1 #include <linux/kernel.h>
2 #include <linux/errno.h>
3 #include <linux/err.h>
4 #include <linux/spinlock.h>
5
6 #include <linux/mm.h>
7 #include <linux/memremap.h>
8 #include <linux/pagemap.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/swapops.h>
12
13 #include <linux/sched/signal.h>
14 #include <linux/rwsem.h>
15 #include <linux/hugetlb.h>
16
17 #include <asm/mmu_context.h>
18 #include <asm/pgtable.h>
19 #include <asm/tlbflush.h>
20
21 #include "internal.h"
22
no_page_table(struct vm_area_struct * vma,unsigned int flags)23 static struct page *no_page_table(struct vm_area_struct *vma,
24 unsigned int flags)
25 {
26 /*
27 * When core dumping an enormous anonymous area that nobody
28 * has touched so far, we don't want to allocate unnecessary pages or
29 * page tables. Return error instead of NULL to skip handle_mm_fault,
30 * then get_dump_page() will return NULL to leave a hole in the dump.
31 * But we can only make this optimization where a hole would surely
32 * be zero-filled if handle_mm_fault() actually did handle it.
33 */
34 if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
35 return ERR_PTR(-EFAULT);
36 return NULL;
37 }
38
follow_pfn_pte(struct vm_area_struct * vma,unsigned long address,pte_t * pte,unsigned int flags)39 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
40 pte_t *pte, unsigned int flags)
41 {
42 /* No page to get reference */
43 if (flags & FOLL_GET)
44 return -EFAULT;
45
46 if (flags & FOLL_TOUCH) {
47 pte_t entry = *pte;
48
49 if (flags & FOLL_WRITE)
50 entry = pte_mkdirty(entry);
51 entry = pte_mkyoung(entry);
52
53 if (!pte_same(*pte, entry)) {
54 set_pte_at(vma->vm_mm, address, pte, entry);
55 update_mmu_cache(vma, address, pte);
56 }
57 }
58
59 /* Proper page table entry exists, but no corresponding struct page */
60 return -EEXIST;
61 }
62
63 /*
64 * FOLL_FORCE can write to even unwritable pte's, but only
65 * after we've gone through a COW cycle and they are dirty.
66 */
can_follow_write_pte(pte_t pte,unsigned int flags)67 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
68 {
69 return pte_write(pte) ||
70 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
71 }
72
follow_page_pte(struct vm_area_struct * vma,unsigned long address,pmd_t * pmd,unsigned int flags)73 static struct page *follow_page_pte(struct vm_area_struct *vma,
74 unsigned long address, pmd_t *pmd, unsigned int flags)
75 {
76 struct mm_struct *mm = vma->vm_mm;
77 struct dev_pagemap *pgmap = NULL;
78 struct page *page;
79 spinlock_t *ptl;
80 pte_t *ptep, pte;
81
82 retry:
83 if (unlikely(pmd_bad(*pmd)))
84 return no_page_table(vma, flags);
85
86 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
87 pte = *ptep;
88 if (!pte_present(pte)) {
89 swp_entry_t entry;
90 /*
91 * KSM's break_ksm() relies upon recognizing a ksm page
92 * even while it is being migrated, so for that case we
93 * need migration_entry_wait().
94 */
95 if (likely(!(flags & FOLL_MIGRATION)))
96 goto no_page;
97 if (pte_none(pte))
98 goto no_page;
99 entry = pte_to_swp_entry(pte);
100 if (!is_migration_entry(entry))
101 goto no_page;
102 pte_unmap_unlock(ptep, ptl);
103 migration_entry_wait(mm, pmd, address);
104 goto retry;
105 }
106 if ((flags & FOLL_NUMA) && pte_protnone(pte))
107 goto no_page;
108 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
109 pte_unmap_unlock(ptep, ptl);
110 return NULL;
111 }
112
113 page = vm_normal_page(vma, address, pte);
114 if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
115 /*
116 * Only return device mapping pages in the FOLL_GET case since
117 * they are only valid while holding the pgmap reference.
118 */
119 pgmap = get_dev_pagemap(pte_pfn(pte), NULL);
120 if (pgmap)
121 page = pte_page(pte);
122 else
123 goto no_page;
124 } else if (unlikely(!page)) {
125 if (flags & FOLL_DUMP) {
126 /* Avoid special (like zero) pages in core dumps */
127 page = ERR_PTR(-EFAULT);
128 goto out;
129 }
130
131 if (is_zero_pfn(pte_pfn(pte))) {
132 page = pte_page(pte);
133 } else {
134 int ret;
135
136 ret = follow_pfn_pte(vma, address, ptep, flags);
137 page = ERR_PTR(ret);
138 goto out;
139 }
140 }
141
142 if (flags & FOLL_SPLIT && PageTransCompound(page)) {
143 int ret;
144 get_page(page);
145 pte_unmap_unlock(ptep, ptl);
146 lock_page(page);
147 ret = split_huge_page(page);
148 unlock_page(page);
149 put_page(page);
150 if (ret)
151 return ERR_PTR(ret);
152 goto retry;
153 }
154
155 if (flags & FOLL_GET) {
156 if (unlikely(!try_get_page(page))) {
157 page = ERR_PTR(-ENOMEM);
158 goto out;
159 }
160
161 /* drop the pgmap reference now that we hold the page */
162 if (pgmap) {
163 put_dev_pagemap(pgmap);
164 pgmap = NULL;
165 }
166 }
167 if (flags & FOLL_TOUCH) {
168 if ((flags & FOLL_WRITE) &&
169 !pte_dirty(pte) && !PageDirty(page))
170 set_page_dirty(page);
171 /*
172 * pte_mkyoung() would be more correct here, but atomic care
173 * is needed to avoid losing the dirty bit: it is easier to use
174 * mark_page_accessed().
175 */
176 mark_page_accessed(page);
177 }
178 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
179 /* Do not mlock pte-mapped THP */
180 if (PageTransCompound(page))
181 goto out;
182
183 /*
184 * The preliminary mapping check is mainly to avoid the
185 * pointless overhead of lock_page on the ZERO_PAGE
186 * which might bounce very badly if there is contention.
187 *
188 * If the page is already locked, we don't need to
189 * handle it now - vmscan will handle it later if and
190 * when it attempts to reclaim the page.
191 */
192 if (page->mapping && trylock_page(page)) {
193 lru_add_drain(); /* push cached pages to LRU */
194 /*
195 * Because we lock page here, and migration is
196 * blocked by the pte's page reference, and we
197 * know the page is still mapped, we don't even
198 * need to check for file-cache page truncation.
199 */
200 mlock_vma_page(page);
201 unlock_page(page);
202 }
203 }
204 out:
205 pte_unmap_unlock(ptep, ptl);
206 return page;
207 no_page:
208 pte_unmap_unlock(ptep, ptl);
209 if (!pte_none(pte))
210 return NULL;
211 return no_page_table(vma, flags);
212 }
213
follow_pmd_mask(struct vm_area_struct * vma,unsigned long address,pud_t * pudp,unsigned int flags,unsigned int * page_mask)214 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
215 unsigned long address, pud_t *pudp,
216 unsigned int flags, unsigned int *page_mask)
217 {
218 pmd_t *pmd;
219 spinlock_t *ptl;
220 struct page *page;
221 struct mm_struct *mm = vma->vm_mm;
222
223 pmd = pmd_offset(pudp, address);
224 if (pmd_none(*pmd))
225 return no_page_table(vma, flags);
226 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
227 page = follow_huge_pmd(mm, address, pmd, flags);
228 if (page)
229 return page;
230 return no_page_table(vma, flags);
231 }
232 if (is_hugepd(__hugepd(pmd_val(*pmd)))) {
233 page = follow_huge_pd(vma, address,
234 __hugepd(pmd_val(*pmd)), flags,
235 PMD_SHIFT);
236 if (page)
237 return page;
238 return no_page_table(vma, flags);
239 }
240 retry:
241 if (!pmd_present(*pmd)) {
242 if (likely(!(flags & FOLL_MIGRATION)))
243 return no_page_table(vma, flags);
244 VM_BUG_ON(thp_migration_supported() &&
245 !is_pmd_migration_entry(*pmd));
246 if (is_pmd_migration_entry(*pmd))
247 pmd_migration_entry_wait(mm, pmd);
248 goto retry;
249 }
250 if (pmd_devmap(*pmd)) {
251 ptl = pmd_lock(mm, pmd);
252 page = follow_devmap_pmd(vma, address, pmd, flags);
253 spin_unlock(ptl);
254 if (page)
255 return page;
256 }
257 if (likely(!pmd_trans_huge(*pmd)))
258 return follow_page_pte(vma, address, pmd, flags);
259
260 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
261 return no_page_table(vma, flags);
262
263 retry_locked:
264 ptl = pmd_lock(mm, pmd);
265 if (unlikely(!pmd_present(*pmd))) {
266 spin_unlock(ptl);
267 if (likely(!(flags & FOLL_MIGRATION)))
268 return no_page_table(vma, flags);
269 pmd_migration_entry_wait(mm, pmd);
270 goto retry_locked;
271 }
272 if (unlikely(!pmd_trans_huge(*pmd))) {
273 spin_unlock(ptl);
274 return follow_page_pte(vma, address, pmd, flags);
275 }
276 if (flags & FOLL_SPLIT) {
277 int ret;
278 page = pmd_page(*pmd);
279 if (is_huge_zero_page(page)) {
280 spin_unlock(ptl);
281 ret = 0;
282 split_huge_pmd(vma, pmd, address);
283 if (pmd_trans_unstable(pmd))
284 ret = -EBUSY;
285 } else {
286 if (unlikely(!try_get_page(page))) {
287 spin_unlock(ptl);
288 return ERR_PTR(-ENOMEM);
289 }
290 spin_unlock(ptl);
291 lock_page(page);
292 ret = split_huge_page(page);
293 unlock_page(page);
294 put_page(page);
295 if (pmd_none(*pmd))
296 return no_page_table(vma, flags);
297 }
298
299 return ret ? ERR_PTR(ret) :
300 follow_page_pte(vma, address, pmd, flags);
301 }
302 page = follow_trans_huge_pmd(vma, address, pmd, flags);
303 spin_unlock(ptl);
304 *page_mask = HPAGE_PMD_NR - 1;
305 return page;
306 }
307
308
follow_pud_mask(struct vm_area_struct * vma,unsigned long address,p4d_t * p4dp,unsigned int flags,unsigned int * page_mask)309 static struct page *follow_pud_mask(struct vm_area_struct *vma,
310 unsigned long address, p4d_t *p4dp,
311 unsigned int flags, unsigned int *page_mask)
312 {
313 pud_t *pud;
314 spinlock_t *ptl;
315 struct page *page;
316 struct mm_struct *mm = vma->vm_mm;
317
318 pud = pud_offset(p4dp, address);
319 if (pud_none(*pud))
320 return no_page_table(vma, flags);
321 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
322 page = follow_huge_pud(mm, address, pud, flags);
323 if (page)
324 return page;
325 return no_page_table(vma, flags);
326 }
327 if (is_hugepd(__hugepd(pud_val(*pud)))) {
328 page = follow_huge_pd(vma, address,
329 __hugepd(pud_val(*pud)), flags,
330 PUD_SHIFT);
331 if (page)
332 return page;
333 return no_page_table(vma, flags);
334 }
335 if (pud_devmap(*pud)) {
336 ptl = pud_lock(mm, pud);
337 page = follow_devmap_pud(vma, address, pud, flags);
338 spin_unlock(ptl);
339 if (page)
340 return page;
341 }
342 if (unlikely(pud_bad(*pud)))
343 return no_page_table(vma, flags);
344
345 return follow_pmd_mask(vma, address, pud, flags, page_mask);
346 }
347
348
follow_p4d_mask(struct vm_area_struct * vma,unsigned long address,pgd_t * pgdp,unsigned int flags,unsigned int * page_mask)349 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
350 unsigned long address, pgd_t *pgdp,
351 unsigned int flags, unsigned int *page_mask)
352 {
353 p4d_t *p4d;
354 struct page *page;
355
356 p4d = p4d_offset(pgdp, address);
357 if (p4d_none(*p4d))
358 return no_page_table(vma, flags);
359 BUILD_BUG_ON(p4d_huge(*p4d));
360 if (unlikely(p4d_bad(*p4d)))
361 return no_page_table(vma, flags);
362
363 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
364 page = follow_huge_pd(vma, address,
365 __hugepd(p4d_val(*p4d)), flags,
366 P4D_SHIFT);
367 if (page)
368 return page;
369 return no_page_table(vma, flags);
370 }
371 return follow_pud_mask(vma, address, p4d, flags, page_mask);
372 }
373
374 /**
375 * follow_page_mask - look up a page descriptor from a user-virtual address
376 * @vma: vm_area_struct mapping @address
377 * @address: virtual address to look up
378 * @flags: flags modifying lookup behaviour
379 * @page_mask: on output, *page_mask is set according to the size of the page
380 *
381 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
382 *
383 * Returns the mapped (struct page *), %NULL if no mapping exists, or
384 * an error pointer if there is a mapping to something not represented
385 * by a page descriptor (see also vm_normal_page()).
386 */
follow_page_mask(struct vm_area_struct * vma,unsigned long address,unsigned int flags,unsigned int * page_mask)387 struct page *follow_page_mask(struct vm_area_struct *vma,
388 unsigned long address, unsigned int flags,
389 unsigned int *page_mask)
390 {
391 pgd_t *pgd;
392 struct page *page;
393 struct mm_struct *mm = vma->vm_mm;
394
395 *page_mask = 0;
396
397 /* make this handle hugepd */
398 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
399 if (!IS_ERR(page)) {
400 BUG_ON(flags & FOLL_GET);
401 return page;
402 }
403
404 pgd = pgd_offset(mm, address);
405
406 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
407 return no_page_table(vma, flags);
408
409 if (pgd_huge(*pgd)) {
410 page = follow_huge_pgd(mm, address, pgd, flags);
411 if (page)
412 return page;
413 return no_page_table(vma, flags);
414 }
415 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
416 page = follow_huge_pd(vma, address,
417 __hugepd(pgd_val(*pgd)), flags,
418 PGDIR_SHIFT);
419 if (page)
420 return page;
421 return no_page_table(vma, flags);
422 }
423
424 return follow_p4d_mask(vma, address, pgd, flags, page_mask);
425 }
426
get_gate_page(struct mm_struct * mm,unsigned long address,unsigned int gup_flags,struct vm_area_struct ** vma,struct page ** page)427 static int get_gate_page(struct mm_struct *mm, unsigned long address,
428 unsigned int gup_flags, struct vm_area_struct **vma,
429 struct page **page)
430 {
431 pgd_t *pgd;
432 p4d_t *p4d;
433 pud_t *pud;
434 pmd_t *pmd;
435 pte_t *pte;
436 int ret = -EFAULT;
437
438 /* user gate pages are read-only */
439 if (gup_flags & FOLL_WRITE)
440 return -EFAULT;
441 if (address > TASK_SIZE)
442 pgd = pgd_offset_k(address);
443 else
444 pgd = pgd_offset_gate(mm, address);
445 if (pgd_none(*pgd))
446 return -EFAULT;
447 p4d = p4d_offset(pgd, address);
448 if (p4d_none(*p4d))
449 return -EFAULT;
450 pud = pud_offset(p4d, address);
451 if (pud_none(*pud))
452 return -EFAULT;
453 pmd = pmd_offset(pud, address);
454 if (!pmd_present(*pmd))
455 return -EFAULT;
456 VM_BUG_ON(pmd_trans_huge(*pmd));
457 pte = pte_offset_map(pmd, address);
458 if (pte_none(*pte))
459 goto unmap;
460 *vma = get_gate_vma(mm);
461 if (!page)
462 goto out;
463 *page = vm_normal_page(*vma, address, *pte);
464 if (!*page) {
465 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
466 goto unmap;
467 *page = pte_page(*pte);
468
469 /*
470 * This should never happen (a device public page in the gate
471 * area).
472 */
473 if (is_device_public_page(*page))
474 goto unmap;
475 }
476 if (unlikely(!try_get_page(*page))) {
477 ret = -ENOMEM;
478 goto unmap;
479 }
480 out:
481 ret = 0;
482 unmap:
483 pte_unmap(pte);
484 return ret;
485 }
486
487 /*
488 * mmap_sem must be held on entry. If @nonblocking != NULL and
489 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
490 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
491 */
faultin_page(struct task_struct * tsk,struct vm_area_struct * vma,unsigned long address,unsigned int * flags,int * nonblocking)492 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
493 unsigned long address, unsigned int *flags, int *nonblocking)
494 {
495 unsigned int fault_flags = 0;
496 int ret;
497
498 /* mlock all present pages, but do not fault in new pages */
499 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
500 return -ENOENT;
501 if (*flags & FOLL_WRITE)
502 fault_flags |= FAULT_FLAG_WRITE;
503 if (*flags & FOLL_REMOTE)
504 fault_flags |= FAULT_FLAG_REMOTE;
505 if (nonblocking)
506 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
507 if (*flags & FOLL_NOWAIT)
508 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
509 if (*flags & FOLL_TRIED) {
510 VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
511 fault_flags |= FAULT_FLAG_TRIED;
512 }
513
514 ret = handle_mm_fault(vma, address, fault_flags);
515 if (ret & VM_FAULT_ERROR) {
516 int err = vm_fault_to_errno(ret, *flags);
517
518 if (err)
519 return err;
520 BUG();
521 }
522
523 if (tsk) {
524 if (ret & VM_FAULT_MAJOR)
525 tsk->maj_flt++;
526 else
527 tsk->min_flt++;
528 }
529
530 if (ret & VM_FAULT_RETRY) {
531 if (nonblocking)
532 *nonblocking = 0;
533 return -EBUSY;
534 }
535
536 /*
537 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
538 * necessary, even if maybe_mkwrite decided not to set pte_write. We
539 * can thus safely do subsequent page lookups as if they were reads.
540 * But only do so when looping for pte_write is futile: in some cases
541 * userspace may also be wanting to write to the gotten user page,
542 * which a read fault here might prevent (a readonly page might get
543 * reCOWed by userspace write).
544 */
545 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
546 *flags |= FOLL_COW;
547 return 0;
548 }
549
check_vma_flags(struct vm_area_struct * vma,unsigned long gup_flags)550 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
551 {
552 vm_flags_t vm_flags = vma->vm_flags;
553 int write = (gup_flags & FOLL_WRITE);
554 int foreign = (gup_flags & FOLL_REMOTE);
555
556 if (vm_flags & (VM_IO | VM_PFNMAP))
557 return -EFAULT;
558
559 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
560 return -EFAULT;
561
562 if (write) {
563 if (!(vm_flags & VM_WRITE)) {
564 if (!(gup_flags & FOLL_FORCE))
565 return -EFAULT;
566 /*
567 * We used to let the write,force case do COW in a
568 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
569 * set a breakpoint in a read-only mapping of an
570 * executable, without corrupting the file (yet only
571 * when that file had been opened for writing!).
572 * Anon pages in shared mappings are surprising: now
573 * just reject it.
574 */
575 if (!is_cow_mapping(vm_flags))
576 return -EFAULT;
577 }
578 } else if (!(vm_flags & VM_READ)) {
579 if (!(gup_flags & FOLL_FORCE))
580 return -EFAULT;
581 /*
582 * Is there actually any vma we can reach here which does not
583 * have VM_MAYREAD set?
584 */
585 if (!(vm_flags & VM_MAYREAD))
586 return -EFAULT;
587 }
588 /*
589 * gups are always data accesses, not instruction
590 * fetches, so execute=false here
591 */
592 if (!arch_vma_access_permitted(vma, write, false, foreign))
593 return -EFAULT;
594 return 0;
595 }
596
597 /**
598 * __get_user_pages() - pin user pages in memory
599 * @tsk: task_struct of target task
600 * @mm: mm_struct of target mm
601 * @start: starting user address
602 * @nr_pages: number of pages from start to pin
603 * @gup_flags: flags modifying pin behaviour
604 * @pages: array that receives pointers to the pages pinned.
605 * Should be at least nr_pages long. Or NULL, if caller
606 * only intends to ensure the pages are faulted in.
607 * @vmas: array of pointers to vmas corresponding to each page.
608 * Or NULL if the caller does not require them.
609 * @nonblocking: whether waiting for disk IO or mmap_sem contention
610 *
611 * Returns number of pages pinned. This may be fewer than the number
612 * requested. If nr_pages is 0 or negative, returns 0. If no pages
613 * were pinned, returns -errno. Each page returned must be released
614 * with a put_page() call when it is finished with. vmas will only
615 * remain valid while mmap_sem is held.
616 *
617 * Must be called with mmap_sem held. It may be released. See below.
618 *
619 * __get_user_pages walks a process's page tables and takes a reference to
620 * each struct page that each user address corresponds to at a given
621 * instant. That is, it takes the page that would be accessed if a user
622 * thread accesses the given user virtual address at that instant.
623 *
624 * This does not guarantee that the page exists in the user mappings when
625 * __get_user_pages returns, and there may even be a completely different
626 * page there in some cases (eg. if mmapped pagecache has been invalidated
627 * and subsequently re faulted). However it does guarantee that the page
628 * won't be freed completely. And mostly callers simply care that the page
629 * contains data that was valid *at some point in time*. Typically, an IO
630 * or similar operation cannot guarantee anything stronger anyway because
631 * locks can't be held over the syscall boundary.
632 *
633 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
634 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
635 * appropriate) must be called after the page is finished with, and
636 * before put_page is called.
637 *
638 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
639 * or mmap_sem contention, and if waiting is needed to pin all pages,
640 * *@nonblocking will be set to 0. Further, if @gup_flags does not
641 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
642 * this case.
643 *
644 * A caller using such a combination of @nonblocking and @gup_flags
645 * must therefore hold the mmap_sem for reading only, and recognize
646 * when it's been released. Otherwise, it must be held for either
647 * reading or writing and will not be released.
648 *
649 * In most cases, get_user_pages or get_user_pages_fast should be used
650 * instead of __get_user_pages. __get_user_pages should be used only if
651 * you need some special @gup_flags.
652 */
__get_user_pages(struct task_struct * tsk,struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas,int * nonblocking)653 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
654 unsigned long start, unsigned long nr_pages,
655 unsigned int gup_flags, struct page **pages,
656 struct vm_area_struct **vmas, int *nonblocking)
657 {
658 long i = 0;
659 unsigned int page_mask;
660 struct vm_area_struct *vma = NULL;
661
662 if (!nr_pages)
663 return 0;
664
665 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
666
667 /*
668 * If FOLL_FORCE is set then do not force a full fault as the hinting
669 * fault information is unrelated to the reference behaviour of a task
670 * using the address space
671 */
672 if (!(gup_flags & FOLL_FORCE))
673 gup_flags |= FOLL_NUMA;
674
675 do {
676 struct page *page;
677 unsigned int foll_flags = gup_flags;
678 unsigned int page_increm;
679
680 /* first iteration or cross vma bound */
681 if (!vma || start >= vma->vm_end) {
682 vma = find_extend_vma(mm, start);
683 if (!vma && in_gate_area(mm, start)) {
684 int ret;
685 ret = get_gate_page(mm, start & PAGE_MASK,
686 gup_flags, &vma,
687 pages ? &pages[i] : NULL);
688 if (ret)
689 return i ? : ret;
690 page_mask = 0;
691 goto next_page;
692 }
693
694 if (!vma || check_vma_flags(vma, gup_flags))
695 return i ? : -EFAULT;
696 if (is_vm_hugetlb_page(vma)) {
697 i = follow_hugetlb_page(mm, vma, pages, vmas,
698 &start, &nr_pages, i,
699 gup_flags, nonblocking);
700 continue;
701 }
702 }
703 retry:
704 /*
705 * If we have a pending SIGKILL, don't keep faulting pages and
706 * potentially allocating memory.
707 */
708 if (unlikely(fatal_signal_pending(current)))
709 return i ? i : -ERESTARTSYS;
710 cond_resched();
711 page = follow_page_mask(vma, start, foll_flags, &page_mask);
712 if (!page) {
713 int ret;
714 ret = faultin_page(tsk, vma, start, &foll_flags,
715 nonblocking);
716 switch (ret) {
717 case 0:
718 goto retry;
719 case -EFAULT:
720 case -ENOMEM:
721 case -EHWPOISON:
722 return i ? i : ret;
723 case -EBUSY:
724 return i;
725 case -ENOENT:
726 goto next_page;
727 }
728 BUG();
729 } else if (PTR_ERR(page) == -EEXIST) {
730 /*
731 * Proper page table entry exists, but no corresponding
732 * struct page.
733 */
734 goto next_page;
735 } else if (IS_ERR(page)) {
736 return i ? i : PTR_ERR(page);
737 }
738 if (pages) {
739 pages[i] = page;
740 flush_anon_page(vma, page, start);
741 flush_dcache_page(page);
742 page_mask = 0;
743 }
744 next_page:
745 if (vmas) {
746 vmas[i] = vma;
747 page_mask = 0;
748 }
749 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
750 if (page_increm > nr_pages)
751 page_increm = nr_pages;
752 i += page_increm;
753 start += page_increm * PAGE_SIZE;
754 nr_pages -= page_increm;
755 } while (nr_pages);
756 return i;
757 }
758
vma_permits_fault(struct vm_area_struct * vma,unsigned int fault_flags)759 static bool vma_permits_fault(struct vm_area_struct *vma,
760 unsigned int fault_flags)
761 {
762 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
763 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
764 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
765
766 if (!(vm_flags & vma->vm_flags))
767 return false;
768
769 /*
770 * The architecture might have a hardware protection
771 * mechanism other than read/write that can deny access.
772 *
773 * gup always represents data access, not instruction
774 * fetches, so execute=false here:
775 */
776 if (!arch_vma_access_permitted(vma, write, false, foreign))
777 return false;
778
779 return true;
780 }
781
782 /*
783 * fixup_user_fault() - manually resolve a user page fault
784 * @tsk: the task_struct to use for page fault accounting, or
785 * NULL if faults are not to be recorded.
786 * @mm: mm_struct of target mm
787 * @address: user address
788 * @fault_flags:flags to pass down to handle_mm_fault()
789 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller
790 * does not allow retry
791 *
792 * This is meant to be called in the specific scenario where for locking reasons
793 * we try to access user memory in atomic context (within a pagefault_disable()
794 * section), this returns -EFAULT, and we want to resolve the user fault before
795 * trying again.
796 *
797 * Typically this is meant to be used by the futex code.
798 *
799 * The main difference with get_user_pages() is that this function will
800 * unconditionally call handle_mm_fault() which will in turn perform all the
801 * necessary SW fixup of the dirty and young bits in the PTE, while
802 * get_user_pages() only guarantees to update these in the struct page.
803 *
804 * This is important for some architectures where those bits also gate the
805 * access permission to the page because they are maintained in software. On
806 * such architectures, gup() will not be enough to make a subsequent access
807 * succeed.
808 *
809 * This function will not return with an unlocked mmap_sem. So it has not the
810 * same semantics wrt the @mm->mmap_sem as does filemap_fault().
811 */
fixup_user_fault(struct task_struct * tsk,struct mm_struct * mm,unsigned long address,unsigned int fault_flags,bool * unlocked)812 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
813 unsigned long address, unsigned int fault_flags,
814 bool *unlocked)
815 {
816 struct vm_area_struct *vma;
817 int ret, major = 0;
818
819 if (unlocked)
820 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
821
822 retry:
823 vma = find_extend_vma(mm, address);
824 if (!vma || address < vma->vm_start)
825 return -EFAULT;
826
827 if (!vma_permits_fault(vma, fault_flags))
828 return -EFAULT;
829
830 ret = handle_mm_fault(vma, address, fault_flags);
831 major |= ret & VM_FAULT_MAJOR;
832 if (ret & VM_FAULT_ERROR) {
833 int err = vm_fault_to_errno(ret, 0);
834
835 if (err)
836 return err;
837 BUG();
838 }
839
840 if (ret & VM_FAULT_RETRY) {
841 down_read(&mm->mmap_sem);
842 if (!(fault_flags & FAULT_FLAG_TRIED)) {
843 *unlocked = true;
844 fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
845 fault_flags |= FAULT_FLAG_TRIED;
846 goto retry;
847 }
848 }
849
850 if (tsk) {
851 if (major)
852 tsk->maj_flt++;
853 else
854 tsk->min_flt++;
855 }
856 return 0;
857 }
858 EXPORT_SYMBOL_GPL(fixup_user_fault);
859
__get_user_pages_locked(struct task_struct * tsk,struct mm_struct * mm,unsigned long start,unsigned long nr_pages,struct page ** pages,struct vm_area_struct ** vmas,int * locked,bool notify_drop,unsigned int flags)860 static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
861 struct mm_struct *mm,
862 unsigned long start,
863 unsigned long nr_pages,
864 struct page **pages,
865 struct vm_area_struct **vmas,
866 int *locked, bool notify_drop,
867 unsigned int flags)
868 {
869 long ret, pages_done;
870 bool lock_dropped;
871
872 if (locked) {
873 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
874 BUG_ON(vmas);
875 /* check caller initialized locked */
876 BUG_ON(*locked != 1);
877 }
878
879 if (pages)
880 flags |= FOLL_GET;
881
882 pages_done = 0;
883 lock_dropped = false;
884 for (;;) {
885 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
886 vmas, locked);
887 if (!locked)
888 /* VM_FAULT_RETRY couldn't trigger, bypass */
889 return ret;
890
891 /* VM_FAULT_RETRY cannot return errors */
892 if (!*locked) {
893 BUG_ON(ret < 0);
894 BUG_ON(ret >= nr_pages);
895 }
896
897 if (!pages)
898 /* If it's a prefault don't insist harder */
899 return ret;
900
901 if (ret > 0) {
902 nr_pages -= ret;
903 pages_done += ret;
904 if (!nr_pages)
905 break;
906 }
907 if (*locked) {
908 /* VM_FAULT_RETRY didn't trigger */
909 if (!pages_done)
910 pages_done = ret;
911 break;
912 }
913 /* VM_FAULT_RETRY triggered, so seek to the faulting offset */
914 pages += ret;
915 start += ret << PAGE_SHIFT;
916
917 /*
918 * Repeat on the address that fired VM_FAULT_RETRY
919 * without FAULT_FLAG_ALLOW_RETRY but with
920 * FAULT_FLAG_TRIED.
921 */
922 *locked = 1;
923 lock_dropped = true;
924 down_read(&mm->mmap_sem);
925 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
926 pages, NULL, NULL);
927 if (ret != 1) {
928 BUG_ON(ret > 1);
929 if (!pages_done)
930 pages_done = ret;
931 break;
932 }
933 nr_pages--;
934 pages_done++;
935 if (!nr_pages)
936 break;
937 pages++;
938 start += PAGE_SIZE;
939 }
940 if (notify_drop && lock_dropped && *locked) {
941 /*
942 * We must let the caller know we temporarily dropped the lock
943 * and so the critical section protected by it was lost.
944 */
945 up_read(&mm->mmap_sem);
946 *locked = 0;
947 }
948 return pages_done;
949 }
950
951 /*
952 * We can leverage the VM_FAULT_RETRY functionality in the page fault
953 * paths better by using either get_user_pages_locked() or
954 * get_user_pages_unlocked().
955 *
956 * get_user_pages_locked() is suitable to replace the form:
957 *
958 * down_read(&mm->mmap_sem);
959 * do_something()
960 * get_user_pages(tsk, mm, ..., pages, NULL);
961 * up_read(&mm->mmap_sem);
962 *
963 * to:
964 *
965 * int locked = 1;
966 * down_read(&mm->mmap_sem);
967 * do_something()
968 * get_user_pages_locked(tsk, mm, ..., pages, &locked);
969 * if (locked)
970 * up_read(&mm->mmap_sem);
971 */
get_user_pages_locked(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,int * locked)972 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
973 unsigned int gup_flags, struct page **pages,
974 int *locked)
975 {
976 return __get_user_pages_locked(current, current->mm, start, nr_pages,
977 pages, NULL, locked, true,
978 gup_flags | FOLL_TOUCH);
979 }
980 EXPORT_SYMBOL(get_user_pages_locked);
981
982 /*
983 * Same as get_user_pages_unlocked(...., FOLL_TOUCH) but it allows for
984 * tsk, mm to be specified.
985 *
986 * NOTE: here FOLL_TOUCH is not set implicitly and must be set by the
987 * caller if required (just like with __get_user_pages). "FOLL_GET"
988 * is set implicitly if "pages" is non-NULL.
989 */
__get_user_pages_unlocked(struct task_struct * tsk,struct mm_struct * mm,unsigned long start,unsigned long nr_pages,struct page ** pages,unsigned int gup_flags)990 static __always_inline long __get_user_pages_unlocked(struct task_struct *tsk,
991 struct mm_struct *mm, unsigned long start,
992 unsigned long nr_pages, struct page **pages,
993 unsigned int gup_flags)
994 {
995 long ret;
996 int locked = 1;
997
998 down_read(&mm->mmap_sem);
999 ret = __get_user_pages_locked(tsk, mm, start, nr_pages, pages, NULL,
1000 &locked, false, gup_flags);
1001 if (locked)
1002 up_read(&mm->mmap_sem);
1003 return ret;
1004 }
1005
1006 /*
1007 * get_user_pages_unlocked() is suitable to replace the form:
1008 *
1009 * down_read(&mm->mmap_sem);
1010 * get_user_pages(tsk, mm, ..., pages, NULL);
1011 * up_read(&mm->mmap_sem);
1012 *
1013 * with:
1014 *
1015 * get_user_pages_unlocked(tsk, mm, ..., pages);
1016 *
1017 * It is functionally equivalent to get_user_pages_fast so
1018 * get_user_pages_fast should be used instead if specific gup_flags
1019 * (e.g. FOLL_FORCE) are not required.
1020 */
get_user_pages_unlocked(unsigned long start,unsigned long nr_pages,struct page ** pages,unsigned int gup_flags)1021 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1022 struct page **pages, unsigned int gup_flags)
1023 {
1024 return __get_user_pages_unlocked(current, current->mm, start, nr_pages,
1025 pages, gup_flags | FOLL_TOUCH);
1026 }
1027 EXPORT_SYMBOL(get_user_pages_unlocked);
1028
1029 /*
1030 * get_user_pages_remote() - pin user pages in memory
1031 * @tsk: the task_struct to use for page fault accounting, or
1032 * NULL if faults are not to be recorded.
1033 * @mm: mm_struct of target mm
1034 * @start: starting user address
1035 * @nr_pages: number of pages from start to pin
1036 * @gup_flags: flags modifying lookup behaviour
1037 * @pages: array that receives pointers to the pages pinned.
1038 * Should be at least nr_pages long. Or NULL, if caller
1039 * only intends to ensure the pages are faulted in.
1040 * @vmas: array of pointers to vmas corresponding to each page.
1041 * Or NULL if the caller does not require them.
1042 * @locked: pointer to lock flag indicating whether lock is held and
1043 * subsequently whether VM_FAULT_RETRY functionality can be
1044 * utilised. Lock must initially be held.
1045 *
1046 * Returns number of pages pinned. This may be fewer than the number
1047 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1048 * were pinned, returns -errno. Each page returned must be released
1049 * with a put_page() call when it is finished with. vmas will only
1050 * remain valid while mmap_sem is held.
1051 *
1052 * Must be called with mmap_sem held for read or write.
1053 *
1054 * get_user_pages walks a process's page tables and takes a reference to
1055 * each struct page that each user address corresponds to at a given
1056 * instant. That is, it takes the page that would be accessed if a user
1057 * thread accesses the given user virtual address at that instant.
1058 *
1059 * This does not guarantee that the page exists in the user mappings when
1060 * get_user_pages returns, and there may even be a completely different
1061 * page there in some cases (eg. if mmapped pagecache has been invalidated
1062 * and subsequently re faulted). However it does guarantee that the page
1063 * won't be freed completely. And mostly callers simply care that the page
1064 * contains data that was valid *at some point in time*. Typically, an IO
1065 * or similar operation cannot guarantee anything stronger anyway because
1066 * locks can't be held over the syscall boundary.
1067 *
1068 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1069 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1070 * be called after the page is finished with, and before put_page is called.
1071 *
1072 * get_user_pages is typically used for fewer-copy IO operations, to get a
1073 * handle on the memory by some means other than accesses via the user virtual
1074 * addresses. The pages may be submitted for DMA to devices or accessed via
1075 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1076 * use the correct cache flushing APIs.
1077 *
1078 * See also get_user_pages_fast, for performance critical applications.
1079 *
1080 * get_user_pages should be phased out in favor of
1081 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1082 * should use get_user_pages because it cannot pass
1083 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1084 */
get_user_pages_remote(struct task_struct * tsk,struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas,int * locked)1085 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1086 unsigned long start, unsigned long nr_pages,
1087 unsigned int gup_flags, struct page **pages,
1088 struct vm_area_struct **vmas, int *locked)
1089 {
1090 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1091 locked, true,
1092 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1093 }
1094 EXPORT_SYMBOL(get_user_pages_remote);
1095
1096 /*
1097 * This is the same as get_user_pages_remote(), just with a
1098 * less-flexible calling convention where we assume that the task
1099 * and mm being operated on are the current task's and don't allow
1100 * passing of a locked parameter. We also obviously don't pass
1101 * FOLL_REMOTE in here.
1102 */
get_user_pages(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas)1103 long get_user_pages(unsigned long start, unsigned long nr_pages,
1104 unsigned int gup_flags, struct page **pages,
1105 struct vm_area_struct **vmas)
1106 {
1107 return __get_user_pages_locked(current, current->mm, start, nr_pages,
1108 pages, vmas, NULL, false,
1109 gup_flags | FOLL_TOUCH);
1110 }
1111 EXPORT_SYMBOL(get_user_pages);
1112
1113 #ifdef CONFIG_FS_DAX
1114 /*
1115 * This is the same as get_user_pages() in that it assumes we are
1116 * operating on the current task's mm, but it goes further to validate
1117 * that the vmas associated with the address range are suitable for
1118 * longterm elevated page reference counts. For example, filesystem-dax
1119 * mappings are subject to the lifetime enforced by the filesystem and
1120 * we need guarantees that longterm users like RDMA and V4L2 only
1121 * establish mappings that have a kernel enforced revocation mechanism.
1122 *
1123 * "longterm" == userspace controlled elevated page count lifetime.
1124 * Contrast this to iov_iter_get_pages() usages which are transient.
1125 */
get_user_pages_longterm(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas_arg)1126 long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
1127 unsigned int gup_flags, struct page **pages,
1128 struct vm_area_struct **vmas_arg)
1129 {
1130 struct vm_area_struct **vmas = vmas_arg;
1131 struct vm_area_struct *vma_prev = NULL;
1132 long rc, i;
1133
1134 if (!pages)
1135 return -EINVAL;
1136
1137 if (!vmas) {
1138 vmas = kcalloc(nr_pages, sizeof(struct vm_area_struct *),
1139 GFP_KERNEL);
1140 if (!vmas)
1141 return -ENOMEM;
1142 }
1143
1144 rc = get_user_pages(start, nr_pages, gup_flags, pages, vmas);
1145
1146 for (i = 0; i < rc; i++) {
1147 struct vm_area_struct *vma = vmas[i];
1148
1149 if (vma == vma_prev)
1150 continue;
1151
1152 vma_prev = vma;
1153
1154 if (vma_is_fsdax(vma))
1155 break;
1156 }
1157
1158 /*
1159 * Either get_user_pages() failed, or the vma validation
1160 * succeeded, in either case we don't need to put_page() before
1161 * returning.
1162 */
1163 if (i >= rc)
1164 goto out;
1165
1166 for (i = 0; i < rc; i++)
1167 put_page(pages[i]);
1168 rc = -EOPNOTSUPP;
1169 out:
1170 if (vmas != vmas_arg)
1171 kfree(vmas);
1172 return rc;
1173 }
1174 EXPORT_SYMBOL(get_user_pages_longterm);
1175 #endif /* CONFIG_FS_DAX */
1176
1177 /**
1178 * populate_vma_page_range() - populate a range of pages in the vma.
1179 * @vma: target vma
1180 * @start: start address
1181 * @end: end address
1182 * @nonblocking:
1183 *
1184 * This takes care of mlocking the pages too if VM_LOCKED is set.
1185 *
1186 * return 0 on success, negative error code on error.
1187 *
1188 * vma->vm_mm->mmap_sem must be held.
1189 *
1190 * If @nonblocking is NULL, it may be held for read or write and will
1191 * be unperturbed.
1192 *
1193 * If @nonblocking is non-NULL, it must held for read only and may be
1194 * released. If it's released, *@nonblocking will be set to 0.
1195 */
populate_vma_page_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,int * nonblocking)1196 long populate_vma_page_range(struct vm_area_struct *vma,
1197 unsigned long start, unsigned long end, int *nonblocking)
1198 {
1199 struct mm_struct *mm = vma->vm_mm;
1200 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1201 int gup_flags;
1202
1203 VM_BUG_ON(start & ~PAGE_MASK);
1204 VM_BUG_ON(end & ~PAGE_MASK);
1205 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1206 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1207 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1208
1209 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1210 if (vma->vm_flags & VM_LOCKONFAULT)
1211 gup_flags &= ~FOLL_POPULATE;
1212 /*
1213 * We want to touch writable mappings with a write fault in order
1214 * to break COW, except for shared mappings because these don't COW
1215 * and we would not want to dirty them for nothing.
1216 */
1217 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1218 gup_flags |= FOLL_WRITE;
1219
1220 /*
1221 * We want mlock to succeed for regions that have any permissions
1222 * other than PROT_NONE.
1223 */
1224 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
1225 gup_flags |= FOLL_FORCE;
1226
1227 /*
1228 * We made sure addr is within a VMA, so the following will
1229 * not result in a stack expansion that recurses back here.
1230 */
1231 return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1232 NULL, NULL, nonblocking);
1233 }
1234
1235 /*
1236 * __mm_populate - populate and/or mlock pages within a range of address space.
1237 *
1238 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1239 * flags. VMAs must be already marked with the desired vm_flags, and
1240 * mmap_sem must not be held.
1241 */
__mm_populate(unsigned long start,unsigned long len,int ignore_errors)1242 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1243 {
1244 struct mm_struct *mm = current->mm;
1245 unsigned long end, nstart, nend;
1246 struct vm_area_struct *vma = NULL;
1247 int locked = 0;
1248 long ret = 0;
1249
1250 end = start + len;
1251
1252 for (nstart = start; nstart < end; nstart = nend) {
1253 /*
1254 * We want to fault in pages for [nstart; end) address range.
1255 * Find first corresponding VMA.
1256 */
1257 if (!locked) {
1258 locked = 1;
1259 down_read(&mm->mmap_sem);
1260 vma = find_vma(mm, nstart);
1261 } else if (nstart >= vma->vm_end)
1262 vma = vma->vm_next;
1263 if (!vma || vma->vm_start >= end)
1264 break;
1265 /*
1266 * Set [nstart; nend) to intersection of desired address
1267 * range with the first VMA. Also, skip undesirable VMA types.
1268 */
1269 nend = min(end, vma->vm_end);
1270 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1271 continue;
1272 if (nstart < vma->vm_start)
1273 nstart = vma->vm_start;
1274 /*
1275 * Now fault in a range of pages. populate_vma_page_range()
1276 * double checks the vma flags, so that it won't mlock pages
1277 * if the vma was already munlocked.
1278 */
1279 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1280 if (ret < 0) {
1281 if (ignore_errors) {
1282 ret = 0;
1283 continue; /* continue at next VMA */
1284 }
1285 break;
1286 }
1287 nend = nstart + ret * PAGE_SIZE;
1288 ret = 0;
1289 }
1290 if (locked)
1291 up_read(&mm->mmap_sem);
1292 return ret; /* 0 or negative error code */
1293 }
1294
1295 /**
1296 * get_dump_page() - pin user page in memory while writing it to core dump
1297 * @addr: user address
1298 *
1299 * Returns struct page pointer of user page pinned for dump,
1300 * to be freed afterwards by put_page().
1301 *
1302 * Returns NULL on any kind of failure - a hole must then be inserted into
1303 * the corefile, to preserve alignment with its headers; and also returns
1304 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1305 * allowing a hole to be left in the corefile to save diskspace.
1306 *
1307 * Called without mmap_sem, but after all other threads have been killed.
1308 */
1309 #ifdef CONFIG_ELF_CORE
get_dump_page(unsigned long addr)1310 struct page *get_dump_page(unsigned long addr)
1311 {
1312 struct vm_area_struct *vma;
1313 struct page *page;
1314
1315 if (__get_user_pages(current, current->mm, addr, 1,
1316 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1317 NULL) < 1)
1318 return NULL;
1319 flush_cache_page(vma, addr, page_to_pfn(page));
1320 return page;
1321 }
1322 #endif /* CONFIG_ELF_CORE */
1323
1324 /*
1325 * Generic Fast GUP
1326 *
1327 * get_user_pages_fast attempts to pin user pages by walking the page
1328 * tables directly and avoids taking locks. Thus the walker needs to be
1329 * protected from page table pages being freed from under it, and should
1330 * block any THP splits.
1331 *
1332 * One way to achieve this is to have the walker disable interrupts, and
1333 * rely on IPIs from the TLB flushing code blocking before the page table
1334 * pages are freed. This is unsuitable for architectures that do not need
1335 * to broadcast an IPI when invalidating TLBs.
1336 *
1337 * Another way to achieve this is to batch up page table containing pages
1338 * belonging to more than one mm_user, then rcu_sched a callback to free those
1339 * pages. Disabling interrupts will allow the fast_gup walker to both block
1340 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1341 * (which is a relatively rare event). The code below adopts this strategy.
1342 *
1343 * Before activating this code, please be aware that the following assumptions
1344 * are currently made:
1345 *
1346 * *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
1347 * free pages containing page tables or TLB flushing requires IPI broadcast.
1348 *
1349 * *) ptes can be read atomically by the architecture.
1350 *
1351 * *) access_ok is sufficient to validate userspace address ranges.
1352 *
1353 * The last two assumptions can be relaxed by the addition of helper functions.
1354 *
1355 * This code is based heavily on the PowerPC implementation by Nick Piggin.
1356 */
1357 #ifdef CONFIG_HAVE_GENERIC_GUP
1358
1359 #ifndef gup_get_pte
1360 /*
1361 * We assume that the PTE can be read atomically. If this is not the case for
1362 * your architecture, please provide the helper.
1363 */
gup_get_pte(pte_t * ptep)1364 static inline pte_t gup_get_pte(pte_t *ptep)
1365 {
1366 return READ_ONCE(*ptep);
1367 }
1368 #endif
1369
undo_dev_pagemap(int * nr,int nr_start,struct page ** pages)1370 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
1371 struct page **pages)
1372 {
1373 while ((*nr) - nr_start) {
1374 struct page *page = pages[--(*nr)];
1375
1376 ClearPageReferenced(page);
1377 put_page(page);
1378 }
1379 }
1380
1381 /*
1382 * Return the compund head page with ref appropriately incremented,
1383 * or NULL if that failed.
1384 */
try_get_compound_head(struct page * page,int refs)1385 static inline struct page *try_get_compound_head(struct page *page, int refs)
1386 {
1387 struct page *head = compound_head(page);
1388 if (WARN_ON_ONCE(page_ref_count(head) < 0))
1389 return NULL;
1390 if (unlikely(!page_cache_add_speculative(head, refs)))
1391 return NULL;
1392 return head;
1393 }
1394
1395 #ifdef __HAVE_ARCH_PTE_SPECIAL
gup_pte_range(pmd_t pmd,unsigned long addr,unsigned long end,int write,struct page ** pages,int * nr)1396 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1397 int write, struct page **pages, int *nr)
1398 {
1399 struct dev_pagemap *pgmap = NULL;
1400 int nr_start = *nr, ret = 0;
1401 pte_t *ptep, *ptem;
1402
1403 ptem = ptep = pte_offset_map(&pmd, addr);
1404 do {
1405 pte_t pte = gup_get_pte(ptep);
1406 struct page *head, *page;
1407
1408 /*
1409 * Similar to the PMD case below, NUMA hinting must take slow
1410 * path using the pte_protnone check.
1411 */
1412 if (pte_protnone(pte))
1413 goto pte_unmap;
1414
1415 if (!pte_access_permitted(pte, write))
1416 goto pte_unmap;
1417
1418 if (pte_devmap(pte)) {
1419 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
1420 if (unlikely(!pgmap)) {
1421 undo_dev_pagemap(nr, nr_start, pages);
1422 goto pte_unmap;
1423 }
1424 } else if (pte_special(pte))
1425 goto pte_unmap;
1426
1427 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1428 page = pte_page(pte);
1429
1430 head = try_get_compound_head(page, 1);
1431 if (!head)
1432 goto pte_unmap;
1433
1434 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1435 put_page(head);
1436 goto pte_unmap;
1437 }
1438
1439 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1440
1441 put_dev_pagemap(pgmap);
1442 SetPageReferenced(page);
1443 pages[*nr] = page;
1444 (*nr)++;
1445
1446 } while (ptep++, addr += PAGE_SIZE, addr != end);
1447
1448 ret = 1;
1449
1450 pte_unmap:
1451 pte_unmap(ptem);
1452 return ret;
1453 }
1454 #else
1455
1456 /*
1457 * If we can't determine whether or not a pte is special, then fail immediately
1458 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1459 * to be special.
1460 *
1461 * For a futex to be placed on a THP tail page, get_futex_key requires a
1462 * __get_user_pages_fast implementation that can pin pages. Thus it's still
1463 * useful to have gup_huge_pmd even if we can't operate on ptes.
1464 */
gup_pte_range(pmd_t pmd,unsigned long addr,unsigned long end,int write,struct page ** pages,int * nr)1465 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1466 int write, struct page **pages, int *nr)
1467 {
1468 return 0;
1469 }
1470 #endif /* __HAVE_ARCH_PTE_SPECIAL */
1471
1472 #if defined(__HAVE_ARCH_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
__gup_device_huge(unsigned long pfn,unsigned long addr,unsigned long end,struct page ** pages,int * nr)1473 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
1474 unsigned long end, struct page **pages, int *nr)
1475 {
1476 int nr_start = *nr;
1477 struct dev_pagemap *pgmap = NULL;
1478
1479 do {
1480 struct page *page = pfn_to_page(pfn);
1481
1482 pgmap = get_dev_pagemap(pfn, pgmap);
1483 if (unlikely(!pgmap)) {
1484 undo_dev_pagemap(nr, nr_start, pages);
1485 return 0;
1486 }
1487 SetPageReferenced(page);
1488 pages[*nr] = page;
1489 get_page(page);
1490 put_dev_pagemap(pgmap);
1491 (*nr)++;
1492 pfn++;
1493 } while (addr += PAGE_SIZE, addr != end);
1494 return 1;
1495 }
1496
__gup_device_huge_pmd(pmd_t orig,pmd_t * pmdp,unsigned long addr,unsigned long end,struct page ** pages,int * nr)1497 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1498 unsigned long end, struct page **pages, int *nr)
1499 {
1500 unsigned long fault_pfn;
1501 int nr_start = *nr;
1502
1503 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1504 if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1505 return 0;
1506
1507 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1508 undo_dev_pagemap(nr, nr_start, pages);
1509 return 0;
1510 }
1511 return 1;
1512 }
1513
__gup_device_huge_pud(pud_t orig,pud_t * pudp,unsigned long addr,unsigned long end,struct page ** pages,int * nr)1514 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1515 unsigned long end, struct page **pages, int *nr)
1516 {
1517 unsigned long fault_pfn;
1518 int nr_start = *nr;
1519
1520 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1521 if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1522 return 0;
1523
1524 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1525 undo_dev_pagemap(nr, nr_start, pages);
1526 return 0;
1527 }
1528 return 1;
1529 }
1530 #else
__gup_device_huge_pmd(pmd_t orig,pmd_t * pmdp,unsigned long addr,unsigned long end,struct page ** pages,int * nr)1531 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1532 unsigned long end, struct page **pages, int *nr)
1533 {
1534 BUILD_BUG();
1535 return 0;
1536 }
1537
__gup_device_huge_pud(pud_t pud,pud_t * pudp,unsigned long addr,unsigned long end,struct page ** pages,int * nr)1538 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
1539 unsigned long end, struct page **pages, int *nr)
1540 {
1541 BUILD_BUG();
1542 return 0;
1543 }
1544 #endif
1545
gup_huge_pmd(pmd_t orig,pmd_t * pmdp,unsigned long addr,unsigned long end,int write,struct page ** pages,int * nr)1546 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1547 unsigned long end, int write, struct page **pages, int *nr)
1548 {
1549 struct page *head, *page;
1550 int refs;
1551
1552 if (!pmd_access_permitted(orig, write))
1553 return 0;
1554
1555 if (pmd_devmap(orig))
1556 return __gup_device_huge_pmd(orig, pmdp, addr, end, pages, nr);
1557
1558 refs = 0;
1559 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1560 do {
1561 pages[*nr] = page;
1562 (*nr)++;
1563 page++;
1564 refs++;
1565 } while (addr += PAGE_SIZE, addr != end);
1566
1567 head = try_get_compound_head(pmd_page(orig), refs);
1568 if (!head) {
1569 *nr -= refs;
1570 return 0;
1571 }
1572
1573 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1574 *nr -= refs;
1575 while (refs--)
1576 put_page(head);
1577 return 0;
1578 }
1579
1580 SetPageReferenced(head);
1581 return 1;
1582 }
1583
gup_huge_pud(pud_t orig,pud_t * pudp,unsigned long addr,unsigned long end,int write,struct page ** pages,int * nr)1584 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1585 unsigned long end, int write, struct page **pages, int *nr)
1586 {
1587 struct page *head, *page;
1588 int refs;
1589
1590 if (!pud_access_permitted(orig, write))
1591 return 0;
1592
1593 if (pud_devmap(orig))
1594 return __gup_device_huge_pud(orig, pudp, addr, end, pages, nr);
1595
1596 refs = 0;
1597 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1598 do {
1599 pages[*nr] = page;
1600 (*nr)++;
1601 page++;
1602 refs++;
1603 } while (addr += PAGE_SIZE, addr != end);
1604
1605 head = try_get_compound_head(pud_page(orig), refs);
1606 if (!head) {
1607 *nr -= refs;
1608 return 0;
1609 }
1610
1611 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1612 *nr -= refs;
1613 while (refs--)
1614 put_page(head);
1615 return 0;
1616 }
1617
1618 SetPageReferenced(head);
1619 return 1;
1620 }
1621
gup_huge_pgd(pgd_t orig,pgd_t * pgdp,unsigned long addr,unsigned long end,int write,struct page ** pages,int * nr)1622 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
1623 unsigned long end, int write,
1624 struct page **pages, int *nr)
1625 {
1626 int refs;
1627 struct page *head, *page;
1628
1629 if (!pgd_access_permitted(orig, write))
1630 return 0;
1631
1632 BUILD_BUG_ON(pgd_devmap(orig));
1633 refs = 0;
1634 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
1635 do {
1636 pages[*nr] = page;
1637 (*nr)++;
1638 page++;
1639 refs++;
1640 } while (addr += PAGE_SIZE, addr != end);
1641
1642 head = try_get_compound_head(pgd_page(orig), refs);
1643 if (!head) {
1644 *nr -= refs;
1645 return 0;
1646 }
1647
1648 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
1649 *nr -= refs;
1650 while (refs--)
1651 put_page(head);
1652 return 0;
1653 }
1654
1655 SetPageReferenced(head);
1656 return 1;
1657 }
1658
gup_pmd_range(pud_t pud,unsigned long addr,unsigned long end,int write,struct page ** pages,int * nr)1659 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
1660 int write, struct page **pages, int *nr)
1661 {
1662 unsigned long next;
1663 pmd_t *pmdp;
1664
1665 pmdp = pmd_offset(&pud, addr);
1666 do {
1667 pmd_t pmd = READ_ONCE(*pmdp);
1668
1669 next = pmd_addr_end(addr, end);
1670 if (!pmd_present(pmd))
1671 return 0;
1672
1673 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
1674 pmd_devmap(pmd))) {
1675 /*
1676 * NUMA hinting faults need to be handled in the GUP
1677 * slowpath for accounting purposes and so that they
1678 * can be serialised against THP migration.
1679 */
1680 if (pmd_protnone(pmd))
1681 return 0;
1682
1683 if (!gup_huge_pmd(pmd, pmdp, addr, next, write,
1684 pages, nr))
1685 return 0;
1686
1687 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
1688 /*
1689 * architecture have different format for hugetlbfs
1690 * pmd format and THP pmd format
1691 */
1692 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
1693 PMD_SHIFT, next, write, pages, nr))
1694 return 0;
1695 } else if (!gup_pte_range(pmd, addr, next, write, pages, nr))
1696 return 0;
1697 } while (pmdp++, addr = next, addr != end);
1698
1699 return 1;
1700 }
1701
gup_pud_range(p4d_t p4d,unsigned long addr,unsigned long end,int write,struct page ** pages,int * nr)1702 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
1703 int write, struct page **pages, int *nr)
1704 {
1705 unsigned long next;
1706 pud_t *pudp;
1707
1708 pudp = pud_offset(&p4d, addr);
1709 do {
1710 pud_t pud = READ_ONCE(*pudp);
1711
1712 next = pud_addr_end(addr, end);
1713 if (pud_none(pud))
1714 return 0;
1715 if (unlikely(pud_huge(pud))) {
1716 if (!gup_huge_pud(pud, pudp, addr, next, write,
1717 pages, nr))
1718 return 0;
1719 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
1720 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
1721 PUD_SHIFT, next, write, pages, nr))
1722 return 0;
1723 } else if (!gup_pmd_range(pud, addr, next, write, pages, nr))
1724 return 0;
1725 } while (pudp++, addr = next, addr != end);
1726
1727 return 1;
1728 }
1729
gup_p4d_range(pgd_t pgd,unsigned long addr,unsigned long end,int write,struct page ** pages,int * nr)1730 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
1731 int write, struct page **pages, int *nr)
1732 {
1733 unsigned long next;
1734 p4d_t *p4dp;
1735
1736 p4dp = p4d_offset(&pgd, addr);
1737 do {
1738 p4d_t p4d = READ_ONCE(*p4dp);
1739
1740 next = p4d_addr_end(addr, end);
1741 if (p4d_none(p4d))
1742 return 0;
1743 BUILD_BUG_ON(p4d_huge(p4d));
1744 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
1745 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
1746 P4D_SHIFT, next, write, pages, nr))
1747 return 0;
1748 } else if (!gup_pud_range(p4d, addr, next, write, pages, nr))
1749 return 0;
1750 } while (p4dp++, addr = next, addr != end);
1751
1752 return 1;
1753 }
1754
gup_pgd_range(unsigned long addr,unsigned long end,int write,struct page ** pages,int * nr)1755 static void gup_pgd_range(unsigned long addr, unsigned long end,
1756 int write, struct page **pages, int *nr)
1757 {
1758 unsigned long next;
1759 pgd_t *pgdp;
1760
1761 pgdp = pgd_offset(current->mm, addr);
1762 do {
1763 pgd_t pgd = READ_ONCE(*pgdp);
1764
1765 next = pgd_addr_end(addr, end);
1766 if (pgd_none(pgd))
1767 return;
1768 if (unlikely(pgd_huge(pgd))) {
1769 if (!gup_huge_pgd(pgd, pgdp, addr, next, write,
1770 pages, nr))
1771 return;
1772 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
1773 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
1774 PGDIR_SHIFT, next, write, pages, nr))
1775 return;
1776 } else if (!gup_p4d_range(pgd, addr, next, write, pages, nr))
1777 return;
1778 } while (pgdp++, addr = next, addr != end);
1779 }
1780
1781 #ifndef gup_fast_permitted
1782 /*
1783 * Check if it's allowed to use __get_user_pages_fast() for the range, or
1784 * we need to fall back to the slow version:
1785 */
gup_fast_permitted(unsigned long start,int nr_pages,int write)1786 bool gup_fast_permitted(unsigned long start, int nr_pages, int write)
1787 {
1788 unsigned long len, end;
1789
1790 len = (unsigned long) nr_pages << PAGE_SHIFT;
1791 end = start + len;
1792 return end >= start;
1793 }
1794 #endif
1795
1796 /*
1797 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
1798 * the regular GUP. It will only return non-negative values.
1799 */
__get_user_pages_fast(unsigned long start,int nr_pages,int write,struct page ** pages)1800 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1801 struct page **pages)
1802 {
1803 unsigned long addr, len, end;
1804 unsigned long flags;
1805 int nr = 0;
1806
1807 start &= PAGE_MASK;
1808 addr = start;
1809 len = (unsigned long) nr_pages << PAGE_SHIFT;
1810 end = start + len;
1811
1812 if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
1813 (void __user *)start, len)))
1814 return 0;
1815
1816 /*
1817 * Disable interrupts. We use the nested form as we can already have
1818 * interrupts disabled by get_futex_key.
1819 *
1820 * With interrupts disabled, we block page table pages from being
1821 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h
1822 * for more details.
1823 *
1824 * We do not adopt an rcu_read_lock(.) here as we also want to
1825 * block IPIs that come from THPs splitting.
1826 */
1827
1828 if (gup_fast_permitted(start, nr_pages, write)) {
1829 local_irq_save(flags);
1830 gup_pgd_range(addr, end, write, pages, &nr);
1831 local_irq_restore(flags);
1832 }
1833
1834 return nr;
1835 }
1836
1837 /**
1838 * get_user_pages_fast() - pin user pages in memory
1839 * @start: starting user address
1840 * @nr_pages: number of pages from start to pin
1841 * @write: whether pages will be written to
1842 * @pages: array that receives pointers to the pages pinned.
1843 * Should be at least nr_pages long.
1844 *
1845 * Attempt to pin user pages in memory without taking mm->mmap_sem.
1846 * If not successful, it will fall back to taking the lock and
1847 * calling get_user_pages().
1848 *
1849 * Returns number of pages pinned. This may be fewer than the number
1850 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1851 * were pinned, returns -errno.
1852 */
get_user_pages_fast(unsigned long start,int nr_pages,int write,struct page ** pages)1853 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1854 struct page **pages)
1855 {
1856 unsigned long addr, len, end;
1857 int nr = 0, ret = 0;
1858
1859 start &= PAGE_MASK;
1860 addr = start;
1861 len = (unsigned long) nr_pages << PAGE_SHIFT;
1862 end = start + len;
1863
1864 if (nr_pages <= 0)
1865 return 0;
1866
1867 if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
1868 (void __user *)start, len)))
1869 return -EFAULT;
1870
1871 if (gup_fast_permitted(start, nr_pages, write)) {
1872 local_irq_disable();
1873 gup_pgd_range(addr, end, write, pages, &nr);
1874 local_irq_enable();
1875 ret = nr;
1876 }
1877
1878 if (nr < nr_pages) {
1879 /* Try to get the remaining pages with get_user_pages */
1880 start += nr << PAGE_SHIFT;
1881 pages += nr;
1882
1883 ret = get_user_pages_unlocked(start, nr_pages - nr, pages,
1884 write ? FOLL_WRITE : 0);
1885
1886 /* Have to be a bit careful with return values */
1887 if (nr > 0) {
1888 if (ret < 0)
1889 ret = nr;
1890 else
1891 ret += nr;
1892 }
1893 }
1894
1895 return ret;
1896 }
1897
1898 #endif /* CONFIG_HAVE_GENERIC_GUP */
1899