• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * mpx.c - Memory Protection eXtensions
4  *
5  * Copyright (c) 2014, Intel Corporation.
6  * Qiaowei Ren <qiaowei.ren@intel.com>
7  * Dave Hansen <dave.hansen@intel.com>
8  */
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/mm_types.h>
12 #include <linux/syscalls.h>
13 #include <linux/sched/sysctl.h>
14 
15 #include <asm/insn.h>
16 #include <asm/mman.h>
17 #include <asm/mmu_context.h>
18 #include <asm/mpx.h>
19 #include <asm/processor.h>
20 #include <asm/fpu/internal.h>
21 
22 #define CREATE_TRACE_POINTS
23 #include <asm/trace/mpx.h>
24 
mpx_bd_size_bytes(struct mm_struct * mm)25 static inline unsigned long mpx_bd_size_bytes(struct mm_struct *mm)
26 {
27 	if (is_64bit_mm(mm))
28 		return MPX_BD_SIZE_BYTES_64;
29 	else
30 		return MPX_BD_SIZE_BYTES_32;
31 }
32 
mpx_bt_size_bytes(struct mm_struct * mm)33 static inline unsigned long mpx_bt_size_bytes(struct mm_struct *mm)
34 {
35 	if (is_64bit_mm(mm))
36 		return MPX_BT_SIZE_BYTES_64;
37 	else
38 		return MPX_BT_SIZE_BYTES_32;
39 }
40 
41 /*
42  * This is really a simplified "vm_mmap". it only handles MPX
43  * bounds tables (the bounds directory is user-allocated).
44  */
mpx_mmap(unsigned long len)45 static unsigned long mpx_mmap(unsigned long len)
46 {
47 	struct mm_struct *mm = current->mm;
48 	unsigned long addr, populate;
49 
50 	/* Only bounds table can be allocated here */
51 	if (len != mpx_bt_size_bytes(mm))
52 		return -EINVAL;
53 
54 	down_write(&mm->mmap_sem);
55 	addr = do_mmap(NULL, 0, len, PROT_READ | PROT_WRITE,
56 		       MAP_ANONYMOUS | MAP_PRIVATE, VM_MPX, 0, &populate, NULL);
57 	up_write(&mm->mmap_sem);
58 	if (populate)
59 		mm_populate(addr, populate);
60 
61 	return addr;
62 }
63 
64 enum reg_type {
65 	REG_TYPE_RM = 0,
66 	REG_TYPE_INDEX,
67 	REG_TYPE_BASE,
68 };
69 
get_reg_offset(struct insn * insn,struct pt_regs * regs,enum reg_type type)70 static int get_reg_offset(struct insn *insn, struct pt_regs *regs,
71 			  enum reg_type type)
72 {
73 	int regno = 0;
74 
75 	static const int regoff[] = {
76 		offsetof(struct pt_regs, ax),
77 		offsetof(struct pt_regs, cx),
78 		offsetof(struct pt_regs, dx),
79 		offsetof(struct pt_regs, bx),
80 		offsetof(struct pt_regs, sp),
81 		offsetof(struct pt_regs, bp),
82 		offsetof(struct pt_regs, si),
83 		offsetof(struct pt_regs, di),
84 #ifdef CONFIG_X86_64
85 		offsetof(struct pt_regs, r8),
86 		offsetof(struct pt_regs, r9),
87 		offsetof(struct pt_regs, r10),
88 		offsetof(struct pt_regs, r11),
89 		offsetof(struct pt_regs, r12),
90 		offsetof(struct pt_regs, r13),
91 		offsetof(struct pt_regs, r14),
92 		offsetof(struct pt_regs, r15),
93 #endif
94 	};
95 	int nr_registers = ARRAY_SIZE(regoff);
96 	/*
97 	 * Don't possibly decode a 32-bit instructions as
98 	 * reading a 64-bit-only register.
99 	 */
100 	if (IS_ENABLED(CONFIG_X86_64) && !insn->x86_64)
101 		nr_registers -= 8;
102 
103 	switch (type) {
104 	case REG_TYPE_RM:
105 		regno = X86_MODRM_RM(insn->modrm.value);
106 		if (X86_REX_B(insn->rex_prefix.value))
107 			regno += 8;
108 		break;
109 
110 	case REG_TYPE_INDEX:
111 		regno = X86_SIB_INDEX(insn->sib.value);
112 		if (X86_REX_X(insn->rex_prefix.value))
113 			regno += 8;
114 		break;
115 
116 	case REG_TYPE_BASE:
117 		regno = X86_SIB_BASE(insn->sib.value);
118 		if (X86_REX_B(insn->rex_prefix.value))
119 			regno += 8;
120 		break;
121 
122 	default:
123 		pr_err("invalid register type");
124 		BUG();
125 		break;
126 	}
127 
128 	if (regno >= nr_registers) {
129 		WARN_ONCE(1, "decoded an instruction with an invalid register");
130 		return -EINVAL;
131 	}
132 	return regoff[regno];
133 }
134 
135 /*
136  * return the address being referenced be instruction
137  * for rm=3 returning the content of the rm reg
138  * for rm!=3 calculates the address using SIB and Disp
139  */
mpx_get_addr_ref(struct insn * insn,struct pt_regs * regs)140 static void __user *mpx_get_addr_ref(struct insn *insn, struct pt_regs *regs)
141 {
142 	unsigned long addr, base, indx;
143 	int addr_offset, base_offset, indx_offset;
144 	insn_byte_t sib;
145 
146 	insn_get_modrm(insn);
147 	insn_get_sib(insn);
148 	sib = insn->sib.value;
149 
150 	if (X86_MODRM_MOD(insn->modrm.value) == 3) {
151 		addr_offset = get_reg_offset(insn, regs, REG_TYPE_RM);
152 		if (addr_offset < 0)
153 			goto out_err;
154 		addr = regs_get_register(regs, addr_offset);
155 	} else {
156 		if (insn->sib.nbytes) {
157 			base_offset = get_reg_offset(insn, regs, REG_TYPE_BASE);
158 			if (base_offset < 0)
159 				goto out_err;
160 
161 			indx_offset = get_reg_offset(insn, regs, REG_TYPE_INDEX);
162 			if (indx_offset < 0)
163 				goto out_err;
164 
165 			base = regs_get_register(regs, base_offset);
166 			indx = regs_get_register(regs, indx_offset);
167 			addr = base + indx * (1 << X86_SIB_SCALE(sib));
168 		} else {
169 			addr_offset = get_reg_offset(insn, regs, REG_TYPE_RM);
170 			if (addr_offset < 0)
171 				goto out_err;
172 			addr = regs_get_register(regs, addr_offset);
173 		}
174 		addr += insn->displacement.value;
175 	}
176 	return (void __user *)addr;
177 out_err:
178 	return (void __user *)-1;
179 }
180 
mpx_insn_decode(struct insn * insn,struct pt_regs * regs)181 static int mpx_insn_decode(struct insn *insn,
182 			   struct pt_regs *regs)
183 {
184 	unsigned char buf[MAX_INSN_SIZE];
185 	int x86_64 = !test_thread_flag(TIF_IA32);
186 	int not_copied;
187 	int nr_copied;
188 
189 	not_copied = copy_from_user(buf, (void __user *)regs->ip, sizeof(buf));
190 	nr_copied = sizeof(buf) - not_copied;
191 	/*
192 	 * The decoder _should_ fail nicely if we pass it a short buffer.
193 	 * But, let's not depend on that implementation detail.  If we
194 	 * did not get anything, just error out now.
195 	 */
196 	if (!nr_copied)
197 		return -EFAULT;
198 	insn_init(insn, buf, nr_copied, x86_64);
199 	insn_get_length(insn);
200 	/*
201 	 * copy_from_user() tries to get as many bytes as we could see in
202 	 * the largest possible instruction.  If the instruction we are
203 	 * after is shorter than that _and_ we attempt to copy from
204 	 * something unreadable, we might get a short read.  This is OK
205 	 * as long as the read did not stop in the middle of the
206 	 * instruction.  Check to see if we got a partial instruction.
207 	 */
208 	if (nr_copied < insn->length)
209 		return -EFAULT;
210 
211 	insn_get_opcode(insn);
212 	/*
213 	 * We only _really_ need to decode bndcl/bndcn/bndcu
214 	 * Error out on anything else.
215 	 */
216 	if (insn->opcode.bytes[0] != 0x0f)
217 		goto bad_opcode;
218 	if ((insn->opcode.bytes[1] != 0x1a) &&
219 	    (insn->opcode.bytes[1] != 0x1b))
220 		goto bad_opcode;
221 
222 	return 0;
223 bad_opcode:
224 	return -EINVAL;
225 }
226 
227 /*
228  * If a bounds overflow occurs then a #BR is generated. This
229  * function decodes MPX instructions to get violation address
230  * and set this address into extended struct siginfo.
231  *
232  * Note that this is not a super precise way of doing this.
233  * Userspace could have, by the time we get here, written
234  * anything it wants in to the instructions.  We can not
235  * trust anything about it.  They might not be valid
236  * instructions or might encode invalid registers, etc...
237  *
238  * The caller is expected to kfree() the returned siginfo_t.
239  */
mpx_generate_siginfo(struct pt_regs * regs)240 siginfo_t *mpx_generate_siginfo(struct pt_regs *regs)
241 {
242 	const struct mpx_bndreg_state *bndregs;
243 	const struct mpx_bndreg *bndreg;
244 	siginfo_t *info = NULL;
245 	struct insn insn;
246 	uint8_t bndregno;
247 	int err;
248 
249 	err = mpx_insn_decode(&insn, regs);
250 	if (err)
251 		goto err_out;
252 
253 	/*
254 	 * We know at this point that we are only dealing with
255 	 * MPX instructions.
256 	 */
257 	insn_get_modrm(&insn);
258 	bndregno = X86_MODRM_REG(insn.modrm.value);
259 	if (bndregno > 3) {
260 		err = -EINVAL;
261 		goto err_out;
262 	}
263 	/* get bndregs field from current task's xsave area */
264 	bndregs = get_xsave_field_ptr(XFEATURE_MASK_BNDREGS);
265 	if (!bndregs) {
266 		err = -EINVAL;
267 		goto err_out;
268 	}
269 	/* now go select the individual register in the set of 4 */
270 	bndreg = &bndregs->bndreg[bndregno];
271 
272 	info = kzalloc(sizeof(*info), GFP_KERNEL);
273 	if (!info) {
274 		err = -ENOMEM;
275 		goto err_out;
276 	}
277 	/*
278 	 * The registers are always 64-bit, but the upper 32
279 	 * bits are ignored in 32-bit mode.  Also, note that the
280 	 * upper bounds are architecturally represented in 1's
281 	 * complement form.
282 	 *
283 	 * The 'unsigned long' cast is because the compiler
284 	 * complains when casting from integers to different-size
285 	 * pointers.
286 	 */
287 	info->si_lower = (void __user *)(unsigned long)bndreg->lower_bound;
288 	info->si_upper = (void __user *)(unsigned long)~bndreg->upper_bound;
289 	info->si_addr_lsb = 0;
290 	info->si_signo = SIGSEGV;
291 	info->si_errno = 0;
292 	info->si_code = SEGV_BNDERR;
293 	info->si_addr = mpx_get_addr_ref(&insn, regs);
294 	/*
295 	 * We were not able to extract an address from the instruction,
296 	 * probably because there was something invalid in it.
297 	 */
298 	if (info->si_addr == (void __user *)-1) {
299 		err = -EINVAL;
300 		goto err_out;
301 	}
302 	trace_mpx_bounds_register_exception(info->si_addr, bndreg);
303 	return info;
304 err_out:
305 	/* info might be NULL, but kfree() handles that */
306 	kfree(info);
307 	return ERR_PTR(err);
308 }
309 
mpx_get_bounds_dir(void)310 static __user void *mpx_get_bounds_dir(void)
311 {
312 	const struct mpx_bndcsr *bndcsr;
313 
314 	if (!cpu_feature_enabled(X86_FEATURE_MPX))
315 		return MPX_INVALID_BOUNDS_DIR;
316 
317 	/*
318 	 * The bounds directory pointer is stored in a register
319 	 * only accessible if we first do an xsave.
320 	 */
321 	bndcsr = get_xsave_field_ptr(XFEATURE_MASK_BNDCSR);
322 	if (!bndcsr)
323 		return MPX_INVALID_BOUNDS_DIR;
324 
325 	/*
326 	 * Make sure the register looks valid by checking the
327 	 * enable bit.
328 	 */
329 	if (!(bndcsr->bndcfgu & MPX_BNDCFG_ENABLE_FLAG))
330 		return MPX_INVALID_BOUNDS_DIR;
331 
332 	/*
333 	 * Lastly, mask off the low bits used for configuration
334 	 * flags, and return the address of the bounds table.
335 	 */
336 	return (void __user *)(unsigned long)
337 		(bndcsr->bndcfgu & MPX_BNDCFG_ADDR_MASK);
338 }
339 
mpx_enable_management(void)340 int mpx_enable_management(void)
341 {
342 	void __user *bd_base = MPX_INVALID_BOUNDS_DIR;
343 	struct mm_struct *mm = current->mm;
344 	int ret = 0;
345 
346 	/*
347 	 * runtime in the userspace will be responsible for allocation of
348 	 * the bounds directory. Then, it will save the base of the bounds
349 	 * directory into XSAVE/XRSTOR Save Area and enable MPX through
350 	 * XRSTOR instruction.
351 	 *
352 	 * The copy_xregs_to_kernel() beneath get_xsave_field_ptr() is
353 	 * expected to be relatively expensive. Storing the bounds
354 	 * directory here means that we do not have to do xsave in the
355 	 * unmap path; we can just use mm->context.bd_addr instead.
356 	 */
357 	bd_base = mpx_get_bounds_dir();
358 	down_write(&mm->mmap_sem);
359 
360 	/* MPX doesn't support addresses above 47 bits yet. */
361 	if (find_vma(mm, DEFAULT_MAP_WINDOW)) {
362 		pr_warn_once("%s (%d): MPX cannot handle addresses "
363 				"above 47-bits. Disabling.",
364 				current->comm, current->pid);
365 		ret = -ENXIO;
366 		goto out;
367 	}
368 	mm->context.bd_addr = bd_base;
369 	if (mm->context.bd_addr == MPX_INVALID_BOUNDS_DIR)
370 		ret = -ENXIO;
371 out:
372 	up_write(&mm->mmap_sem);
373 	return ret;
374 }
375 
mpx_disable_management(void)376 int mpx_disable_management(void)
377 {
378 	struct mm_struct *mm = current->mm;
379 
380 	if (!cpu_feature_enabled(X86_FEATURE_MPX))
381 		return -ENXIO;
382 
383 	down_write(&mm->mmap_sem);
384 	mm->context.bd_addr = MPX_INVALID_BOUNDS_DIR;
385 	up_write(&mm->mmap_sem);
386 	return 0;
387 }
388 
mpx_cmpxchg_bd_entry(struct mm_struct * mm,unsigned long * curval,unsigned long __user * addr,unsigned long old_val,unsigned long new_val)389 static int mpx_cmpxchg_bd_entry(struct mm_struct *mm,
390 		unsigned long *curval,
391 		unsigned long __user *addr,
392 		unsigned long old_val, unsigned long new_val)
393 {
394 	int ret;
395 	/*
396 	 * user_atomic_cmpxchg_inatomic() actually uses sizeof()
397 	 * the pointer that we pass to it to figure out how much
398 	 * data to cmpxchg.  We have to be careful here not to
399 	 * pass a pointer to a 64-bit data type when we only want
400 	 * a 32-bit copy.
401 	 */
402 	if (is_64bit_mm(mm)) {
403 		ret = user_atomic_cmpxchg_inatomic(curval,
404 				addr, old_val, new_val);
405 	} else {
406 		u32 uninitialized_var(curval_32);
407 		u32 old_val_32 = old_val;
408 		u32 new_val_32 = new_val;
409 		u32 __user *addr_32 = (u32 __user *)addr;
410 
411 		ret = user_atomic_cmpxchg_inatomic(&curval_32,
412 				addr_32, old_val_32, new_val_32);
413 		*curval = curval_32;
414 	}
415 	return ret;
416 }
417 
418 /*
419  * With 32-bit mode, a bounds directory is 4MB, and the size of each
420  * bounds table is 16KB. With 64-bit mode, a bounds directory is 2GB,
421  * and the size of each bounds table is 4MB.
422  */
allocate_bt(struct mm_struct * mm,long __user * bd_entry)423 static int allocate_bt(struct mm_struct *mm, long __user *bd_entry)
424 {
425 	unsigned long expected_old_val = 0;
426 	unsigned long actual_old_val = 0;
427 	unsigned long bt_addr;
428 	unsigned long bd_new_entry;
429 	int ret = 0;
430 
431 	/*
432 	 * Carve the virtual space out of userspace for the new
433 	 * bounds table:
434 	 */
435 	bt_addr = mpx_mmap(mpx_bt_size_bytes(mm));
436 	if (IS_ERR((void *)bt_addr))
437 		return PTR_ERR((void *)bt_addr);
438 	/*
439 	 * Set the valid flag (kinda like _PAGE_PRESENT in a pte)
440 	 */
441 	bd_new_entry = bt_addr | MPX_BD_ENTRY_VALID_FLAG;
442 
443 	/*
444 	 * Go poke the address of the new bounds table in to the
445 	 * bounds directory entry out in userspace memory.  Note:
446 	 * we may race with another CPU instantiating the same table.
447 	 * In that case the cmpxchg will see an unexpected
448 	 * 'actual_old_val'.
449 	 *
450 	 * This can fault, but that's OK because we do not hold
451 	 * mmap_sem at this point, unlike some of the other part
452 	 * of the MPX code that have to pagefault_disable().
453 	 */
454 	ret = mpx_cmpxchg_bd_entry(mm, &actual_old_val,	bd_entry,
455 				   expected_old_val, bd_new_entry);
456 	if (ret)
457 		goto out_unmap;
458 
459 	/*
460 	 * The user_atomic_cmpxchg_inatomic() will only return nonzero
461 	 * for faults, *not* if the cmpxchg itself fails.  Now we must
462 	 * verify that the cmpxchg itself completed successfully.
463 	 */
464 	/*
465 	 * We expected an empty 'expected_old_val', but instead found
466 	 * an apparently valid entry.  Assume we raced with another
467 	 * thread to instantiate this table and desclare succecss.
468 	 */
469 	if (actual_old_val & MPX_BD_ENTRY_VALID_FLAG) {
470 		ret = 0;
471 		goto out_unmap;
472 	}
473 	/*
474 	 * We found a non-empty bd_entry but it did not have the
475 	 * VALID_FLAG set.  Return an error which will result in
476 	 * a SEGV since this probably means that somebody scribbled
477 	 * some invalid data in to a bounds table.
478 	 */
479 	if (expected_old_val != actual_old_val) {
480 		ret = -EINVAL;
481 		goto out_unmap;
482 	}
483 	trace_mpx_new_bounds_table(bt_addr);
484 	return 0;
485 out_unmap:
486 	vm_munmap(bt_addr, mpx_bt_size_bytes(mm));
487 	return ret;
488 }
489 
490 /*
491  * When a BNDSTX instruction attempts to save bounds to a bounds
492  * table, it will first attempt to look up the table in the
493  * first-level bounds directory.  If it does not find a table in
494  * the directory, a #BR is generated and we get here in order to
495  * allocate a new table.
496  *
497  * With 32-bit mode, the size of BD is 4MB, and the size of each
498  * bound table is 16KB. With 64-bit mode, the size of BD is 2GB,
499  * and the size of each bound table is 4MB.
500  */
do_mpx_bt_fault(void)501 static int do_mpx_bt_fault(void)
502 {
503 	unsigned long bd_entry, bd_base;
504 	const struct mpx_bndcsr *bndcsr;
505 	struct mm_struct *mm = current->mm;
506 
507 	bndcsr = get_xsave_field_ptr(XFEATURE_MASK_BNDCSR);
508 	if (!bndcsr)
509 		return -EINVAL;
510 	/*
511 	 * Mask off the preserve and enable bits
512 	 */
513 	bd_base = bndcsr->bndcfgu & MPX_BNDCFG_ADDR_MASK;
514 	/*
515 	 * The hardware provides the address of the missing or invalid
516 	 * entry via BNDSTATUS, so we don't have to go look it up.
517 	 */
518 	bd_entry = bndcsr->bndstatus & MPX_BNDSTA_ADDR_MASK;
519 	/*
520 	 * Make sure the directory entry is within where we think
521 	 * the directory is.
522 	 */
523 	if ((bd_entry < bd_base) ||
524 	    (bd_entry >= bd_base + mpx_bd_size_bytes(mm)))
525 		return -EINVAL;
526 
527 	return allocate_bt(mm, (long __user *)bd_entry);
528 }
529 
mpx_handle_bd_fault(void)530 int mpx_handle_bd_fault(void)
531 {
532 	/*
533 	 * Userspace never asked us to manage the bounds tables,
534 	 * so refuse to help.
535 	 */
536 	if (!kernel_managing_mpx_tables(current->mm))
537 		return -EINVAL;
538 
539 	return do_mpx_bt_fault();
540 }
541 
542 /*
543  * A thin wrapper around get_user_pages().  Returns 0 if the
544  * fault was resolved or -errno if not.
545  */
mpx_resolve_fault(long __user * addr,int write)546 static int mpx_resolve_fault(long __user *addr, int write)
547 {
548 	long gup_ret;
549 	int nr_pages = 1;
550 
551 	gup_ret = get_user_pages((unsigned long)addr, nr_pages,
552 			write ? FOLL_WRITE : 0,	NULL, NULL);
553 	/*
554 	 * get_user_pages() returns number of pages gotten.
555 	 * 0 means we failed to fault in and get anything,
556 	 * probably because 'addr' is bad.
557 	 */
558 	if (!gup_ret)
559 		return -EFAULT;
560 	/* Other error, return it */
561 	if (gup_ret < 0)
562 		return gup_ret;
563 	/* must have gup'd a page and gup_ret>0, success */
564 	return 0;
565 }
566 
mpx_bd_entry_to_bt_addr(struct mm_struct * mm,unsigned long bd_entry)567 static unsigned long mpx_bd_entry_to_bt_addr(struct mm_struct *mm,
568 					     unsigned long bd_entry)
569 {
570 	unsigned long bt_addr = bd_entry;
571 	int align_to_bytes;
572 	/*
573 	 * Bit 0 in a bt_entry is always the valid bit.
574 	 */
575 	bt_addr &= ~MPX_BD_ENTRY_VALID_FLAG;
576 	/*
577 	 * Tables are naturally aligned at 8-byte boundaries
578 	 * on 64-bit and 4-byte boundaries on 32-bit.  The
579 	 * documentation makes it appear that the low bits
580 	 * are ignored by the hardware, so we do the same.
581 	 */
582 	if (is_64bit_mm(mm))
583 		align_to_bytes = 8;
584 	else
585 		align_to_bytes = 4;
586 	bt_addr &= ~(align_to_bytes-1);
587 	return bt_addr;
588 }
589 
590 /*
591  * We only want to do a 4-byte get_user() on 32-bit.  Otherwise,
592  * we might run off the end of the bounds table if we are on
593  * a 64-bit kernel and try to get 8 bytes.
594  */
get_user_bd_entry(struct mm_struct * mm,unsigned long * bd_entry_ret,long __user * bd_entry_ptr)595 static int get_user_bd_entry(struct mm_struct *mm, unsigned long *bd_entry_ret,
596 		long __user *bd_entry_ptr)
597 {
598 	u32 bd_entry_32;
599 	int ret;
600 
601 	if (is_64bit_mm(mm))
602 		return get_user(*bd_entry_ret, bd_entry_ptr);
603 
604 	/*
605 	 * Note that get_user() uses the type of the *pointer* to
606 	 * establish the size of the get, not the destination.
607 	 */
608 	ret = get_user(bd_entry_32, (u32 __user *)bd_entry_ptr);
609 	*bd_entry_ret = bd_entry_32;
610 	return ret;
611 }
612 
613 /*
614  * Get the base of bounds tables pointed by specific bounds
615  * directory entry.
616  */
get_bt_addr(struct mm_struct * mm,long __user * bd_entry_ptr,unsigned long * bt_addr_result)617 static int get_bt_addr(struct mm_struct *mm,
618 			long __user *bd_entry_ptr,
619 			unsigned long *bt_addr_result)
620 {
621 	int ret;
622 	int valid_bit;
623 	unsigned long bd_entry;
624 	unsigned long bt_addr;
625 
626 	if (!access_ok(VERIFY_READ, (bd_entry_ptr), sizeof(*bd_entry_ptr)))
627 		return -EFAULT;
628 
629 	while (1) {
630 		int need_write = 0;
631 
632 		pagefault_disable();
633 		ret = get_user_bd_entry(mm, &bd_entry, bd_entry_ptr);
634 		pagefault_enable();
635 		if (!ret)
636 			break;
637 		if (ret == -EFAULT)
638 			ret = mpx_resolve_fault(bd_entry_ptr, need_write);
639 		/*
640 		 * If we could not resolve the fault, consider it
641 		 * userspace's fault and error out.
642 		 */
643 		if (ret)
644 			return ret;
645 	}
646 
647 	valid_bit = bd_entry & MPX_BD_ENTRY_VALID_FLAG;
648 	bt_addr = mpx_bd_entry_to_bt_addr(mm, bd_entry);
649 
650 	/*
651 	 * When the kernel is managing bounds tables, a bounds directory
652 	 * entry will either have a valid address (plus the valid bit)
653 	 * *OR* be completely empty. If we see a !valid entry *and* some
654 	 * data in the address field, we know something is wrong. This
655 	 * -EINVAL return will cause a SIGSEGV.
656 	 */
657 	if (!valid_bit && bt_addr)
658 		return -EINVAL;
659 	/*
660 	 * Do we have an completely zeroed bt entry?  That is OK.  It
661 	 * just means there was no bounds table for this memory.  Make
662 	 * sure to distinguish this from -EINVAL, which will cause
663 	 * a SEGV.
664 	 */
665 	if (!valid_bit)
666 		return -ENOENT;
667 
668 	*bt_addr_result = bt_addr;
669 	return 0;
670 }
671 
bt_entry_size_bytes(struct mm_struct * mm)672 static inline int bt_entry_size_bytes(struct mm_struct *mm)
673 {
674 	if (is_64bit_mm(mm))
675 		return MPX_BT_ENTRY_BYTES_64;
676 	else
677 		return MPX_BT_ENTRY_BYTES_32;
678 }
679 
680 /*
681  * Take a virtual address and turns it in to the offset in bytes
682  * inside of the bounds table where the bounds table entry
683  * controlling 'addr' can be found.
684  */
mpx_get_bt_entry_offset_bytes(struct mm_struct * mm,unsigned long addr)685 static unsigned long mpx_get_bt_entry_offset_bytes(struct mm_struct *mm,
686 		unsigned long addr)
687 {
688 	unsigned long bt_table_nr_entries;
689 	unsigned long offset = addr;
690 
691 	if (is_64bit_mm(mm)) {
692 		/* Bottom 3 bits are ignored on 64-bit */
693 		offset >>= 3;
694 		bt_table_nr_entries = MPX_BT_NR_ENTRIES_64;
695 	} else {
696 		/* Bottom 2 bits are ignored on 32-bit */
697 		offset >>= 2;
698 		bt_table_nr_entries = MPX_BT_NR_ENTRIES_32;
699 	}
700 	/*
701 	 * We know the size of the table in to which we are
702 	 * indexing, and we have eliminated all the low bits
703 	 * which are ignored for indexing.
704 	 *
705 	 * Mask out all the high bits which we do not need
706 	 * to index in to the table.  Note that the tables
707 	 * are always powers of two so this gives us a proper
708 	 * mask.
709 	 */
710 	offset &= (bt_table_nr_entries-1);
711 	/*
712 	 * We now have an entry offset in terms of *entries* in
713 	 * the table.  We need to scale it back up to bytes.
714 	 */
715 	offset *= bt_entry_size_bytes(mm);
716 	return offset;
717 }
718 
719 /*
720  * How much virtual address space does a single bounds
721  * directory entry cover?
722  *
723  * Note, we need a long long because 4GB doesn't fit in
724  * to a long on 32-bit.
725  */
bd_entry_virt_space(struct mm_struct * mm)726 static inline unsigned long bd_entry_virt_space(struct mm_struct *mm)
727 {
728 	unsigned long long virt_space;
729 	unsigned long long GB = (1ULL << 30);
730 
731 	/*
732 	 * This covers 32-bit emulation as well as 32-bit kernels
733 	 * running on 64-bit hardware.
734 	 */
735 	if (!is_64bit_mm(mm))
736 		return (4ULL * GB) / MPX_BD_NR_ENTRIES_32;
737 
738 	/*
739 	 * 'x86_virt_bits' returns what the hardware is capable
740 	 * of, and returns the full >32-bit address space when
741 	 * running 32-bit kernels on 64-bit hardware.
742 	 */
743 	virt_space = (1ULL << boot_cpu_data.x86_virt_bits);
744 	return virt_space / MPX_BD_NR_ENTRIES_64;
745 }
746 
747 /*
748  * Free the backing physical pages of bounds table 'bt_addr'.
749  * Assume start...end is within that bounds table.
750  */
zap_bt_entries_mapping(struct mm_struct * mm,unsigned long bt_addr,unsigned long start_mapping,unsigned long end_mapping)751 static noinline int zap_bt_entries_mapping(struct mm_struct *mm,
752 		unsigned long bt_addr,
753 		unsigned long start_mapping, unsigned long end_mapping)
754 {
755 	struct vm_area_struct *vma;
756 	unsigned long addr, len;
757 	unsigned long start;
758 	unsigned long end;
759 
760 	/*
761 	 * if we 'end' on a boundary, the offset will be 0 which
762 	 * is not what we want.  Back it up a byte to get the
763 	 * last bt entry.  Then once we have the entry itself,
764 	 * move 'end' back up by the table entry size.
765 	 */
766 	start = bt_addr + mpx_get_bt_entry_offset_bytes(mm, start_mapping);
767 	end   = bt_addr + mpx_get_bt_entry_offset_bytes(mm, end_mapping - 1);
768 	/*
769 	 * Move end back up by one entry.  Among other things
770 	 * this ensures that it remains page-aligned and does
771 	 * not screw up zap_page_range()
772 	 */
773 	end += bt_entry_size_bytes(mm);
774 
775 	/*
776 	 * Find the first overlapping vma. If vma->vm_start > start, there
777 	 * will be a hole in the bounds table. This -EINVAL return will
778 	 * cause a SIGSEGV.
779 	 */
780 	vma = find_vma(mm, start);
781 	if (!vma || vma->vm_start > start)
782 		return -EINVAL;
783 
784 	/*
785 	 * A NUMA policy on a VM_MPX VMA could cause this bounds table to
786 	 * be split. So we need to look across the entire 'start -> end'
787 	 * range of this bounds table, find all of the VM_MPX VMAs, and
788 	 * zap only those.
789 	 */
790 	addr = start;
791 	while (vma && vma->vm_start < end) {
792 		/*
793 		 * We followed a bounds directory entry down
794 		 * here.  If we find a non-MPX VMA, that's bad,
795 		 * so stop immediately and return an error.  This
796 		 * probably results in a SIGSEGV.
797 		 */
798 		if (!(vma->vm_flags & VM_MPX))
799 			return -EINVAL;
800 
801 		len = min(vma->vm_end, end) - addr;
802 		zap_page_range(vma, addr, len);
803 		trace_mpx_unmap_zap(addr, addr+len);
804 
805 		vma = vma->vm_next;
806 		addr = vma->vm_start;
807 	}
808 	return 0;
809 }
810 
mpx_get_bd_entry_offset(struct mm_struct * mm,unsigned long addr)811 static unsigned long mpx_get_bd_entry_offset(struct mm_struct *mm,
812 		unsigned long addr)
813 {
814 	/*
815 	 * There are several ways to derive the bd offsets.  We
816 	 * use the following approach here:
817 	 * 1. We know the size of the virtual address space
818 	 * 2. We know the number of entries in a bounds table
819 	 * 3. We know that each entry covers a fixed amount of
820 	 *    virtual address space.
821 	 * So, we can just divide the virtual address by the
822 	 * virtual space used by one entry to determine which
823 	 * entry "controls" the given virtual address.
824 	 */
825 	if (is_64bit_mm(mm)) {
826 		int bd_entry_size = 8; /* 64-bit pointer */
827 		/*
828 		 * Take the 64-bit addressing hole in to account.
829 		 */
830 		addr &= ((1UL << boot_cpu_data.x86_virt_bits) - 1);
831 		return (addr / bd_entry_virt_space(mm)) * bd_entry_size;
832 	} else {
833 		int bd_entry_size = 4; /* 32-bit pointer */
834 		/*
835 		 * 32-bit has no hole so this case needs no mask
836 		 */
837 		return (addr / bd_entry_virt_space(mm)) * bd_entry_size;
838 	}
839 	/*
840 	 * The two return calls above are exact copies.  If we
841 	 * pull out a single copy and put it in here, gcc won't
842 	 * realize that we're doing a power-of-2 divide and use
843 	 * shifts.  It uses a real divide.  If we put them up
844 	 * there, it manages to figure it out (gcc 4.8.3).
845 	 */
846 }
847 
unmap_entire_bt(struct mm_struct * mm,long __user * bd_entry,unsigned long bt_addr)848 static int unmap_entire_bt(struct mm_struct *mm,
849 		long __user *bd_entry, unsigned long bt_addr)
850 {
851 	unsigned long expected_old_val = bt_addr | MPX_BD_ENTRY_VALID_FLAG;
852 	unsigned long uninitialized_var(actual_old_val);
853 	int ret;
854 
855 	while (1) {
856 		int need_write = 1;
857 		unsigned long cleared_bd_entry = 0;
858 
859 		pagefault_disable();
860 		ret = mpx_cmpxchg_bd_entry(mm, &actual_old_val,
861 				bd_entry, expected_old_val, cleared_bd_entry);
862 		pagefault_enable();
863 		if (!ret)
864 			break;
865 		if (ret == -EFAULT)
866 			ret = mpx_resolve_fault(bd_entry, need_write);
867 		/*
868 		 * If we could not resolve the fault, consider it
869 		 * userspace's fault and error out.
870 		 */
871 		if (ret)
872 			return ret;
873 	}
874 	/*
875 	 * The cmpxchg was performed, check the results.
876 	 */
877 	if (actual_old_val != expected_old_val) {
878 		/*
879 		 * Someone else raced with us to unmap the table.
880 		 * That is OK, since we were both trying to do
881 		 * the same thing.  Declare success.
882 		 */
883 		if (!actual_old_val)
884 			return 0;
885 		/*
886 		 * Something messed with the bounds directory
887 		 * entry.  We hold mmap_sem for read or write
888 		 * here, so it could not be a _new_ bounds table
889 		 * that someone just allocated.  Something is
890 		 * wrong, so pass up the error and SIGSEGV.
891 		 */
892 		return -EINVAL;
893 	}
894 	/*
895 	 * Note, we are likely being called under do_munmap() already. To
896 	 * avoid recursion, do_munmap() will check whether it comes
897 	 * from one bounds table through VM_MPX flag.
898 	 */
899 	return do_munmap(mm, bt_addr, mpx_bt_size_bytes(mm), NULL);
900 }
901 
try_unmap_single_bt(struct mm_struct * mm,unsigned long start,unsigned long end)902 static int try_unmap_single_bt(struct mm_struct *mm,
903 	       unsigned long start, unsigned long end)
904 {
905 	struct vm_area_struct *next;
906 	struct vm_area_struct *prev;
907 	/*
908 	 * "bta" == Bounds Table Area: the area controlled by the
909 	 * bounds table that we are unmapping.
910 	 */
911 	unsigned long bta_start_vaddr = start & ~(bd_entry_virt_space(mm)-1);
912 	unsigned long bta_end_vaddr = bta_start_vaddr + bd_entry_virt_space(mm);
913 	unsigned long uninitialized_var(bt_addr);
914 	void __user *bde_vaddr;
915 	int ret;
916 	/*
917 	 * We already unlinked the VMAs from the mm's rbtree so 'start'
918 	 * is guaranteed to be in a hole. This gets us the first VMA
919 	 * before the hole in to 'prev' and the next VMA after the hole
920 	 * in to 'next'.
921 	 */
922 	next = find_vma_prev(mm, start, &prev);
923 	/*
924 	 * Do not count other MPX bounds table VMAs as neighbors.
925 	 * Although theoretically possible, we do not allow bounds
926 	 * tables for bounds tables so our heads do not explode.
927 	 * If we count them as neighbors here, we may end up with
928 	 * lots of tables even though we have no actual table
929 	 * entries in use.
930 	 */
931 	while (next && (next->vm_flags & VM_MPX))
932 		next = next->vm_next;
933 	while (prev && (prev->vm_flags & VM_MPX))
934 		prev = prev->vm_prev;
935 	/*
936 	 * We know 'start' and 'end' lie within an area controlled
937 	 * by a single bounds table.  See if there are any other
938 	 * VMAs controlled by that bounds table.  If there are not
939 	 * then we can "expand" the are we are unmapping to possibly
940 	 * cover the entire table.
941 	 */
942 	next = find_vma_prev(mm, start, &prev);
943 	if ((!prev || prev->vm_end <= bta_start_vaddr) &&
944 	    (!next || next->vm_start >= bta_end_vaddr)) {
945 		/*
946 		 * No neighbor VMAs controlled by same bounds
947 		 * table.  Try to unmap the whole thing
948 		 */
949 		start = bta_start_vaddr;
950 		end = bta_end_vaddr;
951 	}
952 
953 	bde_vaddr = mm->context.bd_addr + mpx_get_bd_entry_offset(mm, start);
954 	ret = get_bt_addr(mm, bde_vaddr, &bt_addr);
955 	/*
956 	 * No bounds table there, so nothing to unmap.
957 	 */
958 	if (ret == -ENOENT) {
959 		ret = 0;
960 		return 0;
961 	}
962 	if (ret)
963 		return ret;
964 	/*
965 	 * We are unmapping an entire table.  Either because the
966 	 * unmap that started this whole process was large enough
967 	 * to cover an entire table, or that the unmap was small
968 	 * but was the area covered by a bounds table.
969 	 */
970 	if ((start == bta_start_vaddr) &&
971 	    (end == bta_end_vaddr))
972 		return unmap_entire_bt(mm, bde_vaddr, bt_addr);
973 	return zap_bt_entries_mapping(mm, bt_addr, start, end);
974 }
975 
mpx_unmap_tables(struct mm_struct * mm,unsigned long start,unsigned long end)976 static int mpx_unmap_tables(struct mm_struct *mm,
977 		unsigned long start, unsigned long end)
978 {
979 	unsigned long one_unmap_start;
980 	trace_mpx_unmap_search(start, end);
981 
982 	one_unmap_start = start;
983 	while (one_unmap_start < end) {
984 		int ret;
985 		unsigned long next_unmap_start = ALIGN(one_unmap_start+1,
986 						       bd_entry_virt_space(mm));
987 		unsigned long one_unmap_end = end;
988 		/*
989 		 * if the end is beyond the current bounds table,
990 		 * move it back so we only deal with a single one
991 		 * at a time
992 		 */
993 		if (one_unmap_end > next_unmap_start)
994 			one_unmap_end = next_unmap_start;
995 		ret = try_unmap_single_bt(mm, one_unmap_start, one_unmap_end);
996 		if (ret)
997 			return ret;
998 
999 		one_unmap_start = next_unmap_start;
1000 	}
1001 	return 0;
1002 }
1003 
1004 /*
1005  * Free unused bounds tables covered in a virtual address region being
1006  * munmap()ed. Assume end > start.
1007  *
1008  * This function will be called by do_munmap(), and the VMAs covering
1009  * the virtual address region start...end have already been split if
1010  * necessary, and the 'vma' is the first vma in this range (start -> end).
1011  */
mpx_notify_unmap(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long start,unsigned long end)1012 void mpx_notify_unmap(struct mm_struct *mm, struct vm_area_struct *vma,
1013 		unsigned long start, unsigned long end)
1014 {
1015 	int ret;
1016 
1017 	/*
1018 	 * Refuse to do anything unless userspace has asked
1019 	 * the kernel to help manage the bounds tables,
1020 	 */
1021 	if (!kernel_managing_mpx_tables(current->mm))
1022 		return;
1023 	/*
1024 	 * This will look across the entire 'start -> end' range,
1025 	 * and find all of the non-VM_MPX VMAs.
1026 	 *
1027 	 * To avoid recursion, if a VM_MPX vma is found in the range
1028 	 * (start->end), we will not continue follow-up work. This
1029 	 * recursion represents having bounds tables for bounds tables,
1030 	 * which should not occur normally. Being strict about it here
1031 	 * helps ensure that we do not have an exploitable stack overflow.
1032 	 */
1033 	do {
1034 		if (vma->vm_flags & VM_MPX)
1035 			return;
1036 		vma = vma->vm_next;
1037 	} while (vma && vma->vm_start < end);
1038 
1039 	ret = mpx_unmap_tables(mm, start, end);
1040 	if (ret)
1041 		force_sig(SIGSEGV, current);
1042 }
1043 
1044 /* MPX cannot handle addresses above 47 bits yet. */
mpx_unmapped_area_check(unsigned long addr,unsigned long len,unsigned long flags)1045 unsigned long mpx_unmapped_area_check(unsigned long addr, unsigned long len,
1046 		unsigned long flags)
1047 {
1048 	if (!kernel_managing_mpx_tables(current->mm))
1049 		return addr;
1050 	if (addr + len <= DEFAULT_MAP_WINDOW)
1051 		return addr;
1052 	if (flags & MAP_FIXED)
1053 		return -ENOMEM;
1054 
1055 	/*
1056 	 * Requested len is larger than the whole area we're allowed to map in.
1057 	 * Resetting hinting address wouldn't do much good -- fail early.
1058 	 */
1059 	if (len > DEFAULT_MAP_WINDOW)
1060 		return -ENOMEM;
1061 
1062 	/* Look for unmap area within DEFAULT_MAP_WINDOW */
1063 	return 0;
1064 }
1065