• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/kernel/panic.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * This function is used through-out the kernel (including mm and fs)
9  * to indicate a major problem.
10  */
11 #include <linux/debug_locks.h>
12 #include <linux/sched/debug.h>
13 #include <linux/interrupt.h>
14 #include <linux/kmsg_dump.h>
15 #include <linux/kallsyms.h>
16 #include <linux/notifier.h>
17 #include <linux/vt_kern.h>
18 #include <linux/module.h>
19 #include <linux/random.h>
20 #include <linux/ftrace.h>
21 #include <linux/reboot.h>
22 #include <linux/delay.h>
23 #include <linux/kexec.h>
24 #include <linux/sched.h>
25 #include <linux/sysrq.h>
26 #include <linux/init.h>
27 #include <linux/nmi.h>
28 #include <linux/console.h>
29 #include <linux/bug.h>
30 #include <linux/ratelimit.h>
31 
32 #define PANIC_TIMER_STEP 100
33 #define PANIC_BLINK_SPD 18
34 
35 int panic_on_oops = CONFIG_PANIC_ON_OOPS_VALUE;
36 static unsigned long tainted_mask;
37 static int pause_on_oops;
38 static int pause_on_oops_flag;
39 static DEFINE_SPINLOCK(pause_on_oops_lock);
40 bool crash_kexec_post_notifiers;
41 int panic_on_warn __read_mostly;
42 
43 int panic_timeout = CONFIG_PANIC_TIMEOUT;
44 EXPORT_SYMBOL_GPL(panic_timeout);
45 
46 ATOMIC_NOTIFIER_HEAD(panic_notifier_list);
47 
48 EXPORT_SYMBOL(panic_notifier_list);
49 
no_blink(int state)50 static long no_blink(int state)
51 {
52 	return 0;
53 }
54 
55 /* Returns how long it waited in ms */
56 long (*panic_blink)(int state);
57 EXPORT_SYMBOL(panic_blink);
58 
59 /*
60  * Stop ourself in panic -- architecture code may override this
61  */
panic_smp_self_stop(void)62 void __weak panic_smp_self_stop(void)
63 {
64 	while (1)
65 		cpu_relax();
66 }
67 
68 /*
69  * Stop ourselves in NMI context if another CPU has already panicked. Arch code
70  * may override this to prepare for crash dumping, e.g. save regs info.
71  */
nmi_panic_self_stop(struct pt_regs * regs)72 void __weak nmi_panic_self_stop(struct pt_regs *regs)
73 {
74 	panic_smp_self_stop();
75 }
76 
77 /*
78  * Stop other CPUs in panic.  Architecture dependent code may override this
79  * with more suitable version.  For example, if the architecture supports
80  * crash dump, it should save registers of each stopped CPU and disable
81  * per-CPU features such as virtualization extensions.
82  */
crash_smp_send_stop(void)83 void __weak crash_smp_send_stop(void)
84 {
85 	static int cpus_stopped;
86 
87 	/*
88 	 * This function can be called twice in panic path, but obviously
89 	 * we execute this only once.
90 	 */
91 	if (cpus_stopped)
92 		return;
93 
94 	/*
95 	 * Note smp_send_stop is the usual smp shutdown function, which
96 	 * unfortunately means it may not be hardened to work in a panic
97 	 * situation.
98 	 */
99 	smp_send_stop();
100 	cpus_stopped = 1;
101 }
102 
103 atomic_t panic_cpu = ATOMIC_INIT(PANIC_CPU_INVALID);
104 
105 /*
106  * A variant of panic() called from NMI context. We return if we've already
107  * panicked on this CPU. If another CPU already panicked, loop in
108  * nmi_panic_self_stop() which can provide architecture dependent code such
109  * as saving register state for crash dump.
110  */
nmi_panic(struct pt_regs * regs,const char * msg)111 void nmi_panic(struct pt_regs *regs, const char *msg)
112 {
113 	int old_cpu, cpu;
114 
115 	cpu = raw_smp_processor_id();
116 	old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, cpu);
117 
118 	if (old_cpu == PANIC_CPU_INVALID)
119 		panic("%s", msg);
120 	else if (old_cpu != cpu)
121 		nmi_panic_self_stop(regs);
122 }
123 EXPORT_SYMBOL(nmi_panic);
124 
125 /**
126  *	panic - halt the system
127  *	@fmt: The text string to print
128  *
129  *	Display a message, then perform cleanups.
130  *
131  *	This function never returns.
132  */
panic(const char * fmt,...)133 void panic(const char *fmt, ...)
134 {
135 	static char buf[1024];
136 	va_list args;
137 	long i, i_next = 0;
138 	int state = 0;
139 	int old_cpu, this_cpu;
140 	bool _crash_kexec_post_notifiers = crash_kexec_post_notifiers;
141 
142 	/*
143 	 * Disable local interrupts. This will prevent panic_smp_self_stop
144 	 * from deadlocking the first cpu that invokes the panic, since
145 	 * there is nothing to prevent an interrupt handler (that runs
146 	 * after setting panic_cpu) from invoking panic() again.
147 	 */
148 	local_irq_disable();
149 	preempt_disable_notrace();
150 
151 	/*
152 	 * It's possible to come here directly from a panic-assertion and
153 	 * not have preempt disabled. Some functions called from here want
154 	 * preempt to be disabled. No point enabling it later though...
155 	 *
156 	 * Only one CPU is allowed to execute the panic code from here. For
157 	 * multiple parallel invocations of panic, all other CPUs either
158 	 * stop themself or will wait until they are stopped by the 1st CPU
159 	 * with smp_send_stop().
160 	 *
161 	 * `old_cpu == PANIC_CPU_INVALID' means this is the 1st CPU which
162 	 * comes here, so go ahead.
163 	 * `old_cpu == this_cpu' means we came from nmi_panic() which sets
164 	 * panic_cpu to this CPU.  In this case, this is also the 1st CPU.
165 	 */
166 	this_cpu = raw_smp_processor_id();
167 	old_cpu  = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
168 
169 	if (old_cpu != PANIC_CPU_INVALID && old_cpu != this_cpu)
170 		panic_smp_self_stop();
171 
172 	console_verbose();
173 	bust_spinlocks(1);
174 	va_start(args, fmt);
175 	vsnprintf(buf, sizeof(buf), fmt, args);
176 	va_end(args);
177 	pr_emerg("Kernel panic - not syncing: %s\n", buf);
178 #ifdef CONFIG_DEBUG_BUGVERBOSE
179 	/*
180 	 * Avoid nested stack-dumping if a panic occurs during oops processing
181 	 */
182 	if (!test_taint(TAINT_DIE) && oops_in_progress <= 1)
183 		dump_stack();
184 #endif
185 
186 	/*
187 	 * If we have crashed and we have a crash kernel loaded let it handle
188 	 * everything else.
189 	 * If we want to run this after calling panic_notifiers, pass
190 	 * the "crash_kexec_post_notifiers" option to the kernel.
191 	 *
192 	 * Bypass the panic_cpu check and call __crash_kexec directly.
193 	 */
194 	if (!_crash_kexec_post_notifiers) {
195 		printk_safe_flush_on_panic();
196 		__crash_kexec(NULL);
197 
198 		/*
199 		 * Note smp_send_stop is the usual smp shutdown function, which
200 		 * unfortunately means it may not be hardened to work in a
201 		 * panic situation.
202 		 */
203 		smp_send_stop();
204 	} else {
205 		/*
206 		 * If we want to do crash dump after notifier calls and
207 		 * kmsg_dump, we will need architecture dependent extra
208 		 * works in addition to stopping other CPUs.
209 		 */
210 		crash_smp_send_stop();
211 	}
212 
213 	/*
214 	 * Run any panic handlers, including those that might need to
215 	 * add information to the kmsg dump output.
216 	 */
217 	atomic_notifier_call_chain(&panic_notifier_list, 0, buf);
218 
219 	/* Call flush even twice. It tries harder with a single online CPU */
220 	printk_safe_flush_on_panic();
221 	kmsg_dump(KMSG_DUMP_PANIC);
222 
223 	/*
224 	 * If you doubt kdump always works fine in any situation,
225 	 * "crash_kexec_post_notifiers" offers you a chance to run
226 	 * panic_notifiers and dumping kmsg before kdump.
227 	 * Note: since some panic_notifiers can make crashed kernel
228 	 * more unstable, it can increase risks of the kdump failure too.
229 	 *
230 	 * Bypass the panic_cpu check and call __crash_kexec directly.
231 	 */
232 	if (_crash_kexec_post_notifiers)
233 		__crash_kexec(NULL);
234 
235 #ifdef CONFIG_VT
236 	unblank_screen();
237 #endif
238 	console_unblank();
239 
240 	/*
241 	 * We may have ended up stopping the CPU holding the lock (in
242 	 * smp_send_stop()) while still having some valuable data in the console
243 	 * buffer.  Try to acquire the lock then release it regardless of the
244 	 * result.  The release will also print the buffers out.  Locks debug
245 	 * should be disabled to avoid reporting bad unlock balance when
246 	 * panic() is not being callled from OOPS.
247 	 */
248 	debug_locks_off();
249 	console_flush_on_panic();
250 
251 	if (!panic_blink)
252 		panic_blink = no_blink;
253 
254 	if (panic_timeout > 0) {
255 		/*
256 		 * Delay timeout seconds before rebooting the machine.
257 		 * We can't use the "normal" timers since we just panicked.
258 		 */
259 		pr_emerg("Rebooting in %d seconds..\n", panic_timeout);
260 
261 		for (i = 0; i < panic_timeout * 1000; i += PANIC_TIMER_STEP) {
262 			touch_nmi_watchdog();
263 			if (i >= i_next) {
264 				i += panic_blink(state ^= 1);
265 				i_next = i + 3600 / PANIC_BLINK_SPD;
266 			}
267 			mdelay(PANIC_TIMER_STEP);
268 		}
269 	}
270 	if (panic_timeout != 0) {
271 		/*
272 		 * This will not be a clean reboot, with everything
273 		 * shutting down.  But if there is a chance of
274 		 * rebooting the system it will be rebooted.
275 		 */
276 		emergency_restart();
277 	}
278 #ifdef __sparc__
279 	{
280 		extern int stop_a_enabled;
281 		/* Make sure the user can actually press Stop-A (L1-A) */
282 		stop_a_enabled = 1;
283 		pr_emerg("Press Stop-A (L1-A) from sun keyboard or send break\n"
284 			 "twice on console to return to the boot prom\n");
285 	}
286 #endif
287 #if defined(CONFIG_S390)
288 	{
289 		unsigned long caller;
290 
291 		caller = (unsigned long)__builtin_return_address(0);
292 		disabled_wait(caller);
293 	}
294 #endif
295 	pr_emerg("---[ end Kernel panic - not syncing: %s\n", buf);
296 	local_irq_enable();
297 	for (i = 0; ; i += PANIC_TIMER_STEP) {
298 		touch_softlockup_watchdog();
299 		if (i >= i_next) {
300 			i += panic_blink(state ^= 1);
301 			i_next = i + 3600 / PANIC_BLINK_SPD;
302 		}
303 		mdelay(PANIC_TIMER_STEP);
304 	}
305 }
306 
307 EXPORT_SYMBOL(panic);
308 
309 /*
310  * TAINT_FORCED_RMMOD could be a per-module flag but the module
311  * is being removed anyway.
312  */
313 const struct taint_flag taint_flags[TAINT_FLAGS_COUNT] = {
314 	{ 'P', 'G', true },	/* TAINT_PROPRIETARY_MODULE */
315 	{ 'F', ' ', true },	/* TAINT_FORCED_MODULE */
316 	{ 'S', ' ', false },	/* TAINT_CPU_OUT_OF_SPEC */
317 	{ 'R', ' ', false },	/* TAINT_FORCED_RMMOD */
318 	{ 'M', ' ', false },	/* TAINT_MACHINE_CHECK */
319 	{ 'B', ' ', false },	/* TAINT_BAD_PAGE */
320 	{ 'U', ' ', false },	/* TAINT_USER */
321 	{ 'D', ' ', false },	/* TAINT_DIE */
322 	{ 'A', ' ', false },	/* TAINT_OVERRIDDEN_ACPI_TABLE */
323 	{ 'W', ' ', false },	/* TAINT_WARN */
324 	{ 'C', ' ', true },	/* TAINT_CRAP */
325 	{ 'I', ' ', false },	/* TAINT_FIRMWARE_WORKAROUND */
326 	{ 'O', ' ', true },	/* TAINT_OOT_MODULE */
327 	{ 'E', ' ', true },	/* TAINT_UNSIGNED_MODULE */
328 	{ 'L', ' ', false },	/* TAINT_SOFTLOCKUP */
329 	{ 'K', ' ', true },	/* TAINT_LIVEPATCH */
330 };
331 
332 /**
333  *	print_tainted - return a string to represent the kernel taint state.
334  *
335  *  'P' - Proprietary module has been loaded.
336  *  'F' - Module has been forcibly loaded.
337  *  'S' - SMP with CPUs not designed for SMP.
338  *  'R' - User forced a module unload.
339  *  'M' - System experienced a machine check exception.
340  *  'B' - System has hit bad_page.
341  *  'U' - Userspace-defined naughtiness.
342  *  'D' - Kernel has oopsed before
343  *  'A' - ACPI table overridden.
344  *  'W' - Taint on warning.
345  *  'C' - modules from drivers/staging are loaded.
346  *  'I' - Working around severe firmware bug.
347  *  'O' - Out-of-tree module has been loaded.
348  *  'E' - Unsigned module has been loaded.
349  *  'L' - A soft lockup has previously occurred.
350  *  'K' - Kernel has been live patched.
351  *
352  *	The string is overwritten by the next call to print_tainted().
353  */
print_tainted(void)354 const char *print_tainted(void)
355 {
356 	static char buf[TAINT_FLAGS_COUNT + sizeof("Tainted: ")];
357 
358 	if (tainted_mask) {
359 		char *s;
360 		int i;
361 
362 		s = buf + sprintf(buf, "Tainted: ");
363 		for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
364 			const struct taint_flag *t = &taint_flags[i];
365 			*s++ = test_bit(i, &tainted_mask) ?
366 					t->c_true : t->c_false;
367 		}
368 		*s = 0;
369 	} else
370 		snprintf(buf, sizeof(buf), "Not tainted");
371 
372 	return buf;
373 }
374 
test_taint(unsigned flag)375 int test_taint(unsigned flag)
376 {
377 	return test_bit(flag, &tainted_mask);
378 }
379 EXPORT_SYMBOL(test_taint);
380 
get_taint(void)381 unsigned long get_taint(void)
382 {
383 	return tainted_mask;
384 }
385 
386 /**
387  * add_taint: add a taint flag if not already set.
388  * @flag: one of the TAINT_* constants.
389  * @lockdep_ok: whether lock debugging is still OK.
390  *
391  * If something bad has gone wrong, you'll want @lockdebug_ok = false, but for
392  * some notewortht-but-not-corrupting cases, it can be set to true.
393  */
add_taint(unsigned flag,enum lockdep_ok lockdep_ok)394 void add_taint(unsigned flag, enum lockdep_ok lockdep_ok)
395 {
396 	if (lockdep_ok == LOCKDEP_NOW_UNRELIABLE && __debug_locks_off())
397 		pr_warn("Disabling lock debugging due to kernel taint\n");
398 
399 	set_bit(flag, &tainted_mask);
400 }
401 EXPORT_SYMBOL(add_taint);
402 
spin_msec(int msecs)403 static void spin_msec(int msecs)
404 {
405 	int i;
406 
407 	for (i = 0; i < msecs; i++) {
408 		touch_nmi_watchdog();
409 		mdelay(1);
410 	}
411 }
412 
413 /*
414  * It just happens that oops_enter() and oops_exit() are identically
415  * implemented...
416  */
do_oops_enter_exit(void)417 static void do_oops_enter_exit(void)
418 {
419 	unsigned long flags;
420 	static int spin_counter;
421 
422 	if (!pause_on_oops)
423 		return;
424 
425 	spin_lock_irqsave(&pause_on_oops_lock, flags);
426 	if (pause_on_oops_flag == 0) {
427 		/* This CPU may now print the oops message */
428 		pause_on_oops_flag = 1;
429 	} else {
430 		/* We need to stall this CPU */
431 		if (!spin_counter) {
432 			/* This CPU gets to do the counting */
433 			spin_counter = pause_on_oops;
434 			do {
435 				spin_unlock(&pause_on_oops_lock);
436 				spin_msec(MSEC_PER_SEC);
437 				spin_lock(&pause_on_oops_lock);
438 			} while (--spin_counter);
439 			pause_on_oops_flag = 0;
440 		} else {
441 			/* This CPU waits for a different one */
442 			while (spin_counter) {
443 				spin_unlock(&pause_on_oops_lock);
444 				spin_msec(1);
445 				spin_lock(&pause_on_oops_lock);
446 			}
447 		}
448 	}
449 	spin_unlock_irqrestore(&pause_on_oops_lock, flags);
450 }
451 
452 /*
453  * Return true if the calling CPU is allowed to print oops-related info.
454  * This is a bit racy..
455  */
oops_may_print(void)456 int oops_may_print(void)
457 {
458 	return pause_on_oops_flag == 0;
459 }
460 
461 /*
462  * Called when the architecture enters its oops handler, before it prints
463  * anything.  If this is the first CPU to oops, and it's oopsing the first
464  * time then let it proceed.
465  *
466  * This is all enabled by the pause_on_oops kernel boot option.  We do all
467  * this to ensure that oopses don't scroll off the screen.  It has the
468  * side-effect of preventing later-oopsing CPUs from mucking up the display,
469  * too.
470  *
471  * It turns out that the CPU which is allowed to print ends up pausing for
472  * the right duration, whereas all the other CPUs pause for twice as long:
473  * once in oops_enter(), once in oops_exit().
474  */
oops_enter(void)475 void oops_enter(void)
476 {
477 	tracing_off();
478 	/* can't trust the integrity of the kernel anymore: */
479 	debug_locks_off();
480 	do_oops_enter_exit();
481 }
482 
483 /*
484  * 64-bit random ID for oopses:
485  */
486 static u64 oops_id;
487 
init_oops_id(void)488 static int init_oops_id(void)
489 {
490 	if (!oops_id)
491 		get_random_bytes(&oops_id, sizeof(oops_id));
492 	else
493 		oops_id++;
494 
495 	return 0;
496 }
497 late_initcall(init_oops_id);
498 
print_oops_end_marker(void)499 void print_oops_end_marker(void)
500 {
501 	init_oops_id();
502 	pr_warn("---[ end trace %016llx ]---\n", (unsigned long long)oops_id);
503 }
504 
505 /*
506  * Called when the architecture exits its oops handler, after printing
507  * everything.
508  */
oops_exit(void)509 void oops_exit(void)
510 {
511 	do_oops_enter_exit();
512 	print_oops_end_marker();
513 	kmsg_dump(KMSG_DUMP_OOPS);
514 }
515 
516 struct warn_args {
517 	const char *fmt;
518 	va_list args;
519 };
520 
__warn(const char * file,int line,void * caller,unsigned taint,struct pt_regs * regs,struct warn_args * args)521 void __warn(const char *file, int line, void *caller, unsigned taint,
522 	    struct pt_regs *regs, struct warn_args *args)
523 {
524 	disable_trace_on_warning();
525 
526 	pr_warn("------------[ cut here ]------------\n");
527 
528 	if (file)
529 		pr_warn("WARNING: CPU: %d PID: %d at %s:%d %pS\n",
530 			raw_smp_processor_id(), current->pid, file, line,
531 			caller);
532 	else
533 		pr_warn("WARNING: CPU: %d PID: %d at %pS\n",
534 			raw_smp_processor_id(), current->pid, caller);
535 
536 	if (args)
537 		vprintk(args->fmt, args->args);
538 
539 	if (panic_on_warn) {
540 		/*
541 		 * This thread may hit another WARN() in the panic path.
542 		 * Resetting this prevents additional WARN() from panicking the
543 		 * system on this thread.  Other threads are blocked by the
544 		 * panic_mutex in panic().
545 		 */
546 		panic_on_warn = 0;
547 		panic("panic_on_warn set ...\n");
548 	}
549 
550 	print_modules();
551 
552 	if (regs)
553 		show_regs(regs);
554 	else
555 		dump_stack();
556 
557 	print_oops_end_marker();
558 
559 	/* Just a warning, don't kill lockdep. */
560 	add_taint(taint, LOCKDEP_STILL_OK);
561 }
562 
563 #ifdef WANT_WARN_ON_SLOWPATH
warn_slowpath_fmt(const char * file,int line,const char * fmt,...)564 void warn_slowpath_fmt(const char *file, int line, const char *fmt, ...)
565 {
566 	struct warn_args args;
567 
568 	args.fmt = fmt;
569 	va_start(args.args, fmt);
570 	__warn(file, line, __builtin_return_address(0), TAINT_WARN, NULL,
571 	       &args);
572 	va_end(args.args);
573 }
574 EXPORT_SYMBOL(warn_slowpath_fmt);
575 
warn_slowpath_fmt_taint(const char * file,int line,unsigned taint,const char * fmt,...)576 void warn_slowpath_fmt_taint(const char *file, int line,
577 			     unsigned taint, const char *fmt, ...)
578 {
579 	struct warn_args args;
580 
581 	args.fmt = fmt;
582 	va_start(args.args, fmt);
583 	__warn(file, line, __builtin_return_address(0), taint, NULL, &args);
584 	va_end(args.args);
585 }
586 EXPORT_SYMBOL(warn_slowpath_fmt_taint);
587 
warn_slowpath_null(const char * file,int line)588 void warn_slowpath_null(const char *file, int line)
589 {
590 	__warn(file, line, __builtin_return_address(0), TAINT_WARN, NULL, NULL);
591 }
592 EXPORT_SYMBOL(warn_slowpath_null);
593 #endif
594 
595 #ifdef CONFIG_CC_STACKPROTECTOR
596 
597 /*
598  * Called when gcc's -fstack-protector feature is used, and
599  * gcc detects corruption of the on-stack canary value
600  */
__stack_chk_fail(void)601 __visible void __stack_chk_fail(void)
602 {
603 	panic("stack-protector: Kernel stack is corrupted in: %p\n",
604 		__builtin_return_address(0));
605 }
606 EXPORT_SYMBOL(__stack_chk_fail);
607 
608 #endif
609 
610 #ifdef CONFIG_ARCH_HAS_REFCOUNT
refcount_error_report(struct pt_regs * regs,const char * err)611 void refcount_error_report(struct pt_regs *regs, const char *err)
612 {
613 	WARN_RATELIMIT(1, "refcount_t %s at %pB in %s[%d], uid/euid: %u/%u\n",
614 		err, (void *)instruction_pointer(regs),
615 		current->comm, task_pid_nr(current),
616 		from_kuid_munged(&init_user_ns, current_uid()),
617 		from_kuid_munged(&init_user_ns, current_euid()));
618 }
619 #endif
620 
621 core_param(panic, panic_timeout, int, 0644);
622 core_param(pause_on_oops, pause_on_oops, int, 0644);
623 core_param(panic_on_warn, panic_on_warn, int, 0644);
624 core_param(crash_kexec_post_notifiers, crash_kexec_post_notifiers, bool, 0644);
625 
oops_setup(char * s)626 static int __init oops_setup(char *s)
627 {
628 	if (!s)
629 		return -EINVAL;
630 	if (!strcmp(s, "panic"))
631 		panic_on_oops = 1;
632 	return 0;
633 }
634 early_param("oops", oops_setup);
635