1 // SPDX-License-Identifier: GPL-2.0
2 /* pci.c: UltraSparc PCI controller support.
3 *
4 * Copyright (C) 1997, 1998, 1999 David S. Miller (davem@redhat.com)
5 * Copyright (C) 1998, 1999 Eddie C. Dost (ecd@skynet.be)
6 * Copyright (C) 1999 Jakub Jelinek (jj@ultra.linux.cz)
7 *
8 * OF tree based PCI bus probing taken from the PowerPC port
9 * with minor modifications, see there for credits.
10 */
11
12 #include <linux/export.h>
13 #include <linux/kernel.h>
14 #include <linux/string.h>
15 #include <linux/sched.h>
16 #include <linux/capability.h>
17 #include <linux/errno.h>
18 #include <linux/pci.h>
19 #include <linux/msi.h>
20 #include <linux/irq.h>
21 #include <linux/init.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24
25 #include <linux/uaccess.h>
26 #include <asm/pgtable.h>
27 #include <asm/irq.h>
28 #include <asm/prom.h>
29 #include <asm/apb.h>
30
31 #include "pci_impl.h"
32 #include "kernel.h"
33
34 /* List of all PCI controllers found in the system. */
35 struct pci_pbm_info *pci_pbm_root = NULL;
36
37 /* Each PBM found gets a unique index. */
38 int pci_num_pbms = 0;
39
40 volatile int pci_poke_in_progress;
41 volatile int pci_poke_cpu = -1;
42 volatile int pci_poke_faulted;
43
44 static DEFINE_SPINLOCK(pci_poke_lock);
45
pci_config_read8(u8 * addr,u8 * ret)46 void pci_config_read8(u8 *addr, u8 *ret)
47 {
48 unsigned long flags;
49 u8 byte;
50
51 spin_lock_irqsave(&pci_poke_lock, flags);
52 pci_poke_cpu = smp_processor_id();
53 pci_poke_in_progress = 1;
54 pci_poke_faulted = 0;
55 __asm__ __volatile__("membar #Sync\n\t"
56 "lduba [%1] %2, %0\n\t"
57 "membar #Sync"
58 : "=r" (byte)
59 : "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
60 : "memory");
61 pci_poke_in_progress = 0;
62 pci_poke_cpu = -1;
63 if (!pci_poke_faulted)
64 *ret = byte;
65 spin_unlock_irqrestore(&pci_poke_lock, flags);
66 }
67
pci_config_read16(u16 * addr,u16 * ret)68 void pci_config_read16(u16 *addr, u16 *ret)
69 {
70 unsigned long flags;
71 u16 word;
72
73 spin_lock_irqsave(&pci_poke_lock, flags);
74 pci_poke_cpu = smp_processor_id();
75 pci_poke_in_progress = 1;
76 pci_poke_faulted = 0;
77 __asm__ __volatile__("membar #Sync\n\t"
78 "lduha [%1] %2, %0\n\t"
79 "membar #Sync"
80 : "=r" (word)
81 : "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
82 : "memory");
83 pci_poke_in_progress = 0;
84 pci_poke_cpu = -1;
85 if (!pci_poke_faulted)
86 *ret = word;
87 spin_unlock_irqrestore(&pci_poke_lock, flags);
88 }
89
pci_config_read32(u32 * addr,u32 * ret)90 void pci_config_read32(u32 *addr, u32 *ret)
91 {
92 unsigned long flags;
93 u32 dword;
94
95 spin_lock_irqsave(&pci_poke_lock, flags);
96 pci_poke_cpu = smp_processor_id();
97 pci_poke_in_progress = 1;
98 pci_poke_faulted = 0;
99 __asm__ __volatile__("membar #Sync\n\t"
100 "lduwa [%1] %2, %0\n\t"
101 "membar #Sync"
102 : "=r" (dword)
103 : "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
104 : "memory");
105 pci_poke_in_progress = 0;
106 pci_poke_cpu = -1;
107 if (!pci_poke_faulted)
108 *ret = dword;
109 spin_unlock_irqrestore(&pci_poke_lock, flags);
110 }
111
pci_config_write8(u8 * addr,u8 val)112 void pci_config_write8(u8 *addr, u8 val)
113 {
114 unsigned long flags;
115
116 spin_lock_irqsave(&pci_poke_lock, flags);
117 pci_poke_cpu = smp_processor_id();
118 pci_poke_in_progress = 1;
119 pci_poke_faulted = 0;
120 __asm__ __volatile__("membar #Sync\n\t"
121 "stba %0, [%1] %2\n\t"
122 "membar #Sync"
123 : /* no outputs */
124 : "r" (val), "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
125 : "memory");
126 pci_poke_in_progress = 0;
127 pci_poke_cpu = -1;
128 spin_unlock_irqrestore(&pci_poke_lock, flags);
129 }
130
pci_config_write16(u16 * addr,u16 val)131 void pci_config_write16(u16 *addr, u16 val)
132 {
133 unsigned long flags;
134
135 spin_lock_irqsave(&pci_poke_lock, flags);
136 pci_poke_cpu = smp_processor_id();
137 pci_poke_in_progress = 1;
138 pci_poke_faulted = 0;
139 __asm__ __volatile__("membar #Sync\n\t"
140 "stha %0, [%1] %2\n\t"
141 "membar #Sync"
142 : /* no outputs */
143 : "r" (val), "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
144 : "memory");
145 pci_poke_in_progress = 0;
146 pci_poke_cpu = -1;
147 spin_unlock_irqrestore(&pci_poke_lock, flags);
148 }
149
pci_config_write32(u32 * addr,u32 val)150 void pci_config_write32(u32 *addr, u32 val)
151 {
152 unsigned long flags;
153
154 spin_lock_irqsave(&pci_poke_lock, flags);
155 pci_poke_cpu = smp_processor_id();
156 pci_poke_in_progress = 1;
157 pci_poke_faulted = 0;
158 __asm__ __volatile__("membar #Sync\n\t"
159 "stwa %0, [%1] %2\n\t"
160 "membar #Sync"
161 : /* no outputs */
162 : "r" (val), "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
163 : "memory");
164 pci_poke_in_progress = 0;
165 pci_poke_cpu = -1;
166 spin_unlock_irqrestore(&pci_poke_lock, flags);
167 }
168
169 static int ofpci_verbose;
170
ofpci_debug(char * str)171 static int __init ofpci_debug(char *str)
172 {
173 int val = 0;
174
175 get_option(&str, &val);
176 if (val)
177 ofpci_verbose = 1;
178 return 1;
179 }
180
181 __setup("ofpci_debug=", ofpci_debug);
182
pci_parse_of_flags(u32 addr0)183 static unsigned long pci_parse_of_flags(u32 addr0)
184 {
185 unsigned long flags = 0;
186
187 if (addr0 & 0x02000000) {
188 flags = IORESOURCE_MEM | PCI_BASE_ADDRESS_SPACE_MEMORY;
189 flags |= (addr0 >> 28) & PCI_BASE_ADDRESS_MEM_TYPE_1M;
190 if (addr0 & 0x01000000)
191 flags |= IORESOURCE_MEM_64
192 | PCI_BASE_ADDRESS_MEM_TYPE_64;
193 if (addr0 & 0x40000000)
194 flags |= IORESOURCE_PREFETCH
195 | PCI_BASE_ADDRESS_MEM_PREFETCH;
196 } else if (addr0 & 0x01000000)
197 flags = IORESOURCE_IO | PCI_BASE_ADDRESS_SPACE_IO;
198 return flags;
199 }
200
201 /* The of_device layer has translated all of the assigned-address properties
202 * into physical address resources, we only have to figure out the register
203 * mapping.
204 */
pci_parse_of_addrs(struct platform_device * op,struct device_node * node,struct pci_dev * dev)205 static void pci_parse_of_addrs(struct platform_device *op,
206 struct device_node *node,
207 struct pci_dev *dev)
208 {
209 struct resource *op_res;
210 const u32 *addrs;
211 int proplen;
212
213 addrs = of_get_property(node, "assigned-addresses", &proplen);
214 if (!addrs)
215 return;
216 if (ofpci_verbose)
217 printk(" parse addresses (%d bytes) @ %p\n",
218 proplen, addrs);
219 op_res = &op->resource[0];
220 for (; proplen >= 20; proplen -= 20, addrs += 5, op_res++) {
221 struct resource *res;
222 unsigned long flags;
223 int i;
224
225 flags = pci_parse_of_flags(addrs[0]);
226 if (!flags)
227 continue;
228 i = addrs[0] & 0xff;
229 if (ofpci_verbose)
230 printk(" start: %llx, end: %llx, i: %x\n",
231 op_res->start, op_res->end, i);
232
233 if (PCI_BASE_ADDRESS_0 <= i && i <= PCI_BASE_ADDRESS_5) {
234 res = &dev->resource[(i - PCI_BASE_ADDRESS_0) >> 2];
235 } else if (i == dev->rom_base_reg) {
236 res = &dev->resource[PCI_ROM_RESOURCE];
237 flags |= IORESOURCE_READONLY | IORESOURCE_SIZEALIGN;
238 } else {
239 printk(KERN_ERR "PCI: bad cfg reg num 0x%x\n", i);
240 continue;
241 }
242 res->start = op_res->start;
243 res->end = op_res->end;
244 res->flags = flags;
245 res->name = pci_name(dev);
246 }
247 }
248
pci_init_dev_archdata(struct dev_archdata * sd,void * iommu,void * stc,void * host_controller,struct platform_device * op,int numa_node)249 static void pci_init_dev_archdata(struct dev_archdata *sd, void *iommu,
250 void *stc, void *host_controller,
251 struct platform_device *op,
252 int numa_node)
253 {
254 sd->iommu = iommu;
255 sd->stc = stc;
256 sd->host_controller = host_controller;
257 sd->op = op;
258 sd->numa_node = numa_node;
259 }
260
of_create_pci_dev(struct pci_pbm_info * pbm,struct device_node * node,struct pci_bus * bus,int devfn)261 static struct pci_dev *of_create_pci_dev(struct pci_pbm_info *pbm,
262 struct device_node *node,
263 struct pci_bus *bus, int devfn)
264 {
265 struct dev_archdata *sd;
266 struct platform_device *op;
267 struct pci_dev *dev;
268 const char *type;
269 u32 class;
270
271 dev = pci_alloc_dev(bus);
272 if (!dev)
273 return NULL;
274
275 op = of_find_device_by_node(node);
276 sd = &dev->dev.archdata;
277 pci_init_dev_archdata(sd, pbm->iommu, &pbm->stc, pbm, op,
278 pbm->numa_node);
279 sd = &op->dev.archdata;
280 sd->iommu = pbm->iommu;
281 sd->stc = &pbm->stc;
282 sd->numa_node = pbm->numa_node;
283
284 if (!strcmp(node->name, "ebus"))
285 of_propagate_archdata(op);
286
287 type = of_get_property(node, "device_type", NULL);
288 if (type == NULL)
289 type = "";
290
291 if (ofpci_verbose)
292 printk(" create device, devfn: %x, type: %s\n",
293 devfn, type);
294
295 dev->sysdata = node;
296 dev->dev.parent = bus->bridge;
297 dev->dev.bus = &pci_bus_type;
298 dev->dev.of_node = of_node_get(node);
299 dev->devfn = devfn;
300 dev->multifunction = 0; /* maybe a lie? */
301 set_pcie_port_type(dev);
302
303 pci_dev_assign_slot(dev);
304 dev->vendor = of_getintprop_default(node, "vendor-id", 0xffff);
305 dev->device = of_getintprop_default(node, "device-id", 0xffff);
306 dev->subsystem_vendor =
307 of_getintprop_default(node, "subsystem-vendor-id", 0);
308 dev->subsystem_device =
309 of_getintprop_default(node, "subsystem-id", 0);
310
311 dev->cfg_size = pci_cfg_space_size(dev);
312
313 /* We can't actually use the firmware value, we have
314 * to read what is in the register right now. One
315 * reason is that in the case of IDE interfaces the
316 * firmware can sample the value before the the IDE
317 * interface is programmed into native mode.
318 */
319 pci_read_config_dword(dev, PCI_CLASS_REVISION, &class);
320 dev->class = class >> 8;
321 dev->revision = class & 0xff;
322
323 dev_set_name(&dev->dev, "%04x:%02x:%02x.%d", pci_domain_nr(bus),
324 dev->bus->number, PCI_SLOT(devfn), PCI_FUNC(devfn));
325
326 if (ofpci_verbose)
327 printk(" class: 0x%x device name: %s\n",
328 dev->class, pci_name(dev));
329
330 /* I have seen IDE devices which will not respond to
331 * the bmdma simplex check reads if bus mastering is
332 * disabled.
333 */
334 if ((dev->class >> 8) == PCI_CLASS_STORAGE_IDE)
335 pci_set_master(dev);
336
337 dev->current_state = PCI_UNKNOWN; /* unknown power state */
338 dev->error_state = pci_channel_io_normal;
339 dev->dma_mask = 0xffffffff;
340
341 if (!strcmp(node->name, "pci")) {
342 /* a PCI-PCI bridge */
343 dev->hdr_type = PCI_HEADER_TYPE_BRIDGE;
344 dev->rom_base_reg = PCI_ROM_ADDRESS1;
345 } else if (!strcmp(type, "cardbus")) {
346 dev->hdr_type = PCI_HEADER_TYPE_CARDBUS;
347 } else {
348 dev->hdr_type = PCI_HEADER_TYPE_NORMAL;
349 dev->rom_base_reg = PCI_ROM_ADDRESS;
350
351 dev->irq = sd->op->archdata.irqs[0];
352 if (dev->irq == 0xffffffff)
353 dev->irq = PCI_IRQ_NONE;
354 }
355
356 pci_parse_of_addrs(sd->op, node, dev);
357
358 if (ofpci_verbose)
359 printk(" adding to system ...\n");
360
361 pci_device_add(dev, bus);
362
363 return dev;
364 }
365
apb_calc_first_last(u8 map,u32 * first_p,u32 * last_p)366 static void apb_calc_first_last(u8 map, u32 *first_p, u32 *last_p)
367 {
368 u32 idx, first, last;
369
370 first = 8;
371 last = 0;
372 for (idx = 0; idx < 8; idx++) {
373 if ((map & (1 << idx)) != 0) {
374 if (first > idx)
375 first = idx;
376 if (last < idx)
377 last = idx;
378 }
379 }
380
381 *first_p = first;
382 *last_p = last;
383 }
384
385 /* Cook up fake bus resources for SUNW,simba PCI bridges which lack
386 * a proper 'ranges' property.
387 */
apb_fake_ranges(struct pci_dev * dev,struct pci_bus * bus,struct pci_pbm_info * pbm)388 static void apb_fake_ranges(struct pci_dev *dev,
389 struct pci_bus *bus,
390 struct pci_pbm_info *pbm)
391 {
392 struct pci_bus_region region;
393 struct resource *res;
394 u32 first, last;
395 u8 map;
396
397 pci_read_config_byte(dev, APB_IO_ADDRESS_MAP, &map);
398 apb_calc_first_last(map, &first, &last);
399 res = bus->resource[0];
400 res->flags = IORESOURCE_IO;
401 region.start = (first << 21);
402 region.end = (last << 21) + ((1 << 21) - 1);
403 pcibios_bus_to_resource(dev->bus, res, ®ion);
404
405 pci_read_config_byte(dev, APB_MEM_ADDRESS_MAP, &map);
406 apb_calc_first_last(map, &first, &last);
407 res = bus->resource[1];
408 res->flags = IORESOURCE_MEM;
409 region.start = (first << 29);
410 region.end = (last << 29) + ((1 << 29) - 1);
411 pcibios_bus_to_resource(dev->bus, res, ®ion);
412 }
413
414 static void pci_of_scan_bus(struct pci_pbm_info *pbm,
415 struct device_node *node,
416 struct pci_bus *bus);
417
418 #define GET_64BIT(prop, i) ((((u64) (prop)[(i)]) << 32) | (prop)[(i)+1])
419
of_scan_pci_bridge(struct pci_pbm_info * pbm,struct device_node * node,struct pci_dev * dev)420 static void of_scan_pci_bridge(struct pci_pbm_info *pbm,
421 struct device_node *node,
422 struct pci_dev *dev)
423 {
424 struct pci_bus *bus;
425 const u32 *busrange, *ranges;
426 int len, i, simba;
427 struct pci_bus_region region;
428 struct resource *res;
429 unsigned int flags;
430 u64 size;
431
432 if (ofpci_verbose)
433 printk("of_scan_pci_bridge(%s)\n", node->full_name);
434
435 /* parse bus-range property */
436 busrange = of_get_property(node, "bus-range", &len);
437 if (busrange == NULL || len != 8) {
438 printk(KERN_DEBUG "Can't get bus-range for PCI-PCI bridge %s\n",
439 node->full_name);
440 return;
441 }
442
443 if (ofpci_verbose)
444 printk(" Bridge bus range [%u --> %u]\n",
445 busrange[0], busrange[1]);
446
447 ranges = of_get_property(node, "ranges", &len);
448 simba = 0;
449 if (ranges == NULL) {
450 const char *model = of_get_property(node, "model", NULL);
451 if (model && !strcmp(model, "SUNW,simba"))
452 simba = 1;
453 }
454
455 bus = pci_add_new_bus(dev->bus, dev, busrange[0]);
456 if (!bus) {
457 printk(KERN_ERR "Failed to create pci bus for %s\n",
458 node->full_name);
459 return;
460 }
461
462 bus->primary = dev->bus->number;
463 pci_bus_insert_busn_res(bus, busrange[0], busrange[1]);
464 bus->bridge_ctl = 0;
465
466 if (ofpci_verbose)
467 printk(" Bridge ranges[%p] simba[%d]\n",
468 ranges, simba);
469
470 /* parse ranges property, or cook one up by hand for Simba */
471 /* PCI #address-cells == 3 and #size-cells == 2 always */
472 res = &dev->resource[PCI_BRIDGE_RESOURCES];
473 for (i = 0; i < PCI_NUM_RESOURCES - PCI_BRIDGE_RESOURCES; ++i) {
474 res->flags = 0;
475 bus->resource[i] = res;
476 ++res;
477 }
478 if (simba) {
479 apb_fake_ranges(dev, bus, pbm);
480 goto after_ranges;
481 } else if (ranges == NULL) {
482 pci_read_bridge_bases(bus);
483 goto after_ranges;
484 }
485 i = 1;
486 for (; len >= 32; len -= 32, ranges += 8) {
487 u64 start;
488
489 if (ofpci_verbose)
490 printk(" RAW Range[%08x:%08x:%08x:%08x:%08x:%08x:"
491 "%08x:%08x]\n",
492 ranges[0], ranges[1], ranges[2], ranges[3],
493 ranges[4], ranges[5], ranges[6], ranges[7]);
494
495 flags = pci_parse_of_flags(ranges[0]);
496 size = GET_64BIT(ranges, 6);
497 if (flags == 0 || size == 0)
498 continue;
499
500 /* On PCI-Express systems, PCI bridges that have no devices downstream
501 * have a bogus size value where the first 32-bit cell is 0xffffffff.
502 * This results in a bogus range where start + size overflows.
503 *
504 * Just skip these otherwise the kernel will complain when the resource
505 * tries to be claimed.
506 */
507 if (size >> 32 == 0xffffffff)
508 continue;
509
510 if (flags & IORESOURCE_IO) {
511 res = bus->resource[0];
512 if (res->flags) {
513 printk(KERN_ERR "PCI: ignoring extra I/O range"
514 " for bridge %s\n", node->full_name);
515 continue;
516 }
517 } else {
518 if (i >= PCI_NUM_RESOURCES - PCI_BRIDGE_RESOURCES) {
519 printk(KERN_ERR "PCI: too many memory ranges"
520 " for bridge %s\n", node->full_name);
521 continue;
522 }
523 res = bus->resource[i];
524 ++i;
525 }
526
527 res->flags = flags;
528 region.start = start = GET_64BIT(ranges, 1);
529 region.end = region.start + size - 1;
530
531 if (ofpci_verbose)
532 printk(" Using flags[%08x] start[%016llx] size[%016llx]\n",
533 flags, start, size);
534
535 pcibios_bus_to_resource(dev->bus, res, ®ion);
536 }
537 after_ranges:
538 sprintf(bus->name, "PCI Bus %04x:%02x", pci_domain_nr(bus),
539 bus->number);
540 if (ofpci_verbose)
541 printk(" bus name: %s\n", bus->name);
542
543 pci_of_scan_bus(pbm, node, bus);
544 }
545
pci_of_scan_bus(struct pci_pbm_info * pbm,struct device_node * node,struct pci_bus * bus)546 static void pci_of_scan_bus(struct pci_pbm_info *pbm,
547 struct device_node *node,
548 struct pci_bus *bus)
549 {
550 struct device_node *child;
551 const u32 *reg;
552 int reglen, devfn, prev_devfn;
553 struct pci_dev *dev;
554
555 if (ofpci_verbose)
556 printk("PCI: scan_bus[%s] bus no %d\n",
557 node->full_name, bus->number);
558
559 child = NULL;
560 prev_devfn = -1;
561 while ((child = of_get_next_child(node, child)) != NULL) {
562 if (ofpci_verbose)
563 printk(" * %s\n", child->full_name);
564 reg = of_get_property(child, "reg", ®len);
565 if (reg == NULL || reglen < 20)
566 continue;
567
568 devfn = (reg[0] >> 8) & 0xff;
569
570 /* This is a workaround for some device trees
571 * which list PCI devices twice. On the V100
572 * for example, device number 3 is listed twice.
573 * Once as "pm" and once again as "lomp".
574 */
575 if (devfn == prev_devfn)
576 continue;
577 prev_devfn = devfn;
578
579 /* create a new pci_dev for this device */
580 dev = of_create_pci_dev(pbm, child, bus, devfn);
581 if (!dev)
582 continue;
583 if (ofpci_verbose)
584 printk("PCI: dev header type: %x\n",
585 dev->hdr_type);
586
587 if (pci_is_bridge(dev))
588 of_scan_pci_bridge(pbm, child, dev);
589 }
590 }
591
592 static ssize_t
show_pciobppath_attr(struct device * dev,struct device_attribute * attr,char * buf)593 show_pciobppath_attr(struct device * dev, struct device_attribute * attr, char * buf)
594 {
595 struct pci_dev *pdev;
596 struct device_node *dp;
597
598 pdev = to_pci_dev(dev);
599 dp = pdev->dev.of_node;
600
601 return snprintf (buf, PAGE_SIZE, "%s\n", dp->full_name);
602 }
603
604 static DEVICE_ATTR(obppath, S_IRUSR | S_IRGRP | S_IROTH, show_pciobppath_attr, NULL);
605
pci_bus_register_of_sysfs(struct pci_bus * bus)606 static void pci_bus_register_of_sysfs(struct pci_bus *bus)
607 {
608 struct pci_dev *dev;
609 struct pci_bus *child_bus;
610 int err;
611
612 list_for_each_entry(dev, &bus->devices, bus_list) {
613 /* we don't really care if we can create this file or
614 * not, but we need to assign the result of the call
615 * or the world will fall under alien invasion and
616 * everybody will be frozen on a spaceship ready to be
617 * eaten on alpha centauri by some green and jelly
618 * humanoid.
619 */
620 err = sysfs_create_file(&dev->dev.kobj, &dev_attr_obppath.attr);
621 (void) err;
622 }
623 list_for_each_entry(child_bus, &bus->children, node)
624 pci_bus_register_of_sysfs(child_bus);
625 }
626
pci_claim_bus_resources(struct pci_bus * bus)627 static void pci_claim_bus_resources(struct pci_bus *bus)
628 {
629 struct pci_bus *child_bus;
630 struct pci_dev *dev;
631
632 list_for_each_entry(dev, &bus->devices, bus_list) {
633 int i;
634
635 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
636 struct resource *r = &dev->resource[i];
637
638 if (r->parent || !r->start || !r->flags)
639 continue;
640
641 if (ofpci_verbose)
642 printk("PCI: Claiming %s: "
643 "Resource %d: %016llx..%016llx [%x]\n",
644 pci_name(dev), i,
645 (unsigned long long)r->start,
646 (unsigned long long)r->end,
647 (unsigned int)r->flags);
648
649 pci_claim_resource(dev, i);
650 }
651 }
652
653 list_for_each_entry(child_bus, &bus->children, node)
654 pci_claim_bus_resources(child_bus);
655 }
656
pci_scan_one_pbm(struct pci_pbm_info * pbm,struct device * parent)657 struct pci_bus *pci_scan_one_pbm(struct pci_pbm_info *pbm,
658 struct device *parent)
659 {
660 LIST_HEAD(resources);
661 struct device_node *node = pbm->op->dev.of_node;
662 struct pci_bus *bus;
663
664 printk("PCI: Scanning PBM %s\n", node->full_name);
665
666 pci_add_resource_offset(&resources, &pbm->io_space,
667 pbm->io_space.start);
668 pci_add_resource_offset(&resources, &pbm->mem_space,
669 pbm->mem_space.start);
670 if (pbm->mem64_space.flags)
671 pci_add_resource_offset(&resources, &pbm->mem64_space,
672 pbm->mem_space.start);
673 pbm->busn.start = pbm->pci_first_busno;
674 pbm->busn.end = pbm->pci_last_busno;
675 pbm->busn.flags = IORESOURCE_BUS;
676 pci_add_resource(&resources, &pbm->busn);
677 bus = pci_create_root_bus(parent, pbm->pci_first_busno, pbm->pci_ops,
678 pbm, &resources);
679 if (!bus) {
680 printk(KERN_ERR "Failed to create bus for %s\n",
681 node->full_name);
682 pci_free_resource_list(&resources);
683 return NULL;
684 }
685
686 pci_of_scan_bus(pbm, node, bus);
687 pci_bus_register_of_sysfs(bus);
688
689 pci_claim_bus_resources(bus);
690 pci_bus_add_devices(bus);
691 return bus;
692 }
693
pcibios_enable_device(struct pci_dev * dev,int mask)694 int pcibios_enable_device(struct pci_dev *dev, int mask)
695 {
696 u16 cmd, oldcmd;
697 int i;
698
699 pci_read_config_word(dev, PCI_COMMAND, &cmd);
700 oldcmd = cmd;
701
702 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
703 struct resource *res = &dev->resource[i];
704
705 /* Only set up the requested stuff */
706 if (!(mask & (1<<i)))
707 continue;
708
709 if (res->flags & IORESOURCE_IO)
710 cmd |= PCI_COMMAND_IO;
711 if (res->flags & IORESOURCE_MEM)
712 cmd |= PCI_COMMAND_MEMORY;
713 }
714
715 if (cmd != oldcmd) {
716 printk(KERN_DEBUG "PCI: Enabling device: (%s), cmd %x\n",
717 pci_name(dev), cmd);
718 /* Enable the appropriate bits in the PCI command register. */
719 pci_write_config_word(dev, PCI_COMMAND, cmd);
720 }
721 return 0;
722 }
723
724 /* Platform support for /proc/bus/pci/X/Y mmap()s. */
725
726 /* If the user uses a host-bridge as the PCI device, he may use
727 * this to perform a raw mmap() of the I/O or MEM space behind
728 * that controller.
729 *
730 * This can be useful for execution of x86 PCI bios initialization code
731 * on a PCI card, like the xfree86 int10 stuff does.
732 */
__pci_mmap_make_offset_bus(struct pci_dev * pdev,struct vm_area_struct * vma,enum pci_mmap_state mmap_state)733 static int __pci_mmap_make_offset_bus(struct pci_dev *pdev, struct vm_area_struct *vma,
734 enum pci_mmap_state mmap_state)
735 {
736 struct pci_pbm_info *pbm = pdev->dev.archdata.host_controller;
737 unsigned long space_size, user_offset, user_size;
738
739 if (mmap_state == pci_mmap_io) {
740 space_size = resource_size(&pbm->io_space);
741 } else {
742 space_size = resource_size(&pbm->mem_space);
743 }
744
745 /* Make sure the request is in range. */
746 user_offset = vma->vm_pgoff << PAGE_SHIFT;
747 user_size = vma->vm_end - vma->vm_start;
748
749 if (user_offset >= space_size ||
750 (user_offset + user_size) > space_size)
751 return -EINVAL;
752
753 if (mmap_state == pci_mmap_io) {
754 vma->vm_pgoff = (pbm->io_space.start +
755 user_offset) >> PAGE_SHIFT;
756 } else {
757 vma->vm_pgoff = (pbm->mem_space.start +
758 user_offset) >> PAGE_SHIFT;
759 }
760
761 return 0;
762 }
763
764 /* Adjust vm_pgoff of VMA such that it is the physical page offset
765 * corresponding to the 32-bit pci bus offset for DEV requested by the user.
766 *
767 * Basically, the user finds the base address for his device which he wishes
768 * to mmap. They read the 32-bit value from the config space base register,
769 * add whatever PAGE_SIZE multiple offset they wish, and feed this into the
770 * offset parameter of mmap on /proc/bus/pci/XXX for that device.
771 *
772 * Returns negative error code on failure, zero on success.
773 */
__pci_mmap_make_offset(struct pci_dev * pdev,struct vm_area_struct * vma,enum pci_mmap_state mmap_state)774 static int __pci_mmap_make_offset(struct pci_dev *pdev,
775 struct vm_area_struct *vma,
776 enum pci_mmap_state mmap_state)
777 {
778 unsigned long user_paddr, user_size;
779 int i, err;
780
781 /* First compute the physical address in vma->vm_pgoff,
782 * making sure the user offset is within range in the
783 * appropriate PCI space.
784 */
785 err = __pci_mmap_make_offset_bus(pdev, vma, mmap_state);
786 if (err)
787 return err;
788
789 /* If this is a mapping on a host bridge, any address
790 * is OK.
791 */
792 if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_HOST)
793 return err;
794
795 /* Otherwise make sure it's in the range for one of the
796 * device's resources.
797 */
798 user_paddr = vma->vm_pgoff << PAGE_SHIFT;
799 user_size = vma->vm_end - vma->vm_start;
800
801 for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
802 struct resource *rp = &pdev->resource[i];
803 resource_size_t aligned_end;
804
805 /* Active? */
806 if (!rp->flags)
807 continue;
808
809 /* Same type? */
810 if (i == PCI_ROM_RESOURCE) {
811 if (mmap_state != pci_mmap_mem)
812 continue;
813 } else {
814 if ((mmap_state == pci_mmap_io &&
815 (rp->flags & IORESOURCE_IO) == 0) ||
816 (mmap_state == pci_mmap_mem &&
817 (rp->flags & IORESOURCE_MEM) == 0))
818 continue;
819 }
820
821 /* Align the resource end to the next page address.
822 * PAGE_SIZE intentionally added instead of (PAGE_SIZE - 1),
823 * because actually we need the address of the next byte
824 * after rp->end.
825 */
826 aligned_end = (rp->end + PAGE_SIZE) & PAGE_MASK;
827
828 if ((rp->start <= user_paddr) &&
829 (user_paddr + user_size) <= aligned_end)
830 break;
831 }
832
833 if (i > PCI_ROM_RESOURCE)
834 return -EINVAL;
835
836 return 0;
837 }
838
839 /* Set vm_page_prot of VMA, as appropriate for this architecture, for a pci
840 * device mapping.
841 */
__pci_mmap_set_pgprot(struct pci_dev * dev,struct vm_area_struct * vma,enum pci_mmap_state mmap_state)842 static void __pci_mmap_set_pgprot(struct pci_dev *dev, struct vm_area_struct *vma,
843 enum pci_mmap_state mmap_state)
844 {
845 /* Our io_remap_pfn_range takes care of this, do nothing. */
846 }
847
848 /* Perform the actual remap of the pages for a PCI device mapping, as appropriate
849 * for this architecture. The region in the process to map is described by vm_start
850 * and vm_end members of VMA, the base physical address is found in vm_pgoff.
851 * The pci device structure is provided so that architectures may make mapping
852 * decisions on a per-device or per-bus basis.
853 *
854 * Returns a negative error code on failure, zero on success.
855 */
pci_mmap_page_range(struct pci_dev * dev,int bar,struct vm_area_struct * vma,enum pci_mmap_state mmap_state,int write_combine)856 int pci_mmap_page_range(struct pci_dev *dev, int bar,
857 struct vm_area_struct *vma,
858 enum pci_mmap_state mmap_state, int write_combine)
859 {
860 int ret;
861
862 ret = __pci_mmap_make_offset(dev, vma, mmap_state);
863 if (ret < 0)
864 return ret;
865
866 __pci_mmap_set_pgprot(dev, vma, mmap_state);
867
868 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
869 ret = io_remap_pfn_range(vma, vma->vm_start,
870 vma->vm_pgoff,
871 vma->vm_end - vma->vm_start,
872 vma->vm_page_prot);
873 if (ret)
874 return ret;
875
876 return 0;
877 }
878
879 #ifdef CONFIG_NUMA
pcibus_to_node(struct pci_bus * pbus)880 int pcibus_to_node(struct pci_bus *pbus)
881 {
882 struct pci_pbm_info *pbm = pbus->sysdata;
883
884 return pbm->numa_node;
885 }
886 EXPORT_SYMBOL(pcibus_to_node);
887 #endif
888
889 /* Return the domain number for this pci bus */
890
pci_domain_nr(struct pci_bus * pbus)891 int pci_domain_nr(struct pci_bus *pbus)
892 {
893 struct pci_pbm_info *pbm = pbus->sysdata;
894 int ret;
895
896 if (!pbm) {
897 ret = -ENXIO;
898 } else {
899 ret = pbm->index;
900 }
901
902 return ret;
903 }
904 EXPORT_SYMBOL(pci_domain_nr);
905
906 #ifdef CONFIG_PCI_MSI
arch_setup_msi_irq(struct pci_dev * pdev,struct msi_desc * desc)907 int arch_setup_msi_irq(struct pci_dev *pdev, struct msi_desc *desc)
908 {
909 struct pci_pbm_info *pbm = pdev->dev.archdata.host_controller;
910 unsigned int irq;
911
912 if (!pbm->setup_msi_irq)
913 return -EINVAL;
914
915 return pbm->setup_msi_irq(&irq, pdev, desc);
916 }
917
arch_teardown_msi_irq(unsigned int irq)918 void arch_teardown_msi_irq(unsigned int irq)
919 {
920 struct msi_desc *entry = irq_get_msi_desc(irq);
921 struct pci_dev *pdev = msi_desc_to_pci_dev(entry);
922 struct pci_pbm_info *pbm = pdev->dev.archdata.host_controller;
923
924 if (pbm->teardown_msi_irq)
925 pbm->teardown_msi_irq(irq, pdev);
926 }
927 #endif /* !(CONFIG_PCI_MSI) */
928
ali_sound_dma_hack(struct pci_dev * pdev,int set_bit)929 static void ali_sound_dma_hack(struct pci_dev *pdev, int set_bit)
930 {
931 struct pci_dev *ali_isa_bridge;
932 u8 val;
933
934 /* ALI sound chips generate 31-bits of DMA, a special register
935 * determines what bit 31 is emitted as.
936 */
937 ali_isa_bridge = pci_get_device(PCI_VENDOR_ID_AL,
938 PCI_DEVICE_ID_AL_M1533,
939 NULL);
940
941 pci_read_config_byte(ali_isa_bridge, 0x7e, &val);
942 if (set_bit)
943 val |= 0x01;
944 else
945 val &= ~0x01;
946 pci_write_config_byte(ali_isa_bridge, 0x7e, val);
947 pci_dev_put(ali_isa_bridge);
948 }
949
pci64_dma_supported(struct pci_dev * pdev,u64 device_mask)950 int pci64_dma_supported(struct pci_dev *pdev, u64 device_mask)
951 {
952 u64 dma_addr_mask;
953
954 if (pdev == NULL) {
955 dma_addr_mask = 0xffffffff;
956 } else {
957 struct iommu *iommu = pdev->dev.archdata.iommu;
958
959 dma_addr_mask = iommu->dma_addr_mask;
960
961 if (pdev->vendor == PCI_VENDOR_ID_AL &&
962 pdev->device == PCI_DEVICE_ID_AL_M5451 &&
963 device_mask == 0x7fffffff) {
964 ali_sound_dma_hack(pdev,
965 (dma_addr_mask & 0x80000000) != 0);
966 return 1;
967 }
968 }
969
970 if (device_mask >= (1UL << 32UL))
971 return 0;
972
973 return (device_mask & dma_addr_mask) == dma_addr_mask;
974 }
975
pci_resource_to_user(const struct pci_dev * pdev,int bar,const struct resource * rp,resource_size_t * start,resource_size_t * end)976 void pci_resource_to_user(const struct pci_dev *pdev, int bar,
977 const struct resource *rp, resource_size_t *start,
978 resource_size_t *end)
979 {
980 struct pci_bus_region region;
981
982 /*
983 * "User" addresses are shown in /sys/devices/pci.../.../resource
984 * and /proc/bus/pci/devices and used as mmap offsets for
985 * /proc/bus/pci/BB/DD.F files (see proc_bus_pci_mmap()).
986 *
987 * On sparc, these are PCI bus addresses, i.e., raw BAR values.
988 */
989 pcibios_resource_to_bus(pdev->bus, ®ion, (struct resource *) rp);
990 *start = region.start;
991 *end = region.end;
992 }
993
pcibios_set_master(struct pci_dev * dev)994 void pcibios_set_master(struct pci_dev *dev)
995 {
996 /* No special bus mastering setup handling */
997 }
998
999 #ifdef CONFIG_PCI_IOV
pcibios_add_device(struct pci_dev * dev)1000 int pcibios_add_device(struct pci_dev *dev)
1001 {
1002 struct pci_dev *pdev;
1003
1004 /* Add sriov arch specific initialization here.
1005 * Copy dev_archdata from PF to VF
1006 */
1007 if (dev->is_virtfn) {
1008 struct dev_archdata *psd;
1009
1010 pdev = dev->physfn;
1011 psd = &pdev->dev.archdata;
1012 pci_init_dev_archdata(&dev->dev.archdata, psd->iommu,
1013 psd->stc, psd->host_controller, NULL,
1014 psd->numa_node);
1015 }
1016 return 0;
1017 }
1018 #endif /* CONFIG_PCI_IOV */
1019
pcibios_init(void)1020 static int __init pcibios_init(void)
1021 {
1022 pci_dfl_cache_line_size = 64 >> 2;
1023 return 0;
1024 }
1025 subsys_initcall(pcibios_init);
1026
1027 #ifdef CONFIG_SYSFS
1028
1029 #define SLOT_NAME_SIZE 11 /* Max decimal digits + null in u32 */
1030
pcie_bus_slot_names(struct pci_bus * pbus)1031 static void pcie_bus_slot_names(struct pci_bus *pbus)
1032 {
1033 struct pci_dev *pdev;
1034 struct pci_bus *bus;
1035
1036 list_for_each_entry(pdev, &pbus->devices, bus_list) {
1037 char name[SLOT_NAME_SIZE];
1038 struct pci_slot *pci_slot;
1039 const u32 *slot_num;
1040 int len;
1041
1042 slot_num = of_get_property(pdev->dev.of_node,
1043 "physical-slot#", &len);
1044
1045 if (slot_num == NULL || len != 4)
1046 continue;
1047
1048 snprintf(name, sizeof(name), "%u", slot_num[0]);
1049 pci_slot = pci_create_slot(pbus, slot_num[0], name, NULL);
1050
1051 if (IS_ERR(pci_slot))
1052 pr_err("PCI: pci_create_slot returned %ld.\n",
1053 PTR_ERR(pci_slot));
1054 }
1055
1056 list_for_each_entry(bus, &pbus->children, node)
1057 pcie_bus_slot_names(bus);
1058 }
1059
pci_bus_slot_names(struct device_node * node,struct pci_bus * bus)1060 static void pci_bus_slot_names(struct device_node *node, struct pci_bus *bus)
1061 {
1062 const struct pci_slot_names {
1063 u32 slot_mask;
1064 char names[0];
1065 } *prop;
1066 const char *sp;
1067 int len, i;
1068 u32 mask;
1069
1070 prop = of_get_property(node, "slot-names", &len);
1071 if (!prop)
1072 return;
1073
1074 mask = prop->slot_mask;
1075 sp = prop->names;
1076
1077 if (ofpci_verbose)
1078 printk("PCI: Making slots for [%s] mask[0x%02x]\n",
1079 node->full_name, mask);
1080
1081 i = 0;
1082 while (mask) {
1083 struct pci_slot *pci_slot;
1084 u32 this_bit = 1 << i;
1085
1086 if (!(mask & this_bit)) {
1087 i++;
1088 continue;
1089 }
1090
1091 if (ofpci_verbose)
1092 printk("PCI: Making slot [%s]\n", sp);
1093
1094 pci_slot = pci_create_slot(bus, i, sp, NULL);
1095 if (IS_ERR(pci_slot))
1096 printk(KERN_ERR "PCI: pci_create_slot returned %ld\n",
1097 PTR_ERR(pci_slot));
1098
1099 sp += strlen(sp) + 1;
1100 mask &= ~this_bit;
1101 i++;
1102 }
1103 }
1104
of_pci_slot_init(void)1105 static int __init of_pci_slot_init(void)
1106 {
1107 struct pci_bus *pbus = NULL;
1108
1109 while ((pbus = pci_find_next_bus(pbus)) != NULL) {
1110 struct device_node *node;
1111 struct pci_dev *pdev;
1112
1113 pdev = list_first_entry(&pbus->devices, struct pci_dev,
1114 bus_list);
1115
1116 if (pdev && pci_is_pcie(pdev)) {
1117 pcie_bus_slot_names(pbus);
1118 } else {
1119
1120 if (pbus->self) {
1121
1122 /* PCI->PCI bridge */
1123 node = pbus->self->dev.of_node;
1124
1125 } else {
1126 struct pci_pbm_info *pbm = pbus->sysdata;
1127
1128 /* Host PCI controller */
1129 node = pbm->op->dev.of_node;
1130 }
1131
1132 pci_bus_slot_names(node, pbus);
1133 }
1134 }
1135
1136 return 0;
1137 }
1138 device_initcall(of_pci_slot_init);
1139 #endif
1140