• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Pressure stall information for CPU, memory and IO
3  *
4  * Copyright (c) 2018 Facebook, Inc.
5  * Author: Johannes Weiner <hannes@cmpxchg.org>
6  *
7  * Polling support by Suren Baghdasaryan <surenb@google.com>
8  * Copyright (c) 2018 Google, Inc.
9  *
10  * When CPU, memory and IO are contended, tasks experience delays that
11  * reduce throughput and introduce latencies into the workload. Memory
12  * and IO contention, in addition, can cause a full loss of forward
13  * progress in which the CPU goes idle.
14  *
15  * This code aggregates individual task delays into resource pressure
16  * metrics that indicate problems with both workload health and
17  * resource utilization.
18  *
19  *			Model
20  *
21  * The time in which a task can execute on a CPU is our baseline for
22  * productivity. Pressure expresses the amount of time in which this
23  * potential cannot be realized due to resource contention.
24  *
25  * This concept of productivity has two components: the workload and
26  * the CPU. To measure the impact of pressure on both, we define two
27  * contention states for a resource: SOME and FULL.
28  *
29  * In the SOME state of a given resource, one or more tasks are
30  * delayed on that resource. This affects the workload's ability to
31  * perform work, but the CPU may still be executing other tasks.
32  *
33  * In the FULL state of a given resource, all non-idle tasks are
34  * delayed on that resource such that nobody is advancing and the CPU
35  * goes idle. This leaves both workload and CPU unproductive.
36  *
37  * (Naturally, the FULL state doesn't exist for the CPU resource.)
38  *
39  *	SOME = nr_delayed_tasks != 0
40  *	FULL = nr_delayed_tasks != 0 && nr_running_tasks == 0
41  *
42  * The percentage of wallclock time spent in those compound stall
43  * states gives pressure numbers between 0 and 100 for each resource,
44  * where the SOME percentage indicates workload slowdowns and the FULL
45  * percentage indicates reduced CPU utilization:
46  *
47  *	%SOME = time(SOME) / period
48  *	%FULL = time(FULL) / period
49  *
50  *			Multiple CPUs
51  *
52  * The more tasks and available CPUs there are, the more work can be
53  * performed concurrently. This means that the potential that can go
54  * unrealized due to resource contention *also* scales with non-idle
55  * tasks and CPUs.
56  *
57  * Consider a scenario where 257 number crunching tasks are trying to
58  * run concurrently on 256 CPUs. If we simply aggregated the task
59  * states, we would have to conclude a CPU SOME pressure number of
60  * 100%, since *somebody* is waiting on a runqueue at all
61  * times. However, that is clearly not the amount of contention the
62  * workload is experiencing: only one out of 256 possible exceution
63  * threads will be contended at any given time, or about 0.4%.
64  *
65  * Conversely, consider a scenario of 4 tasks and 4 CPUs where at any
66  * given time *one* of the tasks is delayed due to a lack of memory.
67  * Again, looking purely at the task state would yield a memory FULL
68  * pressure number of 0%, since *somebody* is always making forward
69  * progress. But again this wouldn't capture the amount of execution
70  * potential lost, which is 1 out of 4 CPUs, or 25%.
71  *
72  * To calculate wasted potential (pressure) with multiple processors,
73  * we have to base our calculation on the number of non-idle tasks in
74  * conjunction with the number of available CPUs, which is the number
75  * of potential execution threads. SOME becomes then the proportion of
76  * delayed tasks to possibe threads, and FULL is the share of possible
77  * threads that are unproductive due to delays:
78  *
79  *	threads = min(nr_nonidle_tasks, nr_cpus)
80  *	   SOME = min(nr_delayed_tasks / threads, 1)
81  *	   FULL = (threads - min(nr_running_tasks, threads)) / threads
82  *
83  * For the 257 number crunchers on 256 CPUs, this yields:
84  *
85  *	threads = min(257, 256)
86  *	   SOME = min(1 / 256, 1)             = 0.4%
87  *	   FULL = (256 - min(257, 256)) / 256 = 0%
88  *
89  * For the 1 out of 4 memory-delayed tasks, this yields:
90  *
91  *	threads = min(4, 4)
92  *	   SOME = min(1 / 4, 1)               = 25%
93  *	   FULL = (4 - min(3, 4)) / 4         = 25%
94  *
95  * [ Substitute nr_cpus with 1, and you can see that it's a natural
96  *   extension of the single-CPU model. ]
97  *
98  *			Implementation
99  *
100  * To assess the precise time spent in each such state, we would have
101  * to freeze the system on task changes and start/stop the state
102  * clocks accordingly. Obviously that doesn't scale in practice.
103  *
104  * Because the scheduler aims to distribute the compute load evenly
105  * among the available CPUs, we can track task state locally to each
106  * CPU and, at much lower frequency, extrapolate the global state for
107  * the cumulative stall times and the running averages.
108  *
109  * For each runqueue, we track:
110  *
111  *	   tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0)
112  *	   tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_running_tasks[cpu])
113  *	tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0)
114  *
115  * and then periodically aggregate:
116  *
117  *	tNONIDLE = sum(tNONIDLE[i])
118  *
119  *	   tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE
120  *	   tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE
121  *
122  *	   %SOME = tSOME / period
123  *	   %FULL = tFULL / period
124  *
125  * This gives us an approximation of pressure that is practical
126  * cost-wise, yet way more sensitive and accurate than periodic
127  * sampling of the aggregate task states would be.
128  */
129 
130 #include "../workqueue_internal.h"
131 #include <uapi/linux/sched/types.h>
132 #include <linux/sched/loadavg.h>
133 #include <linux/seq_file.h>
134 #include <linux/proc_fs.h>
135 #include <linux/seqlock.h>
136 #include <linux/uaccess.h>
137 #include <linux/cgroup.h>
138 #include <linux/module.h>
139 #include <linux/sched.h>
140 #include <linux/ctype.h>
141 #include <linux/file.h>
142 #include <linux/poll.h>
143 #include <linux/psi.h>
144 #include "sched.h"
145 
146 static int psi_bug __read_mostly;
147 
148 DEFINE_STATIC_KEY_FALSE(psi_disabled);
149 
150 #ifdef CONFIG_PSI_DEFAULT_DISABLED
151 static bool psi_enable;
152 #else
153 static bool psi_enable = true;
154 #endif
setup_psi(char * str)155 static int __init setup_psi(char *str)
156 {
157 	return kstrtobool(str, &psi_enable) == 0;
158 }
159 __setup("psi=", setup_psi);
160 
161 /* Running averages - we need to be higher-res than loadavg */
162 #define PSI_FREQ	(2*HZ+1)	/* 2 sec intervals */
163 #define EXP_10s		1677		/* 1/exp(2s/10s) as fixed-point */
164 #define EXP_60s		1981		/* 1/exp(2s/60s) */
165 #define EXP_300s	2034		/* 1/exp(2s/300s) */
166 
167 /* PSI trigger definitions */
168 #define WINDOW_MIN_US 500000	/* Min window size is 500ms */
169 #define WINDOW_MAX_US 10000000	/* Max window size is 10s */
170 #define UPDATES_PER_WINDOW 10	/* 10 updates per window */
171 
172 /* Sampling frequency in nanoseconds */
173 static u64 psi_period __read_mostly;
174 
175 /* System-level pressure and stall tracking */
176 static DEFINE_PER_CPU(struct psi_group_cpu, system_group_pcpu);
177 static struct psi_group psi_system = {
178 	.pcpu = &system_group_pcpu,
179 };
180 
181 static void psi_avgs_work(struct work_struct *work);
182 
group_init(struct psi_group * group)183 static void group_init(struct psi_group *group)
184 {
185 	int cpu;
186 
187 	for_each_possible_cpu(cpu)
188 		seqcount_init(&per_cpu_ptr(group->pcpu, cpu)->seq);
189 	group->avg_last_update = sched_clock();
190 	group->avg_next_update = group->avg_last_update + psi_period;
191 	INIT_DELAYED_WORK(&group->avgs_work, psi_avgs_work);
192 	mutex_init(&group->avgs_lock);
193 	/* Init trigger-related members */
194 	atomic_set(&group->poll_scheduled, 0);
195 	mutex_init(&group->trigger_lock);
196 	INIT_LIST_HEAD(&group->triggers);
197 	memset(group->nr_triggers, 0, sizeof(group->nr_triggers));
198 	group->poll_states = 0;
199 	group->poll_min_period = U32_MAX;
200 	memset(group->polling_total, 0, sizeof(group->polling_total));
201 	group->polling_next_update = ULLONG_MAX;
202 	group->polling_until = 0;
203 	rcu_assign_pointer(group->poll_kworker, NULL);
204 }
205 
psi_init(void)206 void __init psi_init(void)
207 {
208 	if (!psi_enable) {
209 		static_branch_enable(&psi_disabled);
210 		return;
211 	}
212 
213 	psi_period = jiffies_to_nsecs(PSI_FREQ);
214 	group_init(&psi_system);
215 }
216 
test_state(unsigned int * tasks,enum psi_states state)217 static bool test_state(unsigned int *tasks, enum psi_states state)
218 {
219 	switch (state) {
220 	case PSI_IO_SOME:
221 		return tasks[NR_IOWAIT];
222 	case PSI_IO_FULL:
223 		return tasks[NR_IOWAIT] && !tasks[NR_RUNNING];
224 	case PSI_MEM_SOME:
225 		return tasks[NR_MEMSTALL];
226 	case PSI_MEM_FULL:
227 		return tasks[NR_MEMSTALL] && !tasks[NR_RUNNING];
228 	case PSI_CPU_SOME:
229 		return tasks[NR_RUNNING] > 1;
230 	case PSI_NONIDLE:
231 		return tasks[NR_IOWAIT] || tasks[NR_MEMSTALL] ||
232 			tasks[NR_RUNNING];
233 	default:
234 		return false;
235 	}
236 }
237 
get_recent_times(struct psi_group * group,int cpu,enum psi_aggregators aggregator,u32 * times,u32 * pchanged_states)238 static void get_recent_times(struct psi_group *group, int cpu,
239 			     enum psi_aggregators aggregator, u32 *times,
240 			     u32 *pchanged_states)
241 {
242 	struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu);
243 	u64 now, state_start;
244 	enum psi_states s;
245 	unsigned int seq;
246 	u32 state_mask;
247 
248 	*pchanged_states = 0;
249 
250 	/* Snapshot a coherent view of the CPU state */
251 	do {
252 		seq = read_seqcount_begin(&groupc->seq);
253 		now = cpu_clock(cpu);
254 		memcpy(times, groupc->times, sizeof(groupc->times));
255 		state_mask = groupc->state_mask;
256 		state_start = groupc->state_start;
257 	} while (read_seqcount_retry(&groupc->seq, seq));
258 
259 	/* Calculate state time deltas against the previous snapshot */
260 	for (s = 0; s < NR_PSI_STATES; s++) {
261 		u32 delta;
262 		/*
263 		 * In addition to already concluded states, we also
264 		 * incorporate currently active states on the CPU,
265 		 * since states may last for many sampling periods.
266 		 *
267 		 * This way we keep our delta sampling buckets small
268 		 * (u32) and our reported pressure close to what's
269 		 * actually happening.
270 		 */
271 		if (state_mask & (1 << s))
272 			times[s] += now - state_start;
273 
274 		delta = times[s] - groupc->times_prev[aggregator][s];
275 		groupc->times_prev[aggregator][s] = times[s];
276 
277 		times[s] = delta;
278 		if (delta)
279 			*pchanged_states |= (1 << s);
280 	}
281 }
282 
calc_avgs(unsigned long avg[3],int missed_periods,u64 time,u64 period)283 static void calc_avgs(unsigned long avg[3], int missed_periods,
284 		      u64 time, u64 period)
285 {
286 	unsigned long pct;
287 
288 	/* Fill in zeroes for periods of no activity */
289 	if (missed_periods) {
290 		avg[0] = calc_load_n(avg[0], EXP_10s, 0, missed_periods);
291 		avg[1] = calc_load_n(avg[1], EXP_60s, 0, missed_periods);
292 		avg[2] = calc_load_n(avg[2], EXP_300s, 0, missed_periods);
293 	}
294 
295 	/* Sample the most recent active period */
296 	pct = div_u64(time * 100, period);
297 	pct *= FIXED_1;
298 	avg[0] = calc_load(avg[0], EXP_10s, pct);
299 	avg[1] = calc_load(avg[1], EXP_60s, pct);
300 	avg[2] = calc_load(avg[2], EXP_300s, pct);
301 }
302 
collect_percpu_times(struct psi_group * group,enum psi_aggregators aggregator,u32 * pchanged_states)303 static void collect_percpu_times(struct psi_group *group,
304 				 enum psi_aggregators aggregator,
305 				 u32 *pchanged_states)
306 {
307 	u64 deltas[NR_PSI_STATES - 1] = { 0, };
308 	unsigned long nonidle_total = 0;
309 	u32 changed_states = 0;
310 	int cpu;
311 	int s;
312 
313 	/*
314 	 * Collect the per-cpu time buckets and average them into a
315 	 * single time sample that is normalized to wallclock time.
316 	 *
317 	 * For averaging, each CPU is weighted by its non-idle time in
318 	 * the sampling period. This eliminates artifacts from uneven
319 	 * loading, or even entirely idle CPUs.
320 	 */
321 	for_each_possible_cpu(cpu) {
322 		u32 times[NR_PSI_STATES];
323 		u32 nonidle;
324 		u32 cpu_changed_states;
325 
326 		get_recent_times(group, cpu, aggregator, times,
327 				&cpu_changed_states);
328 		changed_states |= cpu_changed_states;
329 
330 		nonidle = nsecs_to_jiffies(times[PSI_NONIDLE]);
331 		nonidle_total += nonidle;
332 
333 		for (s = 0; s < PSI_NONIDLE; s++)
334 			deltas[s] += (u64)times[s] * nonidle;
335 	}
336 
337 	/*
338 	 * Integrate the sample into the running statistics that are
339 	 * reported to userspace: the cumulative stall times and the
340 	 * decaying averages.
341 	 *
342 	 * Pressure percentages are sampled at PSI_FREQ. We might be
343 	 * called more often when the user polls more frequently than
344 	 * that; we might be called less often when there is no task
345 	 * activity, thus no data, and clock ticks are sporadic. The
346 	 * below handles both.
347 	 */
348 
349 	/* total= */
350 	for (s = 0; s < NR_PSI_STATES - 1; s++)
351 		group->total[aggregator][s] +=
352 				div_u64(deltas[s], max(nonidle_total, 1UL));
353 
354 	if (pchanged_states)
355 		*pchanged_states = changed_states;
356 }
357 
update_averages(struct psi_group * group,u64 now)358 static u64 update_averages(struct psi_group *group, u64 now)
359 {
360 	unsigned long missed_periods = 0;
361 	u64 expires, period;
362 	u64 avg_next_update;
363 	int s;
364 
365 	/* avgX= */
366 	expires = group->avg_next_update;
367 	if (now - expires >= psi_period)
368 		missed_periods = div_u64(now - expires, psi_period);
369 
370 	/*
371 	 * The periodic clock tick can get delayed for various
372 	 * reasons, especially on loaded systems. To avoid clock
373 	 * drift, we schedule the clock in fixed psi_period intervals.
374 	 * But the deltas we sample out of the per-cpu buckets above
375 	 * are based on the actual time elapsing between clock ticks.
376 	 */
377 	avg_next_update = expires + ((1 + missed_periods) * psi_period);
378 	period = now - (group->avg_last_update + (missed_periods * psi_period));
379 	group->avg_last_update = now;
380 
381 	for (s = 0; s < NR_PSI_STATES - 1; s++) {
382 		u32 sample;
383 
384 		sample = group->total[PSI_AVGS][s] - group->avg_total[s];
385 		/*
386 		 * Due to the lockless sampling of the time buckets,
387 		 * recorded time deltas can slip into the next period,
388 		 * which under full pressure can result in samples in
389 		 * excess of the period length.
390 		 *
391 		 * We don't want to report non-sensical pressures in
392 		 * excess of 100%, nor do we want to drop such events
393 		 * on the floor. Instead we punt any overage into the
394 		 * future until pressure subsides. By doing this we
395 		 * don't underreport the occurring pressure curve, we
396 		 * just report it delayed by one period length.
397 		 *
398 		 * The error isn't cumulative. As soon as another
399 		 * delta slips from a period P to P+1, by definition
400 		 * it frees up its time T in P.
401 		 */
402 		if (sample > period)
403 			sample = period;
404 		group->avg_total[s] += sample;
405 		calc_avgs(group->avg[s], missed_periods, sample, period);
406 	}
407 
408 	return avg_next_update;
409 }
410 
psi_avgs_work(struct work_struct * work)411 static void psi_avgs_work(struct work_struct *work)
412 {
413 	struct delayed_work *dwork;
414 	struct psi_group *group;
415 	u32 changed_states;
416 	bool nonidle;
417 	u64 now;
418 
419 	dwork = to_delayed_work(work);
420 	group = container_of(dwork, struct psi_group, avgs_work);
421 
422 	mutex_lock(&group->avgs_lock);
423 
424 	now = sched_clock();
425 
426 	collect_percpu_times(group, PSI_AVGS, &changed_states);
427 	nonidle = changed_states & (1 << PSI_NONIDLE);
428 	/*
429 	 * If there is task activity, periodically fold the per-cpu
430 	 * times and feed samples into the running averages. If things
431 	 * are idle and there is no data to process, stop the clock.
432 	 * Once restarted, we'll catch up the running averages in one
433 	 * go - see calc_avgs() and missed_periods.
434 	 */
435 	if (now >= group->avg_next_update)
436 		group->avg_next_update = update_averages(group, now);
437 
438 	if (nonidle) {
439 		schedule_delayed_work(dwork, nsecs_to_jiffies(
440 				group->avg_next_update - now) + 1);
441 	}
442 
443 	mutex_unlock(&group->avgs_lock);
444 }
445 
446 /* Trigger tracking window manupulations */
window_reset(struct psi_window * win,u64 now,u64 value,u64 prev_growth)447 static void window_reset(struct psi_window *win, u64 now, u64 value,
448 			 u64 prev_growth)
449 {
450 	win->start_time = now;
451 	win->start_value = value;
452 	win->prev_growth = prev_growth;
453 }
454 
455 /*
456  * PSI growth tracking window update and growth calculation routine.
457  *
458  * This approximates a sliding tracking window by interpolating
459  * partially elapsed windows using historical growth data from the
460  * previous intervals. This minimizes memory requirements (by not storing
461  * all the intermediate values in the previous window) and simplifies
462  * the calculations. It works well because PSI signal changes only in
463  * positive direction and over relatively small window sizes the growth
464  * is close to linear.
465  */
window_update(struct psi_window * win,u64 now,u64 value)466 static u64 window_update(struct psi_window *win, u64 now, u64 value)
467 {
468 	u64 elapsed;
469 	u64 growth;
470 
471 	elapsed = now - win->start_time;
472 	growth = value - win->start_value;
473 	/*
474 	 * After each tracking window passes win->start_value and
475 	 * win->start_time get reset and win->prev_growth stores
476 	 * the average per-window growth of the previous window.
477 	 * win->prev_growth is then used to interpolate additional
478 	 * growth from the previous window assuming it was linear.
479 	 */
480 	if (elapsed > win->size)
481 		window_reset(win, now, value, growth);
482 	else {
483 		u32 remaining;
484 
485 		remaining = win->size - elapsed;
486 		growth += div64_u64(win->prev_growth * remaining, win->size);
487 	}
488 
489 	return growth;
490 }
491 
init_triggers(struct psi_group * group,u64 now)492 static void init_triggers(struct psi_group *group, u64 now)
493 {
494 	struct psi_trigger *t;
495 
496 	list_for_each_entry(t, &group->triggers, node)
497 		window_reset(&t->win, now,
498 				group->total[PSI_POLL][t->state], 0);
499 	memcpy(group->polling_total, group->total[PSI_POLL],
500 		   sizeof(group->polling_total));
501 	group->polling_next_update = now + group->poll_min_period;
502 }
503 
update_triggers(struct psi_group * group,u64 now)504 static u64 update_triggers(struct psi_group *group, u64 now)
505 {
506 	struct psi_trigger *t;
507 	bool new_stall = false;
508 	u64 *total = group->total[PSI_POLL];
509 
510 	/*
511 	 * On subsequent updates, calculate growth deltas and let
512 	 * watchers know when their specified thresholds are exceeded.
513 	 */
514 	list_for_each_entry(t, &group->triggers, node) {
515 		u64 growth;
516 
517 		/* Check for stall activity */
518 		if (group->polling_total[t->state] == total[t->state])
519 			continue;
520 
521 		/*
522 		 * Multiple triggers might be looking at the same state,
523 		 * remember to update group->polling_total[] once we've
524 		 * been through all of them. Also remember to extend the
525 		 * polling time if we see new stall activity.
526 		 */
527 		new_stall = true;
528 
529 		/* Calculate growth since last update */
530 		growth = window_update(&t->win, now, total[t->state]);
531 		if (growth < t->threshold)
532 			continue;
533 
534 		/* Limit event signaling to once per window */
535 		if (now < t->last_event_time + t->win.size)
536 			continue;
537 
538 		/* Generate an event */
539 		if (cmpxchg(&t->event, 0, 1) == 0)
540 			wake_up_interruptible(&t->event_wait);
541 		t->last_event_time = now;
542 	}
543 
544 	if (new_stall)
545 		memcpy(group->polling_total, total,
546 				sizeof(group->polling_total));
547 
548 	return now + group->poll_min_period;
549 }
550 
551 /*
552  * Schedule polling if it's not already scheduled. It's safe to call even from
553  * hotpath because even though kthread_queue_delayed_work takes worker->lock
554  * spinlock that spinlock is never contended due to poll_scheduled atomic
555  * preventing such competition.
556  */
psi_schedule_poll_work(struct psi_group * group,unsigned long delay)557 static void psi_schedule_poll_work(struct psi_group *group, unsigned long delay)
558 {
559 	struct kthread_worker *kworker;
560 
561 	/* Do not reschedule if already scheduled */
562 	if (atomic_cmpxchg(&group->poll_scheduled, 0, 1) != 0)
563 		return;
564 
565 	rcu_read_lock();
566 
567 	kworker = rcu_dereference(group->poll_kworker);
568 	/*
569 	 * kworker might be NULL in case psi_trigger_destroy races with
570 	 * psi_task_change (hotpath) which can't use locks
571 	 */
572 	if (likely(kworker))
573 		kthread_queue_delayed_work(kworker, &group->poll_work, delay);
574 	else
575 		atomic_set(&group->poll_scheduled, 0);
576 
577 	rcu_read_unlock();
578 }
579 
psi_poll_work(struct kthread_work * work)580 static void psi_poll_work(struct kthread_work *work)
581 {
582 	struct kthread_delayed_work *dwork;
583 	struct psi_group *group;
584 	u32 changed_states;
585 	u64 now;
586 
587 	dwork = container_of(work, struct kthread_delayed_work, work);
588 	group = container_of(dwork, struct psi_group, poll_work);
589 
590 	atomic_set(&group->poll_scheduled, 0);
591 
592 	mutex_lock(&group->trigger_lock);
593 
594 	now = sched_clock();
595 
596 	collect_percpu_times(group, PSI_POLL, &changed_states);
597 
598 	if (changed_states & group->poll_states) {
599 		/* Initialize trigger windows when entering polling mode */
600 		if (now > group->polling_until)
601 			init_triggers(group, now);
602 
603 		/*
604 		 * Keep the monitor active for at least the duration of the
605 		 * minimum tracking window as long as monitor states are
606 		 * changing.
607 		 */
608 		group->polling_until = now +
609 			group->poll_min_period * UPDATES_PER_WINDOW;
610 	}
611 
612 	if (now > group->polling_until) {
613 		group->polling_next_update = ULLONG_MAX;
614 		goto out;
615 	}
616 
617 	if (now >= group->polling_next_update)
618 		group->polling_next_update = update_triggers(group, now);
619 
620 	psi_schedule_poll_work(group,
621 		nsecs_to_jiffies(group->polling_next_update - now) + 1);
622 
623 out:
624 	mutex_unlock(&group->trigger_lock);
625 }
626 
record_times(struct psi_group_cpu * groupc,int cpu,bool memstall_tick)627 static void record_times(struct psi_group_cpu *groupc, int cpu,
628 			 bool memstall_tick)
629 {
630 	u32 delta;
631 	u64 now;
632 
633 	now = cpu_clock(cpu);
634 	delta = now - groupc->state_start;
635 	groupc->state_start = now;
636 
637 	if (groupc->state_mask & (1 << PSI_IO_SOME)) {
638 		groupc->times[PSI_IO_SOME] += delta;
639 		if (groupc->state_mask & (1 << PSI_IO_FULL))
640 			groupc->times[PSI_IO_FULL] += delta;
641 	}
642 
643 	if (groupc->state_mask & (1 << PSI_MEM_SOME)) {
644 		groupc->times[PSI_MEM_SOME] += delta;
645 		if (groupc->state_mask & (1 << PSI_MEM_FULL))
646 			groupc->times[PSI_MEM_FULL] += delta;
647 		else if (memstall_tick) {
648 			u32 sample;
649 			/*
650 			 * Since we care about lost potential, a
651 			 * memstall is FULL when there are no other
652 			 * working tasks, but also when the CPU is
653 			 * actively reclaiming and nothing productive
654 			 * could run even if it were runnable.
655 			 *
656 			 * When the timer tick sees a reclaiming CPU,
657 			 * regardless of runnable tasks, sample a FULL
658 			 * tick (or less if it hasn't been a full tick
659 			 * since the last state change).
660 			 */
661 			sample = min(delta, (u32)jiffies_to_nsecs(1));
662 			groupc->times[PSI_MEM_FULL] += sample;
663 		}
664 	}
665 
666 	if (groupc->state_mask & (1 << PSI_CPU_SOME))
667 		groupc->times[PSI_CPU_SOME] += delta;
668 
669 	if (groupc->state_mask & (1 << PSI_NONIDLE))
670 		groupc->times[PSI_NONIDLE] += delta;
671 }
672 
psi_group_change(struct psi_group * group,int cpu,unsigned int clear,unsigned int set)673 static u32 psi_group_change(struct psi_group *group, int cpu,
674 			    unsigned int clear, unsigned int set)
675 {
676 	struct psi_group_cpu *groupc;
677 	unsigned int t, m;
678 	enum psi_states s;
679 	u32 state_mask = 0;
680 
681 	groupc = per_cpu_ptr(group->pcpu, cpu);
682 
683 	/*
684 	 * First we assess the aggregate resource states this CPU's
685 	 * tasks have been in since the last change, and account any
686 	 * SOME and FULL time these may have resulted in.
687 	 *
688 	 * Then we update the task counts according to the state
689 	 * change requested through the @clear and @set bits.
690 	 */
691 	write_seqcount_begin(&groupc->seq);
692 
693 	record_times(groupc, cpu, false);
694 
695 	for (t = 0, m = clear; m; m &= ~(1 << t), t++) {
696 		if (!(m & (1 << t)))
697 			continue;
698 		if (groupc->tasks[t] == 0 && !psi_bug) {
699 			printk_deferred(KERN_ERR "psi: task underflow! cpu=%d t=%d tasks=[%u %u %u] clear=%x set=%x\n",
700 					cpu, t, groupc->tasks[0],
701 					groupc->tasks[1], groupc->tasks[2],
702 					clear, set);
703 			psi_bug = 1;
704 		}
705 		groupc->tasks[t]--;
706 	}
707 
708 	for (t = 0; set; set &= ~(1 << t), t++)
709 		if (set & (1 << t))
710 			groupc->tasks[t]++;
711 
712 	/* Calculate state mask representing active states */
713 	for (s = 0; s < NR_PSI_STATES; s++) {
714 		if (test_state(groupc->tasks, s))
715 			state_mask |= (1 << s);
716 	}
717 	groupc->state_mask = state_mask;
718 
719 	write_seqcount_end(&groupc->seq);
720 
721 	return state_mask;
722 }
723 
iterate_groups(struct task_struct * task,void ** iter)724 static struct psi_group *iterate_groups(struct task_struct *task, void **iter)
725 {
726 #ifdef CONFIG_CGROUPS
727 	struct cgroup *cgroup = NULL;
728 
729 	if (!*iter)
730 		cgroup = task->cgroups->dfl_cgrp;
731 	else if (*iter == &psi_system)
732 		return NULL;
733 	else
734 		cgroup = cgroup_parent(*iter);
735 
736 	if (cgroup && cgroup_parent(cgroup)) {
737 		*iter = cgroup;
738 		return cgroup_psi(cgroup);
739 	}
740 #else
741 	if (*iter)
742 		return NULL;
743 #endif
744 	*iter = &psi_system;
745 	return &psi_system;
746 }
747 
psi_task_change(struct task_struct * task,int clear,int set)748 void psi_task_change(struct task_struct *task, int clear, int set)
749 {
750 	int cpu = task_cpu(task);
751 	struct psi_group *group;
752 	bool wake_clock = true;
753 	void *iter = NULL;
754 
755 	if (!task->pid)
756 		return;
757 
758 	if (((task->psi_flags & set) ||
759 	     (task->psi_flags & clear) != clear) &&
760 	    !psi_bug) {
761 		printk_deferred(KERN_ERR "psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n",
762 				task->pid, task->comm, cpu,
763 				task->psi_flags, clear, set);
764 		psi_bug = 1;
765 	}
766 
767 	task->psi_flags &= ~clear;
768 	task->psi_flags |= set;
769 
770 	/*
771 	 * Periodic aggregation shuts off if there is a period of no
772 	 * task changes, so we wake it back up if necessary. However,
773 	 * don't do this if the task change is the aggregation worker
774 	 * itself going to sleep, or we'll ping-pong forever.
775 	 */
776 	if (unlikely((clear & TSK_RUNNING) &&
777 		     (task->flags & PF_WQ_WORKER) &&
778 		     wq_worker_last_func(task) == psi_avgs_work))
779 		wake_clock = false;
780 
781 	while ((group = iterate_groups(task, &iter))) {
782 		u32 state_mask = psi_group_change(group, cpu, clear, set);
783 
784 		if (state_mask & group->poll_states)
785 			psi_schedule_poll_work(group, 1);
786 
787 		if (wake_clock && !delayed_work_pending(&group->avgs_work))
788 			schedule_delayed_work(&group->avgs_work, PSI_FREQ);
789 	}
790 }
791 
psi_memstall_tick(struct task_struct * task,int cpu)792 void psi_memstall_tick(struct task_struct *task, int cpu)
793 {
794 	struct psi_group *group;
795 	void *iter = NULL;
796 
797 	while ((group = iterate_groups(task, &iter))) {
798 		struct psi_group_cpu *groupc;
799 
800 		groupc = per_cpu_ptr(group->pcpu, cpu);
801 		write_seqcount_begin(&groupc->seq);
802 		record_times(groupc, cpu, true);
803 		write_seqcount_end(&groupc->seq);
804 	}
805 }
806 
807 /**
808  * psi_memstall_enter - mark the beginning of a memory stall section
809  * @flags: flags to handle nested sections
810  *
811  * Marks the calling task as being stalled due to a lack of memory,
812  * such as waiting for a refault or performing reclaim.
813  */
psi_memstall_enter(unsigned long * flags)814 void psi_memstall_enter(unsigned long *flags)
815 {
816 	struct rq_flags rf;
817 	struct rq *rq;
818 
819 	if (static_branch_likely(&psi_disabled))
820 		return;
821 
822 	*flags = current->flags & PF_MEMSTALL;
823 	if (*flags)
824 		return;
825 	/*
826 	 * PF_MEMSTALL setting & accounting needs to be atomic wrt
827 	 * changes to the task's scheduling state, otherwise we can
828 	 * race with CPU migration.
829 	 */
830 	rq = this_rq_lock_irq(&rf);
831 
832 	current->flags |= PF_MEMSTALL;
833 	psi_task_change(current, 0, TSK_MEMSTALL);
834 
835 	rq_unlock_irq(rq, &rf);
836 }
837 
838 /**
839  * psi_memstall_leave - mark the end of an memory stall section
840  * @flags: flags to handle nested memdelay sections
841  *
842  * Marks the calling task as no longer stalled due to lack of memory.
843  */
psi_memstall_leave(unsigned long * flags)844 void psi_memstall_leave(unsigned long *flags)
845 {
846 	struct rq_flags rf;
847 	struct rq *rq;
848 
849 	if (static_branch_likely(&psi_disabled))
850 		return;
851 
852 	if (*flags)
853 		return;
854 	/*
855 	 * PF_MEMSTALL clearing & accounting needs to be atomic wrt
856 	 * changes to the task's scheduling state, otherwise we could
857 	 * race with CPU migration.
858 	 */
859 	rq = this_rq_lock_irq(&rf);
860 
861 	current->flags &= ~PF_MEMSTALL;
862 	psi_task_change(current, TSK_MEMSTALL, 0);
863 
864 	rq_unlock_irq(rq, &rf);
865 }
866 
867 #ifdef CONFIG_CGROUPS
psi_cgroup_alloc(struct cgroup * cgroup)868 int psi_cgroup_alloc(struct cgroup *cgroup)
869 {
870 	if (static_branch_likely(&psi_disabled))
871 		return 0;
872 
873 	cgroup->psi.pcpu = alloc_percpu(struct psi_group_cpu);
874 	if (!cgroup->psi.pcpu)
875 		return -ENOMEM;
876 	group_init(&cgroup->psi);
877 	return 0;
878 }
879 
psi_cgroup_free(struct cgroup * cgroup)880 void psi_cgroup_free(struct cgroup *cgroup)
881 {
882 	if (static_branch_likely(&psi_disabled))
883 		return;
884 
885 	cancel_delayed_work_sync(&cgroup->psi.avgs_work);
886 	free_percpu(cgroup->psi.pcpu);
887 	/* All triggers must be removed by now */
888 	WARN_ONCE(cgroup->psi.poll_states, "psi: trigger leak\n");
889 }
890 
891 /**
892  * cgroup_move_task - move task to a different cgroup
893  * @task: the task
894  * @to: the target css_set
895  *
896  * Move task to a new cgroup and safely migrate its associated stall
897  * state between the different groups.
898  *
899  * This function acquires the task's rq lock to lock out concurrent
900  * changes to the task's scheduling state and - in case the task is
901  * running - concurrent changes to its stall state.
902  */
cgroup_move_task(struct task_struct * task,struct css_set * to)903 void cgroup_move_task(struct task_struct *task, struct css_set *to)
904 {
905 	unsigned int task_flags = 0;
906 	struct rq_flags rf;
907 	struct rq *rq;
908 
909 	if (static_branch_likely(&psi_disabled)) {
910 		/*
911 		 * Lame to do this here, but the scheduler cannot be locked
912 		 * from the outside, so we move cgroups from inside sched/.
913 		 */
914 		rcu_assign_pointer(task->cgroups, to);
915 		return;
916 	}
917 
918 	rq = task_rq_lock(task, &rf);
919 
920 	if (task_on_rq_queued(task))
921 		task_flags = TSK_RUNNING;
922 	else if (task->in_iowait)
923 		task_flags = TSK_IOWAIT;
924 
925 	if (task->flags & PF_MEMSTALL)
926 		task_flags |= TSK_MEMSTALL;
927 
928 	if (task_flags)
929 		psi_task_change(task, task_flags, 0);
930 
931 	/* See comment above */
932 	rcu_assign_pointer(task->cgroups, to);
933 
934 	if (task_flags)
935 		psi_task_change(task, 0, task_flags);
936 
937 	task_rq_unlock(rq, task, &rf);
938 }
939 #endif /* CONFIG_CGROUPS */
940 
psi_show(struct seq_file * m,struct psi_group * group,enum psi_res res)941 int psi_show(struct seq_file *m, struct psi_group *group, enum psi_res res)
942 {
943 	int full;
944 	u64 now;
945 
946 	if (static_branch_likely(&psi_disabled))
947 		return -EOPNOTSUPP;
948 
949 	/* Update averages before reporting them */
950 	mutex_lock(&group->avgs_lock);
951 	now = sched_clock();
952 	collect_percpu_times(group, PSI_AVGS, NULL);
953 	if (now >= group->avg_next_update)
954 		group->avg_next_update = update_averages(group, now);
955 	mutex_unlock(&group->avgs_lock);
956 
957 	for (full = 0; full < 2 - (res == PSI_CPU); full++) {
958 		unsigned long avg[3];
959 		u64 total;
960 		int w;
961 
962 		for (w = 0; w < 3; w++)
963 			avg[w] = group->avg[res * 2 + full][w];
964 		total = div_u64(group->total[PSI_AVGS][res * 2 + full],
965 				NSEC_PER_USEC);
966 
967 		seq_printf(m, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n",
968 			   full ? "full" : "some",
969 			   LOAD_INT(avg[0]), LOAD_FRAC(avg[0]),
970 			   LOAD_INT(avg[1]), LOAD_FRAC(avg[1]),
971 			   LOAD_INT(avg[2]), LOAD_FRAC(avg[2]),
972 			   total);
973 	}
974 
975 	return 0;
976 }
977 
psi_io_show(struct seq_file * m,void * v)978 static int psi_io_show(struct seq_file *m, void *v)
979 {
980 	return psi_show(m, &psi_system, PSI_IO);
981 }
982 
psi_memory_show(struct seq_file * m,void * v)983 static int psi_memory_show(struct seq_file *m, void *v)
984 {
985 	return psi_show(m, &psi_system, PSI_MEM);
986 }
987 
psi_cpu_show(struct seq_file * m,void * v)988 static int psi_cpu_show(struct seq_file *m, void *v)
989 {
990 	return psi_show(m, &psi_system, PSI_CPU);
991 }
992 
psi_io_open(struct inode * inode,struct file * file)993 static int psi_io_open(struct inode *inode, struct file *file)
994 {
995 	return single_open(file, psi_io_show, NULL);
996 }
997 
psi_memory_open(struct inode * inode,struct file * file)998 static int psi_memory_open(struct inode *inode, struct file *file)
999 {
1000 	return single_open(file, psi_memory_show, NULL);
1001 }
1002 
psi_cpu_open(struct inode * inode,struct file * file)1003 static int psi_cpu_open(struct inode *inode, struct file *file)
1004 {
1005 	return single_open(file, psi_cpu_show, NULL);
1006 }
1007 
psi_trigger_create(struct psi_group * group,char * buf,size_t nbytes,enum psi_res res)1008 struct psi_trigger *psi_trigger_create(struct psi_group *group,
1009 			char *buf, size_t nbytes, enum psi_res res)
1010 {
1011 	struct psi_trigger *t;
1012 	enum psi_states state;
1013 	u32 threshold_us;
1014 	u32 window_us;
1015 
1016 	if (static_branch_likely(&psi_disabled))
1017 		return ERR_PTR(-EOPNOTSUPP);
1018 
1019 	if (sscanf(buf, "some %u %u", &threshold_us, &window_us) == 2)
1020 		state = PSI_IO_SOME + res * 2;
1021 	else if (sscanf(buf, "full %u %u", &threshold_us, &window_us) == 2)
1022 		state = PSI_IO_FULL + res * 2;
1023 	else
1024 		return ERR_PTR(-EINVAL);
1025 
1026 	if (state >= PSI_NONIDLE)
1027 		return ERR_PTR(-EINVAL);
1028 
1029 	if (window_us < WINDOW_MIN_US ||
1030 		window_us > WINDOW_MAX_US)
1031 		return ERR_PTR(-EINVAL);
1032 
1033 	/* Check threshold */
1034 	if (threshold_us == 0 || threshold_us > window_us)
1035 		return ERR_PTR(-EINVAL);
1036 
1037 	t = kmalloc(sizeof(*t), GFP_KERNEL);
1038 	if (!t)
1039 		return ERR_PTR(-ENOMEM);
1040 
1041 	t->group = group;
1042 	t->state = state;
1043 	t->threshold = threshold_us * NSEC_PER_USEC;
1044 	t->win.size = window_us * NSEC_PER_USEC;
1045 	window_reset(&t->win, 0, 0, 0);
1046 
1047 	t->event = 0;
1048 	t->last_event_time = 0;
1049 	init_waitqueue_head(&t->event_wait);
1050 	kref_init(&t->refcount);
1051 
1052 	mutex_lock(&group->trigger_lock);
1053 
1054 	if (!rcu_access_pointer(group->poll_kworker)) {
1055 		struct sched_param param = {
1056 			.sched_priority = MAX_RT_PRIO - 1,
1057 		};
1058 		struct kthread_worker *kworker;
1059 
1060 		kworker = kthread_create_worker(0, "psimon");
1061 		if (IS_ERR(kworker)) {
1062 			kfree(t);
1063 			mutex_unlock(&group->trigger_lock);
1064 			return ERR_CAST(kworker);
1065 		}
1066 		sched_setscheduler(kworker->task, SCHED_FIFO, &param);
1067 		kthread_init_delayed_work(&group->poll_work,
1068 				psi_poll_work);
1069 		rcu_assign_pointer(group->poll_kworker, kworker);
1070 	}
1071 
1072 	list_add(&t->node, &group->triggers);
1073 	group->poll_min_period = min(group->poll_min_period,
1074 		div_u64(t->win.size, UPDATES_PER_WINDOW));
1075 	group->nr_triggers[t->state]++;
1076 	group->poll_states |= (1 << t->state);
1077 
1078 	mutex_unlock(&group->trigger_lock);
1079 
1080 	return t;
1081 }
1082 
psi_trigger_destroy(struct kref * ref)1083 static void psi_trigger_destroy(struct kref *ref)
1084 {
1085 	struct psi_trigger *t = container_of(ref, struct psi_trigger, refcount);
1086 	struct psi_group *group = t->group;
1087 	struct kthread_worker *kworker_to_destroy = NULL;
1088 
1089 	if (static_branch_likely(&psi_disabled))
1090 		return;
1091 
1092 	/*
1093 	 * Wakeup waiters to stop polling. Can happen if cgroup is deleted
1094 	 * from under a polling process.
1095 	 */
1096 	wake_up_interruptible(&t->event_wait);
1097 
1098 	mutex_lock(&group->trigger_lock);
1099 
1100 	if (!list_empty(&t->node)) {
1101 		struct psi_trigger *tmp;
1102 		u64 period = ULLONG_MAX;
1103 
1104 		list_del(&t->node);
1105 		group->nr_triggers[t->state]--;
1106 		if (!group->nr_triggers[t->state])
1107 			group->poll_states &= ~(1 << t->state);
1108 		/* reset min update period for the remaining triggers */
1109 		list_for_each_entry(tmp, &group->triggers, node)
1110 			period = min(period, div_u64(tmp->win.size,
1111 					UPDATES_PER_WINDOW));
1112 		group->poll_min_period = period;
1113 		/* Destroy poll_kworker when the last trigger is destroyed */
1114 		if (group->poll_states == 0) {
1115 			group->polling_until = 0;
1116 			kworker_to_destroy = rcu_dereference_protected(
1117 					group->poll_kworker,
1118 					lockdep_is_held(&group->trigger_lock));
1119 			rcu_assign_pointer(group->poll_kworker, NULL);
1120 		}
1121 	}
1122 
1123 	mutex_unlock(&group->trigger_lock);
1124 
1125 	/*
1126 	 * Wait for both *trigger_ptr from psi_trigger_replace and
1127 	 * poll_kworker RCUs to complete their read-side critical sections
1128 	 * before destroying the trigger and optionally the poll_kworker
1129 	 */
1130 	synchronize_rcu();
1131 	/*
1132 	 * Destroy the kworker after releasing trigger_lock to prevent a
1133 	 * deadlock while waiting for psi_poll_work to acquire trigger_lock
1134 	 */
1135 	if (kworker_to_destroy) {
1136 		kthread_cancel_delayed_work_sync(&group->poll_work);
1137 		kthread_destroy_worker(kworker_to_destroy);
1138 	}
1139 	kfree(t);
1140 }
1141 
psi_trigger_replace(void ** trigger_ptr,struct psi_trigger * new)1142 void psi_trigger_replace(void **trigger_ptr, struct psi_trigger *new)
1143 {
1144 	struct psi_trigger *old = *trigger_ptr;
1145 
1146 	if (static_branch_likely(&psi_disabled))
1147 		return;
1148 
1149 	rcu_assign_pointer(*trigger_ptr, new);
1150 	if (old)
1151 		kref_put(&old->refcount, psi_trigger_destroy);
1152 }
1153 
psi_trigger_poll(void ** trigger_ptr,struct file * file,poll_table * wait)1154 unsigned int psi_trigger_poll(void **trigger_ptr, struct file *file,
1155 			      poll_table *wait)
1156 {
1157 	unsigned int ret = DEFAULT_POLLMASK;
1158 	struct psi_trigger *t;
1159 
1160 	if (static_branch_likely(&psi_disabled))
1161 		return DEFAULT_POLLMASK | POLLERR | POLLPRI;
1162 
1163 	rcu_read_lock();
1164 
1165 	t = rcu_dereference(*(void __rcu __force **)trigger_ptr);
1166 	if (!t) {
1167 		rcu_read_unlock();
1168 		return DEFAULT_POLLMASK | POLLERR | POLLPRI;
1169 	}
1170 	kref_get(&t->refcount);
1171 
1172 	rcu_read_unlock();
1173 
1174 	poll_wait(file, &t->event_wait, wait);
1175 
1176 	if (cmpxchg(&t->event, 1, 0) == 1)
1177 		ret |= POLLPRI;
1178 
1179 	kref_put(&t->refcount, psi_trigger_destroy);
1180 
1181 	return ret;
1182 }
1183 
psi_write(struct file * file,const char __user * user_buf,size_t nbytes,enum psi_res res)1184 static ssize_t psi_write(struct file *file, const char __user *user_buf,
1185 			 size_t nbytes, enum psi_res res)
1186 {
1187 	char buf[32];
1188 	size_t buf_size;
1189 	struct seq_file *seq;
1190 	struct psi_trigger *new;
1191 
1192 	if (static_branch_likely(&psi_disabled))
1193 		return -EOPNOTSUPP;
1194 
1195 	if (!nbytes)
1196 		return -EINVAL;
1197 
1198 	buf_size = min(nbytes, sizeof(buf));
1199 	if (copy_from_user(buf, user_buf, buf_size))
1200 		return -EFAULT;
1201 
1202 	buf[buf_size - 1] = '\0';
1203 
1204 	new = psi_trigger_create(&psi_system, buf, nbytes, res);
1205 	if (IS_ERR(new))
1206 		return PTR_ERR(new);
1207 
1208 	seq = file->private_data;
1209 	/* Take seq->lock to protect seq->private from concurrent writes */
1210 	mutex_lock(&seq->lock);
1211 	psi_trigger_replace(&seq->private, new);
1212 	mutex_unlock(&seq->lock);
1213 
1214 	return nbytes;
1215 }
1216 
psi_io_write(struct file * file,const char __user * user_buf,size_t nbytes,loff_t * ppos)1217 static ssize_t psi_io_write(struct file *file, const char __user *user_buf,
1218 			    size_t nbytes, loff_t *ppos)
1219 {
1220 	return psi_write(file, user_buf, nbytes, PSI_IO);
1221 }
1222 
psi_memory_write(struct file * file,const char __user * user_buf,size_t nbytes,loff_t * ppos)1223 static ssize_t psi_memory_write(struct file *file, const char __user *user_buf,
1224 				size_t nbytes, loff_t *ppos)
1225 {
1226 	return psi_write(file, user_buf, nbytes, PSI_MEM);
1227 }
1228 
psi_cpu_write(struct file * file,const char __user * user_buf,size_t nbytes,loff_t * ppos)1229 static ssize_t psi_cpu_write(struct file *file, const char __user *user_buf,
1230 			     size_t nbytes, loff_t *ppos)
1231 {
1232 	return psi_write(file, user_buf, nbytes, PSI_CPU);
1233 }
1234 
psi_fop_poll(struct file * file,poll_table * wait)1235 static unsigned int psi_fop_poll(struct file *file, poll_table *wait)
1236 {
1237 	struct seq_file *seq = file->private_data;
1238 
1239 	return psi_trigger_poll(&seq->private, file, wait);
1240 }
1241 
psi_fop_release(struct inode * inode,struct file * file)1242 static int psi_fop_release(struct inode *inode, struct file *file)
1243 {
1244 	struct seq_file *seq = file->private_data;
1245 
1246 	psi_trigger_replace(&seq->private, NULL);
1247 	return single_release(inode, file);
1248 }
1249 
1250 static const struct file_operations psi_io_fops = {
1251 	.open           = psi_io_open,
1252 	.read           = seq_read,
1253 	.llseek         = seq_lseek,
1254 	.write          = psi_io_write,
1255 	.poll           = psi_fop_poll,
1256 	.release        = psi_fop_release,
1257 };
1258 
1259 static const struct file_operations psi_memory_fops = {
1260 	.open           = psi_memory_open,
1261 	.read           = seq_read,
1262 	.llseek         = seq_lseek,
1263 	.write          = psi_memory_write,
1264 	.poll           = psi_fop_poll,
1265 	.release        = psi_fop_release,
1266 };
1267 
1268 static const struct file_operations psi_cpu_fops = {
1269 	.open           = psi_cpu_open,
1270 	.read           = seq_read,
1271 	.llseek         = seq_lseek,
1272 	.write          = psi_cpu_write,
1273 	.poll           = psi_fop_poll,
1274 	.release        = psi_fop_release,
1275 };
1276 
psi_proc_init(void)1277 static int __init psi_proc_init(void)
1278 {
1279 	proc_mkdir("pressure", NULL);
1280 	proc_create("pressure/io", 0, NULL, &psi_io_fops);
1281 	proc_create("pressure/memory", 0, NULL, &psi_memory_fops);
1282 	proc_create("pressure/cpu", 0, NULL, &psi_cpu_fops);
1283 	return 0;
1284 }
1285 module_init(psi_proc_init);
1286