• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include <linux/kernel.h>
2 #include <linux/errno.h>
3 #include <linux/err.h>
4 #include <linux/spinlock.h>
5 
6 #include <linux/mm.h>
7 #include <linux/memremap.h>
8 #include <linux/pagemap.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/swapops.h>
12 
13 #include <linux/sched/signal.h>
14 #include <linux/rwsem.h>
15 #include <linux/hugetlb.h>
16 
17 #include <asm/mmu_context.h>
18 #include <asm/pgtable.h>
19 #include <asm/tlbflush.h>
20 
21 #include "internal.h"
22 
no_page_table(struct vm_area_struct * vma,unsigned int flags)23 static struct page *no_page_table(struct vm_area_struct *vma,
24 		unsigned int flags)
25 {
26 	/*
27 	 * When core dumping an enormous anonymous area that nobody
28 	 * has touched so far, we don't want to allocate unnecessary pages or
29 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
30 	 * then get_dump_page() will return NULL to leave a hole in the dump.
31 	 * But we can only make this optimization where a hole would surely
32 	 * be zero-filled if handle_mm_fault() actually did handle it.
33 	 */
34 	if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
35 		return ERR_PTR(-EFAULT);
36 	return NULL;
37 }
38 
follow_pfn_pte(struct vm_area_struct * vma,unsigned long address,pte_t * pte,unsigned int flags)39 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
40 		pte_t *pte, unsigned int flags)
41 {
42 	/* No page to get reference */
43 	if (flags & FOLL_GET)
44 		return -EFAULT;
45 
46 	if (flags & FOLL_TOUCH) {
47 		pte_t entry = *pte;
48 
49 		if (flags & FOLL_WRITE)
50 			entry = pte_mkdirty(entry);
51 		entry = pte_mkyoung(entry);
52 
53 		if (!pte_same(*pte, entry)) {
54 			set_pte_at(vma->vm_mm, address, pte, entry);
55 			update_mmu_cache(vma, address, pte);
56 		}
57 	}
58 
59 	/* Proper page table entry exists, but no corresponding struct page */
60 	return -EEXIST;
61 }
62 
63 /*
64  * FOLL_FORCE can write to even unwritable pte's, but only
65  * after we've gone through a COW cycle and they are dirty.
66  */
can_follow_write_pte(pte_t pte,unsigned int flags)67 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
68 {
69 	return pte_write(pte) ||
70 		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
71 }
72 
follow_page_pte(struct vm_area_struct * vma,unsigned long address,pmd_t * pmd,unsigned int flags)73 static struct page *follow_page_pte(struct vm_area_struct *vma,
74 		unsigned long address, pmd_t *pmd, unsigned int flags)
75 {
76 	struct mm_struct *mm = vma->vm_mm;
77 	struct dev_pagemap *pgmap = NULL;
78 	struct page *page;
79 	spinlock_t *ptl;
80 	pte_t *ptep, pte;
81 
82 retry:
83 	if (unlikely(pmd_bad(*pmd)))
84 		return no_page_table(vma, flags);
85 
86 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
87 	pte = *ptep;
88 	if (!pte_present(pte)) {
89 		swp_entry_t entry;
90 		/*
91 		 * KSM's break_ksm() relies upon recognizing a ksm page
92 		 * even while it is being migrated, so for that case we
93 		 * need migration_entry_wait().
94 		 */
95 		if (likely(!(flags & FOLL_MIGRATION)))
96 			goto no_page;
97 		if (pte_none(pte))
98 			goto no_page;
99 		entry = pte_to_swp_entry(pte);
100 		if (!is_migration_entry(entry))
101 			goto no_page;
102 		pte_unmap_unlock(ptep, ptl);
103 		migration_entry_wait(mm, pmd, address);
104 		goto retry;
105 	}
106 	if ((flags & FOLL_NUMA) && pte_protnone(pte))
107 		goto no_page;
108 	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
109 		pte_unmap_unlock(ptep, ptl);
110 		return NULL;
111 	}
112 
113 	page = vm_normal_page(vma, address, pte);
114 	if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
115 		/*
116 		 * Only return device mapping pages in the FOLL_GET case since
117 		 * they are only valid while holding the pgmap reference.
118 		 */
119 		pgmap = get_dev_pagemap(pte_pfn(pte), NULL);
120 		if (pgmap)
121 			page = pte_page(pte);
122 		else
123 			goto no_page;
124 	} else if (unlikely(!page)) {
125 		if (flags & FOLL_DUMP) {
126 			/* Avoid special (like zero) pages in core dumps */
127 			page = ERR_PTR(-EFAULT);
128 			goto out;
129 		}
130 
131 		if (is_zero_pfn(pte_pfn(pte))) {
132 			page = pte_page(pte);
133 		} else {
134 			int ret;
135 
136 			ret = follow_pfn_pte(vma, address, ptep, flags);
137 			page = ERR_PTR(ret);
138 			goto out;
139 		}
140 	}
141 
142 	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
143 		int ret;
144 		get_page(page);
145 		pte_unmap_unlock(ptep, ptl);
146 		lock_page(page);
147 		ret = split_huge_page(page);
148 		unlock_page(page);
149 		put_page(page);
150 		if (ret)
151 			return ERR_PTR(ret);
152 		goto retry;
153 	}
154 
155 	if (flags & FOLL_GET) {
156 		if (unlikely(!try_get_page(page))) {
157 			page = ERR_PTR(-ENOMEM);
158 			goto out;
159 		}
160 
161 		/* drop the pgmap reference now that we hold the page */
162 		if (pgmap) {
163 			put_dev_pagemap(pgmap);
164 			pgmap = NULL;
165 		}
166 	}
167 	if (flags & FOLL_TOUCH) {
168 		if ((flags & FOLL_WRITE) &&
169 		    !pte_dirty(pte) && !PageDirty(page))
170 			set_page_dirty(page);
171 		/*
172 		 * pte_mkyoung() would be more correct here, but atomic care
173 		 * is needed to avoid losing the dirty bit: it is easier to use
174 		 * mark_page_accessed().
175 		 */
176 		mark_page_accessed(page);
177 	}
178 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
179 		/* Do not mlock pte-mapped THP */
180 		if (PageTransCompound(page))
181 			goto out;
182 
183 		/*
184 		 * The preliminary mapping check is mainly to avoid the
185 		 * pointless overhead of lock_page on the ZERO_PAGE
186 		 * which might bounce very badly if there is contention.
187 		 *
188 		 * If the page is already locked, we don't need to
189 		 * handle it now - vmscan will handle it later if and
190 		 * when it attempts to reclaim the page.
191 		 */
192 		if (page->mapping && trylock_page(page)) {
193 			lru_add_drain();  /* push cached pages to LRU */
194 			/*
195 			 * Because we lock page here, and migration is
196 			 * blocked by the pte's page reference, and we
197 			 * know the page is still mapped, we don't even
198 			 * need to check for file-cache page truncation.
199 			 */
200 			mlock_vma_page(page);
201 			unlock_page(page);
202 		}
203 	}
204 out:
205 	pte_unmap_unlock(ptep, ptl);
206 	return page;
207 no_page:
208 	pte_unmap_unlock(ptep, ptl);
209 	if (!pte_none(pte))
210 		return NULL;
211 	return no_page_table(vma, flags);
212 }
213 
follow_pmd_mask(struct vm_area_struct * vma,unsigned long address,pud_t * pudp,unsigned int flags,unsigned int * page_mask)214 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
215 				    unsigned long address, pud_t *pudp,
216 				    unsigned int flags, unsigned int *page_mask)
217 {
218 	pmd_t *pmd;
219 	spinlock_t *ptl;
220 	struct page *page;
221 	struct mm_struct *mm = vma->vm_mm;
222 
223 	pmd = pmd_offset(pudp, address);
224 	if (pmd_none(*pmd))
225 		return no_page_table(vma, flags);
226 	if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
227 		page = follow_huge_pmd(mm, address, pmd, flags);
228 		if (page)
229 			return page;
230 		return no_page_table(vma, flags);
231 	}
232 	if (is_hugepd(__hugepd(pmd_val(*pmd)))) {
233 		page = follow_huge_pd(vma, address,
234 				      __hugepd(pmd_val(*pmd)), flags,
235 				      PMD_SHIFT);
236 		if (page)
237 			return page;
238 		return no_page_table(vma, flags);
239 	}
240 retry:
241 	if (!pmd_present(*pmd)) {
242 		if (likely(!(flags & FOLL_MIGRATION)))
243 			return no_page_table(vma, flags);
244 		VM_BUG_ON(thp_migration_supported() &&
245 				  !is_pmd_migration_entry(*pmd));
246 		if (is_pmd_migration_entry(*pmd))
247 			pmd_migration_entry_wait(mm, pmd);
248 		goto retry;
249 	}
250 	if (pmd_devmap(*pmd)) {
251 		ptl = pmd_lock(mm, pmd);
252 		page = follow_devmap_pmd(vma, address, pmd, flags);
253 		spin_unlock(ptl);
254 		if (page)
255 			return page;
256 	}
257 	if (likely(!pmd_trans_huge(*pmd)))
258 		return follow_page_pte(vma, address, pmd, flags);
259 
260 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
261 		return no_page_table(vma, flags);
262 
263 retry_locked:
264 	ptl = pmd_lock(mm, pmd);
265 	if (unlikely(!pmd_present(*pmd))) {
266 		spin_unlock(ptl);
267 		if (likely(!(flags & FOLL_MIGRATION)))
268 			return no_page_table(vma, flags);
269 		pmd_migration_entry_wait(mm, pmd);
270 		goto retry_locked;
271 	}
272 	if (unlikely(!pmd_trans_huge(*pmd))) {
273 		spin_unlock(ptl);
274 		return follow_page_pte(vma, address, pmd, flags);
275 	}
276 	if (flags & FOLL_SPLIT) {
277 		int ret;
278 		page = pmd_page(*pmd);
279 		if (is_huge_zero_page(page)) {
280 			spin_unlock(ptl);
281 			ret = 0;
282 			split_huge_pmd(vma, pmd, address);
283 			if (pmd_trans_unstable(pmd))
284 				ret = -EBUSY;
285 		} else {
286 			if (unlikely(!try_get_page(page))) {
287 				spin_unlock(ptl);
288 				return ERR_PTR(-ENOMEM);
289 			}
290 			spin_unlock(ptl);
291 			lock_page(page);
292 			ret = split_huge_page(page);
293 			unlock_page(page);
294 			put_page(page);
295 			if (pmd_none(*pmd))
296 				return no_page_table(vma, flags);
297 		}
298 
299 		return ret ? ERR_PTR(ret) :
300 			follow_page_pte(vma, address, pmd, flags);
301 	}
302 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
303 	spin_unlock(ptl);
304 	*page_mask = HPAGE_PMD_NR - 1;
305 	return page;
306 }
307 
308 
follow_pud_mask(struct vm_area_struct * vma,unsigned long address,p4d_t * p4dp,unsigned int flags,unsigned int * page_mask)309 static struct page *follow_pud_mask(struct vm_area_struct *vma,
310 				    unsigned long address, p4d_t *p4dp,
311 				    unsigned int flags, unsigned int *page_mask)
312 {
313 	pud_t *pud;
314 	spinlock_t *ptl;
315 	struct page *page;
316 	struct mm_struct *mm = vma->vm_mm;
317 
318 	pud = pud_offset(p4dp, address);
319 	if (pud_none(*pud))
320 		return no_page_table(vma, flags);
321 	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
322 		page = follow_huge_pud(mm, address, pud, flags);
323 		if (page)
324 			return page;
325 		return no_page_table(vma, flags);
326 	}
327 	if (is_hugepd(__hugepd(pud_val(*pud)))) {
328 		page = follow_huge_pd(vma, address,
329 				      __hugepd(pud_val(*pud)), flags,
330 				      PUD_SHIFT);
331 		if (page)
332 			return page;
333 		return no_page_table(vma, flags);
334 	}
335 	if (pud_devmap(*pud)) {
336 		ptl = pud_lock(mm, pud);
337 		page = follow_devmap_pud(vma, address, pud, flags);
338 		spin_unlock(ptl);
339 		if (page)
340 			return page;
341 	}
342 	if (unlikely(pud_bad(*pud)))
343 		return no_page_table(vma, flags);
344 
345 	return follow_pmd_mask(vma, address, pud, flags, page_mask);
346 }
347 
348 
follow_p4d_mask(struct vm_area_struct * vma,unsigned long address,pgd_t * pgdp,unsigned int flags,unsigned int * page_mask)349 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
350 				    unsigned long address, pgd_t *pgdp,
351 				    unsigned int flags, unsigned int *page_mask)
352 {
353 	p4d_t *p4d;
354 	struct page *page;
355 
356 	p4d = p4d_offset(pgdp, address);
357 	if (p4d_none(*p4d))
358 		return no_page_table(vma, flags);
359 	BUILD_BUG_ON(p4d_huge(*p4d));
360 	if (unlikely(p4d_bad(*p4d)))
361 		return no_page_table(vma, flags);
362 
363 	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
364 		page = follow_huge_pd(vma, address,
365 				      __hugepd(p4d_val(*p4d)), flags,
366 				      P4D_SHIFT);
367 		if (page)
368 			return page;
369 		return no_page_table(vma, flags);
370 	}
371 	return follow_pud_mask(vma, address, p4d, flags, page_mask);
372 }
373 
374 /**
375  * follow_page_mask - look up a page descriptor from a user-virtual address
376  * @vma: vm_area_struct mapping @address
377  * @address: virtual address to look up
378  * @flags: flags modifying lookup behaviour
379  * @page_mask: on output, *page_mask is set according to the size of the page
380  *
381  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
382  *
383  * Returns the mapped (struct page *), %NULL if no mapping exists, or
384  * an error pointer if there is a mapping to something not represented
385  * by a page descriptor (see also vm_normal_page()).
386  */
follow_page_mask(struct vm_area_struct * vma,unsigned long address,unsigned int flags,unsigned int * page_mask)387 struct page *follow_page_mask(struct vm_area_struct *vma,
388 			      unsigned long address, unsigned int flags,
389 			      unsigned int *page_mask)
390 {
391 	pgd_t *pgd;
392 	struct page *page;
393 	struct mm_struct *mm = vma->vm_mm;
394 
395 	*page_mask = 0;
396 
397 	/* make this handle hugepd */
398 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
399 	if (!IS_ERR(page)) {
400 		BUG_ON(flags & FOLL_GET);
401 		return page;
402 	}
403 
404 	pgd = pgd_offset(mm, address);
405 
406 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
407 		return no_page_table(vma, flags);
408 
409 	if (pgd_huge(*pgd)) {
410 		page = follow_huge_pgd(mm, address, pgd, flags);
411 		if (page)
412 			return page;
413 		return no_page_table(vma, flags);
414 	}
415 	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
416 		page = follow_huge_pd(vma, address,
417 				      __hugepd(pgd_val(*pgd)), flags,
418 				      PGDIR_SHIFT);
419 		if (page)
420 			return page;
421 		return no_page_table(vma, flags);
422 	}
423 
424 	return follow_p4d_mask(vma, address, pgd, flags, page_mask);
425 }
426 
get_gate_page(struct mm_struct * mm,unsigned long address,unsigned int gup_flags,struct vm_area_struct ** vma,struct page ** page)427 static int get_gate_page(struct mm_struct *mm, unsigned long address,
428 		unsigned int gup_flags, struct vm_area_struct **vma,
429 		struct page **page)
430 {
431 	pgd_t *pgd;
432 	p4d_t *p4d;
433 	pud_t *pud;
434 	pmd_t *pmd;
435 	pte_t *pte;
436 	int ret = -EFAULT;
437 
438 	/* user gate pages are read-only */
439 	if (gup_flags & FOLL_WRITE)
440 		return -EFAULT;
441 	if (address > TASK_SIZE)
442 		pgd = pgd_offset_k(address);
443 	else
444 		pgd = pgd_offset_gate(mm, address);
445 	if (pgd_none(*pgd))
446 		return -EFAULT;
447 	p4d = p4d_offset(pgd, address);
448 	if (p4d_none(*p4d))
449 		return -EFAULT;
450 	pud = pud_offset(p4d, address);
451 	if (pud_none(*pud))
452 		return -EFAULT;
453 	pmd = pmd_offset(pud, address);
454 	if (!pmd_present(*pmd))
455 		return -EFAULT;
456 	VM_BUG_ON(pmd_trans_huge(*pmd));
457 	pte = pte_offset_map(pmd, address);
458 	if (pte_none(*pte))
459 		goto unmap;
460 	*vma = get_gate_vma(mm);
461 	if (!page)
462 		goto out;
463 	*page = vm_normal_page(*vma, address, *pte);
464 	if (!*page) {
465 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
466 			goto unmap;
467 		*page = pte_page(*pte);
468 
469 		/*
470 		 * This should never happen (a device public page in the gate
471 		 * area).
472 		 */
473 		if (is_device_public_page(*page))
474 			goto unmap;
475 	}
476 	if (unlikely(!try_get_page(*page))) {
477 		ret = -ENOMEM;
478 		goto unmap;
479 	}
480 out:
481 	ret = 0;
482 unmap:
483 	pte_unmap(pte);
484 	return ret;
485 }
486 
487 /*
488  * mmap_sem must be held on entry.  If @nonblocking != NULL and
489  * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
490  * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
491  */
faultin_page(struct task_struct * tsk,struct vm_area_struct * vma,unsigned long address,unsigned int * flags,int * nonblocking)492 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
493 		unsigned long address, unsigned int *flags, int *nonblocking)
494 {
495 	unsigned int fault_flags = 0;
496 	int ret;
497 
498 	/* mlock all present pages, but do not fault in new pages */
499 	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
500 		return -ENOENT;
501 	if (*flags & FOLL_WRITE)
502 		fault_flags |= FAULT_FLAG_WRITE;
503 	if (*flags & FOLL_REMOTE)
504 		fault_flags |= FAULT_FLAG_REMOTE;
505 	if (nonblocking)
506 		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
507 	if (*flags & FOLL_NOWAIT)
508 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
509 	if (*flags & FOLL_TRIED) {
510 		VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
511 		fault_flags |= FAULT_FLAG_TRIED;
512 	}
513 
514 	ret = handle_mm_fault(vma, address, fault_flags);
515 	if (ret & VM_FAULT_ERROR) {
516 		int err = vm_fault_to_errno(ret, *flags);
517 
518 		if (err)
519 			return err;
520 		BUG();
521 	}
522 
523 	if (tsk) {
524 		if (ret & VM_FAULT_MAJOR)
525 			tsk->maj_flt++;
526 		else
527 			tsk->min_flt++;
528 	}
529 
530 	if (ret & VM_FAULT_RETRY) {
531 		if (nonblocking)
532 			*nonblocking = 0;
533 		return -EBUSY;
534 	}
535 
536 	/*
537 	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
538 	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
539 	 * can thus safely do subsequent page lookups as if they were reads.
540 	 * But only do so when looping for pte_write is futile: in some cases
541 	 * userspace may also be wanting to write to the gotten user page,
542 	 * which a read fault here might prevent (a readonly page might get
543 	 * reCOWed by userspace write).
544 	 */
545 	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
546 	        *flags |= FOLL_COW;
547 	return 0;
548 }
549 
check_vma_flags(struct vm_area_struct * vma,unsigned long gup_flags)550 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
551 {
552 	vm_flags_t vm_flags = vma->vm_flags;
553 	int write = (gup_flags & FOLL_WRITE);
554 	int foreign = (gup_flags & FOLL_REMOTE);
555 
556 	if (vm_flags & (VM_IO | VM_PFNMAP))
557 		return -EFAULT;
558 
559 	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
560 		return -EFAULT;
561 
562 	if (write) {
563 		if (!(vm_flags & VM_WRITE)) {
564 			if (!(gup_flags & FOLL_FORCE))
565 				return -EFAULT;
566 			/*
567 			 * We used to let the write,force case do COW in a
568 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
569 			 * set a breakpoint in a read-only mapping of an
570 			 * executable, without corrupting the file (yet only
571 			 * when that file had been opened for writing!).
572 			 * Anon pages in shared mappings are surprising: now
573 			 * just reject it.
574 			 */
575 			if (!is_cow_mapping(vm_flags))
576 				return -EFAULT;
577 		}
578 	} else if (!(vm_flags & VM_READ)) {
579 		if (!(gup_flags & FOLL_FORCE))
580 			return -EFAULT;
581 		/*
582 		 * Is there actually any vma we can reach here which does not
583 		 * have VM_MAYREAD set?
584 		 */
585 		if (!(vm_flags & VM_MAYREAD))
586 			return -EFAULT;
587 	}
588 	/*
589 	 * gups are always data accesses, not instruction
590 	 * fetches, so execute=false here
591 	 */
592 	if (!arch_vma_access_permitted(vma, write, false, foreign))
593 		return -EFAULT;
594 	return 0;
595 }
596 
597 /**
598  * __get_user_pages() - pin user pages in memory
599  * @tsk:	task_struct of target task
600  * @mm:		mm_struct of target mm
601  * @start:	starting user address
602  * @nr_pages:	number of pages from start to pin
603  * @gup_flags:	flags modifying pin behaviour
604  * @pages:	array that receives pointers to the pages pinned.
605  *		Should be at least nr_pages long. Or NULL, if caller
606  *		only intends to ensure the pages are faulted in.
607  * @vmas:	array of pointers to vmas corresponding to each page.
608  *		Or NULL if the caller does not require them.
609  * @nonblocking: whether waiting for disk IO or mmap_sem contention
610  *
611  * Returns number of pages pinned. This may be fewer than the number
612  * requested. If nr_pages is 0 or negative, returns 0. If no pages
613  * were pinned, returns -errno. Each page returned must be released
614  * with a put_page() call when it is finished with. vmas will only
615  * remain valid while mmap_sem is held.
616  *
617  * Must be called with mmap_sem held.  It may be released.  See below.
618  *
619  * __get_user_pages walks a process's page tables and takes a reference to
620  * each struct page that each user address corresponds to at a given
621  * instant. That is, it takes the page that would be accessed if a user
622  * thread accesses the given user virtual address at that instant.
623  *
624  * This does not guarantee that the page exists in the user mappings when
625  * __get_user_pages returns, and there may even be a completely different
626  * page there in some cases (eg. if mmapped pagecache has been invalidated
627  * and subsequently re faulted). However it does guarantee that the page
628  * won't be freed completely. And mostly callers simply care that the page
629  * contains data that was valid *at some point in time*. Typically, an IO
630  * or similar operation cannot guarantee anything stronger anyway because
631  * locks can't be held over the syscall boundary.
632  *
633  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
634  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
635  * appropriate) must be called after the page is finished with, and
636  * before put_page is called.
637  *
638  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
639  * or mmap_sem contention, and if waiting is needed to pin all pages,
640  * *@nonblocking will be set to 0.  Further, if @gup_flags does not
641  * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
642  * this case.
643  *
644  * A caller using such a combination of @nonblocking and @gup_flags
645  * must therefore hold the mmap_sem for reading only, and recognize
646  * when it's been released.  Otherwise, it must be held for either
647  * reading or writing and will not be released.
648  *
649  * In most cases, get_user_pages or get_user_pages_fast should be used
650  * instead of __get_user_pages. __get_user_pages should be used only if
651  * you need some special @gup_flags.
652  */
__get_user_pages(struct task_struct * tsk,struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas,int * nonblocking)653 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
654 		unsigned long start, unsigned long nr_pages,
655 		unsigned int gup_flags, struct page **pages,
656 		struct vm_area_struct **vmas, int *nonblocking)
657 {
658 	long i = 0;
659 	unsigned int page_mask;
660 	struct vm_area_struct *vma = NULL;
661 
662 	if (!nr_pages)
663 		return 0;
664 
665 	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
666 
667 	/*
668 	 * If FOLL_FORCE is set then do not force a full fault as the hinting
669 	 * fault information is unrelated to the reference behaviour of a task
670 	 * using the address space
671 	 */
672 	if (!(gup_flags & FOLL_FORCE))
673 		gup_flags |= FOLL_NUMA;
674 
675 	do {
676 		struct page *page;
677 		unsigned int foll_flags = gup_flags;
678 		unsigned int page_increm;
679 
680 		/* first iteration or cross vma bound */
681 		if (!vma || start >= vma->vm_end) {
682 			vma = find_extend_vma(mm, start);
683 			if (!vma && in_gate_area(mm, start)) {
684 				int ret;
685 				ret = get_gate_page(mm, start & PAGE_MASK,
686 						gup_flags, &vma,
687 						pages ? &pages[i] : NULL);
688 				if (ret)
689 					return i ? : ret;
690 				page_mask = 0;
691 				goto next_page;
692 			}
693 
694 			if (!vma || check_vma_flags(vma, gup_flags))
695 				return i ? : -EFAULT;
696 			if (is_vm_hugetlb_page(vma)) {
697 				i = follow_hugetlb_page(mm, vma, pages, vmas,
698 						&start, &nr_pages, i,
699 						gup_flags, nonblocking);
700 				continue;
701 			}
702 		}
703 retry:
704 		/*
705 		 * If we have a pending SIGKILL, don't keep faulting pages and
706 		 * potentially allocating memory.
707 		 */
708 		if (unlikely(fatal_signal_pending(current)))
709 			return i ? i : -ERESTARTSYS;
710 		cond_resched();
711 		page = follow_page_mask(vma, start, foll_flags, &page_mask);
712 		if (!page) {
713 			int ret;
714 			ret = faultin_page(tsk, vma, start, &foll_flags,
715 					nonblocking);
716 			switch (ret) {
717 			case 0:
718 				goto retry;
719 			case -EFAULT:
720 			case -ENOMEM:
721 			case -EHWPOISON:
722 				return i ? i : ret;
723 			case -EBUSY:
724 				return i;
725 			case -ENOENT:
726 				goto next_page;
727 			}
728 			BUG();
729 		} else if (PTR_ERR(page) == -EEXIST) {
730 			/*
731 			 * Proper page table entry exists, but no corresponding
732 			 * struct page.
733 			 */
734 			goto next_page;
735 		} else if (IS_ERR(page)) {
736 			return i ? i : PTR_ERR(page);
737 		}
738 		if (pages) {
739 			pages[i] = page;
740 			flush_anon_page(vma, page, start);
741 			flush_dcache_page(page);
742 			page_mask = 0;
743 		}
744 next_page:
745 		if (vmas) {
746 			vmas[i] = vma;
747 			page_mask = 0;
748 		}
749 		page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
750 		if (page_increm > nr_pages)
751 			page_increm = nr_pages;
752 		i += page_increm;
753 		start += page_increm * PAGE_SIZE;
754 		nr_pages -= page_increm;
755 	} while (nr_pages);
756 	return i;
757 }
758 
vma_permits_fault(struct vm_area_struct * vma,unsigned int fault_flags)759 static bool vma_permits_fault(struct vm_area_struct *vma,
760 			      unsigned int fault_flags)
761 {
762 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
763 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
764 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
765 
766 	if (!(vm_flags & vma->vm_flags))
767 		return false;
768 
769 	/*
770 	 * The architecture might have a hardware protection
771 	 * mechanism other than read/write that can deny access.
772 	 *
773 	 * gup always represents data access, not instruction
774 	 * fetches, so execute=false here:
775 	 */
776 	if (!arch_vma_access_permitted(vma, write, false, foreign))
777 		return false;
778 
779 	return true;
780 }
781 
782 /*
783  * fixup_user_fault() - manually resolve a user page fault
784  * @tsk:	the task_struct to use for page fault accounting, or
785  *		NULL if faults are not to be recorded.
786  * @mm:		mm_struct of target mm
787  * @address:	user address
788  * @fault_flags:flags to pass down to handle_mm_fault()
789  * @unlocked:	did we unlock the mmap_sem while retrying, maybe NULL if caller
790  *		does not allow retry
791  *
792  * This is meant to be called in the specific scenario where for locking reasons
793  * we try to access user memory in atomic context (within a pagefault_disable()
794  * section), this returns -EFAULT, and we want to resolve the user fault before
795  * trying again.
796  *
797  * Typically this is meant to be used by the futex code.
798  *
799  * The main difference with get_user_pages() is that this function will
800  * unconditionally call handle_mm_fault() which will in turn perform all the
801  * necessary SW fixup of the dirty and young bits in the PTE, while
802  * get_user_pages() only guarantees to update these in the struct page.
803  *
804  * This is important for some architectures where those bits also gate the
805  * access permission to the page because they are maintained in software.  On
806  * such architectures, gup() will not be enough to make a subsequent access
807  * succeed.
808  *
809  * This function will not return with an unlocked mmap_sem. So it has not the
810  * same semantics wrt the @mm->mmap_sem as does filemap_fault().
811  */
fixup_user_fault(struct task_struct * tsk,struct mm_struct * mm,unsigned long address,unsigned int fault_flags,bool * unlocked)812 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
813 		     unsigned long address, unsigned int fault_flags,
814 		     bool *unlocked)
815 {
816 	struct vm_area_struct *vma;
817 	int ret, major = 0;
818 
819 	if (unlocked)
820 		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
821 
822 retry:
823 	vma = find_extend_vma(mm, address);
824 	if (!vma || address < vma->vm_start)
825 		return -EFAULT;
826 
827 	if (!vma_permits_fault(vma, fault_flags))
828 		return -EFAULT;
829 
830 	ret = handle_mm_fault(vma, address, fault_flags);
831 	major |= ret & VM_FAULT_MAJOR;
832 	if (ret & VM_FAULT_ERROR) {
833 		int err = vm_fault_to_errno(ret, 0);
834 
835 		if (err)
836 			return err;
837 		BUG();
838 	}
839 
840 	if (ret & VM_FAULT_RETRY) {
841 		down_read(&mm->mmap_sem);
842 		if (!(fault_flags & FAULT_FLAG_TRIED)) {
843 			*unlocked = true;
844 			fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
845 			fault_flags |= FAULT_FLAG_TRIED;
846 			goto retry;
847 		}
848 	}
849 
850 	if (tsk) {
851 		if (major)
852 			tsk->maj_flt++;
853 		else
854 			tsk->min_flt++;
855 	}
856 	return 0;
857 }
858 EXPORT_SYMBOL_GPL(fixup_user_fault);
859 
__get_user_pages_locked(struct task_struct * tsk,struct mm_struct * mm,unsigned long start,unsigned long nr_pages,struct page ** pages,struct vm_area_struct ** vmas,int * locked,bool notify_drop,unsigned int flags)860 static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
861 						struct mm_struct *mm,
862 						unsigned long start,
863 						unsigned long nr_pages,
864 						struct page **pages,
865 						struct vm_area_struct **vmas,
866 						int *locked, bool notify_drop,
867 						unsigned int flags)
868 {
869 	long ret, pages_done;
870 	bool lock_dropped;
871 
872 	if (locked) {
873 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
874 		BUG_ON(vmas);
875 		/* check caller initialized locked */
876 		BUG_ON(*locked != 1);
877 	}
878 
879 	if (pages)
880 		flags |= FOLL_GET;
881 
882 	pages_done = 0;
883 	lock_dropped = false;
884 	for (;;) {
885 		ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
886 				       vmas, locked);
887 		if (!locked)
888 			/* VM_FAULT_RETRY couldn't trigger, bypass */
889 			return ret;
890 
891 		/* VM_FAULT_RETRY cannot return errors */
892 		if (!*locked) {
893 			BUG_ON(ret < 0);
894 			BUG_ON(ret >= nr_pages);
895 		}
896 
897 		if (!pages)
898 			/* If it's a prefault don't insist harder */
899 			return ret;
900 
901 		if (ret > 0) {
902 			nr_pages -= ret;
903 			pages_done += ret;
904 			if (!nr_pages)
905 				break;
906 		}
907 		if (*locked) {
908 			/* VM_FAULT_RETRY didn't trigger */
909 			if (!pages_done)
910 				pages_done = ret;
911 			break;
912 		}
913 		/* VM_FAULT_RETRY triggered, so seek to the faulting offset */
914 		pages += ret;
915 		start += ret << PAGE_SHIFT;
916 
917 		/*
918 		 * Repeat on the address that fired VM_FAULT_RETRY
919 		 * without FAULT_FLAG_ALLOW_RETRY but with
920 		 * FAULT_FLAG_TRIED.
921 		 */
922 		*locked = 1;
923 		lock_dropped = true;
924 		down_read(&mm->mmap_sem);
925 		ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
926 				       pages, NULL, NULL);
927 		if (ret != 1) {
928 			BUG_ON(ret > 1);
929 			if (!pages_done)
930 				pages_done = ret;
931 			break;
932 		}
933 		nr_pages--;
934 		pages_done++;
935 		if (!nr_pages)
936 			break;
937 		pages++;
938 		start += PAGE_SIZE;
939 	}
940 	if (notify_drop && lock_dropped && *locked) {
941 		/*
942 		 * We must let the caller know we temporarily dropped the lock
943 		 * and so the critical section protected by it was lost.
944 		 */
945 		up_read(&mm->mmap_sem);
946 		*locked = 0;
947 	}
948 	return pages_done;
949 }
950 
951 /*
952  * We can leverage the VM_FAULT_RETRY functionality in the page fault
953  * paths better by using either get_user_pages_locked() or
954  * get_user_pages_unlocked().
955  *
956  * get_user_pages_locked() is suitable to replace the form:
957  *
958  *      down_read(&mm->mmap_sem);
959  *      do_something()
960  *      get_user_pages(tsk, mm, ..., pages, NULL);
961  *      up_read(&mm->mmap_sem);
962  *
963  *  to:
964  *
965  *      int locked = 1;
966  *      down_read(&mm->mmap_sem);
967  *      do_something()
968  *      get_user_pages_locked(tsk, mm, ..., pages, &locked);
969  *      if (locked)
970  *          up_read(&mm->mmap_sem);
971  */
get_user_pages_locked(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,int * locked)972 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
973 			   unsigned int gup_flags, struct page **pages,
974 			   int *locked)
975 {
976 	return __get_user_pages_locked(current, current->mm, start, nr_pages,
977 				       pages, NULL, locked, true,
978 				       gup_flags | FOLL_TOUCH);
979 }
980 EXPORT_SYMBOL(get_user_pages_locked);
981 
982 /*
983  * Same as get_user_pages_unlocked(...., FOLL_TOUCH) but it allows for
984  * tsk, mm to be specified.
985  *
986  * NOTE: here FOLL_TOUCH is not set implicitly and must be set by the
987  * caller if required (just like with __get_user_pages). "FOLL_GET"
988  * is set implicitly if "pages" is non-NULL.
989  */
__get_user_pages_unlocked(struct task_struct * tsk,struct mm_struct * mm,unsigned long start,unsigned long nr_pages,struct page ** pages,unsigned int gup_flags)990 static __always_inline long __get_user_pages_unlocked(struct task_struct *tsk,
991 		struct mm_struct *mm, unsigned long start,
992 		unsigned long nr_pages, struct page **pages,
993 		unsigned int gup_flags)
994 {
995 	long ret;
996 	int locked = 1;
997 
998 	down_read(&mm->mmap_sem);
999 	ret = __get_user_pages_locked(tsk, mm, start, nr_pages, pages, NULL,
1000 				      &locked, false, gup_flags);
1001 	if (locked)
1002 		up_read(&mm->mmap_sem);
1003 	return ret;
1004 }
1005 
1006 /*
1007  * get_user_pages_unlocked() is suitable to replace the form:
1008  *
1009  *      down_read(&mm->mmap_sem);
1010  *      get_user_pages(tsk, mm, ..., pages, NULL);
1011  *      up_read(&mm->mmap_sem);
1012  *
1013  *  with:
1014  *
1015  *      get_user_pages_unlocked(tsk, mm, ..., pages);
1016  *
1017  * It is functionally equivalent to get_user_pages_fast so
1018  * get_user_pages_fast should be used instead if specific gup_flags
1019  * (e.g. FOLL_FORCE) are not required.
1020  */
get_user_pages_unlocked(unsigned long start,unsigned long nr_pages,struct page ** pages,unsigned int gup_flags)1021 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1022 			     struct page **pages, unsigned int gup_flags)
1023 {
1024 	return __get_user_pages_unlocked(current, current->mm, start, nr_pages,
1025 					 pages, gup_flags | FOLL_TOUCH);
1026 }
1027 EXPORT_SYMBOL(get_user_pages_unlocked);
1028 
1029 /*
1030  * get_user_pages_remote() - pin user pages in memory
1031  * @tsk:	the task_struct to use for page fault accounting, or
1032  *		NULL if faults are not to be recorded.
1033  * @mm:		mm_struct of target mm
1034  * @start:	starting user address
1035  * @nr_pages:	number of pages from start to pin
1036  * @gup_flags:	flags modifying lookup behaviour
1037  * @pages:	array that receives pointers to the pages pinned.
1038  *		Should be at least nr_pages long. Or NULL, if caller
1039  *		only intends to ensure the pages are faulted in.
1040  * @vmas:	array of pointers to vmas corresponding to each page.
1041  *		Or NULL if the caller does not require them.
1042  * @locked:	pointer to lock flag indicating whether lock is held and
1043  *		subsequently whether VM_FAULT_RETRY functionality can be
1044  *		utilised. Lock must initially be held.
1045  *
1046  * Returns number of pages pinned. This may be fewer than the number
1047  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1048  * were pinned, returns -errno. Each page returned must be released
1049  * with a put_page() call when it is finished with. vmas will only
1050  * remain valid while mmap_sem is held.
1051  *
1052  * Must be called with mmap_sem held for read or write.
1053  *
1054  * get_user_pages walks a process's page tables and takes a reference to
1055  * each struct page that each user address corresponds to at a given
1056  * instant. That is, it takes the page that would be accessed if a user
1057  * thread accesses the given user virtual address at that instant.
1058  *
1059  * This does not guarantee that the page exists in the user mappings when
1060  * get_user_pages returns, and there may even be a completely different
1061  * page there in some cases (eg. if mmapped pagecache has been invalidated
1062  * and subsequently re faulted). However it does guarantee that the page
1063  * won't be freed completely. And mostly callers simply care that the page
1064  * contains data that was valid *at some point in time*. Typically, an IO
1065  * or similar operation cannot guarantee anything stronger anyway because
1066  * locks can't be held over the syscall boundary.
1067  *
1068  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1069  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1070  * be called after the page is finished with, and before put_page is called.
1071  *
1072  * get_user_pages is typically used for fewer-copy IO operations, to get a
1073  * handle on the memory by some means other than accesses via the user virtual
1074  * addresses. The pages may be submitted for DMA to devices or accessed via
1075  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1076  * use the correct cache flushing APIs.
1077  *
1078  * See also get_user_pages_fast, for performance critical applications.
1079  *
1080  * get_user_pages should be phased out in favor of
1081  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1082  * should use get_user_pages because it cannot pass
1083  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1084  */
get_user_pages_remote(struct task_struct * tsk,struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas,int * locked)1085 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1086 		unsigned long start, unsigned long nr_pages,
1087 		unsigned int gup_flags, struct page **pages,
1088 		struct vm_area_struct **vmas, int *locked)
1089 {
1090 	return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1091 				       locked, true,
1092 				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1093 }
1094 EXPORT_SYMBOL(get_user_pages_remote);
1095 
1096 /*
1097  * This is the same as get_user_pages_remote(), just with a
1098  * less-flexible calling convention where we assume that the task
1099  * and mm being operated on are the current task's and don't allow
1100  * passing of a locked parameter.  We also obviously don't pass
1101  * FOLL_REMOTE in here.
1102  */
get_user_pages(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas)1103 long get_user_pages(unsigned long start, unsigned long nr_pages,
1104 		unsigned int gup_flags, struct page **pages,
1105 		struct vm_area_struct **vmas)
1106 {
1107 	return __get_user_pages_locked(current, current->mm, start, nr_pages,
1108 				       pages, vmas, NULL, false,
1109 				       gup_flags | FOLL_TOUCH);
1110 }
1111 EXPORT_SYMBOL(get_user_pages);
1112 
1113 #ifdef CONFIG_FS_DAX
1114 /*
1115  * This is the same as get_user_pages() in that it assumes we are
1116  * operating on the current task's mm, but it goes further to validate
1117  * that the vmas associated with the address range are suitable for
1118  * longterm elevated page reference counts. For example, filesystem-dax
1119  * mappings are subject to the lifetime enforced by the filesystem and
1120  * we need guarantees that longterm users like RDMA and V4L2 only
1121  * establish mappings that have a kernel enforced revocation mechanism.
1122  *
1123  * "longterm" == userspace controlled elevated page count lifetime.
1124  * Contrast this to iov_iter_get_pages() usages which are transient.
1125  */
get_user_pages_longterm(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas_arg)1126 long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
1127 		unsigned int gup_flags, struct page **pages,
1128 		struct vm_area_struct **vmas_arg)
1129 {
1130 	struct vm_area_struct **vmas = vmas_arg;
1131 	struct vm_area_struct *vma_prev = NULL;
1132 	long rc, i;
1133 
1134 	if (!pages)
1135 		return -EINVAL;
1136 
1137 	if (!vmas) {
1138 		vmas = kcalloc(nr_pages, sizeof(struct vm_area_struct *),
1139 			       GFP_KERNEL);
1140 		if (!vmas)
1141 			return -ENOMEM;
1142 	}
1143 
1144 	rc = get_user_pages(start, nr_pages, gup_flags, pages, vmas);
1145 
1146 	for (i = 0; i < rc; i++) {
1147 		struct vm_area_struct *vma = vmas[i];
1148 
1149 		if (vma == vma_prev)
1150 			continue;
1151 
1152 		vma_prev = vma;
1153 
1154 		if (vma_is_fsdax(vma))
1155 			break;
1156 	}
1157 
1158 	/*
1159 	 * Either get_user_pages() failed, or the vma validation
1160 	 * succeeded, in either case we don't need to put_page() before
1161 	 * returning.
1162 	 */
1163 	if (i >= rc)
1164 		goto out;
1165 
1166 	for (i = 0; i < rc; i++)
1167 		put_page(pages[i]);
1168 	rc = -EOPNOTSUPP;
1169 out:
1170 	if (vmas != vmas_arg)
1171 		kfree(vmas);
1172 	return rc;
1173 }
1174 EXPORT_SYMBOL(get_user_pages_longterm);
1175 #endif /* CONFIG_FS_DAX */
1176 
1177 /**
1178  * populate_vma_page_range() -  populate a range of pages in the vma.
1179  * @vma:   target vma
1180  * @start: start address
1181  * @end:   end address
1182  * @nonblocking:
1183  *
1184  * This takes care of mlocking the pages too if VM_LOCKED is set.
1185  *
1186  * return 0 on success, negative error code on error.
1187  *
1188  * vma->vm_mm->mmap_sem must be held.
1189  *
1190  * If @nonblocking is NULL, it may be held for read or write and will
1191  * be unperturbed.
1192  *
1193  * If @nonblocking is non-NULL, it must held for read only and may be
1194  * released.  If it's released, *@nonblocking will be set to 0.
1195  */
populate_vma_page_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,int * nonblocking)1196 long populate_vma_page_range(struct vm_area_struct *vma,
1197 		unsigned long start, unsigned long end, int *nonblocking)
1198 {
1199 	struct mm_struct *mm = vma->vm_mm;
1200 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1201 	int gup_flags;
1202 
1203 	VM_BUG_ON(start & ~PAGE_MASK);
1204 	VM_BUG_ON(end   & ~PAGE_MASK);
1205 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1206 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1207 	VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1208 
1209 	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1210 	if (vma->vm_flags & VM_LOCKONFAULT)
1211 		gup_flags &= ~FOLL_POPULATE;
1212 	/*
1213 	 * We want to touch writable mappings with a write fault in order
1214 	 * to break COW, except for shared mappings because these don't COW
1215 	 * and we would not want to dirty them for nothing.
1216 	 */
1217 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1218 		gup_flags |= FOLL_WRITE;
1219 
1220 	/*
1221 	 * We want mlock to succeed for regions that have any permissions
1222 	 * other than PROT_NONE.
1223 	 */
1224 	if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
1225 		gup_flags |= FOLL_FORCE;
1226 
1227 	/*
1228 	 * We made sure addr is within a VMA, so the following will
1229 	 * not result in a stack expansion that recurses back here.
1230 	 */
1231 	return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1232 				NULL, NULL, nonblocking);
1233 }
1234 
1235 /*
1236  * __mm_populate - populate and/or mlock pages within a range of address space.
1237  *
1238  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1239  * flags. VMAs must be already marked with the desired vm_flags, and
1240  * mmap_sem must not be held.
1241  */
__mm_populate(unsigned long start,unsigned long len,int ignore_errors)1242 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1243 {
1244 	struct mm_struct *mm = current->mm;
1245 	unsigned long end, nstart, nend;
1246 	struct vm_area_struct *vma = NULL;
1247 	int locked = 0;
1248 	long ret = 0;
1249 
1250 	end = start + len;
1251 
1252 	for (nstart = start; nstart < end; nstart = nend) {
1253 		/*
1254 		 * We want to fault in pages for [nstart; end) address range.
1255 		 * Find first corresponding VMA.
1256 		 */
1257 		if (!locked) {
1258 			locked = 1;
1259 			down_read(&mm->mmap_sem);
1260 			vma = find_vma(mm, nstart);
1261 		} else if (nstart >= vma->vm_end)
1262 			vma = vma->vm_next;
1263 		if (!vma || vma->vm_start >= end)
1264 			break;
1265 		/*
1266 		 * Set [nstart; nend) to intersection of desired address
1267 		 * range with the first VMA. Also, skip undesirable VMA types.
1268 		 */
1269 		nend = min(end, vma->vm_end);
1270 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1271 			continue;
1272 		if (nstart < vma->vm_start)
1273 			nstart = vma->vm_start;
1274 		/*
1275 		 * Now fault in a range of pages. populate_vma_page_range()
1276 		 * double checks the vma flags, so that it won't mlock pages
1277 		 * if the vma was already munlocked.
1278 		 */
1279 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1280 		if (ret < 0) {
1281 			if (ignore_errors) {
1282 				ret = 0;
1283 				continue;	/* continue at next VMA */
1284 			}
1285 			break;
1286 		}
1287 		nend = nstart + ret * PAGE_SIZE;
1288 		ret = 0;
1289 	}
1290 	if (locked)
1291 		up_read(&mm->mmap_sem);
1292 	return ret;	/* 0 or negative error code */
1293 }
1294 
1295 /**
1296  * get_dump_page() - pin user page in memory while writing it to core dump
1297  * @addr: user address
1298  *
1299  * Returns struct page pointer of user page pinned for dump,
1300  * to be freed afterwards by put_page().
1301  *
1302  * Returns NULL on any kind of failure - a hole must then be inserted into
1303  * the corefile, to preserve alignment with its headers; and also returns
1304  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1305  * allowing a hole to be left in the corefile to save diskspace.
1306  *
1307  * Called without mmap_sem, but after all other threads have been killed.
1308  */
1309 #ifdef CONFIG_ELF_CORE
get_dump_page(unsigned long addr)1310 struct page *get_dump_page(unsigned long addr)
1311 {
1312 	struct vm_area_struct *vma;
1313 	struct page *page;
1314 
1315 	if (__get_user_pages(current, current->mm, addr, 1,
1316 			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1317 			     NULL) < 1)
1318 		return NULL;
1319 	flush_cache_page(vma, addr, page_to_pfn(page));
1320 	return page;
1321 }
1322 #endif /* CONFIG_ELF_CORE */
1323 
1324 /*
1325  * Generic Fast GUP
1326  *
1327  * get_user_pages_fast attempts to pin user pages by walking the page
1328  * tables directly and avoids taking locks. Thus the walker needs to be
1329  * protected from page table pages being freed from under it, and should
1330  * block any THP splits.
1331  *
1332  * One way to achieve this is to have the walker disable interrupts, and
1333  * rely on IPIs from the TLB flushing code blocking before the page table
1334  * pages are freed. This is unsuitable for architectures that do not need
1335  * to broadcast an IPI when invalidating TLBs.
1336  *
1337  * Another way to achieve this is to batch up page table containing pages
1338  * belonging to more than one mm_user, then rcu_sched a callback to free those
1339  * pages. Disabling interrupts will allow the fast_gup walker to both block
1340  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1341  * (which is a relatively rare event). The code below adopts this strategy.
1342  *
1343  * Before activating this code, please be aware that the following assumptions
1344  * are currently made:
1345  *
1346  *  *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
1347  *  free pages containing page tables or TLB flushing requires IPI broadcast.
1348  *
1349  *  *) ptes can be read atomically by the architecture.
1350  *
1351  *  *) access_ok is sufficient to validate userspace address ranges.
1352  *
1353  * The last two assumptions can be relaxed by the addition of helper functions.
1354  *
1355  * This code is based heavily on the PowerPC implementation by Nick Piggin.
1356  */
1357 #ifdef CONFIG_HAVE_GENERIC_GUP
1358 
1359 #ifndef gup_get_pte
1360 /*
1361  * We assume that the PTE can be read atomically. If this is not the case for
1362  * your architecture, please provide the helper.
1363  */
gup_get_pte(pte_t * ptep)1364 static inline pte_t gup_get_pte(pte_t *ptep)
1365 {
1366 	return READ_ONCE(*ptep);
1367 }
1368 #endif
1369 
undo_dev_pagemap(int * nr,int nr_start,struct page ** pages)1370 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
1371 					    struct page **pages)
1372 {
1373 	while ((*nr) - nr_start) {
1374 		struct page *page = pages[--(*nr)];
1375 
1376 		ClearPageReferenced(page);
1377 		put_page(page);
1378 	}
1379 }
1380 
1381 /*
1382  * Return the compund head page with ref appropriately incremented,
1383  * or NULL if that failed.
1384  */
try_get_compound_head(struct page * page,int refs)1385 static inline struct page *try_get_compound_head(struct page *page, int refs)
1386 {
1387 	struct page *head = compound_head(page);
1388 	if (WARN_ON_ONCE(page_ref_count(head) < 0))
1389 		return NULL;
1390 	if (unlikely(!page_cache_add_speculative(head, refs)))
1391 		return NULL;
1392 	return head;
1393 }
1394 
1395 #ifdef __HAVE_ARCH_PTE_SPECIAL
gup_pte_range(pmd_t pmd,unsigned long addr,unsigned long end,int write,struct page ** pages,int * nr)1396 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1397 			 int write, struct page **pages, int *nr)
1398 {
1399 	struct dev_pagemap *pgmap = NULL;
1400 	int nr_start = *nr, ret = 0;
1401 	pte_t *ptep, *ptem;
1402 
1403 	ptem = ptep = pte_offset_map(&pmd, addr);
1404 	do {
1405 		pte_t pte = gup_get_pte(ptep);
1406 		struct page *head, *page;
1407 
1408 		/*
1409 		 * Similar to the PMD case below, NUMA hinting must take slow
1410 		 * path using the pte_protnone check.
1411 		 */
1412 		if (pte_protnone(pte))
1413 			goto pte_unmap;
1414 
1415 		if (!pte_access_permitted(pte, write))
1416 			goto pte_unmap;
1417 
1418 		if (pte_devmap(pte)) {
1419 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
1420 			if (unlikely(!pgmap)) {
1421 				undo_dev_pagemap(nr, nr_start, pages);
1422 				goto pte_unmap;
1423 			}
1424 		} else if (pte_special(pte))
1425 			goto pte_unmap;
1426 
1427 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1428 		page = pte_page(pte);
1429 
1430 		head = try_get_compound_head(page, 1);
1431 		if (!head)
1432 			goto pte_unmap;
1433 
1434 		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1435 			put_page(head);
1436 			goto pte_unmap;
1437 		}
1438 
1439 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1440 
1441 		put_dev_pagemap(pgmap);
1442 		SetPageReferenced(page);
1443 		pages[*nr] = page;
1444 		(*nr)++;
1445 
1446 	} while (ptep++, addr += PAGE_SIZE, addr != end);
1447 
1448 	ret = 1;
1449 
1450 pte_unmap:
1451 	pte_unmap(ptem);
1452 	return ret;
1453 }
1454 #else
1455 
1456 /*
1457  * If we can't determine whether or not a pte is special, then fail immediately
1458  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1459  * to be special.
1460  *
1461  * For a futex to be placed on a THP tail page, get_futex_key requires a
1462  * __get_user_pages_fast implementation that can pin pages. Thus it's still
1463  * useful to have gup_huge_pmd even if we can't operate on ptes.
1464  */
gup_pte_range(pmd_t pmd,unsigned long addr,unsigned long end,int write,struct page ** pages,int * nr)1465 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1466 			 int write, struct page **pages, int *nr)
1467 {
1468 	return 0;
1469 }
1470 #endif /* __HAVE_ARCH_PTE_SPECIAL */
1471 
1472 #if defined(__HAVE_ARCH_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
__gup_device_huge(unsigned long pfn,unsigned long addr,unsigned long end,struct page ** pages,int * nr)1473 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
1474 		unsigned long end, struct page **pages, int *nr)
1475 {
1476 	int nr_start = *nr;
1477 	struct dev_pagemap *pgmap = NULL;
1478 
1479 	do {
1480 		struct page *page = pfn_to_page(pfn);
1481 
1482 		pgmap = get_dev_pagemap(pfn, pgmap);
1483 		if (unlikely(!pgmap)) {
1484 			undo_dev_pagemap(nr, nr_start, pages);
1485 			return 0;
1486 		}
1487 		SetPageReferenced(page);
1488 		pages[*nr] = page;
1489 		get_page(page);
1490 		put_dev_pagemap(pgmap);
1491 		(*nr)++;
1492 		pfn++;
1493 	} while (addr += PAGE_SIZE, addr != end);
1494 	return 1;
1495 }
1496 
__gup_device_huge_pmd(pmd_t orig,pmd_t * pmdp,unsigned long addr,unsigned long end,struct page ** pages,int * nr)1497 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1498 		unsigned long end, struct page **pages, int *nr)
1499 {
1500 	unsigned long fault_pfn;
1501 	int nr_start = *nr;
1502 
1503 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1504 	if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1505 		return 0;
1506 
1507 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1508 		undo_dev_pagemap(nr, nr_start, pages);
1509 		return 0;
1510 	}
1511 	return 1;
1512 }
1513 
__gup_device_huge_pud(pud_t orig,pud_t * pudp,unsigned long addr,unsigned long end,struct page ** pages,int * nr)1514 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1515 		unsigned long end, struct page **pages, int *nr)
1516 {
1517 	unsigned long fault_pfn;
1518 	int nr_start = *nr;
1519 
1520 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1521 	if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1522 		return 0;
1523 
1524 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1525 		undo_dev_pagemap(nr, nr_start, pages);
1526 		return 0;
1527 	}
1528 	return 1;
1529 }
1530 #else
__gup_device_huge_pmd(pmd_t orig,pmd_t * pmdp,unsigned long addr,unsigned long end,struct page ** pages,int * nr)1531 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1532 		unsigned long end, struct page **pages, int *nr)
1533 {
1534 	BUILD_BUG();
1535 	return 0;
1536 }
1537 
__gup_device_huge_pud(pud_t pud,pud_t * pudp,unsigned long addr,unsigned long end,struct page ** pages,int * nr)1538 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
1539 		unsigned long end, struct page **pages, int *nr)
1540 {
1541 	BUILD_BUG();
1542 	return 0;
1543 }
1544 #endif
1545 
gup_huge_pmd(pmd_t orig,pmd_t * pmdp,unsigned long addr,unsigned long end,int write,struct page ** pages,int * nr)1546 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1547 		unsigned long end, int write, struct page **pages, int *nr)
1548 {
1549 	struct page *head, *page;
1550 	int refs;
1551 
1552 	if (!pmd_access_permitted(orig, write))
1553 		return 0;
1554 
1555 	if (pmd_devmap(orig))
1556 		return __gup_device_huge_pmd(orig, pmdp, addr, end, pages, nr);
1557 
1558 	refs = 0;
1559 	page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1560 	do {
1561 		pages[*nr] = page;
1562 		(*nr)++;
1563 		page++;
1564 		refs++;
1565 	} while (addr += PAGE_SIZE, addr != end);
1566 
1567 	head = try_get_compound_head(pmd_page(orig), refs);
1568 	if (!head) {
1569 		*nr -= refs;
1570 		return 0;
1571 	}
1572 
1573 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1574 		*nr -= refs;
1575 		while (refs--)
1576 			put_page(head);
1577 		return 0;
1578 	}
1579 
1580 	SetPageReferenced(head);
1581 	return 1;
1582 }
1583 
gup_huge_pud(pud_t orig,pud_t * pudp,unsigned long addr,unsigned long end,int write,struct page ** pages,int * nr)1584 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1585 		unsigned long end, int write, struct page **pages, int *nr)
1586 {
1587 	struct page *head, *page;
1588 	int refs;
1589 
1590 	if (!pud_access_permitted(orig, write))
1591 		return 0;
1592 
1593 	if (pud_devmap(orig))
1594 		return __gup_device_huge_pud(orig, pudp, addr, end, pages, nr);
1595 
1596 	refs = 0;
1597 	page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1598 	do {
1599 		pages[*nr] = page;
1600 		(*nr)++;
1601 		page++;
1602 		refs++;
1603 	} while (addr += PAGE_SIZE, addr != end);
1604 
1605 	head = try_get_compound_head(pud_page(orig), refs);
1606 	if (!head) {
1607 		*nr -= refs;
1608 		return 0;
1609 	}
1610 
1611 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1612 		*nr -= refs;
1613 		while (refs--)
1614 			put_page(head);
1615 		return 0;
1616 	}
1617 
1618 	SetPageReferenced(head);
1619 	return 1;
1620 }
1621 
gup_huge_pgd(pgd_t orig,pgd_t * pgdp,unsigned long addr,unsigned long end,int write,struct page ** pages,int * nr)1622 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
1623 			unsigned long end, int write,
1624 			struct page **pages, int *nr)
1625 {
1626 	int refs;
1627 	struct page *head, *page;
1628 
1629 	if (!pgd_access_permitted(orig, write))
1630 		return 0;
1631 
1632 	BUILD_BUG_ON(pgd_devmap(orig));
1633 	refs = 0;
1634 	page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
1635 	do {
1636 		pages[*nr] = page;
1637 		(*nr)++;
1638 		page++;
1639 		refs++;
1640 	} while (addr += PAGE_SIZE, addr != end);
1641 
1642 	head = try_get_compound_head(pgd_page(orig), refs);
1643 	if (!head) {
1644 		*nr -= refs;
1645 		return 0;
1646 	}
1647 
1648 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
1649 		*nr -= refs;
1650 		while (refs--)
1651 			put_page(head);
1652 		return 0;
1653 	}
1654 
1655 	SetPageReferenced(head);
1656 	return 1;
1657 }
1658 
gup_pmd_range(pud_t pud,unsigned long addr,unsigned long end,int write,struct page ** pages,int * nr)1659 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
1660 		int write, struct page **pages, int *nr)
1661 {
1662 	unsigned long next;
1663 	pmd_t *pmdp;
1664 
1665 	pmdp = pmd_offset(&pud, addr);
1666 	do {
1667 		pmd_t pmd = READ_ONCE(*pmdp);
1668 
1669 		next = pmd_addr_end(addr, end);
1670 		if (!pmd_present(pmd))
1671 			return 0;
1672 
1673 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
1674 			     pmd_devmap(pmd))) {
1675 			/*
1676 			 * NUMA hinting faults need to be handled in the GUP
1677 			 * slowpath for accounting purposes and so that they
1678 			 * can be serialised against THP migration.
1679 			 */
1680 			if (pmd_protnone(pmd))
1681 				return 0;
1682 
1683 			if (!gup_huge_pmd(pmd, pmdp, addr, next, write,
1684 				pages, nr))
1685 				return 0;
1686 
1687 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
1688 			/*
1689 			 * architecture have different format for hugetlbfs
1690 			 * pmd format and THP pmd format
1691 			 */
1692 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
1693 					 PMD_SHIFT, next, write, pages, nr))
1694 				return 0;
1695 		} else if (!gup_pte_range(pmd, addr, next, write, pages, nr))
1696 				return 0;
1697 	} while (pmdp++, addr = next, addr != end);
1698 
1699 	return 1;
1700 }
1701 
gup_pud_range(p4d_t p4d,unsigned long addr,unsigned long end,int write,struct page ** pages,int * nr)1702 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
1703 			 int write, struct page **pages, int *nr)
1704 {
1705 	unsigned long next;
1706 	pud_t *pudp;
1707 
1708 	pudp = pud_offset(&p4d, addr);
1709 	do {
1710 		pud_t pud = READ_ONCE(*pudp);
1711 
1712 		next = pud_addr_end(addr, end);
1713 		if (pud_none(pud))
1714 			return 0;
1715 		if (unlikely(pud_huge(pud))) {
1716 			if (!gup_huge_pud(pud, pudp, addr, next, write,
1717 					  pages, nr))
1718 				return 0;
1719 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
1720 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
1721 					 PUD_SHIFT, next, write, pages, nr))
1722 				return 0;
1723 		} else if (!gup_pmd_range(pud, addr, next, write, pages, nr))
1724 			return 0;
1725 	} while (pudp++, addr = next, addr != end);
1726 
1727 	return 1;
1728 }
1729 
gup_p4d_range(pgd_t pgd,unsigned long addr,unsigned long end,int write,struct page ** pages,int * nr)1730 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
1731 			 int write, struct page **pages, int *nr)
1732 {
1733 	unsigned long next;
1734 	p4d_t *p4dp;
1735 
1736 	p4dp = p4d_offset(&pgd, addr);
1737 	do {
1738 		p4d_t p4d = READ_ONCE(*p4dp);
1739 
1740 		next = p4d_addr_end(addr, end);
1741 		if (p4d_none(p4d))
1742 			return 0;
1743 		BUILD_BUG_ON(p4d_huge(p4d));
1744 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
1745 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
1746 					 P4D_SHIFT, next, write, pages, nr))
1747 				return 0;
1748 		} else if (!gup_pud_range(p4d, addr, next, write, pages, nr))
1749 			return 0;
1750 	} while (p4dp++, addr = next, addr != end);
1751 
1752 	return 1;
1753 }
1754 
gup_pgd_range(unsigned long addr,unsigned long end,int write,struct page ** pages,int * nr)1755 static void gup_pgd_range(unsigned long addr, unsigned long end,
1756 		int write, struct page **pages, int *nr)
1757 {
1758 	unsigned long next;
1759 	pgd_t *pgdp;
1760 
1761 	pgdp = pgd_offset(current->mm, addr);
1762 	do {
1763 		pgd_t pgd = READ_ONCE(*pgdp);
1764 
1765 		next = pgd_addr_end(addr, end);
1766 		if (pgd_none(pgd))
1767 			return;
1768 		if (unlikely(pgd_huge(pgd))) {
1769 			if (!gup_huge_pgd(pgd, pgdp, addr, next, write,
1770 					  pages, nr))
1771 				return;
1772 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
1773 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
1774 					 PGDIR_SHIFT, next, write, pages, nr))
1775 				return;
1776 		} else if (!gup_p4d_range(pgd, addr, next, write, pages, nr))
1777 			return;
1778 	} while (pgdp++, addr = next, addr != end);
1779 }
1780 
1781 #ifndef gup_fast_permitted
1782 /*
1783  * Check if it's allowed to use __get_user_pages_fast() for the range, or
1784  * we need to fall back to the slow version:
1785  */
gup_fast_permitted(unsigned long start,int nr_pages,int write)1786 bool gup_fast_permitted(unsigned long start, int nr_pages, int write)
1787 {
1788 	unsigned long len, end;
1789 
1790 	len = (unsigned long) nr_pages << PAGE_SHIFT;
1791 	end = start + len;
1792 	return end >= start;
1793 }
1794 #endif
1795 
1796 /*
1797  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
1798  * the regular GUP. It will only return non-negative values.
1799  */
__get_user_pages_fast(unsigned long start,int nr_pages,int write,struct page ** pages)1800 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1801 			  struct page **pages)
1802 {
1803 	unsigned long addr, len, end;
1804 	unsigned long flags;
1805 	int nr = 0;
1806 
1807 	start &= PAGE_MASK;
1808 	addr = start;
1809 	len = (unsigned long) nr_pages << PAGE_SHIFT;
1810 	end = start + len;
1811 
1812 	if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
1813 					(void __user *)start, len)))
1814 		return 0;
1815 
1816 	/*
1817 	 * Disable interrupts.  We use the nested form as we can already have
1818 	 * interrupts disabled by get_futex_key.
1819 	 *
1820 	 * With interrupts disabled, we block page table pages from being
1821 	 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h
1822 	 * for more details.
1823 	 *
1824 	 * We do not adopt an rcu_read_lock(.) here as we also want to
1825 	 * block IPIs that come from THPs splitting.
1826 	 */
1827 
1828 	if (gup_fast_permitted(start, nr_pages, write)) {
1829 		local_irq_save(flags);
1830 		gup_pgd_range(addr, end, write, pages, &nr);
1831 		local_irq_restore(flags);
1832 	}
1833 
1834 	return nr;
1835 }
1836 
1837 /**
1838  * get_user_pages_fast() - pin user pages in memory
1839  * @start:	starting user address
1840  * @nr_pages:	number of pages from start to pin
1841  * @write:	whether pages will be written to
1842  * @pages:	array that receives pointers to the pages pinned.
1843  *		Should be at least nr_pages long.
1844  *
1845  * Attempt to pin user pages in memory without taking mm->mmap_sem.
1846  * If not successful, it will fall back to taking the lock and
1847  * calling get_user_pages().
1848  *
1849  * Returns number of pages pinned. This may be fewer than the number
1850  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1851  * were pinned, returns -errno.
1852  */
get_user_pages_fast(unsigned long start,int nr_pages,int write,struct page ** pages)1853 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1854 			struct page **pages)
1855 {
1856 	unsigned long addr, len, end;
1857 	int nr = 0, ret = 0;
1858 
1859 	start &= PAGE_MASK;
1860 	addr = start;
1861 	len = (unsigned long) nr_pages << PAGE_SHIFT;
1862 	end = start + len;
1863 
1864 	if (nr_pages <= 0)
1865 		return 0;
1866 
1867 	if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
1868 					(void __user *)start, len)))
1869 		return -EFAULT;
1870 
1871 	if (gup_fast_permitted(start, nr_pages, write)) {
1872 		local_irq_disable();
1873 		gup_pgd_range(addr, end, write, pages, &nr);
1874 		local_irq_enable();
1875 		ret = nr;
1876 	}
1877 
1878 	if (nr < nr_pages) {
1879 		/* Try to get the remaining pages with get_user_pages */
1880 		start += nr << PAGE_SHIFT;
1881 		pages += nr;
1882 
1883 		ret = get_user_pages_unlocked(start, nr_pages - nr, pages,
1884 				write ? FOLL_WRITE : 0);
1885 
1886 		/* Have to be a bit careful with return values */
1887 		if (nr > 0) {
1888 			if (ret < 0)
1889 				ret = nr;
1890 			else
1891 				ret += nr;
1892 		}
1893 	}
1894 
1895 	return ret;
1896 }
1897 
1898 #endif /* CONFIG_HAVE_GENERIC_GUP */
1899