• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *
3  * Common boot and setup code.
4  *
5  * Copyright (C) 2001 PPC64 Team, IBM Corp
6  *
7  *      This program is free software; you can redistribute it and/or
8  *      modify it under the terms of the GNU General Public License
9  *      as published by the Free Software Foundation; either version
10  *      2 of the License, or (at your option) any later version.
11  */
12 
13 #define DEBUG
14 
15 #include <linux/export.h>
16 #include <linux/string.h>
17 #include <linux/sched.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/reboot.h>
21 #include <linux/delay.h>
22 #include <linux/initrd.h>
23 #include <linux/seq_file.h>
24 #include <linux/ioport.h>
25 #include <linux/console.h>
26 #include <linux/utsname.h>
27 #include <linux/tty.h>
28 #include <linux/root_dev.h>
29 #include <linux/notifier.h>
30 #include <linux/cpu.h>
31 #include <linux/unistd.h>
32 #include <linux/serial.h>
33 #include <linux/serial_8250.h>
34 #include <linux/bootmem.h>
35 #include <linux/pci.h>
36 #include <linux/lockdep.h>
37 #include <linux/memblock.h>
38 #include <linux/memory.h>
39 #include <linux/nmi.h>
40 
41 #include <asm/debugfs.h>
42 #include <asm/io.h>
43 #include <asm/kdump.h>
44 #include <asm/prom.h>
45 #include <asm/processor.h>
46 #include <asm/pgtable.h>
47 #include <asm/smp.h>
48 #include <asm/elf.h>
49 #include <asm/machdep.h>
50 #include <asm/paca.h>
51 #include <asm/time.h>
52 #include <asm/cputable.h>
53 #include <asm/dt_cpu_ftrs.h>
54 #include <asm/sections.h>
55 #include <asm/btext.h>
56 #include <asm/nvram.h>
57 #include <asm/setup.h>
58 #include <asm/rtas.h>
59 #include <asm/iommu.h>
60 #include <asm/serial.h>
61 #include <asm/cache.h>
62 #include <asm/page.h>
63 #include <asm/mmu.h>
64 #include <asm/firmware.h>
65 #include <asm/xmon.h>
66 #include <asm/udbg.h>
67 #include <asm/kexec.h>
68 #include <asm/code-patching.h>
69 #include <asm/livepatch.h>
70 #include <asm/opal.h>
71 #include <asm/cputhreads.h>
72 
73 #ifdef DEBUG
74 #define DBG(fmt...) udbg_printf(fmt)
75 #else
76 #define DBG(fmt...)
77 #endif
78 
79 int spinning_secondaries;
80 u64 ppc64_pft_size;
81 
82 struct ppc64_caches ppc64_caches = {
83 	.l1d = {
84 		.block_size = 0x40,
85 		.log_block_size = 6,
86 	},
87 	.l1i = {
88 		.block_size = 0x40,
89 		.log_block_size = 6
90 	},
91 };
92 EXPORT_SYMBOL_GPL(ppc64_caches);
93 
94 #if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP)
setup_tlb_core_data(void)95 void __init setup_tlb_core_data(void)
96 {
97 	int cpu;
98 
99 	BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0);
100 
101 	for_each_possible_cpu(cpu) {
102 		int first = cpu_first_thread_sibling(cpu);
103 
104 		/*
105 		 * If we boot via kdump on a non-primary thread,
106 		 * make sure we point at the thread that actually
107 		 * set up this TLB.
108 		 */
109 		if (cpu_first_thread_sibling(boot_cpuid) == first)
110 			first = boot_cpuid;
111 
112 		paca[cpu].tcd_ptr = &paca[first].tcd;
113 
114 		/*
115 		 * If we have threads, we need either tlbsrx.
116 		 * or e6500 tablewalk mode, or else TLB handlers
117 		 * will be racy and could produce duplicate entries.
118 		 * Should we panic instead?
119 		 */
120 		WARN_ONCE(smt_enabled_at_boot >= 2 &&
121 			  !mmu_has_feature(MMU_FTR_USE_TLBRSRV) &&
122 			  book3e_htw_mode != PPC_HTW_E6500,
123 			  "%s: unsupported MMU configuration\n", __func__);
124 	}
125 }
126 #endif
127 
128 #ifdef CONFIG_SMP
129 
130 static char *smt_enabled_cmdline;
131 
132 /* Look for ibm,smt-enabled OF option */
check_smt_enabled(void)133 void __init check_smt_enabled(void)
134 {
135 	struct device_node *dn;
136 	const char *smt_option;
137 
138 	/* Default to enabling all threads */
139 	smt_enabled_at_boot = threads_per_core;
140 
141 	/* Allow the command line to overrule the OF option */
142 	if (smt_enabled_cmdline) {
143 		if (!strcmp(smt_enabled_cmdline, "on"))
144 			smt_enabled_at_boot = threads_per_core;
145 		else if (!strcmp(smt_enabled_cmdline, "off"))
146 			smt_enabled_at_boot = 0;
147 		else {
148 			int smt;
149 			int rc;
150 
151 			rc = kstrtoint(smt_enabled_cmdline, 10, &smt);
152 			if (!rc)
153 				smt_enabled_at_boot =
154 					min(threads_per_core, smt);
155 		}
156 	} else {
157 		dn = of_find_node_by_path("/options");
158 		if (dn) {
159 			smt_option = of_get_property(dn, "ibm,smt-enabled",
160 						     NULL);
161 
162 			if (smt_option) {
163 				if (!strcmp(smt_option, "on"))
164 					smt_enabled_at_boot = threads_per_core;
165 				else if (!strcmp(smt_option, "off"))
166 					smt_enabled_at_boot = 0;
167 			}
168 
169 			of_node_put(dn);
170 		}
171 	}
172 }
173 
174 /* Look for smt-enabled= cmdline option */
early_smt_enabled(char * p)175 static int __init early_smt_enabled(char *p)
176 {
177 	smt_enabled_cmdline = p;
178 	return 0;
179 }
180 early_param("smt-enabled", early_smt_enabled);
181 
182 #endif /* CONFIG_SMP */
183 
184 /** Fix up paca fields required for the boot cpu */
fixup_boot_paca(void)185 static void __init fixup_boot_paca(void)
186 {
187 	/* The boot cpu is started */
188 	get_paca()->cpu_start = 1;
189 	/* Allow percpu accesses to work until we setup percpu data */
190 	get_paca()->data_offset = 0;
191 }
192 
configure_exceptions(void)193 static void __init configure_exceptions(void)
194 {
195 	/*
196 	 * Setup the trampolines from the lowmem exception vectors
197 	 * to the kdump kernel when not using a relocatable kernel.
198 	 */
199 	setup_kdump_trampoline();
200 
201 	/* Under a PAPR hypervisor, we need hypercalls */
202 	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
203 		/* Enable AIL if possible */
204 		pseries_enable_reloc_on_exc();
205 
206 		/*
207 		 * Tell the hypervisor that we want our exceptions to
208 		 * be taken in little endian mode.
209 		 *
210 		 * We don't call this for big endian as our calling convention
211 		 * makes us always enter in BE, and the call may fail under
212 		 * some circumstances with kdump.
213 		 */
214 #ifdef __LITTLE_ENDIAN__
215 		pseries_little_endian_exceptions();
216 #endif
217 	} else {
218 		/* Set endian mode using OPAL */
219 		if (firmware_has_feature(FW_FEATURE_OPAL))
220 			opal_configure_cores();
221 
222 		/* AIL on native is done in cpu_ready_for_interrupts() */
223 	}
224 }
225 
cpu_ready_for_interrupts(void)226 static void cpu_ready_for_interrupts(void)
227 {
228 	/*
229 	 * Enable AIL if supported, and we are in hypervisor mode. This
230 	 * is called once for every processor.
231 	 *
232 	 * If we are not in hypervisor mode the job is done once for
233 	 * the whole partition in configure_exceptions().
234 	 */
235 	if (cpu_has_feature(CPU_FTR_HVMODE) &&
236 	    cpu_has_feature(CPU_FTR_ARCH_207S)) {
237 		unsigned long lpcr = mfspr(SPRN_LPCR);
238 		mtspr(SPRN_LPCR, lpcr | LPCR_AIL_3);
239 	}
240 
241 	/*
242 	 * Fixup HFSCR:TM based on CPU features. The bit is set by our
243 	 * early asm init because at that point we haven't updated our
244 	 * CPU features from firmware and device-tree. Here we have,
245 	 * so let's do it.
246 	 */
247 	if (cpu_has_feature(CPU_FTR_HVMODE) && !cpu_has_feature(CPU_FTR_TM_COMP))
248 		mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) & ~HFSCR_TM);
249 
250 	/* Set IR and DR in PACA MSR */
251 	get_paca()->kernel_msr = MSR_KERNEL;
252 }
253 
254 /*
255  * Early initialization entry point. This is called by head.S
256  * with MMU translation disabled. We rely on the "feature" of
257  * the CPU that ignores the top 2 bits of the address in real
258  * mode so we can access kernel globals normally provided we
259  * only toy with things in the RMO region. From here, we do
260  * some early parsing of the device-tree to setup out MEMBLOCK
261  * data structures, and allocate & initialize the hash table
262  * and segment tables so we can start running with translation
263  * enabled.
264  *
265  * It is this function which will call the probe() callback of
266  * the various platform types and copy the matching one to the
267  * global ppc_md structure. Your platform can eventually do
268  * some very early initializations from the probe() routine, but
269  * this is not recommended, be very careful as, for example, the
270  * device-tree is not accessible via normal means at this point.
271  */
272 
early_setup(unsigned long dt_ptr)273 void __init early_setup(unsigned long dt_ptr)
274 {
275 	static __initdata struct paca_struct boot_paca;
276 
277 	/* -------- printk is _NOT_ safe to use here ! ------- */
278 
279 	/* Try new device tree based feature discovery ... */
280 	if (!dt_cpu_ftrs_init(__va(dt_ptr)))
281 		/* Otherwise use the old style CPU table */
282 		identify_cpu(0, mfspr(SPRN_PVR));
283 
284 	/* Assume we're on cpu 0 for now. Don't write to the paca yet! */
285 	initialise_paca(&boot_paca, 0);
286 	setup_paca(&boot_paca);
287 	fixup_boot_paca();
288 
289 	/* -------- printk is now safe to use ------- */
290 
291 	/* Enable early debugging if any specified (see udbg.h) */
292 	udbg_early_init();
293 
294  	DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr);
295 
296 	/*
297 	 * Do early initialization using the flattened device
298 	 * tree, such as retrieving the physical memory map or
299 	 * calculating/retrieving the hash table size.
300 	 */
301 	early_init_devtree(__va(dt_ptr));
302 
303 	/* Now we know the logical id of our boot cpu, setup the paca. */
304 	setup_paca(&paca[boot_cpuid]);
305 	fixup_boot_paca();
306 
307 	/*
308 	 * Configure exception handlers. This include setting up trampolines
309 	 * if needed, setting exception endian mode, etc...
310 	 */
311 	configure_exceptions();
312 
313 	/* Apply all the dynamic patching */
314 	apply_feature_fixups();
315 	setup_feature_keys();
316 
317 	/* Initialize the hash table or TLB handling */
318 	early_init_mmu();
319 
320 	/*
321 	 * At this point, we can let interrupts switch to virtual mode
322 	 * (the MMU has been setup), so adjust the MSR in the PACA to
323 	 * have IR and DR set and enable AIL if it exists
324 	 */
325 	cpu_ready_for_interrupts();
326 
327 	DBG(" <- early_setup()\n");
328 
329 #ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX
330 	/*
331 	 * This needs to be done *last* (after the above DBG() even)
332 	 *
333 	 * Right after we return from this function, we turn on the MMU
334 	 * which means the real-mode access trick that btext does will
335 	 * no longer work, it needs to switch to using a real MMU
336 	 * mapping. This call will ensure that it does
337 	 */
338 	btext_map();
339 #endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */
340 }
341 
342 #ifdef CONFIG_SMP
early_setup_secondary(void)343 void early_setup_secondary(void)
344 {
345 	/* Mark interrupts disabled in PACA */
346 	get_paca()->soft_enabled = 0;
347 
348 	/* Initialize the hash table or TLB handling */
349 	early_init_mmu_secondary();
350 
351 	/*
352 	 * At this point, we can let interrupts switch to virtual mode
353 	 * (the MMU has been setup), so adjust the MSR in the PACA to
354 	 * have IR and DR set.
355 	 */
356 	cpu_ready_for_interrupts();
357 }
358 
359 #endif /* CONFIG_SMP */
360 
361 #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE)
use_spinloop(void)362 static bool use_spinloop(void)
363 {
364 	if (!IS_ENABLED(CONFIG_PPC_BOOK3E))
365 		return true;
366 
367 	/*
368 	 * When book3e boots from kexec, the ePAPR spin table does
369 	 * not get used.
370 	 */
371 	return of_property_read_bool(of_chosen, "linux,booted-from-kexec");
372 }
373 
smp_release_cpus(void)374 void smp_release_cpus(void)
375 {
376 	unsigned long *ptr;
377 	int i;
378 
379 	if (!use_spinloop())
380 		return;
381 
382 	DBG(" -> smp_release_cpus()\n");
383 
384 	/* All secondary cpus are spinning on a common spinloop, release them
385 	 * all now so they can start to spin on their individual paca
386 	 * spinloops. For non SMP kernels, the secondary cpus never get out
387 	 * of the common spinloop.
388 	 */
389 
390 	ptr  = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
391 			- PHYSICAL_START);
392 	*ptr = ppc_function_entry(generic_secondary_smp_init);
393 
394 	/* And wait a bit for them to catch up */
395 	for (i = 0; i < 100000; i++) {
396 		mb();
397 		HMT_low();
398 		if (spinning_secondaries == 0)
399 			break;
400 		udelay(1);
401 	}
402 	DBG("spinning_secondaries = %d\n", spinning_secondaries);
403 
404 	DBG(" <- smp_release_cpus()\n");
405 }
406 #endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */
407 
408 /*
409  * Initialize some remaining members of the ppc64_caches and systemcfg
410  * structures
411  * (at least until we get rid of them completely). This is mostly some
412  * cache informations about the CPU that will be used by cache flush
413  * routines and/or provided to userland
414  */
415 
init_cache_info(struct ppc_cache_info * info,u32 size,u32 lsize,u32 bsize,u32 sets)416 static void init_cache_info(struct ppc_cache_info *info, u32 size, u32 lsize,
417 			    u32 bsize, u32 sets)
418 {
419 	info->size = size;
420 	info->sets = sets;
421 	info->line_size = lsize;
422 	info->block_size = bsize;
423 	info->log_block_size = __ilog2(bsize);
424 	if (bsize)
425 		info->blocks_per_page = PAGE_SIZE / bsize;
426 	else
427 		info->blocks_per_page = 0;
428 
429 	if (sets == 0)
430 		info->assoc = 0xffff;
431 	else
432 		info->assoc = size / (sets * lsize);
433 }
434 
parse_cache_info(struct device_node * np,bool icache,struct ppc_cache_info * info)435 static bool __init parse_cache_info(struct device_node *np,
436 				    bool icache,
437 				    struct ppc_cache_info *info)
438 {
439 	static const char *ipropnames[] __initdata = {
440 		"i-cache-size",
441 		"i-cache-sets",
442 		"i-cache-block-size",
443 		"i-cache-line-size",
444 	};
445 	static const char *dpropnames[] __initdata = {
446 		"d-cache-size",
447 		"d-cache-sets",
448 		"d-cache-block-size",
449 		"d-cache-line-size",
450 	};
451 	const char **propnames = icache ? ipropnames : dpropnames;
452 	const __be32 *sizep, *lsizep, *bsizep, *setsp;
453 	u32 size, lsize, bsize, sets;
454 	bool success = true;
455 
456 	size = 0;
457 	sets = -1u;
458 	lsize = bsize = cur_cpu_spec->dcache_bsize;
459 	sizep = of_get_property(np, propnames[0], NULL);
460 	if (sizep != NULL)
461 		size = be32_to_cpu(*sizep);
462 	setsp = of_get_property(np, propnames[1], NULL);
463 	if (setsp != NULL)
464 		sets = be32_to_cpu(*setsp);
465 	bsizep = of_get_property(np, propnames[2], NULL);
466 	lsizep = of_get_property(np, propnames[3], NULL);
467 	if (bsizep == NULL)
468 		bsizep = lsizep;
469 	if (lsizep != NULL)
470 		lsize = be32_to_cpu(*lsizep);
471 	if (bsizep != NULL)
472 		bsize = be32_to_cpu(*bsizep);
473 	if (sizep == NULL || bsizep == NULL || lsizep == NULL)
474 		success = false;
475 
476 	/*
477 	 * OF is weird .. it represents fully associative caches
478 	 * as "1 way" which doesn't make much sense and doesn't
479 	 * leave room for direct mapped. We'll assume that 0
480 	 * in OF means direct mapped for that reason.
481 	 */
482 	if (sets == 1)
483 		sets = 0;
484 	else if (sets == 0)
485 		sets = 1;
486 
487 	init_cache_info(info, size, lsize, bsize, sets);
488 
489 	return success;
490 }
491 
initialize_cache_info(void)492 void __init initialize_cache_info(void)
493 {
494 	struct device_node *cpu = NULL, *l2, *l3 = NULL;
495 	u32 pvr;
496 
497 	DBG(" -> initialize_cache_info()\n");
498 
499 	/*
500 	 * All shipping POWER8 machines have a firmware bug that
501 	 * puts incorrect information in the device-tree. This will
502 	 * be (hopefully) fixed for future chips but for now hard
503 	 * code the values if we are running on one of these
504 	 */
505 	pvr = PVR_VER(mfspr(SPRN_PVR));
506 	if (pvr == PVR_POWER8 || pvr == PVR_POWER8E ||
507 	    pvr == PVR_POWER8NVL) {
508 						/* size    lsize   blk  sets */
509 		init_cache_info(&ppc64_caches.l1i, 0x8000,   128,  128, 32);
510 		init_cache_info(&ppc64_caches.l1d, 0x10000,  128,  128, 64);
511 		init_cache_info(&ppc64_caches.l2,  0x80000,  128,  0,   512);
512 		init_cache_info(&ppc64_caches.l3,  0x800000, 128,  0,   8192);
513 	} else
514 		cpu = of_find_node_by_type(NULL, "cpu");
515 
516 	/*
517 	 * We're assuming *all* of the CPUs have the same
518 	 * d-cache and i-cache sizes... -Peter
519 	 */
520 	if (cpu) {
521 		if (!parse_cache_info(cpu, false, &ppc64_caches.l1d))
522 			DBG("Argh, can't find dcache properties !\n");
523 
524 		if (!parse_cache_info(cpu, true, &ppc64_caches.l1i))
525 			DBG("Argh, can't find icache properties !\n");
526 
527 		/*
528 		 * Try to find the L2 and L3 if any. Assume they are
529 		 * unified and use the D-side properties.
530 		 */
531 		l2 = of_find_next_cache_node(cpu);
532 		of_node_put(cpu);
533 		if (l2) {
534 			parse_cache_info(l2, false, &ppc64_caches.l2);
535 			l3 = of_find_next_cache_node(l2);
536 			of_node_put(l2);
537 		}
538 		if (l3) {
539 			parse_cache_info(l3, false, &ppc64_caches.l3);
540 			of_node_put(l3);
541 		}
542 	}
543 
544 	/* For use by binfmt_elf */
545 	dcache_bsize = ppc64_caches.l1d.block_size;
546 	icache_bsize = ppc64_caches.l1i.block_size;
547 
548 	cur_cpu_spec->dcache_bsize = dcache_bsize;
549 	cur_cpu_spec->icache_bsize = icache_bsize;
550 
551 	DBG(" <- initialize_cache_info()\n");
552 }
553 
554 /* This returns the limit below which memory accesses to the linear
555  * mapping are guarnateed not to cause a TLB or SLB miss. This is
556  * used to allocate interrupt or emergency stacks for which our
557  * exception entry path doesn't deal with being interrupted.
558  */
safe_stack_limit(void)559 static __init u64 safe_stack_limit(void)
560 {
561 #ifdef CONFIG_PPC_BOOK3E
562 	/* Freescale BookE bolts the entire linear mapping */
563 	if (mmu_has_feature(MMU_FTR_TYPE_FSL_E))
564 		return linear_map_top;
565 	/* Other BookE, we assume the first GB is bolted */
566 	return 1ul << 30;
567 #else
568 	if (early_radix_enabled())
569 		return ULONG_MAX;
570 
571 	/* BookS, the first segment is bolted */
572 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
573 		return 1UL << SID_SHIFT_1T;
574 	return 1UL << SID_SHIFT;
575 #endif
576 }
577 
irqstack_early_init(void)578 void __init irqstack_early_init(void)
579 {
580 	u64 limit = safe_stack_limit();
581 	unsigned int i;
582 
583 	/*
584 	 * Interrupt stacks must be in the first segment since we
585 	 * cannot afford to take SLB misses on them. They are not
586 	 * accessed in realmode.
587 	 */
588 	for_each_possible_cpu(i) {
589 		softirq_ctx[i] = (struct thread_info *)
590 			__va(memblock_alloc_base(THREAD_SIZE,
591 					    THREAD_SIZE, limit));
592 		hardirq_ctx[i] = (struct thread_info *)
593 			__va(memblock_alloc_base(THREAD_SIZE,
594 					    THREAD_SIZE, limit));
595 	}
596 }
597 
598 #ifdef CONFIG_PPC_BOOK3E
exc_lvl_early_init(void)599 void __init exc_lvl_early_init(void)
600 {
601 	unsigned int i;
602 	unsigned long sp;
603 
604 	for_each_possible_cpu(i) {
605 		sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE);
606 		critirq_ctx[i] = (struct thread_info *)__va(sp);
607 		paca[i].crit_kstack = __va(sp + THREAD_SIZE);
608 
609 		sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE);
610 		dbgirq_ctx[i] = (struct thread_info *)__va(sp);
611 		paca[i].dbg_kstack = __va(sp + THREAD_SIZE);
612 
613 		sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE);
614 		mcheckirq_ctx[i] = (struct thread_info *)__va(sp);
615 		paca[i].mc_kstack = __va(sp + THREAD_SIZE);
616 	}
617 
618 	if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
619 		patch_exception(0x040, exc_debug_debug_book3e);
620 }
621 #endif
622 
623 /*
624  * Emergency stacks are used for a range of things, from asynchronous
625  * NMIs (system reset, machine check) to synchronous, process context.
626  * We set preempt_count to zero, even though that isn't necessarily correct. To
627  * get the right value we'd need to copy it from the previous thread_info, but
628  * doing that might fault causing more problems.
629  * TODO: what to do with accounting?
630  */
emerg_stack_init_thread_info(struct thread_info * ti,int cpu)631 static void emerg_stack_init_thread_info(struct thread_info *ti, int cpu)
632 {
633 	ti->task = NULL;
634 	ti->cpu = cpu;
635 	ti->preempt_count = 0;
636 	ti->local_flags = 0;
637 	ti->flags = 0;
638 	klp_init_thread_info(ti);
639 }
640 
641 /*
642  * Stack space used when we detect a bad kernel stack pointer, and
643  * early in SMP boots before relocation is enabled. Exclusive emergency
644  * stack for machine checks.
645  */
emergency_stack_init(void)646 void __init emergency_stack_init(void)
647 {
648 	u64 limit;
649 	unsigned int i;
650 
651 	/*
652 	 * Emergency stacks must be under 256MB, we cannot afford to take
653 	 * SLB misses on them. The ABI also requires them to be 128-byte
654 	 * aligned.
655 	 *
656 	 * Since we use these as temporary stacks during secondary CPU
657 	 * bringup, machine check, system reset, and HMI, we need to get
658 	 * at them in real mode. This means they must also be within the RMO
659 	 * region.
660 	 *
661 	 * The IRQ stacks allocated elsewhere in this file are zeroed and
662 	 * initialized in kernel/irq.c. These are initialized here in order
663 	 * to have emergency stacks available as early as possible.
664 	 */
665 	limit = min(safe_stack_limit(), ppc64_rma_size);
666 
667 	for_each_possible_cpu(i) {
668 		struct thread_info *ti;
669 		ti = __va(memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit));
670 		memset(ti, 0, THREAD_SIZE);
671 		emerg_stack_init_thread_info(ti, i);
672 		paca[i].emergency_sp = (void *)ti + THREAD_SIZE;
673 
674 #ifdef CONFIG_PPC_BOOK3S_64
675 		/* emergency stack for NMI exception handling. */
676 		ti = __va(memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit));
677 		memset(ti, 0, THREAD_SIZE);
678 		emerg_stack_init_thread_info(ti, i);
679 		paca[i].nmi_emergency_sp = (void *)ti + THREAD_SIZE;
680 
681 		/* emergency stack for machine check exception handling. */
682 		ti = __va(memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit));
683 		memset(ti, 0, THREAD_SIZE);
684 		emerg_stack_init_thread_info(ti, i);
685 		paca[i].mc_emergency_sp = (void *)ti + THREAD_SIZE;
686 #endif
687 	}
688 }
689 
690 #ifdef CONFIG_SMP
691 #define PCPU_DYN_SIZE		()
692 
pcpu_fc_alloc(unsigned int cpu,size_t size,size_t align)693 static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
694 {
695 	return __alloc_bootmem_node(NODE_DATA(early_cpu_to_node(cpu)), size, align,
696 				    __pa(MAX_DMA_ADDRESS));
697 }
698 
pcpu_fc_free(void * ptr,size_t size)699 static void __init pcpu_fc_free(void *ptr, size_t size)
700 {
701 	free_bootmem(__pa(ptr), size);
702 }
703 
pcpu_cpu_distance(unsigned int from,unsigned int to)704 static int pcpu_cpu_distance(unsigned int from, unsigned int to)
705 {
706 	if (early_cpu_to_node(from) == early_cpu_to_node(to))
707 		return LOCAL_DISTANCE;
708 	else
709 		return REMOTE_DISTANCE;
710 }
711 
712 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
713 EXPORT_SYMBOL(__per_cpu_offset);
714 
setup_per_cpu_areas(void)715 void __init setup_per_cpu_areas(void)
716 {
717 	const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
718 	size_t atom_size;
719 	unsigned long delta;
720 	unsigned int cpu;
721 	int rc;
722 
723 	/*
724 	 * Linear mapping is one of 4K, 1M and 16M.  For 4K, no need
725 	 * to group units.  For larger mappings, use 1M atom which
726 	 * should be large enough to contain a number of units.
727 	 */
728 	if (mmu_linear_psize == MMU_PAGE_4K)
729 		atom_size = PAGE_SIZE;
730 	else
731 		atom_size = 1 << 20;
732 
733 	rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
734 				    pcpu_fc_alloc, pcpu_fc_free);
735 	if (rc < 0)
736 		panic("cannot initialize percpu area (err=%d)", rc);
737 
738 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
739 	for_each_possible_cpu(cpu) {
740                 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
741 		paca[cpu].data_offset = __per_cpu_offset[cpu];
742 	}
743 }
744 #endif
745 
746 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
memory_block_size_bytes(void)747 unsigned long memory_block_size_bytes(void)
748 {
749 	if (ppc_md.memory_block_size)
750 		return ppc_md.memory_block_size();
751 
752 	return MIN_MEMORY_BLOCK_SIZE;
753 }
754 #endif
755 
756 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
757 struct ppc_pci_io ppc_pci_io;
758 EXPORT_SYMBOL(ppc_pci_io);
759 #endif
760 
761 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
hw_nmi_get_sample_period(int watchdog_thresh)762 u64 hw_nmi_get_sample_period(int watchdog_thresh)
763 {
764 	return ppc_proc_freq * watchdog_thresh;
765 }
766 #endif
767 
768 /*
769  * The perf based hardlockup detector breaks PMU event based branches, so
770  * disable it by default. Book3S has a soft-nmi hardlockup detector based
771  * on the decrementer interrupt, so it does not suffer from this problem.
772  *
773  * It is likely to get false positives in VM guests, so disable it there
774  * by default too.
775  */
disable_hardlockup_detector(void)776 static int __init disable_hardlockup_detector(void)
777 {
778 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
779 	hardlockup_detector_disable();
780 #else
781 	if (firmware_has_feature(FW_FEATURE_LPAR))
782 		hardlockup_detector_disable();
783 #endif
784 
785 	return 0;
786 }
787 early_initcall(disable_hardlockup_detector);
788 
789 #ifdef CONFIG_PPC_BOOK3S_64
790 static enum l1d_flush_type enabled_flush_types;
791 static void *l1d_flush_fallback_area;
792 static bool no_rfi_flush;
793 bool rfi_flush;
794 
handle_no_rfi_flush(char * p)795 static int __init handle_no_rfi_flush(char *p)
796 {
797 	pr_info("rfi-flush: disabled on command line.");
798 	no_rfi_flush = true;
799 	return 0;
800 }
801 early_param("no_rfi_flush", handle_no_rfi_flush);
802 
803 /*
804  * The RFI flush is not KPTI, but because users will see doco that says to use
805  * nopti we hijack that option here to also disable the RFI flush.
806  */
handle_no_pti(char * p)807 static int __init handle_no_pti(char *p)
808 {
809 	pr_info("rfi-flush: disabling due to 'nopti' on command line.\n");
810 	handle_no_rfi_flush(NULL);
811 	return 0;
812 }
813 early_param("nopti", handle_no_pti);
814 
do_nothing(void * unused)815 static void do_nothing(void *unused)
816 {
817 	/*
818 	 * We don't need to do the flush explicitly, just enter+exit kernel is
819 	 * sufficient, the RFI exit handlers will do the right thing.
820 	 */
821 }
822 
rfi_flush_enable(bool enable)823 void rfi_flush_enable(bool enable)
824 {
825 	if (enable) {
826 		do_rfi_flush_fixups(enabled_flush_types);
827 		on_each_cpu(do_nothing, NULL, 1);
828 	} else
829 		do_rfi_flush_fixups(L1D_FLUSH_NONE);
830 
831 	rfi_flush = enable;
832 }
833 
init_fallback_flush(void)834 static void __ref init_fallback_flush(void)
835 {
836 	u64 l1d_size, limit;
837 	int cpu;
838 
839 	/* Only allocate the fallback flush area once (at boot time). */
840 	if (l1d_flush_fallback_area)
841 		return;
842 
843 	l1d_size = ppc64_caches.l1d.size;
844 	limit = min(safe_stack_limit(), ppc64_rma_size);
845 
846 	/*
847 	 * Align to L1d size, and size it at 2x L1d size, to catch possible
848 	 * hardware prefetch runoff. We don't have a recipe for load patterns to
849 	 * reliably avoid the prefetcher.
850 	 */
851 	l1d_flush_fallback_area = __va(memblock_alloc_base(l1d_size * 2, l1d_size, limit));
852 	memset(l1d_flush_fallback_area, 0, l1d_size * 2);
853 
854 	for_each_possible_cpu(cpu) {
855 		paca[cpu].rfi_flush_fallback_area = l1d_flush_fallback_area;
856 		paca[cpu].l1d_flush_size = l1d_size;
857 	}
858 }
859 
setup_rfi_flush(enum l1d_flush_type types,bool enable)860 void setup_rfi_flush(enum l1d_flush_type types, bool enable)
861 {
862 	if (types & L1D_FLUSH_FALLBACK) {
863 		pr_info("rfi-flush: fallback displacement flush available\n");
864 		init_fallback_flush();
865 	}
866 
867 	if (types & L1D_FLUSH_ORI)
868 		pr_info("rfi-flush: ori type flush available\n");
869 
870 	if (types & L1D_FLUSH_MTTRIG)
871 		pr_info("rfi-flush: mttrig type flush available\n");
872 
873 	enabled_flush_types = types;
874 
875 	if (!no_rfi_flush && !cpu_mitigations_off())
876 		rfi_flush_enable(enable);
877 }
878 
879 #ifdef CONFIG_DEBUG_FS
rfi_flush_set(void * data,u64 val)880 static int rfi_flush_set(void *data, u64 val)
881 {
882 	bool enable;
883 
884 	if (val == 1)
885 		enable = true;
886 	else if (val == 0)
887 		enable = false;
888 	else
889 		return -EINVAL;
890 
891 	/* Only do anything if we're changing state */
892 	if (enable != rfi_flush)
893 		rfi_flush_enable(enable);
894 
895 	return 0;
896 }
897 
rfi_flush_get(void * data,u64 * val)898 static int rfi_flush_get(void *data, u64 *val)
899 {
900 	*val = rfi_flush ? 1 : 0;
901 	return 0;
902 }
903 
904 DEFINE_SIMPLE_ATTRIBUTE(fops_rfi_flush, rfi_flush_get, rfi_flush_set, "%llu\n");
905 
rfi_flush_debugfs_init(void)906 static __init int rfi_flush_debugfs_init(void)
907 {
908 	debugfs_create_file("rfi_flush", 0600, powerpc_debugfs_root, NULL, &fops_rfi_flush);
909 	return 0;
910 }
911 device_initcall(rfi_flush_debugfs_init);
912 #endif
913 #endif /* CONFIG_PPC_BOOK3S_64 */
914