1 /*
2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3 *
4 * Parts came from builtin-{top,stat,record}.c, see those files for further
5 * copyright notes.
6 *
7 * Released under the GPL v2. (and only v2, not any later version)
8 */
9
10 #include <byteswap.h>
11 #include <errno.h>
12 #include <inttypes.h>
13 #include <linux/bitops.h>
14 #include <api/fs/fs.h>
15 #include <api/fs/tracing_path.h>
16 #include <traceevent/event-parse.h>
17 #include <linux/hw_breakpoint.h>
18 #include <linux/perf_event.h>
19 #include <linux/compiler.h>
20 #include <linux/err.h>
21 #include <sys/ioctl.h>
22 #include <sys/resource.h>
23 #include <sys/types.h>
24 #include <dirent.h>
25 #include "asm/bug.h"
26 #include "callchain.h"
27 #include "cgroup.h"
28 #include "event.h"
29 #include "evsel.h"
30 #include "evlist.h"
31 #include "util.h"
32 #include "cpumap.h"
33 #include "thread_map.h"
34 #include "target.h"
35 #include "perf_regs.h"
36 #include "debug.h"
37 #include "trace-event.h"
38 #include "stat.h"
39 #include "util/parse-branch-options.h"
40
41 #include "sane_ctype.h"
42
43 static struct {
44 bool sample_id_all;
45 bool exclude_guest;
46 bool mmap2;
47 bool cloexec;
48 bool clockid;
49 bool clockid_wrong;
50 bool lbr_flags;
51 bool write_backward;
52 bool group_read;
53 } perf_missing_features;
54
55 static clockid_t clockid;
56
perf_evsel__no_extra_init(struct perf_evsel * evsel __maybe_unused)57 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
58 {
59 return 0;
60 }
61
test_attr__ready(void)62 void __weak test_attr__ready(void) { }
63
perf_evsel__no_extra_fini(struct perf_evsel * evsel __maybe_unused)64 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
65 {
66 }
67
68 static struct {
69 size_t size;
70 int (*init)(struct perf_evsel *evsel);
71 void (*fini)(struct perf_evsel *evsel);
72 } perf_evsel__object = {
73 .size = sizeof(struct perf_evsel),
74 .init = perf_evsel__no_extra_init,
75 .fini = perf_evsel__no_extra_fini,
76 };
77
perf_evsel__object_config(size_t object_size,int (* init)(struct perf_evsel * evsel),void (* fini)(struct perf_evsel * evsel))78 int perf_evsel__object_config(size_t object_size,
79 int (*init)(struct perf_evsel *evsel),
80 void (*fini)(struct perf_evsel *evsel))
81 {
82
83 if (object_size == 0)
84 goto set_methods;
85
86 if (perf_evsel__object.size > object_size)
87 return -EINVAL;
88
89 perf_evsel__object.size = object_size;
90
91 set_methods:
92 if (init != NULL)
93 perf_evsel__object.init = init;
94
95 if (fini != NULL)
96 perf_evsel__object.fini = fini;
97
98 return 0;
99 }
100
101 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
102
__perf_evsel__sample_size(u64 sample_type)103 int __perf_evsel__sample_size(u64 sample_type)
104 {
105 u64 mask = sample_type & PERF_SAMPLE_MASK;
106 int size = 0;
107 int i;
108
109 for (i = 0; i < 64; i++) {
110 if (mask & (1ULL << i))
111 size++;
112 }
113
114 size *= sizeof(u64);
115
116 return size;
117 }
118
119 /**
120 * __perf_evsel__calc_id_pos - calculate id_pos.
121 * @sample_type: sample type
122 *
123 * This function returns the position of the event id (PERF_SAMPLE_ID or
124 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
125 * sample_event.
126 */
__perf_evsel__calc_id_pos(u64 sample_type)127 static int __perf_evsel__calc_id_pos(u64 sample_type)
128 {
129 int idx = 0;
130
131 if (sample_type & PERF_SAMPLE_IDENTIFIER)
132 return 0;
133
134 if (!(sample_type & PERF_SAMPLE_ID))
135 return -1;
136
137 if (sample_type & PERF_SAMPLE_IP)
138 idx += 1;
139
140 if (sample_type & PERF_SAMPLE_TID)
141 idx += 1;
142
143 if (sample_type & PERF_SAMPLE_TIME)
144 idx += 1;
145
146 if (sample_type & PERF_SAMPLE_ADDR)
147 idx += 1;
148
149 return idx;
150 }
151
152 /**
153 * __perf_evsel__calc_is_pos - calculate is_pos.
154 * @sample_type: sample type
155 *
156 * This function returns the position (counting backwards) of the event id
157 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
158 * sample_id_all is used there is an id sample appended to non-sample events.
159 */
__perf_evsel__calc_is_pos(u64 sample_type)160 static int __perf_evsel__calc_is_pos(u64 sample_type)
161 {
162 int idx = 1;
163
164 if (sample_type & PERF_SAMPLE_IDENTIFIER)
165 return 1;
166
167 if (!(sample_type & PERF_SAMPLE_ID))
168 return -1;
169
170 if (sample_type & PERF_SAMPLE_CPU)
171 idx += 1;
172
173 if (sample_type & PERF_SAMPLE_STREAM_ID)
174 idx += 1;
175
176 return idx;
177 }
178
perf_evsel__calc_id_pos(struct perf_evsel * evsel)179 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
180 {
181 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
182 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
183 }
184
__perf_evsel__set_sample_bit(struct perf_evsel * evsel,enum perf_event_sample_format bit)185 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
186 enum perf_event_sample_format bit)
187 {
188 if (!(evsel->attr.sample_type & bit)) {
189 evsel->attr.sample_type |= bit;
190 evsel->sample_size += sizeof(u64);
191 perf_evsel__calc_id_pos(evsel);
192 }
193 }
194
__perf_evsel__reset_sample_bit(struct perf_evsel * evsel,enum perf_event_sample_format bit)195 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
196 enum perf_event_sample_format bit)
197 {
198 if (evsel->attr.sample_type & bit) {
199 evsel->attr.sample_type &= ~bit;
200 evsel->sample_size -= sizeof(u64);
201 perf_evsel__calc_id_pos(evsel);
202 }
203 }
204
perf_evsel__set_sample_id(struct perf_evsel * evsel,bool can_sample_identifier)205 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
206 bool can_sample_identifier)
207 {
208 if (can_sample_identifier) {
209 perf_evsel__reset_sample_bit(evsel, ID);
210 perf_evsel__set_sample_bit(evsel, IDENTIFIER);
211 } else {
212 perf_evsel__set_sample_bit(evsel, ID);
213 }
214 evsel->attr.read_format |= PERF_FORMAT_ID;
215 }
216
217 /**
218 * perf_evsel__is_function_event - Return whether given evsel is a function
219 * trace event
220 *
221 * @evsel - evsel selector to be tested
222 *
223 * Return %true if event is function trace event
224 */
perf_evsel__is_function_event(struct perf_evsel * evsel)225 bool perf_evsel__is_function_event(struct perf_evsel *evsel)
226 {
227 #define FUNCTION_EVENT "ftrace:function"
228
229 return evsel->name &&
230 !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT));
231
232 #undef FUNCTION_EVENT
233 }
234
perf_evsel__init(struct perf_evsel * evsel,struct perf_event_attr * attr,int idx)235 void perf_evsel__init(struct perf_evsel *evsel,
236 struct perf_event_attr *attr, int idx)
237 {
238 evsel->idx = idx;
239 evsel->tracking = !idx;
240 evsel->attr = *attr;
241 evsel->leader = evsel;
242 evsel->unit = "";
243 evsel->scale = 1.0;
244 evsel->evlist = NULL;
245 evsel->bpf_fd = -1;
246 INIT_LIST_HEAD(&evsel->node);
247 INIT_LIST_HEAD(&evsel->config_terms);
248 perf_evsel__object.init(evsel);
249 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
250 perf_evsel__calc_id_pos(evsel);
251 evsel->cmdline_group_boundary = false;
252 evsel->metric_expr = NULL;
253 evsel->metric_name = NULL;
254 evsel->metric_events = NULL;
255 evsel->collect_stat = false;
256 }
257
perf_evsel__new_idx(struct perf_event_attr * attr,int idx)258 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
259 {
260 struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
261
262 if (!evsel)
263 return NULL;
264 perf_evsel__init(evsel, attr, idx);
265
266 if (perf_evsel__is_bpf_output(evsel)) {
267 evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
268 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
269 evsel->attr.sample_period = 1;
270 }
271
272 return evsel;
273 }
274
perf_event_can_profile_kernel(void)275 static bool perf_event_can_profile_kernel(void)
276 {
277 return geteuid() == 0 || perf_event_paranoid() == -1;
278 }
279
perf_evsel__new_cycles(bool precise)280 struct perf_evsel *perf_evsel__new_cycles(bool precise)
281 {
282 struct perf_event_attr attr = {
283 .type = PERF_TYPE_HARDWARE,
284 .config = PERF_COUNT_HW_CPU_CYCLES,
285 .exclude_kernel = !perf_event_can_profile_kernel(),
286 };
287 struct perf_evsel *evsel;
288
289 event_attr_init(&attr);
290
291 if (!precise)
292 goto new_event;
293 /*
294 * Unnamed union member, not supported as struct member named
295 * initializer in older compilers such as gcc 4.4.7
296 *
297 * Just for probing the precise_ip:
298 */
299 attr.sample_period = 1;
300
301 perf_event_attr__set_max_precise_ip(&attr);
302 /*
303 * Now let the usual logic to set up the perf_event_attr defaults
304 * to kick in when we return and before perf_evsel__open() is called.
305 */
306 attr.sample_period = 0;
307 new_event:
308 evsel = perf_evsel__new(&attr);
309 if (evsel == NULL)
310 goto out;
311
312 /* use asprintf() because free(evsel) assumes name is allocated */
313 if (asprintf(&evsel->name, "cycles%s%s%.*s",
314 (attr.precise_ip || attr.exclude_kernel) ? ":" : "",
315 attr.exclude_kernel ? "u" : "",
316 attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0)
317 goto error_free;
318 out:
319 return evsel;
320 error_free:
321 perf_evsel__delete(evsel);
322 evsel = NULL;
323 goto out;
324 }
325
326 /*
327 * Returns pointer with encoded error via <linux/err.h> interface.
328 */
perf_evsel__newtp_idx(const char * sys,const char * name,int idx)329 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
330 {
331 struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
332 int err = -ENOMEM;
333
334 if (evsel == NULL) {
335 goto out_err;
336 } else {
337 struct perf_event_attr attr = {
338 .type = PERF_TYPE_TRACEPOINT,
339 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
340 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
341 };
342
343 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
344 goto out_free;
345
346 evsel->tp_format = trace_event__tp_format(sys, name);
347 if (IS_ERR(evsel->tp_format)) {
348 err = PTR_ERR(evsel->tp_format);
349 goto out_free;
350 }
351
352 event_attr_init(&attr);
353 attr.config = evsel->tp_format->id;
354 attr.sample_period = 1;
355 perf_evsel__init(evsel, &attr, idx);
356 }
357
358 return evsel;
359
360 out_free:
361 zfree(&evsel->name);
362 free(evsel);
363 out_err:
364 return ERR_PTR(err);
365 }
366
367 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
368 "cycles",
369 "instructions",
370 "cache-references",
371 "cache-misses",
372 "branches",
373 "branch-misses",
374 "bus-cycles",
375 "stalled-cycles-frontend",
376 "stalled-cycles-backend",
377 "ref-cycles",
378 };
379
__perf_evsel__hw_name(u64 config)380 static const char *__perf_evsel__hw_name(u64 config)
381 {
382 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
383 return perf_evsel__hw_names[config];
384
385 return "unknown-hardware";
386 }
387
perf_evsel__add_modifiers(struct perf_evsel * evsel,char * bf,size_t size)388 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
389 {
390 int colon = 0, r = 0;
391 struct perf_event_attr *attr = &evsel->attr;
392 bool exclude_guest_default = false;
393
394 #define MOD_PRINT(context, mod) do { \
395 if (!attr->exclude_##context) { \
396 if (!colon) colon = ++r; \
397 r += scnprintf(bf + r, size - r, "%c", mod); \
398 } } while(0)
399
400 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
401 MOD_PRINT(kernel, 'k');
402 MOD_PRINT(user, 'u');
403 MOD_PRINT(hv, 'h');
404 exclude_guest_default = true;
405 }
406
407 if (attr->precise_ip) {
408 if (!colon)
409 colon = ++r;
410 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
411 exclude_guest_default = true;
412 }
413
414 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
415 MOD_PRINT(host, 'H');
416 MOD_PRINT(guest, 'G');
417 }
418 #undef MOD_PRINT
419 if (colon)
420 bf[colon - 1] = ':';
421 return r;
422 }
423
perf_evsel__hw_name(struct perf_evsel * evsel,char * bf,size_t size)424 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
425 {
426 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
427 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
428 }
429
430 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
431 "cpu-clock",
432 "task-clock",
433 "page-faults",
434 "context-switches",
435 "cpu-migrations",
436 "minor-faults",
437 "major-faults",
438 "alignment-faults",
439 "emulation-faults",
440 "dummy",
441 };
442
__perf_evsel__sw_name(u64 config)443 static const char *__perf_evsel__sw_name(u64 config)
444 {
445 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
446 return perf_evsel__sw_names[config];
447 return "unknown-software";
448 }
449
perf_evsel__sw_name(struct perf_evsel * evsel,char * bf,size_t size)450 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
451 {
452 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
453 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
454 }
455
__perf_evsel__bp_name(char * bf,size_t size,u64 addr,u64 type)456 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
457 {
458 int r;
459
460 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
461
462 if (type & HW_BREAKPOINT_R)
463 r += scnprintf(bf + r, size - r, "r");
464
465 if (type & HW_BREAKPOINT_W)
466 r += scnprintf(bf + r, size - r, "w");
467
468 if (type & HW_BREAKPOINT_X)
469 r += scnprintf(bf + r, size - r, "x");
470
471 return r;
472 }
473
perf_evsel__bp_name(struct perf_evsel * evsel,char * bf,size_t size)474 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
475 {
476 struct perf_event_attr *attr = &evsel->attr;
477 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
478 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
479 }
480
481 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
482 [PERF_EVSEL__MAX_ALIASES] = {
483 { "L1-dcache", "l1-d", "l1d", "L1-data", },
484 { "L1-icache", "l1-i", "l1i", "L1-instruction", },
485 { "LLC", "L2", },
486 { "dTLB", "d-tlb", "Data-TLB", },
487 { "iTLB", "i-tlb", "Instruction-TLB", },
488 { "branch", "branches", "bpu", "btb", "bpc", },
489 { "node", },
490 };
491
492 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
493 [PERF_EVSEL__MAX_ALIASES] = {
494 { "load", "loads", "read", },
495 { "store", "stores", "write", },
496 { "prefetch", "prefetches", "speculative-read", "speculative-load", },
497 };
498
499 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
500 [PERF_EVSEL__MAX_ALIASES] = {
501 { "refs", "Reference", "ops", "access", },
502 { "misses", "miss", },
503 };
504
505 #define C(x) PERF_COUNT_HW_CACHE_##x
506 #define CACHE_READ (1 << C(OP_READ))
507 #define CACHE_WRITE (1 << C(OP_WRITE))
508 #define CACHE_PREFETCH (1 << C(OP_PREFETCH))
509 #define COP(x) (1 << x)
510
511 /*
512 * cache operartion stat
513 * L1I : Read and prefetch only
514 * ITLB and BPU : Read-only
515 */
516 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
517 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
518 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH),
519 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
520 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
521 [C(ITLB)] = (CACHE_READ),
522 [C(BPU)] = (CACHE_READ),
523 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
524 };
525
perf_evsel__is_cache_op_valid(u8 type,u8 op)526 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
527 {
528 if (perf_evsel__hw_cache_stat[type] & COP(op))
529 return true; /* valid */
530 else
531 return false; /* invalid */
532 }
533
__perf_evsel__hw_cache_type_op_res_name(u8 type,u8 op,u8 result,char * bf,size_t size)534 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
535 char *bf, size_t size)
536 {
537 if (result) {
538 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
539 perf_evsel__hw_cache_op[op][0],
540 perf_evsel__hw_cache_result[result][0]);
541 }
542
543 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
544 perf_evsel__hw_cache_op[op][1]);
545 }
546
__perf_evsel__hw_cache_name(u64 config,char * bf,size_t size)547 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
548 {
549 u8 op, result, type = (config >> 0) & 0xff;
550 const char *err = "unknown-ext-hardware-cache-type";
551
552 if (type >= PERF_COUNT_HW_CACHE_MAX)
553 goto out_err;
554
555 op = (config >> 8) & 0xff;
556 err = "unknown-ext-hardware-cache-op";
557 if (op >= PERF_COUNT_HW_CACHE_OP_MAX)
558 goto out_err;
559
560 result = (config >> 16) & 0xff;
561 err = "unknown-ext-hardware-cache-result";
562 if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
563 goto out_err;
564
565 err = "invalid-cache";
566 if (!perf_evsel__is_cache_op_valid(type, op))
567 goto out_err;
568
569 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
570 out_err:
571 return scnprintf(bf, size, "%s", err);
572 }
573
perf_evsel__hw_cache_name(struct perf_evsel * evsel,char * bf,size_t size)574 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
575 {
576 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
577 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
578 }
579
perf_evsel__raw_name(struct perf_evsel * evsel,char * bf,size_t size)580 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
581 {
582 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
583 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
584 }
585
perf_evsel__name(struct perf_evsel * evsel)586 const char *perf_evsel__name(struct perf_evsel *evsel)
587 {
588 char bf[128];
589
590 if (!evsel)
591 goto out_unknown;
592
593 if (evsel->name)
594 return evsel->name;
595
596 switch (evsel->attr.type) {
597 case PERF_TYPE_RAW:
598 perf_evsel__raw_name(evsel, bf, sizeof(bf));
599 break;
600
601 case PERF_TYPE_HARDWARE:
602 perf_evsel__hw_name(evsel, bf, sizeof(bf));
603 break;
604
605 case PERF_TYPE_HW_CACHE:
606 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
607 break;
608
609 case PERF_TYPE_SOFTWARE:
610 perf_evsel__sw_name(evsel, bf, sizeof(bf));
611 break;
612
613 case PERF_TYPE_TRACEPOINT:
614 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
615 break;
616
617 case PERF_TYPE_BREAKPOINT:
618 perf_evsel__bp_name(evsel, bf, sizeof(bf));
619 break;
620
621 default:
622 scnprintf(bf, sizeof(bf), "unknown attr type: %d",
623 evsel->attr.type);
624 break;
625 }
626
627 evsel->name = strdup(bf);
628
629 if (evsel->name)
630 return evsel->name;
631 out_unknown:
632 return "unknown";
633 }
634
perf_evsel__group_name(struct perf_evsel * evsel)635 const char *perf_evsel__group_name(struct perf_evsel *evsel)
636 {
637 return evsel->group_name ?: "anon group";
638 }
639
perf_evsel__group_desc(struct perf_evsel * evsel,char * buf,size_t size)640 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
641 {
642 int ret;
643 struct perf_evsel *pos;
644 const char *group_name = perf_evsel__group_name(evsel);
645
646 ret = scnprintf(buf, size, "%s", group_name);
647
648 ret += scnprintf(buf + ret, size - ret, " { %s",
649 perf_evsel__name(evsel));
650
651 for_each_group_member(pos, evsel)
652 ret += scnprintf(buf + ret, size - ret, ", %s",
653 perf_evsel__name(pos));
654
655 ret += scnprintf(buf + ret, size - ret, " }");
656
657 return ret;
658 }
659
perf_evsel__config_callchain(struct perf_evsel * evsel,struct record_opts * opts,struct callchain_param * param)660 void perf_evsel__config_callchain(struct perf_evsel *evsel,
661 struct record_opts *opts,
662 struct callchain_param *param)
663 {
664 bool function = perf_evsel__is_function_event(evsel);
665 struct perf_event_attr *attr = &evsel->attr;
666
667 perf_evsel__set_sample_bit(evsel, CALLCHAIN);
668
669 attr->sample_max_stack = param->max_stack;
670
671 if (param->record_mode == CALLCHAIN_LBR) {
672 if (!opts->branch_stack) {
673 if (attr->exclude_user) {
674 pr_warning("LBR callstack option is only available "
675 "to get user callchain information. "
676 "Falling back to framepointers.\n");
677 } else {
678 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
679 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
680 PERF_SAMPLE_BRANCH_CALL_STACK |
681 PERF_SAMPLE_BRANCH_NO_CYCLES |
682 PERF_SAMPLE_BRANCH_NO_FLAGS;
683 }
684 } else
685 pr_warning("Cannot use LBR callstack with branch stack. "
686 "Falling back to framepointers.\n");
687 }
688
689 if (param->record_mode == CALLCHAIN_DWARF) {
690 if (!function) {
691 perf_evsel__set_sample_bit(evsel, REGS_USER);
692 perf_evsel__set_sample_bit(evsel, STACK_USER);
693 attr->sample_regs_user = PERF_REGS_MASK;
694 attr->sample_stack_user = param->dump_size;
695 attr->exclude_callchain_user = 1;
696 } else {
697 pr_info("Cannot use DWARF unwind for function trace event,"
698 " falling back to framepointers.\n");
699 }
700 }
701
702 if (function) {
703 pr_info("Disabling user space callchains for function trace event.\n");
704 attr->exclude_callchain_user = 1;
705 }
706 }
707
708 static void
perf_evsel__reset_callgraph(struct perf_evsel * evsel,struct callchain_param * param)709 perf_evsel__reset_callgraph(struct perf_evsel *evsel,
710 struct callchain_param *param)
711 {
712 struct perf_event_attr *attr = &evsel->attr;
713
714 perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
715 if (param->record_mode == CALLCHAIN_LBR) {
716 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
717 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
718 PERF_SAMPLE_BRANCH_CALL_STACK);
719 }
720 if (param->record_mode == CALLCHAIN_DWARF) {
721 perf_evsel__reset_sample_bit(evsel, REGS_USER);
722 perf_evsel__reset_sample_bit(evsel, STACK_USER);
723 }
724 }
725
apply_config_terms(struct perf_evsel * evsel,struct record_opts * opts)726 static void apply_config_terms(struct perf_evsel *evsel,
727 struct record_opts *opts)
728 {
729 struct perf_evsel_config_term *term;
730 struct list_head *config_terms = &evsel->config_terms;
731 struct perf_event_attr *attr = &evsel->attr;
732 /* callgraph default */
733 struct callchain_param param = {
734 .record_mode = callchain_param.record_mode,
735 };
736 u32 dump_size = 0;
737 int max_stack = 0;
738 const char *callgraph_buf = NULL;
739
740 list_for_each_entry(term, config_terms, list) {
741 switch (term->type) {
742 case PERF_EVSEL__CONFIG_TERM_PERIOD:
743 if (!(term->weak && opts->user_interval != ULLONG_MAX)) {
744 attr->sample_period = term->val.period;
745 attr->freq = 0;
746 perf_evsel__reset_sample_bit(evsel, PERIOD);
747 }
748 break;
749 case PERF_EVSEL__CONFIG_TERM_FREQ:
750 if (!(term->weak && opts->user_freq != UINT_MAX)) {
751 attr->sample_freq = term->val.freq;
752 attr->freq = 1;
753 perf_evsel__set_sample_bit(evsel, PERIOD);
754 }
755 break;
756 case PERF_EVSEL__CONFIG_TERM_TIME:
757 if (term->val.time)
758 perf_evsel__set_sample_bit(evsel, TIME);
759 else
760 perf_evsel__reset_sample_bit(evsel, TIME);
761 break;
762 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
763 callgraph_buf = term->val.callgraph;
764 break;
765 case PERF_EVSEL__CONFIG_TERM_BRANCH:
766 if (term->val.branch && strcmp(term->val.branch, "no")) {
767 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
768 parse_branch_str(term->val.branch,
769 &attr->branch_sample_type);
770 } else
771 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
772 break;
773 case PERF_EVSEL__CONFIG_TERM_STACK_USER:
774 dump_size = term->val.stack_user;
775 break;
776 case PERF_EVSEL__CONFIG_TERM_MAX_STACK:
777 max_stack = term->val.max_stack;
778 break;
779 case PERF_EVSEL__CONFIG_TERM_INHERIT:
780 /*
781 * attr->inherit should has already been set by
782 * perf_evsel__config. If user explicitly set
783 * inherit using config terms, override global
784 * opt->no_inherit setting.
785 */
786 attr->inherit = term->val.inherit ? 1 : 0;
787 break;
788 case PERF_EVSEL__CONFIG_TERM_OVERWRITE:
789 attr->write_backward = term->val.overwrite ? 1 : 0;
790 break;
791 default:
792 break;
793 }
794 }
795
796 /* User explicitly set per-event callgraph, clear the old setting and reset. */
797 if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
798 if (max_stack) {
799 param.max_stack = max_stack;
800 if (callgraph_buf == NULL)
801 callgraph_buf = "fp";
802 }
803
804 /* parse callgraph parameters */
805 if (callgraph_buf != NULL) {
806 if (!strcmp(callgraph_buf, "no")) {
807 param.enabled = false;
808 param.record_mode = CALLCHAIN_NONE;
809 } else {
810 param.enabled = true;
811 if (parse_callchain_record(callgraph_buf, ¶m)) {
812 pr_err("per-event callgraph setting for %s failed. "
813 "Apply callgraph global setting for it\n",
814 evsel->name);
815 return;
816 }
817 }
818 }
819 if (dump_size > 0) {
820 dump_size = round_up(dump_size, sizeof(u64));
821 param.dump_size = dump_size;
822 }
823
824 /* If global callgraph set, clear it */
825 if (callchain_param.enabled)
826 perf_evsel__reset_callgraph(evsel, &callchain_param);
827
828 /* set perf-event callgraph */
829 if (param.enabled)
830 perf_evsel__config_callchain(evsel, opts, ¶m);
831 }
832 }
833
is_dummy_event(struct perf_evsel * evsel)834 static bool is_dummy_event(struct perf_evsel *evsel)
835 {
836 return (evsel->attr.type == PERF_TYPE_SOFTWARE) &&
837 (evsel->attr.config == PERF_COUNT_SW_DUMMY);
838 }
839
840 /*
841 * The enable_on_exec/disabled value strategy:
842 *
843 * 1) For any type of traced program:
844 * - all independent events and group leaders are disabled
845 * - all group members are enabled
846 *
847 * Group members are ruled by group leaders. They need to
848 * be enabled, because the group scheduling relies on that.
849 *
850 * 2) For traced programs executed by perf:
851 * - all independent events and group leaders have
852 * enable_on_exec set
853 * - we don't specifically enable or disable any event during
854 * the record command
855 *
856 * Independent events and group leaders are initially disabled
857 * and get enabled by exec. Group members are ruled by group
858 * leaders as stated in 1).
859 *
860 * 3) For traced programs attached by perf (pid/tid):
861 * - we specifically enable or disable all events during
862 * the record command
863 *
864 * When attaching events to already running traced we
865 * enable/disable events specifically, as there's no
866 * initial traced exec call.
867 */
perf_evsel__config(struct perf_evsel * evsel,struct record_opts * opts,struct callchain_param * callchain)868 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts,
869 struct callchain_param *callchain)
870 {
871 struct perf_evsel *leader = evsel->leader;
872 struct perf_event_attr *attr = &evsel->attr;
873 int track = evsel->tracking;
874 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
875
876 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
877 attr->inherit = !opts->no_inherit;
878 attr->write_backward = opts->overwrite ? 1 : 0;
879
880 perf_evsel__set_sample_bit(evsel, IP);
881 perf_evsel__set_sample_bit(evsel, TID);
882
883 if (evsel->sample_read) {
884 perf_evsel__set_sample_bit(evsel, READ);
885
886 /*
887 * We need ID even in case of single event, because
888 * PERF_SAMPLE_READ process ID specific data.
889 */
890 perf_evsel__set_sample_id(evsel, false);
891
892 /*
893 * Apply group format only if we belong to group
894 * with more than one members.
895 */
896 if (leader->nr_members > 1) {
897 attr->read_format |= PERF_FORMAT_GROUP;
898 attr->inherit = 0;
899 }
900 }
901
902 /*
903 * We default some events to have a default interval. But keep
904 * it a weak assumption overridable by the user.
905 */
906 if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
907 opts->user_interval != ULLONG_MAX)) {
908 if (opts->freq) {
909 perf_evsel__set_sample_bit(evsel, PERIOD);
910 attr->freq = 1;
911 attr->sample_freq = opts->freq;
912 } else {
913 attr->sample_period = opts->default_interval;
914 }
915 }
916
917 /*
918 * Disable sampling for all group members other
919 * than leader in case leader 'leads' the sampling.
920 */
921 if ((leader != evsel) && leader->sample_read) {
922 attr->sample_freq = 0;
923 attr->sample_period = 0;
924 }
925
926 if (opts->no_samples)
927 attr->sample_freq = 0;
928
929 if (opts->inherit_stat) {
930 evsel->attr.read_format |=
931 PERF_FORMAT_TOTAL_TIME_ENABLED |
932 PERF_FORMAT_TOTAL_TIME_RUNNING |
933 PERF_FORMAT_ID;
934 attr->inherit_stat = 1;
935 }
936
937 if (opts->sample_address) {
938 perf_evsel__set_sample_bit(evsel, ADDR);
939 attr->mmap_data = track;
940 }
941
942 /*
943 * We don't allow user space callchains for function trace
944 * event, due to issues with page faults while tracing page
945 * fault handler and its overall trickiness nature.
946 */
947 if (perf_evsel__is_function_event(evsel))
948 evsel->attr.exclude_callchain_user = 1;
949
950 if (callchain && callchain->enabled && !evsel->no_aux_samples)
951 perf_evsel__config_callchain(evsel, opts, callchain);
952
953 if (opts->sample_intr_regs) {
954 attr->sample_regs_intr = opts->sample_intr_regs;
955 perf_evsel__set_sample_bit(evsel, REGS_INTR);
956 }
957
958 if (target__has_cpu(&opts->target) || opts->sample_cpu)
959 perf_evsel__set_sample_bit(evsel, CPU);
960
961 /*
962 * When the user explicitly disabled time don't force it here.
963 */
964 if (opts->sample_time &&
965 (!perf_missing_features.sample_id_all &&
966 (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
967 opts->sample_time_set)))
968 perf_evsel__set_sample_bit(evsel, TIME);
969
970 if (opts->raw_samples && !evsel->no_aux_samples) {
971 perf_evsel__set_sample_bit(evsel, TIME);
972 perf_evsel__set_sample_bit(evsel, RAW);
973 perf_evsel__set_sample_bit(evsel, CPU);
974 }
975
976 if (opts->sample_address)
977 perf_evsel__set_sample_bit(evsel, DATA_SRC);
978
979 if (opts->sample_phys_addr)
980 perf_evsel__set_sample_bit(evsel, PHYS_ADDR);
981
982 if (opts->no_buffering) {
983 attr->watermark = 0;
984 attr->wakeup_events = 1;
985 }
986 if (opts->branch_stack && !evsel->no_aux_samples) {
987 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
988 attr->branch_sample_type = opts->branch_stack;
989 }
990
991 if (opts->sample_weight)
992 perf_evsel__set_sample_bit(evsel, WEIGHT);
993
994 attr->task = track;
995 attr->mmap = track;
996 attr->mmap2 = track && !perf_missing_features.mmap2;
997 attr->comm = track;
998
999 if (opts->record_namespaces)
1000 attr->namespaces = track;
1001
1002 if (opts->record_switch_events)
1003 attr->context_switch = track;
1004
1005 if (opts->sample_transaction)
1006 perf_evsel__set_sample_bit(evsel, TRANSACTION);
1007
1008 if (opts->running_time) {
1009 evsel->attr.read_format |=
1010 PERF_FORMAT_TOTAL_TIME_ENABLED |
1011 PERF_FORMAT_TOTAL_TIME_RUNNING;
1012 }
1013
1014 /*
1015 * XXX see the function comment above
1016 *
1017 * Disabling only independent events or group leaders,
1018 * keeping group members enabled.
1019 */
1020 if (perf_evsel__is_group_leader(evsel))
1021 attr->disabled = 1;
1022
1023 /*
1024 * Setting enable_on_exec for independent events and
1025 * group leaders for traced executed by perf.
1026 */
1027 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
1028 !opts->initial_delay)
1029 attr->enable_on_exec = 1;
1030
1031 if (evsel->immediate) {
1032 attr->disabled = 0;
1033 attr->enable_on_exec = 0;
1034 }
1035
1036 clockid = opts->clockid;
1037 if (opts->use_clockid) {
1038 attr->use_clockid = 1;
1039 attr->clockid = opts->clockid;
1040 }
1041
1042 if (evsel->precise_max)
1043 perf_event_attr__set_max_precise_ip(attr);
1044
1045 if (opts->all_user) {
1046 attr->exclude_kernel = 1;
1047 attr->exclude_user = 0;
1048 }
1049
1050 if (opts->all_kernel) {
1051 attr->exclude_kernel = 0;
1052 attr->exclude_user = 1;
1053 }
1054
1055 /*
1056 * Apply event specific term settings,
1057 * it overloads any global configuration.
1058 */
1059 apply_config_terms(evsel, opts);
1060
1061 evsel->ignore_missing_thread = opts->ignore_missing_thread;
1062
1063 /* The --period option takes the precedence. */
1064 if (opts->period_set) {
1065 if (opts->period)
1066 perf_evsel__set_sample_bit(evsel, PERIOD);
1067 else
1068 perf_evsel__reset_sample_bit(evsel, PERIOD);
1069 }
1070
1071 /*
1072 * For initial_delay, a dummy event is added implicitly.
1073 * The software event will trigger -EOPNOTSUPP error out,
1074 * if BRANCH_STACK bit is set.
1075 */
1076 if (opts->initial_delay && is_dummy_event(evsel))
1077 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
1078 }
1079
perf_evsel__alloc_fd(struct perf_evsel * evsel,int ncpus,int nthreads)1080 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1081 {
1082 if (evsel->system_wide)
1083 nthreads = 1;
1084
1085 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
1086
1087 if (evsel->fd) {
1088 int cpu, thread;
1089 for (cpu = 0; cpu < ncpus; cpu++) {
1090 for (thread = 0; thread < nthreads; thread++) {
1091 FD(evsel, cpu, thread) = -1;
1092 }
1093 }
1094 }
1095
1096 return evsel->fd != NULL ? 0 : -ENOMEM;
1097 }
1098
perf_evsel__run_ioctl(struct perf_evsel * evsel,int ioc,void * arg)1099 static int perf_evsel__run_ioctl(struct perf_evsel *evsel,
1100 int ioc, void *arg)
1101 {
1102 int cpu, thread;
1103
1104 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) {
1105 for (thread = 0; thread < xyarray__max_y(evsel->fd); thread++) {
1106 int fd = FD(evsel, cpu, thread),
1107 err = ioctl(fd, ioc, arg);
1108
1109 if (err)
1110 return err;
1111 }
1112 }
1113
1114 return 0;
1115 }
1116
perf_evsel__apply_filter(struct perf_evsel * evsel,const char * filter)1117 int perf_evsel__apply_filter(struct perf_evsel *evsel, const char *filter)
1118 {
1119 return perf_evsel__run_ioctl(evsel,
1120 PERF_EVENT_IOC_SET_FILTER,
1121 (void *)filter);
1122 }
1123
perf_evsel__set_filter(struct perf_evsel * evsel,const char * filter)1124 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
1125 {
1126 char *new_filter = strdup(filter);
1127
1128 if (new_filter != NULL) {
1129 free(evsel->filter);
1130 evsel->filter = new_filter;
1131 return 0;
1132 }
1133
1134 return -1;
1135 }
1136
perf_evsel__append_filter(struct perf_evsel * evsel,const char * fmt,const char * filter)1137 static int perf_evsel__append_filter(struct perf_evsel *evsel,
1138 const char *fmt, const char *filter)
1139 {
1140 char *new_filter;
1141
1142 if (evsel->filter == NULL)
1143 return perf_evsel__set_filter(evsel, filter);
1144
1145 if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) {
1146 free(evsel->filter);
1147 evsel->filter = new_filter;
1148 return 0;
1149 }
1150
1151 return -1;
1152 }
1153
perf_evsel__append_tp_filter(struct perf_evsel * evsel,const char * filter)1154 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter)
1155 {
1156 return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter);
1157 }
1158
perf_evsel__append_addr_filter(struct perf_evsel * evsel,const char * filter)1159 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter)
1160 {
1161 return perf_evsel__append_filter(evsel, "%s,%s", filter);
1162 }
1163
perf_evsel__enable(struct perf_evsel * evsel)1164 int perf_evsel__enable(struct perf_evsel *evsel)
1165 {
1166 return perf_evsel__run_ioctl(evsel,
1167 PERF_EVENT_IOC_ENABLE,
1168 0);
1169 }
1170
perf_evsel__disable(struct perf_evsel * evsel)1171 int perf_evsel__disable(struct perf_evsel *evsel)
1172 {
1173 return perf_evsel__run_ioctl(evsel,
1174 PERF_EVENT_IOC_DISABLE,
1175 0);
1176 }
1177
perf_evsel__alloc_id(struct perf_evsel * evsel,int ncpus,int nthreads)1178 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
1179 {
1180 if (ncpus == 0 || nthreads == 0)
1181 return 0;
1182
1183 if (evsel->system_wide)
1184 nthreads = 1;
1185
1186 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1187 if (evsel->sample_id == NULL)
1188 return -ENOMEM;
1189
1190 evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1191 if (evsel->id == NULL) {
1192 xyarray__delete(evsel->sample_id);
1193 evsel->sample_id = NULL;
1194 return -ENOMEM;
1195 }
1196
1197 return 0;
1198 }
1199
perf_evsel__free_fd(struct perf_evsel * evsel)1200 static void perf_evsel__free_fd(struct perf_evsel *evsel)
1201 {
1202 xyarray__delete(evsel->fd);
1203 evsel->fd = NULL;
1204 }
1205
perf_evsel__free_id(struct perf_evsel * evsel)1206 static void perf_evsel__free_id(struct perf_evsel *evsel)
1207 {
1208 xyarray__delete(evsel->sample_id);
1209 evsel->sample_id = NULL;
1210 zfree(&evsel->id);
1211 }
1212
perf_evsel__free_config_terms(struct perf_evsel * evsel)1213 static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
1214 {
1215 struct perf_evsel_config_term *term, *h;
1216
1217 list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1218 list_del(&term->list);
1219 free(term);
1220 }
1221 }
1222
perf_evsel__close_fd(struct perf_evsel * evsel)1223 void perf_evsel__close_fd(struct perf_evsel *evsel)
1224 {
1225 int cpu, thread;
1226
1227 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++)
1228 for (thread = 0; thread < xyarray__max_y(evsel->fd); ++thread) {
1229 close(FD(evsel, cpu, thread));
1230 FD(evsel, cpu, thread) = -1;
1231 }
1232 }
1233
perf_evsel__exit(struct perf_evsel * evsel)1234 void perf_evsel__exit(struct perf_evsel *evsel)
1235 {
1236 assert(list_empty(&evsel->node));
1237 assert(evsel->evlist == NULL);
1238 perf_evsel__free_counts(evsel);
1239 perf_evsel__free_fd(evsel);
1240 perf_evsel__free_id(evsel);
1241 perf_evsel__free_config_terms(evsel);
1242 close_cgroup(evsel->cgrp);
1243 cpu_map__put(evsel->cpus);
1244 cpu_map__put(evsel->own_cpus);
1245 thread_map__put(evsel->threads);
1246 zfree(&evsel->group_name);
1247 zfree(&evsel->name);
1248 perf_evsel__object.fini(evsel);
1249 }
1250
perf_evsel__delete(struct perf_evsel * evsel)1251 void perf_evsel__delete(struct perf_evsel *evsel)
1252 {
1253 perf_evsel__exit(evsel);
1254 free(evsel);
1255 }
1256
perf_evsel__compute_deltas(struct perf_evsel * evsel,int cpu,int thread,struct perf_counts_values * count)1257 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
1258 struct perf_counts_values *count)
1259 {
1260 struct perf_counts_values tmp;
1261
1262 if (!evsel->prev_raw_counts)
1263 return;
1264
1265 if (cpu == -1) {
1266 tmp = evsel->prev_raw_counts->aggr;
1267 evsel->prev_raw_counts->aggr = *count;
1268 } else {
1269 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1270 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1271 }
1272
1273 count->val = count->val - tmp.val;
1274 count->ena = count->ena - tmp.ena;
1275 count->run = count->run - tmp.run;
1276 }
1277
perf_counts_values__scale(struct perf_counts_values * count,bool scale,s8 * pscaled)1278 void perf_counts_values__scale(struct perf_counts_values *count,
1279 bool scale, s8 *pscaled)
1280 {
1281 s8 scaled = 0;
1282
1283 if (scale) {
1284 if (count->run == 0) {
1285 scaled = -1;
1286 count->val = 0;
1287 } else if (count->run < count->ena) {
1288 scaled = 1;
1289 count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
1290 }
1291 } else
1292 count->ena = count->run = 0;
1293
1294 if (pscaled)
1295 *pscaled = scaled;
1296 }
1297
perf_evsel__read_size(struct perf_evsel * evsel)1298 static int perf_evsel__read_size(struct perf_evsel *evsel)
1299 {
1300 u64 read_format = evsel->attr.read_format;
1301 int entry = sizeof(u64); /* value */
1302 int size = 0;
1303 int nr = 1;
1304
1305 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1306 size += sizeof(u64);
1307
1308 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1309 size += sizeof(u64);
1310
1311 if (read_format & PERF_FORMAT_ID)
1312 entry += sizeof(u64);
1313
1314 if (read_format & PERF_FORMAT_GROUP) {
1315 nr = evsel->nr_members;
1316 size += sizeof(u64);
1317 }
1318
1319 size += entry * nr;
1320 return size;
1321 }
1322
perf_evsel__read(struct perf_evsel * evsel,int cpu,int thread,struct perf_counts_values * count)1323 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
1324 struct perf_counts_values *count)
1325 {
1326 size_t size = perf_evsel__read_size(evsel);
1327
1328 memset(count, 0, sizeof(*count));
1329
1330 if (FD(evsel, cpu, thread) < 0)
1331 return -EINVAL;
1332
1333 if (readn(FD(evsel, cpu, thread), count->values, size) <= 0)
1334 return -errno;
1335
1336 return 0;
1337 }
1338
1339 static int
perf_evsel__read_one(struct perf_evsel * evsel,int cpu,int thread)1340 perf_evsel__read_one(struct perf_evsel *evsel, int cpu, int thread)
1341 {
1342 struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread);
1343
1344 return perf_evsel__read(evsel, cpu, thread, count);
1345 }
1346
1347 static void
perf_evsel__set_count(struct perf_evsel * counter,int cpu,int thread,u64 val,u64 ena,u64 run)1348 perf_evsel__set_count(struct perf_evsel *counter, int cpu, int thread,
1349 u64 val, u64 ena, u64 run)
1350 {
1351 struct perf_counts_values *count;
1352
1353 count = perf_counts(counter->counts, cpu, thread);
1354
1355 count->val = val;
1356 count->ena = ena;
1357 count->run = run;
1358 count->loaded = true;
1359 }
1360
1361 static int
perf_evsel__process_group_data(struct perf_evsel * leader,int cpu,int thread,u64 * data)1362 perf_evsel__process_group_data(struct perf_evsel *leader,
1363 int cpu, int thread, u64 *data)
1364 {
1365 u64 read_format = leader->attr.read_format;
1366 struct sample_read_value *v;
1367 u64 nr, ena = 0, run = 0, i;
1368
1369 nr = *data++;
1370
1371 if (nr != (u64) leader->nr_members)
1372 return -EINVAL;
1373
1374 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1375 ena = *data++;
1376
1377 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1378 run = *data++;
1379
1380 v = (struct sample_read_value *) data;
1381
1382 perf_evsel__set_count(leader, cpu, thread,
1383 v[0].value, ena, run);
1384
1385 for (i = 1; i < nr; i++) {
1386 struct perf_evsel *counter;
1387
1388 counter = perf_evlist__id2evsel(leader->evlist, v[i].id);
1389 if (!counter)
1390 return -EINVAL;
1391
1392 perf_evsel__set_count(counter, cpu, thread,
1393 v[i].value, ena, run);
1394 }
1395
1396 return 0;
1397 }
1398
1399 static int
perf_evsel__read_group(struct perf_evsel * leader,int cpu,int thread)1400 perf_evsel__read_group(struct perf_evsel *leader, int cpu, int thread)
1401 {
1402 struct perf_stat_evsel *ps = leader->priv;
1403 u64 read_format = leader->attr.read_format;
1404 int size = perf_evsel__read_size(leader);
1405 u64 *data = ps->group_data;
1406
1407 if (!(read_format & PERF_FORMAT_ID))
1408 return -EINVAL;
1409
1410 if (!perf_evsel__is_group_leader(leader))
1411 return -EINVAL;
1412
1413 if (!data) {
1414 data = zalloc(size);
1415 if (!data)
1416 return -ENOMEM;
1417
1418 ps->group_data = data;
1419 }
1420
1421 if (FD(leader, cpu, thread) < 0)
1422 return -EINVAL;
1423
1424 if (readn(FD(leader, cpu, thread), data, size) <= 0)
1425 return -errno;
1426
1427 return perf_evsel__process_group_data(leader, cpu, thread, data);
1428 }
1429
perf_evsel__read_counter(struct perf_evsel * evsel,int cpu,int thread)1430 int perf_evsel__read_counter(struct perf_evsel *evsel, int cpu, int thread)
1431 {
1432 u64 read_format = evsel->attr.read_format;
1433
1434 if (read_format & PERF_FORMAT_GROUP)
1435 return perf_evsel__read_group(evsel, cpu, thread);
1436 else
1437 return perf_evsel__read_one(evsel, cpu, thread);
1438 }
1439
__perf_evsel__read_on_cpu(struct perf_evsel * evsel,int cpu,int thread,bool scale)1440 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
1441 int cpu, int thread, bool scale)
1442 {
1443 struct perf_counts_values count;
1444 size_t nv = scale ? 3 : 1;
1445
1446 if (FD(evsel, cpu, thread) < 0)
1447 return -EINVAL;
1448
1449 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1450 return -ENOMEM;
1451
1452 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0)
1453 return -errno;
1454
1455 perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1456 perf_counts_values__scale(&count, scale, NULL);
1457 *perf_counts(evsel->counts, cpu, thread) = count;
1458 return 0;
1459 }
1460
get_group_fd(struct perf_evsel * evsel,int cpu,int thread)1461 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
1462 {
1463 struct perf_evsel *leader = evsel->leader;
1464 int fd;
1465
1466 if (perf_evsel__is_group_leader(evsel))
1467 return -1;
1468
1469 /*
1470 * Leader must be already processed/open,
1471 * if not it's a bug.
1472 */
1473 BUG_ON(!leader->fd);
1474
1475 fd = FD(leader, cpu, thread);
1476 BUG_ON(fd == -1);
1477
1478 return fd;
1479 }
1480
1481 struct bit_names {
1482 int bit;
1483 const char *name;
1484 };
1485
__p_bits(char * buf,size_t size,u64 value,struct bit_names * bits)1486 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1487 {
1488 bool first_bit = true;
1489 int i = 0;
1490
1491 do {
1492 if (value & bits[i].bit) {
1493 buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1494 first_bit = false;
1495 }
1496 } while (bits[++i].name != NULL);
1497 }
1498
__p_sample_type(char * buf,size_t size,u64 value)1499 static void __p_sample_type(char *buf, size_t size, u64 value)
1500 {
1501 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1502 struct bit_names bits[] = {
1503 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1504 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1505 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1506 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1507 bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1508 bit_name(WEIGHT), bit_name(PHYS_ADDR),
1509 { .name = NULL, }
1510 };
1511 #undef bit_name
1512 __p_bits(buf, size, value, bits);
1513 }
1514
__p_branch_sample_type(char * buf,size_t size,u64 value)1515 static void __p_branch_sample_type(char *buf, size_t size, u64 value)
1516 {
1517 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
1518 struct bit_names bits[] = {
1519 bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY),
1520 bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL),
1521 bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX),
1522 bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP),
1523 bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES),
1524 { .name = NULL, }
1525 };
1526 #undef bit_name
1527 __p_bits(buf, size, value, bits);
1528 }
1529
__p_read_format(char * buf,size_t size,u64 value)1530 static void __p_read_format(char *buf, size_t size, u64 value)
1531 {
1532 #define bit_name(n) { PERF_FORMAT_##n, #n }
1533 struct bit_names bits[] = {
1534 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1535 bit_name(ID), bit_name(GROUP),
1536 { .name = NULL, }
1537 };
1538 #undef bit_name
1539 __p_bits(buf, size, value, bits);
1540 }
1541
1542 #define BUF_SIZE 1024
1543
1544 #define p_hex(val) snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1545 #define p_unsigned(val) snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1546 #define p_signed(val) snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1547 #define p_sample_type(val) __p_sample_type(buf, BUF_SIZE, val)
1548 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
1549 #define p_read_format(val) __p_read_format(buf, BUF_SIZE, val)
1550
1551 #define PRINT_ATTRn(_n, _f, _p) \
1552 do { \
1553 if (attr->_f) { \
1554 _p(attr->_f); \
1555 ret += attr__fprintf(fp, _n, buf, priv);\
1556 } \
1557 } while (0)
1558
1559 #define PRINT_ATTRf(_f, _p) PRINT_ATTRn(#_f, _f, _p)
1560
perf_event_attr__fprintf(FILE * fp,struct perf_event_attr * attr,attr__fprintf_f attr__fprintf,void * priv)1561 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1562 attr__fprintf_f attr__fprintf, void *priv)
1563 {
1564 char buf[BUF_SIZE];
1565 int ret = 0;
1566
1567 PRINT_ATTRf(type, p_unsigned);
1568 PRINT_ATTRf(size, p_unsigned);
1569 PRINT_ATTRf(config, p_hex);
1570 PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1571 PRINT_ATTRf(sample_type, p_sample_type);
1572 PRINT_ATTRf(read_format, p_read_format);
1573
1574 PRINT_ATTRf(disabled, p_unsigned);
1575 PRINT_ATTRf(inherit, p_unsigned);
1576 PRINT_ATTRf(pinned, p_unsigned);
1577 PRINT_ATTRf(exclusive, p_unsigned);
1578 PRINT_ATTRf(exclude_user, p_unsigned);
1579 PRINT_ATTRf(exclude_kernel, p_unsigned);
1580 PRINT_ATTRf(exclude_hv, p_unsigned);
1581 PRINT_ATTRf(exclude_idle, p_unsigned);
1582 PRINT_ATTRf(mmap, p_unsigned);
1583 PRINT_ATTRf(comm, p_unsigned);
1584 PRINT_ATTRf(freq, p_unsigned);
1585 PRINT_ATTRf(inherit_stat, p_unsigned);
1586 PRINT_ATTRf(enable_on_exec, p_unsigned);
1587 PRINT_ATTRf(task, p_unsigned);
1588 PRINT_ATTRf(watermark, p_unsigned);
1589 PRINT_ATTRf(precise_ip, p_unsigned);
1590 PRINT_ATTRf(mmap_data, p_unsigned);
1591 PRINT_ATTRf(sample_id_all, p_unsigned);
1592 PRINT_ATTRf(exclude_host, p_unsigned);
1593 PRINT_ATTRf(exclude_guest, p_unsigned);
1594 PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1595 PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1596 PRINT_ATTRf(mmap2, p_unsigned);
1597 PRINT_ATTRf(comm_exec, p_unsigned);
1598 PRINT_ATTRf(use_clockid, p_unsigned);
1599 PRINT_ATTRf(context_switch, p_unsigned);
1600 PRINT_ATTRf(write_backward, p_unsigned);
1601
1602 PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1603 PRINT_ATTRf(bp_type, p_unsigned);
1604 PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1605 PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1606 PRINT_ATTRf(branch_sample_type, p_branch_sample_type);
1607 PRINT_ATTRf(sample_regs_user, p_hex);
1608 PRINT_ATTRf(sample_stack_user, p_unsigned);
1609 PRINT_ATTRf(clockid, p_signed);
1610 PRINT_ATTRf(sample_regs_intr, p_hex);
1611 PRINT_ATTRf(aux_watermark, p_unsigned);
1612 PRINT_ATTRf(sample_max_stack, p_unsigned);
1613
1614 return ret;
1615 }
1616
__open_attr__fprintf(FILE * fp,const char * name,const char * val,void * priv __maybe_unused)1617 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1618 void *priv __maybe_unused)
1619 {
1620 return fprintf(fp, " %-32s %s\n", name, val);
1621 }
1622
perf_evsel__remove_fd(struct perf_evsel * pos,int nr_cpus,int nr_threads,int thread_idx)1623 static void perf_evsel__remove_fd(struct perf_evsel *pos,
1624 int nr_cpus, int nr_threads,
1625 int thread_idx)
1626 {
1627 for (int cpu = 0; cpu < nr_cpus; cpu++)
1628 for (int thread = thread_idx; thread < nr_threads - 1; thread++)
1629 FD(pos, cpu, thread) = FD(pos, cpu, thread + 1);
1630 }
1631
update_fds(struct perf_evsel * evsel,int nr_cpus,int cpu_idx,int nr_threads,int thread_idx)1632 static int update_fds(struct perf_evsel *evsel,
1633 int nr_cpus, int cpu_idx,
1634 int nr_threads, int thread_idx)
1635 {
1636 struct perf_evsel *pos;
1637
1638 if (cpu_idx >= nr_cpus || thread_idx >= nr_threads)
1639 return -EINVAL;
1640
1641 evlist__for_each_entry(evsel->evlist, pos) {
1642 nr_cpus = pos != evsel ? nr_cpus : cpu_idx;
1643
1644 perf_evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx);
1645
1646 /*
1647 * Since fds for next evsel has not been created,
1648 * there is no need to iterate whole event list.
1649 */
1650 if (pos == evsel)
1651 break;
1652 }
1653 return 0;
1654 }
1655
ignore_missing_thread(struct perf_evsel * evsel,int nr_cpus,int cpu,struct thread_map * threads,int thread,int err)1656 static bool ignore_missing_thread(struct perf_evsel *evsel,
1657 int nr_cpus, int cpu,
1658 struct thread_map *threads,
1659 int thread, int err)
1660 {
1661 pid_t ignore_pid = thread_map__pid(threads, thread);
1662
1663 if (!evsel->ignore_missing_thread)
1664 return false;
1665
1666 /* The system wide setup does not work with threads. */
1667 if (evsel->system_wide)
1668 return false;
1669
1670 /* The -ESRCH is perf event syscall errno for pid's not found. */
1671 if (err != -ESRCH)
1672 return false;
1673
1674 /* If there's only one thread, let it fail. */
1675 if (threads->nr == 1)
1676 return false;
1677
1678 /*
1679 * We should remove fd for missing_thread first
1680 * because thread_map__remove() will decrease threads->nr.
1681 */
1682 if (update_fds(evsel, nr_cpus, cpu, threads->nr, thread))
1683 return false;
1684
1685 if (thread_map__remove(threads, thread))
1686 return false;
1687
1688 pr_warning("WARNING: Ignored open failure for pid %d\n",
1689 ignore_pid);
1690 return true;
1691 }
1692
perf_evsel__open(struct perf_evsel * evsel,struct cpu_map * cpus,struct thread_map * threads)1693 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1694 struct thread_map *threads)
1695 {
1696 int cpu, thread, nthreads;
1697 unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1698 int pid = -1, err;
1699 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1700
1701 if (perf_missing_features.write_backward && evsel->attr.write_backward)
1702 return -EINVAL;
1703
1704 if (cpus == NULL) {
1705 static struct cpu_map *empty_cpu_map;
1706
1707 if (empty_cpu_map == NULL) {
1708 empty_cpu_map = cpu_map__dummy_new();
1709 if (empty_cpu_map == NULL)
1710 return -ENOMEM;
1711 }
1712
1713 cpus = empty_cpu_map;
1714 }
1715
1716 if (threads == NULL) {
1717 static struct thread_map *empty_thread_map;
1718
1719 if (empty_thread_map == NULL) {
1720 empty_thread_map = thread_map__new_by_tid(-1);
1721 if (empty_thread_map == NULL)
1722 return -ENOMEM;
1723 }
1724
1725 threads = empty_thread_map;
1726 }
1727
1728 if (evsel->system_wide)
1729 nthreads = 1;
1730 else
1731 nthreads = threads->nr;
1732
1733 if (evsel->fd == NULL &&
1734 perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1735 return -ENOMEM;
1736
1737 if (evsel->cgrp) {
1738 flags |= PERF_FLAG_PID_CGROUP;
1739 pid = evsel->cgrp->fd;
1740 }
1741
1742 fallback_missing_features:
1743 if (perf_missing_features.clockid_wrong)
1744 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1745 if (perf_missing_features.clockid) {
1746 evsel->attr.use_clockid = 0;
1747 evsel->attr.clockid = 0;
1748 }
1749 if (perf_missing_features.cloexec)
1750 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1751 if (perf_missing_features.mmap2)
1752 evsel->attr.mmap2 = 0;
1753 if (perf_missing_features.exclude_guest)
1754 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1755 if (perf_missing_features.lbr_flags)
1756 evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1757 PERF_SAMPLE_BRANCH_NO_CYCLES);
1758 if (perf_missing_features.group_read && evsel->attr.inherit)
1759 evsel->attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID);
1760 retry_sample_id:
1761 if (perf_missing_features.sample_id_all)
1762 evsel->attr.sample_id_all = 0;
1763
1764 if (verbose >= 2) {
1765 fprintf(stderr, "%.60s\n", graph_dotted_line);
1766 fprintf(stderr, "perf_event_attr:\n");
1767 perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL);
1768 fprintf(stderr, "%.60s\n", graph_dotted_line);
1769 }
1770
1771 for (cpu = 0; cpu < cpus->nr; cpu++) {
1772
1773 for (thread = 0; thread < nthreads; thread++) {
1774 int fd, group_fd;
1775
1776 if (!evsel->cgrp && !evsel->system_wide)
1777 pid = thread_map__pid(threads, thread);
1778
1779 group_fd = get_group_fd(evsel, cpu, thread);
1780 retry_open:
1781 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx",
1782 pid, cpus->map[cpu], group_fd, flags);
1783
1784 test_attr__ready();
1785
1786 fd = sys_perf_event_open(&evsel->attr, pid, cpus->map[cpu],
1787 group_fd, flags);
1788
1789 FD(evsel, cpu, thread) = fd;
1790
1791 if (fd < 0) {
1792 err = -errno;
1793
1794 if (ignore_missing_thread(evsel, cpus->nr, cpu, threads, thread, err)) {
1795 /*
1796 * We just removed 1 thread, so take a step
1797 * back on thread index and lower the upper
1798 * nthreads limit.
1799 */
1800 nthreads--;
1801 thread--;
1802
1803 /* ... and pretend like nothing have happened. */
1804 err = 0;
1805 continue;
1806 }
1807
1808 pr_debug2("\nsys_perf_event_open failed, error %d\n",
1809 err);
1810 goto try_fallback;
1811 }
1812
1813 pr_debug2(" = %d\n", fd);
1814
1815 if (evsel->bpf_fd >= 0) {
1816 int evt_fd = fd;
1817 int bpf_fd = evsel->bpf_fd;
1818
1819 err = ioctl(evt_fd,
1820 PERF_EVENT_IOC_SET_BPF,
1821 bpf_fd);
1822 if (err && errno != EEXIST) {
1823 pr_err("failed to attach bpf fd %d: %s\n",
1824 bpf_fd, strerror(errno));
1825 err = -EINVAL;
1826 goto out_close;
1827 }
1828 }
1829
1830 set_rlimit = NO_CHANGE;
1831
1832 /*
1833 * If we succeeded but had to kill clockid, fail and
1834 * have perf_evsel__open_strerror() print us a nice
1835 * error.
1836 */
1837 if (perf_missing_features.clockid ||
1838 perf_missing_features.clockid_wrong) {
1839 err = -EINVAL;
1840 goto out_close;
1841 }
1842 }
1843 }
1844
1845 return 0;
1846
1847 try_fallback:
1848 /*
1849 * perf stat needs between 5 and 22 fds per CPU. When we run out
1850 * of them try to increase the limits.
1851 */
1852 if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1853 struct rlimit l;
1854 int old_errno = errno;
1855
1856 if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1857 if (set_rlimit == NO_CHANGE)
1858 l.rlim_cur = l.rlim_max;
1859 else {
1860 l.rlim_cur = l.rlim_max + 1000;
1861 l.rlim_max = l.rlim_cur;
1862 }
1863 if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1864 set_rlimit++;
1865 errno = old_errno;
1866 goto retry_open;
1867 }
1868 }
1869 errno = old_errno;
1870 }
1871
1872 if (err != -EINVAL || cpu > 0 || thread > 0)
1873 goto out_close;
1874
1875 /*
1876 * Must probe features in the order they were added to the
1877 * perf_event_attr interface.
1878 */
1879 if (!perf_missing_features.write_backward && evsel->attr.write_backward) {
1880 perf_missing_features.write_backward = true;
1881 pr_debug2("switching off write_backward\n");
1882 goto out_close;
1883 } else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
1884 perf_missing_features.clockid_wrong = true;
1885 pr_debug2("switching off clockid\n");
1886 goto fallback_missing_features;
1887 } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
1888 perf_missing_features.clockid = true;
1889 pr_debug2("switching off use_clockid\n");
1890 goto fallback_missing_features;
1891 } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1892 perf_missing_features.cloexec = true;
1893 pr_debug2("switching off cloexec flag\n");
1894 goto fallback_missing_features;
1895 } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1896 perf_missing_features.mmap2 = true;
1897 pr_debug2("switching off mmap2\n");
1898 goto fallback_missing_features;
1899 } else if (!perf_missing_features.exclude_guest &&
1900 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1901 perf_missing_features.exclude_guest = true;
1902 pr_debug2("switching off exclude_guest, exclude_host\n");
1903 goto fallback_missing_features;
1904 } else if (!perf_missing_features.sample_id_all) {
1905 perf_missing_features.sample_id_all = true;
1906 pr_debug2("switching off sample_id_all\n");
1907 goto retry_sample_id;
1908 } else if (!perf_missing_features.lbr_flags &&
1909 (evsel->attr.branch_sample_type &
1910 (PERF_SAMPLE_BRANCH_NO_CYCLES |
1911 PERF_SAMPLE_BRANCH_NO_FLAGS))) {
1912 perf_missing_features.lbr_flags = true;
1913 pr_debug2("switching off branch sample type no (cycles/flags)\n");
1914 goto fallback_missing_features;
1915 } else if (!perf_missing_features.group_read &&
1916 evsel->attr.inherit &&
1917 (evsel->attr.read_format & PERF_FORMAT_GROUP)) {
1918 perf_missing_features.group_read = true;
1919 pr_debug2("switching off group read\n");
1920 goto fallback_missing_features;
1921 }
1922 out_close:
1923 do {
1924 while (--thread >= 0) {
1925 close(FD(evsel, cpu, thread));
1926 FD(evsel, cpu, thread) = -1;
1927 }
1928 thread = nthreads;
1929 } while (--cpu >= 0);
1930 return err;
1931 }
1932
perf_evsel__close(struct perf_evsel * evsel)1933 void perf_evsel__close(struct perf_evsel *evsel)
1934 {
1935 if (evsel->fd == NULL)
1936 return;
1937
1938 perf_evsel__close_fd(evsel);
1939 perf_evsel__free_fd(evsel);
1940 }
1941
perf_evsel__open_per_cpu(struct perf_evsel * evsel,struct cpu_map * cpus)1942 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1943 struct cpu_map *cpus)
1944 {
1945 return perf_evsel__open(evsel, cpus, NULL);
1946 }
1947
perf_evsel__open_per_thread(struct perf_evsel * evsel,struct thread_map * threads)1948 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1949 struct thread_map *threads)
1950 {
1951 return perf_evsel__open(evsel, NULL, threads);
1952 }
1953
perf_evsel__parse_id_sample(const struct perf_evsel * evsel,const union perf_event * event,struct perf_sample * sample)1954 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1955 const union perf_event *event,
1956 struct perf_sample *sample)
1957 {
1958 u64 type = evsel->attr.sample_type;
1959 const u64 *array = event->sample.array;
1960 bool swapped = evsel->needs_swap;
1961 union u64_swap u;
1962
1963 array += ((event->header.size -
1964 sizeof(event->header)) / sizeof(u64)) - 1;
1965
1966 if (type & PERF_SAMPLE_IDENTIFIER) {
1967 sample->id = *array;
1968 array--;
1969 }
1970
1971 if (type & PERF_SAMPLE_CPU) {
1972 u.val64 = *array;
1973 if (swapped) {
1974 /* undo swap of u64, then swap on individual u32s */
1975 u.val64 = bswap_64(u.val64);
1976 u.val32[0] = bswap_32(u.val32[0]);
1977 }
1978
1979 sample->cpu = u.val32[0];
1980 array--;
1981 }
1982
1983 if (type & PERF_SAMPLE_STREAM_ID) {
1984 sample->stream_id = *array;
1985 array--;
1986 }
1987
1988 if (type & PERF_SAMPLE_ID) {
1989 sample->id = *array;
1990 array--;
1991 }
1992
1993 if (type & PERF_SAMPLE_TIME) {
1994 sample->time = *array;
1995 array--;
1996 }
1997
1998 if (type & PERF_SAMPLE_TID) {
1999 u.val64 = *array;
2000 if (swapped) {
2001 /* undo swap of u64, then swap on individual u32s */
2002 u.val64 = bswap_64(u.val64);
2003 u.val32[0] = bswap_32(u.val32[0]);
2004 u.val32[1] = bswap_32(u.val32[1]);
2005 }
2006
2007 sample->pid = u.val32[0];
2008 sample->tid = u.val32[1];
2009 array--;
2010 }
2011
2012 return 0;
2013 }
2014
overflow(const void * endp,u16 max_size,const void * offset,u64 size)2015 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
2016 u64 size)
2017 {
2018 return size > max_size || offset + size > endp;
2019 }
2020
2021 #define OVERFLOW_CHECK(offset, size, max_size) \
2022 do { \
2023 if (overflow(endp, (max_size), (offset), (size))) \
2024 return -EFAULT; \
2025 } while (0)
2026
2027 #define OVERFLOW_CHECK_u64(offset) \
2028 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
2029
perf_evsel__parse_sample(struct perf_evsel * evsel,union perf_event * event,struct perf_sample * data)2030 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
2031 struct perf_sample *data)
2032 {
2033 u64 type = evsel->attr.sample_type;
2034 bool swapped = evsel->needs_swap;
2035 const u64 *array;
2036 u16 max_size = event->header.size;
2037 const void *endp = (void *)event + max_size;
2038 u64 sz;
2039
2040 /*
2041 * used for cross-endian analysis. See git commit 65014ab3
2042 * for why this goofiness is needed.
2043 */
2044 union u64_swap u;
2045
2046 memset(data, 0, sizeof(*data));
2047 data->cpu = data->pid = data->tid = -1;
2048 data->stream_id = data->id = data->time = -1ULL;
2049 data->period = evsel->attr.sample_period;
2050 data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2051
2052 if (event->header.type != PERF_RECORD_SAMPLE) {
2053 if (!evsel->attr.sample_id_all)
2054 return 0;
2055 return perf_evsel__parse_id_sample(evsel, event, data);
2056 }
2057
2058 array = event->sample.array;
2059
2060 /*
2061 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
2062 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to
2063 * check the format does not go past the end of the event.
2064 */
2065 if (evsel->sample_size + sizeof(event->header) > event->header.size)
2066 return -EFAULT;
2067
2068 data->id = -1ULL;
2069 if (type & PERF_SAMPLE_IDENTIFIER) {
2070 data->id = *array;
2071 array++;
2072 }
2073
2074 if (type & PERF_SAMPLE_IP) {
2075 data->ip = *array;
2076 array++;
2077 }
2078
2079 if (type & PERF_SAMPLE_TID) {
2080 u.val64 = *array;
2081 if (swapped) {
2082 /* undo swap of u64, then swap on individual u32s */
2083 u.val64 = bswap_64(u.val64);
2084 u.val32[0] = bswap_32(u.val32[0]);
2085 u.val32[1] = bswap_32(u.val32[1]);
2086 }
2087
2088 data->pid = u.val32[0];
2089 data->tid = u.val32[1];
2090 array++;
2091 }
2092
2093 if (type & PERF_SAMPLE_TIME) {
2094 data->time = *array;
2095 array++;
2096 }
2097
2098 data->addr = 0;
2099 if (type & PERF_SAMPLE_ADDR) {
2100 data->addr = *array;
2101 array++;
2102 }
2103
2104 if (type & PERF_SAMPLE_ID) {
2105 data->id = *array;
2106 array++;
2107 }
2108
2109 if (type & PERF_SAMPLE_STREAM_ID) {
2110 data->stream_id = *array;
2111 array++;
2112 }
2113
2114 if (type & PERF_SAMPLE_CPU) {
2115
2116 u.val64 = *array;
2117 if (swapped) {
2118 /* undo swap of u64, then swap on individual u32s */
2119 u.val64 = bswap_64(u.val64);
2120 u.val32[0] = bswap_32(u.val32[0]);
2121 }
2122
2123 data->cpu = u.val32[0];
2124 array++;
2125 }
2126
2127 if (type & PERF_SAMPLE_PERIOD) {
2128 data->period = *array;
2129 array++;
2130 }
2131
2132 if (type & PERF_SAMPLE_READ) {
2133 u64 read_format = evsel->attr.read_format;
2134
2135 OVERFLOW_CHECK_u64(array);
2136 if (read_format & PERF_FORMAT_GROUP)
2137 data->read.group.nr = *array;
2138 else
2139 data->read.one.value = *array;
2140
2141 array++;
2142
2143 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2144 OVERFLOW_CHECK_u64(array);
2145 data->read.time_enabled = *array;
2146 array++;
2147 }
2148
2149 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2150 OVERFLOW_CHECK_u64(array);
2151 data->read.time_running = *array;
2152 array++;
2153 }
2154
2155 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2156 if (read_format & PERF_FORMAT_GROUP) {
2157 const u64 max_group_nr = UINT64_MAX /
2158 sizeof(struct sample_read_value);
2159
2160 if (data->read.group.nr > max_group_nr)
2161 return -EFAULT;
2162 sz = data->read.group.nr *
2163 sizeof(struct sample_read_value);
2164 OVERFLOW_CHECK(array, sz, max_size);
2165 data->read.group.values =
2166 (struct sample_read_value *)array;
2167 array = (void *)array + sz;
2168 } else {
2169 OVERFLOW_CHECK_u64(array);
2170 data->read.one.id = *array;
2171 array++;
2172 }
2173 }
2174
2175 if (type & PERF_SAMPLE_CALLCHAIN) {
2176 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
2177
2178 OVERFLOW_CHECK_u64(array);
2179 data->callchain = (struct ip_callchain *)array++;
2180 if (data->callchain->nr > max_callchain_nr)
2181 return -EFAULT;
2182 sz = data->callchain->nr * sizeof(u64);
2183 OVERFLOW_CHECK(array, sz, max_size);
2184 array = (void *)array + sz;
2185 }
2186
2187 if (type & PERF_SAMPLE_RAW) {
2188 OVERFLOW_CHECK_u64(array);
2189 u.val64 = *array;
2190 if (WARN_ONCE(swapped,
2191 "Endianness of raw data not corrected!\n")) {
2192 /* undo swap of u64, then swap on individual u32s */
2193 u.val64 = bswap_64(u.val64);
2194 u.val32[0] = bswap_32(u.val32[0]);
2195 u.val32[1] = bswap_32(u.val32[1]);
2196 }
2197 data->raw_size = u.val32[0];
2198 array = (void *)array + sizeof(u32);
2199
2200 OVERFLOW_CHECK(array, data->raw_size, max_size);
2201 data->raw_data = (void *)array;
2202 array = (void *)array + data->raw_size;
2203 }
2204
2205 if (type & PERF_SAMPLE_BRANCH_STACK) {
2206 const u64 max_branch_nr = UINT64_MAX /
2207 sizeof(struct branch_entry);
2208
2209 OVERFLOW_CHECK_u64(array);
2210 data->branch_stack = (struct branch_stack *)array++;
2211
2212 if (data->branch_stack->nr > max_branch_nr)
2213 return -EFAULT;
2214 sz = data->branch_stack->nr * sizeof(struct branch_entry);
2215 OVERFLOW_CHECK(array, sz, max_size);
2216 array = (void *)array + sz;
2217 }
2218
2219 if (type & PERF_SAMPLE_REGS_USER) {
2220 OVERFLOW_CHECK_u64(array);
2221 data->user_regs.abi = *array;
2222 array++;
2223
2224 if (data->user_regs.abi) {
2225 u64 mask = evsel->attr.sample_regs_user;
2226
2227 sz = hweight_long(mask) * sizeof(u64);
2228 OVERFLOW_CHECK(array, sz, max_size);
2229 data->user_regs.mask = mask;
2230 data->user_regs.regs = (u64 *)array;
2231 array = (void *)array + sz;
2232 }
2233 }
2234
2235 if (type & PERF_SAMPLE_STACK_USER) {
2236 OVERFLOW_CHECK_u64(array);
2237 sz = *array++;
2238
2239 data->user_stack.offset = ((char *)(array - 1)
2240 - (char *) event);
2241
2242 if (!sz) {
2243 data->user_stack.size = 0;
2244 } else {
2245 OVERFLOW_CHECK(array, sz, max_size);
2246 data->user_stack.data = (char *)array;
2247 array = (void *)array + sz;
2248 OVERFLOW_CHECK_u64(array);
2249 data->user_stack.size = *array++;
2250 if (WARN_ONCE(data->user_stack.size > sz,
2251 "user stack dump failure\n"))
2252 return -EFAULT;
2253 }
2254 }
2255
2256 if (type & PERF_SAMPLE_WEIGHT) {
2257 OVERFLOW_CHECK_u64(array);
2258 data->weight = *array;
2259 array++;
2260 }
2261
2262 data->data_src = PERF_MEM_DATA_SRC_NONE;
2263 if (type & PERF_SAMPLE_DATA_SRC) {
2264 OVERFLOW_CHECK_u64(array);
2265 data->data_src = *array;
2266 array++;
2267 }
2268
2269 data->transaction = 0;
2270 if (type & PERF_SAMPLE_TRANSACTION) {
2271 OVERFLOW_CHECK_u64(array);
2272 data->transaction = *array;
2273 array++;
2274 }
2275
2276 data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
2277 if (type & PERF_SAMPLE_REGS_INTR) {
2278 OVERFLOW_CHECK_u64(array);
2279 data->intr_regs.abi = *array;
2280 array++;
2281
2282 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
2283 u64 mask = evsel->attr.sample_regs_intr;
2284
2285 sz = hweight_long(mask) * sizeof(u64);
2286 OVERFLOW_CHECK(array, sz, max_size);
2287 data->intr_regs.mask = mask;
2288 data->intr_regs.regs = (u64 *)array;
2289 array = (void *)array + sz;
2290 }
2291 }
2292
2293 data->phys_addr = 0;
2294 if (type & PERF_SAMPLE_PHYS_ADDR) {
2295 data->phys_addr = *array;
2296 array++;
2297 }
2298
2299 return 0;
2300 }
2301
perf_event__sample_event_size(const struct perf_sample * sample,u64 type,u64 read_format)2302 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
2303 u64 read_format)
2304 {
2305 size_t sz, result = sizeof(struct sample_event);
2306
2307 if (type & PERF_SAMPLE_IDENTIFIER)
2308 result += sizeof(u64);
2309
2310 if (type & PERF_SAMPLE_IP)
2311 result += sizeof(u64);
2312
2313 if (type & PERF_SAMPLE_TID)
2314 result += sizeof(u64);
2315
2316 if (type & PERF_SAMPLE_TIME)
2317 result += sizeof(u64);
2318
2319 if (type & PERF_SAMPLE_ADDR)
2320 result += sizeof(u64);
2321
2322 if (type & PERF_SAMPLE_ID)
2323 result += sizeof(u64);
2324
2325 if (type & PERF_SAMPLE_STREAM_ID)
2326 result += sizeof(u64);
2327
2328 if (type & PERF_SAMPLE_CPU)
2329 result += sizeof(u64);
2330
2331 if (type & PERF_SAMPLE_PERIOD)
2332 result += sizeof(u64);
2333
2334 if (type & PERF_SAMPLE_READ) {
2335 result += sizeof(u64);
2336 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2337 result += sizeof(u64);
2338 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2339 result += sizeof(u64);
2340 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2341 if (read_format & PERF_FORMAT_GROUP) {
2342 sz = sample->read.group.nr *
2343 sizeof(struct sample_read_value);
2344 result += sz;
2345 } else {
2346 result += sizeof(u64);
2347 }
2348 }
2349
2350 if (type & PERF_SAMPLE_CALLCHAIN) {
2351 sz = (sample->callchain->nr + 1) * sizeof(u64);
2352 result += sz;
2353 }
2354
2355 if (type & PERF_SAMPLE_RAW) {
2356 result += sizeof(u32);
2357 result += sample->raw_size;
2358 }
2359
2360 if (type & PERF_SAMPLE_BRANCH_STACK) {
2361 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2362 sz += sizeof(u64);
2363 result += sz;
2364 }
2365
2366 if (type & PERF_SAMPLE_REGS_USER) {
2367 if (sample->user_regs.abi) {
2368 result += sizeof(u64);
2369 sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2370 result += sz;
2371 } else {
2372 result += sizeof(u64);
2373 }
2374 }
2375
2376 if (type & PERF_SAMPLE_STACK_USER) {
2377 sz = sample->user_stack.size;
2378 result += sizeof(u64);
2379 if (sz) {
2380 result += sz;
2381 result += sizeof(u64);
2382 }
2383 }
2384
2385 if (type & PERF_SAMPLE_WEIGHT)
2386 result += sizeof(u64);
2387
2388 if (type & PERF_SAMPLE_DATA_SRC)
2389 result += sizeof(u64);
2390
2391 if (type & PERF_SAMPLE_TRANSACTION)
2392 result += sizeof(u64);
2393
2394 if (type & PERF_SAMPLE_REGS_INTR) {
2395 if (sample->intr_regs.abi) {
2396 result += sizeof(u64);
2397 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2398 result += sz;
2399 } else {
2400 result += sizeof(u64);
2401 }
2402 }
2403
2404 if (type & PERF_SAMPLE_PHYS_ADDR)
2405 result += sizeof(u64);
2406
2407 return result;
2408 }
2409
perf_event__synthesize_sample(union perf_event * event,u64 type,u64 read_format,const struct perf_sample * sample,bool swapped)2410 int perf_event__synthesize_sample(union perf_event *event, u64 type,
2411 u64 read_format,
2412 const struct perf_sample *sample,
2413 bool swapped)
2414 {
2415 u64 *array;
2416 size_t sz;
2417 /*
2418 * used for cross-endian analysis. See git commit 65014ab3
2419 * for why this goofiness is needed.
2420 */
2421 union u64_swap u;
2422
2423 array = event->sample.array;
2424
2425 if (type & PERF_SAMPLE_IDENTIFIER) {
2426 *array = sample->id;
2427 array++;
2428 }
2429
2430 if (type & PERF_SAMPLE_IP) {
2431 *array = sample->ip;
2432 array++;
2433 }
2434
2435 if (type & PERF_SAMPLE_TID) {
2436 u.val32[0] = sample->pid;
2437 u.val32[1] = sample->tid;
2438 if (swapped) {
2439 /*
2440 * Inverse of what is done in perf_evsel__parse_sample
2441 */
2442 u.val32[0] = bswap_32(u.val32[0]);
2443 u.val32[1] = bswap_32(u.val32[1]);
2444 u.val64 = bswap_64(u.val64);
2445 }
2446
2447 *array = u.val64;
2448 array++;
2449 }
2450
2451 if (type & PERF_SAMPLE_TIME) {
2452 *array = sample->time;
2453 array++;
2454 }
2455
2456 if (type & PERF_SAMPLE_ADDR) {
2457 *array = sample->addr;
2458 array++;
2459 }
2460
2461 if (type & PERF_SAMPLE_ID) {
2462 *array = sample->id;
2463 array++;
2464 }
2465
2466 if (type & PERF_SAMPLE_STREAM_ID) {
2467 *array = sample->stream_id;
2468 array++;
2469 }
2470
2471 if (type & PERF_SAMPLE_CPU) {
2472 u.val32[0] = sample->cpu;
2473 if (swapped) {
2474 /*
2475 * Inverse of what is done in perf_evsel__parse_sample
2476 */
2477 u.val32[0] = bswap_32(u.val32[0]);
2478 u.val64 = bswap_64(u.val64);
2479 }
2480 *array = u.val64;
2481 array++;
2482 }
2483
2484 if (type & PERF_SAMPLE_PERIOD) {
2485 *array = sample->period;
2486 array++;
2487 }
2488
2489 if (type & PERF_SAMPLE_READ) {
2490 if (read_format & PERF_FORMAT_GROUP)
2491 *array = sample->read.group.nr;
2492 else
2493 *array = sample->read.one.value;
2494 array++;
2495
2496 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2497 *array = sample->read.time_enabled;
2498 array++;
2499 }
2500
2501 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2502 *array = sample->read.time_running;
2503 array++;
2504 }
2505
2506 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2507 if (read_format & PERF_FORMAT_GROUP) {
2508 sz = sample->read.group.nr *
2509 sizeof(struct sample_read_value);
2510 memcpy(array, sample->read.group.values, sz);
2511 array = (void *)array + sz;
2512 } else {
2513 *array = sample->read.one.id;
2514 array++;
2515 }
2516 }
2517
2518 if (type & PERF_SAMPLE_CALLCHAIN) {
2519 sz = (sample->callchain->nr + 1) * sizeof(u64);
2520 memcpy(array, sample->callchain, sz);
2521 array = (void *)array + sz;
2522 }
2523
2524 if (type & PERF_SAMPLE_RAW) {
2525 u.val32[0] = sample->raw_size;
2526 if (WARN_ONCE(swapped,
2527 "Endianness of raw data not corrected!\n")) {
2528 /*
2529 * Inverse of what is done in perf_evsel__parse_sample
2530 */
2531 u.val32[0] = bswap_32(u.val32[0]);
2532 u.val32[1] = bswap_32(u.val32[1]);
2533 u.val64 = bswap_64(u.val64);
2534 }
2535 *array = u.val64;
2536 array = (void *)array + sizeof(u32);
2537
2538 memcpy(array, sample->raw_data, sample->raw_size);
2539 array = (void *)array + sample->raw_size;
2540 }
2541
2542 if (type & PERF_SAMPLE_BRANCH_STACK) {
2543 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2544 sz += sizeof(u64);
2545 memcpy(array, sample->branch_stack, sz);
2546 array = (void *)array + sz;
2547 }
2548
2549 if (type & PERF_SAMPLE_REGS_USER) {
2550 if (sample->user_regs.abi) {
2551 *array++ = sample->user_regs.abi;
2552 sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2553 memcpy(array, sample->user_regs.regs, sz);
2554 array = (void *)array + sz;
2555 } else {
2556 *array++ = 0;
2557 }
2558 }
2559
2560 if (type & PERF_SAMPLE_STACK_USER) {
2561 sz = sample->user_stack.size;
2562 *array++ = sz;
2563 if (sz) {
2564 memcpy(array, sample->user_stack.data, sz);
2565 array = (void *)array + sz;
2566 *array++ = sz;
2567 }
2568 }
2569
2570 if (type & PERF_SAMPLE_WEIGHT) {
2571 *array = sample->weight;
2572 array++;
2573 }
2574
2575 if (type & PERF_SAMPLE_DATA_SRC) {
2576 *array = sample->data_src;
2577 array++;
2578 }
2579
2580 if (type & PERF_SAMPLE_TRANSACTION) {
2581 *array = sample->transaction;
2582 array++;
2583 }
2584
2585 if (type & PERF_SAMPLE_REGS_INTR) {
2586 if (sample->intr_regs.abi) {
2587 *array++ = sample->intr_regs.abi;
2588 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2589 memcpy(array, sample->intr_regs.regs, sz);
2590 array = (void *)array + sz;
2591 } else {
2592 *array++ = 0;
2593 }
2594 }
2595
2596 if (type & PERF_SAMPLE_PHYS_ADDR) {
2597 *array = sample->phys_addr;
2598 array++;
2599 }
2600
2601 return 0;
2602 }
2603
perf_evsel__field(struct perf_evsel * evsel,const char * name)2604 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
2605 {
2606 return pevent_find_field(evsel->tp_format, name);
2607 }
2608
perf_evsel__rawptr(struct perf_evsel * evsel,struct perf_sample * sample,const char * name)2609 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
2610 const char *name)
2611 {
2612 struct format_field *field = perf_evsel__field(evsel, name);
2613 int offset;
2614
2615 if (!field)
2616 return NULL;
2617
2618 offset = field->offset;
2619
2620 if (field->flags & FIELD_IS_DYNAMIC) {
2621 offset = *(int *)(sample->raw_data + field->offset);
2622 offset &= 0xffff;
2623 }
2624
2625 return sample->raw_data + offset;
2626 }
2627
format_field__intval(struct format_field * field,struct perf_sample * sample,bool needs_swap)2628 u64 format_field__intval(struct format_field *field, struct perf_sample *sample,
2629 bool needs_swap)
2630 {
2631 u64 value;
2632 void *ptr = sample->raw_data + field->offset;
2633
2634 switch (field->size) {
2635 case 1:
2636 return *(u8 *)ptr;
2637 case 2:
2638 value = *(u16 *)ptr;
2639 break;
2640 case 4:
2641 value = *(u32 *)ptr;
2642 break;
2643 case 8:
2644 memcpy(&value, ptr, sizeof(u64));
2645 break;
2646 default:
2647 return 0;
2648 }
2649
2650 if (!needs_swap)
2651 return value;
2652
2653 switch (field->size) {
2654 case 2:
2655 return bswap_16(value);
2656 case 4:
2657 return bswap_32(value);
2658 case 8:
2659 return bswap_64(value);
2660 default:
2661 return 0;
2662 }
2663
2664 return 0;
2665 }
2666
perf_evsel__intval(struct perf_evsel * evsel,struct perf_sample * sample,const char * name)2667 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
2668 const char *name)
2669 {
2670 struct format_field *field = perf_evsel__field(evsel, name);
2671
2672 if (!field)
2673 return 0;
2674
2675 return field ? format_field__intval(field, sample, evsel->needs_swap) : 0;
2676 }
2677
perf_evsel__fallback(struct perf_evsel * evsel,int err,char * msg,size_t msgsize)2678 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2679 char *msg, size_t msgsize)
2680 {
2681 int paranoid;
2682
2683 if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2684 evsel->attr.type == PERF_TYPE_HARDWARE &&
2685 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2686 /*
2687 * If it's cycles then fall back to hrtimer based
2688 * cpu-clock-tick sw counter, which is always available even if
2689 * no PMU support.
2690 *
2691 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2692 * b0a873e).
2693 */
2694 scnprintf(msg, msgsize, "%s",
2695 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2696
2697 evsel->attr.type = PERF_TYPE_SOFTWARE;
2698 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2699
2700 zfree(&evsel->name);
2701 return true;
2702 } else if (err == EACCES && !evsel->attr.exclude_kernel &&
2703 (paranoid = perf_event_paranoid()) > 1) {
2704 const char *name = perf_evsel__name(evsel);
2705 char *new_name;
2706
2707 if (asprintf(&new_name, "%s%su", name, strchr(name, ':') ? "" : ":") < 0)
2708 return false;
2709
2710 if (evsel->name)
2711 free(evsel->name);
2712 evsel->name = new_name;
2713 scnprintf(msg, msgsize,
2714 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid);
2715 evsel->attr.exclude_kernel = 1;
2716
2717 return true;
2718 }
2719
2720 return false;
2721 }
2722
find_process(const char * name)2723 static bool find_process(const char *name)
2724 {
2725 size_t len = strlen(name);
2726 DIR *dir;
2727 struct dirent *d;
2728 int ret = -1;
2729
2730 dir = opendir(procfs__mountpoint());
2731 if (!dir)
2732 return false;
2733
2734 /* Walk through the directory. */
2735 while (ret && (d = readdir(dir)) != NULL) {
2736 char path[PATH_MAX];
2737 char *data;
2738 size_t size;
2739
2740 if ((d->d_type != DT_DIR) ||
2741 !strcmp(".", d->d_name) ||
2742 !strcmp("..", d->d_name))
2743 continue;
2744
2745 scnprintf(path, sizeof(path), "%s/%s/comm",
2746 procfs__mountpoint(), d->d_name);
2747
2748 if (filename__read_str(path, &data, &size))
2749 continue;
2750
2751 ret = strncmp(name, data, len);
2752 free(data);
2753 }
2754
2755 closedir(dir);
2756 return ret ? false : true;
2757 }
2758
perf_evsel__open_strerror(struct perf_evsel * evsel,struct target * target,int err,char * msg,size_t size)2759 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2760 int err, char *msg, size_t size)
2761 {
2762 char sbuf[STRERR_BUFSIZE];
2763 int printed = 0;
2764
2765 switch (err) {
2766 case EPERM:
2767 case EACCES:
2768 if (err == EPERM)
2769 printed = scnprintf(msg, size,
2770 "No permission to enable %s event.\n\n",
2771 perf_evsel__name(evsel));
2772
2773 return scnprintf(msg + printed, size - printed,
2774 "You may not have permission to collect %sstats.\n\n"
2775 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2776 "which controls use of the performance events system by\n"
2777 "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2778 "The current value is %d:\n\n"
2779 " -1: Allow use of (almost) all events by all users\n"
2780 " Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n"
2781 ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n"
2782 " Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n"
2783 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2784 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n"
2785 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n"
2786 " kernel.perf_event_paranoid = -1\n" ,
2787 target->system_wide ? "system-wide " : "",
2788 perf_event_paranoid());
2789 case ENOENT:
2790 return scnprintf(msg, size, "The %s event is not supported.",
2791 perf_evsel__name(evsel));
2792 case EMFILE:
2793 return scnprintf(msg, size, "%s",
2794 "Too many events are opened.\n"
2795 "Probably the maximum number of open file descriptors has been reached.\n"
2796 "Hint: Try again after reducing the number of events.\n"
2797 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2798 case ENOMEM:
2799 if ((evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN) != 0 &&
2800 access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
2801 return scnprintf(msg, size,
2802 "Not enough memory to setup event with callchain.\n"
2803 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2804 "Hint: Current value: %d", sysctl_perf_event_max_stack);
2805 break;
2806 case ENODEV:
2807 if (target->cpu_list)
2808 return scnprintf(msg, size, "%s",
2809 "No such device - did you specify an out-of-range profile CPU?");
2810 break;
2811 case EOPNOTSUPP:
2812 if (evsel->attr.sample_period != 0)
2813 return scnprintf(msg, size, "%s",
2814 "PMU Hardware doesn't support sampling/overflow-interrupts.");
2815 if (evsel->attr.precise_ip)
2816 return scnprintf(msg, size, "%s",
2817 "\'precise\' request may not be supported. Try removing 'p' modifier.");
2818 #if defined(__i386__) || defined(__x86_64__)
2819 if (evsel->attr.type == PERF_TYPE_HARDWARE)
2820 return scnprintf(msg, size, "%s",
2821 "No hardware sampling interrupt available.\n"
2822 "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2823 #endif
2824 break;
2825 case EBUSY:
2826 if (find_process("oprofiled"))
2827 return scnprintf(msg, size,
2828 "The PMU counters are busy/taken by another profiler.\n"
2829 "We found oprofile daemon running, please stop it and try again.");
2830 break;
2831 case EINVAL:
2832 if (evsel->attr.write_backward && perf_missing_features.write_backward)
2833 return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel.");
2834 if (perf_missing_features.clockid)
2835 return scnprintf(msg, size, "clockid feature not supported.");
2836 if (perf_missing_features.clockid_wrong)
2837 return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2838 break;
2839 default:
2840 break;
2841 }
2842
2843 return scnprintf(msg, size,
2844 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2845 "/bin/dmesg may provide additional information.\n"
2846 "No CONFIG_PERF_EVENTS=y kernel support configured?",
2847 err, str_error_r(err, sbuf, sizeof(sbuf)),
2848 perf_evsel__name(evsel));
2849 }
2850
perf_evsel__env_arch(struct perf_evsel * evsel)2851 char *perf_evsel__env_arch(struct perf_evsel *evsel)
2852 {
2853 if (evsel && evsel->evlist && evsel->evlist->env)
2854 return evsel->evlist->env->arch;
2855 return NULL;
2856 }
2857
perf_evsel__env_cpuid(struct perf_evsel * evsel)2858 char *perf_evsel__env_cpuid(struct perf_evsel *evsel)
2859 {
2860 if (evsel && evsel->evlist && evsel->evlist->env)
2861 return evsel->evlist->env->cpuid;
2862 return NULL;
2863 }
2864