• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *	PCI Bus Services, see include/linux/pci.h for further explanation.
3  *
4  *	Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5  *	David Mosberger-Tang
6  *
7  *	Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8  */
9 
10 #include <linux/acpi.h>
11 #include <linux/kernel.h>
12 #include <linux/delay.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
15 #include <linux/of.h>
16 #include <linux/of_pci.h>
17 #include <linux/pci.h>
18 #include <linux/pm.h>
19 #include <linux/slab.h>
20 #include <linux/module.h>
21 #include <linux/spinlock.h>
22 #include <linux/string.h>
23 #include <linux/log2.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/pm_wakeup.h>
26 #include <linux/interrupt.h>
27 #include <linux/device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/pci_hotplug.h>
30 #include <linux/vmalloc.h>
31 #include <linux/pci-ats.h>
32 #include <asm/setup.h>
33 #include <asm/dma.h>
34 #include <linux/aer.h>
35 #include "pci.h"
36 
37 const char *pci_power_names[] = {
38 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
39 };
40 EXPORT_SYMBOL_GPL(pci_power_names);
41 
42 int isa_dma_bridge_buggy;
43 EXPORT_SYMBOL(isa_dma_bridge_buggy);
44 
45 int pci_pci_problems;
46 EXPORT_SYMBOL(pci_pci_problems);
47 
48 unsigned int pci_pm_d3_delay;
49 
50 static void pci_pme_list_scan(struct work_struct *work);
51 
52 static LIST_HEAD(pci_pme_list);
53 static DEFINE_MUTEX(pci_pme_list_mutex);
54 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
55 
56 struct pci_pme_device {
57 	struct list_head list;
58 	struct pci_dev *dev;
59 };
60 
61 #define PME_TIMEOUT 1000 /* How long between PME checks */
62 
pci_dev_d3_sleep(struct pci_dev * dev)63 static void pci_dev_d3_sleep(struct pci_dev *dev)
64 {
65 	unsigned int delay = dev->d3_delay;
66 
67 	if (delay < pci_pm_d3_delay)
68 		delay = pci_pm_d3_delay;
69 
70 	if (delay)
71 		msleep(delay);
72 }
73 
74 #ifdef CONFIG_PCI_DOMAINS
75 int pci_domains_supported = 1;
76 #endif
77 
78 #define DEFAULT_CARDBUS_IO_SIZE		(256)
79 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
80 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
81 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
82 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
83 
84 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
85 #define DEFAULT_HOTPLUG_MEM_SIZE	(2*1024*1024)
86 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
87 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
88 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
89 
90 #define DEFAULT_HOTPLUG_BUS_SIZE	1
91 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
92 
93 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
94 
95 /*
96  * The default CLS is used if arch didn't set CLS explicitly and not
97  * all pci devices agree on the same value.  Arch can override either
98  * the dfl or actual value as it sees fit.  Don't forget this is
99  * measured in 32-bit words, not bytes.
100  */
101 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
102 u8 pci_cache_line_size;
103 
104 /*
105  * If we set up a device for bus mastering, we need to check the latency
106  * timer as certain BIOSes forget to set it properly.
107  */
108 unsigned int pcibios_max_latency = 255;
109 
110 /* If set, the PCIe ARI capability will not be used. */
111 static bool pcie_ari_disabled;
112 
113 /* Disable bridge_d3 for all PCIe ports */
114 static bool pci_bridge_d3_disable;
115 /* Force bridge_d3 for all PCIe ports */
116 static bool pci_bridge_d3_force;
117 
pcie_port_pm_setup(char * str)118 static int __init pcie_port_pm_setup(char *str)
119 {
120 	if (!strcmp(str, "off"))
121 		pci_bridge_d3_disable = true;
122 	else if (!strcmp(str, "force"))
123 		pci_bridge_d3_force = true;
124 	return 1;
125 }
126 __setup("pcie_port_pm=", pcie_port_pm_setup);
127 
128 /**
129  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
130  * @bus: pointer to PCI bus structure to search
131  *
132  * Given a PCI bus, returns the highest PCI bus number present in the set
133  * including the given PCI bus and its list of child PCI buses.
134  */
pci_bus_max_busnr(struct pci_bus * bus)135 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
136 {
137 	struct pci_bus *tmp;
138 	unsigned char max, n;
139 
140 	max = bus->busn_res.end;
141 	list_for_each_entry(tmp, &bus->children, node) {
142 		n = pci_bus_max_busnr(tmp);
143 		if (n > max)
144 			max = n;
145 	}
146 	return max;
147 }
148 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
149 
150 #ifdef CONFIG_HAS_IOMEM
pci_ioremap_bar(struct pci_dev * pdev,int bar)151 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
152 {
153 	struct resource *res = &pdev->resource[bar];
154 
155 	/*
156 	 * Make sure the BAR is actually a memory resource, not an IO resource
157 	 */
158 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
159 		dev_warn(&pdev->dev, "can't ioremap BAR %d: %pR\n", bar, res);
160 		return NULL;
161 	}
162 	return ioremap_nocache(res->start, resource_size(res));
163 }
164 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
165 
pci_ioremap_wc_bar(struct pci_dev * pdev,int bar)166 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
167 {
168 	/*
169 	 * Make sure the BAR is actually a memory resource, not an IO resource
170 	 */
171 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
172 		WARN_ON(1);
173 		return NULL;
174 	}
175 	return ioremap_wc(pci_resource_start(pdev, bar),
176 			  pci_resource_len(pdev, bar));
177 }
178 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
179 #endif
180 
181 
__pci_find_next_cap_ttl(struct pci_bus * bus,unsigned int devfn,u8 pos,int cap,int * ttl)182 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
183 				   u8 pos, int cap, int *ttl)
184 {
185 	u8 id;
186 	u16 ent;
187 
188 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
189 
190 	while ((*ttl)--) {
191 		if (pos < 0x40)
192 			break;
193 		pos &= ~3;
194 		pci_bus_read_config_word(bus, devfn, pos, &ent);
195 
196 		id = ent & 0xff;
197 		if (id == 0xff)
198 			break;
199 		if (id == cap)
200 			return pos;
201 		pos = (ent >> 8);
202 	}
203 	return 0;
204 }
205 
__pci_find_next_cap(struct pci_bus * bus,unsigned int devfn,u8 pos,int cap)206 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
207 			       u8 pos, int cap)
208 {
209 	int ttl = PCI_FIND_CAP_TTL;
210 
211 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
212 }
213 
pci_find_next_capability(struct pci_dev * dev,u8 pos,int cap)214 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
215 {
216 	return __pci_find_next_cap(dev->bus, dev->devfn,
217 				   pos + PCI_CAP_LIST_NEXT, cap);
218 }
219 EXPORT_SYMBOL_GPL(pci_find_next_capability);
220 
__pci_bus_find_cap_start(struct pci_bus * bus,unsigned int devfn,u8 hdr_type)221 static int __pci_bus_find_cap_start(struct pci_bus *bus,
222 				    unsigned int devfn, u8 hdr_type)
223 {
224 	u16 status;
225 
226 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
227 	if (!(status & PCI_STATUS_CAP_LIST))
228 		return 0;
229 
230 	switch (hdr_type) {
231 	case PCI_HEADER_TYPE_NORMAL:
232 	case PCI_HEADER_TYPE_BRIDGE:
233 		return PCI_CAPABILITY_LIST;
234 	case PCI_HEADER_TYPE_CARDBUS:
235 		return PCI_CB_CAPABILITY_LIST;
236 	}
237 
238 	return 0;
239 }
240 
241 /**
242  * pci_find_capability - query for devices' capabilities
243  * @dev: PCI device to query
244  * @cap: capability code
245  *
246  * Tell if a device supports a given PCI capability.
247  * Returns the address of the requested capability structure within the
248  * device's PCI configuration space or 0 in case the device does not
249  * support it.  Possible values for @cap:
250  *
251  *  %PCI_CAP_ID_PM           Power Management
252  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
253  *  %PCI_CAP_ID_VPD          Vital Product Data
254  *  %PCI_CAP_ID_SLOTID       Slot Identification
255  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
256  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
257  *  %PCI_CAP_ID_PCIX         PCI-X
258  *  %PCI_CAP_ID_EXP          PCI Express
259  */
pci_find_capability(struct pci_dev * dev,int cap)260 int pci_find_capability(struct pci_dev *dev, int cap)
261 {
262 	int pos;
263 
264 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
265 	if (pos)
266 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
267 
268 	return pos;
269 }
270 EXPORT_SYMBOL(pci_find_capability);
271 
272 /**
273  * pci_bus_find_capability - query for devices' capabilities
274  * @bus:   the PCI bus to query
275  * @devfn: PCI device to query
276  * @cap:   capability code
277  *
278  * Like pci_find_capability() but works for pci devices that do not have a
279  * pci_dev structure set up yet.
280  *
281  * Returns the address of the requested capability structure within the
282  * device's PCI configuration space or 0 in case the device does not
283  * support it.
284  */
pci_bus_find_capability(struct pci_bus * bus,unsigned int devfn,int cap)285 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
286 {
287 	int pos;
288 	u8 hdr_type;
289 
290 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
291 
292 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
293 	if (pos)
294 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
295 
296 	return pos;
297 }
298 EXPORT_SYMBOL(pci_bus_find_capability);
299 
300 /**
301  * pci_find_next_ext_capability - Find an extended capability
302  * @dev: PCI device to query
303  * @start: address at which to start looking (0 to start at beginning of list)
304  * @cap: capability code
305  *
306  * Returns the address of the next matching extended capability structure
307  * within the device's PCI configuration space or 0 if the device does
308  * not support it.  Some capabilities can occur several times, e.g., the
309  * vendor-specific capability, and this provides a way to find them all.
310  */
pci_find_next_ext_capability(struct pci_dev * dev,int start,int cap)311 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
312 {
313 	u32 header;
314 	int ttl;
315 	int pos = PCI_CFG_SPACE_SIZE;
316 
317 	/* minimum 8 bytes per capability */
318 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
319 
320 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
321 		return 0;
322 
323 	if (start)
324 		pos = start;
325 
326 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
327 		return 0;
328 
329 	/*
330 	 * If we have no capabilities, this is indicated by cap ID,
331 	 * cap version and next pointer all being 0.
332 	 */
333 	if (header == 0)
334 		return 0;
335 
336 	while (ttl-- > 0) {
337 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
338 			return pos;
339 
340 		pos = PCI_EXT_CAP_NEXT(header);
341 		if (pos < PCI_CFG_SPACE_SIZE)
342 			break;
343 
344 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
345 			break;
346 	}
347 
348 	return 0;
349 }
350 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
351 
352 /**
353  * pci_find_ext_capability - Find an extended capability
354  * @dev: PCI device to query
355  * @cap: capability code
356  *
357  * Returns the address of the requested extended capability structure
358  * within the device's PCI configuration space or 0 if the device does
359  * not support it.  Possible values for @cap:
360  *
361  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
362  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
363  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
364  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
365  */
pci_find_ext_capability(struct pci_dev * dev,int cap)366 int pci_find_ext_capability(struct pci_dev *dev, int cap)
367 {
368 	return pci_find_next_ext_capability(dev, 0, cap);
369 }
370 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
371 
__pci_find_next_ht_cap(struct pci_dev * dev,int pos,int ht_cap)372 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
373 {
374 	int rc, ttl = PCI_FIND_CAP_TTL;
375 	u8 cap, mask;
376 
377 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
378 		mask = HT_3BIT_CAP_MASK;
379 	else
380 		mask = HT_5BIT_CAP_MASK;
381 
382 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
383 				      PCI_CAP_ID_HT, &ttl);
384 	while (pos) {
385 		rc = pci_read_config_byte(dev, pos + 3, &cap);
386 		if (rc != PCIBIOS_SUCCESSFUL)
387 			return 0;
388 
389 		if ((cap & mask) == ht_cap)
390 			return pos;
391 
392 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
393 					      pos + PCI_CAP_LIST_NEXT,
394 					      PCI_CAP_ID_HT, &ttl);
395 	}
396 
397 	return 0;
398 }
399 /**
400  * pci_find_next_ht_capability - query a device's Hypertransport capabilities
401  * @dev: PCI device to query
402  * @pos: Position from which to continue searching
403  * @ht_cap: Hypertransport capability code
404  *
405  * To be used in conjunction with pci_find_ht_capability() to search for
406  * all capabilities matching @ht_cap. @pos should always be a value returned
407  * from pci_find_ht_capability().
408  *
409  * NB. To be 100% safe against broken PCI devices, the caller should take
410  * steps to avoid an infinite loop.
411  */
pci_find_next_ht_capability(struct pci_dev * dev,int pos,int ht_cap)412 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
413 {
414 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
415 }
416 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
417 
418 /**
419  * pci_find_ht_capability - query a device's Hypertransport capabilities
420  * @dev: PCI device to query
421  * @ht_cap: Hypertransport capability code
422  *
423  * Tell if a device supports a given Hypertransport capability.
424  * Returns an address within the device's PCI configuration space
425  * or 0 in case the device does not support the request capability.
426  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
427  * which has a Hypertransport capability matching @ht_cap.
428  */
pci_find_ht_capability(struct pci_dev * dev,int ht_cap)429 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
430 {
431 	int pos;
432 
433 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
434 	if (pos)
435 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
436 
437 	return pos;
438 }
439 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
440 
441 /**
442  * pci_find_parent_resource - return resource region of parent bus of given region
443  * @dev: PCI device structure contains resources to be searched
444  * @res: child resource record for which parent is sought
445  *
446  *  For given resource region of given device, return the resource
447  *  region of parent bus the given region is contained in.
448  */
pci_find_parent_resource(const struct pci_dev * dev,struct resource * res)449 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
450 					  struct resource *res)
451 {
452 	const struct pci_bus *bus = dev->bus;
453 	struct resource *r;
454 	int i;
455 
456 	pci_bus_for_each_resource(bus, r, i) {
457 		if (!r)
458 			continue;
459 		if (resource_contains(r, res)) {
460 
461 			/*
462 			 * If the window is prefetchable but the BAR is
463 			 * not, the allocator made a mistake.
464 			 */
465 			if (r->flags & IORESOURCE_PREFETCH &&
466 			    !(res->flags & IORESOURCE_PREFETCH))
467 				return NULL;
468 
469 			/*
470 			 * If we're below a transparent bridge, there may
471 			 * be both a positively-decoded aperture and a
472 			 * subtractively-decoded region that contain the BAR.
473 			 * We want the positively-decoded one, so this depends
474 			 * on pci_bus_for_each_resource() giving us those
475 			 * first.
476 			 */
477 			return r;
478 		}
479 	}
480 	return NULL;
481 }
482 EXPORT_SYMBOL(pci_find_parent_resource);
483 
484 /**
485  * pci_find_resource - Return matching PCI device resource
486  * @dev: PCI device to query
487  * @res: Resource to look for
488  *
489  * Goes over standard PCI resources (BARs) and checks if the given resource
490  * is partially or fully contained in any of them. In that case the
491  * matching resource is returned, %NULL otherwise.
492  */
pci_find_resource(struct pci_dev * dev,struct resource * res)493 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
494 {
495 	int i;
496 
497 	for (i = 0; i < PCI_ROM_RESOURCE; i++) {
498 		struct resource *r = &dev->resource[i];
499 
500 		if (r->start && resource_contains(r, res))
501 			return r;
502 	}
503 
504 	return NULL;
505 }
506 EXPORT_SYMBOL(pci_find_resource);
507 
508 /**
509  * pci_find_pcie_root_port - return PCIe Root Port
510  * @dev: PCI device to query
511  *
512  * Traverse up the parent chain and return the PCIe Root Port PCI Device
513  * for a given PCI Device.
514  */
pci_find_pcie_root_port(struct pci_dev * dev)515 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
516 {
517 	struct pci_dev *bridge, *highest_pcie_bridge = dev;
518 
519 	bridge = pci_upstream_bridge(dev);
520 	while (bridge && pci_is_pcie(bridge)) {
521 		highest_pcie_bridge = bridge;
522 		bridge = pci_upstream_bridge(bridge);
523 	}
524 
525 	if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
526 		return NULL;
527 
528 	return highest_pcie_bridge;
529 }
530 EXPORT_SYMBOL(pci_find_pcie_root_port);
531 
532 /**
533  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
534  * @dev: the PCI device to operate on
535  * @pos: config space offset of status word
536  * @mask: mask of bit(s) to care about in status word
537  *
538  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
539  */
pci_wait_for_pending(struct pci_dev * dev,int pos,u16 mask)540 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
541 {
542 	int i;
543 
544 	/* Wait for Transaction Pending bit clean */
545 	for (i = 0; i < 4; i++) {
546 		u16 status;
547 		if (i)
548 			msleep((1 << (i - 1)) * 100);
549 
550 		pci_read_config_word(dev, pos, &status);
551 		if (!(status & mask))
552 			return 1;
553 	}
554 
555 	return 0;
556 }
557 
558 /**
559  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
560  * @dev: PCI device to have its BARs restored
561  *
562  * Restore the BAR values for a given device, so as to make it
563  * accessible by its driver.
564  */
pci_restore_bars(struct pci_dev * dev)565 static void pci_restore_bars(struct pci_dev *dev)
566 {
567 	int i;
568 
569 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
570 		pci_update_resource(dev, i);
571 }
572 
573 static const struct pci_platform_pm_ops *pci_platform_pm;
574 
pci_set_platform_pm(const struct pci_platform_pm_ops * ops)575 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
576 {
577 	if (!ops->is_manageable || !ops->set_state  || !ops->get_state ||
578 	    !ops->choose_state  || !ops->set_wakeup || !ops->need_resume)
579 		return -EINVAL;
580 	pci_platform_pm = ops;
581 	return 0;
582 }
583 
platform_pci_power_manageable(struct pci_dev * dev)584 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
585 {
586 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
587 }
588 
platform_pci_set_power_state(struct pci_dev * dev,pci_power_t t)589 static inline int platform_pci_set_power_state(struct pci_dev *dev,
590 					       pci_power_t t)
591 {
592 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
593 }
594 
platform_pci_get_power_state(struct pci_dev * dev)595 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
596 {
597 	return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
598 }
599 
platform_pci_choose_state(struct pci_dev * dev)600 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
601 {
602 	return pci_platform_pm ?
603 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
604 }
605 
platform_pci_set_wakeup(struct pci_dev * dev,bool enable)606 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
607 {
608 	return pci_platform_pm ?
609 			pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
610 }
611 
platform_pci_need_resume(struct pci_dev * dev)612 static inline bool platform_pci_need_resume(struct pci_dev *dev)
613 {
614 	return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
615 }
616 
617 /**
618  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
619  *                           given PCI device
620  * @dev: PCI device to handle.
621  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
622  *
623  * RETURN VALUE:
624  * -EINVAL if the requested state is invalid.
625  * -EIO if device does not support PCI PM or its PM capabilities register has a
626  * wrong version, or device doesn't support the requested state.
627  * 0 if device already is in the requested state.
628  * 0 if device's power state has been successfully changed.
629  */
pci_raw_set_power_state(struct pci_dev * dev,pci_power_t state)630 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
631 {
632 	u16 pmcsr;
633 	bool need_restore = false;
634 
635 	/* Check if we're already there */
636 	if (dev->current_state == state)
637 		return 0;
638 
639 	if (!dev->pm_cap)
640 		return -EIO;
641 
642 	if (state < PCI_D0 || state > PCI_D3hot)
643 		return -EINVAL;
644 
645 	/* Validate current state:
646 	 * Can enter D0 from any state, but if we can only go deeper
647 	 * to sleep if we're already in a low power state
648 	 */
649 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
650 	    && dev->current_state > state) {
651 		dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n",
652 			dev->current_state, state);
653 		return -EINVAL;
654 	}
655 
656 	/* check if this device supports the desired state */
657 	if ((state == PCI_D1 && !dev->d1_support)
658 	   || (state == PCI_D2 && !dev->d2_support))
659 		return -EIO;
660 
661 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
662 
663 	/* If we're (effectively) in D3, force entire word to 0.
664 	 * This doesn't affect PME_Status, disables PME_En, and
665 	 * sets PowerState to 0.
666 	 */
667 	switch (dev->current_state) {
668 	case PCI_D0:
669 	case PCI_D1:
670 	case PCI_D2:
671 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
672 		pmcsr |= state;
673 		break;
674 	case PCI_D3hot:
675 	case PCI_D3cold:
676 	case PCI_UNKNOWN: /* Boot-up */
677 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
678 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
679 			need_restore = true;
680 		/* Fall-through: force to D0 */
681 	default:
682 		pmcsr = 0;
683 		break;
684 	}
685 
686 	/* enter specified state */
687 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
688 
689 	/* Mandatory power management transition delays */
690 	/* see PCI PM 1.1 5.6.1 table 18 */
691 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
692 		pci_dev_d3_sleep(dev);
693 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
694 		udelay(PCI_PM_D2_DELAY);
695 
696 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
697 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
698 	if (dev->current_state != state && printk_ratelimit())
699 		dev_info(&dev->dev, "Refused to change power state, currently in D%d\n",
700 			 dev->current_state);
701 
702 	/*
703 	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
704 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
705 	 * from D3hot to D0 _may_ perform an internal reset, thereby
706 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
707 	 * For example, at least some versions of the 3c905B and the
708 	 * 3c556B exhibit this behaviour.
709 	 *
710 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
711 	 * devices in a D3hot state at boot.  Consequently, we need to
712 	 * restore at least the BARs so that the device will be
713 	 * accessible to its driver.
714 	 */
715 	if (need_restore)
716 		pci_restore_bars(dev);
717 
718 	if (dev->bus->self)
719 		pcie_aspm_pm_state_change(dev->bus->self);
720 
721 	return 0;
722 }
723 
724 /**
725  * pci_update_current_state - Read power state of given device and cache it
726  * @dev: PCI device to handle.
727  * @state: State to cache in case the device doesn't have the PM capability
728  *
729  * The power state is read from the PMCSR register, which however is
730  * inaccessible in D3cold.  The platform firmware is therefore queried first
731  * to detect accessibility of the register.  In case the platform firmware
732  * reports an incorrect state or the device isn't power manageable by the
733  * platform at all, we try to detect D3cold by testing accessibility of the
734  * vendor ID in config space.
735  */
pci_update_current_state(struct pci_dev * dev,pci_power_t state)736 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
737 {
738 	if (platform_pci_get_power_state(dev) == PCI_D3cold ||
739 	    !pci_device_is_present(dev)) {
740 		dev->current_state = PCI_D3cold;
741 	} else if (dev->pm_cap) {
742 		u16 pmcsr;
743 
744 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
745 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
746 	} else {
747 		dev->current_state = state;
748 	}
749 }
750 
751 /**
752  * pci_platform_power_transition - Use platform to change device power state
753  * @dev: PCI device to handle.
754  * @state: State to put the device into.
755  */
pci_platform_power_transition(struct pci_dev * dev,pci_power_t state)756 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
757 {
758 	int error;
759 
760 	if (platform_pci_power_manageable(dev)) {
761 		error = platform_pci_set_power_state(dev, state);
762 		if (!error)
763 			pci_update_current_state(dev, state);
764 	} else
765 		error = -ENODEV;
766 
767 	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
768 		dev->current_state = PCI_D0;
769 
770 	return error;
771 }
772 
773 /**
774  * pci_wakeup - Wake up a PCI device
775  * @pci_dev: Device to handle.
776  * @ign: ignored parameter
777  */
pci_wakeup(struct pci_dev * pci_dev,void * ign)778 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
779 {
780 	pci_wakeup_event(pci_dev);
781 	pm_request_resume(&pci_dev->dev);
782 	return 0;
783 }
784 
785 /**
786  * pci_wakeup_bus - Walk given bus and wake up devices on it
787  * @bus: Top bus of the subtree to walk.
788  */
pci_wakeup_bus(struct pci_bus * bus)789 static void pci_wakeup_bus(struct pci_bus *bus)
790 {
791 	if (bus)
792 		pci_walk_bus(bus, pci_wakeup, NULL);
793 }
794 
795 /**
796  * __pci_start_power_transition - Start power transition of a PCI device
797  * @dev: PCI device to handle.
798  * @state: State to put the device into.
799  */
__pci_start_power_transition(struct pci_dev * dev,pci_power_t state)800 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
801 {
802 	if (state == PCI_D0) {
803 		pci_platform_power_transition(dev, PCI_D0);
804 		/*
805 		 * Mandatory power management transition delays, see
806 		 * PCI Express Base Specification Revision 2.0 Section
807 		 * 6.6.1: Conventional Reset.  Do not delay for
808 		 * devices powered on/off by corresponding bridge,
809 		 * because have already delayed for the bridge.
810 		 */
811 		if (dev->runtime_d3cold) {
812 			if (dev->d3cold_delay)
813 				msleep(dev->d3cold_delay);
814 			/*
815 			 * When powering on a bridge from D3cold, the
816 			 * whole hierarchy may be powered on into
817 			 * D0uninitialized state, resume them to give
818 			 * them a chance to suspend again
819 			 */
820 			pci_wakeup_bus(dev->subordinate);
821 		}
822 	}
823 }
824 
825 /**
826  * __pci_dev_set_current_state - Set current state of a PCI device
827  * @dev: Device to handle
828  * @data: pointer to state to be set
829  */
__pci_dev_set_current_state(struct pci_dev * dev,void * data)830 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
831 {
832 	pci_power_t state = *(pci_power_t *)data;
833 
834 	dev->current_state = state;
835 	return 0;
836 }
837 
838 /**
839  * __pci_bus_set_current_state - Walk given bus and set current state of devices
840  * @bus: Top bus of the subtree to walk.
841  * @state: state to be set
842  */
__pci_bus_set_current_state(struct pci_bus * bus,pci_power_t state)843 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
844 {
845 	if (bus)
846 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
847 }
848 
849 /**
850  * __pci_complete_power_transition - Complete power transition of a PCI device
851  * @dev: PCI device to handle.
852  * @state: State to put the device into.
853  *
854  * This function should not be called directly by device drivers.
855  */
__pci_complete_power_transition(struct pci_dev * dev,pci_power_t state)856 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
857 {
858 	int ret;
859 
860 	if (state <= PCI_D0)
861 		return -EINVAL;
862 	ret = pci_platform_power_transition(dev, state);
863 	/* Power off the bridge may power off the whole hierarchy */
864 	if (!ret && state == PCI_D3cold)
865 		__pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
866 	return ret;
867 }
868 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
869 
870 /**
871  * pci_set_power_state - Set the power state of a PCI device
872  * @dev: PCI device to handle.
873  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
874  *
875  * Transition a device to a new power state, using the platform firmware and/or
876  * the device's PCI PM registers.
877  *
878  * RETURN VALUE:
879  * -EINVAL if the requested state is invalid.
880  * -EIO if device does not support PCI PM or its PM capabilities register has a
881  * wrong version, or device doesn't support the requested state.
882  * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
883  * 0 if device already is in the requested state.
884  * 0 if the transition is to D3 but D3 is not supported.
885  * 0 if device's power state has been successfully changed.
886  */
pci_set_power_state(struct pci_dev * dev,pci_power_t state)887 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
888 {
889 	int error;
890 
891 	/* bound the state we're entering */
892 	if (state > PCI_D3cold)
893 		state = PCI_D3cold;
894 	else if (state < PCI_D0)
895 		state = PCI_D0;
896 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
897 		/*
898 		 * If the device or the parent bridge do not support PCI PM,
899 		 * ignore the request if we're doing anything other than putting
900 		 * it into D0 (which would only happen on boot).
901 		 */
902 		return 0;
903 
904 	/* Check if we're already there */
905 	if (dev->current_state == state)
906 		return 0;
907 
908 	__pci_start_power_transition(dev, state);
909 
910 	/* This device is quirked not to be put into D3, so
911 	   don't put it in D3 */
912 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
913 		return 0;
914 
915 	/*
916 	 * To put device in D3cold, we put device into D3hot in native
917 	 * way, then put device into D3cold with platform ops
918 	 */
919 	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
920 					PCI_D3hot : state);
921 
922 	if (!__pci_complete_power_transition(dev, state))
923 		error = 0;
924 
925 	return error;
926 }
927 EXPORT_SYMBOL(pci_set_power_state);
928 
929 /**
930  * pci_power_up - Put the given device into D0 forcibly
931  * @dev: PCI device to power up
932  */
pci_power_up(struct pci_dev * dev)933 void pci_power_up(struct pci_dev *dev)
934 {
935 	__pci_start_power_transition(dev, PCI_D0);
936 	pci_raw_set_power_state(dev, PCI_D0);
937 	pci_update_current_state(dev, PCI_D0);
938 }
939 
940 /**
941  * pci_choose_state - Choose the power state of a PCI device
942  * @dev: PCI device to be suspended
943  * @state: target sleep state for the whole system. This is the value
944  *	that is passed to suspend() function.
945  *
946  * Returns PCI power state suitable for given device and given system
947  * message.
948  */
949 
pci_choose_state(struct pci_dev * dev,pm_message_t state)950 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
951 {
952 	pci_power_t ret;
953 
954 	if (!dev->pm_cap)
955 		return PCI_D0;
956 
957 	ret = platform_pci_choose_state(dev);
958 	if (ret != PCI_POWER_ERROR)
959 		return ret;
960 
961 	switch (state.event) {
962 	case PM_EVENT_ON:
963 		return PCI_D0;
964 	case PM_EVENT_FREEZE:
965 	case PM_EVENT_PRETHAW:
966 		/* REVISIT both freeze and pre-thaw "should" use D0 */
967 	case PM_EVENT_SUSPEND:
968 	case PM_EVENT_HIBERNATE:
969 		return PCI_D3hot;
970 	default:
971 		dev_info(&dev->dev, "unrecognized suspend event %d\n",
972 			 state.event);
973 		BUG();
974 	}
975 	return PCI_D0;
976 }
977 EXPORT_SYMBOL(pci_choose_state);
978 
979 #define PCI_EXP_SAVE_REGS	7
980 
_pci_find_saved_cap(struct pci_dev * pci_dev,u16 cap,bool extended)981 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
982 						       u16 cap, bool extended)
983 {
984 	struct pci_cap_saved_state *tmp;
985 
986 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
987 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
988 			return tmp;
989 	}
990 	return NULL;
991 }
992 
pci_find_saved_cap(struct pci_dev * dev,char cap)993 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
994 {
995 	return _pci_find_saved_cap(dev, cap, false);
996 }
997 
pci_find_saved_ext_cap(struct pci_dev * dev,u16 cap)998 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
999 {
1000 	return _pci_find_saved_cap(dev, cap, true);
1001 }
1002 
pci_save_pcie_state(struct pci_dev * dev)1003 static int pci_save_pcie_state(struct pci_dev *dev)
1004 {
1005 	int i = 0;
1006 	struct pci_cap_saved_state *save_state;
1007 	u16 *cap;
1008 
1009 	if (!pci_is_pcie(dev))
1010 		return 0;
1011 
1012 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1013 	if (!save_state) {
1014 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
1015 		return -ENOMEM;
1016 	}
1017 
1018 	cap = (u16 *)&save_state->cap.data[0];
1019 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1020 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1021 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1022 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1023 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1024 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1025 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1026 
1027 	return 0;
1028 }
1029 
pci_restore_pcie_state(struct pci_dev * dev)1030 static void pci_restore_pcie_state(struct pci_dev *dev)
1031 {
1032 	int i = 0;
1033 	struct pci_cap_saved_state *save_state;
1034 	u16 *cap;
1035 
1036 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1037 	if (!save_state)
1038 		return;
1039 
1040 	cap = (u16 *)&save_state->cap.data[0];
1041 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1042 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1043 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1044 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1045 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1046 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1047 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1048 }
1049 
1050 
pci_save_pcix_state(struct pci_dev * dev)1051 static int pci_save_pcix_state(struct pci_dev *dev)
1052 {
1053 	int pos;
1054 	struct pci_cap_saved_state *save_state;
1055 
1056 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1057 	if (!pos)
1058 		return 0;
1059 
1060 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1061 	if (!save_state) {
1062 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
1063 		return -ENOMEM;
1064 	}
1065 
1066 	pci_read_config_word(dev, pos + PCI_X_CMD,
1067 			     (u16 *)save_state->cap.data);
1068 
1069 	return 0;
1070 }
1071 
pci_restore_pcix_state(struct pci_dev * dev)1072 static void pci_restore_pcix_state(struct pci_dev *dev)
1073 {
1074 	int i = 0, pos;
1075 	struct pci_cap_saved_state *save_state;
1076 	u16 *cap;
1077 
1078 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1079 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1080 	if (!save_state || !pos)
1081 		return;
1082 	cap = (u16 *)&save_state->cap.data[0];
1083 
1084 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1085 }
1086 
1087 
1088 /**
1089  * pci_save_state - save the PCI configuration space of a device before suspending
1090  * @dev: - PCI device that we're dealing with
1091  */
pci_save_state(struct pci_dev * dev)1092 int pci_save_state(struct pci_dev *dev)
1093 {
1094 	int i;
1095 	/* XXX: 100% dword access ok here? */
1096 	for (i = 0; i < 16; i++)
1097 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1098 	dev->state_saved = true;
1099 
1100 	i = pci_save_pcie_state(dev);
1101 	if (i != 0)
1102 		return i;
1103 
1104 	i = pci_save_pcix_state(dev);
1105 	if (i != 0)
1106 		return i;
1107 
1108 	return pci_save_vc_state(dev);
1109 }
1110 EXPORT_SYMBOL(pci_save_state);
1111 
pci_restore_config_dword(struct pci_dev * pdev,int offset,u32 saved_val,int retry,bool force)1112 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1113 				     u32 saved_val, int retry, bool force)
1114 {
1115 	u32 val;
1116 
1117 	pci_read_config_dword(pdev, offset, &val);
1118 	if (!force && val == saved_val)
1119 		return;
1120 
1121 	for (;;) {
1122 		dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1123 			offset, val, saved_val);
1124 		pci_write_config_dword(pdev, offset, saved_val);
1125 		if (retry-- <= 0)
1126 			return;
1127 
1128 		pci_read_config_dword(pdev, offset, &val);
1129 		if (val == saved_val)
1130 			return;
1131 
1132 		mdelay(1);
1133 	}
1134 }
1135 
pci_restore_config_space_range(struct pci_dev * pdev,int start,int end,int retry,bool force)1136 static void pci_restore_config_space_range(struct pci_dev *pdev,
1137 					   int start, int end, int retry,
1138 					   bool force)
1139 {
1140 	int index;
1141 
1142 	for (index = end; index >= start; index--)
1143 		pci_restore_config_dword(pdev, 4 * index,
1144 					 pdev->saved_config_space[index],
1145 					 retry, force);
1146 }
1147 
pci_restore_config_space(struct pci_dev * pdev)1148 static void pci_restore_config_space(struct pci_dev *pdev)
1149 {
1150 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1151 		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1152 		/* Restore BARs before the command register. */
1153 		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1154 		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1155 	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1156 		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1157 
1158 		/*
1159 		 * Force rewriting of prefetch registers to avoid S3 resume
1160 		 * issues on Intel PCI bridges that occur when these
1161 		 * registers are not explicitly written.
1162 		 */
1163 		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1164 		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1165 	} else {
1166 		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1167 	}
1168 }
1169 
1170 /**
1171  * pci_restore_state - Restore the saved state of a PCI device
1172  * @dev: - PCI device that we're dealing with
1173  */
pci_restore_state(struct pci_dev * dev)1174 void pci_restore_state(struct pci_dev *dev)
1175 {
1176 	if (!dev->state_saved)
1177 		return;
1178 
1179 	/* PCI Express register must be restored first */
1180 	pci_restore_pcie_state(dev);
1181 	pci_restore_pasid_state(dev);
1182 	pci_restore_pri_state(dev);
1183 	pci_restore_ats_state(dev);
1184 	pci_restore_vc_state(dev);
1185 
1186 	pci_cleanup_aer_error_status_regs(dev);
1187 
1188 	pci_restore_config_space(dev);
1189 
1190 	pci_restore_pcix_state(dev);
1191 	pci_restore_msi_state(dev);
1192 
1193 	/* Restore ACS and IOV configuration state */
1194 	pci_enable_acs(dev);
1195 	pci_restore_iov_state(dev);
1196 
1197 	dev->state_saved = false;
1198 }
1199 EXPORT_SYMBOL(pci_restore_state);
1200 
1201 struct pci_saved_state {
1202 	u32 config_space[16];
1203 	struct pci_cap_saved_data cap[0];
1204 };
1205 
1206 /**
1207  * pci_store_saved_state - Allocate and return an opaque struct containing
1208  *			   the device saved state.
1209  * @dev: PCI device that we're dealing with
1210  *
1211  * Return NULL if no state or error.
1212  */
pci_store_saved_state(struct pci_dev * dev)1213 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1214 {
1215 	struct pci_saved_state *state;
1216 	struct pci_cap_saved_state *tmp;
1217 	struct pci_cap_saved_data *cap;
1218 	size_t size;
1219 
1220 	if (!dev->state_saved)
1221 		return NULL;
1222 
1223 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1224 
1225 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1226 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1227 
1228 	state = kzalloc(size, GFP_KERNEL);
1229 	if (!state)
1230 		return NULL;
1231 
1232 	memcpy(state->config_space, dev->saved_config_space,
1233 	       sizeof(state->config_space));
1234 
1235 	cap = state->cap;
1236 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1237 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1238 		memcpy(cap, &tmp->cap, len);
1239 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1240 	}
1241 	/* Empty cap_save terminates list */
1242 
1243 	return state;
1244 }
1245 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1246 
1247 /**
1248  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1249  * @dev: PCI device that we're dealing with
1250  * @state: Saved state returned from pci_store_saved_state()
1251  */
pci_load_saved_state(struct pci_dev * dev,struct pci_saved_state * state)1252 int pci_load_saved_state(struct pci_dev *dev,
1253 			 struct pci_saved_state *state)
1254 {
1255 	struct pci_cap_saved_data *cap;
1256 
1257 	dev->state_saved = false;
1258 
1259 	if (!state)
1260 		return 0;
1261 
1262 	memcpy(dev->saved_config_space, state->config_space,
1263 	       sizeof(state->config_space));
1264 
1265 	cap = state->cap;
1266 	while (cap->size) {
1267 		struct pci_cap_saved_state *tmp;
1268 
1269 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1270 		if (!tmp || tmp->cap.size != cap->size)
1271 			return -EINVAL;
1272 
1273 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1274 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1275 		       sizeof(struct pci_cap_saved_data) + cap->size);
1276 	}
1277 
1278 	dev->state_saved = true;
1279 	return 0;
1280 }
1281 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1282 
1283 /**
1284  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1285  *				   and free the memory allocated for it.
1286  * @dev: PCI device that we're dealing with
1287  * @state: Pointer to saved state returned from pci_store_saved_state()
1288  */
pci_load_and_free_saved_state(struct pci_dev * dev,struct pci_saved_state ** state)1289 int pci_load_and_free_saved_state(struct pci_dev *dev,
1290 				  struct pci_saved_state **state)
1291 {
1292 	int ret = pci_load_saved_state(dev, *state);
1293 	kfree(*state);
1294 	*state = NULL;
1295 	return ret;
1296 }
1297 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1298 
pcibios_enable_device(struct pci_dev * dev,int bars)1299 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1300 {
1301 	return pci_enable_resources(dev, bars);
1302 }
1303 
do_pci_enable_device(struct pci_dev * dev,int bars)1304 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1305 {
1306 	int err;
1307 	struct pci_dev *bridge;
1308 	u16 cmd;
1309 	u8 pin;
1310 
1311 	err = pci_set_power_state(dev, PCI_D0);
1312 	if (err < 0 && err != -EIO)
1313 		return err;
1314 
1315 	bridge = pci_upstream_bridge(dev);
1316 	if (bridge)
1317 		pcie_aspm_powersave_config_link(bridge);
1318 
1319 	err = pcibios_enable_device(dev, bars);
1320 	if (err < 0)
1321 		return err;
1322 	pci_fixup_device(pci_fixup_enable, dev);
1323 
1324 	if (dev->msi_enabled || dev->msix_enabled)
1325 		return 0;
1326 
1327 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1328 	if (pin) {
1329 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1330 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1331 			pci_write_config_word(dev, PCI_COMMAND,
1332 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1333 	}
1334 
1335 	return 0;
1336 }
1337 
1338 /**
1339  * pci_reenable_device - Resume abandoned device
1340  * @dev: PCI device to be resumed
1341  *
1342  *  Note this function is a backend of pci_default_resume and is not supposed
1343  *  to be called by normal code, write proper resume handler and use it instead.
1344  */
pci_reenable_device(struct pci_dev * dev)1345 int pci_reenable_device(struct pci_dev *dev)
1346 {
1347 	if (pci_is_enabled(dev))
1348 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1349 	return 0;
1350 }
1351 EXPORT_SYMBOL(pci_reenable_device);
1352 
pci_enable_bridge(struct pci_dev * dev)1353 static void pci_enable_bridge(struct pci_dev *dev)
1354 {
1355 	struct pci_dev *bridge;
1356 	int retval;
1357 
1358 	bridge = pci_upstream_bridge(dev);
1359 	if (bridge)
1360 		pci_enable_bridge(bridge);
1361 
1362 	if (pci_is_enabled(dev)) {
1363 		if (!dev->is_busmaster)
1364 			pci_set_master(dev);
1365 		return;
1366 	}
1367 
1368 	retval = pci_enable_device(dev);
1369 	if (retval)
1370 		dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1371 			retval);
1372 	pci_set_master(dev);
1373 }
1374 
pci_enable_device_flags(struct pci_dev * dev,unsigned long flags)1375 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1376 {
1377 	struct pci_dev *bridge;
1378 	int err;
1379 	int i, bars = 0;
1380 
1381 	/*
1382 	 * Power state could be unknown at this point, either due to a fresh
1383 	 * boot or a device removal call.  So get the current power state
1384 	 * so that things like MSI message writing will behave as expected
1385 	 * (e.g. if the device really is in D0 at enable time).
1386 	 */
1387 	if (dev->pm_cap) {
1388 		u16 pmcsr;
1389 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1390 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1391 	}
1392 
1393 	if (atomic_inc_return(&dev->enable_cnt) > 1)
1394 		return 0;		/* already enabled */
1395 
1396 	bridge = pci_upstream_bridge(dev);
1397 	if (bridge)
1398 		pci_enable_bridge(bridge);
1399 
1400 	/* only skip sriov related */
1401 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1402 		if (dev->resource[i].flags & flags)
1403 			bars |= (1 << i);
1404 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1405 		if (dev->resource[i].flags & flags)
1406 			bars |= (1 << i);
1407 
1408 	err = do_pci_enable_device(dev, bars);
1409 	if (err < 0)
1410 		atomic_dec(&dev->enable_cnt);
1411 	return err;
1412 }
1413 
1414 /**
1415  * pci_enable_device_io - Initialize a device for use with IO space
1416  * @dev: PCI device to be initialized
1417  *
1418  *  Initialize device before it's used by a driver. Ask low-level code
1419  *  to enable I/O resources. Wake up the device if it was suspended.
1420  *  Beware, this function can fail.
1421  */
pci_enable_device_io(struct pci_dev * dev)1422 int pci_enable_device_io(struct pci_dev *dev)
1423 {
1424 	return pci_enable_device_flags(dev, IORESOURCE_IO);
1425 }
1426 EXPORT_SYMBOL(pci_enable_device_io);
1427 
1428 /**
1429  * pci_enable_device_mem - Initialize a device for use with Memory space
1430  * @dev: PCI device to be initialized
1431  *
1432  *  Initialize device before it's used by a driver. Ask low-level code
1433  *  to enable Memory resources. Wake up the device if it was suspended.
1434  *  Beware, this function can fail.
1435  */
pci_enable_device_mem(struct pci_dev * dev)1436 int pci_enable_device_mem(struct pci_dev *dev)
1437 {
1438 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1439 }
1440 EXPORT_SYMBOL(pci_enable_device_mem);
1441 
1442 /**
1443  * pci_enable_device - Initialize device before it's used by a driver.
1444  * @dev: PCI device to be initialized
1445  *
1446  *  Initialize device before it's used by a driver. Ask low-level code
1447  *  to enable I/O and memory. Wake up the device if it was suspended.
1448  *  Beware, this function can fail.
1449  *
1450  *  Note we don't actually enable the device many times if we call
1451  *  this function repeatedly (we just increment the count).
1452  */
pci_enable_device(struct pci_dev * dev)1453 int pci_enable_device(struct pci_dev *dev)
1454 {
1455 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1456 }
1457 EXPORT_SYMBOL(pci_enable_device);
1458 
1459 /*
1460  * Managed PCI resources.  This manages device on/off, intx/msi/msix
1461  * on/off and BAR regions.  pci_dev itself records msi/msix status, so
1462  * there's no need to track it separately.  pci_devres is initialized
1463  * when a device is enabled using managed PCI device enable interface.
1464  */
1465 struct pci_devres {
1466 	unsigned int enabled:1;
1467 	unsigned int pinned:1;
1468 	unsigned int orig_intx:1;
1469 	unsigned int restore_intx:1;
1470 	u32 region_mask;
1471 };
1472 
pcim_release(struct device * gendev,void * res)1473 static void pcim_release(struct device *gendev, void *res)
1474 {
1475 	struct pci_dev *dev = to_pci_dev(gendev);
1476 	struct pci_devres *this = res;
1477 	int i;
1478 
1479 	if (dev->msi_enabled)
1480 		pci_disable_msi(dev);
1481 	if (dev->msix_enabled)
1482 		pci_disable_msix(dev);
1483 
1484 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1485 		if (this->region_mask & (1 << i))
1486 			pci_release_region(dev, i);
1487 
1488 	if (this->restore_intx)
1489 		pci_intx(dev, this->orig_intx);
1490 
1491 	if (this->enabled && !this->pinned)
1492 		pci_disable_device(dev);
1493 }
1494 
get_pci_dr(struct pci_dev * pdev)1495 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1496 {
1497 	struct pci_devres *dr, *new_dr;
1498 
1499 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1500 	if (dr)
1501 		return dr;
1502 
1503 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1504 	if (!new_dr)
1505 		return NULL;
1506 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1507 }
1508 
find_pci_dr(struct pci_dev * pdev)1509 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1510 {
1511 	if (pci_is_managed(pdev))
1512 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1513 	return NULL;
1514 }
1515 
1516 /**
1517  * pcim_enable_device - Managed pci_enable_device()
1518  * @pdev: PCI device to be initialized
1519  *
1520  * Managed pci_enable_device().
1521  */
pcim_enable_device(struct pci_dev * pdev)1522 int pcim_enable_device(struct pci_dev *pdev)
1523 {
1524 	struct pci_devres *dr;
1525 	int rc;
1526 
1527 	dr = get_pci_dr(pdev);
1528 	if (unlikely(!dr))
1529 		return -ENOMEM;
1530 	if (dr->enabled)
1531 		return 0;
1532 
1533 	rc = pci_enable_device(pdev);
1534 	if (!rc) {
1535 		pdev->is_managed = 1;
1536 		dr->enabled = 1;
1537 	}
1538 	return rc;
1539 }
1540 EXPORT_SYMBOL(pcim_enable_device);
1541 
1542 /**
1543  * pcim_pin_device - Pin managed PCI device
1544  * @pdev: PCI device to pin
1545  *
1546  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1547  * driver detach.  @pdev must have been enabled with
1548  * pcim_enable_device().
1549  */
pcim_pin_device(struct pci_dev * pdev)1550 void pcim_pin_device(struct pci_dev *pdev)
1551 {
1552 	struct pci_devres *dr;
1553 
1554 	dr = find_pci_dr(pdev);
1555 	WARN_ON(!dr || !dr->enabled);
1556 	if (dr)
1557 		dr->pinned = 1;
1558 }
1559 EXPORT_SYMBOL(pcim_pin_device);
1560 
1561 /*
1562  * pcibios_add_device - provide arch specific hooks when adding device dev
1563  * @dev: the PCI device being added
1564  *
1565  * Permits the platform to provide architecture specific functionality when
1566  * devices are added. This is the default implementation. Architecture
1567  * implementations can override this.
1568  */
pcibios_add_device(struct pci_dev * dev)1569 int __weak pcibios_add_device(struct pci_dev *dev)
1570 {
1571 	return 0;
1572 }
1573 
1574 /**
1575  * pcibios_release_device - provide arch specific hooks when releasing device dev
1576  * @dev: the PCI device being released
1577  *
1578  * Permits the platform to provide architecture specific functionality when
1579  * devices are released. This is the default implementation. Architecture
1580  * implementations can override this.
1581  */
pcibios_release_device(struct pci_dev * dev)1582 void __weak pcibios_release_device(struct pci_dev *dev) {}
1583 
1584 /**
1585  * pcibios_disable_device - disable arch specific PCI resources for device dev
1586  * @dev: the PCI device to disable
1587  *
1588  * Disables architecture specific PCI resources for the device. This
1589  * is the default implementation. Architecture implementations can
1590  * override this.
1591  */
pcibios_disable_device(struct pci_dev * dev)1592 void __weak pcibios_disable_device(struct pci_dev *dev) {}
1593 
1594 /**
1595  * pcibios_penalize_isa_irq - penalize an ISA IRQ
1596  * @irq: ISA IRQ to penalize
1597  * @active: IRQ active or not
1598  *
1599  * Permits the platform to provide architecture-specific functionality when
1600  * penalizing ISA IRQs. This is the default implementation. Architecture
1601  * implementations can override this.
1602  */
pcibios_penalize_isa_irq(int irq,int active)1603 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1604 
do_pci_disable_device(struct pci_dev * dev)1605 static void do_pci_disable_device(struct pci_dev *dev)
1606 {
1607 	u16 pci_command;
1608 
1609 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1610 	if (pci_command & PCI_COMMAND_MASTER) {
1611 		pci_command &= ~PCI_COMMAND_MASTER;
1612 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1613 	}
1614 
1615 	pcibios_disable_device(dev);
1616 }
1617 
1618 /**
1619  * pci_disable_enabled_device - Disable device without updating enable_cnt
1620  * @dev: PCI device to disable
1621  *
1622  * NOTE: This function is a backend of PCI power management routines and is
1623  * not supposed to be called drivers.
1624  */
pci_disable_enabled_device(struct pci_dev * dev)1625 void pci_disable_enabled_device(struct pci_dev *dev)
1626 {
1627 	if (pci_is_enabled(dev))
1628 		do_pci_disable_device(dev);
1629 }
1630 
1631 /**
1632  * pci_disable_device - Disable PCI device after use
1633  * @dev: PCI device to be disabled
1634  *
1635  * Signal to the system that the PCI device is not in use by the system
1636  * anymore.  This only involves disabling PCI bus-mastering, if active.
1637  *
1638  * Note we don't actually disable the device until all callers of
1639  * pci_enable_device() have called pci_disable_device().
1640  */
pci_disable_device(struct pci_dev * dev)1641 void pci_disable_device(struct pci_dev *dev)
1642 {
1643 	struct pci_devres *dr;
1644 
1645 	dr = find_pci_dr(dev);
1646 	if (dr)
1647 		dr->enabled = 0;
1648 
1649 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1650 		      "disabling already-disabled device");
1651 
1652 	if (atomic_dec_return(&dev->enable_cnt) != 0)
1653 		return;
1654 
1655 	do_pci_disable_device(dev);
1656 
1657 	dev->is_busmaster = 0;
1658 }
1659 EXPORT_SYMBOL(pci_disable_device);
1660 
1661 /**
1662  * pcibios_set_pcie_reset_state - set reset state for device dev
1663  * @dev: the PCIe device reset
1664  * @state: Reset state to enter into
1665  *
1666  *
1667  * Sets the PCIe reset state for the device. This is the default
1668  * implementation. Architecture implementations can override this.
1669  */
pcibios_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)1670 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1671 					enum pcie_reset_state state)
1672 {
1673 	return -EINVAL;
1674 }
1675 
1676 /**
1677  * pci_set_pcie_reset_state - set reset state for device dev
1678  * @dev: the PCIe device reset
1679  * @state: Reset state to enter into
1680  *
1681  *
1682  * Sets the PCI reset state for the device.
1683  */
pci_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)1684 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1685 {
1686 	return pcibios_set_pcie_reset_state(dev, state);
1687 }
1688 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1689 
1690 /**
1691  * pci_check_pme_status - Check if given device has generated PME.
1692  * @dev: Device to check.
1693  *
1694  * Check the PME status of the device and if set, clear it and clear PME enable
1695  * (if set).  Return 'true' if PME status and PME enable were both set or
1696  * 'false' otherwise.
1697  */
pci_check_pme_status(struct pci_dev * dev)1698 bool pci_check_pme_status(struct pci_dev *dev)
1699 {
1700 	int pmcsr_pos;
1701 	u16 pmcsr;
1702 	bool ret = false;
1703 
1704 	if (!dev->pm_cap)
1705 		return false;
1706 
1707 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1708 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1709 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1710 		return false;
1711 
1712 	/* Clear PME status. */
1713 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
1714 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1715 		/* Disable PME to avoid interrupt flood. */
1716 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1717 		ret = true;
1718 	}
1719 
1720 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
1721 
1722 	return ret;
1723 }
1724 
1725 /**
1726  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1727  * @dev: Device to handle.
1728  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1729  *
1730  * Check if @dev has generated PME and queue a resume request for it in that
1731  * case.
1732  */
pci_pme_wakeup(struct pci_dev * dev,void * pme_poll_reset)1733 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1734 {
1735 	if (pme_poll_reset && dev->pme_poll)
1736 		dev->pme_poll = false;
1737 
1738 	if (pci_check_pme_status(dev)) {
1739 		pci_wakeup_event(dev);
1740 		pm_request_resume(&dev->dev);
1741 	}
1742 	return 0;
1743 }
1744 
1745 /**
1746  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1747  * @bus: Top bus of the subtree to walk.
1748  */
pci_pme_wakeup_bus(struct pci_bus * bus)1749 void pci_pme_wakeup_bus(struct pci_bus *bus)
1750 {
1751 	if (bus)
1752 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1753 }
1754 
1755 
1756 /**
1757  * pci_pme_capable - check the capability of PCI device to generate PME#
1758  * @dev: PCI device to handle.
1759  * @state: PCI state from which device will issue PME#.
1760  */
pci_pme_capable(struct pci_dev * dev,pci_power_t state)1761 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1762 {
1763 	if (!dev->pm_cap)
1764 		return false;
1765 
1766 	return !!(dev->pme_support & (1 << state));
1767 }
1768 EXPORT_SYMBOL(pci_pme_capable);
1769 
pci_pme_list_scan(struct work_struct * work)1770 static void pci_pme_list_scan(struct work_struct *work)
1771 {
1772 	struct pci_pme_device *pme_dev, *n;
1773 
1774 	mutex_lock(&pci_pme_list_mutex);
1775 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1776 		if (pme_dev->dev->pme_poll) {
1777 			struct pci_dev *bridge;
1778 
1779 			bridge = pme_dev->dev->bus->self;
1780 			/*
1781 			 * If bridge is in low power state, the
1782 			 * configuration space of subordinate devices
1783 			 * may be not accessible
1784 			 */
1785 			if (bridge && bridge->current_state != PCI_D0)
1786 				continue;
1787 			/*
1788 			 * If the device is in D3cold it should not be
1789 			 * polled either.
1790 			 */
1791 			if (pme_dev->dev->current_state == PCI_D3cold)
1792 				continue;
1793 
1794 			pci_pme_wakeup(pme_dev->dev, NULL);
1795 		} else {
1796 			list_del(&pme_dev->list);
1797 			kfree(pme_dev);
1798 		}
1799 	}
1800 	if (!list_empty(&pci_pme_list))
1801 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
1802 				   msecs_to_jiffies(PME_TIMEOUT));
1803 	mutex_unlock(&pci_pme_list_mutex);
1804 }
1805 
__pci_pme_active(struct pci_dev * dev,bool enable)1806 static void __pci_pme_active(struct pci_dev *dev, bool enable)
1807 {
1808 	u16 pmcsr;
1809 
1810 	if (!dev->pme_support)
1811 		return;
1812 
1813 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1814 	/* Clear PME_Status by writing 1 to it and enable PME# */
1815 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1816 	if (!enable)
1817 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1818 
1819 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1820 }
1821 
1822 /**
1823  * pci_pme_restore - Restore PME configuration after config space restore.
1824  * @dev: PCI device to update.
1825  */
pci_pme_restore(struct pci_dev * dev)1826 void pci_pme_restore(struct pci_dev *dev)
1827 {
1828 	u16 pmcsr;
1829 
1830 	if (!dev->pme_support)
1831 		return;
1832 
1833 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1834 	if (dev->wakeup_prepared) {
1835 		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
1836 		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
1837 	} else {
1838 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1839 		pmcsr |= PCI_PM_CTRL_PME_STATUS;
1840 	}
1841 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1842 }
1843 
1844 /**
1845  * pci_pme_active - enable or disable PCI device's PME# function
1846  * @dev: PCI device to handle.
1847  * @enable: 'true' to enable PME# generation; 'false' to disable it.
1848  *
1849  * The caller must verify that the device is capable of generating PME# before
1850  * calling this function with @enable equal to 'true'.
1851  */
pci_pme_active(struct pci_dev * dev,bool enable)1852 void pci_pme_active(struct pci_dev *dev, bool enable)
1853 {
1854 	__pci_pme_active(dev, enable);
1855 
1856 	/*
1857 	 * PCI (as opposed to PCIe) PME requires that the device have
1858 	 * its PME# line hooked up correctly. Not all hardware vendors
1859 	 * do this, so the PME never gets delivered and the device
1860 	 * remains asleep. The easiest way around this is to
1861 	 * periodically walk the list of suspended devices and check
1862 	 * whether any have their PME flag set. The assumption is that
1863 	 * we'll wake up often enough anyway that this won't be a huge
1864 	 * hit, and the power savings from the devices will still be a
1865 	 * win.
1866 	 *
1867 	 * Although PCIe uses in-band PME message instead of PME# line
1868 	 * to report PME, PME does not work for some PCIe devices in
1869 	 * reality.  For example, there are devices that set their PME
1870 	 * status bits, but don't really bother to send a PME message;
1871 	 * there are PCI Express Root Ports that don't bother to
1872 	 * trigger interrupts when they receive PME messages from the
1873 	 * devices below.  So PME poll is used for PCIe devices too.
1874 	 */
1875 
1876 	if (dev->pme_poll) {
1877 		struct pci_pme_device *pme_dev;
1878 		if (enable) {
1879 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
1880 					  GFP_KERNEL);
1881 			if (!pme_dev) {
1882 				dev_warn(&dev->dev, "can't enable PME#\n");
1883 				return;
1884 			}
1885 			pme_dev->dev = dev;
1886 			mutex_lock(&pci_pme_list_mutex);
1887 			list_add(&pme_dev->list, &pci_pme_list);
1888 			if (list_is_singular(&pci_pme_list))
1889 				queue_delayed_work(system_freezable_wq,
1890 						   &pci_pme_work,
1891 						   msecs_to_jiffies(PME_TIMEOUT));
1892 			mutex_unlock(&pci_pme_list_mutex);
1893 		} else {
1894 			mutex_lock(&pci_pme_list_mutex);
1895 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
1896 				if (pme_dev->dev == dev) {
1897 					list_del(&pme_dev->list);
1898 					kfree(pme_dev);
1899 					break;
1900 				}
1901 			}
1902 			mutex_unlock(&pci_pme_list_mutex);
1903 		}
1904 	}
1905 
1906 	dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1907 }
1908 EXPORT_SYMBOL(pci_pme_active);
1909 
1910 /**
1911  * __pci_enable_wake - enable PCI device as wakeup event source
1912  * @dev: PCI device affected
1913  * @state: PCI state from which device will issue wakeup events
1914  * @enable: True to enable event generation; false to disable
1915  *
1916  * This enables the device as a wakeup event source, or disables it.
1917  * When such events involves platform-specific hooks, those hooks are
1918  * called automatically by this routine.
1919  *
1920  * Devices with legacy power management (no standard PCI PM capabilities)
1921  * always require such platform hooks.
1922  *
1923  * RETURN VALUE:
1924  * 0 is returned on success
1925  * -EINVAL is returned if device is not supposed to wake up the system
1926  * Error code depending on the platform is returned if both the platform and
1927  * the native mechanism fail to enable the generation of wake-up events
1928  */
__pci_enable_wake(struct pci_dev * dev,pci_power_t state,bool enable)1929 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
1930 {
1931 	int ret = 0;
1932 
1933 	/*
1934 	 * Bridges can only signal wakeup on behalf of subordinate devices,
1935 	 * but that is set up elsewhere, so skip them.
1936 	 */
1937 	if (pci_has_subordinate(dev))
1938 		return 0;
1939 
1940 	/* Don't do the same thing twice in a row for one device. */
1941 	if (!!enable == !!dev->wakeup_prepared)
1942 		return 0;
1943 
1944 	/*
1945 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1946 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
1947 	 * enable.  To disable wake-up we call the platform first, for symmetry.
1948 	 */
1949 
1950 	if (enable) {
1951 		int error;
1952 
1953 		if (pci_pme_capable(dev, state))
1954 			pci_pme_active(dev, true);
1955 		else
1956 			ret = 1;
1957 		error = platform_pci_set_wakeup(dev, true);
1958 		if (ret)
1959 			ret = error;
1960 		if (!ret)
1961 			dev->wakeup_prepared = true;
1962 	} else {
1963 		platform_pci_set_wakeup(dev, false);
1964 		pci_pme_active(dev, false);
1965 		dev->wakeup_prepared = false;
1966 	}
1967 
1968 	return ret;
1969 }
1970 
1971 /**
1972  * pci_enable_wake - change wakeup settings for a PCI device
1973  * @pci_dev: Target device
1974  * @state: PCI state from which device will issue wakeup events
1975  * @enable: Whether or not to enable event generation
1976  *
1977  * If @enable is set, check device_may_wakeup() for the device before calling
1978  * __pci_enable_wake() for it.
1979  */
pci_enable_wake(struct pci_dev * pci_dev,pci_power_t state,bool enable)1980 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
1981 {
1982 	if (enable && !device_may_wakeup(&pci_dev->dev))
1983 		return -EINVAL;
1984 
1985 	return __pci_enable_wake(pci_dev, state, enable);
1986 }
1987 EXPORT_SYMBOL(pci_enable_wake);
1988 
1989 /**
1990  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1991  * @dev: PCI device to prepare
1992  * @enable: True to enable wake-up event generation; false to disable
1993  *
1994  * Many drivers want the device to wake up the system from D3_hot or D3_cold
1995  * and this function allows them to set that up cleanly - pci_enable_wake()
1996  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1997  * ordering constraints.
1998  *
1999  * This function only returns error code if the device is not allowed to wake
2000  * up the system from sleep or it is not capable of generating PME# from both
2001  * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2002  */
pci_wake_from_d3(struct pci_dev * dev,bool enable)2003 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2004 {
2005 	return pci_pme_capable(dev, PCI_D3cold) ?
2006 			pci_enable_wake(dev, PCI_D3cold, enable) :
2007 			pci_enable_wake(dev, PCI_D3hot, enable);
2008 }
2009 EXPORT_SYMBOL(pci_wake_from_d3);
2010 
2011 /**
2012  * pci_target_state - find an appropriate low power state for a given PCI dev
2013  * @dev: PCI device
2014  * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2015  *
2016  * Use underlying platform code to find a supported low power state for @dev.
2017  * If the platform can't manage @dev, return the deepest state from which it
2018  * can generate wake events, based on any available PME info.
2019  */
pci_target_state(struct pci_dev * dev,bool wakeup)2020 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2021 {
2022 	pci_power_t target_state = PCI_D3hot;
2023 
2024 	if (platform_pci_power_manageable(dev)) {
2025 		/*
2026 		 * Call the platform to choose the target state of the device
2027 		 * and enable wake-up from this state if supported.
2028 		 */
2029 		pci_power_t state = platform_pci_choose_state(dev);
2030 
2031 		switch (state) {
2032 		case PCI_POWER_ERROR:
2033 		case PCI_UNKNOWN:
2034 			break;
2035 		case PCI_D1:
2036 		case PCI_D2:
2037 			if (pci_no_d1d2(dev))
2038 				break;
2039 		default:
2040 			target_state = state;
2041 		}
2042 
2043 		return target_state;
2044 	}
2045 
2046 	if (!dev->pm_cap)
2047 		target_state = PCI_D0;
2048 
2049 	/*
2050 	 * If the device is in D3cold even though it's not power-manageable by
2051 	 * the platform, it may have been powered down by non-standard means.
2052 	 * Best to let it slumber.
2053 	 */
2054 	if (dev->current_state == PCI_D3cold)
2055 		target_state = PCI_D3cold;
2056 
2057 	if (wakeup) {
2058 		/*
2059 		 * Find the deepest state from which the device can generate
2060 		 * wake-up events, make it the target state and enable device
2061 		 * to generate PME#.
2062 		 */
2063 		if (dev->pme_support) {
2064 			while (target_state
2065 			      && !(dev->pme_support & (1 << target_state)))
2066 				target_state--;
2067 		}
2068 	}
2069 
2070 	return target_state;
2071 }
2072 
2073 /**
2074  * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
2075  * @dev: Device to handle.
2076  *
2077  * Choose the power state appropriate for the device depending on whether
2078  * it can wake up the system and/or is power manageable by the platform
2079  * (PCI_D3hot is the default) and put the device into that state.
2080  */
pci_prepare_to_sleep(struct pci_dev * dev)2081 int pci_prepare_to_sleep(struct pci_dev *dev)
2082 {
2083 	bool wakeup = device_may_wakeup(&dev->dev);
2084 	pci_power_t target_state = pci_target_state(dev, wakeup);
2085 	int error;
2086 
2087 	if (target_state == PCI_POWER_ERROR)
2088 		return -EIO;
2089 
2090 	pci_enable_wake(dev, target_state, wakeup);
2091 
2092 	error = pci_set_power_state(dev, target_state);
2093 
2094 	if (error)
2095 		pci_enable_wake(dev, target_state, false);
2096 
2097 	return error;
2098 }
2099 EXPORT_SYMBOL(pci_prepare_to_sleep);
2100 
2101 /**
2102  * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
2103  * @dev: Device to handle.
2104  *
2105  * Disable device's system wake-up capability and put it into D0.
2106  */
pci_back_from_sleep(struct pci_dev * dev)2107 int pci_back_from_sleep(struct pci_dev *dev)
2108 {
2109 	pci_enable_wake(dev, PCI_D0, false);
2110 	return pci_set_power_state(dev, PCI_D0);
2111 }
2112 EXPORT_SYMBOL(pci_back_from_sleep);
2113 
2114 /**
2115  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2116  * @dev: PCI device being suspended.
2117  *
2118  * Prepare @dev to generate wake-up events at run time and put it into a low
2119  * power state.
2120  */
pci_finish_runtime_suspend(struct pci_dev * dev)2121 int pci_finish_runtime_suspend(struct pci_dev *dev)
2122 {
2123 	pci_power_t target_state;
2124 	int error;
2125 
2126 	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2127 	if (target_state == PCI_POWER_ERROR)
2128 		return -EIO;
2129 
2130 	dev->runtime_d3cold = target_state == PCI_D3cold;
2131 
2132 	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2133 
2134 	error = pci_set_power_state(dev, target_state);
2135 
2136 	if (error) {
2137 		pci_enable_wake(dev, target_state, false);
2138 		dev->runtime_d3cold = false;
2139 	}
2140 
2141 	return error;
2142 }
2143 
2144 /**
2145  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2146  * @dev: Device to check.
2147  *
2148  * Return true if the device itself is capable of generating wake-up events
2149  * (through the platform or using the native PCIe PME) or if the device supports
2150  * PME and one of its upstream bridges can generate wake-up events.
2151  */
pci_dev_run_wake(struct pci_dev * dev)2152 bool pci_dev_run_wake(struct pci_dev *dev)
2153 {
2154 	struct pci_bus *bus = dev->bus;
2155 
2156 	if (!dev->pme_support)
2157 		return false;
2158 
2159 	/* PME-capable in principle, but not from the target power state */
2160 	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2161 		return false;
2162 
2163 	if (device_can_wakeup(&dev->dev))
2164 		return true;
2165 
2166 	while (bus->parent) {
2167 		struct pci_dev *bridge = bus->self;
2168 
2169 		if (device_can_wakeup(&bridge->dev))
2170 			return true;
2171 
2172 		bus = bus->parent;
2173 	}
2174 
2175 	/* We have reached the root bus. */
2176 	if (bus->bridge)
2177 		return device_can_wakeup(bus->bridge);
2178 
2179 	return false;
2180 }
2181 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2182 
2183 /**
2184  * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2185  * @pci_dev: Device to check.
2186  *
2187  * Return 'true' if the device is runtime-suspended, it doesn't have to be
2188  * reconfigured due to wakeup settings difference between system and runtime
2189  * suspend and the current power state of it is suitable for the upcoming
2190  * (system) transition.
2191  *
2192  * If the device is not configured for system wakeup, disable PME for it before
2193  * returning 'true' to prevent it from waking up the system unnecessarily.
2194  */
pci_dev_keep_suspended(struct pci_dev * pci_dev)2195 bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2196 {
2197 	struct device *dev = &pci_dev->dev;
2198 	bool wakeup = device_may_wakeup(dev);
2199 
2200 	if (!pm_runtime_suspended(dev)
2201 	    || pci_target_state(pci_dev, wakeup) != pci_dev->current_state
2202 	    || platform_pci_need_resume(pci_dev)
2203 	    || (pci_dev->dev_flags & PCI_DEV_FLAGS_NEEDS_RESUME))
2204 		return false;
2205 
2206 	/*
2207 	 * At this point the device is good to go unless it's been configured
2208 	 * to generate PME at the runtime suspend time, but it is not supposed
2209 	 * to wake up the system.  In that case, simply disable PME for it
2210 	 * (it will have to be re-enabled on exit from system resume).
2211 	 *
2212 	 * If the device's power state is D3cold and the platform check above
2213 	 * hasn't triggered, the device's configuration is suitable and we don't
2214 	 * need to manipulate it at all.
2215 	 */
2216 	spin_lock_irq(&dev->power.lock);
2217 
2218 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold &&
2219 	    !wakeup)
2220 		__pci_pme_active(pci_dev, false);
2221 
2222 	spin_unlock_irq(&dev->power.lock);
2223 	return true;
2224 }
2225 
2226 /**
2227  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2228  * @pci_dev: Device to handle.
2229  *
2230  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2231  * it might have been disabled during the prepare phase of system suspend if
2232  * the device was not configured for system wakeup.
2233  */
pci_dev_complete_resume(struct pci_dev * pci_dev)2234 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2235 {
2236 	struct device *dev = &pci_dev->dev;
2237 
2238 	if (!pci_dev_run_wake(pci_dev))
2239 		return;
2240 
2241 	spin_lock_irq(&dev->power.lock);
2242 
2243 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2244 		__pci_pme_active(pci_dev, true);
2245 
2246 	spin_unlock_irq(&dev->power.lock);
2247 }
2248 
pci_config_pm_runtime_get(struct pci_dev * pdev)2249 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2250 {
2251 	struct device *dev = &pdev->dev;
2252 	struct device *parent = dev->parent;
2253 
2254 	if (parent)
2255 		pm_runtime_get_sync(parent);
2256 	pm_runtime_get_noresume(dev);
2257 	/*
2258 	 * pdev->current_state is set to PCI_D3cold during suspending,
2259 	 * so wait until suspending completes
2260 	 */
2261 	pm_runtime_barrier(dev);
2262 	/*
2263 	 * Only need to resume devices in D3cold, because config
2264 	 * registers are still accessible for devices suspended but
2265 	 * not in D3cold.
2266 	 */
2267 	if (pdev->current_state == PCI_D3cold)
2268 		pm_runtime_resume(dev);
2269 }
2270 
pci_config_pm_runtime_put(struct pci_dev * pdev)2271 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2272 {
2273 	struct device *dev = &pdev->dev;
2274 	struct device *parent = dev->parent;
2275 
2276 	pm_runtime_put(dev);
2277 	if (parent)
2278 		pm_runtime_put_sync(parent);
2279 }
2280 
2281 /**
2282  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2283  * @bridge: Bridge to check
2284  *
2285  * This function checks if it is possible to move the bridge to D3.
2286  * Currently we only allow D3 for recent enough PCIe ports.
2287  */
pci_bridge_d3_possible(struct pci_dev * bridge)2288 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2289 {
2290 	unsigned int year;
2291 
2292 	if (!pci_is_pcie(bridge))
2293 		return false;
2294 
2295 	switch (pci_pcie_type(bridge)) {
2296 	case PCI_EXP_TYPE_ROOT_PORT:
2297 	case PCI_EXP_TYPE_UPSTREAM:
2298 	case PCI_EXP_TYPE_DOWNSTREAM:
2299 		if (pci_bridge_d3_disable)
2300 			return false;
2301 
2302 		/*
2303 		 * Hotplug interrupts cannot be delivered if the link is down,
2304 		 * so parents of a hotplug port must stay awake. In addition,
2305 		 * hotplug ports handled by firmware in System Management Mode
2306 		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2307 		 * For simplicity, disallow in general for now.
2308 		 */
2309 		if (bridge->is_hotplug_bridge)
2310 			return false;
2311 
2312 		if (pci_bridge_d3_force)
2313 			return true;
2314 
2315 		/*
2316 		 * It should be safe to put PCIe ports from 2015 or newer
2317 		 * to D3.
2318 		 */
2319 		if (dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL) &&
2320 		    year >= 2015) {
2321 			return true;
2322 		}
2323 		break;
2324 	}
2325 
2326 	return false;
2327 }
2328 
pci_dev_check_d3cold(struct pci_dev * dev,void * data)2329 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2330 {
2331 	bool *d3cold_ok = data;
2332 
2333 	if (/* The device needs to be allowed to go D3cold ... */
2334 	    dev->no_d3cold || !dev->d3cold_allowed ||
2335 
2336 	    /* ... and if it is wakeup capable to do so from D3cold. */
2337 	    (device_may_wakeup(&dev->dev) &&
2338 	     !pci_pme_capable(dev, PCI_D3cold)) ||
2339 
2340 	    /* If it is a bridge it must be allowed to go to D3. */
2341 	    !pci_power_manageable(dev))
2342 
2343 		*d3cold_ok = false;
2344 
2345 	return !*d3cold_ok;
2346 }
2347 
2348 /*
2349  * pci_bridge_d3_update - Update bridge D3 capabilities
2350  * @dev: PCI device which is changed
2351  *
2352  * Update upstream bridge PM capabilities accordingly depending on if the
2353  * device PM configuration was changed or the device is being removed.  The
2354  * change is also propagated upstream.
2355  */
pci_bridge_d3_update(struct pci_dev * dev)2356 void pci_bridge_d3_update(struct pci_dev *dev)
2357 {
2358 	bool remove = !device_is_registered(&dev->dev);
2359 	struct pci_dev *bridge;
2360 	bool d3cold_ok = true;
2361 
2362 	bridge = pci_upstream_bridge(dev);
2363 	if (!bridge || !pci_bridge_d3_possible(bridge))
2364 		return;
2365 
2366 	/*
2367 	 * If D3 is currently allowed for the bridge, removing one of its
2368 	 * children won't change that.
2369 	 */
2370 	if (remove && bridge->bridge_d3)
2371 		return;
2372 
2373 	/*
2374 	 * If D3 is currently allowed for the bridge and a child is added or
2375 	 * changed, disallowance of D3 can only be caused by that child, so
2376 	 * we only need to check that single device, not any of its siblings.
2377 	 *
2378 	 * If D3 is currently not allowed for the bridge, checking the device
2379 	 * first may allow us to skip checking its siblings.
2380 	 */
2381 	if (!remove)
2382 		pci_dev_check_d3cold(dev, &d3cold_ok);
2383 
2384 	/*
2385 	 * If D3 is currently not allowed for the bridge, this may be caused
2386 	 * either by the device being changed/removed or any of its siblings,
2387 	 * so we need to go through all children to find out if one of them
2388 	 * continues to block D3.
2389 	 */
2390 	if (d3cold_ok && !bridge->bridge_d3)
2391 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2392 			     &d3cold_ok);
2393 
2394 	if (bridge->bridge_d3 != d3cold_ok) {
2395 		bridge->bridge_d3 = d3cold_ok;
2396 		/* Propagate change to upstream bridges */
2397 		pci_bridge_d3_update(bridge);
2398 	}
2399 }
2400 
2401 /**
2402  * pci_d3cold_enable - Enable D3cold for device
2403  * @dev: PCI device to handle
2404  *
2405  * This function can be used in drivers to enable D3cold from the device
2406  * they handle.  It also updates upstream PCI bridge PM capabilities
2407  * accordingly.
2408  */
pci_d3cold_enable(struct pci_dev * dev)2409 void pci_d3cold_enable(struct pci_dev *dev)
2410 {
2411 	if (dev->no_d3cold) {
2412 		dev->no_d3cold = false;
2413 		pci_bridge_d3_update(dev);
2414 	}
2415 }
2416 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2417 
2418 /**
2419  * pci_d3cold_disable - Disable D3cold for device
2420  * @dev: PCI device to handle
2421  *
2422  * This function can be used in drivers to disable D3cold from the device
2423  * they handle.  It also updates upstream PCI bridge PM capabilities
2424  * accordingly.
2425  */
pci_d3cold_disable(struct pci_dev * dev)2426 void pci_d3cold_disable(struct pci_dev *dev)
2427 {
2428 	if (!dev->no_d3cold) {
2429 		dev->no_d3cold = true;
2430 		pci_bridge_d3_update(dev);
2431 	}
2432 }
2433 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2434 
2435 /**
2436  * pci_pm_init - Initialize PM functions of given PCI device
2437  * @dev: PCI device to handle.
2438  */
pci_pm_init(struct pci_dev * dev)2439 void pci_pm_init(struct pci_dev *dev)
2440 {
2441 	int pm;
2442 	u16 pmc;
2443 
2444 	pm_runtime_forbid(&dev->dev);
2445 	pm_runtime_set_active(&dev->dev);
2446 	pm_runtime_enable(&dev->dev);
2447 	device_enable_async_suspend(&dev->dev);
2448 	dev->wakeup_prepared = false;
2449 
2450 	dev->pm_cap = 0;
2451 	dev->pme_support = 0;
2452 
2453 	/* find PCI PM capability in list */
2454 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2455 	if (!pm)
2456 		return;
2457 	/* Check device's ability to generate PME# */
2458 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2459 
2460 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2461 		dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2462 			pmc & PCI_PM_CAP_VER_MASK);
2463 		return;
2464 	}
2465 
2466 	dev->pm_cap = pm;
2467 	dev->d3_delay = PCI_PM_D3_WAIT;
2468 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2469 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
2470 	dev->d3cold_allowed = true;
2471 
2472 	dev->d1_support = false;
2473 	dev->d2_support = false;
2474 	if (!pci_no_d1d2(dev)) {
2475 		if (pmc & PCI_PM_CAP_D1)
2476 			dev->d1_support = true;
2477 		if (pmc & PCI_PM_CAP_D2)
2478 			dev->d2_support = true;
2479 
2480 		if (dev->d1_support || dev->d2_support)
2481 			dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
2482 				   dev->d1_support ? " D1" : "",
2483 				   dev->d2_support ? " D2" : "");
2484 	}
2485 
2486 	pmc &= PCI_PM_CAP_PME_MASK;
2487 	if (pmc) {
2488 		dev_printk(KERN_DEBUG, &dev->dev,
2489 			 "PME# supported from%s%s%s%s%s\n",
2490 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2491 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2492 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2493 			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2494 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2495 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2496 		dev->pme_poll = true;
2497 		/*
2498 		 * Make device's PM flags reflect the wake-up capability, but
2499 		 * let the user space enable it to wake up the system as needed.
2500 		 */
2501 		device_set_wakeup_capable(&dev->dev, true);
2502 		/* Disable the PME# generation functionality */
2503 		pci_pme_active(dev, false);
2504 	}
2505 }
2506 
pci_ea_flags(struct pci_dev * dev,u8 prop)2507 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2508 {
2509 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2510 
2511 	switch (prop) {
2512 	case PCI_EA_P_MEM:
2513 	case PCI_EA_P_VF_MEM:
2514 		flags |= IORESOURCE_MEM;
2515 		break;
2516 	case PCI_EA_P_MEM_PREFETCH:
2517 	case PCI_EA_P_VF_MEM_PREFETCH:
2518 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2519 		break;
2520 	case PCI_EA_P_IO:
2521 		flags |= IORESOURCE_IO;
2522 		break;
2523 	default:
2524 		return 0;
2525 	}
2526 
2527 	return flags;
2528 }
2529 
pci_ea_get_resource(struct pci_dev * dev,u8 bei,u8 prop)2530 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2531 					    u8 prop)
2532 {
2533 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2534 		return &dev->resource[bei];
2535 #ifdef CONFIG_PCI_IOV
2536 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2537 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2538 		return &dev->resource[PCI_IOV_RESOURCES +
2539 				      bei - PCI_EA_BEI_VF_BAR0];
2540 #endif
2541 	else if (bei == PCI_EA_BEI_ROM)
2542 		return &dev->resource[PCI_ROM_RESOURCE];
2543 	else
2544 		return NULL;
2545 }
2546 
2547 /* Read an Enhanced Allocation (EA) entry */
pci_ea_read(struct pci_dev * dev,int offset)2548 static int pci_ea_read(struct pci_dev *dev, int offset)
2549 {
2550 	struct resource *res;
2551 	int ent_size, ent_offset = offset;
2552 	resource_size_t start, end;
2553 	unsigned long flags;
2554 	u32 dw0, bei, base, max_offset;
2555 	u8 prop;
2556 	bool support_64 = (sizeof(resource_size_t) >= 8);
2557 
2558 	pci_read_config_dword(dev, ent_offset, &dw0);
2559 	ent_offset += 4;
2560 
2561 	/* Entry size field indicates DWORDs after 1st */
2562 	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2563 
2564 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2565 		goto out;
2566 
2567 	bei = (dw0 & PCI_EA_BEI) >> 4;
2568 	prop = (dw0 & PCI_EA_PP) >> 8;
2569 
2570 	/*
2571 	 * If the Property is in the reserved range, try the Secondary
2572 	 * Property instead.
2573 	 */
2574 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2575 		prop = (dw0 & PCI_EA_SP) >> 16;
2576 	if (prop > PCI_EA_P_BRIDGE_IO)
2577 		goto out;
2578 
2579 	res = pci_ea_get_resource(dev, bei, prop);
2580 	if (!res) {
2581 		dev_err(&dev->dev, "Unsupported EA entry BEI: %u\n", bei);
2582 		goto out;
2583 	}
2584 
2585 	flags = pci_ea_flags(dev, prop);
2586 	if (!flags) {
2587 		dev_err(&dev->dev, "Unsupported EA properties: %#x\n", prop);
2588 		goto out;
2589 	}
2590 
2591 	/* Read Base */
2592 	pci_read_config_dword(dev, ent_offset, &base);
2593 	start = (base & PCI_EA_FIELD_MASK);
2594 	ent_offset += 4;
2595 
2596 	/* Read MaxOffset */
2597 	pci_read_config_dword(dev, ent_offset, &max_offset);
2598 	ent_offset += 4;
2599 
2600 	/* Read Base MSBs (if 64-bit entry) */
2601 	if (base & PCI_EA_IS_64) {
2602 		u32 base_upper;
2603 
2604 		pci_read_config_dword(dev, ent_offset, &base_upper);
2605 		ent_offset += 4;
2606 
2607 		flags |= IORESOURCE_MEM_64;
2608 
2609 		/* entry starts above 32-bit boundary, can't use */
2610 		if (!support_64 && base_upper)
2611 			goto out;
2612 
2613 		if (support_64)
2614 			start |= ((u64)base_upper << 32);
2615 	}
2616 
2617 	end = start + (max_offset | 0x03);
2618 
2619 	/* Read MaxOffset MSBs (if 64-bit entry) */
2620 	if (max_offset & PCI_EA_IS_64) {
2621 		u32 max_offset_upper;
2622 
2623 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2624 		ent_offset += 4;
2625 
2626 		flags |= IORESOURCE_MEM_64;
2627 
2628 		/* entry too big, can't use */
2629 		if (!support_64 && max_offset_upper)
2630 			goto out;
2631 
2632 		if (support_64)
2633 			end += ((u64)max_offset_upper << 32);
2634 	}
2635 
2636 	if (end < start) {
2637 		dev_err(&dev->dev, "EA Entry crosses address boundary\n");
2638 		goto out;
2639 	}
2640 
2641 	if (ent_size != ent_offset - offset) {
2642 		dev_err(&dev->dev,
2643 			"EA Entry Size (%d) does not match length read (%d)\n",
2644 			ent_size, ent_offset - offset);
2645 		goto out;
2646 	}
2647 
2648 	res->name = pci_name(dev);
2649 	res->start = start;
2650 	res->end = end;
2651 	res->flags = flags;
2652 
2653 	if (bei <= PCI_EA_BEI_BAR5)
2654 		dev_printk(KERN_DEBUG, &dev->dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2655 			   bei, res, prop);
2656 	else if (bei == PCI_EA_BEI_ROM)
2657 		dev_printk(KERN_DEBUG, &dev->dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2658 			   res, prop);
2659 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
2660 		dev_printk(KERN_DEBUG, &dev->dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2661 			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
2662 	else
2663 		dev_printk(KERN_DEBUG, &dev->dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2664 			   bei, res, prop);
2665 
2666 out:
2667 	return offset + ent_size;
2668 }
2669 
2670 /* Enhanced Allocation Initialization */
pci_ea_init(struct pci_dev * dev)2671 void pci_ea_init(struct pci_dev *dev)
2672 {
2673 	int ea;
2674 	u8 num_ent;
2675 	int offset;
2676 	int i;
2677 
2678 	/* find PCI EA capability in list */
2679 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
2680 	if (!ea)
2681 		return;
2682 
2683 	/* determine the number of entries */
2684 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
2685 					&num_ent);
2686 	num_ent &= PCI_EA_NUM_ENT_MASK;
2687 
2688 	offset = ea + PCI_EA_FIRST_ENT;
2689 
2690 	/* Skip DWORD 2 for type 1 functions */
2691 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
2692 		offset += 4;
2693 
2694 	/* parse each EA entry */
2695 	for (i = 0; i < num_ent; ++i)
2696 		offset = pci_ea_read(dev, offset);
2697 }
2698 
pci_add_saved_cap(struct pci_dev * pci_dev,struct pci_cap_saved_state * new_cap)2699 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2700 	struct pci_cap_saved_state *new_cap)
2701 {
2702 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2703 }
2704 
2705 /**
2706  * _pci_add_cap_save_buffer - allocate buffer for saving given
2707  *                            capability registers
2708  * @dev: the PCI device
2709  * @cap: the capability to allocate the buffer for
2710  * @extended: Standard or Extended capability ID
2711  * @size: requested size of the buffer
2712  */
_pci_add_cap_save_buffer(struct pci_dev * dev,u16 cap,bool extended,unsigned int size)2713 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2714 				    bool extended, unsigned int size)
2715 {
2716 	int pos;
2717 	struct pci_cap_saved_state *save_state;
2718 
2719 	if (extended)
2720 		pos = pci_find_ext_capability(dev, cap);
2721 	else
2722 		pos = pci_find_capability(dev, cap);
2723 
2724 	if (!pos)
2725 		return 0;
2726 
2727 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2728 	if (!save_state)
2729 		return -ENOMEM;
2730 
2731 	save_state->cap.cap_nr = cap;
2732 	save_state->cap.cap_extended = extended;
2733 	save_state->cap.size = size;
2734 	pci_add_saved_cap(dev, save_state);
2735 
2736 	return 0;
2737 }
2738 
pci_add_cap_save_buffer(struct pci_dev * dev,char cap,unsigned int size)2739 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2740 {
2741 	return _pci_add_cap_save_buffer(dev, cap, false, size);
2742 }
2743 
pci_add_ext_cap_save_buffer(struct pci_dev * dev,u16 cap,unsigned int size)2744 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2745 {
2746 	return _pci_add_cap_save_buffer(dev, cap, true, size);
2747 }
2748 
2749 /**
2750  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2751  * @dev: the PCI device
2752  */
pci_allocate_cap_save_buffers(struct pci_dev * dev)2753 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2754 {
2755 	int error;
2756 
2757 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2758 					PCI_EXP_SAVE_REGS * sizeof(u16));
2759 	if (error)
2760 		dev_err(&dev->dev,
2761 			"unable to preallocate PCI Express save buffer\n");
2762 
2763 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2764 	if (error)
2765 		dev_err(&dev->dev,
2766 			"unable to preallocate PCI-X save buffer\n");
2767 
2768 	pci_allocate_vc_save_buffers(dev);
2769 }
2770 
pci_free_cap_save_buffers(struct pci_dev * dev)2771 void pci_free_cap_save_buffers(struct pci_dev *dev)
2772 {
2773 	struct pci_cap_saved_state *tmp;
2774 	struct hlist_node *n;
2775 
2776 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2777 		kfree(tmp);
2778 }
2779 
2780 /**
2781  * pci_configure_ari - enable or disable ARI forwarding
2782  * @dev: the PCI device
2783  *
2784  * If @dev and its upstream bridge both support ARI, enable ARI in the
2785  * bridge.  Otherwise, disable ARI in the bridge.
2786  */
pci_configure_ari(struct pci_dev * dev)2787 void pci_configure_ari(struct pci_dev *dev)
2788 {
2789 	u32 cap;
2790 	struct pci_dev *bridge;
2791 
2792 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2793 		return;
2794 
2795 	bridge = dev->bus->self;
2796 	if (!bridge)
2797 		return;
2798 
2799 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2800 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
2801 		return;
2802 
2803 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2804 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2805 					 PCI_EXP_DEVCTL2_ARI);
2806 		bridge->ari_enabled = 1;
2807 	} else {
2808 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2809 					   PCI_EXP_DEVCTL2_ARI);
2810 		bridge->ari_enabled = 0;
2811 	}
2812 }
2813 
2814 static int pci_acs_enable;
2815 
2816 /**
2817  * pci_request_acs - ask for ACS to be enabled if supported
2818  */
pci_request_acs(void)2819 void pci_request_acs(void)
2820 {
2821 	pci_acs_enable = 1;
2822 }
2823 
2824 /**
2825  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2826  * @dev: the PCI device
2827  */
pci_std_enable_acs(struct pci_dev * dev)2828 static void pci_std_enable_acs(struct pci_dev *dev)
2829 {
2830 	int pos;
2831 	u16 cap;
2832 	u16 ctrl;
2833 
2834 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2835 	if (!pos)
2836 		return;
2837 
2838 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2839 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2840 
2841 	/* Source Validation */
2842 	ctrl |= (cap & PCI_ACS_SV);
2843 
2844 	/* P2P Request Redirect */
2845 	ctrl |= (cap & PCI_ACS_RR);
2846 
2847 	/* P2P Completion Redirect */
2848 	ctrl |= (cap & PCI_ACS_CR);
2849 
2850 	/* Upstream Forwarding */
2851 	ctrl |= (cap & PCI_ACS_UF);
2852 
2853 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2854 }
2855 
2856 /**
2857  * pci_enable_acs - enable ACS if hardware support it
2858  * @dev: the PCI device
2859  */
pci_enable_acs(struct pci_dev * dev)2860 void pci_enable_acs(struct pci_dev *dev)
2861 {
2862 	if (!pci_acs_enable)
2863 		return;
2864 
2865 	if (!pci_dev_specific_enable_acs(dev))
2866 		return;
2867 
2868 	pci_std_enable_acs(dev);
2869 }
2870 
pci_acs_flags_enabled(struct pci_dev * pdev,u16 acs_flags)2871 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2872 {
2873 	int pos;
2874 	u16 cap, ctrl;
2875 
2876 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2877 	if (!pos)
2878 		return false;
2879 
2880 	/*
2881 	 * Except for egress control, capabilities are either required
2882 	 * or only required if controllable.  Features missing from the
2883 	 * capability field can therefore be assumed as hard-wired enabled.
2884 	 */
2885 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2886 	acs_flags &= (cap | PCI_ACS_EC);
2887 
2888 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2889 	return (ctrl & acs_flags) == acs_flags;
2890 }
2891 
2892 /**
2893  * pci_acs_enabled - test ACS against required flags for a given device
2894  * @pdev: device to test
2895  * @acs_flags: required PCI ACS flags
2896  *
2897  * Return true if the device supports the provided flags.  Automatically
2898  * filters out flags that are not implemented on multifunction devices.
2899  *
2900  * Note that this interface checks the effective ACS capabilities of the
2901  * device rather than the actual capabilities.  For instance, most single
2902  * function endpoints are not required to support ACS because they have no
2903  * opportunity for peer-to-peer access.  We therefore return 'true'
2904  * regardless of whether the device exposes an ACS capability.  This makes
2905  * it much easier for callers of this function to ignore the actual type
2906  * or topology of the device when testing ACS support.
2907  */
pci_acs_enabled(struct pci_dev * pdev,u16 acs_flags)2908 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2909 {
2910 	int ret;
2911 
2912 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2913 	if (ret >= 0)
2914 		return ret > 0;
2915 
2916 	/*
2917 	 * Conventional PCI and PCI-X devices never support ACS, either
2918 	 * effectively or actually.  The shared bus topology implies that
2919 	 * any device on the bus can receive or snoop DMA.
2920 	 */
2921 	if (!pci_is_pcie(pdev))
2922 		return false;
2923 
2924 	switch (pci_pcie_type(pdev)) {
2925 	/*
2926 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2927 	 * but since their primary interface is PCI/X, we conservatively
2928 	 * handle them as we would a non-PCIe device.
2929 	 */
2930 	case PCI_EXP_TYPE_PCIE_BRIDGE:
2931 	/*
2932 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
2933 	 * applicable... must never implement an ACS Extended Capability...".
2934 	 * This seems arbitrary, but we take a conservative interpretation
2935 	 * of this statement.
2936 	 */
2937 	case PCI_EXP_TYPE_PCI_BRIDGE:
2938 	case PCI_EXP_TYPE_RC_EC:
2939 		return false;
2940 	/*
2941 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2942 	 * implement ACS in order to indicate their peer-to-peer capabilities,
2943 	 * regardless of whether they are single- or multi-function devices.
2944 	 */
2945 	case PCI_EXP_TYPE_DOWNSTREAM:
2946 	case PCI_EXP_TYPE_ROOT_PORT:
2947 		return pci_acs_flags_enabled(pdev, acs_flags);
2948 	/*
2949 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2950 	 * implemented by the remaining PCIe types to indicate peer-to-peer
2951 	 * capabilities, but only when they are part of a multifunction
2952 	 * device.  The footnote for section 6.12 indicates the specific
2953 	 * PCIe types included here.
2954 	 */
2955 	case PCI_EXP_TYPE_ENDPOINT:
2956 	case PCI_EXP_TYPE_UPSTREAM:
2957 	case PCI_EXP_TYPE_LEG_END:
2958 	case PCI_EXP_TYPE_RC_END:
2959 		if (!pdev->multifunction)
2960 			break;
2961 
2962 		return pci_acs_flags_enabled(pdev, acs_flags);
2963 	}
2964 
2965 	/*
2966 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2967 	 * to single function devices with the exception of downstream ports.
2968 	 */
2969 	return true;
2970 }
2971 
2972 /**
2973  * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2974  * @start: starting downstream device
2975  * @end: ending upstream device or NULL to search to the root bus
2976  * @acs_flags: required flags
2977  *
2978  * Walk up a device tree from start to end testing PCI ACS support.  If
2979  * any step along the way does not support the required flags, return false.
2980  */
pci_acs_path_enabled(struct pci_dev * start,struct pci_dev * end,u16 acs_flags)2981 bool pci_acs_path_enabled(struct pci_dev *start,
2982 			  struct pci_dev *end, u16 acs_flags)
2983 {
2984 	struct pci_dev *pdev, *parent = start;
2985 
2986 	do {
2987 		pdev = parent;
2988 
2989 		if (!pci_acs_enabled(pdev, acs_flags))
2990 			return false;
2991 
2992 		if (pci_is_root_bus(pdev->bus))
2993 			return (end == NULL);
2994 
2995 		parent = pdev->bus->self;
2996 	} while (pdev != end);
2997 
2998 	return true;
2999 }
3000 
3001 /**
3002  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3003  * @dev: the PCI device
3004  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3005  *
3006  * Perform INTx swizzling for a device behind one level of bridge.  This is
3007  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3008  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3009  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3010  * the PCI Express Base Specification, Revision 2.1)
3011  */
pci_swizzle_interrupt_pin(const struct pci_dev * dev,u8 pin)3012 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3013 {
3014 	int slot;
3015 
3016 	if (pci_ari_enabled(dev->bus))
3017 		slot = 0;
3018 	else
3019 		slot = PCI_SLOT(dev->devfn);
3020 
3021 	return (((pin - 1) + slot) % 4) + 1;
3022 }
3023 
pci_get_interrupt_pin(struct pci_dev * dev,struct pci_dev ** bridge)3024 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3025 {
3026 	u8 pin;
3027 
3028 	pin = dev->pin;
3029 	if (!pin)
3030 		return -1;
3031 
3032 	while (!pci_is_root_bus(dev->bus)) {
3033 		pin = pci_swizzle_interrupt_pin(dev, pin);
3034 		dev = dev->bus->self;
3035 	}
3036 	*bridge = dev;
3037 	return pin;
3038 }
3039 
3040 /**
3041  * pci_common_swizzle - swizzle INTx all the way to root bridge
3042  * @dev: the PCI device
3043  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3044  *
3045  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3046  * bridges all the way up to a PCI root bus.
3047  */
pci_common_swizzle(struct pci_dev * dev,u8 * pinp)3048 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3049 {
3050 	u8 pin = *pinp;
3051 
3052 	while (!pci_is_root_bus(dev->bus)) {
3053 		pin = pci_swizzle_interrupt_pin(dev, pin);
3054 		dev = dev->bus->self;
3055 	}
3056 	*pinp = pin;
3057 	return PCI_SLOT(dev->devfn);
3058 }
3059 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3060 
3061 /**
3062  *	pci_release_region - Release a PCI bar
3063  *	@pdev: PCI device whose resources were previously reserved by pci_request_region
3064  *	@bar: BAR to release
3065  *
3066  *	Releases the PCI I/O and memory resources previously reserved by a
3067  *	successful call to pci_request_region.  Call this function only
3068  *	after all use of the PCI regions has ceased.
3069  */
pci_release_region(struct pci_dev * pdev,int bar)3070 void pci_release_region(struct pci_dev *pdev, int bar)
3071 {
3072 	struct pci_devres *dr;
3073 
3074 	if (pci_resource_len(pdev, bar) == 0)
3075 		return;
3076 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3077 		release_region(pci_resource_start(pdev, bar),
3078 				pci_resource_len(pdev, bar));
3079 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3080 		release_mem_region(pci_resource_start(pdev, bar),
3081 				pci_resource_len(pdev, bar));
3082 
3083 	dr = find_pci_dr(pdev);
3084 	if (dr)
3085 		dr->region_mask &= ~(1 << bar);
3086 }
3087 EXPORT_SYMBOL(pci_release_region);
3088 
3089 /**
3090  *	__pci_request_region - Reserved PCI I/O and memory resource
3091  *	@pdev: PCI device whose resources are to be reserved
3092  *	@bar: BAR to be reserved
3093  *	@res_name: Name to be associated with resource.
3094  *	@exclusive: whether the region access is exclusive or not
3095  *
3096  *	Mark the PCI region associated with PCI device @pdev BR @bar as
3097  *	being reserved by owner @res_name.  Do not access any
3098  *	address inside the PCI regions unless this call returns
3099  *	successfully.
3100  *
3101  *	If @exclusive is set, then the region is marked so that userspace
3102  *	is explicitly not allowed to map the resource via /dev/mem or
3103  *	sysfs MMIO access.
3104  *
3105  *	Returns 0 on success, or %EBUSY on error.  A warning
3106  *	message is also printed on failure.
3107  */
__pci_request_region(struct pci_dev * pdev,int bar,const char * res_name,int exclusive)3108 static int __pci_request_region(struct pci_dev *pdev, int bar,
3109 				const char *res_name, int exclusive)
3110 {
3111 	struct pci_devres *dr;
3112 
3113 	if (pci_resource_len(pdev, bar) == 0)
3114 		return 0;
3115 
3116 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3117 		if (!request_region(pci_resource_start(pdev, bar),
3118 			    pci_resource_len(pdev, bar), res_name))
3119 			goto err_out;
3120 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3121 		if (!__request_mem_region(pci_resource_start(pdev, bar),
3122 					pci_resource_len(pdev, bar), res_name,
3123 					exclusive))
3124 			goto err_out;
3125 	}
3126 
3127 	dr = find_pci_dr(pdev);
3128 	if (dr)
3129 		dr->region_mask |= 1 << bar;
3130 
3131 	return 0;
3132 
3133 err_out:
3134 	dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
3135 		 &pdev->resource[bar]);
3136 	return -EBUSY;
3137 }
3138 
3139 /**
3140  *	pci_request_region - Reserve PCI I/O and memory resource
3141  *	@pdev: PCI device whose resources are to be reserved
3142  *	@bar: BAR to be reserved
3143  *	@res_name: Name to be associated with resource
3144  *
3145  *	Mark the PCI region associated with PCI device @pdev BAR @bar as
3146  *	being reserved by owner @res_name.  Do not access any
3147  *	address inside the PCI regions unless this call returns
3148  *	successfully.
3149  *
3150  *	Returns 0 on success, or %EBUSY on error.  A warning
3151  *	message is also printed on failure.
3152  */
pci_request_region(struct pci_dev * pdev,int bar,const char * res_name)3153 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3154 {
3155 	return __pci_request_region(pdev, bar, res_name, 0);
3156 }
3157 EXPORT_SYMBOL(pci_request_region);
3158 
3159 /**
3160  *	pci_request_region_exclusive - Reserved PCI I/O and memory resource
3161  *	@pdev: PCI device whose resources are to be reserved
3162  *	@bar: BAR to be reserved
3163  *	@res_name: Name to be associated with resource.
3164  *
3165  *	Mark the PCI region associated with PCI device @pdev BR @bar as
3166  *	being reserved by owner @res_name.  Do not access any
3167  *	address inside the PCI regions unless this call returns
3168  *	successfully.
3169  *
3170  *	Returns 0 on success, or %EBUSY on error.  A warning
3171  *	message is also printed on failure.
3172  *
3173  *	The key difference that _exclusive makes it that userspace is
3174  *	explicitly not allowed to map the resource via /dev/mem or
3175  *	sysfs.
3176  */
pci_request_region_exclusive(struct pci_dev * pdev,int bar,const char * res_name)3177 int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
3178 				 const char *res_name)
3179 {
3180 	return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
3181 }
3182 EXPORT_SYMBOL(pci_request_region_exclusive);
3183 
3184 /**
3185  * pci_release_selected_regions - Release selected PCI I/O and memory resources
3186  * @pdev: PCI device whose resources were previously reserved
3187  * @bars: Bitmask of BARs to be released
3188  *
3189  * Release selected PCI I/O and memory resources previously reserved.
3190  * Call this function only after all use of the PCI regions has ceased.
3191  */
pci_release_selected_regions(struct pci_dev * pdev,int bars)3192 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3193 {
3194 	int i;
3195 
3196 	for (i = 0; i < 6; i++)
3197 		if (bars & (1 << i))
3198 			pci_release_region(pdev, i);
3199 }
3200 EXPORT_SYMBOL(pci_release_selected_regions);
3201 
__pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * res_name,int excl)3202 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3203 					  const char *res_name, int excl)
3204 {
3205 	int i;
3206 
3207 	for (i = 0; i < 6; i++)
3208 		if (bars & (1 << i))
3209 			if (__pci_request_region(pdev, i, res_name, excl))
3210 				goto err_out;
3211 	return 0;
3212 
3213 err_out:
3214 	while (--i >= 0)
3215 		if (bars & (1 << i))
3216 			pci_release_region(pdev, i);
3217 
3218 	return -EBUSY;
3219 }
3220 
3221 
3222 /**
3223  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3224  * @pdev: PCI device whose resources are to be reserved
3225  * @bars: Bitmask of BARs to be requested
3226  * @res_name: Name to be associated with resource
3227  */
pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * res_name)3228 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3229 				 const char *res_name)
3230 {
3231 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
3232 }
3233 EXPORT_SYMBOL(pci_request_selected_regions);
3234 
pci_request_selected_regions_exclusive(struct pci_dev * pdev,int bars,const char * res_name)3235 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3236 					   const char *res_name)
3237 {
3238 	return __pci_request_selected_regions(pdev, bars, res_name,
3239 			IORESOURCE_EXCLUSIVE);
3240 }
3241 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3242 
3243 /**
3244  *	pci_release_regions - Release reserved PCI I/O and memory resources
3245  *	@pdev: PCI device whose resources were previously reserved by pci_request_regions
3246  *
3247  *	Releases all PCI I/O and memory resources previously reserved by a
3248  *	successful call to pci_request_regions.  Call this function only
3249  *	after all use of the PCI regions has ceased.
3250  */
3251 
pci_release_regions(struct pci_dev * pdev)3252 void pci_release_regions(struct pci_dev *pdev)
3253 {
3254 	pci_release_selected_regions(pdev, (1 << 6) - 1);
3255 }
3256 EXPORT_SYMBOL(pci_release_regions);
3257 
3258 /**
3259  *	pci_request_regions - Reserved PCI I/O and memory resources
3260  *	@pdev: PCI device whose resources are to be reserved
3261  *	@res_name: Name to be associated with resource.
3262  *
3263  *	Mark all PCI regions associated with PCI device @pdev as
3264  *	being reserved by owner @res_name.  Do not access any
3265  *	address inside the PCI regions unless this call returns
3266  *	successfully.
3267  *
3268  *	Returns 0 on success, or %EBUSY on error.  A warning
3269  *	message is also printed on failure.
3270  */
pci_request_regions(struct pci_dev * pdev,const char * res_name)3271 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3272 {
3273 	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
3274 }
3275 EXPORT_SYMBOL(pci_request_regions);
3276 
3277 /**
3278  *	pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3279  *	@pdev: PCI device whose resources are to be reserved
3280  *	@res_name: Name to be associated with resource.
3281  *
3282  *	Mark all PCI regions associated with PCI device @pdev as
3283  *	being reserved by owner @res_name.  Do not access any
3284  *	address inside the PCI regions unless this call returns
3285  *	successfully.
3286  *
3287  *	pci_request_regions_exclusive() will mark the region so that
3288  *	/dev/mem and the sysfs MMIO access will not be allowed.
3289  *
3290  *	Returns 0 on success, or %EBUSY on error.  A warning
3291  *	message is also printed on failure.
3292  */
pci_request_regions_exclusive(struct pci_dev * pdev,const char * res_name)3293 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3294 {
3295 	return pci_request_selected_regions_exclusive(pdev,
3296 					((1 << 6) - 1), res_name);
3297 }
3298 EXPORT_SYMBOL(pci_request_regions_exclusive);
3299 
3300 #ifdef PCI_IOBASE
3301 struct io_range {
3302 	struct list_head list;
3303 	phys_addr_t start;
3304 	resource_size_t size;
3305 };
3306 
3307 static LIST_HEAD(io_range_list);
3308 static DEFINE_SPINLOCK(io_range_lock);
3309 #endif
3310 
3311 /*
3312  * Record the PCI IO range (expressed as CPU physical address + size).
3313  * Return a negative value if an error has occured, zero otherwise
3314  */
pci_register_io_range(phys_addr_t addr,resource_size_t size)3315 int __weak pci_register_io_range(phys_addr_t addr, resource_size_t size)
3316 {
3317 	int err = 0;
3318 
3319 #ifdef PCI_IOBASE
3320 	struct io_range *range;
3321 	resource_size_t allocated_size = 0;
3322 
3323 	/* check if the range hasn't been previously recorded */
3324 	spin_lock(&io_range_lock);
3325 	list_for_each_entry(range, &io_range_list, list) {
3326 		if (addr >= range->start && addr + size <= range->start + size) {
3327 			/* range already registered, bail out */
3328 			goto end_register;
3329 		}
3330 		allocated_size += range->size;
3331 	}
3332 
3333 	/* range not registed yet, check for available space */
3334 	if (allocated_size + size - 1 > IO_SPACE_LIMIT) {
3335 		/* if it's too big check if 64K space can be reserved */
3336 		if (allocated_size + SZ_64K - 1 > IO_SPACE_LIMIT) {
3337 			err = -E2BIG;
3338 			goto end_register;
3339 		}
3340 
3341 		size = SZ_64K;
3342 		pr_warn("Requested IO range too big, new size set to 64K\n");
3343 	}
3344 
3345 	/* add the range to the list */
3346 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
3347 	if (!range) {
3348 		err = -ENOMEM;
3349 		goto end_register;
3350 	}
3351 
3352 	range->start = addr;
3353 	range->size = size;
3354 
3355 	list_add_tail(&range->list, &io_range_list);
3356 
3357 end_register:
3358 	spin_unlock(&io_range_lock);
3359 #endif
3360 
3361 	return err;
3362 }
3363 
pci_pio_to_address(unsigned long pio)3364 phys_addr_t pci_pio_to_address(unsigned long pio)
3365 {
3366 	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3367 
3368 #ifdef PCI_IOBASE
3369 	struct io_range *range;
3370 	resource_size_t allocated_size = 0;
3371 
3372 	if (pio > IO_SPACE_LIMIT)
3373 		return address;
3374 
3375 	spin_lock(&io_range_lock);
3376 	list_for_each_entry(range, &io_range_list, list) {
3377 		if (pio >= allocated_size && pio < allocated_size + range->size) {
3378 			address = range->start + pio - allocated_size;
3379 			break;
3380 		}
3381 		allocated_size += range->size;
3382 	}
3383 	spin_unlock(&io_range_lock);
3384 #endif
3385 
3386 	return address;
3387 }
3388 
pci_address_to_pio(phys_addr_t address)3389 unsigned long __weak pci_address_to_pio(phys_addr_t address)
3390 {
3391 #ifdef PCI_IOBASE
3392 	struct io_range *res;
3393 	resource_size_t offset = 0;
3394 	unsigned long addr = -1;
3395 
3396 	spin_lock(&io_range_lock);
3397 	list_for_each_entry(res, &io_range_list, list) {
3398 		if (address >= res->start && address < res->start + res->size) {
3399 			addr = address - res->start + offset;
3400 			break;
3401 		}
3402 		offset += res->size;
3403 	}
3404 	spin_unlock(&io_range_lock);
3405 
3406 	return addr;
3407 #else
3408 	if (address > IO_SPACE_LIMIT)
3409 		return (unsigned long)-1;
3410 
3411 	return (unsigned long) address;
3412 #endif
3413 }
3414 
3415 /**
3416  *	pci_remap_iospace - Remap the memory mapped I/O space
3417  *	@res: Resource describing the I/O space
3418  *	@phys_addr: physical address of range to be mapped
3419  *
3420  *	Remap the memory mapped I/O space described by the @res
3421  *	and the CPU physical address @phys_addr into virtual address space.
3422  *	Only architectures that have memory mapped IO functions defined
3423  *	(and the PCI_IOBASE value defined) should call this function.
3424  */
pci_remap_iospace(const struct resource * res,phys_addr_t phys_addr)3425 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3426 {
3427 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3428 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3429 
3430 	if (!(res->flags & IORESOURCE_IO))
3431 		return -EINVAL;
3432 
3433 	if (res->end > IO_SPACE_LIMIT)
3434 		return -EINVAL;
3435 
3436 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3437 				  pgprot_device(PAGE_KERNEL));
3438 #else
3439 	/* this architecture does not have memory mapped I/O space,
3440 	   so this function should never be called */
3441 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3442 	return -ENODEV;
3443 #endif
3444 }
3445 EXPORT_SYMBOL(pci_remap_iospace);
3446 
3447 /**
3448  *	pci_unmap_iospace - Unmap the memory mapped I/O space
3449  *	@res: resource to be unmapped
3450  *
3451  *	Unmap the CPU virtual address @res from virtual address space.
3452  *	Only architectures that have memory mapped IO functions defined
3453  *	(and the PCI_IOBASE value defined) should call this function.
3454  */
pci_unmap_iospace(struct resource * res)3455 void pci_unmap_iospace(struct resource *res)
3456 {
3457 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3458 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3459 
3460 	unmap_kernel_range(vaddr, resource_size(res));
3461 #endif
3462 }
3463 EXPORT_SYMBOL(pci_unmap_iospace);
3464 
devm_pci_unmap_iospace(struct device * dev,void * ptr)3465 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
3466 {
3467 	struct resource **res = ptr;
3468 
3469 	pci_unmap_iospace(*res);
3470 }
3471 
3472 /**
3473  * devm_pci_remap_iospace - Managed pci_remap_iospace()
3474  * @dev: Generic device to remap IO address for
3475  * @res: Resource describing the I/O space
3476  * @phys_addr: physical address of range to be mapped
3477  *
3478  * Managed pci_remap_iospace().  Map is automatically unmapped on driver
3479  * detach.
3480  */
devm_pci_remap_iospace(struct device * dev,const struct resource * res,phys_addr_t phys_addr)3481 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
3482 			   phys_addr_t phys_addr)
3483 {
3484 	const struct resource **ptr;
3485 	int error;
3486 
3487 	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
3488 	if (!ptr)
3489 		return -ENOMEM;
3490 
3491 	error = pci_remap_iospace(res, phys_addr);
3492 	if (error) {
3493 		devres_free(ptr);
3494 	} else	{
3495 		*ptr = res;
3496 		devres_add(dev, ptr);
3497 	}
3498 
3499 	return error;
3500 }
3501 EXPORT_SYMBOL(devm_pci_remap_iospace);
3502 
3503 /**
3504  * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
3505  * @dev: Generic device to remap IO address for
3506  * @offset: Resource address to map
3507  * @size: Size of map
3508  *
3509  * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
3510  * detach.
3511  */
devm_pci_remap_cfgspace(struct device * dev,resource_size_t offset,resource_size_t size)3512 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
3513 				      resource_size_t offset,
3514 				      resource_size_t size)
3515 {
3516 	void __iomem **ptr, *addr;
3517 
3518 	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
3519 	if (!ptr)
3520 		return NULL;
3521 
3522 	addr = pci_remap_cfgspace(offset, size);
3523 	if (addr) {
3524 		*ptr = addr;
3525 		devres_add(dev, ptr);
3526 	} else
3527 		devres_free(ptr);
3528 
3529 	return addr;
3530 }
3531 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
3532 
3533 /**
3534  * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
3535  * @dev: generic device to handle the resource for
3536  * @res: configuration space resource to be handled
3537  *
3538  * Checks that a resource is a valid memory region, requests the memory
3539  * region and ioremaps with pci_remap_cfgspace() API that ensures the
3540  * proper PCI configuration space memory attributes are guaranteed.
3541  *
3542  * All operations are managed and will be undone on driver detach.
3543  *
3544  * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
3545  * on failure. Usage example:
3546  *
3547  *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3548  *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
3549  *	if (IS_ERR(base))
3550  *		return PTR_ERR(base);
3551  */
devm_pci_remap_cfg_resource(struct device * dev,struct resource * res)3552 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
3553 					  struct resource *res)
3554 {
3555 	resource_size_t size;
3556 	const char *name;
3557 	void __iomem *dest_ptr;
3558 
3559 	BUG_ON(!dev);
3560 
3561 	if (!res || resource_type(res) != IORESOURCE_MEM) {
3562 		dev_err(dev, "invalid resource\n");
3563 		return IOMEM_ERR_PTR(-EINVAL);
3564 	}
3565 
3566 	size = resource_size(res);
3567 	name = res->name ?: dev_name(dev);
3568 
3569 	if (!devm_request_mem_region(dev, res->start, size, name)) {
3570 		dev_err(dev, "can't request region for resource %pR\n", res);
3571 		return IOMEM_ERR_PTR(-EBUSY);
3572 	}
3573 
3574 	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
3575 	if (!dest_ptr) {
3576 		dev_err(dev, "ioremap failed for resource %pR\n", res);
3577 		devm_release_mem_region(dev, res->start, size);
3578 		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
3579 	}
3580 
3581 	return dest_ptr;
3582 }
3583 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
3584 
__pci_set_master(struct pci_dev * dev,bool enable)3585 static void __pci_set_master(struct pci_dev *dev, bool enable)
3586 {
3587 	u16 old_cmd, cmd;
3588 
3589 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
3590 	if (enable)
3591 		cmd = old_cmd | PCI_COMMAND_MASTER;
3592 	else
3593 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
3594 	if (cmd != old_cmd) {
3595 		dev_dbg(&dev->dev, "%s bus mastering\n",
3596 			enable ? "enabling" : "disabling");
3597 		pci_write_config_word(dev, PCI_COMMAND, cmd);
3598 	}
3599 	dev->is_busmaster = enable;
3600 }
3601 
3602 /**
3603  * pcibios_setup - process "pci=" kernel boot arguments
3604  * @str: string used to pass in "pci=" kernel boot arguments
3605  *
3606  * Process kernel boot arguments.  This is the default implementation.
3607  * Architecture specific implementations can override this as necessary.
3608  */
pcibios_setup(char * str)3609 char * __weak __init pcibios_setup(char *str)
3610 {
3611 	return str;
3612 }
3613 
3614 /**
3615  * pcibios_set_master - enable PCI bus-mastering for device dev
3616  * @dev: the PCI device to enable
3617  *
3618  * Enables PCI bus-mastering for the device.  This is the default
3619  * implementation.  Architecture specific implementations can override
3620  * this if necessary.
3621  */
pcibios_set_master(struct pci_dev * dev)3622 void __weak pcibios_set_master(struct pci_dev *dev)
3623 {
3624 	u8 lat;
3625 
3626 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
3627 	if (pci_is_pcie(dev))
3628 		return;
3629 
3630 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
3631 	if (lat < 16)
3632 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
3633 	else if (lat > pcibios_max_latency)
3634 		lat = pcibios_max_latency;
3635 	else
3636 		return;
3637 
3638 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
3639 }
3640 
3641 /**
3642  * pci_set_master - enables bus-mastering for device dev
3643  * @dev: the PCI device to enable
3644  *
3645  * Enables bus-mastering on the device and calls pcibios_set_master()
3646  * to do the needed arch specific settings.
3647  */
pci_set_master(struct pci_dev * dev)3648 void pci_set_master(struct pci_dev *dev)
3649 {
3650 	__pci_set_master(dev, true);
3651 	pcibios_set_master(dev);
3652 }
3653 EXPORT_SYMBOL(pci_set_master);
3654 
3655 /**
3656  * pci_clear_master - disables bus-mastering for device dev
3657  * @dev: the PCI device to disable
3658  */
pci_clear_master(struct pci_dev * dev)3659 void pci_clear_master(struct pci_dev *dev)
3660 {
3661 	__pci_set_master(dev, false);
3662 }
3663 EXPORT_SYMBOL(pci_clear_master);
3664 
3665 /**
3666  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
3667  * @dev: the PCI device for which MWI is to be enabled
3668  *
3669  * Helper function for pci_set_mwi.
3670  * Originally copied from drivers/net/acenic.c.
3671  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
3672  *
3673  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3674  */
pci_set_cacheline_size(struct pci_dev * dev)3675 int pci_set_cacheline_size(struct pci_dev *dev)
3676 {
3677 	u8 cacheline_size;
3678 
3679 	if (!pci_cache_line_size)
3680 		return -EINVAL;
3681 
3682 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
3683 	   equal to or multiple of the right value. */
3684 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3685 	if (cacheline_size >= pci_cache_line_size &&
3686 	    (cacheline_size % pci_cache_line_size) == 0)
3687 		return 0;
3688 
3689 	/* Write the correct value. */
3690 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
3691 	/* Read it back. */
3692 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3693 	if (cacheline_size == pci_cache_line_size)
3694 		return 0;
3695 
3696 	dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n",
3697 		   pci_cache_line_size << 2);
3698 
3699 	return -EINVAL;
3700 }
3701 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
3702 
3703 /**
3704  * pci_set_mwi - enables memory-write-invalidate PCI transaction
3705  * @dev: the PCI device for which MWI is enabled
3706  *
3707  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3708  *
3709  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3710  */
pci_set_mwi(struct pci_dev * dev)3711 int pci_set_mwi(struct pci_dev *dev)
3712 {
3713 #ifdef PCI_DISABLE_MWI
3714 	return 0;
3715 #else
3716 	int rc;
3717 	u16 cmd;
3718 
3719 	rc = pci_set_cacheline_size(dev);
3720 	if (rc)
3721 		return rc;
3722 
3723 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
3724 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
3725 		dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
3726 		cmd |= PCI_COMMAND_INVALIDATE;
3727 		pci_write_config_word(dev, PCI_COMMAND, cmd);
3728 	}
3729 	return 0;
3730 #endif
3731 }
3732 EXPORT_SYMBOL(pci_set_mwi);
3733 
3734 /**
3735  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
3736  * @dev: the PCI device for which MWI is enabled
3737  *
3738  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3739  * Callers are not required to check the return value.
3740  *
3741  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3742  */
pci_try_set_mwi(struct pci_dev * dev)3743 int pci_try_set_mwi(struct pci_dev *dev)
3744 {
3745 #ifdef PCI_DISABLE_MWI
3746 	return 0;
3747 #else
3748 	return pci_set_mwi(dev);
3749 #endif
3750 }
3751 EXPORT_SYMBOL(pci_try_set_mwi);
3752 
3753 /**
3754  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
3755  * @dev: the PCI device to disable
3756  *
3757  * Disables PCI Memory-Write-Invalidate transaction on the device
3758  */
pci_clear_mwi(struct pci_dev * dev)3759 void pci_clear_mwi(struct pci_dev *dev)
3760 {
3761 #ifndef PCI_DISABLE_MWI
3762 	u16 cmd;
3763 
3764 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
3765 	if (cmd & PCI_COMMAND_INVALIDATE) {
3766 		cmd &= ~PCI_COMMAND_INVALIDATE;
3767 		pci_write_config_word(dev, PCI_COMMAND, cmd);
3768 	}
3769 #endif
3770 }
3771 EXPORT_SYMBOL(pci_clear_mwi);
3772 
3773 /**
3774  * pci_intx - enables/disables PCI INTx for device dev
3775  * @pdev: the PCI device to operate on
3776  * @enable: boolean: whether to enable or disable PCI INTx
3777  *
3778  * Enables/disables PCI INTx for device dev
3779  */
pci_intx(struct pci_dev * pdev,int enable)3780 void pci_intx(struct pci_dev *pdev, int enable)
3781 {
3782 	u16 pci_command, new;
3783 
3784 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
3785 
3786 	if (enable)
3787 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
3788 	else
3789 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
3790 
3791 	if (new != pci_command) {
3792 		struct pci_devres *dr;
3793 
3794 		pci_write_config_word(pdev, PCI_COMMAND, new);
3795 
3796 		dr = find_pci_dr(pdev);
3797 		if (dr && !dr->restore_intx) {
3798 			dr->restore_intx = 1;
3799 			dr->orig_intx = !enable;
3800 		}
3801 	}
3802 }
3803 EXPORT_SYMBOL_GPL(pci_intx);
3804 
pci_check_and_set_intx_mask(struct pci_dev * dev,bool mask)3805 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3806 {
3807 	struct pci_bus *bus = dev->bus;
3808 	bool mask_updated = true;
3809 	u32 cmd_status_dword;
3810 	u16 origcmd, newcmd;
3811 	unsigned long flags;
3812 	bool irq_pending;
3813 
3814 	/*
3815 	 * We do a single dword read to retrieve both command and status.
3816 	 * Document assumptions that make this possible.
3817 	 */
3818 	BUILD_BUG_ON(PCI_COMMAND % 4);
3819 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3820 
3821 	raw_spin_lock_irqsave(&pci_lock, flags);
3822 
3823 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3824 
3825 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3826 
3827 	/*
3828 	 * Check interrupt status register to see whether our device
3829 	 * triggered the interrupt (when masking) or the next IRQ is
3830 	 * already pending (when unmasking).
3831 	 */
3832 	if (mask != irq_pending) {
3833 		mask_updated = false;
3834 		goto done;
3835 	}
3836 
3837 	origcmd = cmd_status_dword;
3838 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3839 	if (mask)
3840 		newcmd |= PCI_COMMAND_INTX_DISABLE;
3841 	if (newcmd != origcmd)
3842 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3843 
3844 done:
3845 	raw_spin_unlock_irqrestore(&pci_lock, flags);
3846 
3847 	return mask_updated;
3848 }
3849 
3850 /**
3851  * pci_check_and_mask_intx - mask INTx on pending interrupt
3852  * @dev: the PCI device to operate on
3853  *
3854  * Check if the device dev has its INTx line asserted, mask it and
3855  * return true in that case. False is returned if no interrupt was
3856  * pending.
3857  */
pci_check_and_mask_intx(struct pci_dev * dev)3858 bool pci_check_and_mask_intx(struct pci_dev *dev)
3859 {
3860 	return pci_check_and_set_intx_mask(dev, true);
3861 }
3862 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3863 
3864 /**
3865  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3866  * @dev: the PCI device to operate on
3867  *
3868  * Check if the device dev has its INTx line asserted, unmask it if not
3869  * and return true. False is returned and the mask remains active if
3870  * there was still an interrupt pending.
3871  */
pci_check_and_unmask_intx(struct pci_dev * dev)3872 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3873 {
3874 	return pci_check_and_set_intx_mask(dev, false);
3875 }
3876 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3877 
3878 /**
3879  * pci_wait_for_pending_transaction - waits for pending transaction
3880  * @dev: the PCI device to operate on
3881  *
3882  * Return 0 if transaction is pending 1 otherwise.
3883  */
pci_wait_for_pending_transaction(struct pci_dev * dev)3884 int pci_wait_for_pending_transaction(struct pci_dev *dev)
3885 {
3886 	if (!pci_is_pcie(dev))
3887 		return 1;
3888 
3889 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3890 				    PCI_EXP_DEVSTA_TRPND);
3891 }
3892 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3893 
pci_flr_wait(struct pci_dev * dev)3894 static void pci_flr_wait(struct pci_dev *dev)
3895 {
3896 	int delay = 1, timeout = 60000;
3897 	u32 id;
3898 
3899 	/*
3900 	 * Per PCIe r3.1, sec 6.6.2, a device must complete an FLR within
3901 	 * 100ms, but may silently discard requests while the FLR is in
3902 	 * progress.  Wait 100ms before trying to access the device.
3903 	 */
3904 	msleep(100);
3905 
3906 	/*
3907 	 * After 100ms, the device should not silently discard config
3908 	 * requests, but it may still indicate that it needs more time by
3909 	 * responding to them with CRS completions.  The Root Port will
3910 	 * generally synthesize ~0 data to complete the read (except when
3911 	 * CRS SV is enabled and the read was for the Vendor ID; in that
3912 	 * case it synthesizes 0x0001 data).
3913 	 *
3914 	 * Wait for the device to return a non-CRS completion.  Read the
3915 	 * Command register instead of Vendor ID so we don't have to
3916 	 * contend with the CRS SV value.
3917 	 */
3918 	pci_read_config_dword(dev, PCI_COMMAND, &id);
3919 	while (id == ~0) {
3920 		if (delay > timeout) {
3921 			dev_warn(&dev->dev, "not ready %dms after FLR; giving up\n",
3922 				 100 + delay - 1);
3923 			return;
3924 		}
3925 
3926 		if (delay > 1000)
3927 			dev_info(&dev->dev, "not ready %dms after FLR; waiting\n",
3928 				 100 + delay - 1);
3929 
3930 		msleep(delay);
3931 		delay *= 2;
3932 		pci_read_config_dword(dev, PCI_COMMAND, &id);
3933 	}
3934 
3935 	if (delay > 1000)
3936 		dev_info(&dev->dev, "ready %dms after FLR\n", 100 + delay - 1);
3937 }
3938 
3939 /**
3940  * pcie_has_flr - check if a device supports function level resets
3941  * @dev:	device to check
3942  *
3943  * Returns true if the device advertises support for PCIe function level
3944  * resets.
3945  */
pcie_has_flr(struct pci_dev * dev)3946 static bool pcie_has_flr(struct pci_dev *dev)
3947 {
3948 	u32 cap;
3949 
3950 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
3951 		return false;
3952 
3953 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3954 	return cap & PCI_EXP_DEVCAP_FLR;
3955 }
3956 
3957 /**
3958  * pcie_flr - initiate a PCIe function level reset
3959  * @dev:	device to reset
3960  *
3961  * Initiate a function level reset on @dev.  The caller should ensure the
3962  * device supports FLR before calling this function, e.g. by using the
3963  * pcie_has_flr() helper.
3964  */
pcie_flr(struct pci_dev * dev)3965 void pcie_flr(struct pci_dev *dev)
3966 {
3967 	if (!pci_wait_for_pending_transaction(dev))
3968 		dev_err(&dev->dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
3969 
3970 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3971 	pci_flr_wait(dev);
3972 }
3973 EXPORT_SYMBOL_GPL(pcie_flr);
3974 
pci_af_flr(struct pci_dev * dev,int probe)3975 static int pci_af_flr(struct pci_dev *dev, int probe)
3976 {
3977 	int pos;
3978 	u8 cap;
3979 
3980 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3981 	if (!pos)
3982 		return -ENOTTY;
3983 
3984 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
3985 		return -ENOTTY;
3986 
3987 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3988 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3989 		return -ENOTTY;
3990 
3991 	if (probe)
3992 		return 0;
3993 
3994 	/*
3995 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
3996 	 * is used, so we use the conrol offset rather than status and shift
3997 	 * the test bit to match.
3998 	 */
3999 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4000 				 PCI_AF_STATUS_TP << 8))
4001 		dev_err(&dev->dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4002 
4003 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4004 	pci_flr_wait(dev);
4005 	return 0;
4006 }
4007 
4008 /**
4009  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4010  * @dev: Device to reset.
4011  * @probe: If set, only check if the device can be reset this way.
4012  *
4013  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4014  * unset, it will be reinitialized internally when going from PCI_D3hot to
4015  * PCI_D0.  If that's the case and the device is not in a low-power state
4016  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4017  *
4018  * NOTE: This causes the caller to sleep for twice the device power transition
4019  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4020  * by default (i.e. unless the @dev's d3_delay field has a different value).
4021  * Moreover, only devices in D0 can be reset by this function.
4022  */
pci_pm_reset(struct pci_dev * dev,int probe)4023 static int pci_pm_reset(struct pci_dev *dev, int probe)
4024 {
4025 	u16 csr;
4026 
4027 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4028 		return -ENOTTY;
4029 
4030 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4031 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4032 		return -ENOTTY;
4033 
4034 	if (probe)
4035 		return 0;
4036 
4037 	if (dev->current_state != PCI_D0)
4038 		return -EINVAL;
4039 
4040 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4041 	csr |= PCI_D3hot;
4042 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4043 	pci_dev_d3_sleep(dev);
4044 
4045 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4046 	csr |= PCI_D0;
4047 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4048 	pci_dev_d3_sleep(dev);
4049 
4050 	return 0;
4051 }
4052 
pci_reset_secondary_bus(struct pci_dev * dev)4053 void pci_reset_secondary_bus(struct pci_dev *dev)
4054 {
4055 	u16 ctrl;
4056 
4057 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4058 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4059 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4060 	/*
4061 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
4062 	 * this to 2ms to ensure that we meet the minimum requirement.
4063 	 */
4064 	msleep(2);
4065 
4066 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4067 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4068 
4069 	/*
4070 	 * Trhfa for conventional PCI is 2^25 clock cycles.
4071 	 * Assuming a minimum 33MHz clock this results in a 1s
4072 	 * delay before we can consider subordinate devices to
4073 	 * be re-initialized.  PCIe has some ways to shorten this,
4074 	 * but we don't make use of them yet.
4075 	 */
4076 	ssleep(1);
4077 }
4078 
pcibios_reset_secondary_bus(struct pci_dev * dev)4079 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4080 {
4081 	pci_reset_secondary_bus(dev);
4082 }
4083 
4084 /**
4085  * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
4086  * @dev: Bridge device
4087  *
4088  * Use the bridge control register to assert reset on the secondary bus.
4089  * Devices on the secondary bus are left in power-on state.
4090  */
pci_reset_bridge_secondary_bus(struct pci_dev * dev)4091 void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
4092 {
4093 	pcibios_reset_secondary_bus(dev);
4094 }
4095 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
4096 
pci_parent_bus_reset(struct pci_dev * dev,int probe)4097 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4098 {
4099 	struct pci_dev *pdev;
4100 
4101 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4102 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4103 		return -ENOTTY;
4104 
4105 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4106 		if (pdev != dev)
4107 			return -ENOTTY;
4108 
4109 	if (probe)
4110 		return 0;
4111 
4112 	pci_reset_bridge_secondary_bus(dev->bus->self);
4113 
4114 	return 0;
4115 }
4116 
pci_reset_hotplug_slot(struct hotplug_slot * hotplug,int probe)4117 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4118 {
4119 	int rc = -ENOTTY;
4120 
4121 	if (!hotplug || !try_module_get(hotplug->ops->owner))
4122 		return rc;
4123 
4124 	if (hotplug->ops->reset_slot)
4125 		rc = hotplug->ops->reset_slot(hotplug, probe);
4126 
4127 	module_put(hotplug->ops->owner);
4128 
4129 	return rc;
4130 }
4131 
pci_dev_reset_slot_function(struct pci_dev * dev,int probe)4132 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4133 {
4134 	struct pci_dev *pdev;
4135 
4136 	if (dev->subordinate || !dev->slot ||
4137 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4138 		return -ENOTTY;
4139 
4140 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4141 		if (pdev != dev && pdev->slot == dev->slot)
4142 			return -ENOTTY;
4143 
4144 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4145 }
4146 
pci_dev_lock(struct pci_dev * dev)4147 static void pci_dev_lock(struct pci_dev *dev)
4148 {
4149 	pci_cfg_access_lock(dev);
4150 	/* block PM suspend, driver probe, etc. */
4151 	device_lock(&dev->dev);
4152 }
4153 
4154 /* Return 1 on successful lock, 0 on contention */
pci_dev_trylock(struct pci_dev * dev)4155 static int pci_dev_trylock(struct pci_dev *dev)
4156 {
4157 	if (pci_cfg_access_trylock(dev)) {
4158 		if (device_trylock(&dev->dev))
4159 			return 1;
4160 		pci_cfg_access_unlock(dev);
4161 	}
4162 
4163 	return 0;
4164 }
4165 
pci_dev_unlock(struct pci_dev * dev)4166 static void pci_dev_unlock(struct pci_dev *dev)
4167 {
4168 	device_unlock(&dev->dev);
4169 	pci_cfg_access_unlock(dev);
4170 }
4171 
pci_dev_save_and_disable(struct pci_dev * dev)4172 static void pci_dev_save_and_disable(struct pci_dev *dev)
4173 {
4174 	const struct pci_error_handlers *err_handler =
4175 			dev->driver ? dev->driver->err_handler : NULL;
4176 
4177 	/*
4178 	 * dev->driver->err_handler->reset_prepare() is protected against
4179 	 * races with ->remove() by the device lock, which must be held by
4180 	 * the caller.
4181 	 */
4182 	if (err_handler && err_handler->reset_prepare)
4183 		err_handler->reset_prepare(dev);
4184 
4185 	/*
4186 	 * Wake-up device prior to save.  PM registers default to D0 after
4187 	 * reset and a simple register restore doesn't reliably return
4188 	 * to a non-D0 state anyway.
4189 	 */
4190 	pci_set_power_state(dev, PCI_D0);
4191 
4192 	pci_save_state(dev);
4193 	/*
4194 	 * Disable the device by clearing the Command register, except for
4195 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
4196 	 * BARs, but also prevents the device from being Bus Master, preventing
4197 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
4198 	 * compliant devices, INTx-disable prevents legacy interrupts.
4199 	 */
4200 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4201 }
4202 
pci_dev_restore(struct pci_dev * dev)4203 static void pci_dev_restore(struct pci_dev *dev)
4204 {
4205 	const struct pci_error_handlers *err_handler =
4206 			dev->driver ? dev->driver->err_handler : NULL;
4207 
4208 	pci_restore_state(dev);
4209 
4210 	/*
4211 	 * dev->driver->err_handler->reset_done() is protected against
4212 	 * races with ->remove() by the device lock, which must be held by
4213 	 * the caller.
4214 	 */
4215 	if (err_handler && err_handler->reset_done)
4216 		err_handler->reset_done(dev);
4217 }
4218 
4219 /**
4220  * __pci_reset_function - reset a PCI device function
4221  * @dev: PCI device to reset
4222  *
4223  * Some devices allow an individual function to be reset without affecting
4224  * other functions in the same device.  The PCI device must be responsive
4225  * to PCI config space in order to use this function.
4226  *
4227  * The device function is presumed to be unused when this function is called.
4228  * Resetting the device will make the contents of PCI configuration space
4229  * random, so any caller of this must be prepared to reinitialise the
4230  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4231  * etc.
4232  *
4233  * Returns 0 if the device function was successfully reset or negative if the
4234  * device doesn't support resetting a single function.
4235  */
__pci_reset_function(struct pci_dev * dev)4236 int __pci_reset_function(struct pci_dev *dev)
4237 {
4238 	int ret;
4239 
4240 	pci_dev_lock(dev);
4241 	ret = __pci_reset_function_locked(dev);
4242 	pci_dev_unlock(dev);
4243 
4244 	return ret;
4245 }
4246 EXPORT_SYMBOL_GPL(__pci_reset_function);
4247 
4248 /**
4249  * __pci_reset_function_locked - reset a PCI device function while holding
4250  * the @dev mutex lock.
4251  * @dev: PCI device to reset
4252  *
4253  * Some devices allow an individual function to be reset without affecting
4254  * other functions in the same device.  The PCI device must be responsive
4255  * to PCI config space in order to use this function.
4256  *
4257  * The device function is presumed to be unused and the caller is holding
4258  * the device mutex lock when this function is called.
4259  * Resetting the device will make the contents of PCI configuration space
4260  * random, so any caller of this must be prepared to reinitialise the
4261  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4262  * etc.
4263  *
4264  * Returns 0 if the device function was successfully reset or negative if the
4265  * device doesn't support resetting a single function.
4266  */
__pci_reset_function_locked(struct pci_dev * dev)4267 int __pci_reset_function_locked(struct pci_dev *dev)
4268 {
4269 	int rc;
4270 
4271 	might_sleep();
4272 
4273 	rc = pci_dev_specific_reset(dev, 0);
4274 	if (rc != -ENOTTY)
4275 		return rc;
4276 	if (pcie_has_flr(dev)) {
4277 		pcie_flr(dev);
4278 		return 0;
4279 	}
4280 	rc = pci_af_flr(dev, 0);
4281 	if (rc != -ENOTTY)
4282 		return rc;
4283 	rc = pci_pm_reset(dev, 0);
4284 	if (rc != -ENOTTY)
4285 		return rc;
4286 	rc = pci_dev_reset_slot_function(dev, 0);
4287 	if (rc != -ENOTTY)
4288 		return rc;
4289 	return pci_parent_bus_reset(dev, 0);
4290 }
4291 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
4292 
4293 /**
4294  * pci_probe_reset_function - check whether the device can be safely reset
4295  * @dev: PCI device to reset
4296  *
4297  * Some devices allow an individual function to be reset without affecting
4298  * other functions in the same device.  The PCI device must be responsive
4299  * to PCI config space in order to use this function.
4300  *
4301  * Returns 0 if the device function can be reset or negative if the
4302  * device doesn't support resetting a single function.
4303  */
pci_probe_reset_function(struct pci_dev * dev)4304 int pci_probe_reset_function(struct pci_dev *dev)
4305 {
4306 	int rc;
4307 
4308 	might_sleep();
4309 
4310 	rc = pci_dev_specific_reset(dev, 1);
4311 	if (rc != -ENOTTY)
4312 		return rc;
4313 	if (pcie_has_flr(dev))
4314 		return 0;
4315 	rc = pci_af_flr(dev, 1);
4316 	if (rc != -ENOTTY)
4317 		return rc;
4318 	rc = pci_pm_reset(dev, 1);
4319 	if (rc != -ENOTTY)
4320 		return rc;
4321 	rc = pci_dev_reset_slot_function(dev, 1);
4322 	if (rc != -ENOTTY)
4323 		return rc;
4324 
4325 	return pci_parent_bus_reset(dev, 1);
4326 }
4327 
4328 /**
4329  * pci_reset_function - quiesce and reset a PCI device function
4330  * @dev: PCI device to reset
4331  *
4332  * Some devices allow an individual function to be reset without affecting
4333  * other functions in the same device.  The PCI device must be responsive
4334  * to PCI config space in order to use this function.
4335  *
4336  * This function does not just reset the PCI portion of a device, but
4337  * clears all the state associated with the device.  This function differs
4338  * from __pci_reset_function in that it saves and restores device state
4339  * over the reset.
4340  *
4341  * Returns 0 if the device function was successfully reset or negative if the
4342  * device doesn't support resetting a single function.
4343  */
pci_reset_function(struct pci_dev * dev)4344 int pci_reset_function(struct pci_dev *dev)
4345 {
4346 	int rc;
4347 
4348 	rc = pci_probe_reset_function(dev);
4349 	if (rc)
4350 		return rc;
4351 
4352 	pci_dev_lock(dev);
4353 	pci_dev_save_and_disable(dev);
4354 
4355 	rc = __pci_reset_function_locked(dev);
4356 
4357 	pci_dev_restore(dev);
4358 	pci_dev_unlock(dev);
4359 
4360 	return rc;
4361 }
4362 EXPORT_SYMBOL_GPL(pci_reset_function);
4363 
4364 /**
4365  * pci_reset_function_locked - quiesce and reset a PCI device function
4366  * @dev: PCI device to reset
4367  *
4368  * Some devices allow an individual function to be reset without affecting
4369  * other functions in the same device.  The PCI device must be responsive
4370  * to PCI config space in order to use this function.
4371  *
4372  * This function does not just reset the PCI portion of a device, but
4373  * clears all the state associated with the device.  This function differs
4374  * from __pci_reset_function() in that it saves and restores device state
4375  * over the reset.  It also differs from pci_reset_function() in that it
4376  * requires the PCI device lock to be held.
4377  *
4378  * Returns 0 if the device function was successfully reset or negative if the
4379  * device doesn't support resetting a single function.
4380  */
pci_reset_function_locked(struct pci_dev * dev)4381 int pci_reset_function_locked(struct pci_dev *dev)
4382 {
4383 	int rc;
4384 
4385 	rc = pci_probe_reset_function(dev);
4386 	if (rc)
4387 		return rc;
4388 
4389 	pci_dev_save_and_disable(dev);
4390 
4391 	rc = __pci_reset_function_locked(dev);
4392 
4393 	pci_dev_restore(dev);
4394 
4395 	return rc;
4396 }
4397 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
4398 
4399 /**
4400  * pci_try_reset_function - quiesce and reset a PCI device function
4401  * @dev: PCI device to reset
4402  *
4403  * Same as above, except return -EAGAIN if unable to lock device.
4404  */
pci_try_reset_function(struct pci_dev * dev)4405 int pci_try_reset_function(struct pci_dev *dev)
4406 {
4407 	int rc;
4408 
4409 	rc = pci_probe_reset_function(dev);
4410 	if (rc)
4411 		return rc;
4412 
4413 	if (!pci_dev_trylock(dev))
4414 		return -EAGAIN;
4415 
4416 	pci_dev_save_and_disable(dev);
4417 	rc = __pci_reset_function_locked(dev);
4418 	pci_dev_unlock(dev);
4419 
4420 	pci_dev_restore(dev);
4421 	return rc;
4422 }
4423 EXPORT_SYMBOL_GPL(pci_try_reset_function);
4424 
4425 /* Do any devices on or below this bus prevent a bus reset? */
pci_bus_resetable(struct pci_bus * bus)4426 static bool pci_bus_resetable(struct pci_bus *bus)
4427 {
4428 	struct pci_dev *dev;
4429 
4430 
4431 	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
4432 		return false;
4433 
4434 	list_for_each_entry(dev, &bus->devices, bus_list) {
4435 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4436 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4437 			return false;
4438 	}
4439 
4440 	return true;
4441 }
4442 
4443 /* Lock devices from the top of the tree down */
pci_bus_lock(struct pci_bus * bus)4444 static void pci_bus_lock(struct pci_bus *bus)
4445 {
4446 	struct pci_dev *dev;
4447 
4448 	list_for_each_entry(dev, &bus->devices, bus_list) {
4449 		pci_dev_lock(dev);
4450 		if (dev->subordinate)
4451 			pci_bus_lock(dev->subordinate);
4452 	}
4453 }
4454 
4455 /* Unlock devices from the bottom of the tree up */
pci_bus_unlock(struct pci_bus * bus)4456 static void pci_bus_unlock(struct pci_bus *bus)
4457 {
4458 	struct pci_dev *dev;
4459 
4460 	list_for_each_entry(dev, &bus->devices, bus_list) {
4461 		if (dev->subordinate)
4462 			pci_bus_unlock(dev->subordinate);
4463 		pci_dev_unlock(dev);
4464 	}
4465 }
4466 
4467 /* Return 1 on successful lock, 0 on contention */
pci_bus_trylock(struct pci_bus * bus)4468 static int pci_bus_trylock(struct pci_bus *bus)
4469 {
4470 	struct pci_dev *dev;
4471 
4472 	list_for_each_entry(dev, &bus->devices, bus_list) {
4473 		if (!pci_dev_trylock(dev))
4474 			goto unlock;
4475 		if (dev->subordinate) {
4476 			if (!pci_bus_trylock(dev->subordinate)) {
4477 				pci_dev_unlock(dev);
4478 				goto unlock;
4479 			}
4480 		}
4481 	}
4482 	return 1;
4483 
4484 unlock:
4485 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
4486 		if (dev->subordinate)
4487 			pci_bus_unlock(dev->subordinate);
4488 		pci_dev_unlock(dev);
4489 	}
4490 	return 0;
4491 }
4492 
4493 /* Do any devices on or below this slot prevent a bus reset? */
pci_slot_resetable(struct pci_slot * slot)4494 static bool pci_slot_resetable(struct pci_slot *slot)
4495 {
4496 	struct pci_dev *dev;
4497 
4498 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4499 		if (!dev->slot || dev->slot != slot)
4500 			continue;
4501 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4502 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4503 			return false;
4504 	}
4505 
4506 	return true;
4507 }
4508 
4509 /* Lock devices from the top of the tree down */
pci_slot_lock(struct pci_slot * slot)4510 static void pci_slot_lock(struct pci_slot *slot)
4511 {
4512 	struct pci_dev *dev;
4513 
4514 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4515 		if (!dev->slot || dev->slot != slot)
4516 			continue;
4517 		pci_dev_lock(dev);
4518 		if (dev->subordinate)
4519 			pci_bus_lock(dev->subordinate);
4520 	}
4521 }
4522 
4523 /* Unlock devices from the bottom of the tree up */
pci_slot_unlock(struct pci_slot * slot)4524 static void pci_slot_unlock(struct pci_slot *slot)
4525 {
4526 	struct pci_dev *dev;
4527 
4528 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4529 		if (!dev->slot || dev->slot != slot)
4530 			continue;
4531 		if (dev->subordinate)
4532 			pci_bus_unlock(dev->subordinate);
4533 		pci_dev_unlock(dev);
4534 	}
4535 }
4536 
4537 /* Return 1 on successful lock, 0 on contention */
pci_slot_trylock(struct pci_slot * slot)4538 static int pci_slot_trylock(struct pci_slot *slot)
4539 {
4540 	struct pci_dev *dev;
4541 
4542 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4543 		if (!dev->slot || dev->slot != slot)
4544 			continue;
4545 		if (!pci_dev_trylock(dev))
4546 			goto unlock;
4547 		if (dev->subordinate) {
4548 			if (!pci_bus_trylock(dev->subordinate)) {
4549 				pci_dev_unlock(dev);
4550 				goto unlock;
4551 			}
4552 		}
4553 	}
4554 	return 1;
4555 
4556 unlock:
4557 	list_for_each_entry_continue_reverse(dev,
4558 					     &slot->bus->devices, bus_list) {
4559 		if (!dev->slot || dev->slot != slot)
4560 			continue;
4561 		if (dev->subordinate)
4562 			pci_bus_unlock(dev->subordinate);
4563 		pci_dev_unlock(dev);
4564 	}
4565 	return 0;
4566 }
4567 
4568 /* Save and disable devices from the top of the tree down */
pci_bus_save_and_disable(struct pci_bus * bus)4569 static void pci_bus_save_and_disable(struct pci_bus *bus)
4570 {
4571 	struct pci_dev *dev;
4572 
4573 	list_for_each_entry(dev, &bus->devices, bus_list) {
4574 		pci_dev_lock(dev);
4575 		pci_dev_save_and_disable(dev);
4576 		pci_dev_unlock(dev);
4577 		if (dev->subordinate)
4578 			pci_bus_save_and_disable(dev->subordinate);
4579 	}
4580 }
4581 
4582 /*
4583  * Restore devices from top of the tree down - parent bridges need to be
4584  * restored before we can get to subordinate devices.
4585  */
pci_bus_restore(struct pci_bus * bus)4586 static void pci_bus_restore(struct pci_bus *bus)
4587 {
4588 	struct pci_dev *dev;
4589 
4590 	list_for_each_entry(dev, &bus->devices, bus_list) {
4591 		pci_dev_lock(dev);
4592 		pci_dev_restore(dev);
4593 		pci_dev_unlock(dev);
4594 		if (dev->subordinate)
4595 			pci_bus_restore(dev->subordinate);
4596 	}
4597 }
4598 
4599 /* Save and disable devices from the top of the tree down */
pci_slot_save_and_disable(struct pci_slot * slot)4600 static void pci_slot_save_and_disable(struct pci_slot *slot)
4601 {
4602 	struct pci_dev *dev;
4603 
4604 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4605 		if (!dev->slot || dev->slot != slot)
4606 			continue;
4607 		pci_dev_save_and_disable(dev);
4608 		if (dev->subordinate)
4609 			pci_bus_save_and_disable(dev->subordinate);
4610 	}
4611 }
4612 
4613 /*
4614  * Restore devices from top of the tree down - parent bridges need to be
4615  * restored before we can get to subordinate devices.
4616  */
pci_slot_restore(struct pci_slot * slot)4617 static void pci_slot_restore(struct pci_slot *slot)
4618 {
4619 	struct pci_dev *dev;
4620 
4621 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4622 		if (!dev->slot || dev->slot != slot)
4623 			continue;
4624 		pci_dev_restore(dev);
4625 		if (dev->subordinate)
4626 			pci_bus_restore(dev->subordinate);
4627 	}
4628 }
4629 
pci_slot_reset(struct pci_slot * slot,int probe)4630 static int pci_slot_reset(struct pci_slot *slot, int probe)
4631 {
4632 	int rc;
4633 
4634 	if (!slot || !pci_slot_resetable(slot))
4635 		return -ENOTTY;
4636 
4637 	if (!probe)
4638 		pci_slot_lock(slot);
4639 
4640 	might_sleep();
4641 
4642 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
4643 
4644 	if (!probe)
4645 		pci_slot_unlock(slot);
4646 
4647 	return rc;
4648 }
4649 
4650 /**
4651  * pci_probe_reset_slot - probe whether a PCI slot can be reset
4652  * @slot: PCI slot to probe
4653  *
4654  * Return 0 if slot can be reset, negative if a slot reset is not supported.
4655  */
pci_probe_reset_slot(struct pci_slot * slot)4656 int pci_probe_reset_slot(struct pci_slot *slot)
4657 {
4658 	return pci_slot_reset(slot, 1);
4659 }
4660 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
4661 
4662 /**
4663  * pci_reset_slot - reset a PCI slot
4664  * @slot: PCI slot to reset
4665  *
4666  * A PCI bus may host multiple slots, each slot may support a reset mechanism
4667  * independent of other slots.  For instance, some slots may support slot power
4668  * control.  In the case of a 1:1 bus to slot architecture, this function may
4669  * wrap the bus reset to avoid spurious slot related events such as hotplug.
4670  * Generally a slot reset should be attempted before a bus reset.  All of the
4671  * function of the slot and any subordinate buses behind the slot are reset
4672  * through this function.  PCI config space of all devices in the slot and
4673  * behind the slot is saved before and restored after reset.
4674  *
4675  * Return 0 on success, non-zero on error.
4676  */
pci_reset_slot(struct pci_slot * slot)4677 int pci_reset_slot(struct pci_slot *slot)
4678 {
4679 	int rc;
4680 
4681 	rc = pci_slot_reset(slot, 1);
4682 	if (rc)
4683 		return rc;
4684 
4685 	pci_slot_save_and_disable(slot);
4686 
4687 	rc = pci_slot_reset(slot, 0);
4688 
4689 	pci_slot_restore(slot);
4690 
4691 	return rc;
4692 }
4693 EXPORT_SYMBOL_GPL(pci_reset_slot);
4694 
4695 /**
4696  * pci_try_reset_slot - Try to reset a PCI slot
4697  * @slot: PCI slot to reset
4698  *
4699  * Same as above except return -EAGAIN if the slot cannot be locked
4700  */
pci_try_reset_slot(struct pci_slot * slot)4701 int pci_try_reset_slot(struct pci_slot *slot)
4702 {
4703 	int rc;
4704 
4705 	rc = pci_slot_reset(slot, 1);
4706 	if (rc)
4707 		return rc;
4708 
4709 	pci_slot_save_and_disable(slot);
4710 
4711 	if (pci_slot_trylock(slot)) {
4712 		might_sleep();
4713 		rc = pci_reset_hotplug_slot(slot->hotplug, 0);
4714 		pci_slot_unlock(slot);
4715 	} else
4716 		rc = -EAGAIN;
4717 
4718 	pci_slot_restore(slot);
4719 
4720 	return rc;
4721 }
4722 EXPORT_SYMBOL_GPL(pci_try_reset_slot);
4723 
pci_bus_reset(struct pci_bus * bus,int probe)4724 static int pci_bus_reset(struct pci_bus *bus, int probe)
4725 {
4726 	if (!bus->self || !pci_bus_resetable(bus))
4727 		return -ENOTTY;
4728 
4729 	if (probe)
4730 		return 0;
4731 
4732 	pci_bus_lock(bus);
4733 
4734 	might_sleep();
4735 
4736 	pci_reset_bridge_secondary_bus(bus->self);
4737 
4738 	pci_bus_unlock(bus);
4739 
4740 	return 0;
4741 }
4742 
4743 /**
4744  * pci_probe_reset_bus - probe whether a PCI bus can be reset
4745  * @bus: PCI bus to probe
4746  *
4747  * Return 0 if bus can be reset, negative if a bus reset is not supported.
4748  */
pci_probe_reset_bus(struct pci_bus * bus)4749 int pci_probe_reset_bus(struct pci_bus *bus)
4750 {
4751 	return pci_bus_reset(bus, 1);
4752 }
4753 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
4754 
4755 /**
4756  * pci_reset_bus - reset a PCI bus
4757  * @bus: top level PCI bus to reset
4758  *
4759  * Do a bus reset on the given bus and any subordinate buses, saving
4760  * and restoring state of all devices.
4761  *
4762  * Return 0 on success, non-zero on error.
4763  */
pci_reset_bus(struct pci_bus * bus)4764 int pci_reset_bus(struct pci_bus *bus)
4765 {
4766 	int rc;
4767 
4768 	rc = pci_bus_reset(bus, 1);
4769 	if (rc)
4770 		return rc;
4771 
4772 	pci_bus_save_and_disable(bus);
4773 
4774 	rc = pci_bus_reset(bus, 0);
4775 
4776 	pci_bus_restore(bus);
4777 
4778 	return rc;
4779 }
4780 EXPORT_SYMBOL_GPL(pci_reset_bus);
4781 
4782 /**
4783  * pci_try_reset_bus - Try to reset a PCI bus
4784  * @bus: top level PCI bus to reset
4785  *
4786  * Same as above except return -EAGAIN if the bus cannot be locked
4787  */
pci_try_reset_bus(struct pci_bus * bus)4788 int pci_try_reset_bus(struct pci_bus *bus)
4789 {
4790 	int rc;
4791 
4792 	rc = pci_bus_reset(bus, 1);
4793 	if (rc)
4794 		return rc;
4795 
4796 	pci_bus_save_and_disable(bus);
4797 
4798 	if (pci_bus_trylock(bus)) {
4799 		might_sleep();
4800 		pci_reset_bridge_secondary_bus(bus->self);
4801 		pci_bus_unlock(bus);
4802 	} else
4803 		rc = -EAGAIN;
4804 
4805 	pci_bus_restore(bus);
4806 
4807 	return rc;
4808 }
4809 EXPORT_SYMBOL_GPL(pci_try_reset_bus);
4810 
4811 /**
4812  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
4813  * @dev: PCI device to query
4814  *
4815  * Returns mmrbc: maximum designed memory read count in bytes
4816  *    or appropriate error value.
4817  */
pcix_get_max_mmrbc(struct pci_dev * dev)4818 int pcix_get_max_mmrbc(struct pci_dev *dev)
4819 {
4820 	int cap;
4821 	u32 stat;
4822 
4823 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4824 	if (!cap)
4825 		return -EINVAL;
4826 
4827 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4828 		return -EINVAL;
4829 
4830 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
4831 }
4832 EXPORT_SYMBOL(pcix_get_max_mmrbc);
4833 
4834 /**
4835  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
4836  * @dev: PCI device to query
4837  *
4838  * Returns mmrbc: maximum memory read count in bytes
4839  *    or appropriate error value.
4840  */
pcix_get_mmrbc(struct pci_dev * dev)4841 int pcix_get_mmrbc(struct pci_dev *dev)
4842 {
4843 	int cap;
4844 	u16 cmd;
4845 
4846 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4847 	if (!cap)
4848 		return -EINVAL;
4849 
4850 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4851 		return -EINVAL;
4852 
4853 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
4854 }
4855 EXPORT_SYMBOL(pcix_get_mmrbc);
4856 
4857 /**
4858  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4859  * @dev: PCI device to query
4860  * @mmrbc: maximum memory read count in bytes
4861  *    valid values are 512, 1024, 2048, 4096
4862  *
4863  * If possible sets maximum memory read byte count, some bridges have erratas
4864  * that prevent this.
4865  */
pcix_set_mmrbc(struct pci_dev * dev,int mmrbc)4866 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
4867 {
4868 	int cap;
4869 	u32 stat, v, o;
4870 	u16 cmd;
4871 
4872 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
4873 		return -EINVAL;
4874 
4875 	v = ffs(mmrbc) - 10;
4876 
4877 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4878 	if (!cap)
4879 		return -EINVAL;
4880 
4881 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4882 		return -EINVAL;
4883 
4884 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
4885 		return -E2BIG;
4886 
4887 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4888 		return -EINVAL;
4889 
4890 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
4891 	if (o != v) {
4892 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
4893 			return -EIO;
4894 
4895 		cmd &= ~PCI_X_CMD_MAX_READ;
4896 		cmd |= v << 2;
4897 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
4898 			return -EIO;
4899 	}
4900 	return 0;
4901 }
4902 EXPORT_SYMBOL(pcix_set_mmrbc);
4903 
4904 /**
4905  * pcie_get_readrq - get PCI Express read request size
4906  * @dev: PCI device to query
4907  *
4908  * Returns maximum memory read request in bytes
4909  *    or appropriate error value.
4910  */
pcie_get_readrq(struct pci_dev * dev)4911 int pcie_get_readrq(struct pci_dev *dev)
4912 {
4913 	u16 ctl;
4914 
4915 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4916 
4917 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
4918 }
4919 EXPORT_SYMBOL(pcie_get_readrq);
4920 
4921 /**
4922  * pcie_set_readrq - set PCI Express maximum memory read request
4923  * @dev: PCI device to query
4924  * @rq: maximum memory read count in bytes
4925  *    valid values are 128, 256, 512, 1024, 2048, 4096
4926  *
4927  * If possible sets maximum memory read request in bytes
4928  */
pcie_set_readrq(struct pci_dev * dev,int rq)4929 int pcie_set_readrq(struct pci_dev *dev, int rq)
4930 {
4931 	u16 v;
4932 
4933 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
4934 		return -EINVAL;
4935 
4936 	/*
4937 	 * If using the "performance" PCIe config, we clamp the
4938 	 * read rq size to the max packet size to prevent the
4939 	 * host bridge generating requests larger than we can
4940 	 * cope with
4941 	 */
4942 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
4943 		int mps = pcie_get_mps(dev);
4944 
4945 		if (mps < rq)
4946 			rq = mps;
4947 	}
4948 
4949 	v = (ffs(rq) - 8) << 12;
4950 
4951 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4952 						  PCI_EXP_DEVCTL_READRQ, v);
4953 }
4954 EXPORT_SYMBOL(pcie_set_readrq);
4955 
4956 /**
4957  * pcie_get_mps - get PCI Express maximum payload size
4958  * @dev: PCI device to query
4959  *
4960  * Returns maximum payload size in bytes
4961  */
pcie_get_mps(struct pci_dev * dev)4962 int pcie_get_mps(struct pci_dev *dev)
4963 {
4964 	u16 ctl;
4965 
4966 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4967 
4968 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
4969 }
4970 EXPORT_SYMBOL(pcie_get_mps);
4971 
4972 /**
4973  * pcie_set_mps - set PCI Express maximum payload size
4974  * @dev: PCI device to query
4975  * @mps: maximum payload size in bytes
4976  *    valid values are 128, 256, 512, 1024, 2048, 4096
4977  *
4978  * If possible sets maximum payload size
4979  */
pcie_set_mps(struct pci_dev * dev,int mps)4980 int pcie_set_mps(struct pci_dev *dev, int mps)
4981 {
4982 	u16 v;
4983 
4984 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
4985 		return -EINVAL;
4986 
4987 	v = ffs(mps) - 8;
4988 	if (v > dev->pcie_mpss)
4989 		return -EINVAL;
4990 	v <<= 5;
4991 
4992 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4993 						  PCI_EXP_DEVCTL_PAYLOAD, v);
4994 }
4995 EXPORT_SYMBOL(pcie_set_mps);
4996 
4997 /**
4998  * pcie_get_minimum_link - determine minimum link settings of a PCI device
4999  * @dev: PCI device to query
5000  * @speed: storage for minimum speed
5001  * @width: storage for minimum width
5002  *
5003  * This function will walk up the PCI device chain and determine the minimum
5004  * link width and speed of the device.
5005  */
pcie_get_minimum_link(struct pci_dev * dev,enum pci_bus_speed * speed,enum pcie_link_width * width)5006 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
5007 			  enum pcie_link_width *width)
5008 {
5009 	int ret;
5010 
5011 	*speed = PCI_SPEED_UNKNOWN;
5012 	*width = PCIE_LNK_WIDTH_UNKNOWN;
5013 
5014 	while (dev) {
5015 		u16 lnksta;
5016 		enum pci_bus_speed next_speed;
5017 		enum pcie_link_width next_width;
5018 
5019 		ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5020 		if (ret)
5021 			return ret;
5022 
5023 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5024 		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5025 			PCI_EXP_LNKSTA_NLW_SHIFT;
5026 
5027 		if (next_speed < *speed)
5028 			*speed = next_speed;
5029 
5030 		if (next_width < *width)
5031 			*width = next_width;
5032 
5033 		dev = dev->bus->self;
5034 	}
5035 
5036 	return 0;
5037 }
5038 EXPORT_SYMBOL(pcie_get_minimum_link);
5039 
5040 /**
5041  * pci_select_bars - Make BAR mask from the type of resource
5042  * @dev: the PCI device for which BAR mask is made
5043  * @flags: resource type mask to be selected
5044  *
5045  * This helper routine makes bar mask from the type of resource.
5046  */
pci_select_bars(struct pci_dev * dev,unsigned long flags)5047 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5048 {
5049 	int i, bars = 0;
5050 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
5051 		if (pci_resource_flags(dev, i) & flags)
5052 			bars |= (1 << i);
5053 	return bars;
5054 }
5055 EXPORT_SYMBOL(pci_select_bars);
5056 
5057 /* Some architectures require additional programming to enable VGA */
5058 static arch_set_vga_state_t arch_set_vga_state;
5059 
pci_register_set_vga_state(arch_set_vga_state_t func)5060 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
5061 {
5062 	arch_set_vga_state = func;	/* NULL disables */
5063 }
5064 
pci_set_vga_state_arch(struct pci_dev * dev,bool decode,unsigned int command_bits,u32 flags)5065 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
5066 				  unsigned int command_bits, u32 flags)
5067 {
5068 	if (arch_set_vga_state)
5069 		return arch_set_vga_state(dev, decode, command_bits,
5070 						flags);
5071 	return 0;
5072 }
5073 
5074 /**
5075  * pci_set_vga_state - set VGA decode state on device and parents if requested
5076  * @dev: the PCI device
5077  * @decode: true = enable decoding, false = disable decoding
5078  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5079  * @flags: traverse ancestors and change bridges
5080  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5081  */
pci_set_vga_state(struct pci_dev * dev,bool decode,unsigned int command_bits,u32 flags)5082 int pci_set_vga_state(struct pci_dev *dev, bool decode,
5083 		      unsigned int command_bits, u32 flags)
5084 {
5085 	struct pci_bus *bus;
5086 	struct pci_dev *bridge;
5087 	u16 cmd;
5088 	int rc;
5089 
5090 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
5091 
5092 	/* ARCH specific VGA enables */
5093 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
5094 	if (rc)
5095 		return rc;
5096 
5097 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
5098 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
5099 		if (decode == true)
5100 			cmd |= command_bits;
5101 		else
5102 			cmd &= ~command_bits;
5103 		pci_write_config_word(dev, PCI_COMMAND, cmd);
5104 	}
5105 
5106 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
5107 		return 0;
5108 
5109 	bus = dev->bus;
5110 	while (bus) {
5111 		bridge = bus->self;
5112 		if (bridge) {
5113 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
5114 					     &cmd);
5115 			if (decode == true)
5116 				cmd |= PCI_BRIDGE_CTL_VGA;
5117 			else
5118 				cmd &= ~PCI_BRIDGE_CTL_VGA;
5119 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
5120 					      cmd);
5121 		}
5122 		bus = bus->parent;
5123 	}
5124 	return 0;
5125 }
5126 
5127 /**
5128  * pci_add_dma_alias - Add a DMA devfn alias for a device
5129  * @dev: the PCI device for which alias is added
5130  * @devfn: alias slot and function
5131  *
5132  * This helper encodes 8-bit devfn as bit number in dma_alias_mask.
5133  * It should be called early, preferably as PCI fixup header quirk.
5134  */
pci_add_dma_alias(struct pci_dev * dev,u8 devfn)5135 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
5136 {
5137 	if (!dev->dma_alias_mask)
5138 		dev->dma_alias_mask = kcalloc(BITS_TO_LONGS(U8_MAX),
5139 					      sizeof(long), GFP_KERNEL);
5140 	if (!dev->dma_alias_mask) {
5141 		dev_warn(&dev->dev, "Unable to allocate DMA alias mask\n");
5142 		return;
5143 	}
5144 
5145 	set_bit(devfn, dev->dma_alias_mask);
5146 	dev_info(&dev->dev, "Enabling fixed DMA alias to %02x.%d\n",
5147 		 PCI_SLOT(devfn), PCI_FUNC(devfn));
5148 }
5149 
pci_devs_are_dma_aliases(struct pci_dev * dev1,struct pci_dev * dev2)5150 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
5151 {
5152 	return (dev1->dma_alias_mask &&
5153 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
5154 	       (dev2->dma_alias_mask &&
5155 		test_bit(dev1->devfn, dev2->dma_alias_mask));
5156 }
5157 
pci_device_is_present(struct pci_dev * pdev)5158 bool pci_device_is_present(struct pci_dev *pdev)
5159 {
5160 	u32 v;
5161 
5162 	if (pci_dev_is_disconnected(pdev))
5163 		return false;
5164 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
5165 }
5166 EXPORT_SYMBOL_GPL(pci_device_is_present);
5167 
pci_ignore_hotplug(struct pci_dev * dev)5168 void pci_ignore_hotplug(struct pci_dev *dev)
5169 {
5170 	struct pci_dev *bridge = dev->bus->self;
5171 
5172 	dev->ignore_hotplug = 1;
5173 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
5174 	if (bridge)
5175 		bridge->ignore_hotplug = 1;
5176 }
5177 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
5178 
pcibios_default_alignment(void)5179 resource_size_t __weak pcibios_default_alignment(void)
5180 {
5181 	return 0;
5182 }
5183 
5184 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
5185 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
5186 static DEFINE_SPINLOCK(resource_alignment_lock);
5187 
5188 /**
5189  * pci_specified_resource_alignment - get resource alignment specified by user.
5190  * @dev: the PCI device to get
5191  * @resize: whether or not to change resources' size when reassigning alignment
5192  *
5193  * RETURNS: Resource alignment if it is specified.
5194  *          Zero if it is not specified.
5195  */
pci_specified_resource_alignment(struct pci_dev * dev,bool * resize)5196 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
5197 							bool *resize)
5198 {
5199 	int seg, bus, slot, func, align_order, count;
5200 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
5201 	resource_size_t align = pcibios_default_alignment();
5202 	char *p;
5203 
5204 	spin_lock(&resource_alignment_lock);
5205 	p = resource_alignment_param;
5206 	if (!*p && !align)
5207 		goto out;
5208 	if (pci_has_flag(PCI_PROBE_ONLY)) {
5209 		align = 0;
5210 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
5211 		goto out;
5212 	}
5213 
5214 	while (*p) {
5215 		count = 0;
5216 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
5217 							p[count] == '@') {
5218 			p += count + 1;
5219 		} else {
5220 			align_order = -1;
5221 		}
5222 		if (strncmp(p, "pci:", 4) == 0) {
5223 			/* PCI vendor/device (subvendor/subdevice) ids are specified */
5224 			p += 4;
5225 			if (sscanf(p, "%hx:%hx:%hx:%hx%n",
5226 				&vendor, &device, &subsystem_vendor, &subsystem_device, &count) != 4) {
5227 				if (sscanf(p, "%hx:%hx%n", &vendor, &device, &count) != 2) {
5228 					printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: pci:%s\n",
5229 						p);
5230 					break;
5231 				}
5232 				subsystem_vendor = subsystem_device = 0;
5233 			}
5234 			p += count;
5235 			if ((!vendor || (vendor == dev->vendor)) &&
5236 				(!device || (device == dev->device)) &&
5237 				(!subsystem_vendor || (subsystem_vendor == dev->subsystem_vendor)) &&
5238 				(!subsystem_device || (subsystem_device == dev->subsystem_device))) {
5239 				*resize = true;
5240 				if (align_order == -1)
5241 					align = PAGE_SIZE;
5242 				else
5243 					align = 1 << align_order;
5244 				/* Found */
5245 				break;
5246 			}
5247 		}
5248 		else {
5249 			if (sscanf(p, "%x:%x:%x.%x%n",
5250 				&seg, &bus, &slot, &func, &count) != 4) {
5251 				seg = 0;
5252 				if (sscanf(p, "%x:%x.%x%n",
5253 						&bus, &slot, &func, &count) != 3) {
5254 					/* Invalid format */
5255 					printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
5256 						p);
5257 					break;
5258 				}
5259 			}
5260 			p += count;
5261 			if (seg == pci_domain_nr(dev->bus) &&
5262 				bus == dev->bus->number &&
5263 				slot == PCI_SLOT(dev->devfn) &&
5264 				func == PCI_FUNC(dev->devfn)) {
5265 				*resize = true;
5266 				if (align_order == -1)
5267 					align = PAGE_SIZE;
5268 				else
5269 					align = 1 << align_order;
5270 				/* Found */
5271 				break;
5272 			}
5273 		}
5274 		if (*p != ';' && *p != ',') {
5275 			/* End of param or invalid format */
5276 			break;
5277 		}
5278 		p++;
5279 	}
5280 out:
5281 	spin_unlock(&resource_alignment_lock);
5282 	return align;
5283 }
5284 
pci_request_resource_alignment(struct pci_dev * dev,int bar,resource_size_t align,bool resize)5285 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
5286 					   resource_size_t align, bool resize)
5287 {
5288 	struct resource *r = &dev->resource[bar];
5289 	resource_size_t size;
5290 
5291 	if (!(r->flags & IORESOURCE_MEM))
5292 		return;
5293 
5294 	if (r->flags & IORESOURCE_PCI_FIXED) {
5295 		dev_info(&dev->dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
5296 			 bar, r, (unsigned long long)align);
5297 		return;
5298 	}
5299 
5300 	size = resource_size(r);
5301 	if (size >= align)
5302 		return;
5303 
5304 	/*
5305 	 * Increase the alignment of the resource.  There are two ways we
5306 	 * can do this:
5307 	 *
5308 	 * 1) Increase the size of the resource.  BARs are aligned on their
5309 	 *    size, so when we reallocate space for this resource, we'll
5310 	 *    allocate it with the larger alignment.  This also prevents
5311 	 *    assignment of any other BARs inside the alignment region, so
5312 	 *    if we're requesting page alignment, this means no other BARs
5313 	 *    will share the page.
5314 	 *
5315 	 *    The disadvantage is that this makes the resource larger than
5316 	 *    the hardware BAR, which may break drivers that compute things
5317 	 *    based on the resource size, e.g., to find registers at a
5318 	 *    fixed offset before the end of the BAR.
5319 	 *
5320 	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
5321 	 *    set r->start to the desired alignment.  By itself this
5322 	 *    doesn't prevent other BARs being put inside the alignment
5323 	 *    region, but if we realign *every* resource of every device in
5324 	 *    the system, none of them will share an alignment region.
5325 	 *
5326 	 * When the user has requested alignment for only some devices via
5327 	 * the "pci=resource_alignment" argument, "resize" is true and we
5328 	 * use the first method.  Otherwise we assume we're aligning all
5329 	 * devices and we use the second.
5330 	 */
5331 
5332 	dev_info(&dev->dev, "BAR%d %pR: requesting alignment to %#llx\n",
5333 		 bar, r, (unsigned long long)align);
5334 
5335 	if (resize) {
5336 		r->start = 0;
5337 		r->end = align - 1;
5338 	} else {
5339 		r->flags &= ~IORESOURCE_SIZEALIGN;
5340 		r->flags |= IORESOURCE_STARTALIGN;
5341 		r->start = align;
5342 		r->end = r->start + size - 1;
5343 	}
5344 	r->flags |= IORESOURCE_UNSET;
5345 }
5346 
5347 /*
5348  * This function disables memory decoding and releases memory resources
5349  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
5350  * It also rounds up size to specified alignment.
5351  * Later on, the kernel will assign page-aligned memory resource back
5352  * to the device.
5353  */
pci_reassigndev_resource_alignment(struct pci_dev * dev)5354 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
5355 {
5356 	int i;
5357 	struct resource *r;
5358 	resource_size_t align;
5359 	u16 command;
5360 	bool resize = false;
5361 
5362 	/*
5363 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
5364 	 * 3.4.1.11.  Their resources are allocated from the space
5365 	 * described by the VF BARx register in the PF's SR-IOV capability.
5366 	 * We can't influence their alignment here.
5367 	 */
5368 	if (dev->is_virtfn)
5369 		return;
5370 
5371 	/* check if specified PCI is target device to reassign */
5372 	align = pci_specified_resource_alignment(dev, &resize);
5373 	if (!align)
5374 		return;
5375 
5376 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
5377 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
5378 		dev_warn(&dev->dev,
5379 			"Can't reassign resources to host bridge.\n");
5380 		return;
5381 	}
5382 
5383 	dev_info(&dev->dev,
5384 		"Disabling memory decoding and releasing memory resources.\n");
5385 	pci_read_config_word(dev, PCI_COMMAND, &command);
5386 	command &= ~PCI_COMMAND_MEMORY;
5387 	pci_write_config_word(dev, PCI_COMMAND, command);
5388 
5389 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
5390 		pci_request_resource_alignment(dev, i, align, resize);
5391 
5392 	/*
5393 	 * Need to disable bridge's resource window,
5394 	 * to enable the kernel to reassign new resource
5395 	 * window later on.
5396 	 */
5397 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
5398 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
5399 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
5400 			r = &dev->resource[i];
5401 			if (!(r->flags & IORESOURCE_MEM))
5402 				continue;
5403 			r->flags |= IORESOURCE_UNSET;
5404 			r->end = resource_size(r) - 1;
5405 			r->start = 0;
5406 		}
5407 		pci_disable_bridge_window(dev);
5408 	}
5409 }
5410 
pci_set_resource_alignment_param(const char * buf,size_t count)5411 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
5412 {
5413 	if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
5414 		count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
5415 	spin_lock(&resource_alignment_lock);
5416 	strncpy(resource_alignment_param, buf, count);
5417 	resource_alignment_param[count] = '\0';
5418 	spin_unlock(&resource_alignment_lock);
5419 	return count;
5420 }
5421 
pci_get_resource_alignment_param(char * buf,size_t size)5422 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
5423 {
5424 	size_t count;
5425 	spin_lock(&resource_alignment_lock);
5426 	count = snprintf(buf, size, "%s", resource_alignment_param);
5427 	spin_unlock(&resource_alignment_lock);
5428 	return count;
5429 }
5430 
pci_resource_alignment_show(struct bus_type * bus,char * buf)5431 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
5432 {
5433 	return pci_get_resource_alignment_param(buf, PAGE_SIZE);
5434 }
5435 
pci_resource_alignment_store(struct bus_type * bus,const char * buf,size_t count)5436 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
5437 					const char *buf, size_t count)
5438 {
5439 	return pci_set_resource_alignment_param(buf, count);
5440 }
5441 
5442 static BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
5443 					pci_resource_alignment_store);
5444 
pci_resource_alignment_sysfs_init(void)5445 static int __init pci_resource_alignment_sysfs_init(void)
5446 {
5447 	return bus_create_file(&pci_bus_type,
5448 					&bus_attr_resource_alignment);
5449 }
5450 late_initcall(pci_resource_alignment_sysfs_init);
5451 
pci_no_domains(void)5452 static void pci_no_domains(void)
5453 {
5454 #ifdef CONFIG_PCI_DOMAINS
5455 	pci_domains_supported = 0;
5456 #endif
5457 }
5458 
5459 #ifdef CONFIG_PCI_DOMAINS
5460 static atomic_t __domain_nr = ATOMIC_INIT(-1);
5461 
pci_get_new_domain_nr(void)5462 int pci_get_new_domain_nr(void)
5463 {
5464 	return atomic_inc_return(&__domain_nr);
5465 }
5466 
5467 #ifdef CONFIG_PCI_DOMAINS_GENERIC
of_pci_bus_find_domain_nr(struct device * parent)5468 static int of_pci_bus_find_domain_nr(struct device *parent)
5469 {
5470 	static int use_dt_domains = -1;
5471 	int domain = -1;
5472 
5473 	if (parent)
5474 		domain = of_get_pci_domain_nr(parent->of_node);
5475 	/*
5476 	 * Check DT domain and use_dt_domains values.
5477 	 *
5478 	 * If DT domain property is valid (domain >= 0) and
5479 	 * use_dt_domains != 0, the DT assignment is valid since this means
5480 	 * we have not previously allocated a domain number by using
5481 	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
5482 	 * 1, to indicate that we have just assigned a domain number from
5483 	 * DT.
5484 	 *
5485 	 * If DT domain property value is not valid (ie domain < 0), and we
5486 	 * have not previously assigned a domain number from DT
5487 	 * (use_dt_domains != 1) we should assign a domain number by
5488 	 * using the:
5489 	 *
5490 	 * pci_get_new_domain_nr()
5491 	 *
5492 	 * API and update the use_dt_domains value to keep track of method we
5493 	 * are using to assign domain numbers (use_dt_domains = 0).
5494 	 *
5495 	 * All other combinations imply we have a platform that is trying
5496 	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
5497 	 * which is a recipe for domain mishandling and it is prevented by
5498 	 * invalidating the domain value (domain = -1) and printing a
5499 	 * corresponding error.
5500 	 */
5501 	if (domain >= 0 && use_dt_domains) {
5502 		use_dt_domains = 1;
5503 	} else if (domain < 0 && use_dt_domains != 1) {
5504 		use_dt_domains = 0;
5505 		domain = pci_get_new_domain_nr();
5506 	} else {
5507 		dev_err(parent, "Node %pOF has inconsistent \"linux,pci-domain\" property in DT\n",
5508 			parent->of_node);
5509 		domain = -1;
5510 	}
5511 
5512 	return domain;
5513 }
5514 
pci_bus_find_domain_nr(struct pci_bus * bus,struct device * parent)5515 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
5516 {
5517 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
5518 			       acpi_pci_bus_find_domain_nr(bus);
5519 }
5520 #endif
5521 #endif
5522 
5523 /**
5524  * pci_ext_cfg_avail - can we access extended PCI config space?
5525  *
5526  * Returns 1 if we can access PCI extended config space (offsets
5527  * greater than 0xff). This is the default implementation. Architecture
5528  * implementations can override this.
5529  */
pci_ext_cfg_avail(void)5530 int __weak pci_ext_cfg_avail(void)
5531 {
5532 	return 1;
5533 }
5534 
pci_fixup_cardbus(struct pci_bus * bus)5535 void __weak pci_fixup_cardbus(struct pci_bus *bus)
5536 {
5537 }
5538 EXPORT_SYMBOL(pci_fixup_cardbus);
5539 
pci_setup(char * str)5540 static int __init pci_setup(char *str)
5541 {
5542 	while (str) {
5543 		char *k = strchr(str, ',');
5544 		if (k)
5545 			*k++ = 0;
5546 		if (*str && (str = pcibios_setup(str)) && *str) {
5547 			if (!strcmp(str, "nomsi")) {
5548 				pci_no_msi();
5549 			} else if (!strcmp(str, "noaer")) {
5550 				pci_no_aer();
5551 			} else if (!strncmp(str, "realloc=", 8)) {
5552 				pci_realloc_get_opt(str + 8);
5553 			} else if (!strncmp(str, "realloc", 7)) {
5554 				pci_realloc_get_opt("on");
5555 			} else if (!strcmp(str, "nodomains")) {
5556 				pci_no_domains();
5557 			} else if (!strncmp(str, "noari", 5)) {
5558 				pcie_ari_disabled = true;
5559 			} else if (!strncmp(str, "cbiosize=", 9)) {
5560 				pci_cardbus_io_size = memparse(str + 9, &str);
5561 			} else if (!strncmp(str, "cbmemsize=", 10)) {
5562 				pci_cardbus_mem_size = memparse(str + 10, &str);
5563 			} else if (!strncmp(str, "resource_alignment=", 19)) {
5564 				pci_set_resource_alignment_param(str + 19,
5565 							strlen(str + 19));
5566 			} else if (!strncmp(str, "ecrc=", 5)) {
5567 				pcie_ecrc_get_policy(str + 5);
5568 			} else if (!strncmp(str, "hpiosize=", 9)) {
5569 				pci_hotplug_io_size = memparse(str + 9, &str);
5570 			} else if (!strncmp(str, "hpmemsize=", 10)) {
5571 				pci_hotplug_mem_size = memparse(str + 10, &str);
5572 			} else if (!strncmp(str, "hpbussize=", 10)) {
5573 				pci_hotplug_bus_size =
5574 					simple_strtoul(str + 10, &str, 0);
5575 				if (pci_hotplug_bus_size > 0xff)
5576 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
5577 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
5578 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
5579 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
5580 				pcie_bus_config = PCIE_BUS_SAFE;
5581 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
5582 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
5583 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
5584 				pcie_bus_config = PCIE_BUS_PEER2PEER;
5585 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
5586 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
5587 			} else {
5588 				printk(KERN_ERR "PCI: Unknown option `%s'\n",
5589 						str);
5590 			}
5591 		}
5592 		str = k;
5593 	}
5594 	return 0;
5595 }
5596 early_param("pci", pci_setup);
5597