1 /*
2 * Pressure stall information for CPU, memory and IO
3 *
4 * Copyright (c) 2018 Facebook, Inc.
5 * Author: Johannes Weiner <hannes@cmpxchg.org>
6 *
7 * Polling support by Suren Baghdasaryan <surenb@google.com>
8 * Copyright (c) 2018 Google, Inc.
9 *
10 * When CPU, memory and IO are contended, tasks experience delays that
11 * reduce throughput and introduce latencies into the workload. Memory
12 * and IO contention, in addition, can cause a full loss of forward
13 * progress in which the CPU goes idle.
14 *
15 * This code aggregates individual task delays into resource pressure
16 * metrics that indicate problems with both workload health and
17 * resource utilization.
18 *
19 * Model
20 *
21 * The time in which a task can execute on a CPU is our baseline for
22 * productivity. Pressure expresses the amount of time in which this
23 * potential cannot be realized due to resource contention.
24 *
25 * This concept of productivity has two components: the workload and
26 * the CPU. To measure the impact of pressure on both, we define two
27 * contention states for a resource: SOME and FULL.
28 *
29 * In the SOME state of a given resource, one or more tasks are
30 * delayed on that resource. This affects the workload's ability to
31 * perform work, but the CPU may still be executing other tasks.
32 *
33 * In the FULL state of a given resource, all non-idle tasks are
34 * delayed on that resource such that nobody is advancing and the CPU
35 * goes idle. This leaves both workload and CPU unproductive.
36 *
37 * (Naturally, the FULL state doesn't exist for the CPU resource.)
38 *
39 * SOME = nr_delayed_tasks != 0
40 * FULL = nr_delayed_tasks != 0 && nr_running_tasks == 0
41 *
42 * The percentage of wallclock time spent in those compound stall
43 * states gives pressure numbers between 0 and 100 for each resource,
44 * where the SOME percentage indicates workload slowdowns and the FULL
45 * percentage indicates reduced CPU utilization:
46 *
47 * %SOME = time(SOME) / period
48 * %FULL = time(FULL) / period
49 *
50 * Multiple CPUs
51 *
52 * The more tasks and available CPUs there are, the more work can be
53 * performed concurrently. This means that the potential that can go
54 * unrealized due to resource contention *also* scales with non-idle
55 * tasks and CPUs.
56 *
57 * Consider a scenario where 257 number crunching tasks are trying to
58 * run concurrently on 256 CPUs. If we simply aggregated the task
59 * states, we would have to conclude a CPU SOME pressure number of
60 * 100%, since *somebody* is waiting on a runqueue at all
61 * times. However, that is clearly not the amount of contention the
62 * workload is experiencing: only one out of 256 possible exceution
63 * threads will be contended at any given time, or about 0.4%.
64 *
65 * Conversely, consider a scenario of 4 tasks and 4 CPUs where at any
66 * given time *one* of the tasks is delayed due to a lack of memory.
67 * Again, looking purely at the task state would yield a memory FULL
68 * pressure number of 0%, since *somebody* is always making forward
69 * progress. But again this wouldn't capture the amount of execution
70 * potential lost, which is 1 out of 4 CPUs, or 25%.
71 *
72 * To calculate wasted potential (pressure) with multiple processors,
73 * we have to base our calculation on the number of non-idle tasks in
74 * conjunction with the number of available CPUs, which is the number
75 * of potential execution threads. SOME becomes then the proportion of
76 * delayed tasks to possibe threads, and FULL is the share of possible
77 * threads that are unproductive due to delays:
78 *
79 * threads = min(nr_nonidle_tasks, nr_cpus)
80 * SOME = min(nr_delayed_tasks / threads, 1)
81 * FULL = (threads - min(nr_running_tasks, threads)) / threads
82 *
83 * For the 257 number crunchers on 256 CPUs, this yields:
84 *
85 * threads = min(257, 256)
86 * SOME = min(1 / 256, 1) = 0.4%
87 * FULL = (256 - min(257, 256)) / 256 = 0%
88 *
89 * For the 1 out of 4 memory-delayed tasks, this yields:
90 *
91 * threads = min(4, 4)
92 * SOME = min(1 / 4, 1) = 25%
93 * FULL = (4 - min(3, 4)) / 4 = 25%
94 *
95 * [ Substitute nr_cpus with 1, and you can see that it's a natural
96 * extension of the single-CPU model. ]
97 *
98 * Implementation
99 *
100 * To assess the precise time spent in each such state, we would have
101 * to freeze the system on task changes and start/stop the state
102 * clocks accordingly. Obviously that doesn't scale in practice.
103 *
104 * Because the scheduler aims to distribute the compute load evenly
105 * among the available CPUs, we can track task state locally to each
106 * CPU and, at much lower frequency, extrapolate the global state for
107 * the cumulative stall times and the running averages.
108 *
109 * For each runqueue, we track:
110 *
111 * tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0)
112 * tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_running_tasks[cpu])
113 * tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0)
114 *
115 * and then periodically aggregate:
116 *
117 * tNONIDLE = sum(tNONIDLE[i])
118 *
119 * tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE
120 * tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE
121 *
122 * %SOME = tSOME / period
123 * %FULL = tFULL / period
124 *
125 * This gives us an approximation of pressure that is practical
126 * cost-wise, yet way more sensitive and accurate than periodic
127 * sampling of the aggregate task states would be.
128 */
129
130 #include "../workqueue_internal.h"
131 #include <uapi/linux/sched/types.h>
132 #include <linux/sched/loadavg.h>
133 #include <linux/seq_file.h>
134 #include <linux/proc_fs.h>
135 #include <linux/seqlock.h>
136 #include <linux/uaccess.h>
137 #include <linux/cgroup.h>
138 #include <linux/module.h>
139 #include <linux/sched.h>
140 #include <linux/ctype.h>
141 #include <linux/file.h>
142 #include <linux/poll.h>
143 #include <linux/psi.h>
144 #include "sched.h"
145
146 static int psi_bug __read_mostly;
147
148 DEFINE_STATIC_KEY_FALSE(psi_disabled);
149
150 #ifdef CONFIG_PSI_DEFAULT_DISABLED
151 static bool psi_enable;
152 #else
153 static bool psi_enable = true;
154 #endif
setup_psi(char * str)155 static int __init setup_psi(char *str)
156 {
157 return kstrtobool(str, &psi_enable) == 0;
158 }
159 __setup("psi=", setup_psi);
160
161 /* Running averages - we need to be higher-res than loadavg */
162 #define PSI_FREQ (2*HZ+1) /* 2 sec intervals */
163 #define EXP_10s 1677 /* 1/exp(2s/10s) as fixed-point */
164 #define EXP_60s 1981 /* 1/exp(2s/60s) */
165 #define EXP_300s 2034 /* 1/exp(2s/300s) */
166
167 /* PSI trigger definitions */
168 #define WINDOW_MIN_US 500000 /* Min window size is 500ms */
169 #define WINDOW_MAX_US 10000000 /* Max window size is 10s */
170 #define UPDATES_PER_WINDOW 10 /* 10 updates per window */
171
172 /* Sampling frequency in nanoseconds */
173 static u64 psi_period __read_mostly;
174
175 /* System-level pressure and stall tracking */
176 static DEFINE_PER_CPU(struct psi_group_cpu, system_group_pcpu);
177 static struct psi_group psi_system = {
178 .pcpu = &system_group_pcpu,
179 };
180
181 static void psi_avgs_work(struct work_struct *work);
182
group_init(struct psi_group * group)183 static void group_init(struct psi_group *group)
184 {
185 int cpu;
186
187 for_each_possible_cpu(cpu)
188 seqcount_init(&per_cpu_ptr(group->pcpu, cpu)->seq);
189 group->avg_last_update = sched_clock();
190 group->avg_next_update = group->avg_last_update + psi_period;
191 INIT_DELAYED_WORK(&group->avgs_work, psi_avgs_work);
192 mutex_init(&group->avgs_lock);
193 /* Init trigger-related members */
194 atomic_set(&group->poll_scheduled, 0);
195 mutex_init(&group->trigger_lock);
196 INIT_LIST_HEAD(&group->triggers);
197 memset(group->nr_triggers, 0, sizeof(group->nr_triggers));
198 group->poll_states = 0;
199 group->poll_min_period = U32_MAX;
200 memset(group->polling_total, 0, sizeof(group->polling_total));
201 group->polling_next_update = ULLONG_MAX;
202 group->polling_until = 0;
203 rcu_assign_pointer(group->poll_kworker, NULL);
204 }
205
psi_init(void)206 void __init psi_init(void)
207 {
208 if (!psi_enable) {
209 static_branch_enable(&psi_disabled);
210 return;
211 }
212
213 psi_period = jiffies_to_nsecs(PSI_FREQ);
214 group_init(&psi_system);
215 }
216
test_state(unsigned int * tasks,enum psi_states state)217 static bool test_state(unsigned int *tasks, enum psi_states state)
218 {
219 switch (state) {
220 case PSI_IO_SOME:
221 return tasks[NR_IOWAIT];
222 case PSI_IO_FULL:
223 return tasks[NR_IOWAIT] && !tasks[NR_RUNNING];
224 case PSI_MEM_SOME:
225 return tasks[NR_MEMSTALL];
226 case PSI_MEM_FULL:
227 return tasks[NR_MEMSTALL] && !tasks[NR_RUNNING];
228 case PSI_CPU_SOME:
229 return tasks[NR_RUNNING] > 1;
230 case PSI_NONIDLE:
231 return tasks[NR_IOWAIT] || tasks[NR_MEMSTALL] ||
232 tasks[NR_RUNNING];
233 default:
234 return false;
235 }
236 }
237
get_recent_times(struct psi_group * group,int cpu,enum psi_aggregators aggregator,u32 * times,u32 * pchanged_states)238 static void get_recent_times(struct psi_group *group, int cpu,
239 enum psi_aggregators aggregator, u32 *times,
240 u32 *pchanged_states)
241 {
242 struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu);
243 u64 now, state_start;
244 enum psi_states s;
245 unsigned int seq;
246 u32 state_mask;
247
248 *pchanged_states = 0;
249
250 /* Snapshot a coherent view of the CPU state */
251 do {
252 seq = read_seqcount_begin(&groupc->seq);
253 now = cpu_clock(cpu);
254 memcpy(times, groupc->times, sizeof(groupc->times));
255 state_mask = groupc->state_mask;
256 state_start = groupc->state_start;
257 } while (read_seqcount_retry(&groupc->seq, seq));
258
259 /* Calculate state time deltas against the previous snapshot */
260 for (s = 0; s < NR_PSI_STATES; s++) {
261 u32 delta;
262 /*
263 * In addition to already concluded states, we also
264 * incorporate currently active states on the CPU,
265 * since states may last for many sampling periods.
266 *
267 * This way we keep our delta sampling buckets small
268 * (u32) and our reported pressure close to what's
269 * actually happening.
270 */
271 if (state_mask & (1 << s))
272 times[s] += now - state_start;
273
274 delta = times[s] - groupc->times_prev[aggregator][s];
275 groupc->times_prev[aggregator][s] = times[s];
276
277 times[s] = delta;
278 if (delta)
279 *pchanged_states |= (1 << s);
280 }
281 }
282
calc_avgs(unsigned long avg[3],int missed_periods,u64 time,u64 period)283 static void calc_avgs(unsigned long avg[3], int missed_periods,
284 u64 time, u64 period)
285 {
286 unsigned long pct;
287
288 /* Fill in zeroes for periods of no activity */
289 if (missed_periods) {
290 avg[0] = calc_load_n(avg[0], EXP_10s, 0, missed_periods);
291 avg[1] = calc_load_n(avg[1], EXP_60s, 0, missed_periods);
292 avg[2] = calc_load_n(avg[2], EXP_300s, 0, missed_periods);
293 }
294
295 /* Sample the most recent active period */
296 pct = div_u64(time * 100, period);
297 pct *= FIXED_1;
298 avg[0] = calc_load(avg[0], EXP_10s, pct);
299 avg[1] = calc_load(avg[1], EXP_60s, pct);
300 avg[2] = calc_load(avg[2], EXP_300s, pct);
301 }
302
collect_percpu_times(struct psi_group * group,enum psi_aggregators aggregator,u32 * pchanged_states)303 static void collect_percpu_times(struct psi_group *group,
304 enum psi_aggregators aggregator,
305 u32 *pchanged_states)
306 {
307 u64 deltas[NR_PSI_STATES - 1] = { 0, };
308 unsigned long nonidle_total = 0;
309 u32 changed_states = 0;
310 int cpu;
311 int s;
312
313 /*
314 * Collect the per-cpu time buckets and average them into a
315 * single time sample that is normalized to wallclock time.
316 *
317 * For averaging, each CPU is weighted by its non-idle time in
318 * the sampling period. This eliminates artifacts from uneven
319 * loading, or even entirely idle CPUs.
320 */
321 for_each_possible_cpu(cpu) {
322 u32 times[NR_PSI_STATES];
323 u32 nonidle;
324 u32 cpu_changed_states;
325
326 get_recent_times(group, cpu, aggregator, times,
327 &cpu_changed_states);
328 changed_states |= cpu_changed_states;
329
330 nonidle = nsecs_to_jiffies(times[PSI_NONIDLE]);
331 nonidle_total += nonidle;
332
333 for (s = 0; s < PSI_NONIDLE; s++)
334 deltas[s] += (u64)times[s] * nonidle;
335 }
336
337 /*
338 * Integrate the sample into the running statistics that are
339 * reported to userspace: the cumulative stall times and the
340 * decaying averages.
341 *
342 * Pressure percentages are sampled at PSI_FREQ. We might be
343 * called more often when the user polls more frequently than
344 * that; we might be called less often when there is no task
345 * activity, thus no data, and clock ticks are sporadic. The
346 * below handles both.
347 */
348
349 /* total= */
350 for (s = 0; s < NR_PSI_STATES - 1; s++)
351 group->total[aggregator][s] +=
352 div_u64(deltas[s], max(nonidle_total, 1UL));
353
354 if (pchanged_states)
355 *pchanged_states = changed_states;
356 }
357
update_averages(struct psi_group * group,u64 now)358 static u64 update_averages(struct psi_group *group, u64 now)
359 {
360 unsigned long missed_periods = 0;
361 u64 expires, period;
362 u64 avg_next_update;
363 int s;
364
365 /* avgX= */
366 expires = group->avg_next_update;
367 if (now - expires >= psi_period)
368 missed_periods = div_u64(now - expires, psi_period);
369
370 /*
371 * The periodic clock tick can get delayed for various
372 * reasons, especially on loaded systems. To avoid clock
373 * drift, we schedule the clock in fixed psi_period intervals.
374 * But the deltas we sample out of the per-cpu buckets above
375 * are based on the actual time elapsing between clock ticks.
376 */
377 avg_next_update = expires + ((1 + missed_periods) * psi_period);
378 period = now - (group->avg_last_update + (missed_periods * psi_period));
379 group->avg_last_update = now;
380
381 for (s = 0; s < NR_PSI_STATES - 1; s++) {
382 u32 sample;
383
384 sample = group->total[PSI_AVGS][s] - group->avg_total[s];
385 /*
386 * Due to the lockless sampling of the time buckets,
387 * recorded time deltas can slip into the next period,
388 * which under full pressure can result in samples in
389 * excess of the period length.
390 *
391 * We don't want to report non-sensical pressures in
392 * excess of 100%, nor do we want to drop such events
393 * on the floor. Instead we punt any overage into the
394 * future until pressure subsides. By doing this we
395 * don't underreport the occurring pressure curve, we
396 * just report it delayed by one period length.
397 *
398 * The error isn't cumulative. As soon as another
399 * delta slips from a period P to P+1, by definition
400 * it frees up its time T in P.
401 */
402 if (sample > period)
403 sample = period;
404 group->avg_total[s] += sample;
405 calc_avgs(group->avg[s], missed_periods, sample, period);
406 }
407
408 return avg_next_update;
409 }
410
psi_avgs_work(struct work_struct * work)411 static void psi_avgs_work(struct work_struct *work)
412 {
413 struct delayed_work *dwork;
414 struct psi_group *group;
415 u32 changed_states;
416 bool nonidle;
417 u64 now;
418
419 dwork = to_delayed_work(work);
420 group = container_of(dwork, struct psi_group, avgs_work);
421
422 mutex_lock(&group->avgs_lock);
423
424 now = sched_clock();
425
426 collect_percpu_times(group, PSI_AVGS, &changed_states);
427 nonidle = changed_states & (1 << PSI_NONIDLE);
428 /*
429 * If there is task activity, periodically fold the per-cpu
430 * times and feed samples into the running averages. If things
431 * are idle and there is no data to process, stop the clock.
432 * Once restarted, we'll catch up the running averages in one
433 * go - see calc_avgs() and missed_periods.
434 */
435 if (now >= group->avg_next_update)
436 group->avg_next_update = update_averages(group, now);
437
438 if (nonidle) {
439 schedule_delayed_work(dwork, nsecs_to_jiffies(
440 group->avg_next_update - now) + 1);
441 }
442
443 mutex_unlock(&group->avgs_lock);
444 }
445
446 /* Trigger tracking window manupulations */
window_reset(struct psi_window * win,u64 now,u64 value,u64 prev_growth)447 static void window_reset(struct psi_window *win, u64 now, u64 value,
448 u64 prev_growth)
449 {
450 win->start_time = now;
451 win->start_value = value;
452 win->prev_growth = prev_growth;
453 }
454
455 /*
456 * PSI growth tracking window update and growth calculation routine.
457 *
458 * This approximates a sliding tracking window by interpolating
459 * partially elapsed windows using historical growth data from the
460 * previous intervals. This minimizes memory requirements (by not storing
461 * all the intermediate values in the previous window) and simplifies
462 * the calculations. It works well because PSI signal changes only in
463 * positive direction and over relatively small window sizes the growth
464 * is close to linear.
465 */
window_update(struct psi_window * win,u64 now,u64 value)466 static u64 window_update(struct psi_window *win, u64 now, u64 value)
467 {
468 u64 elapsed;
469 u64 growth;
470
471 elapsed = now - win->start_time;
472 growth = value - win->start_value;
473 /*
474 * After each tracking window passes win->start_value and
475 * win->start_time get reset and win->prev_growth stores
476 * the average per-window growth of the previous window.
477 * win->prev_growth is then used to interpolate additional
478 * growth from the previous window assuming it was linear.
479 */
480 if (elapsed > win->size)
481 window_reset(win, now, value, growth);
482 else {
483 u32 remaining;
484
485 remaining = win->size - elapsed;
486 growth += div64_u64(win->prev_growth * remaining, win->size);
487 }
488
489 return growth;
490 }
491
init_triggers(struct psi_group * group,u64 now)492 static void init_triggers(struct psi_group *group, u64 now)
493 {
494 struct psi_trigger *t;
495
496 list_for_each_entry(t, &group->triggers, node)
497 window_reset(&t->win, now,
498 group->total[PSI_POLL][t->state], 0);
499 memcpy(group->polling_total, group->total[PSI_POLL],
500 sizeof(group->polling_total));
501 group->polling_next_update = now + group->poll_min_period;
502 }
503
update_triggers(struct psi_group * group,u64 now)504 static u64 update_triggers(struct psi_group *group, u64 now)
505 {
506 struct psi_trigger *t;
507 bool new_stall = false;
508 u64 *total = group->total[PSI_POLL];
509
510 /*
511 * On subsequent updates, calculate growth deltas and let
512 * watchers know when their specified thresholds are exceeded.
513 */
514 list_for_each_entry(t, &group->triggers, node) {
515 u64 growth;
516
517 /* Check for stall activity */
518 if (group->polling_total[t->state] == total[t->state])
519 continue;
520
521 /*
522 * Multiple triggers might be looking at the same state,
523 * remember to update group->polling_total[] once we've
524 * been through all of them. Also remember to extend the
525 * polling time if we see new stall activity.
526 */
527 new_stall = true;
528
529 /* Calculate growth since last update */
530 growth = window_update(&t->win, now, total[t->state]);
531 if (growth < t->threshold)
532 continue;
533
534 /* Limit event signaling to once per window */
535 if (now < t->last_event_time + t->win.size)
536 continue;
537
538 /* Generate an event */
539 if (cmpxchg(&t->event, 0, 1) == 0)
540 wake_up_interruptible(&t->event_wait);
541 t->last_event_time = now;
542 }
543
544 if (new_stall)
545 memcpy(group->polling_total, total,
546 sizeof(group->polling_total));
547
548 return now + group->poll_min_period;
549 }
550
551 /*
552 * Schedule polling if it's not already scheduled. It's safe to call even from
553 * hotpath because even though kthread_queue_delayed_work takes worker->lock
554 * spinlock that spinlock is never contended due to poll_scheduled atomic
555 * preventing such competition.
556 */
psi_schedule_poll_work(struct psi_group * group,unsigned long delay)557 static void psi_schedule_poll_work(struct psi_group *group, unsigned long delay)
558 {
559 struct kthread_worker *kworker;
560
561 /* Do not reschedule if already scheduled */
562 if (atomic_cmpxchg(&group->poll_scheduled, 0, 1) != 0)
563 return;
564
565 rcu_read_lock();
566
567 kworker = rcu_dereference(group->poll_kworker);
568 /*
569 * kworker might be NULL in case psi_trigger_destroy races with
570 * psi_task_change (hotpath) which can't use locks
571 */
572 if (likely(kworker))
573 kthread_queue_delayed_work(kworker, &group->poll_work, delay);
574 else
575 atomic_set(&group->poll_scheduled, 0);
576
577 rcu_read_unlock();
578 }
579
psi_poll_work(struct kthread_work * work)580 static void psi_poll_work(struct kthread_work *work)
581 {
582 struct kthread_delayed_work *dwork;
583 struct psi_group *group;
584 u32 changed_states;
585 u64 now;
586
587 dwork = container_of(work, struct kthread_delayed_work, work);
588 group = container_of(dwork, struct psi_group, poll_work);
589
590 atomic_set(&group->poll_scheduled, 0);
591
592 mutex_lock(&group->trigger_lock);
593
594 now = sched_clock();
595
596 collect_percpu_times(group, PSI_POLL, &changed_states);
597
598 if (changed_states & group->poll_states) {
599 /* Initialize trigger windows when entering polling mode */
600 if (now > group->polling_until)
601 init_triggers(group, now);
602
603 /*
604 * Keep the monitor active for at least the duration of the
605 * minimum tracking window as long as monitor states are
606 * changing.
607 */
608 group->polling_until = now +
609 group->poll_min_period * UPDATES_PER_WINDOW;
610 }
611
612 if (now > group->polling_until) {
613 group->polling_next_update = ULLONG_MAX;
614 goto out;
615 }
616
617 if (now >= group->polling_next_update)
618 group->polling_next_update = update_triggers(group, now);
619
620 psi_schedule_poll_work(group,
621 nsecs_to_jiffies(group->polling_next_update - now) + 1);
622
623 out:
624 mutex_unlock(&group->trigger_lock);
625 }
626
record_times(struct psi_group_cpu * groupc,int cpu,bool memstall_tick)627 static void record_times(struct psi_group_cpu *groupc, int cpu,
628 bool memstall_tick)
629 {
630 u32 delta;
631 u64 now;
632
633 now = cpu_clock(cpu);
634 delta = now - groupc->state_start;
635 groupc->state_start = now;
636
637 if (groupc->state_mask & (1 << PSI_IO_SOME)) {
638 groupc->times[PSI_IO_SOME] += delta;
639 if (groupc->state_mask & (1 << PSI_IO_FULL))
640 groupc->times[PSI_IO_FULL] += delta;
641 }
642
643 if (groupc->state_mask & (1 << PSI_MEM_SOME)) {
644 groupc->times[PSI_MEM_SOME] += delta;
645 if (groupc->state_mask & (1 << PSI_MEM_FULL))
646 groupc->times[PSI_MEM_FULL] += delta;
647 else if (memstall_tick) {
648 u32 sample;
649 /*
650 * Since we care about lost potential, a
651 * memstall is FULL when there are no other
652 * working tasks, but also when the CPU is
653 * actively reclaiming and nothing productive
654 * could run even if it were runnable.
655 *
656 * When the timer tick sees a reclaiming CPU,
657 * regardless of runnable tasks, sample a FULL
658 * tick (or less if it hasn't been a full tick
659 * since the last state change).
660 */
661 sample = min(delta, (u32)jiffies_to_nsecs(1));
662 groupc->times[PSI_MEM_FULL] += sample;
663 }
664 }
665
666 if (groupc->state_mask & (1 << PSI_CPU_SOME))
667 groupc->times[PSI_CPU_SOME] += delta;
668
669 if (groupc->state_mask & (1 << PSI_NONIDLE))
670 groupc->times[PSI_NONIDLE] += delta;
671 }
672
psi_group_change(struct psi_group * group,int cpu,unsigned int clear,unsigned int set)673 static u32 psi_group_change(struct psi_group *group, int cpu,
674 unsigned int clear, unsigned int set)
675 {
676 struct psi_group_cpu *groupc;
677 unsigned int t, m;
678 enum psi_states s;
679 u32 state_mask = 0;
680
681 groupc = per_cpu_ptr(group->pcpu, cpu);
682
683 /*
684 * First we assess the aggregate resource states this CPU's
685 * tasks have been in since the last change, and account any
686 * SOME and FULL time these may have resulted in.
687 *
688 * Then we update the task counts according to the state
689 * change requested through the @clear and @set bits.
690 */
691 write_seqcount_begin(&groupc->seq);
692
693 record_times(groupc, cpu, false);
694
695 for (t = 0, m = clear; m; m &= ~(1 << t), t++) {
696 if (!(m & (1 << t)))
697 continue;
698 if (groupc->tasks[t] == 0 && !psi_bug) {
699 printk_deferred(KERN_ERR "psi: task underflow! cpu=%d t=%d tasks=[%u %u %u] clear=%x set=%x\n",
700 cpu, t, groupc->tasks[0],
701 groupc->tasks[1], groupc->tasks[2],
702 clear, set);
703 psi_bug = 1;
704 }
705 groupc->tasks[t]--;
706 }
707
708 for (t = 0; set; set &= ~(1 << t), t++)
709 if (set & (1 << t))
710 groupc->tasks[t]++;
711
712 /* Calculate state mask representing active states */
713 for (s = 0; s < NR_PSI_STATES; s++) {
714 if (test_state(groupc->tasks, s))
715 state_mask |= (1 << s);
716 }
717 groupc->state_mask = state_mask;
718
719 write_seqcount_end(&groupc->seq);
720
721 return state_mask;
722 }
723
iterate_groups(struct task_struct * task,void ** iter)724 static struct psi_group *iterate_groups(struct task_struct *task, void **iter)
725 {
726 #ifdef CONFIG_CGROUPS
727 struct cgroup *cgroup = NULL;
728
729 if (!*iter)
730 cgroup = task->cgroups->dfl_cgrp;
731 else if (*iter == &psi_system)
732 return NULL;
733 else
734 cgroup = cgroup_parent(*iter);
735
736 if (cgroup && cgroup_parent(cgroup)) {
737 *iter = cgroup;
738 return cgroup_psi(cgroup);
739 }
740 #else
741 if (*iter)
742 return NULL;
743 #endif
744 *iter = &psi_system;
745 return &psi_system;
746 }
747
psi_task_change(struct task_struct * task,int clear,int set)748 void psi_task_change(struct task_struct *task, int clear, int set)
749 {
750 int cpu = task_cpu(task);
751 struct psi_group *group;
752 bool wake_clock = true;
753 void *iter = NULL;
754
755 if (!task->pid)
756 return;
757
758 if (((task->psi_flags & set) ||
759 (task->psi_flags & clear) != clear) &&
760 !psi_bug) {
761 printk_deferred(KERN_ERR "psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n",
762 task->pid, task->comm, cpu,
763 task->psi_flags, clear, set);
764 psi_bug = 1;
765 }
766
767 task->psi_flags &= ~clear;
768 task->psi_flags |= set;
769
770 /*
771 * Periodic aggregation shuts off if there is a period of no
772 * task changes, so we wake it back up if necessary. However,
773 * don't do this if the task change is the aggregation worker
774 * itself going to sleep, or we'll ping-pong forever.
775 */
776 if (unlikely((clear & TSK_RUNNING) &&
777 (task->flags & PF_WQ_WORKER) &&
778 wq_worker_last_func(task) == psi_avgs_work))
779 wake_clock = false;
780
781 while ((group = iterate_groups(task, &iter))) {
782 u32 state_mask = psi_group_change(group, cpu, clear, set);
783
784 if (state_mask & group->poll_states)
785 psi_schedule_poll_work(group, 1);
786
787 if (wake_clock && !delayed_work_pending(&group->avgs_work))
788 schedule_delayed_work(&group->avgs_work, PSI_FREQ);
789 }
790 }
791
psi_memstall_tick(struct task_struct * task,int cpu)792 void psi_memstall_tick(struct task_struct *task, int cpu)
793 {
794 struct psi_group *group;
795 void *iter = NULL;
796
797 while ((group = iterate_groups(task, &iter))) {
798 struct psi_group_cpu *groupc;
799
800 groupc = per_cpu_ptr(group->pcpu, cpu);
801 write_seqcount_begin(&groupc->seq);
802 record_times(groupc, cpu, true);
803 write_seqcount_end(&groupc->seq);
804 }
805 }
806
807 /**
808 * psi_memstall_enter - mark the beginning of a memory stall section
809 * @flags: flags to handle nested sections
810 *
811 * Marks the calling task as being stalled due to a lack of memory,
812 * such as waiting for a refault or performing reclaim.
813 */
psi_memstall_enter(unsigned long * flags)814 void psi_memstall_enter(unsigned long *flags)
815 {
816 struct rq_flags rf;
817 struct rq *rq;
818
819 if (static_branch_likely(&psi_disabled))
820 return;
821
822 *flags = current->flags & PF_MEMSTALL;
823 if (*flags)
824 return;
825 /*
826 * PF_MEMSTALL setting & accounting needs to be atomic wrt
827 * changes to the task's scheduling state, otherwise we can
828 * race with CPU migration.
829 */
830 rq = this_rq_lock_irq(&rf);
831
832 current->flags |= PF_MEMSTALL;
833 psi_task_change(current, 0, TSK_MEMSTALL);
834
835 rq_unlock_irq(rq, &rf);
836 }
837
838 /**
839 * psi_memstall_leave - mark the end of an memory stall section
840 * @flags: flags to handle nested memdelay sections
841 *
842 * Marks the calling task as no longer stalled due to lack of memory.
843 */
psi_memstall_leave(unsigned long * flags)844 void psi_memstall_leave(unsigned long *flags)
845 {
846 struct rq_flags rf;
847 struct rq *rq;
848
849 if (static_branch_likely(&psi_disabled))
850 return;
851
852 if (*flags)
853 return;
854 /*
855 * PF_MEMSTALL clearing & accounting needs to be atomic wrt
856 * changes to the task's scheduling state, otherwise we could
857 * race with CPU migration.
858 */
859 rq = this_rq_lock_irq(&rf);
860
861 current->flags &= ~PF_MEMSTALL;
862 psi_task_change(current, TSK_MEMSTALL, 0);
863
864 rq_unlock_irq(rq, &rf);
865 }
866
867 #ifdef CONFIG_CGROUPS
psi_cgroup_alloc(struct cgroup * cgroup)868 int psi_cgroup_alloc(struct cgroup *cgroup)
869 {
870 if (static_branch_likely(&psi_disabled))
871 return 0;
872
873 cgroup->psi.pcpu = alloc_percpu(struct psi_group_cpu);
874 if (!cgroup->psi.pcpu)
875 return -ENOMEM;
876 group_init(&cgroup->psi);
877 return 0;
878 }
879
psi_cgroup_free(struct cgroup * cgroup)880 void psi_cgroup_free(struct cgroup *cgroup)
881 {
882 if (static_branch_likely(&psi_disabled))
883 return;
884
885 cancel_delayed_work_sync(&cgroup->psi.avgs_work);
886 free_percpu(cgroup->psi.pcpu);
887 /* All triggers must be removed by now */
888 WARN_ONCE(cgroup->psi.poll_states, "psi: trigger leak\n");
889 }
890
891 /**
892 * cgroup_move_task - move task to a different cgroup
893 * @task: the task
894 * @to: the target css_set
895 *
896 * Move task to a new cgroup and safely migrate its associated stall
897 * state between the different groups.
898 *
899 * This function acquires the task's rq lock to lock out concurrent
900 * changes to the task's scheduling state and - in case the task is
901 * running - concurrent changes to its stall state.
902 */
cgroup_move_task(struct task_struct * task,struct css_set * to)903 void cgroup_move_task(struct task_struct *task, struct css_set *to)
904 {
905 unsigned int task_flags = 0;
906 struct rq_flags rf;
907 struct rq *rq;
908
909 if (static_branch_likely(&psi_disabled)) {
910 /*
911 * Lame to do this here, but the scheduler cannot be locked
912 * from the outside, so we move cgroups from inside sched/.
913 */
914 rcu_assign_pointer(task->cgroups, to);
915 return;
916 }
917
918 rq = task_rq_lock(task, &rf);
919
920 if (task_on_rq_queued(task))
921 task_flags = TSK_RUNNING;
922 else if (task->in_iowait)
923 task_flags = TSK_IOWAIT;
924
925 if (task->flags & PF_MEMSTALL)
926 task_flags |= TSK_MEMSTALL;
927
928 if (task_flags)
929 psi_task_change(task, task_flags, 0);
930
931 /* See comment above */
932 rcu_assign_pointer(task->cgroups, to);
933
934 if (task_flags)
935 psi_task_change(task, 0, task_flags);
936
937 task_rq_unlock(rq, task, &rf);
938 }
939 #endif /* CONFIG_CGROUPS */
940
psi_show(struct seq_file * m,struct psi_group * group,enum psi_res res)941 int psi_show(struct seq_file *m, struct psi_group *group, enum psi_res res)
942 {
943 int full;
944 u64 now;
945
946 if (static_branch_likely(&psi_disabled))
947 return -EOPNOTSUPP;
948
949 /* Update averages before reporting them */
950 mutex_lock(&group->avgs_lock);
951 now = sched_clock();
952 collect_percpu_times(group, PSI_AVGS, NULL);
953 if (now >= group->avg_next_update)
954 group->avg_next_update = update_averages(group, now);
955 mutex_unlock(&group->avgs_lock);
956
957 for (full = 0; full < 2 - (res == PSI_CPU); full++) {
958 unsigned long avg[3];
959 u64 total;
960 int w;
961
962 for (w = 0; w < 3; w++)
963 avg[w] = group->avg[res * 2 + full][w];
964 total = div_u64(group->total[PSI_AVGS][res * 2 + full],
965 NSEC_PER_USEC);
966
967 seq_printf(m, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n",
968 full ? "full" : "some",
969 LOAD_INT(avg[0]), LOAD_FRAC(avg[0]),
970 LOAD_INT(avg[1]), LOAD_FRAC(avg[1]),
971 LOAD_INT(avg[2]), LOAD_FRAC(avg[2]),
972 total);
973 }
974
975 return 0;
976 }
977
psi_io_show(struct seq_file * m,void * v)978 static int psi_io_show(struct seq_file *m, void *v)
979 {
980 return psi_show(m, &psi_system, PSI_IO);
981 }
982
psi_memory_show(struct seq_file * m,void * v)983 static int psi_memory_show(struct seq_file *m, void *v)
984 {
985 return psi_show(m, &psi_system, PSI_MEM);
986 }
987
psi_cpu_show(struct seq_file * m,void * v)988 static int psi_cpu_show(struct seq_file *m, void *v)
989 {
990 return psi_show(m, &psi_system, PSI_CPU);
991 }
992
psi_io_open(struct inode * inode,struct file * file)993 static int psi_io_open(struct inode *inode, struct file *file)
994 {
995 return single_open(file, psi_io_show, NULL);
996 }
997
psi_memory_open(struct inode * inode,struct file * file)998 static int psi_memory_open(struct inode *inode, struct file *file)
999 {
1000 return single_open(file, psi_memory_show, NULL);
1001 }
1002
psi_cpu_open(struct inode * inode,struct file * file)1003 static int psi_cpu_open(struct inode *inode, struct file *file)
1004 {
1005 return single_open(file, psi_cpu_show, NULL);
1006 }
1007
psi_trigger_create(struct psi_group * group,char * buf,size_t nbytes,enum psi_res res)1008 struct psi_trigger *psi_trigger_create(struct psi_group *group,
1009 char *buf, size_t nbytes, enum psi_res res)
1010 {
1011 struct psi_trigger *t;
1012 enum psi_states state;
1013 u32 threshold_us;
1014 u32 window_us;
1015
1016 if (static_branch_likely(&psi_disabled))
1017 return ERR_PTR(-EOPNOTSUPP);
1018
1019 if (sscanf(buf, "some %u %u", &threshold_us, &window_us) == 2)
1020 state = PSI_IO_SOME + res * 2;
1021 else if (sscanf(buf, "full %u %u", &threshold_us, &window_us) == 2)
1022 state = PSI_IO_FULL + res * 2;
1023 else
1024 return ERR_PTR(-EINVAL);
1025
1026 if (state >= PSI_NONIDLE)
1027 return ERR_PTR(-EINVAL);
1028
1029 if (window_us < WINDOW_MIN_US ||
1030 window_us > WINDOW_MAX_US)
1031 return ERR_PTR(-EINVAL);
1032
1033 /* Check threshold */
1034 if (threshold_us == 0 || threshold_us > window_us)
1035 return ERR_PTR(-EINVAL);
1036
1037 t = kmalloc(sizeof(*t), GFP_KERNEL);
1038 if (!t)
1039 return ERR_PTR(-ENOMEM);
1040
1041 t->group = group;
1042 t->state = state;
1043 t->threshold = threshold_us * NSEC_PER_USEC;
1044 t->win.size = window_us * NSEC_PER_USEC;
1045 window_reset(&t->win, 0, 0, 0);
1046
1047 t->event = 0;
1048 t->last_event_time = 0;
1049 init_waitqueue_head(&t->event_wait);
1050 kref_init(&t->refcount);
1051
1052 mutex_lock(&group->trigger_lock);
1053
1054 if (!rcu_access_pointer(group->poll_kworker)) {
1055 struct sched_param param = {
1056 .sched_priority = MAX_RT_PRIO - 1,
1057 };
1058 struct kthread_worker *kworker;
1059
1060 kworker = kthread_create_worker(0, "psimon");
1061 if (IS_ERR(kworker)) {
1062 kfree(t);
1063 mutex_unlock(&group->trigger_lock);
1064 return ERR_CAST(kworker);
1065 }
1066 sched_setscheduler(kworker->task, SCHED_FIFO, ¶m);
1067 kthread_init_delayed_work(&group->poll_work,
1068 psi_poll_work);
1069 rcu_assign_pointer(group->poll_kworker, kworker);
1070 }
1071
1072 list_add(&t->node, &group->triggers);
1073 group->poll_min_period = min(group->poll_min_period,
1074 div_u64(t->win.size, UPDATES_PER_WINDOW));
1075 group->nr_triggers[t->state]++;
1076 group->poll_states |= (1 << t->state);
1077
1078 mutex_unlock(&group->trigger_lock);
1079
1080 return t;
1081 }
1082
psi_trigger_destroy(struct kref * ref)1083 static void psi_trigger_destroy(struct kref *ref)
1084 {
1085 struct psi_trigger *t = container_of(ref, struct psi_trigger, refcount);
1086 struct psi_group *group = t->group;
1087 struct kthread_worker *kworker_to_destroy = NULL;
1088
1089 if (static_branch_likely(&psi_disabled))
1090 return;
1091
1092 /*
1093 * Wakeup waiters to stop polling. Can happen if cgroup is deleted
1094 * from under a polling process.
1095 */
1096 wake_up_interruptible(&t->event_wait);
1097
1098 mutex_lock(&group->trigger_lock);
1099
1100 if (!list_empty(&t->node)) {
1101 struct psi_trigger *tmp;
1102 u64 period = ULLONG_MAX;
1103
1104 list_del(&t->node);
1105 group->nr_triggers[t->state]--;
1106 if (!group->nr_triggers[t->state])
1107 group->poll_states &= ~(1 << t->state);
1108 /* reset min update period for the remaining triggers */
1109 list_for_each_entry(tmp, &group->triggers, node)
1110 period = min(period, div_u64(tmp->win.size,
1111 UPDATES_PER_WINDOW));
1112 group->poll_min_period = period;
1113 /* Destroy poll_kworker when the last trigger is destroyed */
1114 if (group->poll_states == 0) {
1115 group->polling_until = 0;
1116 kworker_to_destroy = rcu_dereference_protected(
1117 group->poll_kworker,
1118 lockdep_is_held(&group->trigger_lock));
1119 rcu_assign_pointer(group->poll_kworker, NULL);
1120 }
1121 }
1122
1123 mutex_unlock(&group->trigger_lock);
1124
1125 /*
1126 * Wait for both *trigger_ptr from psi_trigger_replace and
1127 * poll_kworker RCUs to complete their read-side critical sections
1128 * before destroying the trigger and optionally the poll_kworker
1129 */
1130 synchronize_rcu();
1131 /*
1132 * Destroy the kworker after releasing trigger_lock to prevent a
1133 * deadlock while waiting for psi_poll_work to acquire trigger_lock
1134 */
1135 if (kworker_to_destroy) {
1136 kthread_cancel_delayed_work_sync(&group->poll_work);
1137 kthread_destroy_worker(kworker_to_destroy);
1138 }
1139 kfree(t);
1140 }
1141
psi_trigger_replace(void ** trigger_ptr,struct psi_trigger * new)1142 void psi_trigger_replace(void **trigger_ptr, struct psi_trigger *new)
1143 {
1144 struct psi_trigger *old = *trigger_ptr;
1145
1146 if (static_branch_likely(&psi_disabled))
1147 return;
1148
1149 rcu_assign_pointer(*trigger_ptr, new);
1150 if (old)
1151 kref_put(&old->refcount, psi_trigger_destroy);
1152 }
1153
psi_trigger_poll(void ** trigger_ptr,struct file * file,poll_table * wait)1154 unsigned int psi_trigger_poll(void **trigger_ptr, struct file *file,
1155 poll_table *wait)
1156 {
1157 unsigned int ret = DEFAULT_POLLMASK;
1158 struct psi_trigger *t;
1159
1160 if (static_branch_likely(&psi_disabled))
1161 return DEFAULT_POLLMASK | POLLERR | POLLPRI;
1162
1163 rcu_read_lock();
1164
1165 t = rcu_dereference(*(void __rcu __force **)trigger_ptr);
1166 if (!t) {
1167 rcu_read_unlock();
1168 return DEFAULT_POLLMASK | POLLERR | POLLPRI;
1169 }
1170 kref_get(&t->refcount);
1171
1172 rcu_read_unlock();
1173
1174 poll_wait(file, &t->event_wait, wait);
1175
1176 if (cmpxchg(&t->event, 1, 0) == 1)
1177 ret |= POLLPRI;
1178
1179 kref_put(&t->refcount, psi_trigger_destroy);
1180
1181 return ret;
1182 }
1183
psi_write(struct file * file,const char __user * user_buf,size_t nbytes,enum psi_res res)1184 static ssize_t psi_write(struct file *file, const char __user *user_buf,
1185 size_t nbytes, enum psi_res res)
1186 {
1187 char buf[32];
1188 size_t buf_size;
1189 struct seq_file *seq;
1190 struct psi_trigger *new;
1191
1192 if (static_branch_likely(&psi_disabled))
1193 return -EOPNOTSUPP;
1194
1195 if (!nbytes)
1196 return -EINVAL;
1197
1198 buf_size = min(nbytes, sizeof(buf));
1199 if (copy_from_user(buf, user_buf, buf_size))
1200 return -EFAULT;
1201
1202 buf[buf_size - 1] = '\0';
1203
1204 new = psi_trigger_create(&psi_system, buf, nbytes, res);
1205 if (IS_ERR(new))
1206 return PTR_ERR(new);
1207
1208 seq = file->private_data;
1209 /* Take seq->lock to protect seq->private from concurrent writes */
1210 mutex_lock(&seq->lock);
1211 psi_trigger_replace(&seq->private, new);
1212 mutex_unlock(&seq->lock);
1213
1214 return nbytes;
1215 }
1216
psi_io_write(struct file * file,const char __user * user_buf,size_t nbytes,loff_t * ppos)1217 static ssize_t psi_io_write(struct file *file, const char __user *user_buf,
1218 size_t nbytes, loff_t *ppos)
1219 {
1220 return psi_write(file, user_buf, nbytes, PSI_IO);
1221 }
1222
psi_memory_write(struct file * file,const char __user * user_buf,size_t nbytes,loff_t * ppos)1223 static ssize_t psi_memory_write(struct file *file, const char __user *user_buf,
1224 size_t nbytes, loff_t *ppos)
1225 {
1226 return psi_write(file, user_buf, nbytes, PSI_MEM);
1227 }
1228
psi_cpu_write(struct file * file,const char __user * user_buf,size_t nbytes,loff_t * ppos)1229 static ssize_t psi_cpu_write(struct file *file, const char __user *user_buf,
1230 size_t nbytes, loff_t *ppos)
1231 {
1232 return psi_write(file, user_buf, nbytes, PSI_CPU);
1233 }
1234
psi_fop_poll(struct file * file,poll_table * wait)1235 static unsigned int psi_fop_poll(struct file *file, poll_table *wait)
1236 {
1237 struct seq_file *seq = file->private_data;
1238
1239 return psi_trigger_poll(&seq->private, file, wait);
1240 }
1241
psi_fop_release(struct inode * inode,struct file * file)1242 static int psi_fop_release(struct inode *inode, struct file *file)
1243 {
1244 struct seq_file *seq = file->private_data;
1245
1246 psi_trigger_replace(&seq->private, NULL);
1247 return single_release(inode, file);
1248 }
1249
1250 static const struct file_operations psi_io_fops = {
1251 .open = psi_io_open,
1252 .read = seq_read,
1253 .llseek = seq_lseek,
1254 .write = psi_io_write,
1255 .poll = psi_fop_poll,
1256 .release = psi_fop_release,
1257 };
1258
1259 static const struct file_operations psi_memory_fops = {
1260 .open = psi_memory_open,
1261 .read = seq_read,
1262 .llseek = seq_lseek,
1263 .write = psi_memory_write,
1264 .poll = psi_fop_poll,
1265 .release = psi_fop_release,
1266 };
1267
1268 static const struct file_operations psi_cpu_fops = {
1269 .open = psi_cpu_open,
1270 .read = seq_read,
1271 .llseek = seq_lseek,
1272 .write = psi_cpu_write,
1273 .poll = psi_fop_poll,
1274 .release = psi_fop_release,
1275 };
1276
psi_proc_init(void)1277 static int __init psi_proc_init(void)
1278 {
1279 proc_mkdir("pressure", NULL);
1280 proc_create("pressure/io", 0, NULL, &psi_io_fops);
1281 proc_create("pressure/memory", 0, NULL, &psi_memory_fops);
1282 proc_create("pressure/cpu", 0, NULL, &psi_cpu_fops);
1283 return 0;
1284 }
1285 module_init(psi_proc_init);
1286