• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3  *
4  * Parts came from builtin-{top,stat,record}.c, see those files for further
5  * copyright notes.
6  *
7  * Released under the GPL v2. (and only v2, not any later version)
8  */
9 
10 #include <byteswap.h>
11 #include <errno.h>
12 #include <inttypes.h>
13 #include <linux/bitops.h>
14 #include <api/fs/fs.h>
15 #include <api/fs/tracing_path.h>
16 #include <traceevent/event-parse.h>
17 #include <linux/hw_breakpoint.h>
18 #include <linux/perf_event.h>
19 #include <linux/compiler.h>
20 #include <linux/err.h>
21 #include <sys/ioctl.h>
22 #include <sys/resource.h>
23 #include <sys/types.h>
24 #include <dirent.h>
25 #include "asm/bug.h"
26 #include "callchain.h"
27 #include "cgroup.h"
28 #include "event.h"
29 #include "evsel.h"
30 #include "evlist.h"
31 #include "util.h"
32 #include "cpumap.h"
33 #include "thread_map.h"
34 #include "target.h"
35 #include "perf_regs.h"
36 #include "debug.h"
37 #include "trace-event.h"
38 #include "stat.h"
39 #include "util/parse-branch-options.h"
40 
41 #include "sane_ctype.h"
42 
43 static struct {
44 	bool sample_id_all;
45 	bool exclude_guest;
46 	bool mmap2;
47 	bool cloexec;
48 	bool clockid;
49 	bool clockid_wrong;
50 	bool lbr_flags;
51 	bool write_backward;
52 	bool group_read;
53 } perf_missing_features;
54 
55 static clockid_t clockid;
56 
perf_evsel__no_extra_init(struct perf_evsel * evsel __maybe_unused)57 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
58 {
59 	return 0;
60 }
61 
test_attr__ready(void)62 void __weak test_attr__ready(void) { }
63 
perf_evsel__no_extra_fini(struct perf_evsel * evsel __maybe_unused)64 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
65 {
66 }
67 
68 static struct {
69 	size_t	size;
70 	int	(*init)(struct perf_evsel *evsel);
71 	void	(*fini)(struct perf_evsel *evsel);
72 } perf_evsel__object = {
73 	.size = sizeof(struct perf_evsel),
74 	.init = perf_evsel__no_extra_init,
75 	.fini = perf_evsel__no_extra_fini,
76 };
77 
perf_evsel__object_config(size_t object_size,int (* init)(struct perf_evsel * evsel),void (* fini)(struct perf_evsel * evsel))78 int perf_evsel__object_config(size_t object_size,
79 			      int (*init)(struct perf_evsel *evsel),
80 			      void (*fini)(struct perf_evsel *evsel))
81 {
82 
83 	if (object_size == 0)
84 		goto set_methods;
85 
86 	if (perf_evsel__object.size > object_size)
87 		return -EINVAL;
88 
89 	perf_evsel__object.size = object_size;
90 
91 set_methods:
92 	if (init != NULL)
93 		perf_evsel__object.init = init;
94 
95 	if (fini != NULL)
96 		perf_evsel__object.fini = fini;
97 
98 	return 0;
99 }
100 
101 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
102 
__perf_evsel__sample_size(u64 sample_type)103 int __perf_evsel__sample_size(u64 sample_type)
104 {
105 	u64 mask = sample_type & PERF_SAMPLE_MASK;
106 	int size = 0;
107 	int i;
108 
109 	for (i = 0; i < 64; i++) {
110 		if (mask & (1ULL << i))
111 			size++;
112 	}
113 
114 	size *= sizeof(u64);
115 
116 	return size;
117 }
118 
119 /**
120  * __perf_evsel__calc_id_pos - calculate id_pos.
121  * @sample_type: sample type
122  *
123  * This function returns the position of the event id (PERF_SAMPLE_ID or
124  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
125  * sample_event.
126  */
__perf_evsel__calc_id_pos(u64 sample_type)127 static int __perf_evsel__calc_id_pos(u64 sample_type)
128 {
129 	int idx = 0;
130 
131 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
132 		return 0;
133 
134 	if (!(sample_type & PERF_SAMPLE_ID))
135 		return -1;
136 
137 	if (sample_type & PERF_SAMPLE_IP)
138 		idx += 1;
139 
140 	if (sample_type & PERF_SAMPLE_TID)
141 		idx += 1;
142 
143 	if (sample_type & PERF_SAMPLE_TIME)
144 		idx += 1;
145 
146 	if (sample_type & PERF_SAMPLE_ADDR)
147 		idx += 1;
148 
149 	return idx;
150 }
151 
152 /**
153  * __perf_evsel__calc_is_pos - calculate is_pos.
154  * @sample_type: sample type
155  *
156  * This function returns the position (counting backwards) of the event id
157  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
158  * sample_id_all is used there is an id sample appended to non-sample events.
159  */
__perf_evsel__calc_is_pos(u64 sample_type)160 static int __perf_evsel__calc_is_pos(u64 sample_type)
161 {
162 	int idx = 1;
163 
164 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
165 		return 1;
166 
167 	if (!(sample_type & PERF_SAMPLE_ID))
168 		return -1;
169 
170 	if (sample_type & PERF_SAMPLE_CPU)
171 		idx += 1;
172 
173 	if (sample_type & PERF_SAMPLE_STREAM_ID)
174 		idx += 1;
175 
176 	return idx;
177 }
178 
perf_evsel__calc_id_pos(struct perf_evsel * evsel)179 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
180 {
181 	evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
182 	evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
183 }
184 
__perf_evsel__set_sample_bit(struct perf_evsel * evsel,enum perf_event_sample_format bit)185 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
186 				  enum perf_event_sample_format bit)
187 {
188 	if (!(evsel->attr.sample_type & bit)) {
189 		evsel->attr.sample_type |= bit;
190 		evsel->sample_size += sizeof(u64);
191 		perf_evsel__calc_id_pos(evsel);
192 	}
193 }
194 
__perf_evsel__reset_sample_bit(struct perf_evsel * evsel,enum perf_event_sample_format bit)195 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
196 				    enum perf_event_sample_format bit)
197 {
198 	if (evsel->attr.sample_type & bit) {
199 		evsel->attr.sample_type &= ~bit;
200 		evsel->sample_size -= sizeof(u64);
201 		perf_evsel__calc_id_pos(evsel);
202 	}
203 }
204 
perf_evsel__set_sample_id(struct perf_evsel * evsel,bool can_sample_identifier)205 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
206 			       bool can_sample_identifier)
207 {
208 	if (can_sample_identifier) {
209 		perf_evsel__reset_sample_bit(evsel, ID);
210 		perf_evsel__set_sample_bit(evsel, IDENTIFIER);
211 	} else {
212 		perf_evsel__set_sample_bit(evsel, ID);
213 	}
214 	evsel->attr.read_format |= PERF_FORMAT_ID;
215 }
216 
217 /**
218  * perf_evsel__is_function_event - Return whether given evsel is a function
219  * trace event
220  *
221  * @evsel - evsel selector to be tested
222  *
223  * Return %true if event is function trace event
224  */
perf_evsel__is_function_event(struct perf_evsel * evsel)225 bool perf_evsel__is_function_event(struct perf_evsel *evsel)
226 {
227 #define FUNCTION_EVENT "ftrace:function"
228 
229 	return evsel->name &&
230 	       !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT));
231 
232 #undef FUNCTION_EVENT
233 }
234 
perf_evsel__init(struct perf_evsel * evsel,struct perf_event_attr * attr,int idx)235 void perf_evsel__init(struct perf_evsel *evsel,
236 		      struct perf_event_attr *attr, int idx)
237 {
238 	evsel->idx	   = idx;
239 	evsel->tracking	   = !idx;
240 	evsel->attr	   = *attr;
241 	evsel->leader	   = evsel;
242 	evsel->unit	   = "";
243 	evsel->scale	   = 1.0;
244 	evsel->evlist	   = NULL;
245 	evsel->bpf_fd	   = -1;
246 	INIT_LIST_HEAD(&evsel->node);
247 	INIT_LIST_HEAD(&evsel->config_terms);
248 	perf_evsel__object.init(evsel);
249 	evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
250 	perf_evsel__calc_id_pos(evsel);
251 	evsel->cmdline_group_boundary = false;
252 	evsel->metric_expr   = NULL;
253 	evsel->metric_name   = NULL;
254 	evsel->metric_events = NULL;
255 	evsel->collect_stat  = false;
256 }
257 
perf_evsel__new_idx(struct perf_event_attr * attr,int idx)258 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
259 {
260 	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
261 
262 	if (!evsel)
263 		return NULL;
264 	perf_evsel__init(evsel, attr, idx);
265 
266 	if (perf_evsel__is_bpf_output(evsel)) {
267 		evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
268 					    PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
269 		evsel->attr.sample_period = 1;
270 	}
271 
272 	return evsel;
273 }
274 
perf_event_can_profile_kernel(void)275 static bool perf_event_can_profile_kernel(void)
276 {
277 	return geteuid() == 0 || perf_event_paranoid() == -1;
278 }
279 
perf_evsel__new_cycles(bool precise)280 struct perf_evsel *perf_evsel__new_cycles(bool precise)
281 {
282 	struct perf_event_attr attr = {
283 		.type	= PERF_TYPE_HARDWARE,
284 		.config	= PERF_COUNT_HW_CPU_CYCLES,
285 		.exclude_kernel	= !perf_event_can_profile_kernel(),
286 	};
287 	struct perf_evsel *evsel;
288 
289 	event_attr_init(&attr);
290 
291 	if (!precise)
292 		goto new_event;
293 	/*
294 	 * Unnamed union member, not supported as struct member named
295 	 * initializer in older compilers such as gcc 4.4.7
296 	 *
297 	 * Just for probing the precise_ip:
298 	 */
299 	attr.sample_period = 1;
300 
301 	perf_event_attr__set_max_precise_ip(&attr);
302 	/*
303 	 * Now let the usual logic to set up the perf_event_attr defaults
304 	 * to kick in when we return and before perf_evsel__open() is called.
305 	 */
306 	attr.sample_period = 0;
307 new_event:
308 	evsel = perf_evsel__new(&attr);
309 	if (evsel == NULL)
310 		goto out;
311 
312 	/* use asprintf() because free(evsel) assumes name is allocated */
313 	if (asprintf(&evsel->name, "cycles%s%s%.*s",
314 		     (attr.precise_ip || attr.exclude_kernel) ? ":" : "",
315 		     attr.exclude_kernel ? "u" : "",
316 		     attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0)
317 		goto error_free;
318 out:
319 	return evsel;
320 error_free:
321 	perf_evsel__delete(evsel);
322 	evsel = NULL;
323 	goto out;
324 }
325 
326 /*
327  * Returns pointer with encoded error via <linux/err.h> interface.
328  */
perf_evsel__newtp_idx(const char * sys,const char * name,int idx)329 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
330 {
331 	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
332 	int err = -ENOMEM;
333 
334 	if (evsel == NULL) {
335 		goto out_err;
336 	} else {
337 		struct perf_event_attr attr = {
338 			.type	       = PERF_TYPE_TRACEPOINT,
339 			.sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
340 					  PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
341 		};
342 
343 		if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
344 			goto out_free;
345 
346 		evsel->tp_format = trace_event__tp_format(sys, name);
347 		if (IS_ERR(evsel->tp_format)) {
348 			err = PTR_ERR(evsel->tp_format);
349 			goto out_free;
350 		}
351 
352 		event_attr_init(&attr);
353 		attr.config = evsel->tp_format->id;
354 		attr.sample_period = 1;
355 		perf_evsel__init(evsel, &attr, idx);
356 	}
357 
358 	return evsel;
359 
360 out_free:
361 	zfree(&evsel->name);
362 	free(evsel);
363 out_err:
364 	return ERR_PTR(err);
365 }
366 
367 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
368 	"cycles",
369 	"instructions",
370 	"cache-references",
371 	"cache-misses",
372 	"branches",
373 	"branch-misses",
374 	"bus-cycles",
375 	"stalled-cycles-frontend",
376 	"stalled-cycles-backend",
377 	"ref-cycles",
378 };
379 
__perf_evsel__hw_name(u64 config)380 static const char *__perf_evsel__hw_name(u64 config)
381 {
382 	if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
383 		return perf_evsel__hw_names[config];
384 
385 	return "unknown-hardware";
386 }
387 
perf_evsel__add_modifiers(struct perf_evsel * evsel,char * bf,size_t size)388 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
389 {
390 	int colon = 0, r = 0;
391 	struct perf_event_attr *attr = &evsel->attr;
392 	bool exclude_guest_default = false;
393 
394 #define MOD_PRINT(context, mod)	do {					\
395 		if (!attr->exclude_##context) {				\
396 			if (!colon) colon = ++r;			\
397 			r += scnprintf(bf + r, size - r, "%c", mod);	\
398 		} } while(0)
399 
400 	if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
401 		MOD_PRINT(kernel, 'k');
402 		MOD_PRINT(user, 'u');
403 		MOD_PRINT(hv, 'h');
404 		exclude_guest_default = true;
405 	}
406 
407 	if (attr->precise_ip) {
408 		if (!colon)
409 			colon = ++r;
410 		r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
411 		exclude_guest_default = true;
412 	}
413 
414 	if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
415 		MOD_PRINT(host, 'H');
416 		MOD_PRINT(guest, 'G');
417 	}
418 #undef MOD_PRINT
419 	if (colon)
420 		bf[colon - 1] = ':';
421 	return r;
422 }
423 
perf_evsel__hw_name(struct perf_evsel * evsel,char * bf,size_t size)424 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
425 {
426 	int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
427 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
428 }
429 
430 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
431 	"cpu-clock",
432 	"task-clock",
433 	"page-faults",
434 	"context-switches",
435 	"cpu-migrations",
436 	"minor-faults",
437 	"major-faults",
438 	"alignment-faults",
439 	"emulation-faults",
440 	"dummy",
441 };
442 
__perf_evsel__sw_name(u64 config)443 static const char *__perf_evsel__sw_name(u64 config)
444 {
445 	if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
446 		return perf_evsel__sw_names[config];
447 	return "unknown-software";
448 }
449 
perf_evsel__sw_name(struct perf_evsel * evsel,char * bf,size_t size)450 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
451 {
452 	int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
453 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
454 }
455 
__perf_evsel__bp_name(char * bf,size_t size,u64 addr,u64 type)456 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
457 {
458 	int r;
459 
460 	r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
461 
462 	if (type & HW_BREAKPOINT_R)
463 		r += scnprintf(bf + r, size - r, "r");
464 
465 	if (type & HW_BREAKPOINT_W)
466 		r += scnprintf(bf + r, size - r, "w");
467 
468 	if (type & HW_BREAKPOINT_X)
469 		r += scnprintf(bf + r, size - r, "x");
470 
471 	return r;
472 }
473 
perf_evsel__bp_name(struct perf_evsel * evsel,char * bf,size_t size)474 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
475 {
476 	struct perf_event_attr *attr = &evsel->attr;
477 	int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
478 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
479 }
480 
481 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
482 				[PERF_EVSEL__MAX_ALIASES] = {
483  { "L1-dcache",	"l1-d",		"l1d",		"L1-data",		},
484  { "L1-icache",	"l1-i",		"l1i",		"L1-instruction",	},
485  { "LLC",	"L2",							},
486  { "dTLB",	"d-tlb",	"Data-TLB",				},
487  { "iTLB",	"i-tlb",	"Instruction-TLB",			},
488  { "branch",	"branches",	"bpu",		"btb",		"bpc",	},
489  { "node",								},
490 };
491 
492 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
493 				   [PERF_EVSEL__MAX_ALIASES] = {
494  { "load",	"loads",	"read",					},
495  { "store",	"stores",	"write",				},
496  { "prefetch",	"prefetches",	"speculative-read", "speculative-load",	},
497 };
498 
499 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
500 				       [PERF_EVSEL__MAX_ALIASES] = {
501  { "refs",	"Reference",	"ops",		"access",		},
502  { "misses",	"miss",							},
503 };
504 
505 #define C(x)		PERF_COUNT_HW_CACHE_##x
506 #define CACHE_READ	(1 << C(OP_READ))
507 #define CACHE_WRITE	(1 << C(OP_WRITE))
508 #define CACHE_PREFETCH	(1 << C(OP_PREFETCH))
509 #define COP(x)		(1 << x)
510 
511 /*
512  * cache operartion stat
513  * L1I : Read and prefetch only
514  * ITLB and BPU : Read-only
515  */
516 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
517  [C(L1D)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
518  [C(L1I)]	= (CACHE_READ | CACHE_PREFETCH),
519  [C(LL)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
520  [C(DTLB)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
521  [C(ITLB)]	= (CACHE_READ),
522  [C(BPU)]	= (CACHE_READ),
523  [C(NODE)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
524 };
525 
perf_evsel__is_cache_op_valid(u8 type,u8 op)526 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
527 {
528 	if (perf_evsel__hw_cache_stat[type] & COP(op))
529 		return true;	/* valid */
530 	else
531 		return false;	/* invalid */
532 }
533 
__perf_evsel__hw_cache_type_op_res_name(u8 type,u8 op,u8 result,char * bf,size_t size)534 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
535 					    char *bf, size_t size)
536 {
537 	if (result) {
538 		return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
539 				 perf_evsel__hw_cache_op[op][0],
540 				 perf_evsel__hw_cache_result[result][0]);
541 	}
542 
543 	return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
544 			 perf_evsel__hw_cache_op[op][1]);
545 }
546 
__perf_evsel__hw_cache_name(u64 config,char * bf,size_t size)547 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
548 {
549 	u8 op, result, type = (config >>  0) & 0xff;
550 	const char *err = "unknown-ext-hardware-cache-type";
551 
552 	if (type >= PERF_COUNT_HW_CACHE_MAX)
553 		goto out_err;
554 
555 	op = (config >>  8) & 0xff;
556 	err = "unknown-ext-hardware-cache-op";
557 	if (op >= PERF_COUNT_HW_CACHE_OP_MAX)
558 		goto out_err;
559 
560 	result = (config >> 16) & 0xff;
561 	err = "unknown-ext-hardware-cache-result";
562 	if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
563 		goto out_err;
564 
565 	err = "invalid-cache";
566 	if (!perf_evsel__is_cache_op_valid(type, op))
567 		goto out_err;
568 
569 	return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
570 out_err:
571 	return scnprintf(bf, size, "%s", err);
572 }
573 
perf_evsel__hw_cache_name(struct perf_evsel * evsel,char * bf,size_t size)574 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
575 {
576 	int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
577 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
578 }
579 
perf_evsel__raw_name(struct perf_evsel * evsel,char * bf,size_t size)580 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
581 {
582 	int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
583 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
584 }
585 
perf_evsel__name(struct perf_evsel * evsel)586 const char *perf_evsel__name(struct perf_evsel *evsel)
587 {
588 	char bf[128];
589 
590 	if (!evsel)
591 		goto out_unknown;
592 
593 	if (evsel->name)
594 		return evsel->name;
595 
596 	switch (evsel->attr.type) {
597 	case PERF_TYPE_RAW:
598 		perf_evsel__raw_name(evsel, bf, sizeof(bf));
599 		break;
600 
601 	case PERF_TYPE_HARDWARE:
602 		perf_evsel__hw_name(evsel, bf, sizeof(bf));
603 		break;
604 
605 	case PERF_TYPE_HW_CACHE:
606 		perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
607 		break;
608 
609 	case PERF_TYPE_SOFTWARE:
610 		perf_evsel__sw_name(evsel, bf, sizeof(bf));
611 		break;
612 
613 	case PERF_TYPE_TRACEPOINT:
614 		scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
615 		break;
616 
617 	case PERF_TYPE_BREAKPOINT:
618 		perf_evsel__bp_name(evsel, bf, sizeof(bf));
619 		break;
620 
621 	default:
622 		scnprintf(bf, sizeof(bf), "unknown attr type: %d",
623 			  evsel->attr.type);
624 		break;
625 	}
626 
627 	evsel->name = strdup(bf);
628 
629 	if (evsel->name)
630 		return evsel->name;
631 out_unknown:
632 	return "unknown";
633 }
634 
perf_evsel__group_name(struct perf_evsel * evsel)635 const char *perf_evsel__group_name(struct perf_evsel *evsel)
636 {
637 	return evsel->group_name ?: "anon group";
638 }
639 
perf_evsel__group_desc(struct perf_evsel * evsel,char * buf,size_t size)640 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
641 {
642 	int ret;
643 	struct perf_evsel *pos;
644 	const char *group_name = perf_evsel__group_name(evsel);
645 
646 	ret = scnprintf(buf, size, "%s", group_name);
647 
648 	ret += scnprintf(buf + ret, size - ret, " { %s",
649 			 perf_evsel__name(evsel));
650 
651 	for_each_group_member(pos, evsel)
652 		ret += scnprintf(buf + ret, size - ret, ", %s",
653 				 perf_evsel__name(pos));
654 
655 	ret += scnprintf(buf + ret, size - ret, " }");
656 
657 	return ret;
658 }
659 
perf_evsel__config_callchain(struct perf_evsel * evsel,struct record_opts * opts,struct callchain_param * param)660 void perf_evsel__config_callchain(struct perf_evsel *evsel,
661 				  struct record_opts *opts,
662 				  struct callchain_param *param)
663 {
664 	bool function = perf_evsel__is_function_event(evsel);
665 	struct perf_event_attr *attr = &evsel->attr;
666 
667 	perf_evsel__set_sample_bit(evsel, CALLCHAIN);
668 
669 	attr->sample_max_stack = param->max_stack;
670 
671 	if (param->record_mode == CALLCHAIN_LBR) {
672 		if (!opts->branch_stack) {
673 			if (attr->exclude_user) {
674 				pr_warning("LBR callstack option is only available "
675 					   "to get user callchain information. "
676 					   "Falling back to framepointers.\n");
677 			} else {
678 				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
679 				attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
680 							PERF_SAMPLE_BRANCH_CALL_STACK |
681 							PERF_SAMPLE_BRANCH_NO_CYCLES |
682 							PERF_SAMPLE_BRANCH_NO_FLAGS;
683 			}
684 		} else
685 			 pr_warning("Cannot use LBR callstack with branch stack. "
686 				    "Falling back to framepointers.\n");
687 	}
688 
689 	if (param->record_mode == CALLCHAIN_DWARF) {
690 		if (!function) {
691 			perf_evsel__set_sample_bit(evsel, REGS_USER);
692 			perf_evsel__set_sample_bit(evsel, STACK_USER);
693 			attr->sample_regs_user = PERF_REGS_MASK;
694 			attr->sample_stack_user = param->dump_size;
695 			attr->exclude_callchain_user = 1;
696 		} else {
697 			pr_info("Cannot use DWARF unwind for function trace event,"
698 				" falling back to framepointers.\n");
699 		}
700 	}
701 
702 	if (function) {
703 		pr_info("Disabling user space callchains for function trace event.\n");
704 		attr->exclude_callchain_user = 1;
705 	}
706 }
707 
708 static void
perf_evsel__reset_callgraph(struct perf_evsel * evsel,struct callchain_param * param)709 perf_evsel__reset_callgraph(struct perf_evsel *evsel,
710 			    struct callchain_param *param)
711 {
712 	struct perf_event_attr *attr = &evsel->attr;
713 
714 	perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
715 	if (param->record_mode == CALLCHAIN_LBR) {
716 		perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
717 		attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
718 					      PERF_SAMPLE_BRANCH_CALL_STACK);
719 	}
720 	if (param->record_mode == CALLCHAIN_DWARF) {
721 		perf_evsel__reset_sample_bit(evsel, REGS_USER);
722 		perf_evsel__reset_sample_bit(evsel, STACK_USER);
723 	}
724 }
725 
apply_config_terms(struct perf_evsel * evsel,struct record_opts * opts)726 static void apply_config_terms(struct perf_evsel *evsel,
727 			       struct record_opts *opts)
728 {
729 	struct perf_evsel_config_term *term;
730 	struct list_head *config_terms = &evsel->config_terms;
731 	struct perf_event_attr *attr = &evsel->attr;
732 	/* callgraph default */
733 	struct callchain_param param = {
734 		.record_mode = callchain_param.record_mode,
735 	};
736 	u32 dump_size = 0;
737 	int max_stack = 0;
738 	const char *callgraph_buf = NULL;
739 
740 	list_for_each_entry(term, config_terms, list) {
741 		switch (term->type) {
742 		case PERF_EVSEL__CONFIG_TERM_PERIOD:
743 			if (!(term->weak && opts->user_interval != ULLONG_MAX)) {
744 				attr->sample_period = term->val.period;
745 				attr->freq = 0;
746 				perf_evsel__reset_sample_bit(evsel, PERIOD);
747 			}
748 			break;
749 		case PERF_EVSEL__CONFIG_TERM_FREQ:
750 			if (!(term->weak && opts->user_freq != UINT_MAX)) {
751 				attr->sample_freq = term->val.freq;
752 				attr->freq = 1;
753 				perf_evsel__set_sample_bit(evsel, PERIOD);
754 			}
755 			break;
756 		case PERF_EVSEL__CONFIG_TERM_TIME:
757 			if (term->val.time)
758 				perf_evsel__set_sample_bit(evsel, TIME);
759 			else
760 				perf_evsel__reset_sample_bit(evsel, TIME);
761 			break;
762 		case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
763 			callgraph_buf = term->val.callgraph;
764 			break;
765 		case PERF_EVSEL__CONFIG_TERM_BRANCH:
766 			if (term->val.branch && strcmp(term->val.branch, "no")) {
767 				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
768 				parse_branch_str(term->val.branch,
769 						 &attr->branch_sample_type);
770 			} else
771 				perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
772 			break;
773 		case PERF_EVSEL__CONFIG_TERM_STACK_USER:
774 			dump_size = term->val.stack_user;
775 			break;
776 		case PERF_EVSEL__CONFIG_TERM_MAX_STACK:
777 			max_stack = term->val.max_stack;
778 			break;
779 		case PERF_EVSEL__CONFIG_TERM_INHERIT:
780 			/*
781 			 * attr->inherit should has already been set by
782 			 * perf_evsel__config. If user explicitly set
783 			 * inherit using config terms, override global
784 			 * opt->no_inherit setting.
785 			 */
786 			attr->inherit = term->val.inherit ? 1 : 0;
787 			break;
788 		case PERF_EVSEL__CONFIG_TERM_OVERWRITE:
789 			attr->write_backward = term->val.overwrite ? 1 : 0;
790 			break;
791 		default:
792 			break;
793 		}
794 	}
795 
796 	/* User explicitly set per-event callgraph, clear the old setting and reset. */
797 	if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
798 		if (max_stack) {
799 			param.max_stack = max_stack;
800 			if (callgraph_buf == NULL)
801 				callgraph_buf = "fp";
802 		}
803 
804 		/* parse callgraph parameters */
805 		if (callgraph_buf != NULL) {
806 			if (!strcmp(callgraph_buf, "no")) {
807 				param.enabled = false;
808 				param.record_mode = CALLCHAIN_NONE;
809 			} else {
810 				param.enabled = true;
811 				if (parse_callchain_record(callgraph_buf, &param)) {
812 					pr_err("per-event callgraph setting for %s failed. "
813 					       "Apply callgraph global setting for it\n",
814 					       evsel->name);
815 					return;
816 				}
817 			}
818 		}
819 		if (dump_size > 0) {
820 			dump_size = round_up(dump_size, sizeof(u64));
821 			param.dump_size = dump_size;
822 		}
823 
824 		/* If global callgraph set, clear it */
825 		if (callchain_param.enabled)
826 			perf_evsel__reset_callgraph(evsel, &callchain_param);
827 
828 		/* set perf-event callgraph */
829 		if (param.enabled)
830 			perf_evsel__config_callchain(evsel, opts, &param);
831 	}
832 }
833 
is_dummy_event(struct perf_evsel * evsel)834 static bool is_dummy_event(struct perf_evsel *evsel)
835 {
836 	return (evsel->attr.type == PERF_TYPE_SOFTWARE) &&
837 	       (evsel->attr.config == PERF_COUNT_SW_DUMMY);
838 }
839 
840 /*
841  * The enable_on_exec/disabled value strategy:
842  *
843  *  1) For any type of traced program:
844  *    - all independent events and group leaders are disabled
845  *    - all group members are enabled
846  *
847  *     Group members are ruled by group leaders. They need to
848  *     be enabled, because the group scheduling relies on that.
849  *
850  *  2) For traced programs executed by perf:
851  *     - all independent events and group leaders have
852  *       enable_on_exec set
853  *     - we don't specifically enable or disable any event during
854  *       the record command
855  *
856  *     Independent events and group leaders are initially disabled
857  *     and get enabled by exec. Group members are ruled by group
858  *     leaders as stated in 1).
859  *
860  *  3) For traced programs attached by perf (pid/tid):
861  *     - we specifically enable or disable all events during
862  *       the record command
863  *
864  *     When attaching events to already running traced we
865  *     enable/disable events specifically, as there's no
866  *     initial traced exec call.
867  */
perf_evsel__config(struct perf_evsel * evsel,struct record_opts * opts,struct callchain_param * callchain)868 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts,
869 			struct callchain_param *callchain)
870 {
871 	struct perf_evsel *leader = evsel->leader;
872 	struct perf_event_attr *attr = &evsel->attr;
873 	int track = evsel->tracking;
874 	bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
875 
876 	attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
877 	attr->inherit	    = !opts->no_inherit;
878 	attr->write_backward = opts->overwrite ? 1 : 0;
879 
880 	perf_evsel__set_sample_bit(evsel, IP);
881 	perf_evsel__set_sample_bit(evsel, TID);
882 
883 	if (evsel->sample_read) {
884 		perf_evsel__set_sample_bit(evsel, READ);
885 
886 		/*
887 		 * We need ID even in case of single event, because
888 		 * PERF_SAMPLE_READ process ID specific data.
889 		 */
890 		perf_evsel__set_sample_id(evsel, false);
891 
892 		/*
893 		 * Apply group format only if we belong to group
894 		 * with more than one members.
895 		 */
896 		if (leader->nr_members > 1) {
897 			attr->read_format |= PERF_FORMAT_GROUP;
898 			attr->inherit = 0;
899 		}
900 	}
901 
902 	/*
903 	 * We default some events to have a default interval. But keep
904 	 * it a weak assumption overridable by the user.
905 	 */
906 	if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
907 				     opts->user_interval != ULLONG_MAX)) {
908 		if (opts->freq) {
909 			perf_evsel__set_sample_bit(evsel, PERIOD);
910 			attr->freq		= 1;
911 			attr->sample_freq	= opts->freq;
912 		} else {
913 			attr->sample_period = opts->default_interval;
914 		}
915 	}
916 
917 	/*
918 	 * Disable sampling for all group members other
919 	 * than leader in case leader 'leads' the sampling.
920 	 */
921 	if ((leader != evsel) && leader->sample_read) {
922 		attr->sample_freq   = 0;
923 		attr->sample_period = 0;
924 	}
925 
926 	if (opts->no_samples)
927 		attr->sample_freq = 0;
928 
929 	if (opts->inherit_stat) {
930 		evsel->attr.read_format |=
931 			PERF_FORMAT_TOTAL_TIME_ENABLED |
932 			PERF_FORMAT_TOTAL_TIME_RUNNING |
933 			PERF_FORMAT_ID;
934 		attr->inherit_stat = 1;
935 	}
936 
937 	if (opts->sample_address) {
938 		perf_evsel__set_sample_bit(evsel, ADDR);
939 		attr->mmap_data = track;
940 	}
941 
942 	/*
943 	 * We don't allow user space callchains for  function trace
944 	 * event, due to issues with page faults while tracing page
945 	 * fault handler and its overall trickiness nature.
946 	 */
947 	if (perf_evsel__is_function_event(evsel))
948 		evsel->attr.exclude_callchain_user = 1;
949 
950 	if (callchain && callchain->enabled && !evsel->no_aux_samples)
951 		perf_evsel__config_callchain(evsel, opts, callchain);
952 
953 	if (opts->sample_intr_regs) {
954 		attr->sample_regs_intr = opts->sample_intr_regs;
955 		perf_evsel__set_sample_bit(evsel, REGS_INTR);
956 	}
957 
958 	if (target__has_cpu(&opts->target) || opts->sample_cpu)
959 		perf_evsel__set_sample_bit(evsel, CPU);
960 
961 	/*
962 	 * When the user explicitly disabled time don't force it here.
963 	 */
964 	if (opts->sample_time &&
965 	    (!perf_missing_features.sample_id_all &&
966 	    (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
967 	     opts->sample_time_set)))
968 		perf_evsel__set_sample_bit(evsel, TIME);
969 
970 	if (opts->raw_samples && !evsel->no_aux_samples) {
971 		perf_evsel__set_sample_bit(evsel, TIME);
972 		perf_evsel__set_sample_bit(evsel, RAW);
973 		perf_evsel__set_sample_bit(evsel, CPU);
974 	}
975 
976 	if (opts->sample_address)
977 		perf_evsel__set_sample_bit(evsel, DATA_SRC);
978 
979 	if (opts->sample_phys_addr)
980 		perf_evsel__set_sample_bit(evsel, PHYS_ADDR);
981 
982 	if (opts->no_buffering) {
983 		attr->watermark = 0;
984 		attr->wakeup_events = 1;
985 	}
986 	if (opts->branch_stack && !evsel->no_aux_samples) {
987 		perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
988 		attr->branch_sample_type = opts->branch_stack;
989 	}
990 
991 	if (opts->sample_weight)
992 		perf_evsel__set_sample_bit(evsel, WEIGHT);
993 
994 	attr->task  = track;
995 	attr->mmap  = track;
996 	attr->mmap2 = track && !perf_missing_features.mmap2;
997 	attr->comm  = track;
998 
999 	if (opts->record_namespaces)
1000 		attr->namespaces  = track;
1001 
1002 	if (opts->record_switch_events)
1003 		attr->context_switch = track;
1004 
1005 	if (opts->sample_transaction)
1006 		perf_evsel__set_sample_bit(evsel, TRANSACTION);
1007 
1008 	if (opts->running_time) {
1009 		evsel->attr.read_format |=
1010 			PERF_FORMAT_TOTAL_TIME_ENABLED |
1011 			PERF_FORMAT_TOTAL_TIME_RUNNING;
1012 	}
1013 
1014 	/*
1015 	 * XXX see the function comment above
1016 	 *
1017 	 * Disabling only independent events or group leaders,
1018 	 * keeping group members enabled.
1019 	 */
1020 	if (perf_evsel__is_group_leader(evsel))
1021 		attr->disabled = 1;
1022 
1023 	/*
1024 	 * Setting enable_on_exec for independent events and
1025 	 * group leaders for traced executed by perf.
1026 	 */
1027 	if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
1028 		!opts->initial_delay)
1029 		attr->enable_on_exec = 1;
1030 
1031 	if (evsel->immediate) {
1032 		attr->disabled = 0;
1033 		attr->enable_on_exec = 0;
1034 	}
1035 
1036 	clockid = opts->clockid;
1037 	if (opts->use_clockid) {
1038 		attr->use_clockid = 1;
1039 		attr->clockid = opts->clockid;
1040 	}
1041 
1042 	if (evsel->precise_max)
1043 		perf_event_attr__set_max_precise_ip(attr);
1044 
1045 	if (opts->all_user) {
1046 		attr->exclude_kernel = 1;
1047 		attr->exclude_user   = 0;
1048 	}
1049 
1050 	if (opts->all_kernel) {
1051 		attr->exclude_kernel = 0;
1052 		attr->exclude_user   = 1;
1053 	}
1054 
1055 	/*
1056 	 * Apply event specific term settings,
1057 	 * it overloads any global configuration.
1058 	 */
1059 	apply_config_terms(evsel, opts);
1060 
1061 	evsel->ignore_missing_thread = opts->ignore_missing_thread;
1062 
1063 	/* The --period option takes the precedence. */
1064 	if (opts->period_set) {
1065 		if (opts->period)
1066 			perf_evsel__set_sample_bit(evsel, PERIOD);
1067 		else
1068 			perf_evsel__reset_sample_bit(evsel, PERIOD);
1069 	}
1070 
1071 	/*
1072 	 * For initial_delay, a dummy event is added implicitly.
1073 	 * The software event will trigger -EOPNOTSUPP error out,
1074 	 * if BRANCH_STACK bit is set.
1075 	 */
1076 	if (opts->initial_delay && is_dummy_event(evsel))
1077 		perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
1078 }
1079 
perf_evsel__alloc_fd(struct perf_evsel * evsel,int ncpus,int nthreads)1080 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1081 {
1082 	if (evsel->system_wide)
1083 		nthreads = 1;
1084 
1085 	evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
1086 
1087 	if (evsel->fd) {
1088 		int cpu, thread;
1089 		for (cpu = 0; cpu < ncpus; cpu++) {
1090 			for (thread = 0; thread < nthreads; thread++) {
1091 				FD(evsel, cpu, thread) = -1;
1092 			}
1093 		}
1094 	}
1095 
1096 	return evsel->fd != NULL ? 0 : -ENOMEM;
1097 }
1098 
perf_evsel__run_ioctl(struct perf_evsel * evsel,int ioc,void * arg)1099 static int perf_evsel__run_ioctl(struct perf_evsel *evsel,
1100 			  int ioc,  void *arg)
1101 {
1102 	int cpu, thread;
1103 
1104 	for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) {
1105 		for (thread = 0; thread < xyarray__max_y(evsel->fd); thread++) {
1106 			int fd = FD(evsel, cpu, thread),
1107 			    err = ioctl(fd, ioc, arg);
1108 
1109 			if (err)
1110 				return err;
1111 		}
1112 	}
1113 
1114 	return 0;
1115 }
1116 
perf_evsel__apply_filter(struct perf_evsel * evsel,const char * filter)1117 int perf_evsel__apply_filter(struct perf_evsel *evsel, const char *filter)
1118 {
1119 	return perf_evsel__run_ioctl(evsel,
1120 				     PERF_EVENT_IOC_SET_FILTER,
1121 				     (void *)filter);
1122 }
1123 
perf_evsel__set_filter(struct perf_evsel * evsel,const char * filter)1124 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
1125 {
1126 	char *new_filter = strdup(filter);
1127 
1128 	if (new_filter != NULL) {
1129 		free(evsel->filter);
1130 		evsel->filter = new_filter;
1131 		return 0;
1132 	}
1133 
1134 	return -1;
1135 }
1136 
perf_evsel__append_filter(struct perf_evsel * evsel,const char * fmt,const char * filter)1137 static int perf_evsel__append_filter(struct perf_evsel *evsel,
1138 				     const char *fmt, const char *filter)
1139 {
1140 	char *new_filter;
1141 
1142 	if (evsel->filter == NULL)
1143 		return perf_evsel__set_filter(evsel, filter);
1144 
1145 	if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) {
1146 		free(evsel->filter);
1147 		evsel->filter = new_filter;
1148 		return 0;
1149 	}
1150 
1151 	return -1;
1152 }
1153 
perf_evsel__append_tp_filter(struct perf_evsel * evsel,const char * filter)1154 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter)
1155 {
1156 	return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter);
1157 }
1158 
perf_evsel__append_addr_filter(struct perf_evsel * evsel,const char * filter)1159 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter)
1160 {
1161 	return perf_evsel__append_filter(evsel, "%s,%s", filter);
1162 }
1163 
perf_evsel__enable(struct perf_evsel * evsel)1164 int perf_evsel__enable(struct perf_evsel *evsel)
1165 {
1166 	return perf_evsel__run_ioctl(evsel,
1167 				     PERF_EVENT_IOC_ENABLE,
1168 				     0);
1169 }
1170 
perf_evsel__disable(struct perf_evsel * evsel)1171 int perf_evsel__disable(struct perf_evsel *evsel)
1172 {
1173 	return perf_evsel__run_ioctl(evsel,
1174 				     PERF_EVENT_IOC_DISABLE,
1175 				     0);
1176 }
1177 
perf_evsel__alloc_id(struct perf_evsel * evsel,int ncpus,int nthreads)1178 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
1179 {
1180 	if (ncpus == 0 || nthreads == 0)
1181 		return 0;
1182 
1183 	if (evsel->system_wide)
1184 		nthreads = 1;
1185 
1186 	evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1187 	if (evsel->sample_id == NULL)
1188 		return -ENOMEM;
1189 
1190 	evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1191 	if (evsel->id == NULL) {
1192 		xyarray__delete(evsel->sample_id);
1193 		evsel->sample_id = NULL;
1194 		return -ENOMEM;
1195 	}
1196 
1197 	return 0;
1198 }
1199 
perf_evsel__free_fd(struct perf_evsel * evsel)1200 static void perf_evsel__free_fd(struct perf_evsel *evsel)
1201 {
1202 	xyarray__delete(evsel->fd);
1203 	evsel->fd = NULL;
1204 }
1205 
perf_evsel__free_id(struct perf_evsel * evsel)1206 static void perf_evsel__free_id(struct perf_evsel *evsel)
1207 {
1208 	xyarray__delete(evsel->sample_id);
1209 	evsel->sample_id = NULL;
1210 	zfree(&evsel->id);
1211 }
1212 
perf_evsel__free_config_terms(struct perf_evsel * evsel)1213 static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
1214 {
1215 	struct perf_evsel_config_term *term, *h;
1216 
1217 	list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1218 		list_del(&term->list);
1219 		free(term);
1220 	}
1221 }
1222 
perf_evsel__close_fd(struct perf_evsel * evsel)1223 void perf_evsel__close_fd(struct perf_evsel *evsel)
1224 {
1225 	int cpu, thread;
1226 
1227 	for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++)
1228 		for (thread = 0; thread < xyarray__max_y(evsel->fd); ++thread) {
1229 			close(FD(evsel, cpu, thread));
1230 			FD(evsel, cpu, thread) = -1;
1231 		}
1232 }
1233 
perf_evsel__exit(struct perf_evsel * evsel)1234 void perf_evsel__exit(struct perf_evsel *evsel)
1235 {
1236 	assert(list_empty(&evsel->node));
1237 	assert(evsel->evlist == NULL);
1238 	perf_evsel__free_counts(evsel);
1239 	perf_evsel__free_fd(evsel);
1240 	perf_evsel__free_id(evsel);
1241 	perf_evsel__free_config_terms(evsel);
1242 	close_cgroup(evsel->cgrp);
1243 	cpu_map__put(evsel->cpus);
1244 	cpu_map__put(evsel->own_cpus);
1245 	thread_map__put(evsel->threads);
1246 	zfree(&evsel->group_name);
1247 	zfree(&evsel->name);
1248 	perf_evsel__object.fini(evsel);
1249 }
1250 
perf_evsel__delete(struct perf_evsel * evsel)1251 void perf_evsel__delete(struct perf_evsel *evsel)
1252 {
1253 	perf_evsel__exit(evsel);
1254 	free(evsel);
1255 }
1256 
perf_evsel__compute_deltas(struct perf_evsel * evsel,int cpu,int thread,struct perf_counts_values * count)1257 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
1258 				struct perf_counts_values *count)
1259 {
1260 	struct perf_counts_values tmp;
1261 
1262 	if (!evsel->prev_raw_counts)
1263 		return;
1264 
1265 	if (cpu == -1) {
1266 		tmp = evsel->prev_raw_counts->aggr;
1267 		evsel->prev_raw_counts->aggr = *count;
1268 	} else {
1269 		tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1270 		*perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1271 	}
1272 
1273 	count->val = count->val - tmp.val;
1274 	count->ena = count->ena - tmp.ena;
1275 	count->run = count->run - tmp.run;
1276 }
1277 
perf_counts_values__scale(struct perf_counts_values * count,bool scale,s8 * pscaled)1278 void perf_counts_values__scale(struct perf_counts_values *count,
1279 			       bool scale, s8 *pscaled)
1280 {
1281 	s8 scaled = 0;
1282 
1283 	if (scale) {
1284 		if (count->run == 0) {
1285 			scaled = -1;
1286 			count->val = 0;
1287 		} else if (count->run < count->ena) {
1288 			scaled = 1;
1289 			count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
1290 		}
1291 	} else
1292 		count->ena = count->run = 0;
1293 
1294 	if (pscaled)
1295 		*pscaled = scaled;
1296 }
1297 
perf_evsel__read_size(struct perf_evsel * evsel)1298 static int perf_evsel__read_size(struct perf_evsel *evsel)
1299 {
1300 	u64 read_format = evsel->attr.read_format;
1301 	int entry = sizeof(u64); /* value */
1302 	int size = 0;
1303 	int nr = 1;
1304 
1305 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1306 		size += sizeof(u64);
1307 
1308 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1309 		size += sizeof(u64);
1310 
1311 	if (read_format & PERF_FORMAT_ID)
1312 		entry += sizeof(u64);
1313 
1314 	if (read_format & PERF_FORMAT_GROUP) {
1315 		nr = evsel->nr_members;
1316 		size += sizeof(u64);
1317 	}
1318 
1319 	size += entry * nr;
1320 	return size;
1321 }
1322 
perf_evsel__read(struct perf_evsel * evsel,int cpu,int thread,struct perf_counts_values * count)1323 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
1324 		     struct perf_counts_values *count)
1325 {
1326 	size_t size = perf_evsel__read_size(evsel);
1327 
1328 	memset(count, 0, sizeof(*count));
1329 
1330 	if (FD(evsel, cpu, thread) < 0)
1331 		return -EINVAL;
1332 
1333 	if (readn(FD(evsel, cpu, thread), count->values, size) <= 0)
1334 		return -errno;
1335 
1336 	return 0;
1337 }
1338 
1339 static int
perf_evsel__read_one(struct perf_evsel * evsel,int cpu,int thread)1340 perf_evsel__read_one(struct perf_evsel *evsel, int cpu, int thread)
1341 {
1342 	struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread);
1343 
1344 	return perf_evsel__read(evsel, cpu, thread, count);
1345 }
1346 
1347 static void
perf_evsel__set_count(struct perf_evsel * counter,int cpu,int thread,u64 val,u64 ena,u64 run)1348 perf_evsel__set_count(struct perf_evsel *counter, int cpu, int thread,
1349 		      u64 val, u64 ena, u64 run)
1350 {
1351 	struct perf_counts_values *count;
1352 
1353 	count = perf_counts(counter->counts, cpu, thread);
1354 
1355 	count->val    = val;
1356 	count->ena    = ena;
1357 	count->run    = run;
1358 	count->loaded = true;
1359 }
1360 
1361 static int
perf_evsel__process_group_data(struct perf_evsel * leader,int cpu,int thread,u64 * data)1362 perf_evsel__process_group_data(struct perf_evsel *leader,
1363 			       int cpu, int thread, u64 *data)
1364 {
1365 	u64 read_format = leader->attr.read_format;
1366 	struct sample_read_value *v;
1367 	u64 nr, ena = 0, run = 0, i;
1368 
1369 	nr = *data++;
1370 
1371 	if (nr != (u64) leader->nr_members)
1372 		return -EINVAL;
1373 
1374 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1375 		ena = *data++;
1376 
1377 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1378 		run = *data++;
1379 
1380 	v = (struct sample_read_value *) data;
1381 
1382 	perf_evsel__set_count(leader, cpu, thread,
1383 			      v[0].value, ena, run);
1384 
1385 	for (i = 1; i < nr; i++) {
1386 		struct perf_evsel *counter;
1387 
1388 		counter = perf_evlist__id2evsel(leader->evlist, v[i].id);
1389 		if (!counter)
1390 			return -EINVAL;
1391 
1392 		perf_evsel__set_count(counter, cpu, thread,
1393 				      v[i].value, ena, run);
1394 	}
1395 
1396 	return 0;
1397 }
1398 
1399 static int
perf_evsel__read_group(struct perf_evsel * leader,int cpu,int thread)1400 perf_evsel__read_group(struct perf_evsel *leader, int cpu, int thread)
1401 {
1402 	struct perf_stat_evsel *ps = leader->priv;
1403 	u64 read_format = leader->attr.read_format;
1404 	int size = perf_evsel__read_size(leader);
1405 	u64 *data = ps->group_data;
1406 
1407 	if (!(read_format & PERF_FORMAT_ID))
1408 		return -EINVAL;
1409 
1410 	if (!perf_evsel__is_group_leader(leader))
1411 		return -EINVAL;
1412 
1413 	if (!data) {
1414 		data = zalloc(size);
1415 		if (!data)
1416 			return -ENOMEM;
1417 
1418 		ps->group_data = data;
1419 	}
1420 
1421 	if (FD(leader, cpu, thread) < 0)
1422 		return -EINVAL;
1423 
1424 	if (readn(FD(leader, cpu, thread), data, size) <= 0)
1425 		return -errno;
1426 
1427 	return perf_evsel__process_group_data(leader, cpu, thread, data);
1428 }
1429 
perf_evsel__read_counter(struct perf_evsel * evsel,int cpu,int thread)1430 int perf_evsel__read_counter(struct perf_evsel *evsel, int cpu, int thread)
1431 {
1432 	u64 read_format = evsel->attr.read_format;
1433 
1434 	if (read_format & PERF_FORMAT_GROUP)
1435 		return perf_evsel__read_group(evsel, cpu, thread);
1436 	else
1437 		return perf_evsel__read_one(evsel, cpu, thread);
1438 }
1439 
__perf_evsel__read_on_cpu(struct perf_evsel * evsel,int cpu,int thread,bool scale)1440 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
1441 			      int cpu, int thread, bool scale)
1442 {
1443 	struct perf_counts_values count;
1444 	size_t nv = scale ? 3 : 1;
1445 
1446 	if (FD(evsel, cpu, thread) < 0)
1447 		return -EINVAL;
1448 
1449 	if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1450 		return -ENOMEM;
1451 
1452 	if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0)
1453 		return -errno;
1454 
1455 	perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1456 	perf_counts_values__scale(&count, scale, NULL);
1457 	*perf_counts(evsel->counts, cpu, thread) = count;
1458 	return 0;
1459 }
1460 
get_group_fd(struct perf_evsel * evsel,int cpu,int thread)1461 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
1462 {
1463 	struct perf_evsel *leader = evsel->leader;
1464 	int fd;
1465 
1466 	if (perf_evsel__is_group_leader(evsel))
1467 		return -1;
1468 
1469 	/*
1470 	 * Leader must be already processed/open,
1471 	 * if not it's a bug.
1472 	 */
1473 	BUG_ON(!leader->fd);
1474 
1475 	fd = FD(leader, cpu, thread);
1476 	BUG_ON(fd == -1);
1477 
1478 	return fd;
1479 }
1480 
1481 struct bit_names {
1482 	int bit;
1483 	const char *name;
1484 };
1485 
__p_bits(char * buf,size_t size,u64 value,struct bit_names * bits)1486 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1487 {
1488 	bool first_bit = true;
1489 	int i = 0;
1490 
1491 	do {
1492 		if (value & bits[i].bit) {
1493 			buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1494 			first_bit = false;
1495 		}
1496 	} while (bits[++i].name != NULL);
1497 }
1498 
__p_sample_type(char * buf,size_t size,u64 value)1499 static void __p_sample_type(char *buf, size_t size, u64 value)
1500 {
1501 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1502 	struct bit_names bits[] = {
1503 		bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1504 		bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1505 		bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1506 		bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1507 		bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1508 		bit_name(WEIGHT), bit_name(PHYS_ADDR),
1509 		{ .name = NULL, }
1510 	};
1511 #undef bit_name
1512 	__p_bits(buf, size, value, bits);
1513 }
1514 
__p_branch_sample_type(char * buf,size_t size,u64 value)1515 static void __p_branch_sample_type(char *buf, size_t size, u64 value)
1516 {
1517 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
1518 	struct bit_names bits[] = {
1519 		bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY),
1520 		bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL),
1521 		bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX),
1522 		bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP),
1523 		bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES),
1524 		{ .name = NULL, }
1525 	};
1526 #undef bit_name
1527 	__p_bits(buf, size, value, bits);
1528 }
1529 
__p_read_format(char * buf,size_t size,u64 value)1530 static void __p_read_format(char *buf, size_t size, u64 value)
1531 {
1532 #define bit_name(n) { PERF_FORMAT_##n, #n }
1533 	struct bit_names bits[] = {
1534 		bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1535 		bit_name(ID), bit_name(GROUP),
1536 		{ .name = NULL, }
1537 	};
1538 #undef bit_name
1539 	__p_bits(buf, size, value, bits);
1540 }
1541 
1542 #define BUF_SIZE		1024
1543 
1544 #define p_hex(val)		snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1545 #define p_unsigned(val)		snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1546 #define p_signed(val)		snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1547 #define p_sample_type(val)	__p_sample_type(buf, BUF_SIZE, val)
1548 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
1549 #define p_read_format(val)	__p_read_format(buf, BUF_SIZE, val)
1550 
1551 #define PRINT_ATTRn(_n, _f, _p)				\
1552 do {							\
1553 	if (attr->_f) {					\
1554 		_p(attr->_f);				\
1555 		ret += attr__fprintf(fp, _n, buf, priv);\
1556 	}						\
1557 } while (0)
1558 
1559 #define PRINT_ATTRf(_f, _p)	PRINT_ATTRn(#_f, _f, _p)
1560 
perf_event_attr__fprintf(FILE * fp,struct perf_event_attr * attr,attr__fprintf_f attr__fprintf,void * priv)1561 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1562 			     attr__fprintf_f attr__fprintf, void *priv)
1563 {
1564 	char buf[BUF_SIZE];
1565 	int ret = 0;
1566 
1567 	PRINT_ATTRf(type, p_unsigned);
1568 	PRINT_ATTRf(size, p_unsigned);
1569 	PRINT_ATTRf(config, p_hex);
1570 	PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1571 	PRINT_ATTRf(sample_type, p_sample_type);
1572 	PRINT_ATTRf(read_format, p_read_format);
1573 
1574 	PRINT_ATTRf(disabled, p_unsigned);
1575 	PRINT_ATTRf(inherit, p_unsigned);
1576 	PRINT_ATTRf(pinned, p_unsigned);
1577 	PRINT_ATTRf(exclusive, p_unsigned);
1578 	PRINT_ATTRf(exclude_user, p_unsigned);
1579 	PRINT_ATTRf(exclude_kernel, p_unsigned);
1580 	PRINT_ATTRf(exclude_hv, p_unsigned);
1581 	PRINT_ATTRf(exclude_idle, p_unsigned);
1582 	PRINT_ATTRf(mmap, p_unsigned);
1583 	PRINT_ATTRf(comm, p_unsigned);
1584 	PRINT_ATTRf(freq, p_unsigned);
1585 	PRINT_ATTRf(inherit_stat, p_unsigned);
1586 	PRINT_ATTRf(enable_on_exec, p_unsigned);
1587 	PRINT_ATTRf(task, p_unsigned);
1588 	PRINT_ATTRf(watermark, p_unsigned);
1589 	PRINT_ATTRf(precise_ip, p_unsigned);
1590 	PRINT_ATTRf(mmap_data, p_unsigned);
1591 	PRINT_ATTRf(sample_id_all, p_unsigned);
1592 	PRINT_ATTRf(exclude_host, p_unsigned);
1593 	PRINT_ATTRf(exclude_guest, p_unsigned);
1594 	PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1595 	PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1596 	PRINT_ATTRf(mmap2, p_unsigned);
1597 	PRINT_ATTRf(comm_exec, p_unsigned);
1598 	PRINT_ATTRf(use_clockid, p_unsigned);
1599 	PRINT_ATTRf(context_switch, p_unsigned);
1600 	PRINT_ATTRf(write_backward, p_unsigned);
1601 
1602 	PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1603 	PRINT_ATTRf(bp_type, p_unsigned);
1604 	PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1605 	PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1606 	PRINT_ATTRf(branch_sample_type, p_branch_sample_type);
1607 	PRINT_ATTRf(sample_regs_user, p_hex);
1608 	PRINT_ATTRf(sample_stack_user, p_unsigned);
1609 	PRINT_ATTRf(clockid, p_signed);
1610 	PRINT_ATTRf(sample_regs_intr, p_hex);
1611 	PRINT_ATTRf(aux_watermark, p_unsigned);
1612 	PRINT_ATTRf(sample_max_stack, p_unsigned);
1613 
1614 	return ret;
1615 }
1616 
__open_attr__fprintf(FILE * fp,const char * name,const char * val,void * priv __maybe_unused)1617 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1618 				void *priv __maybe_unused)
1619 {
1620 	return fprintf(fp, "  %-32s %s\n", name, val);
1621 }
1622 
perf_evsel__remove_fd(struct perf_evsel * pos,int nr_cpus,int nr_threads,int thread_idx)1623 static void perf_evsel__remove_fd(struct perf_evsel *pos,
1624 				  int nr_cpus, int nr_threads,
1625 				  int thread_idx)
1626 {
1627 	for (int cpu = 0; cpu < nr_cpus; cpu++)
1628 		for (int thread = thread_idx; thread < nr_threads - 1; thread++)
1629 			FD(pos, cpu, thread) = FD(pos, cpu, thread + 1);
1630 }
1631 
update_fds(struct perf_evsel * evsel,int nr_cpus,int cpu_idx,int nr_threads,int thread_idx)1632 static int update_fds(struct perf_evsel *evsel,
1633 		      int nr_cpus, int cpu_idx,
1634 		      int nr_threads, int thread_idx)
1635 {
1636 	struct perf_evsel *pos;
1637 
1638 	if (cpu_idx >= nr_cpus || thread_idx >= nr_threads)
1639 		return -EINVAL;
1640 
1641 	evlist__for_each_entry(evsel->evlist, pos) {
1642 		nr_cpus = pos != evsel ? nr_cpus : cpu_idx;
1643 
1644 		perf_evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx);
1645 
1646 		/*
1647 		 * Since fds for next evsel has not been created,
1648 		 * there is no need to iterate whole event list.
1649 		 */
1650 		if (pos == evsel)
1651 			break;
1652 	}
1653 	return 0;
1654 }
1655 
ignore_missing_thread(struct perf_evsel * evsel,int nr_cpus,int cpu,struct thread_map * threads,int thread,int err)1656 static bool ignore_missing_thread(struct perf_evsel *evsel,
1657 				  int nr_cpus, int cpu,
1658 				  struct thread_map *threads,
1659 				  int thread, int err)
1660 {
1661 	pid_t ignore_pid = thread_map__pid(threads, thread);
1662 
1663 	if (!evsel->ignore_missing_thread)
1664 		return false;
1665 
1666 	/* The system wide setup does not work with threads. */
1667 	if (evsel->system_wide)
1668 		return false;
1669 
1670 	/* The -ESRCH is perf event syscall errno for pid's not found. */
1671 	if (err != -ESRCH)
1672 		return false;
1673 
1674 	/* If there's only one thread, let it fail. */
1675 	if (threads->nr == 1)
1676 		return false;
1677 
1678 	/*
1679 	 * We should remove fd for missing_thread first
1680 	 * because thread_map__remove() will decrease threads->nr.
1681 	 */
1682 	if (update_fds(evsel, nr_cpus, cpu, threads->nr, thread))
1683 		return false;
1684 
1685 	if (thread_map__remove(threads, thread))
1686 		return false;
1687 
1688 	pr_warning("WARNING: Ignored open failure for pid %d\n",
1689 		   ignore_pid);
1690 	return true;
1691 }
1692 
perf_evsel__open(struct perf_evsel * evsel,struct cpu_map * cpus,struct thread_map * threads)1693 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1694 		     struct thread_map *threads)
1695 {
1696 	int cpu, thread, nthreads;
1697 	unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1698 	int pid = -1, err;
1699 	enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1700 
1701 	if (perf_missing_features.write_backward && evsel->attr.write_backward)
1702 		return -EINVAL;
1703 
1704 	if (cpus == NULL) {
1705 		static struct cpu_map *empty_cpu_map;
1706 
1707 		if (empty_cpu_map == NULL) {
1708 			empty_cpu_map = cpu_map__dummy_new();
1709 			if (empty_cpu_map == NULL)
1710 				return -ENOMEM;
1711 		}
1712 
1713 		cpus = empty_cpu_map;
1714 	}
1715 
1716 	if (threads == NULL) {
1717 		static struct thread_map *empty_thread_map;
1718 
1719 		if (empty_thread_map == NULL) {
1720 			empty_thread_map = thread_map__new_by_tid(-1);
1721 			if (empty_thread_map == NULL)
1722 				return -ENOMEM;
1723 		}
1724 
1725 		threads = empty_thread_map;
1726 	}
1727 
1728 	if (evsel->system_wide)
1729 		nthreads = 1;
1730 	else
1731 		nthreads = threads->nr;
1732 
1733 	if (evsel->fd == NULL &&
1734 	    perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1735 		return -ENOMEM;
1736 
1737 	if (evsel->cgrp) {
1738 		flags |= PERF_FLAG_PID_CGROUP;
1739 		pid = evsel->cgrp->fd;
1740 	}
1741 
1742 fallback_missing_features:
1743 	if (perf_missing_features.clockid_wrong)
1744 		evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1745 	if (perf_missing_features.clockid) {
1746 		evsel->attr.use_clockid = 0;
1747 		evsel->attr.clockid = 0;
1748 	}
1749 	if (perf_missing_features.cloexec)
1750 		flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1751 	if (perf_missing_features.mmap2)
1752 		evsel->attr.mmap2 = 0;
1753 	if (perf_missing_features.exclude_guest)
1754 		evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1755 	if (perf_missing_features.lbr_flags)
1756 		evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1757 				     PERF_SAMPLE_BRANCH_NO_CYCLES);
1758 	if (perf_missing_features.group_read && evsel->attr.inherit)
1759 		evsel->attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID);
1760 retry_sample_id:
1761 	if (perf_missing_features.sample_id_all)
1762 		evsel->attr.sample_id_all = 0;
1763 
1764 	if (verbose >= 2) {
1765 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1766 		fprintf(stderr, "perf_event_attr:\n");
1767 		perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL);
1768 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1769 	}
1770 
1771 	for (cpu = 0; cpu < cpus->nr; cpu++) {
1772 
1773 		for (thread = 0; thread < nthreads; thread++) {
1774 			int fd, group_fd;
1775 
1776 			if (!evsel->cgrp && !evsel->system_wide)
1777 				pid = thread_map__pid(threads, thread);
1778 
1779 			group_fd = get_group_fd(evsel, cpu, thread);
1780 retry_open:
1781 			pr_debug2("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx",
1782 				  pid, cpus->map[cpu], group_fd, flags);
1783 
1784 			test_attr__ready();
1785 
1786 			fd = sys_perf_event_open(&evsel->attr, pid, cpus->map[cpu],
1787 						 group_fd, flags);
1788 
1789 			FD(evsel, cpu, thread) = fd;
1790 
1791 			if (fd < 0) {
1792 				err = -errno;
1793 
1794 				if (ignore_missing_thread(evsel, cpus->nr, cpu, threads, thread, err)) {
1795 					/*
1796 					 * We just removed 1 thread, so take a step
1797 					 * back on thread index and lower the upper
1798 					 * nthreads limit.
1799 					 */
1800 					nthreads--;
1801 					thread--;
1802 
1803 					/* ... and pretend like nothing have happened. */
1804 					err = 0;
1805 					continue;
1806 				}
1807 
1808 				pr_debug2("\nsys_perf_event_open failed, error %d\n",
1809 					  err);
1810 				goto try_fallback;
1811 			}
1812 
1813 			pr_debug2(" = %d\n", fd);
1814 
1815 			if (evsel->bpf_fd >= 0) {
1816 				int evt_fd = fd;
1817 				int bpf_fd = evsel->bpf_fd;
1818 
1819 				err = ioctl(evt_fd,
1820 					    PERF_EVENT_IOC_SET_BPF,
1821 					    bpf_fd);
1822 				if (err && errno != EEXIST) {
1823 					pr_err("failed to attach bpf fd %d: %s\n",
1824 					       bpf_fd, strerror(errno));
1825 					err = -EINVAL;
1826 					goto out_close;
1827 				}
1828 			}
1829 
1830 			set_rlimit = NO_CHANGE;
1831 
1832 			/*
1833 			 * If we succeeded but had to kill clockid, fail and
1834 			 * have perf_evsel__open_strerror() print us a nice
1835 			 * error.
1836 			 */
1837 			if (perf_missing_features.clockid ||
1838 			    perf_missing_features.clockid_wrong) {
1839 				err = -EINVAL;
1840 				goto out_close;
1841 			}
1842 		}
1843 	}
1844 
1845 	return 0;
1846 
1847 try_fallback:
1848 	/*
1849 	 * perf stat needs between 5 and 22 fds per CPU. When we run out
1850 	 * of them try to increase the limits.
1851 	 */
1852 	if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1853 		struct rlimit l;
1854 		int old_errno = errno;
1855 
1856 		if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1857 			if (set_rlimit == NO_CHANGE)
1858 				l.rlim_cur = l.rlim_max;
1859 			else {
1860 				l.rlim_cur = l.rlim_max + 1000;
1861 				l.rlim_max = l.rlim_cur;
1862 			}
1863 			if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1864 				set_rlimit++;
1865 				errno = old_errno;
1866 				goto retry_open;
1867 			}
1868 		}
1869 		errno = old_errno;
1870 	}
1871 
1872 	if (err != -EINVAL || cpu > 0 || thread > 0)
1873 		goto out_close;
1874 
1875 	/*
1876 	 * Must probe features in the order they were added to the
1877 	 * perf_event_attr interface.
1878 	 */
1879 	if (!perf_missing_features.write_backward && evsel->attr.write_backward) {
1880 		perf_missing_features.write_backward = true;
1881 		pr_debug2("switching off write_backward\n");
1882 		goto out_close;
1883 	} else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
1884 		perf_missing_features.clockid_wrong = true;
1885 		pr_debug2("switching off clockid\n");
1886 		goto fallback_missing_features;
1887 	} else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
1888 		perf_missing_features.clockid = true;
1889 		pr_debug2("switching off use_clockid\n");
1890 		goto fallback_missing_features;
1891 	} else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1892 		perf_missing_features.cloexec = true;
1893 		pr_debug2("switching off cloexec flag\n");
1894 		goto fallback_missing_features;
1895 	} else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1896 		perf_missing_features.mmap2 = true;
1897 		pr_debug2("switching off mmap2\n");
1898 		goto fallback_missing_features;
1899 	} else if (!perf_missing_features.exclude_guest &&
1900 		   (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1901 		perf_missing_features.exclude_guest = true;
1902 		pr_debug2("switching off exclude_guest, exclude_host\n");
1903 		goto fallback_missing_features;
1904 	} else if (!perf_missing_features.sample_id_all) {
1905 		perf_missing_features.sample_id_all = true;
1906 		pr_debug2("switching off sample_id_all\n");
1907 		goto retry_sample_id;
1908 	} else if (!perf_missing_features.lbr_flags &&
1909 			(evsel->attr.branch_sample_type &
1910 			 (PERF_SAMPLE_BRANCH_NO_CYCLES |
1911 			  PERF_SAMPLE_BRANCH_NO_FLAGS))) {
1912 		perf_missing_features.lbr_flags = true;
1913 		pr_debug2("switching off branch sample type no (cycles/flags)\n");
1914 		goto fallback_missing_features;
1915 	} else if (!perf_missing_features.group_read &&
1916 		    evsel->attr.inherit &&
1917 		   (evsel->attr.read_format & PERF_FORMAT_GROUP)) {
1918 		perf_missing_features.group_read = true;
1919 		pr_debug2("switching off group read\n");
1920 		goto fallback_missing_features;
1921 	}
1922 out_close:
1923 	do {
1924 		while (--thread >= 0) {
1925 			close(FD(evsel, cpu, thread));
1926 			FD(evsel, cpu, thread) = -1;
1927 		}
1928 		thread = nthreads;
1929 	} while (--cpu >= 0);
1930 	return err;
1931 }
1932 
perf_evsel__close(struct perf_evsel * evsel)1933 void perf_evsel__close(struct perf_evsel *evsel)
1934 {
1935 	if (evsel->fd == NULL)
1936 		return;
1937 
1938 	perf_evsel__close_fd(evsel);
1939 	perf_evsel__free_fd(evsel);
1940 }
1941 
perf_evsel__open_per_cpu(struct perf_evsel * evsel,struct cpu_map * cpus)1942 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1943 			     struct cpu_map *cpus)
1944 {
1945 	return perf_evsel__open(evsel, cpus, NULL);
1946 }
1947 
perf_evsel__open_per_thread(struct perf_evsel * evsel,struct thread_map * threads)1948 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1949 				struct thread_map *threads)
1950 {
1951 	return perf_evsel__open(evsel, NULL, threads);
1952 }
1953 
perf_evsel__parse_id_sample(const struct perf_evsel * evsel,const union perf_event * event,struct perf_sample * sample)1954 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1955 				       const union perf_event *event,
1956 				       struct perf_sample *sample)
1957 {
1958 	u64 type = evsel->attr.sample_type;
1959 	const u64 *array = event->sample.array;
1960 	bool swapped = evsel->needs_swap;
1961 	union u64_swap u;
1962 
1963 	array += ((event->header.size -
1964 		   sizeof(event->header)) / sizeof(u64)) - 1;
1965 
1966 	if (type & PERF_SAMPLE_IDENTIFIER) {
1967 		sample->id = *array;
1968 		array--;
1969 	}
1970 
1971 	if (type & PERF_SAMPLE_CPU) {
1972 		u.val64 = *array;
1973 		if (swapped) {
1974 			/* undo swap of u64, then swap on individual u32s */
1975 			u.val64 = bswap_64(u.val64);
1976 			u.val32[0] = bswap_32(u.val32[0]);
1977 		}
1978 
1979 		sample->cpu = u.val32[0];
1980 		array--;
1981 	}
1982 
1983 	if (type & PERF_SAMPLE_STREAM_ID) {
1984 		sample->stream_id = *array;
1985 		array--;
1986 	}
1987 
1988 	if (type & PERF_SAMPLE_ID) {
1989 		sample->id = *array;
1990 		array--;
1991 	}
1992 
1993 	if (type & PERF_SAMPLE_TIME) {
1994 		sample->time = *array;
1995 		array--;
1996 	}
1997 
1998 	if (type & PERF_SAMPLE_TID) {
1999 		u.val64 = *array;
2000 		if (swapped) {
2001 			/* undo swap of u64, then swap on individual u32s */
2002 			u.val64 = bswap_64(u.val64);
2003 			u.val32[0] = bswap_32(u.val32[0]);
2004 			u.val32[1] = bswap_32(u.val32[1]);
2005 		}
2006 
2007 		sample->pid = u.val32[0];
2008 		sample->tid = u.val32[1];
2009 		array--;
2010 	}
2011 
2012 	return 0;
2013 }
2014 
overflow(const void * endp,u16 max_size,const void * offset,u64 size)2015 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
2016 			    u64 size)
2017 {
2018 	return size > max_size || offset + size > endp;
2019 }
2020 
2021 #define OVERFLOW_CHECK(offset, size, max_size)				\
2022 	do {								\
2023 		if (overflow(endp, (max_size), (offset), (size)))	\
2024 			return -EFAULT;					\
2025 	} while (0)
2026 
2027 #define OVERFLOW_CHECK_u64(offset) \
2028 	OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
2029 
perf_evsel__parse_sample(struct perf_evsel * evsel,union perf_event * event,struct perf_sample * data)2030 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
2031 			     struct perf_sample *data)
2032 {
2033 	u64 type = evsel->attr.sample_type;
2034 	bool swapped = evsel->needs_swap;
2035 	const u64 *array;
2036 	u16 max_size = event->header.size;
2037 	const void *endp = (void *)event + max_size;
2038 	u64 sz;
2039 
2040 	/*
2041 	 * used for cross-endian analysis. See git commit 65014ab3
2042 	 * for why this goofiness is needed.
2043 	 */
2044 	union u64_swap u;
2045 
2046 	memset(data, 0, sizeof(*data));
2047 	data->cpu = data->pid = data->tid = -1;
2048 	data->stream_id = data->id = data->time = -1ULL;
2049 	data->period = evsel->attr.sample_period;
2050 	data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2051 
2052 	if (event->header.type != PERF_RECORD_SAMPLE) {
2053 		if (!evsel->attr.sample_id_all)
2054 			return 0;
2055 		return perf_evsel__parse_id_sample(evsel, event, data);
2056 	}
2057 
2058 	array = event->sample.array;
2059 
2060 	/*
2061 	 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
2062 	 * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
2063 	 * check the format does not go past the end of the event.
2064 	 */
2065 	if (evsel->sample_size + sizeof(event->header) > event->header.size)
2066 		return -EFAULT;
2067 
2068 	data->id = -1ULL;
2069 	if (type & PERF_SAMPLE_IDENTIFIER) {
2070 		data->id = *array;
2071 		array++;
2072 	}
2073 
2074 	if (type & PERF_SAMPLE_IP) {
2075 		data->ip = *array;
2076 		array++;
2077 	}
2078 
2079 	if (type & PERF_SAMPLE_TID) {
2080 		u.val64 = *array;
2081 		if (swapped) {
2082 			/* undo swap of u64, then swap on individual u32s */
2083 			u.val64 = bswap_64(u.val64);
2084 			u.val32[0] = bswap_32(u.val32[0]);
2085 			u.val32[1] = bswap_32(u.val32[1]);
2086 		}
2087 
2088 		data->pid = u.val32[0];
2089 		data->tid = u.val32[1];
2090 		array++;
2091 	}
2092 
2093 	if (type & PERF_SAMPLE_TIME) {
2094 		data->time = *array;
2095 		array++;
2096 	}
2097 
2098 	data->addr = 0;
2099 	if (type & PERF_SAMPLE_ADDR) {
2100 		data->addr = *array;
2101 		array++;
2102 	}
2103 
2104 	if (type & PERF_SAMPLE_ID) {
2105 		data->id = *array;
2106 		array++;
2107 	}
2108 
2109 	if (type & PERF_SAMPLE_STREAM_ID) {
2110 		data->stream_id = *array;
2111 		array++;
2112 	}
2113 
2114 	if (type & PERF_SAMPLE_CPU) {
2115 
2116 		u.val64 = *array;
2117 		if (swapped) {
2118 			/* undo swap of u64, then swap on individual u32s */
2119 			u.val64 = bswap_64(u.val64);
2120 			u.val32[0] = bswap_32(u.val32[0]);
2121 		}
2122 
2123 		data->cpu = u.val32[0];
2124 		array++;
2125 	}
2126 
2127 	if (type & PERF_SAMPLE_PERIOD) {
2128 		data->period = *array;
2129 		array++;
2130 	}
2131 
2132 	if (type & PERF_SAMPLE_READ) {
2133 		u64 read_format = evsel->attr.read_format;
2134 
2135 		OVERFLOW_CHECK_u64(array);
2136 		if (read_format & PERF_FORMAT_GROUP)
2137 			data->read.group.nr = *array;
2138 		else
2139 			data->read.one.value = *array;
2140 
2141 		array++;
2142 
2143 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2144 			OVERFLOW_CHECK_u64(array);
2145 			data->read.time_enabled = *array;
2146 			array++;
2147 		}
2148 
2149 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2150 			OVERFLOW_CHECK_u64(array);
2151 			data->read.time_running = *array;
2152 			array++;
2153 		}
2154 
2155 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2156 		if (read_format & PERF_FORMAT_GROUP) {
2157 			const u64 max_group_nr = UINT64_MAX /
2158 					sizeof(struct sample_read_value);
2159 
2160 			if (data->read.group.nr > max_group_nr)
2161 				return -EFAULT;
2162 			sz = data->read.group.nr *
2163 			     sizeof(struct sample_read_value);
2164 			OVERFLOW_CHECK(array, sz, max_size);
2165 			data->read.group.values =
2166 					(struct sample_read_value *)array;
2167 			array = (void *)array + sz;
2168 		} else {
2169 			OVERFLOW_CHECK_u64(array);
2170 			data->read.one.id = *array;
2171 			array++;
2172 		}
2173 	}
2174 
2175 	if (type & PERF_SAMPLE_CALLCHAIN) {
2176 		const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
2177 
2178 		OVERFLOW_CHECK_u64(array);
2179 		data->callchain = (struct ip_callchain *)array++;
2180 		if (data->callchain->nr > max_callchain_nr)
2181 			return -EFAULT;
2182 		sz = data->callchain->nr * sizeof(u64);
2183 		OVERFLOW_CHECK(array, sz, max_size);
2184 		array = (void *)array + sz;
2185 	}
2186 
2187 	if (type & PERF_SAMPLE_RAW) {
2188 		OVERFLOW_CHECK_u64(array);
2189 		u.val64 = *array;
2190 		if (WARN_ONCE(swapped,
2191 			      "Endianness of raw data not corrected!\n")) {
2192 			/* undo swap of u64, then swap on individual u32s */
2193 			u.val64 = bswap_64(u.val64);
2194 			u.val32[0] = bswap_32(u.val32[0]);
2195 			u.val32[1] = bswap_32(u.val32[1]);
2196 		}
2197 		data->raw_size = u.val32[0];
2198 		array = (void *)array + sizeof(u32);
2199 
2200 		OVERFLOW_CHECK(array, data->raw_size, max_size);
2201 		data->raw_data = (void *)array;
2202 		array = (void *)array + data->raw_size;
2203 	}
2204 
2205 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2206 		const u64 max_branch_nr = UINT64_MAX /
2207 					  sizeof(struct branch_entry);
2208 
2209 		OVERFLOW_CHECK_u64(array);
2210 		data->branch_stack = (struct branch_stack *)array++;
2211 
2212 		if (data->branch_stack->nr > max_branch_nr)
2213 			return -EFAULT;
2214 		sz = data->branch_stack->nr * sizeof(struct branch_entry);
2215 		OVERFLOW_CHECK(array, sz, max_size);
2216 		array = (void *)array + sz;
2217 	}
2218 
2219 	if (type & PERF_SAMPLE_REGS_USER) {
2220 		OVERFLOW_CHECK_u64(array);
2221 		data->user_regs.abi = *array;
2222 		array++;
2223 
2224 		if (data->user_regs.abi) {
2225 			u64 mask = evsel->attr.sample_regs_user;
2226 
2227 			sz = hweight_long(mask) * sizeof(u64);
2228 			OVERFLOW_CHECK(array, sz, max_size);
2229 			data->user_regs.mask = mask;
2230 			data->user_regs.regs = (u64 *)array;
2231 			array = (void *)array + sz;
2232 		}
2233 	}
2234 
2235 	if (type & PERF_SAMPLE_STACK_USER) {
2236 		OVERFLOW_CHECK_u64(array);
2237 		sz = *array++;
2238 
2239 		data->user_stack.offset = ((char *)(array - 1)
2240 					  - (char *) event);
2241 
2242 		if (!sz) {
2243 			data->user_stack.size = 0;
2244 		} else {
2245 			OVERFLOW_CHECK(array, sz, max_size);
2246 			data->user_stack.data = (char *)array;
2247 			array = (void *)array + sz;
2248 			OVERFLOW_CHECK_u64(array);
2249 			data->user_stack.size = *array++;
2250 			if (WARN_ONCE(data->user_stack.size > sz,
2251 				      "user stack dump failure\n"))
2252 				return -EFAULT;
2253 		}
2254 	}
2255 
2256 	if (type & PERF_SAMPLE_WEIGHT) {
2257 		OVERFLOW_CHECK_u64(array);
2258 		data->weight = *array;
2259 		array++;
2260 	}
2261 
2262 	data->data_src = PERF_MEM_DATA_SRC_NONE;
2263 	if (type & PERF_SAMPLE_DATA_SRC) {
2264 		OVERFLOW_CHECK_u64(array);
2265 		data->data_src = *array;
2266 		array++;
2267 	}
2268 
2269 	data->transaction = 0;
2270 	if (type & PERF_SAMPLE_TRANSACTION) {
2271 		OVERFLOW_CHECK_u64(array);
2272 		data->transaction = *array;
2273 		array++;
2274 	}
2275 
2276 	data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
2277 	if (type & PERF_SAMPLE_REGS_INTR) {
2278 		OVERFLOW_CHECK_u64(array);
2279 		data->intr_regs.abi = *array;
2280 		array++;
2281 
2282 		if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
2283 			u64 mask = evsel->attr.sample_regs_intr;
2284 
2285 			sz = hweight_long(mask) * sizeof(u64);
2286 			OVERFLOW_CHECK(array, sz, max_size);
2287 			data->intr_regs.mask = mask;
2288 			data->intr_regs.regs = (u64 *)array;
2289 			array = (void *)array + sz;
2290 		}
2291 	}
2292 
2293 	data->phys_addr = 0;
2294 	if (type & PERF_SAMPLE_PHYS_ADDR) {
2295 		data->phys_addr = *array;
2296 		array++;
2297 	}
2298 
2299 	return 0;
2300 }
2301 
perf_event__sample_event_size(const struct perf_sample * sample,u64 type,u64 read_format)2302 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
2303 				     u64 read_format)
2304 {
2305 	size_t sz, result = sizeof(struct sample_event);
2306 
2307 	if (type & PERF_SAMPLE_IDENTIFIER)
2308 		result += sizeof(u64);
2309 
2310 	if (type & PERF_SAMPLE_IP)
2311 		result += sizeof(u64);
2312 
2313 	if (type & PERF_SAMPLE_TID)
2314 		result += sizeof(u64);
2315 
2316 	if (type & PERF_SAMPLE_TIME)
2317 		result += sizeof(u64);
2318 
2319 	if (type & PERF_SAMPLE_ADDR)
2320 		result += sizeof(u64);
2321 
2322 	if (type & PERF_SAMPLE_ID)
2323 		result += sizeof(u64);
2324 
2325 	if (type & PERF_SAMPLE_STREAM_ID)
2326 		result += sizeof(u64);
2327 
2328 	if (type & PERF_SAMPLE_CPU)
2329 		result += sizeof(u64);
2330 
2331 	if (type & PERF_SAMPLE_PERIOD)
2332 		result += sizeof(u64);
2333 
2334 	if (type & PERF_SAMPLE_READ) {
2335 		result += sizeof(u64);
2336 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2337 			result += sizeof(u64);
2338 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2339 			result += sizeof(u64);
2340 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2341 		if (read_format & PERF_FORMAT_GROUP) {
2342 			sz = sample->read.group.nr *
2343 			     sizeof(struct sample_read_value);
2344 			result += sz;
2345 		} else {
2346 			result += sizeof(u64);
2347 		}
2348 	}
2349 
2350 	if (type & PERF_SAMPLE_CALLCHAIN) {
2351 		sz = (sample->callchain->nr + 1) * sizeof(u64);
2352 		result += sz;
2353 	}
2354 
2355 	if (type & PERF_SAMPLE_RAW) {
2356 		result += sizeof(u32);
2357 		result += sample->raw_size;
2358 	}
2359 
2360 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2361 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2362 		sz += sizeof(u64);
2363 		result += sz;
2364 	}
2365 
2366 	if (type & PERF_SAMPLE_REGS_USER) {
2367 		if (sample->user_regs.abi) {
2368 			result += sizeof(u64);
2369 			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2370 			result += sz;
2371 		} else {
2372 			result += sizeof(u64);
2373 		}
2374 	}
2375 
2376 	if (type & PERF_SAMPLE_STACK_USER) {
2377 		sz = sample->user_stack.size;
2378 		result += sizeof(u64);
2379 		if (sz) {
2380 			result += sz;
2381 			result += sizeof(u64);
2382 		}
2383 	}
2384 
2385 	if (type & PERF_SAMPLE_WEIGHT)
2386 		result += sizeof(u64);
2387 
2388 	if (type & PERF_SAMPLE_DATA_SRC)
2389 		result += sizeof(u64);
2390 
2391 	if (type & PERF_SAMPLE_TRANSACTION)
2392 		result += sizeof(u64);
2393 
2394 	if (type & PERF_SAMPLE_REGS_INTR) {
2395 		if (sample->intr_regs.abi) {
2396 			result += sizeof(u64);
2397 			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2398 			result += sz;
2399 		} else {
2400 			result += sizeof(u64);
2401 		}
2402 	}
2403 
2404 	if (type & PERF_SAMPLE_PHYS_ADDR)
2405 		result += sizeof(u64);
2406 
2407 	return result;
2408 }
2409 
perf_event__synthesize_sample(union perf_event * event,u64 type,u64 read_format,const struct perf_sample * sample,bool swapped)2410 int perf_event__synthesize_sample(union perf_event *event, u64 type,
2411 				  u64 read_format,
2412 				  const struct perf_sample *sample,
2413 				  bool swapped)
2414 {
2415 	u64 *array;
2416 	size_t sz;
2417 	/*
2418 	 * used for cross-endian analysis. See git commit 65014ab3
2419 	 * for why this goofiness is needed.
2420 	 */
2421 	union u64_swap u;
2422 
2423 	array = event->sample.array;
2424 
2425 	if (type & PERF_SAMPLE_IDENTIFIER) {
2426 		*array = sample->id;
2427 		array++;
2428 	}
2429 
2430 	if (type & PERF_SAMPLE_IP) {
2431 		*array = sample->ip;
2432 		array++;
2433 	}
2434 
2435 	if (type & PERF_SAMPLE_TID) {
2436 		u.val32[0] = sample->pid;
2437 		u.val32[1] = sample->tid;
2438 		if (swapped) {
2439 			/*
2440 			 * Inverse of what is done in perf_evsel__parse_sample
2441 			 */
2442 			u.val32[0] = bswap_32(u.val32[0]);
2443 			u.val32[1] = bswap_32(u.val32[1]);
2444 			u.val64 = bswap_64(u.val64);
2445 		}
2446 
2447 		*array = u.val64;
2448 		array++;
2449 	}
2450 
2451 	if (type & PERF_SAMPLE_TIME) {
2452 		*array = sample->time;
2453 		array++;
2454 	}
2455 
2456 	if (type & PERF_SAMPLE_ADDR) {
2457 		*array = sample->addr;
2458 		array++;
2459 	}
2460 
2461 	if (type & PERF_SAMPLE_ID) {
2462 		*array = sample->id;
2463 		array++;
2464 	}
2465 
2466 	if (type & PERF_SAMPLE_STREAM_ID) {
2467 		*array = sample->stream_id;
2468 		array++;
2469 	}
2470 
2471 	if (type & PERF_SAMPLE_CPU) {
2472 		u.val32[0] = sample->cpu;
2473 		if (swapped) {
2474 			/*
2475 			 * Inverse of what is done in perf_evsel__parse_sample
2476 			 */
2477 			u.val32[0] = bswap_32(u.val32[0]);
2478 			u.val64 = bswap_64(u.val64);
2479 		}
2480 		*array = u.val64;
2481 		array++;
2482 	}
2483 
2484 	if (type & PERF_SAMPLE_PERIOD) {
2485 		*array = sample->period;
2486 		array++;
2487 	}
2488 
2489 	if (type & PERF_SAMPLE_READ) {
2490 		if (read_format & PERF_FORMAT_GROUP)
2491 			*array = sample->read.group.nr;
2492 		else
2493 			*array = sample->read.one.value;
2494 		array++;
2495 
2496 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2497 			*array = sample->read.time_enabled;
2498 			array++;
2499 		}
2500 
2501 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2502 			*array = sample->read.time_running;
2503 			array++;
2504 		}
2505 
2506 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2507 		if (read_format & PERF_FORMAT_GROUP) {
2508 			sz = sample->read.group.nr *
2509 			     sizeof(struct sample_read_value);
2510 			memcpy(array, sample->read.group.values, sz);
2511 			array = (void *)array + sz;
2512 		} else {
2513 			*array = sample->read.one.id;
2514 			array++;
2515 		}
2516 	}
2517 
2518 	if (type & PERF_SAMPLE_CALLCHAIN) {
2519 		sz = (sample->callchain->nr + 1) * sizeof(u64);
2520 		memcpy(array, sample->callchain, sz);
2521 		array = (void *)array + sz;
2522 	}
2523 
2524 	if (type & PERF_SAMPLE_RAW) {
2525 		u.val32[0] = sample->raw_size;
2526 		if (WARN_ONCE(swapped,
2527 			      "Endianness of raw data not corrected!\n")) {
2528 			/*
2529 			 * Inverse of what is done in perf_evsel__parse_sample
2530 			 */
2531 			u.val32[0] = bswap_32(u.val32[0]);
2532 			u.val32[1] = bswap_32(u.val32[1]);
2533 			u.val64 = bswap_64(u.val64);
2534 		}
2535 		*array = u.val64;
2536 		array = (void *)array + sizeof(u32);
2537 
2538 		memcpy(array, sample->raw_data, sample->raw_size);
2539 		array = (void *)array + sample->raw_size;
2540 	}
2541 
2542 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2543 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2544 		sz += sizeof(u64);
2545 		memcpy(array, sample->branch_stack, sz);
2546 		array = (void *)array + sz;
2547 	}
2548 
2549 	if (type & PERF_SAMPLE_REGS_USER) {
2550 		if (sample->user_regs.abi) {
2551 			*array++ = sample->user_regs.abi;
2552 			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2553 			memcpy(array, sample->user_regs.regs, sz);
2554 			array = (void *)array + sz;
2555 		} else {
2556 			*array++ = 0;
2557 		}
2558 	}
2559 
2560 	if (type & PERF_SAMPLE_STACK_USER) {
2561 		sz = sample->user_stack.size;
2562 		*array++ = sz;
2563 		if (sz) {
2564 			memcpy(array, sample->user_stack.data, sz);
2565 			array = (void *)array + sz;
2566 			*array++ = sz;
2567 		}
2568 	}
2569 
2570 	if (type & PERF_SAMPLE_WEIGHT) {
2571 		*array = sample->weight;
2572 		array++;
2573 	}
2574 
2575 	if (type & PERF_SAMPLE_DATA_SRC) {
2576 		*array = sample->data_src;
2577 		array++;
2578 	}
2579 
2580 	if (type & PERF_SAMPLE_TRANSACTION) {
2581 		*array = sample->transaction;
2582 		array++;
2583 	}
2584 
2585 	if (type & PERF_SAMPLE_REGS_INTR) {
2586 		if (sample->intr_regs.abi) {
2587 			*array++ = sample->intr_regs.abi;
2588 			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2589 			memcpy(array, sample->intr_regs.regs, sz);
2590 			array = (void *)array + sz;
2591 		} else {
2592 			*array++ = 0;
2593 		}
2594 	}
2595 
2596 	if (type & PERF_SAMPLE_PHYS_ADDR) {
2597 		*array = sample->phys_addr;
2598 		array++;
2599 	}
2600 
2601 	return 0;
2602 }
2603 
perf_evsel__field(struct perf_evsel * evsel,const char * name)2604 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
2605 {
2606 	return pevent_find_field(evsel->tp_format, name);
2607 }
2608 
perf_evsel__rawptr(struct perf_evsel * evsel,struct perf_sample * sample,const char * name)2609 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
2610 			 const char *name)
2611 {
2612 	struct format_field *field = perf_evsel__field(evsel, name);
2613 	int offset;
2614 
2615 	if (!field)
2616 		return NULL;
2617 
2618 	offset = field->offset;
2619 
2620 	if (field->flags & FIELD_IS_DYNAMIC) {
2621 		offset = *(int *)(sample->raw_data + field->offset);
2622 		offset &= 0xffff;
2623 	}
2624 
2625 	return sample->raw_data + offset;
2626 }
2627 
format_field__intval(struct format_field * field,struct perf_sample * sample,bool needs_swap)2628 u64 format_field__intval(struct format_field *field, struct perf_sample *sample,
2629 			 bool needs_swap)
2630 {
2631 	u64 value;
2632 	void *ptr = sample->raw_data + field->offset;
2633 
2634 	switch (field->size) {
2635 	case 1:
2636 		return *(u8 *)ptr;
2637 	case 2:
2638 		value = *(u16 *)ptr;
2639 		break;
2640 	case 4:
2641 		value = *(u32 *)ptr;
2642 		break;
2643 	case 8:
2644 		memcpy(&value, ptr, sizeof(u64));
2645 		break;
2646 	default:
2647 		return 0;
2648 	}
2649 
2650 	if (!needs_swap)
2651 		return value;
2652 
2653 	switch (field->size) {
2654 	case 2:
2655 		return bswap_16(value);
2656 	case 4:
2657 		return bswap_32(value);
2658 	case 8:
2659 		return bswap_64(value);
2660 	default:
2661 		return 0;
2662 	}
2663 
2664 	return 0;
2665 }
2666 
perf_evsel__intval(struct perf_evsel * evsel,struct perf_sample * sample,const char * name)2667 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
2668 		       const char *name)
2669 {
2670 	struct format_field *field = perf_evsel__field(evsel, name);
2671 
2672 	if (!field)
2673 		return 0;
2674 
2675 	return field ? format_field__intval(field, sample, evsel->needs_swap) : 0;
2676 }
2677 
perf_evsel__fallback(struct perf_evsel * evsel,int err,char * msg,size_t msgsize)2678 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2679 			  char *msg, size_t msgsize)
2680 {
2681 	int paranoid;
2682 
2683 	if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2684 	    evsel->attr.type   == PERF_TYPE_HARDWARE &&
2685 	    evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2686 		/*
2687 		 * If it's cycles then fall back to hrtimer based
2688 		 * cpu-clock-tick sw counter, which is always available even if
2689 		 * no PMU support.
2690 		 *
2691 		 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2692 		 * b0a873e).
2693 		 */
2694 		scnprintf(msg, msgsize, "%s",
2695 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2696 
2697 		evsel->attr.type   = PERF_TYPE_SOFTWARE;
2698 		evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2699 
2700 		zfree(&evsel->name);
2701 		return true;
2702 	} else if (err == EACCES && !evsel->attr.exclude_kernel &&
2703 		   (paranoid = perf_event_paranoid()) > 1) {
2704 		const char *name = perf_evsel__name(evsel);
2705 		char *new_name;
2706 
2707 		if (asprintf(&new_name, "%s%su", name, strchr(name, ':') ? "" : ":") < 0)
2708 			return false;
2709 
2710 		if (evsel->name)
2711 			free(evsel->name);
2712 		evsel->name = new_name;
2713 		scnprintf(msg, msgsize,
2714 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid);
2715 		evsel->attr.exclude_kernel = 1;
2716 
2717 		return true;
2718 	}
2719 
2720 	return false;
2721 }
2722 
find_process(const char * name)2723 static bool find_process(const char *name)
2724 {
2725 	size_t len = strlen(name);
2726 	DIR *dir;
2727 	struct dirent *d;
2728 	int ret = -1;
2729 
2730 	dir = opendir(procfs__mountpoint());
2731 	if (!dir)
2732 		return false;
2733 
2734 	/* Walk through the directory. */
2735 	while (ret && (d = readdir(dir)) != NULL) {
2736 		char path[PATH_MAX];
2737 		char *data;
2738 		size_t size;
2739 
2740 		if ((d->d_type != DT_DIR) ||
2741 		     !strcmp(".", d->d_name) ||
2742 		     !strcmp("..", d->d_name))
2743 			continue;
2744 
2745 		scnprintf(path, sizeof(path), "%s/%s/comm",
2746 			  procfs__mountpoint(), d->d_name);
2747 
2748 		if (filename__read_str(path, &data, &size))
2749 			continue;
2750 
2751 		ret = strncmp(name, data, len);
2752 		free(data);
2753 	}
2754 
2755 	closedir(dir);
2756 	return ret ? false : true;
2757 }
2758 
perf_evsel__open_strerror(struct perf_evsel * evsel,struct target * target,int err,char * msg,size_t size)2759 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2760 			      int err, char *msg, size_t size)
2761 {
2762 	char sbuf[STRERR_BUFSIZE];
2763 	int printed = 0;
2764 
2765 	switch (err) {
2766 	case EPERM:
2767 	case EACCES:
2768 		if (err == EPERM)
2769 			printed = scnprintf(msg, size,
2770 				"No permission to enable %s event.\n\n",
2771 				perf_evsel__name(evsel));
2772 
2773 		return scnprintf(msg + printed, size - printed,
2774 		 "You may not have permission to collect %sstats.\n\n"
2775 		 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2776 		 "which controls use of the performance events system by\n"
2777 		 "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2778 		 "The current value is %d:\n\n"
2779 		 "  -1: Allow use of (almost) all events by all users\n"
2780 		 "      Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n"
2781 		 ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n"
2782 		 "      Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n"
2783 		 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2784 		 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n"
2785 		 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n"
2786 		 "	kernel.perf_event_paranoid = -1\n" ,
2787 				 target->system_wide ? "system-wide " : "",
2788 				 perf_event_paranoid());
2789 	case ENOENT:
2790 		return scnprintf(msg, size, "The %s event is not supported.",
2791 				 perf_evsel__name(evsel));
2792 	case EMFILE:
2793 		return scnprintf(msg, size, "%s",
2794 			 "Too many events are opened.\n"
2795 			 "Probably the maximum number of open file descriptors has been reached.\n"
2796 			 "Hint: Try again after reducing the number of events.\n"
2797 			 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2798 	case ENOMEM:
2799 		if ((evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN) != 0 &&
2800 		    access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
2801 			return scnprintf(msg, size,
2802 					 "Not enough memory to setup event with callchain.\n"
2803 					 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2804 					 "Hint: Current value: %d", sysctl_perf_event_max_stack);
2805 		break;
2806 	case ENODEV:
2807 		if (target->cpu_list)
2808 			return scnprintf(msg, size, "%s",
2809 	 "No such device - did you specify an out-of-range profile CPU?");
2810 		break;
2811 	case EOPNOTSUPP:
2812 		if (evsel->attr.sample_period != 0)
2813 			return scnprintf(msg, size, "%s",
2814 	"PMU Hardware doesn't support sampling/overflow-interrupts.");
2815 		if (evsel->attr.precise_ip)
2816 			return scnprintf(msg, size, "%s",
2817 	"\'precise\' request may not be supported. Try removing 'p' modifier.");
2818 #if defined(__i386__) || defined(__x86_64__)
2819 		if (evsel->attr.type == PERF_TYPE_HARDWARE)
2820 			return scnprintf(msg, size, "%s",
2821 	"No hardware sampling interrupt available.\n"
2822 	"No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2823 #endif
2824 		break;
2825 	case EBUSY:
2826 		if (find_process("oprofiled"))
2827 			return scnprintf(msg, size,
2828 	"The PMU counters are busy/taken by another profiler.\n"
2829 	"We found oprofile daemon running, please stop it and try again.");
2830 		break;
2831 	case EINVAL:
2832 		if (evsel->attr.write_backward && perf_missing_features.write_backward)
2833 			return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel.");
2834 		if (perf_missing_features.clockid)
2835 			return scnprintf(msg, size, "clockid feature not supported.");
2836 		if (perf_missing_features.clockid_wrong)
2837 			return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2838 		break;
2839 	default:
2840 		break;
2841 	}
2842 
2843 	return scnprintf(msg, size,
2844 	"The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2845 	"/bin/dmesg may provide additional information.\n"
2846 	"No CONFIG_PERF_EVENTS=y kernel support configured?",
2847 			 err, str_error_r(err, sbuf, sizeof(sbuf)),
2848 			 perf_evsel__name(evsel));
2849 }
2850 
perf_evsel__env_arch(struct perf_evsel * evsel)2851 char *perf_evsel__env_arch(struct perf_evsel *evsel)
2852 {
2853 	if (evsel && evsel->evlist && evsel->evlist->env)
2854 		return evsel->evlist->env->arch;
2855 	return NULL;
2856 }
2857 
perf_evsel__env_cpuid(struct perf_evsel * evsel)2858 char *perf_evsel__env_cpuid(struct perf_evsel *evsel)
2859 {
2860 	if (evsel && evsel->evlist && evsel->evlist->env)
2861 		return evsel->evlist->env->cpuid;
2862 	return NULL;
2863 }
2864