_file));
483
484 /*
485 * If the file does not have a valid CSS header, fail.
486 * Otherwise, check the CSS size field for an expected size.
487 * The augmented file has r2 and mu inserted after the header
488 * was generated, so there will be a known difference between
489 * the CSS header size and the actual file size. Use this
490 * difference to identify an augmented file.
491 *
492 * Note: css->size is in DWORDs, multiply by 4 to get bytes.
493 */
494 ret = verify_css_header(dd, css);
495 if (ret) {
496 dd_dev_info(dd, "Invalid CSS header for \"%s\"\n", name);
497 } else if ((css->size * 4) == fdet->fw->size) {
498 /* non-augmented firmware file */
499 struct firmware_file *ff = (struct firmware_file *)
500 fdet->fw->data;
501
502 /* make sure there are bytes in the payload */
503 ret = payload_check(dd, name, fdet->fw->size,
504 sizeof(struct firmware_file));
505 if (ret == 0) {
506 fdet->css_header = css;
507 fdet->modulus = ff->modulus;
508 fdet->exponent = ff->exponent;
509 fdet->signature = ff->signature;
510 fdet->r2 = fdet->dummy_header.r2; /* use dummy space */
511 fdet->mu = fdet->dummy_header.mu; /* use dummy space */
512 fdet->firmware_ptr = ff->firmware;
513 fdet->firmware_len = fdet->fw->size -
514 sizeof(struct firmware_file);
515 /*
516 * Header does not include r2 and mu - generate here.
517 * For now, fail.
518 */
519 dd_dev_err(dd, "driver is unable to validate firmware without r2 and mu (not in firmware file)\n");
520 ret = -EINVAL;
521 }
522 } else if ((css->size * 4) + AUGMENT_SIZE == fdet->fw->size) {
523 /* augmented firmware file */
524 struct augmented_firmware_file *aff =
525 (struct augmented_firmware_file *)fdet->fw->data;
526
527 /* make sure there are bytes in the payload */
528 ret = payload_check(dd, name, fdet->fw->size,
529 sizeof(struct augmented_firmware_file));
530 if (ret == 0) {
531 fdet->css_header = css;
532 fdet->modulus = aff->modulus;
533 fdet->exponent = aff->exponent;
534 fdet->signature = aff->signature;
535 fdet->r2 = aff->r2;
536 fdet->mu = aff->mu;
537 fdet->firmware_ptr = aff->firmware;
538 fdet->firmware_len = fdet->fw->size -
539 sizeof(struct augmented_firmware_file);
540 }
541 } else {
542 /* css->size check failed */
543 dd_dev_err(dd,
544 "invalid firmware header field size: expected 0x%lx or 0x%lx, actual 0x%x\n",
545 fdet->fw->size / 4,
546 (fdet->fw->size - AUGMENT_SIZE) / 4,
547 css->size);
548
549 ret = -EINVAL;
550 }
551
552 done:
553 /* if returning an error, clean up after ourselves */
554 if (ret)
555 dispose_one_firmware(fdet);
556 return ret;
557 }
558
dispose_one_firmware(struct firmware_details * fdet)559 static void dispose_one_firmware(struct firmware_details *fdet)
560 {
561 release_firmware(fdet->fw);
562 /* erase all previous information */
563 memset(fdet, 0, sizeof(*fdet));
564 }
565
566 /*
567 * Obtain the 4 firmwares from the OS. All must be obtained at once or not
568 * at all. If called with the firmware state in FW_TRY, use alternate names.
569 * On exit, this routine will have set the firmware state to one of FW_TRY,
570 * FW_FINAL, or FW_ERR.
571 *
572 * Must be holding fw_mutex.
573 */
__obtain_firmware(struct hfi1_devdata * dd)574 static void __obtain_firmware(struct hfi1_devdata *dd)
575 {
576 int err = 0;
577
578 if (fw_state == FW_FINAL) /* nothing more to obtain */
579 return;
580 if (fw_state == FW_ERR) /* already in error */
581 return;
582
583 /* fw_state is FW_EMPTY or FW_TRY */
584 retry:
585 if (fw_state == FW_TRY) {
586 /*
587 * We tried the original and it failed. Move to the
588 * alternate.
589 */
590 dd_dev_warn(dd, "using alternate firmware names\n");
591 /*
592 * Let others run. Some systems, when missing firmware, does
593 * something that holds for 30 seconds. If we do that twice
594 * in a row it triggers task blocked warning.
595 */
596 cond_resched();
597 if (fw_8051_load)
598 dispose_one_firmware(&fw_8051);
599 if (fw_fabric_serdes_load)
600 dispose_one_firmware(&fw_fabric);
601 if (fw_sbus_load)
602 dispose_one_firmware(&fw_sbus);
603 if (fw_pcie_serdes_load)
604 dispose_one_firmware(&fw_pcie);
605 fw_8051_name = ALT_FW_8051_NAME_ASIC;
606 fw_fabric_serdes_name = ALT_FW_FABRIC_NAME;
607 fw_sbus_name = ALT_FW_SBUS_NAME;
608 fw_pcie_serdes_name = ALT_FW_PCIE_NAME;
609
610 /*
611 * Add a delay before obtaining and loading debug firmware.
612 * Authorization will fail if the delay between firmware
613 * authorization events is shorter than 50us. Add 100us to
614 * make a delay time safe.
615 */
616 usleep_range(100, 120);
617 }
618
619 if (fw_sbus_load) {
620 err = obtain_one_firmware(dd, fw_sbus_name, &fw_sbus);
621 if (err)
622 goto done;
623 }
624
625 if (fw_pcie_serdes_load) {
626 err = obtain_one_firmware(dd, fw_pcie_serdes_name, &fw_pcie);
627 if (err)
628 goto done;
629 }
630
631 if (fw_fabric_serdes_load) {
632 err = obtain_one_firmware(dd, fw_fabric_serdes_name,
633 &fw_fabric);
634 if (err)
635 goto done;
636 }
637
638 if (fw_8051_load) {
639 err = obtain_one_firmware(dd, fw_8051_name, &fw_8051);
640 if (err)
641 goto done;
642 }
643
644 done:
645 if (err) {
646 /* oops, had problems obtaining a firmware */
647 if (fw_state == FW_EMPTY && dd->icode == ICODE_RTL_SILICON) {
648 /* retry with alternate (RTL only) */
649 fw_state = FW_TRY;
650 goto retry;
651 }
652 dd_dev_err(dd, "unable to obtain working firmware\n");
653 fw_state = FW_ERR;
654 fw_err = -ENOENT;
655 } else {
656 /* success */
657 if (fw_state == FW_EMPTY &&
658 dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
659 fw_state = FW_TRY; /* may retry later */
660 else
661 fw_state = FW_FINAL; /* cannot try again */
662 }
663 }
664
665 /*
666 * Called by all HFIs when loading their firmware - i.e. device probe time.
667 * The first one will do the actual firmware load. Use a mutex to resolve
668 * any possible race condition.
669 *
670 * The call to this routine cannot be moved to driver load because the kernel
671 * call request_firmware() requires a device which is only available after
672 * the first device probe.
673 */
obtain_firmware(struct hfi1_devdata * dd)674 static int obtain_firmware(struct hfi1_devdata *dd)
675 {
676 unsigned long timeout;
677
678 mutex_lock(&fw_mutex);
679
680 /* 40s delay due to long delay on missing firmware on some systems */
681 timeout = jiffies + msecs_to_jiffies(40000);
682 while (fw_state == FW_TRY) {
683 /*
684 * Another device is trying the firmware. Wait until it
685 * decides what works (or not).
686 */
687 if (time_after(jiffies, timeout)) {
688 /* waited too long */
689 dd_dev_err(dd, "Timeout waiting for firmware try");
690 fw_state = FW_ERR;
691 fw_err = -ETIMEDOUT;
692 break;
693 }
694 mutex_unlock(&fw_mutex);
695 msleep(20); /* arbitrary delay */
696 mutex_lock(&fw_mutex);
697 }
698 /* not in FW_TRY state */
699
700 /* set fw_state to FW_TRY, FW_FINAL, or FW_ERR, and fw_err */
701 if (fw_state == FW_EMPTY)
702 __obtain_firmware(dd);
703
704 mutex_unlock(&fw_mutex);
705 return fw_err;
706 }
707
708 /*
709 * Called when the driver unloads. The timing is asymmetric with its
710 * counterpart, obtain_firmware(). If called at device remove time,
711 * then it is conceivable that another device could probe while the
712 * firmware is being disposed. The mutexes can be moved to do that
713 * safely, but then the firmware would be requested from the OS multiple
714 * times.
715 *
716 * No mutex is needed as the driver is unloading and there cannot be any
717 * other callers.
718 */
dispose_firmware(void)719 void dispose_firmware(void)
720 {
721 dispose_one_firmware(&fw_8051);
722 dispose_one_firmware(&fw_fabric);
723 dispose_one_firmware(&fw_pcie);
724 dispose_one_firmware(&fw_sbus);
725
726 /* retain the error state, otherwise revert to empty */
727 if (fw_state != FW_ERR)
728 fw_state = FW_EMPTY;
729 }
730
731 /*
732 * Called with the result of a firmware download.
733 *
734 * Return 1 to retry loading the firmware, 0 to stop.
735 */
retry_firmware(struct hfi1_devdata * dd,int load_result)736 static int retry_firmware(struct hfi1_devdata *dd, int load_result)
737 {
738 int retry;
739
740 mutex_lock(&fw_mutex);
741
742 if (load_result == 0) {
743 /*
744 * The load succeeded, so expect all others to do the same.
745 * Do not retry again.
746 */
747 if (fw_state == FW_TRY)
748 fw_state = FW_FINAL;
749 retry = 0; /* do NOT retry */
750 } else if (fw_state == FW_TRY) {
751 /* load failed, obtain alternate firmware */
752 __obtain_firmware(dd);
753 retry = (fw_state == FW_FINAL);
754 } else {
755 /* else in FW_FINAL or FW_ERR, no retry in either case */
756 retry = 0;
757 }
758
759 mutex_unlock(&fw_mutex);
760 return retry;
761 }
762
763 /*
764 * Write a block of data to a given array CSR. All calls will be in
765 * multiples of 8 bytes.
766 */
write_rsa_data(struct hfi1_devdata * dd,int what,const u8 * data,int nbytes)767 static void write_rsa_data(struct hfi1_devdata *dd, int what,
768 const u8 *data, int nbytes)
769 {
770 int qw_size = nbytes / 8;
771 int i;
772
773 if (((unsigned long)data & 0x7) == 0) {
774 /* aligned */
775 u64 *ptr = (u64 *)data;
776
777 for (i = 0; i < qw_size; i++, ptr++)
778 write_csr(dd, what + (8 * i), *ptr);
779 } else {
780 /* not aligned */
781 for (i = 0; i < qw_size; i++, data += 8) {
782 u64 value;
783
784 memcpy(&value, data, 8);
785 write_csr(dd, what + (8 * i), value);
786 }
787 }
788 }
789
790 /*
791 * Write a block of data to a given CSR as a stream of writes. All calls will
792 * be in multiples of 8 bytes.
793 */
write_streamed_rsa_data(struct hfi1_devdata * dd,int what,const u8 * data,int nbytes)794 static void write_streamed_rsa_data(struct hfi1_devdata *dd, int what,
795 const u8 *data, int nbytes)
796 {
797 u64 *ptr = (u64 *)data;
798 int qw_size = nbytes / 8;
799
800 for (; qw_size > 0; qw_size--, ptr++)
801 write_csr(dd, what, *ptr);
802 }
803
804 /*
805 * Download the signature and start the RSA mechanism. Wait for
806 * RSA_ENGINE_TIMEOUT before giving up.
807 */
run_rsa(struct hfi1_devdata * dd,const char * who,const u8 * signature)808 static int run_rsa(struct hfi1_devdata *dd, const char *who,
809 const u8 *signature)
810 {
811 unsigned long timeout;
812 u64 reg;
813 u32 status;
814 int ret = 0;
815
816 /* write the signature */
817 write_rsa_data(dd, MISC_CFG_RSA_SIGNATURE, signature, KEY_SIZE);
818
819 /* initialize RSA */
820 write_csr(dd, MISC_CFG_RSA_CMD, RSA_CMD_INIT);
821
822 /*
823 * Make sure the engine is idle and insert a delay between the two
824 * writes to MISC_CFG_RSA_CMD.
825 */
826 status = (read_csr(dd, MISC_CFG_FW_CTRL)
827 & MISC_CFG_FW_CTRL_RSA_STATUS_SMASK)
828 >> MISC_CFG_FW_CTRL_RSA_STATUS_SHIFT;
829 if (status != RSA_STATUS_IDLE) {
830 dd_dev_err(dd, "%s security engine not idle - giving up\n",
831 who);
832 return -EBUSY;
833 }
834
835 /* start RSA */
836 write_csr(dd, MISC_CFG_RSA_CMD, RSA_CMD_START);
837
838 /*
839 * Look for the result.
840 *
841 * The RSA engine is hooked up to two MISC errors. The driver
842 * masks these errors as they do not respond to the standard
843 * error "clear down" mechanism. Look for these errors here and
844 * clear them when possible. This routine will exit with the
845 * errors of the current run still set.
846 *
847 * MISC_FW_AUTH_FAILED_ERR
848 * Firmware authorization failed. This can be cleared by
849 * re-initializing the RSA engine, then clearing the status bit.
850 * Do not re-init the RSA angine immediately after a successful
851 * run - this will reset the current authorization.
852 *
853 * MISC_KEY_MISMATCH_ERR
854 * Key does not match. The only way to clear this is to load
855 * a matching key then clear the status bit. If this error
856 * is raised, it will persist outside of this routine until a
857 * matching key is loaded.
858 */
859 timeout = msecs_to_jiffies(RSA_ENGINE_TIMEOUT) + jiffies;
860 while (1) {
861 status = (read_csr(dd, MISC_CFG_FW_CTRL)
862 & MISC_CFG_FW_CTRL_RSA_STATUS_SMASK)
863 >> MISC_CFG_FW_CTRL_RSA_STATUS_SHIFT;
864
865 if (status == RSA_STATUS_IDLE) {
866 /* should not happen */
867 dd_dev_err(dd, "%s firmware security bad idle state\n",
868 who);
869 ret = -EINVAL;
870 break;
871 } else if (status == RSA_STATUS_DONE) {
872 /* finished successfully */
873 break;
874 } else if (status == RSA_STATUS_FAILED) {
875 /* finished unsuccessfully */
876 ret = -EINVAL;
877 break;
878 }
879 /* else still active */
880
881 if (time_after(jiffies, timeout)) {
882 /*
883 * Timed out while active. We can't reset the engine
884 * if it is stuck active, but run through the
885 * error code to see what error bits are set.
886 */
887 dd_dev_err(dd, "%s firmware security time out\n", who);
888 ret = -ETIMEDOUT;
889 break;
890 }
891
892 msleep(20);
893 }
894
895 /*
896 * Arrive here on success or failure. Clear all RSA engine
897 * errors. All current errors will stick - the RSA logic is keeping
898 * error high. All previous errors will clear - the RSA logic
899 * is not keeping the error high.
900 */
901 write_csr(dd, MISC_ERR_CLEAR,
902 MISC_ERR_STATUS_MISC_FW_AUTH_FAILED_ERR_SMASK |
903 MISC_ERR_STATUS_MISC_KEY_MISMATCH_ERR_SMASK);
904 /*
905 * All that is left are the current errors. Print warnings on
906 * authorization failure details, if any. Firmware authorization
907 * can be retried, so these are only warnings.
908 */
909 reg = read_csr(dd, MISC_ERR_STATUS);
910 if (ret) {
911 if (reg & MISC_ERR_STATUS_MISC_FW_AUTH_FAILED_ERR_SMASK)
912 dd_dev_warn(dd, "%s firmware authorization failed\n",
913 who);
914 if (reg & MISC_ERR_STATUS_MISC_KEY_MISMATCH_ERR_SMASK)
915 dd_dev_warn(dd, "%s firmware key mismatch\n", who);
916 }
917
918 return ret;
919 }
920
load_security_variables(struct hfi1_devdata * dd,struct firmware_details * fdet)921 static void load_security_variables(struct hfi1_devdata *dd,
922 struct firmware_details *fdet)
923 {
924 /* Security variables a. Write the modulus */
925 write_rsa_data(dd, MISC_CFG_RSA_MODULUS, fdet->modulus, KEY_SIZE);
926 /* Security variables b. Write the r2 */
927 write_rsa_data(dd, MISC_CFG_RSA_R2, fdet->r2, KEY_SIZE);
928 /* Security variables c. Write the mu */
929 write_rsa_data(dd, MISC_CFG_RSA_MU, fdet->mu, MU_SIZE);
930 /* Security variables d. Write the header */
931 write_streamed_rsa_data(dd, MISC_CFG_SHA_PRELOAD,
932 (u8 *)fdet->css_header,
933 sizeof(struct css_header));
934 }
935
936 /* return the 8051 firmware state */
get_firmware_state(struct hfi1_devdata * dd)937 static inline u32 get_firmware_state(struct hfi1_devdata *dd)
938 {
939 u64 reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
940
941 return (reg >> DC_DC8051_STS_CUR_STATE_FIRMWARE_SHIFT)
942 & DC_DC8051_STS_CUR_STATE_FIRMWARE_MASK;
943 }
944
945 /*
946 * Wait until the firmware is up and ready to take host requests.
947 * Return 0 on success, -ETIMEDOUT on timeout.
948 */
wait_fm_ready(struct hfi1_devdata * dd,u32 mstimeout)949 int wait_fm_ready(struct hfi1_devdata *dd, u32 mstimeout)
950 {
951 unsigned long timeout;
952
953 /* in the simulator, the fake 8051 is always ready */
954 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
955 return 0;
956
957 timeout = msecs_to_jiffies(mstimeout) + jiffies;
958 while (1) {
959 if (get_firmware_state(dd) == 0xa0) /* ready */
960 return 0;
961 if (time_after(jiffies, timeout)) /* timed out */
962 return -ETIMEDOUT;
963 usleep_range(1950, 2050); /* sleep 2ms-ish */
964 }
965 }
966
967 /*
968 * Load the 8051 firmware.
969 */
load_8051_firmware(struct hfi1_devdata * dd,struct firmware_details * fdet)970 static int load_8051_firmware(struct hfi1_devdata *dd,
971 struct firmware_details *fdet)
972 {
973 u64 reg;
974 int ret;
975 u8 ver_major;
976 u8 ver_minor;
977 u8 ver_patch;
978
979 /*
980 * DC Reset sequence
981 * Load DC 8051 firmware
982 */
983 /*
984 * DC reset step 1: Reset DC8051
985 */
986 reg = DC_DC8051_CFG_RST_M8051W_SMASK
987 | DC_DC8051_CFG_RST_CRAM_SMASK
988 | DC_DC8051_CFG_RST_DRAM_SMASK
989 | DC_DC8051_CFG_RST_IRAM_SMASK
990 | DC_DC8051_CFG_RST_SFR_SMASK;
991 write_csr(dd, DC_DC8051_CFG_RST, reg);
992
993 /*
994 * DC reset step 2 (optional): Load 8051 data memory with link
995 * configuration
996 */
997
998 /*
999 * DC reset step 3: Load DC8051 firmware
1000 */
1001 /* release all but the core reset */
1002 reg = DC_DC8051_CFG_RST_M8051W_SMASK;
1003 write_csr(dd, DC_DC8051_CFG_RST, reg);
1004
1005 /* Firmware load step 1 */
1006 load_security_variables(dd, fdet);
1007
1008 /*
1009 * Firmware load step 2. Clear MISC_CFG_FW_CTRL.FW_8051_LOADED
1010 */
1011 write_csr(dd, MISC_CFG_FW_CTRL, 0);
1012
1013 /* Firmware load steps 3-5 */
1014 ret = write_8051(dd, 1/*code*/, 0, fdet->firmware_ptr,
1015 fdet->firmware_len);
1016 if (ret)
1017 return ret;
1018
1019 /*
1020 * DC reset step 4. Host starts the DC8051 firmware
1021 */
1022 /*
1023 * Firmware load step 6. Set MISC_CFG_FW_CTRL.FW_8051_LOADED
1024 */
1025 write_csr(dd, MISC_CFG_FW_CTRL, MISC_CFG_FW_CTRL_FW_8051_LOADED_SMASK);
1026
1027 /* Firmware load steps 7-10 */
1028 ret = run_rsa(dd, "8051", fdet->signature);
1029 if (ret)
1030 return ret;
1031
1032 /* clear all reset bits, releasing the 8051 */
1033 write_csr(dd, DC_DC8051_CFG_RST, 0ull);
1034
1035 /*
1036 * DC reset step 5. Wait for firmware to be ready to accept host
1037 * requests.
1038 */
1039 ret = wait_fm_ready(dd, TIMEOUT_8051_START);
1040 if (ret) { /* timed out */
1041 dd_dev_err(dd, "8051 start timeout, current state 0x%x\n",
1042 get_firmware_state(dd));
1043 return -ETIMEDOUT;
1044 }
1045
1046 read_misc_status(dd, &ver_major, &ver_minor, &ver_patch);
1047 dd_dev_info(dd, "8051 firmware version %d.%d.%d\n",
1048 (int)ver_major, (int)ver_minor, (int)ver_patch);
1049 dd->dc8051_ver = dc8051_ver(ver_major, ver_minor, ver_patch);
1050 ret = write_host_interface_version(dd, HOST_INTERFACE_VERSION);
1051 if (ret != HCMD_SUCCESS) {
1052 dd_dev_err(dd,
1053 "Failed to set host interface version, return 0x%x\n",
1054 ret);
1055 return -EIO;
1056 }
1057
1058 return 0;
1059 }
1060
1061 /*
1062 * Write the SBus request register
1063 *
1064 * No need for masking - the arguments are sized exactly.
1065 */
sbus_request(struct hfi1_devdata * dd,u8 receiver_addr,u8 data_addr,u8 command,u32 data_in)1066 void sbus_request(struct hfi1_devdata *dd,
1067 u8 receiver_addr, u8 data_addr, u8 command, u32 data_in)
1068 {
1069 write_csr(dd, ASIC_CFG_SBUS_REQUEST,
1070 ((u64)data_in << ASIC_CFG_SBUS_REQUEST_DATA_IN_SHIFT) |
1071 ((u64)command << ASIC_CFG_SBUS_REQUEST_COMMAND_SHIFT) |
1072 ((u64)data_addr << ASIC_CFG_SBUS_REQUEST_DATA_ADDR_SHIFT) |
1073 ((u64)receiver_addr <<
1074 ASIC_CFG_SBUS_REQUEST_RECEIVER_ADDR_SHIFT));
1075 }
1076
1077 /*
1078 * Read a value from the SBus.
1079 *
1080 * Requires the caller to be in fast mode
1081 */
sbus_read(struct hfi1_devdata * dd,u8 receiver_addr,u8 data_addr,u32 data_in)1082 static u32 sbus_read(struct hfi1_devdata *dd, u8 receiver_addr, u8 data_addr,
1083 u32 data_in)
1084 {
1085 u64 reg;
1086 int retries;
1087 int success = 0;
1088 u32 result = 0;
1089 u32 result_code = 0;
1090
1091 sbus_request(dd, receiver_addr, data_addr, READ_SBUS_RECEIVER, data_in);
1092
1093 for (retries = 0; retries < 100; retries++) {
1094 usleep_range(1000, 1200); /* arbitrary */
1095 reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1096 result_code = (reg >> ASIC_STS_SBUS_RESULT_RESULT_CODE_SHIFT)
1097 & ASIC_STS_SBUS_RESULT_RESULT_CODE_MASK;
1098 if (result_code != SBUS_READ_COMPLETE)
1099 continue;
1100
1101 success = 1;
1102 result = (reg >> ASIC_STS_SBUS_RESULT_DATA_OUT_SHIFT)
1103 & ASIC_STS_SBUS_RESULT_DATA_OUT_MASK;
1104 break;
1105 }
1106
1107 if (!success) {
1108 dd_dev_err(dd, "%s: read failed, result code 0x%x\n", __func__,
1109 result_code);
1110 }
1111
1112 return result;
1113 }
1114
1115 /*
1116 * Turn off the SBus and fabric serdes spicos.
1117 *
1118 * + Must be called with Sbus fast mode turned on.
1119 * + Must be called after fabric serdes broadcast is set up.
1120 * + Must be called before the 8051 is loaded - assumes 8051 is not loaded
1121 * when using MISC_CFG_FW_CTRL.
1122 */
turn_off_spicos(struct hfi1_devdata * dd,int flags)1123 static void turn_off_spicos(struct hfi1_devdata *dd, int flags)
1124 {
1125 /* only needed on A0 */
1126 if (!is_ax(dd))
1127 return;
1128
1129 dd_dev_info(dd, "Turning off spicos:%s%s\n",
1130 flags & SPICO_SBUS ? " SBus" : "",
1131 flags & SPICO_FABRIC ? " fabric" : "");
1132
1133 write_csr(dd, MISC_CFG_FW_CTRL, ENABLE_SPICO_SMASK);
1134 /* disable SBus spico */
1135 if (flags & SPICO_SBUS)
1136 sbus_request(dd, SBUS_MASTER_BROADCAST, 0x01,
1137 WRITE_SBUS_RECEIVER, 0x00000040);
1138
1139 /* disable the fabric serdes spicos */
1140 if (flags & SPICO_FABRIC)
1141 sbus_request(dd, fabric_serdes_broadcast[dd->hfi1_id],
1142 0x07, WRITE_SBUS_RECEIVER, 0x00000000);
1143 write_csr(dd, MISC_CFG_FW_CTRL, 0);
1144 }
1145
1146 /*
1147 * Reset all of the fabric serdes for this HFI in preparation to take the
1148 * link to Polling.
1149 *
1150 * To do a reset, we need to write to to the serdes registers. Unfortunately,
1151 * the fabric serdes download to the other HFI on the ASIC will have turned
1152 * off the firmware validation on this HFI. This means we can't write to the
1153 * registers to reset the serdes. Work around this by performing a complete
1154 * re-download and validation of the fabric serdes firmware. This, as a
1155 * by-product, will reset the serdes. NOTE: the re-download requires that
1156 * the 8051 be in the Offline state. I.e. not actively trying to use the
1157 * serdes. This routine is called at the point where the link is Offline and
1158 * is getting ready to go to Polling.
1159 */
fabric_serdes_reset(struct hfi1_devdata * dd)1160 void fabric_serdes_reset(struct hfi1_devdata *dd)
1161 {
1162 int ret;
1163
1164 if (!fw_fabric_serdes_load)
1165 return;
1166
1167 ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
1168 if (ret) {
1169 dd_dev_err(dd,
1170 "Cannot acquire SBus resource to reset fabric SerDes - perhaps you should reboot\n");
1171 return;
1172 }
1173 set_sbus_fast_mode(dd);
1174
1175 if (is_ax(dd)) {
1176 /* A0 serdes do not work with a re-download */
1177 u8 ra = fabric_serdes_broadcast[dd->hfi1_id];
1178
1179 /* place SerDes in reset and disable SPICO */
1180 sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000011);
1181 /* wait 100 refclk cycles @ 156.25MHz => 640ns */
1182 udelay(1);
1183 /* remove SerDes reset */
1184 sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000010);
1185 /* turn SPICO enable on */
1186 sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000002);
1187 } else {
1188 turn_off_spicos(dd, SPICO_FABRIC);
1189 /*
1190 * No need for firmware retry - what to download has already
1191 * been decided.
1192 * No need to pay attention to the load return - the only
1193 * failure is a validation failure, which has already been
1194 * checked by the initial download.
1195 */
1196 (void)load_fabric_serdes_firmware(dd, &fw_fabric);
1197 }
1198
1199 clear_sbus_fast_mode(dd);
1200 release_chip_resource(dd, CR_SBUS);
1201 }
1202
1203 /* Access to the SBus in this routine should probably be serialized */
sbus_request_slow(struct hfi1_devdata * dd,u8 receiver_addr,u8 data_addr,u8 command,u32 data_in)1204 int sbus_request_slow(struct hfi1_devdata *dd,
1205 u8 receiver_addr, u8 data_addr, u8 command, u32 data_in)
1206 {
1207 u64 reg, count = 0;
1208
1209 /* make sure fast mode is clear */
1210 clear_sbus_fast_mode(dd);
1211
1212 sbus_request(dd, receiver_addr, data_addr, command, data_in);
1213 write_csr(dd, ASIC_CFG_SBUS_EXECUTE,
1214 ASIC_CFG_SBUS_EXECUTE_EXECUTE_SMASK);
1215 /* Wait for both DONE and RCV_DATA_VALID to go high */
1216 reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1217 while (!((reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) &&
1218 (reg & ASIC_STS_SBUS_RESULT_RCV_DATA_VALID_SMASK))) {
1219 if (count++ >= SBUS_MAX_POLL_COUNT) {
1220 u64 counts = read_csr(dd, ASIC_STS_SBUS_COUNTERS);
1221 /*
1222 * If the loop has timed out, we are OK if DONE bit
1223 * is set and RCV_DATA_VALID and EXECUTE counters
1224 * are the same. If not, we cannot proceed.
1225 */
1226 if ((reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) &&
1227 (SBUS_COUNTER(counts, RCV_DATA_VALID) ==
1228 SBUS_COUNTER(counts, EXECUTE)))
1229 break;
1230 return -ETIMEDOUT;
1231 }
1232 udelay(1);
1233 reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1234 }
1235 count = 0;
1236 write_csr(dd, ASIC_CFG_SBUS_EXECUTE, 0);
1237 /* Wait for DONE to clear after EXECUTE is cleared */
1238 reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1239 while (reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) {
1240 if (count++ >= SBUS_MAX_POLL_COUNT)
1241 return -ETIME;
1242 udelay(1);
1243 reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1244 }
1245 return 0;
1246 }
1247
load_fabric_serdes_firmware(struct hfi1_devdata * dd,struct firmware_details * fdet)1248 static int load_fabric_serdes_firmware(struct hfi1_devdata *dd,
1249 struct firmware_details *fdet)
1250 {
1251 int i, err;
1252 const u8 ra = fabric_serdes_broadcast[dd->hfi1_id]; /* receiver addr */
1253
1254 dd_dev_info(dd, "Downloading fabric firmware\n");
1255
1256 /* step 1: load security variables */
1257 load_security_variables(dd, fdet);
1258 /* step 2: place SerDes in reset and disable SPICO */
1259 sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000011);
1260 /* wait 100 refclk cycles @ 156.25MHz => 640ns */
1261 udelay(1);
1262 /* step 3: remove SerDes reset */
1263 sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000010);
1264 /* step 4: assert IMEM override */
1265 sbus_request(dd, ra, 0x00, WRITE_SBUS_RECEIVER, 0x40000000);
1266 /* step 5: download SerDes machine code */
1267 for (i = 0; i < fdet->firmware_len; i += 4) {
1268 sbus_request(dd, ra, 0x0a, WRITE_SBUS_RECEIVER,
1269 *(u32 *)&fdet->firmware_ptr[i]);
1270 }
1271 /* step 6: IMEM override off */
1272 sbus_request(dd, ra, 0x00, WRITE_SBUS_RECEIVER, 0x00000000);
1273 /* step 7: turn ECC on */
1274 sbus_request(dd, ra, 0x0b, WRITE_SBUS_RECEIVER, 0x000c0000);
1275
1276 /* steps 8-11: run the RSA engine */
1277 err = run_rsa(dd, "fabric serdes", fdet->signature);
1278 if (err)
1279 return err;
1280
1281 /* step 12: turn SPICO enable on */
1282 sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000002);
1283 /* step 13: enable core hardware interrupts */
1284 sbus_request(dd, ra, 0x08, WRITE_SBUS_RECEIVER, 0x00000000);
1285
1286 return 0;
1287 }
1288
load_sbus_firmware(struct hfi1_devdata * dd,struct firmware_details * fdet)1289 static int load_sbus_firmware(struct hfi1_devdata *dd,
1290 struct firmware_details *fdet)
1291 {
1292 int i, err;
1293 const u8 ra = SBUS_MASTER_BROADCAST; /* receiver address */
1294
1295 dd_dev_info(dd, "Downloading SBus firmware\n");
1296
1297 /* step 1: load security variables */
1298 load_security_variables(dd, fdet);
1299 /* step 2: place SPICO into reset and enable off */
1300 sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x000000c0);
1301 /* step 3: remove reset, enable off, IMEM_CNTRL_EN on */
1302 sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000240);
1303 /* step 4: set starting IMEM address for burst download */
1304 sbus_request(dd, ra, 0x03, WRITE_SBUS_RECEIVER, 0x80000000);
1305 /* step 5: download the SBus Master machine code */
1306 for (i = 0; i < fdet->firmware_len; i += 4) {
1307 sbus_request(dd, ra, 0x14, WRITE_SBUS_RECEIVER,
1308 *(u32 *)&fdet->firmware_ptr[i]);
1309 }
1310 /* step 6: set IMEM_CNTL_EN off */
1311 sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000040);
1312 /* step 7: turn ECC on */
1313 sbus_request(dd, ra, 0x16, WRITE_SBUS_RECEIVER, 0x000c0000);
1314
1315 /* steps 8-11: run the RSA engine */
1316 err = run_rsa(dd, "SBus", fdet->signature);
1317 if (err)
1318 return err;
1319
1320 /* step 12: set SPICO_ENABLE on */
1321 sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000140);
1322
1323 return 0;
1324 }
1325
load_pcie_serdes_firmware(struct hfi1_devdata * dd,struct firmware_details * fdet)1326 static int load_pcie_serdes_firmware(struct hfi1_devdata *dd,
1327 struct firmware_details *fdet)
1328 {
1329 int i;
1330 const u8 ra = SBUS_MASTER_BROADCAST; /* receiver address */
1331
1332 dd_dev_info(dd, "Downloading PCIe firmware\n");
1333
1334 /* step 1: load security variables */
1335 load_security_variables(dd, fdet);
1336 /* step 2: assert single step (halts the SBus Master spico) */
1337 sbus_request(dd, ra, 0x05, WRITE_SBUS_RECEIVER, 0x00000001);
1338 /* step 3: enable XDMEM access */
1339 sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000d40);
1340 /* step 4: load firmware into SBus Master XDMEM */
1341 /*
1342 * NOTE: the dmem address, write_en, and wdata are all pre-packed,
1343 * we only need to pick up the bytes and write them
1344 */
1345 for (i = 0; i < fdet->firmware_len; i += 4) {
1346 sbus_request(dd, ra, 0x04, WRITE_SBUS_RECEIVER,
1347 *(u32 *)&fdet->firmware_ptr[i]);
1348 }
1349 /* step 5: disable XDMEM access */
1350 sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000140);
1351 /* step 6: allow SBus Spico to run */
1352 sbus_request(dd, ra, 0x05, WRITE_SBUS_RECEIVER, 0x00000000);
1353
1354 /*
1355 * steps 7-11: run RSA, if it succeeds, firmware is available to
1356 * be swapped
1357 */
1358 return run_rsa(dd, "PCIe serdes", fdet->signature);
1359 }
1360
1361 /*
1362 * Set the given broadcast values on the given list of devices.
1363 */
set_serdes_broadcast(struct hfi1_devdata * dd,u8 bg1,u8 bg2,const u8 * addrs,int count)1364 static void set_serdes_broadcast(struct hfi1_devdata *dd, u8 bg1, u8 bg2,
1365 const u8 *addrs, int count)
1366 {
1367 while (--count >= 0) {
1368 /*
1369 * Set BROADCAST_GROUP_1 and BROADCAST_GROUP_2, leave
1370 * defaults for everything else. Do not read-modify-write,
1371 * per instruction from the manufacturer.
1372 *
1373 * Register 0xfd:
1374 * bits what
1375 * ----- ---------------------------------
1376 * 0 IGNORE_BROADCAST (default 0)
1377 * 11:4 BROADCAST_GROUP_1 (default 0xff)
1378 * 23:16 BROADCAST_GROUP_2 (default 0xff)
1379 */
1380 sbus_request(dd, addrs[count], 0xfd, WRITE_SBUS_RECEIVER,
1381 (u32)bg1 << 4 | (u32)bg2 << 16);
1382 }
1383 }
1384
acquire_hw_mutex(struct hfi1_devdata * dd)1385 int acquire_hw_mutex(struct hfi1_devdata *dd)
1386 {
1387 unsigned long timeout;
1388 int try = 0;
1389 u8 mask = 1 << dd->hfi1_id;
1390 u8 user;
1391
1392 retry:
1393 timeout = msecs_to_jiffies(HM_TIMEOUT) + jiffies;
1394 while (1) {
1395 write_csr(dd, ASIC_CFG_MUTEX, mask);
1396 user = (u8)read_csr(dd, ASIC_CFG_MUTEX);
1397 if (user == mask)
1398 return 0; /* success */
1399 if (time_after(jiffies, timeout))
1400 break; /* timed out */
1401 msleep(20);
1402 }
1403
1404 /* timed out */
1405 dd_dev_err(dd,
1406 "Unable to acquire hardware mutex, mutex mask %u, my mask %u (%s)\n",
1407 (u32)user, (u32)mask, (try == 0) ? "retrying" : "giving up");
1408
1409 if (try == 0) {
1410 /* break mutex and retry */
1411 write_csr(dd, ASIC_CFG_MUTEX, 0);
1412 try++;
1413 goto retry;
1414 }
1415
1416 return -EBUSY;
1417 }
1418
release_hw_mutex(struct hfi1_devdata * dd)1419 void release_hw_mutex(struct hfi1_devdata *dd)
1420 {
1421 write_csr(dd, ASIC_CFG_MUTEX, 0);
1422 }
1423
1424 /* return the given resource bit(s) as a mask for the given HFI */
resource_mask(u32 hfi1_id,u32 resource)1425 static inline u64 resource_mask(u32 hfi1_id, u32 resource)
1426 {
1427 return ((u64)resource) << (hfi1_id ? CR_DYN_SHIFT : 0);
1428 }
1429
fail_mutex_acquire_message(struct hfi1_devdata * dd,const char * func)1430 static void fail_mutex_acquire_message(struct hfi1_devdata *dd,
1431 const char *func)
1432 {
1433 dd_dev_err(dd,
1434 "%s: hardware mutex stuck - suggest rebooting the machine\n",
1435 func);
1436 }
1437
1438 /*
1439 * Acquire access to a chip resource.
1440 *
1441 * Return 0 on success, -EBUSY if resource busy, -EIO if mutex acquire failed.
1442 */
__acquire_chip_resource(struct hfi1_devdata * dd,u32 resource)1443 static int __acquire_chip_resource(struct hfi1_devdata *dd, u32 resource)
1444 {
1445 u64 scratch0, all_bits, my_bit;
1446 int ret;
1447
1448 if (resource & CR_DYN_MASK) {
1449 /* a dynamic resource is in use if either HFI has set the bit */
1450 if (dd->pcidev->device == PCI_DEVICE_ID_INTEL0 &&
1451 (resource & (CR_I2C1 | CR_I2C2))) {
1452 /* discrete devices must serialize across both chains */
1453 all_bits = resource_mask(0, CR_I2C1 | CR_I2C2) |
1454 resource_mask(1, CR_I2C1 | CR_I2C2);
1455 } else {
1456 all_bits = resource_mask(0, resource) |
1457 resource_mask(1, resource);
1458 }
1459 my_bit = resource_mask(dd->hfi1_id, resource);
1460 } else {
1461 /* non-dynamic resources are not split between HFIs */
1462 all_bits = resource;
1463 my_bit = resource;
1464 }
1465
1466 /* lock against other callers within the driver wanting a resource */
1467 mutex_lock(&dd->asic_data->asic_resource_mutex);
1468
1469 ret = acquire_hw_mutex(dd);
1470 if (ret) {
1471 fail_mutex_acquire_message(dd, __func__);
1472 ret = -EIO;
1473 goto done;
1474 }
1475
1476 scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1477 if (scratch0 & all_bits) {
1478 ret = -EBUSY;
1479 } else {
1480 write_csr(dd, ASIC_CFG_SCRATCH, scratch0 | my_bit);
1481 /* force write to be visible to other HFI on another OS */
1482 (void)read_csr(dd, ASIC_CFG_SCRATCH);
1483 }
1484
1485 release_hw_mutex(dd);
1486
1487 done:
1488 mutex_unlock(&dd->asic_data->asic_resource_mutex);
1489 return ret;
1490 }
1491
1492 /*
1493 * Acquire access to a chip resource, wait up to mswait milliseconds for
1494 * the resource to become available.
1495 *
1496 * Return 0 on success, -EBUSY if busy (even after wait), -EIO if mutex
1497 * acquire failed.
1498 */
acquire_chip_resource(struct hfi1_devdata * dd,u32 resource,u32 mswait)1499 int acquire_chip_resource(struct hfi1_devdata *dd, u32 resource, u32 mswait)
1500 {
1501 unsigned long timeout;
1502 int ret;
1503
1504 timeout = jiffies + msecs_to_jiffies(mswait);
1505 while (1) {
1506 ret = __acquire_chip_resource(dd, resource);
1507 if (ret != -EBUSY)
1508 return ret;
1509 /* resource is busy, check our timeout */
1510 if (time_after_eq(jiffies, timeout))
1511 return -EBUSY;
1512 usleep_range(80, 120); /* arbitrary delay */
1513 }
1514 }
1515
1516 /*
1517 * Release access to a chip resource
1518 */
release_chip_resource(struct hfi1_devdata * dd,u32 resource)1519 void release_chip_resource(struct hfi1_devdata *dd, u32 resource)
1520 {
1521 u64 scratch0, bit;
1522
1523 /* only dynamic resources should ever be cleared */
1524 if (!(resource & CR_DYN_MASK)) {
1525 dd_dev_err(dd, "%s: invalid resource 0x%x\n", __func__,
1526 resource);
1527 return;
1528 }
1529 bit = resource_mask(dd->hfi1_id, resource);
1530
1531 /* lock against other callers within the driver wanting a resource */
1532 mutex_lock(&dd->asic_data->asic_resource_mutex);
1533
1534 if (acquire_hw_mutex(dd)) {
1535 fail_mutex_acquire_message(dd, __func__);
1536 goto done;
1537 }
1538
1539 scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1540 if ((scratch0 & bit) != 0) {
1541 scratch0 &= ~bit;
1542 write_csr(dd, ASIC_CFG_SCRATCH, scratch0);
1543 /* force write to be visible to other HFI on another OS */
1544 (void)read_csr(dd, ASIC_CFG_SCRATCH);
1545 } else {
1546 dd_dev_warn(dd, "%s: id %d, resource 0x%x: bit not set\n",
1547 __func__, dd->hfi1_id, resource);
1548 }
1549
1550 release_hw_mutex(dd);
1551
1552 done:
1553 mutex_unlock(&dd->asic_data->asic_resource_mutex);
1554 }
1555
1556 /*
1557 * Return true if resource is set, false otherwise. Print a warning
1558 * if not set and a function is supplied.
1559 */
check_chip_resource(struct hfi1_devdata * dd,u32 resource,const char * func)1560 bool check_chip_resource(struct hfi1_devdata *dd, u32 resource,
1561 const char *func)
1562 {
1563 u64 scratch0, bit;
1564
1565 if (resource & CR_DYN_MASK)
1566 bit = resource_mask(dd->hfi1_id, resource);
1567 else
1568 bit = resource;
1569
1570 scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1571 if ((scratch0 & bit) == 0) {
1572 if (func)
1573 dd_dev_warn(dd,
1574 "%s: id %d, resource 0x%x, not acquired!\n",
1575 func, dd->hfi1_id, resource);
1576 return false;
1577 }
1578 return true;
1579 }
1580
clear_chip_resources(struct hfi1_devdata * dd,const char * func)1581 static void clear_chip_resources(struct hfi1_devdata *dd, const char *func)
1582 {
1583 u64 scratch0;
1584
1585 /* lock against other callers within the driver wanting a resource */
1586 mutex_lock(&dd->asic_data->asic_resource_mutex);
1587
1588 if (acquire_hw_mutex(dd)) {
1589 fail_mutex_acquire_message(dd, func);
1590 goto done;
1591 }
1592
1593 /* clear all dynamic access bits for this HFI */
1594 scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1595 scratch0 &= ~resource_mask(dd->hfi1_id, CR_DYN_MASK);
1596 write_csr(dd, ASIC_CFG_SCRATCH, scratch0);
1597 /* force write to be visible to other HFI on another OS */
1598 (void)read_csr(dd, ASIC_CFG_SCRATCH);
1599
1600 release_hw_mutex(dd);
1601
1602 done:
1603 mutex_unlock(&dd->asic_data->asic_resource_mutex);
1604 }
1605
init_chip_resources(struct hfi1_devdata * dd)1606 void init_chip_resources(struct hfi1_devdata *dd)
1607 {
1608 /* clear any holds left by us */
1609 clear_chip_resources(dd, __func__);
1610 }
1611
finish_chip_resources(struct hfi1_devdata * dd)1612 void finish_chip_resources(struct hfi1_devdata *dd)
1613 {
1614 /* clear any holds left by us */
1615 clear_chip_resources(dd, __func__);
1616 }
1617
set_sbus_fast_mode(struct hfi1_devdata * dd)1618 void set_sbus_fast_mode(struct hfi1_devdata *dd)
1619 {
1620 write_csr(dd, ASIC_CFG_SBUS_EXECUTE,
1621 ASIC_CFG_SBUS_EXECUTE_FAST_MODE_SMASK);
1622 }
1623
clear_sbus_fast_mode(struct hfi1_devdata * dd)1624 void clear_sbus_fast_mode(struct hfi1_devdata *dd)
1625 {
1626 u64 reg, count = 0;
1627
1628 reg = read_csr(dd, ASIC_STS_SBUS_COUNTERS);
1629 while (SBUS_COUNTER(reg, EXECUTE) !=
1630 SBUS_COUNTER(reg, RCV_DATA_VALID)) {
1631 if (count++ >= SBUS_MAX_POLL_COUNT)
1632 break;
1633 udelay(1);
1634 reg = read_csr(dd, ASIC_STS_SBUS_COUNTERS);
1635 }
1636 write_csr(dd, ASIC_CFG_SBUS_EXECUTE, 0);
1637 }
1638
load_firmware(struct hfi1_devdata * dd)1639 int load_firmware(struct hfi1_devdata *dd)
1640 {
1641 int ret;
1642
1643 if (fw_fabric_serdes_load) {
1644 ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
1645 if (ret)
1646 return ret;
1647
1648 set_sbus_fast_mode(dd);
1649
1650 set_serdes_broadcast(dd, all_fabric_serdes_broadcast,
1651 fabric_serdes_broadcast[dd->hfi1_id],
1652 fabric_serdes_addrs[dd->hfi1_id],
1653 NUM_FABRIC_SERDES);
1654 turn_off_spicos(dd, SPICO_FABRIC);
1655 do {
1656 ret = load_fabric_serdes_firmware(dd, &fw_fabric);
1657 } while (retry_firmware(dd, ret));
1658
1659 clear_sbus_fast_mode(dd);
1660 release_chip_resource(dd, CR_SBUS);
1661 if (ret)
1662 return ret;
1663 }
1664
1665 if (fw_8051_load) {
1666 do {
1667 ret = load_8051_firmware(dd, &fw_8051);
1668 } while (retry_firmware(dd, ret));
1669 if (ret)
1670 return ret;
1671 }
1672
1673 dump_fw_version(dd);
1674 return 0;
1675 }
1676
hfi1_firmware_init(struct hfi1_devdata * dd)1677 int hfi1_firmware_init(struct hfi1_devdata *dd)
1678 {
1679 /* only RTL can use these */
1680 if (dd->icode != ICODE_RTL_SILICON) {
1681 fw_fabric_serdes_load = 0;
1682 fw_pcie_serdes_load = 0;
1683 fw_sbus_load = 0;
1684 }
1685
1686 /* no 8051 or QSFP on simulator */
1687 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
1688 fw_8051_load = 0;
1689
1690 if (!fw_8051_name) {
1691 if (dd->icode == ICODE_RTL_SILICON)
1692 fw_8051_name = DEFAULT_FW_8051_NAME_ASIC;
1693 else
1694 fw_8051_name = DEFAULT_FW_8051_NAME_FPGA;
1695 }
1696 if (!fw_fabric_serdes_name)
1697 fw_fabric_serdes_name = DEFAULT_FW_FABRIC_NAME;
1698 if (!fw_sbus_name)
1699 fw_sbus_name = DEFAULT_FW_SBUS_NAME;
1700 if (!fw_pcie_serdes_name)
1701 fw_pcie_serdes_name = DEFAULT_FW_PCIE_NAME;
1702
1703 return obtain_firmware(dd);
1704 }
1705
1706 /*
1707 * This function is a helper function for parse_platform_config(...) and
1708 * does not check for validity of the platform configuration cache
1709 * (because we know it is invalid as we are building up the cache).
1710 * As such, this should not be called from anywhere other than
1711 * parse_platform_config
1712 */
check_meta_version(struct hfi1_devdata * dd,u32 * system_table)1713 static int check_meta_version(struct hfi1_devdata *dd, u32 *system_table)
1714 {
1715 u32 meta_ver, meta_ver_meta, ver_start, ver_len, mask;
1716 struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
1717
1718 if (!system_table)
1719 return -EINVAL;
1720
1721 meta_ver_meta =
1722 *(pcfgcache->config_tables[PLATFORM_CONFIG_SYSTEM_TABLE].table_metadata
1723 + SYSTEM_TABLE_META_VERSION);
1724
1725 mask = ((1 << METADATA_TABLE_FIELD_START_LEN_BITS) - 1);
1726 ver_start = meta_ver_meta & mask;
1727
1728 meta_ver_meta >>= METADATA_TABLE_FIELD_LEN_SHIFT;
1729
1730 mask = ((1 << METADATA_TABLE_FIELD_LEN_LEN_BITS) - 1);
1731 ver_len = meta_ver_meta & mask;
1732
1733 ver_start /= 8;
1734 meta_ver = *((u8 *)system_table + ver_start) & ((1 << ver_len) - 1);
1735
1736 if (meta_ver < 5) {
1737 dd_dev_info(
1738 dd, "%s:Please update platform config\n", __func__);
1739 return -EINVAL;
1740 }
1741 return 0;
1742 }
1743
parse_platform_config(struct hfi1_devdata * dd)1744 int parse_platform_config(struct hfi1_devdata *dd)
1745 {
1746 struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
1747 struct hfi1_pportdata *ppd = dd->pport;
1748 u32 *ptr = NULL;
1749 u32 header1 = 0, header2 = 0, magic_num = 0, crc = 0, file_length = 0;
1750 u32 record_idx = 0, table_type = 0, table_length_dwords = 0;
1751 int ret = -EINVAL; /* assume failure */
1752
1753 /*
1754 * For integrated devices that did not fall back to the default file,
1755 * the SI tuning information for active channels is acquired from the
1756 * scratch register bitmap, thus there is no platform config to parse.
1757 * Skip parsing in these situations.
1758 */
1759 if (ppd->config_from_scratch)
1760 return 0;
1761
1762 if (!dd->platform_config.data) {
1763 dd_dev_err(dd, "%s: Missing config file\n", __func__);
1764 goto bail;
1765 }
1766 ptr = (u32 *)dd->platform_config.data;
1767
1768 magic_num = *ptr;
1769 ptr++;
1770 if (magic_num != PLATFORM_CONFIG_MAGIC_NUM) {
1771 dd_dev_err(dd, "%s: Bad config file\n", __func__);
1772 goto bail;
1773 }
1774
1775 /* Field is file size in DWORDs */
1776 file_length = (*ptr) * 4;
1777 ptr++;
1778
1779 if (file_length > dd->platform_config.size) {
1780 dd_dev_info(dd, "%s:File claims to be larger than read size\n",
1781 __func__);
1782 goto bail;
1783 } else if (file_length < dd->platform_config.size) {
1784 dd_dev_info(dd,
1785 "%s:File claims to be smaller than read size, continuing\n",
1786 __func__);
1787 }
1788 /* exactly equal, perfection */
1789
1790 /*
1791 * In both cases where we proceed, using the self-reported file length
1792 * is the safer option
1793 */
1794 while (ptr < (u32 *)(dd->platform_config.data + file_length)) {
1795 header1 = *ptr;
1796 header2 = *(ptr + 1);
1797 if (header1 != ~header2) {
1798 dd_dev_err(dd, "%s: Failed validation at offset %ld\n",
1799 __func__, (ptr - (u32 *)
1800 dd->platform_config.data));
1801 goto bail;
1802 }
1803
1804 record_idx = *ptr &
1805 ((1 << PLATFORM_CONFIG_HEADER_RECORD_IDX_LEN_BITS) - 1);
1806
1807 table_length_dwords = (*ptr >>
1808 PLATFORM_CONFIG_HEADER_TABLE_LENGTH_SHIFT) &
1809 ((1 << PLATFORM_CONFIG_HEADER_TABLE_LENGTH_LEN_BITS) - 1);
1810
1811 table_type = (*ptr >> PLATFORM_CONFIG_HEADER_TABLE_TYPE_SHIFT) &
1812 ((1 << PLATFORM_CONFIG_HEADER_TABLE_TYPE_LEN_BITS) - 1);
1813
1814 /* Done with this set of headers */
1815 ptr += 2;
1816
1817 if (record_idx) {
1818 /* data table */
1819 switch (table_type) {
1820 case PLATFORM_CONFIG_SYSTEM_TABLE:
1821 pcfgcache->config_tables[table_type].num_table =
1822 1;
1823 ret = check_meta_version(dd, ptr);
1824 if (ret)
1825 goto bail;
1826 break;
1827 case PLATFORM_CONFIG_PORT_TABLE:
1828 pcfgcache->config_tables[table_type].num_table =
1829 2;
1830 break;
1831 case PLATFORM_CONFIG_RX_PRESET_TABLE:
1832 /* fall through */
1833 case PLATFORM_CONFIG_TX_PRESET_TABLE:
1834 /* fall through */
1835 case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
1836 /* fall through */
1837 case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
1838 pcfgcache->config_tables[table_type].num_table =
1839 table_length_dwords;
1840 break;
1841 default:
1842 dd_dev_err(dd,
1843 "%s: Unknown data table %d, offset %ld\n",
1844 __func__, table_type,
1845 (ptr - (u32 *)
1846 dd->platform_config.data));
1847 goto bail; /* We don't trust this file now */
1848 }
1849 pcfgcache->config_tables[table_type].table = ptr;
1850 } else {
1851 /* metadata table */
1852 switch (table_type) {
1853 case PLATFORM_CONFIG_SYSTEM_TABLE:
1854 /* fall through */
1855 case PLATFORM_CONFIG_PORT_TABLE:
1856 /* fall through */
1857 case PLATFORM_CONFIG_RX_PRESET_TABLE:
1858 /* fall through */
1859 case PLATFORM_CONFIG_TX_PRESET_TABLE:
1860 /* fall through */
1861 case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
1862 /* fall through */
1863 case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
1864 break;
1865 default:
1866 dd_dev_err(dd,
1867 "%s: Unknown meta table %d, offset %ld\n",
1868 __func__, table_type,
1869 (ptr -
1870 (u32 *)dd->platform_config.data));
1871 goto bail; /* We don't trust this file now */
1872 }
1873 pcfgcache->config_tables[table_type].table_metadata =
1874 ptr;
1875 }
1876
1877 /* Calculate and check table crc */
1878 crc = crc32_le(~(u32)0, (unsigned char const *)ptr,
1879 (table_length_dwords * 4));
1880 crc ^= ~(u32)0;
1881
1882 /* Jump the table */
1883 ptr += table_length_dwords;
1884 if (crc != *ptr) {
1885 dd_dev_err(dd, "%s: Failed CRC check at offset %ld\n",
1886 __func__, (ptr -
1887 (u32 *)dd->platform_config.data));
1888 goto bail;
1889 }
1890 /* Jump the CRC DWORD */
1891 ptr++;
1892 }
1893
1894 pcfgcache->cache_valid = 1;
1895 return 0;
1896 bail:
1897 memset(pcfgcache, 0, sizeof(struct platform_config_cache));
1898 return ret;
1899 }
1900
get_integrated_platform_config_field(struct hfi1_devdata * dd,enum platform_config_table_type_encoding table_type,int field_index,u32 * data)1901 static void get_integrated_platform_config_field(
1902 struct hfi1_devdata *dd,
1903 enum platform_config_table_type_encoding table_type,
1904 int field_index, u32 *data)
1905 {
1906 struct hfi1_pportdata *ppd = dd->pport;
1907 u8 *cache = ppd->qsfp_info.cache;
1908 u32 tx_preset = 0;
1909
1910 switch (table_type) {
1911 case PLATFORM_CONFIG_SYSTEM_TABLE:
1912 if (field_index == SYSTEM_TABLE_QSFP_POWER_CLASS_MAX)
1913 *data = ppd->max_power_class;
1914 else if (field_index == SYSTEM_TABLE_QSFP_ATTENUATION_DEFAULT_25G)
1915 *data = ppd->default_atten;
1916 break;
1917 case PLATFORM_CONFIG_PORT_TABLE:
1918 if (field_index == PORT_TABLE_PORT_TYPE)
1919 *data = ppd->port_type;
1920 else if (field_index == PORT_TABLE_LOCAL_ATTEN_25G)
1921 *data = ppd->local_atten;
1922 else if (field_index == PORT_TABLE_REMOTE_ATTEN_25G)
1923 *data = ppd->remote_atten;
1924 break;
1925 case PLATFORM_CONFIG_RX_PRESET_TABLE:
1926 if (field_index == RX_PRESET_TABLE_QSFP_RX_CDR_APPLY)
1927 *data = (ppd->rx_preset & QSFP_RX_CDR_APPLY_SMASK) >>
1928 QSFP_RX_CDR_APPLY_SHIFT;
1929 else if (field_index == RX_PRESET_TABLE_QSFP_RX_EMP_APPLY)
1930 *data = (ppd->rx_preset & QSFP_RX_EMP_APPLY_SMASK) >>
1931 QSFP_RX_EMP_APPLY_SHIFT;
1932 else if (field_index == RX_PRESET_TABLE_QSFP_RX_AMP_APPLY)
1933 *data = (ppd->rx_preset & QSFP_RX_AMP_APPLY_SMASK) >>
1934 QSFP_RX_AMP_APPLY_SHIFT;
1935 else if (field_index == RX_PRESET_TABLE_QSFP_RX_CDR)
1936 *data = (ppd->rx_preset & QSFP_RX_CDR_SMASK) >>
1937 QSFP_RX_CDR_SHIFT;
1938 else if (field_index == RX_PRESET_TABLE_QSFP_RX_EMP)
1939 *data = (ppd->rx_preset & QSFP_RX_EMP_SMASK) >>
1940 QSFP_RX_EMP_SHIFT;
1941 else if (field_index == RX_PRESET_TABLE_QSFP_RX_AMP)
1942 *data = (ppd->rx_preset & QSFP_RX_AMP_SMASK) >>
1943 QSFP_RX_AMP_SHIFT;
1944 break;
1945 case PLATFORM_CONFIG_TX_PRESET_TABLE:
1946 if (cache[QSFP_EQ_INFO_OFFS] & 0x4)
1947 tx_preset = ppd->tx_preset_eq;
1948 else
1949 tx_preset = ppd->tx_preset_noeq;
1950 if (field_index == TX_PRESET_TABLE_PRECUR)
1951 *data = (tx_preset & TX_PRECUR_SMASK) >>
1952 TX_PRECUR_SHIFT;
1953 else if (field_index == TX_PRESET_TABLE_ATTN)
1954 *data = (tx_preset & TX_ATTN_SMASK) >>
1955 TX_ATTN_SHIFT;
1956 else if (field_index == TX_PRESET_TABLE_POSTCUR)
1957 *data = (tx_preset & TX_POSTCUR_SMASK) >>
1958 TX_POSTCUR_SHIFT;
1959 else if (field_index == TX_PRESET_TABLE_QSFP_TX_CDR_APPLY)
1960 *data = (tx_preset & QSFP_TX_CDR_APPLY_SMASK) >>
1961 QSFP_TX_CDR_APPLY_SHIFT;
1962 else if (field_index == TX_PRESET_TABLE_QSFP_TX_EQ_APPLY)
1963 *data = (tx_preset & QSFP_TX_EQ_APPLY_SMASK) >>
1964 QSFP_TX_EQ_APPLY_SHIFT;
1965 else if (field_index == TX_PRESET_TABLE_QSFP_TX_CDR)
1966 *data = (tx_preset & QSFP_TX_CDR_SMASK) >>
1967 QSFP_TX_CDR_SHIFT;
1968 else if (field_index == TX_PRESET_TABLE_QSFP_TX_EQ)
1969 *data = (tx_preset & QSFP_TX_EQ_SMASK) >>
1970 QSFP_TX_EQ_SHIFT;
1971 break;
1972 case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
1973 case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
1974 default:
1975 break;
1976 }
1977 }
1978
get_platform_fw_field_metadata(struct hfi1_devdata * dd,int table,int field,u32 * field_len_bits,u32 * field_start_bits)1979 static int get_platform_fw_field_metadata(struct hfi1_devdata *dd, int table,
1980 int field, u32 *field_len_bits,
1981 u32 *field_start_bits)
1982 {
1983 struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
1984 u32 *src_ptr = NULL;
1985
1986 if (!pcfgcache->cache_valid)
1987 return -EINVAL;
1988
1989 switch (table) {
1990 case PLATFORM_CONFIG_SYSTEM_TABLE:
1991 /* fall through */
1992 case PLATFORM_CONFIG_PORT_TABLE:
1993 /* fall through */
1994 case PLATFORM_CONFIG_RX_PRESET_TABLE:
1995 /* fall through */
1996 case PLATFORM_CONFIG_TX_PRESET_TABLE:
1997 /* fall through */
1998 case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
1999 /* fall through */
2000 case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
2001 if (field && field < platform_config_table_limits[table])
2002 src_ptr =
2003 pcfgcache->config_tables[table].table_metadata + field;
2004 break;
2005 default:
2006 dd_dev_info(dd, "%s: Unknown table\n", __func__);
2007 break;
2008 }
2009
2010 if (!src_ptr)
2011 return -EINVAL;
2012
2013 if (field_start_bits)
2014 *field_start_bits = *src_ptr &
2015 ((1 << METADATA_TABLE_FIELD_START_LEN_BITS) - 1);
2016
2017 if (field_len_bits)
2018 *field_len_bits = (*src_ptr >> METADATA_TABLE_FIELD_LEN_SHIFT)
2019 & ((1 << METADATA_TABLE_FIELD_LEN_LEN_BITS) - 1);
2020
2021 return 0;
2022 }
2023
2024 /* This is the central interface to getting data out of the platform config
2025 * file. It depends on parse_platform_config() having populated the
2026 * platform_config_cache in hfi1_devdata, and checks the cache_valid member to
2027 * validate the sanity of the cache.
2028 *
2029 * The non-obvious parameters:
2030 * @table_index: Acts as a look up key into which instance of the tables the
2031 * relevant field is fetched from.
2032 *
2033 * This applies to the data tables that have multiple instances. The port table
2034 * is an exception to this rule as each HFI only has one port and thus the
2035 * relevant table can be distinguished by hfi_id.
2036 *
2037 * @data: pointer to memory that will be populated with the field requested.
2038 * @len: length of memory pointed by @data in bytes.
2039 */
get_platform_config_field(struct hfi1_devdata * dd,enum platform_config_table_type_encoding table_type,int table_index,int field_index,u32 * data,u32 len)2040 int get_platform_config_field(struct hfi1_devdata *dd,
2041 enum platform_config_table_type_encoding
2042 table_type, int table_index, int field_index,
2043 u32 *data, u32 len)
2044 {
2045 int ret = 0, wlen = 0, seek = 0;
2046 u32 field_len_bits = 0, field_start_bits = 0, *src_ptr = NULL;
2047 struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
2048 struct hfi1_pportdata *ppd = dd->pport;
2049
2050 if (data)
2051 memset(data, 0, len);
2052 else
2053 return -EINVAL;
2054
2055 if (ppd->config_from_scratch) {
2056 /*
2057 * Use saved configuration from ppd for integrated platforms
2058 */
2059 get_integrated_platform_config_field(dd, table_type,
2060 field_index, data);
2061 return 0;
2062 }
2063
2064 ret = get_platform_fw_field_metadata(dd, table_type, field_index,
2065 &field_len_bits,
2066 &field_start_bits);
2067 if (ret)
2068 return -EINVAL;
2069
2070 /* Convert length to bits */
2071 len *= 8;
2072
2073 /* Our metadata function checked cache_valid and field_index for us */
2074 switch (table_type) {
2075 case PLATFORM_CONFIG_SYSTEM_TABLE:
2076 src_ptr = pcfgcache->config_tables[table_type].table;
2077
2078 if (field_index != SYSTEM_TABLE_QSFP_POWER_CLASS_MAX) {
2079 if (len < field_len_bits)
2080 return -EINVAL;
2081
2082 seek = field_start_bits / 8;
2083 wlen = field_len_bits / 8;
2084
2085 src_ptr = (u32 *)((u8 *)src_ptr + seek);
2086
2087 /*
2088 * We expect the field to be byte aligned and whole byte
2089 * lengths if we are here
2090 */
2091 memcpy(data, src_ptr, wlen);
2092 return 0;
2093 }
2094 break;
2095 case PLATFORM_CONFIG_PORT_TABLE:
2096 /* Port table is 4 DWORDS */
2097 src_ptr = dd->hfi1_id ?
2098 pcfgcache->config_tables[table_type].table + 4 :
2099 pcfgcache->config_tables[table_type].table;
2100 break;
2101 case PLATFORM_CONFIG_RX_PRESET_TABLE:
2102 /* fall through */
2103 case PLATFORM_CONFIG_TX_PRESET_TABLE:
2104 /* fall through */
2105 case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
2106 /* fall through */
2107 case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
2108 src_ptr = pcfgcache->config_tables[table_type].table;
2109
2110 if (table_index <
2111 pcfgcache->config_tables[table_type].num_table)
2112 src_ptr += table_index;
2113 else
2114 src_ptr = NULL;
2115 break;
2116 default:
2117 dd_dev_info(dd, "%s: Unknown table\n", __func__);
2118 break;
2119 }
2120
2121 if (!src_ptr || len < field_len_bits)
2122 return -EINVAL;
2123
2124 src_ptr += (field_start_bits / 32);
2125 *data = (*src_ptr >> (field_start_bits % 32)) &
2126 ((1 << field_len_bits) - 1);
2127
2128 return 0;
2129 }
2130
2131 /*
2132 * Download the firmware needed for the Gen3 PCIe SerDes. An update
2133 * to the SBus firmware is needed before updating the PCIe firmware.
2134 *
2135 * Note: caller must be holding the SBus resource.
2136 */
load_pcie_firmware(struct hfi1_devdata * dd)2137 int load_pcie_firmware(struct hfi1_devdata *dd)
2138 {
2139 int ret = 0;
2140
2141 /* both firmware loads below use the SBus */
2142 set_sbus_fast_mode(dd);
2143
2144 if (fw_sbus_load) {
2145 turn_off_spicos(dd, SPICO_SBUS);
2146 do {
2147 ret = load_sbus_firmware(dd, &fw_sbus);
2148 } while (retry_firmware(dd, ret));
2149 if (ret)
2150 goto done;
2151 }
2152
2153 if (fw_pcie_serdes_load) {
2154 dd_dev_info(dd, "Setting PCIe SerDes broadcast\n");
2155 set_serdes_broadcast(dd, all_pcie_serdes_broadcast,
2156 pcie_serdes_broadcast[dd->hfi1_id],
2157 pcie_serdes_addrs[dd->hfi1_id],
2158 NUM_PCIE_SERDES);
2159 do {
2160 ret = load_pcie_serdes_firmware(dd, &fw_pcie);
2161 } while (retry_firmware(dd, ret));
2162 if (ret)
2163 goto done;
2164 }
2165
2166 done:
2167 clear_sbus_fast_mode(dd);
2168
2169 return ret;
2170 }
2171
2172 /*
2173 * Read the GUID from the hardware, store it in dd.
2174 */
read_guid(struct hfi1_devdata * dd)2175 void read_guid(struct hfi1_devdata *dd)
2176 {
2177 /* Take the DC out of reset to get a valid GUID value */
2178 write_csr(dd, CCE_DC_CTRL, 0);
2179 (void)read_csr(dd, CCE_DC_CTRL);
2180
2181 dd->base_guid = read_csr(dd, DC_DC8051_CFG_LOCAL_GUID);
2182 dd_dev_info(dd, "GUID %llx",
2183 (unsigned long long)dd->base_guid);
2184 }
2185
2186 /* read and display firmware version info */
dump_fw_version(struct hfi1_devdata * dd)2187 static void dump_fw_version(struct hfi1_devdata *dd)
2188 {
2189 u32 pcie_vers[NUM_PCIE_SERDES];
2190 u32 fabric_vers[NUM_FABRIC_SERDES];
2191 u32 sbus_vers;
2192 int i;
2193 int all_same;
2194 int ret;
2195 u8 rcv_addr;
2196
2197 ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
2198 if (ret) {
2199 dd_dev_err(dd, "Unable to acquire SBus to read firmware versions\n");
2200 return;
2201 }
2202
2203 /* set fast mode */
2204 set_sbus_fast_mode(dd);
2205
2206 /* read version for SBus Master */
2207 sbus_request(dd, SBUS_MASTER_BROADCAST, 0x02, WRITE_SBUS_RECEIVER, 0);
2208 sbus_request(dd, SBUS_MASTER_BROADCAST, 0x07, WRITE_SBUS_RECEIVER, 0x1);
2209 /* wait for interrupt to be processed */
2210 usleep_range(10000, 11000);
2211 sbus_vers = sbus_read(dd, SBUS_MASTER_BROADCAST, 0x08, 0x1);
2212 dd_dev_info(dd, "SBus Master firmware version 0x%08x\n", sbus_vers);
2213
2214 /* read version for PCIe SerDes */
2215 all_same = 1;
2216 pcie_vers[0] = 0;
2217 for (i = 0; i < NUM_PCIE_SERDES; i++) {
2218 rcv_addr = pcie_serdes_addrs[dd->hfi1_id][i];
2219 sbus_request(dd, rcv_addr, 0x03, WRITE_SBUS_RECEIVER, 0);
2220 /* wait for interrupt to be processed */
2221 usleep_range(10000, 11000);
2222 pcie_vers[i] = sbus_read(dd, rcv_addr, 0x04, 0x0);
2223 if (i > 0 && pcie_vers[0] != pcie_vers[i])
2224 all_same = 0;
2225 }
2226
2227 if (all_same) {
2228 dd_dev_info(dd, "PCIe SerDes firmware version 0x%x\n",
2229 pcie_vers[0]);
2230 } else {
2231 dd_dev_warn(dd, "PCIe SerDes do not have the same firmware version\n");
2232 for (i = 0; i < NUM_PCIE_SERDES; i++) {
2233 dd_dev_info(dd,
2234 "PCIe SerDes lane %d firmware version 0x%x\n",
2235 i, pcie_vers[i]);
2236 }
2237 }
2238
2239 /* read version for fabric SerDes */
2240 all_same = 1;
2241 fabric_vers[0] = 0;
2242 for (i = 0; i < NUM_FABRIC_SERDES; i++) {
2243 rcv_addr = fabric_serdes_addrs[dd->hfi1_id][i];
2244 sbus_request(dd, rcv_addr, 0x03, WRITE_SBUS_RECEIVER, 0);
2245 /* wait for interrupt to be processed */
2246 usleep_range(10000, 11000);
2247 fabric_vers[i] = sbus_read(dd, rcv_addr, 0x04, 0x0);
2248 if (i > 0 && fabric_vers[0] != fabric_vers[i])
2249 all_same = 0;
2250 }
2251
2252 if (all_same) {
2253 dd_dev_info(dd, "Fabric SerDes firmware version 0x%x\n",
2254 fabric_vers[0]);
2255 } else {
2256 dd_dev_warn(dd, "Fabric SerDes do not have the same firmware version\n");
2257 for (i = 0; i < NUM_FABRIC_SERDES; i++) {
2258 dd_dev_info(dd,
2259 "Fabric SerDes lane %d firmware version 0x%x\n",
2260 i, fabric_vers[i]);
2261 }
2262 }
2263
2264 clear_sbus_fast_mode(dd);
2265 release_chip_resource(dd, CR_SBUS);
2266 }
2267