1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
3 #define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
4
5 #include <asm-generic/5level-fixup.h>
6
7 #ifndef __ASSEMBLY__
8 #include <linux/mmdebug.h>
9 #include <linux/bug.h>
10 #endif
11
12 /*
13 * Common bits between hash and Radix page table
14 */
15 #define _PAGE_BIT_SWAP_TYPE 0
16
17 #define _PAGE_RO 0
18 #define _PAGE_SHARED 0
19
20 #define _PAGE_EXEC 0x00001 /* execute permission */
21 #define _PAGE_WRITE 0x00002 /* write access allowed */
22 #define _PAGE_READ 0x00004 /* read access allowed */
23 #define _PAGE_RW (_PAGE_READ | _PAGE_WRITE)
24 #define _PAGE_RWX (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)
25 #define _PAGE_PRIVILEGED 0x00008 /* kernel access only */
26 #define _PAGE_SAO 0x00010 /* Strong access order */
27 #define _PAGE_NON_IDEMPOTENT 0x00020 /* non idempotent memory */
28 #define _PAGE_TOLERANT 0x00030 /* tolerant memory, cache inhibited */
29 #define _PAGE_DIRTY 0x00080 /* C: page changed */
30 #define _PAGE_ACCESSED 0x00100 /* R: page referenced */
31 /*
32 * Software bits
33 */
34 #define _RPAGE_SW0 0x2000000000000000UL
35 #define _RPAGE_SW1 0x00800
36 #define _RPAGE_SW2 0x00400
37 #define _RPAGE_SW3 0x00200
38 #define _RPAGE_RSV1 0x1000000000000000UL
39 #define _RPAGE_RSV2 0x0800000000000000UL
40 #define _RPAGE_RSV3 0x0400000000000000UL
41 #define _RPAGE_RSV4 0x0200000000000000UL
42
43 #define _PAGE_PTE 0x4000000000000000UL /* distinguishes PTEs from pointers */
44 #define _PAGE_PRESENT 0x8000000000000000UL /* pte contains a translation */
45
46 /*
47 * Top and bottom bits of RPN which can be used by hash
48 * translation mode, because we expect them to be zero
49 * otherwise.
50 */
51 #define _RPAGE_RPN0 0x01000
52 #define _RPAGE_RPN1 0x02000
53 #define _RPAGE_RPN44 0x0100000000000000UL
54 #define _RPAGE_RPN43 0x0080000000000000UL
55 #define _RPAGE_RPN42 0x0040000000000000UL
56 #define _RPAGE_RPN41 0x0020000000000000UL
57
58 /* Max physical address bit as per radix table */
59 #define _RPAGE_PA_MAX 57
60
61 /*
62 * Max physical address bit we will use for now.
63 *
64 * This is mostly a hardware limitation and for now Power9 has
65 * a 51 bit limit.
66 *
67 * This is different from the number of physical bit required to address
68 * the last byte of memory. That is defined by MAX_PHYSMEM_BITS.
69 * MAX_PHYSMEM_BITS is a linux limitation imposed by the maximum
70 * number of sections we can support (SECTIONS_SHIFT).
71 *
72 * This is different from Radix page table limitation above and
73 * should always be less than that. The limit is done such that
74 * we can overload the bits between _RPAGE_PA_MAX and _PAGE_PA_MAX
75 * for hash linux page table specific bits.
76 *
77 * In order to be compatible with future hardware generations we keep
78 * some offsets and limit this for now to 53
79 */
80 #define _PAGE_PA_MAX 53
81
82 #define _PAGE_SOFT_DIRTY _RPAGE_SW3 /* software: software dirty tracking */
83 #define _PAGE_SPECIAL _RPAGE_SW2 /* software: special page */
84 #define _PAGE_DEVMAP _RPAGE_SW1 /* software: ZONE_DEVICE page */
85 #define __HAVE_ARCH_PTE_DEVMAP
86
87 /*
88 * Drivers request for cache inhibited pte mapping using _PAGE_NO_CACHE
89 * Instead of fixing all of them, add an alternate define which
90 * maps CI pte mapping.
91 */
92 #define _PAGE_NO_CACHE _PAGE_TOLERANT
93 /*
94 * We support _RPAGE_PA_MAX bit real address in pte. On the linux side
95 * we are limited by _PAGE_PA_MAX. Clear everything above _PAGE_PA_MAX
96 * and every thing below PAGE_SHIFT;
97 */
98 #define PTE_RPN_MASK (((1UL << _PAGE_PA_MAX) - 1) & (PAGE_MASK))
99 /*
100 * set of bits not changed in pmd_modify. Even though we have hash specific bits
101 * in here, on radix we expect them to be zero.
102 */
103 #define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
104 _PAGE_ACCESSED | H_PAGE_THP_HUGE | _PAGE_PTE | \
105 _PAGE_SOFT_DIRTY | _PAGE_DEVMAP)
106 /*
107 * user access blocked by key
108 */
109 #define _PAGE_KERNEL_RW (_PAGE_PRIVILEGED | _PAGE_RW | _PAGE_DIRTY)
110 #define _PAGE_KERNEL_RO (_PAGE_PRIVILEGED | _PAGE_READ)
111 #define _PAGE_KERNEL_RWX (_PAGE_PRIVILEGED | _PAGE_DIRTY | \
112 _PAGE_RW | _PAGE_EXEC)
113 /*
114 * No page size encoding in the linux PTE
115 */
116 #define _PAGE_PSIZE 0
117 /*
118 * _PAGE_CHG_MASK masks of bits that are to be preserved across
119 * pgprot changes
120 */
121 #define _PAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
122 _PAGE_ACCESSED | _PAGE_SPECIAL | _PAGE_PTE | \
123 _PAGE_SOFT_DIRTY | _PAGE_DEVMAP)
124 /*
125 * Mask of bits returned by pte_pgprot()
126 */
127 #define PAGE_PROT_BITS (_PAGE_SAO | _PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT | \
128 H_PAGE_4K_PFN | _PAGE_PRIVILEGED | _PAGE_ACCESSED | \
129 _PAGE_READ | _PAGE_WRITE | _PAGE_DIRTY | _PAGE_EXEC | \
130 _PAGE_SOFT_DIRTY)
131 /*
132 * We define 2 sets of base prot bits, one for basic pages (ie,
133 * cacheable kernel and user pages) and one for non cacheable
134 * pages. We always set _PAGE_COHERENT when SMP is enabled or
135 * the processor might need it for DMA coherency.
136 */
137 #define _PAGE_BASE_NC (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_PSIZE)
138 #define _PAGE_BASE (_PAGE_BASE_NC)
139
140 /* Permission masks used to generate the __P and __S table,
141 *
142 * Note:__pgprot is defined in arch/powerpc/include/asm/page.h
143 *
144 * Write permissions imply read permissions for now (we could make write-only
145 * pages on BookE but we don't bother for now). Execute permission control is
146 * possible on platforms that define _PAGE_EXEC
147 *
148 * Note due to the way vm flags are laid out, the bits are XWR
149 */
150 #define PAGE_NONE __pgprot(_PAGE_BASE | _PAGE_PRIVILEGED)
151 #define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_RW)
152 #define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_EXEC)
153 #define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_READ)
154 #define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
155 #define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_READ)
156 #define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
157
158 #define __P000 PAGE_NONE
159 #define __P001 PAGE_READONLY
160 #define __P010 PAGE_COPY
161 #define __P011 PAGE_COPY
162 #define __P100 PAGE_READONLY_X
163 #define __P101 PAGE_READONLY_X
164 #define __P110 PAGE_COPY_X
165 #define __P111 PAGE_COPY_X
166
167 #define __S000 PAGE_NONE
168 #define __S001 PAGE_READONLY
169 #define __S010 PAGE_SHARED
170 #define __S011 PAGE_SHARED
171 #define __S100 PAGE_READONLY_X
172 #define __S101 PAGE_READONLY_X
173 #define __S110 PAGE_SHARED_X
174 #define __S111 PAGE_SHARED_X
175
176 /* Permission masks used for kernel mappings */
177 #define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
178 #define PAGE_KERNEL_NC __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
179 _PAGE_TOLERANT)
180 #define PAGE_KERNEL_NCG __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
181 _PAGE_NON_IDEMPOTENT)
182 #define PAGE_KERNEL_X __pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
183 #define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
184 #define PAGE_KERNEL_ROX __pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
185
186 /*
187 * Protection used for kernel text. We want the debuggers to be able to
188 * set breakpoints anywhere, so don't write protect the kernel text
189 * on platforms where such control is possible.
190 */
191 #if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) || \
192 defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE)
193 #define PAGE_KERNEL_TEXT PAGE_KERNEL_X
194 #else
195 #define PAGE_KERNEL_TEXT PAGE_KERNEL_ROX
196 #endif
197
198 /* Make modules code happy. We don't set RO yet */
199 #define PAGE_KERNEL_EXEC PAGE_KERNEL_X
200 #define PAGE_AGP (PAGE_KERNEL_NC)
201
202 #ifndef __ASSEMBLY__
203 /*
204 * page table defines
205 */
206 extern unsigned long __pte_index_size;
207 extern unsigned long __pmd_index_size;
208 extern unsigned long __pud_index_size;
209 extern unsigned long __pgd_index_size;
210 extern unsigned long __pmd_cache_index;
211 #define PTE_INDEX_SIZE __pte_index_size
212 #define PMD_INDEX_SIZE __pmd_index_size
213 #define PUD_INDEX_SIZE __pud_index_size
214 #define PGD_INDEX_SIZE __pgd_index_size
215 #define PMD_CACHE_INDEX __pmd_cache_index
216 /*
217 * Because of use of pte fragments and THP, size of page table
218 * are not always derived out of index size above.
219 */
220 extern unsigned long __pte_table_size;
221 extern unsigned long __pmd_table_size;
222 extern unsigned long __pud_table_size;
223 extern unsigned long __pgd_table_size;
224 #define PTE_TABLE_SIZE __pte_table_size
225 #define PMD_TABLE_SIZE __pmd_table_size
226 #define PUD_TABLE_SIZE __pud_table_size
227 #define PGD_TABLE_SIZE __pgd_table_size
228
229 extern unsigned long __pmd_val_bits;
230 extern unsigned long __pud_val_bits;
231 extern unsigned long __pgd_val_bits;
232 #define PMD_VAL_BITS __pmd_val_bits
233 #define PUD_VAL_BITS __pud_val_bits
234 #define PGD_VAL_BITS __pgd_val_bits
235
236 extern unsigned long __pte_frag_nr;
237 #define PTE_FRAG_NR __pte_frag_nr
238 extern unsigned long __pte_frag_size_shift;
239 #define PTE_FRAG_SIZE_SHIFT __pte_frag_size_shift
240 #define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT)
241
242 #define PTRS_PER_PTE (1 << PTE_INDEX_SIZE)
243 #define PTRS_PER_PMD (1 << PMD_INDEX_SIZE)
244 #define PTRS_PER_PUD (1 << PUD_INDEX_SIZE)
245 #define PTRS_PER_PGD (1 << PGD_INDEX_SIZE)
246
247 /* PMD_SHIFT determines what a second-level page table entry can map */
248 #define PMD_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE)
249 #define PMD_SIZE (1UL << PMD_SHIFT)
250 #define PMD_MASK (~(PMD_SIZE-1))
251
252 /* PUD_SHIFT determines what a third-level page table entry can map */
253 #define PUD_SHIFT (PMD_SHIFT + PMD_INDEX_SIZE)
254 #define PUD_SIZE (1UL << PUD_SHIFT)
255 #define PUD_MASK (~(PUD_SIZE-1))
256
257 /* PGDIR_SHIFT determines what a fourth-level page table entry can map */
258 #define PGDIR_SHIFT (PUD_SHIFT + PUD_INDEX_SIZE)
259 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
260 #define PGDIR_MASK (~(PGDIR_SIZE-1))
261
262 /* Bits to mask out from a PMD to get to the PTE page */
263 #define PMD_MASKED_BITS 0xc0000000000000ffUL
264 /* Bits to mask out from a PUD to get to the PMD page */
265 #define PUD_MASKED_BITS 0xc0000000000000ffUL
266 /* Bits to mask out from a PGD to get to the PUD page */
267 #define PGD_MASKED_BITS 0xc0000000000000ffUL
268
269 extern unsigned long __vmalloc_start;
270 extern unsigned long __vmalloc_end;
271 #define VMALLOC_START __vmalloc_start
272 #define VMALLOC_END __vmalloc_end
273
274 extern unsigned long __kernel_virt_start;
275 extern unsigned long __kernel_virt_size;
276 extern unsigned long __kernel_io_start;
277 #define KERN_VIRT_START __kernel_virt_start
278 #define KERN_VIRT_SIZE __kernel_virt_size
279 #define KERN_IO_START __kernel_io_start
280 extern struct page *vmemmap;
281 extern unsigned long ioremap_bot;
282 extern unsigned long pci_io_base;
283 #endif /* __ASSEMBLY__ */
284
285 #include <asm/book3s/64/hash.h>
286 #include <asm/book3s/64/radix.h>
287
288 #ifdef CONFIG_PPC_64K_PAGES
289 #include <asm/book3s/64/pgtable-64k.h>
290 #else
291 #include <asm/book3s/64/pgtable-4k.h>
292 #endif
293
294 #include <asm/barrier.h>
295 /*
296 * The second half of the kernel virtual space is used for IO mappings,
297 * it's itself carved into the PIO region (ISA and PHB IO space) and
298 * the ioremap space
299 *
300 * ISA_IO_BASE = KERN_IO_START, 64K reserved area
301 * PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
302 * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
303 */
304 #define FULL_IO_SIZE 0x80000000ul
305 #define ISA_IO_BASE (KERN_IO_START)
306 #define ISA_IO_END (KERN_IO_START + 0x10000ul)
307 #define PHB_IO_BASE (ISA_IO_END)
308 #define PHB_IO_END (KERN_IO_START + FULL_IO_SIZE)
309 #define IOREMAP_BASE (PHB_IO_END)
310 #define IOREMAP_END (KERN_VIRT_START + KERN_VIRT_SIZE)
311
312 /* Advertise special mapping type for AGP */
313 #define HAVE_PAGE_AGP
314
315 /* Advertise support for _PAGE_SPECIAL */
316 #define __HAVE_ARCH_PTE_SPECIAL
317
318 #ifndef __ASSEMBLY__
319
320 /*
321 * This is the default implementation of various PTE accessors, it's
322 * used in all cases except Book3S with 64K pages where we have a
323 * concept of sub-pages
324 */
325 #ifndef __real_pte
326
327 #define __real_pte(e,p) ((real_pte_t){(e)})
328 #define __rpte_to_pte(r) ((r).pte)
329 #define __rpte_to_hidx(r,index) (pte_val(__rpte_to_pte(r)) >> H_PAGE_F_GIX_SHIFT)
330
331 #define pte_iterate_hashed_subpages(rpte, psize, va, index, shift) \
332 do { \
333 index = 0; \
334 shift = mmu_psize_defs[psize].shift; \
335
336 #define pte_iterate_hashed_end() } while(0)
337
338 /*
339 * We expect this to be called only for user addresses or kernel virtual
340 * addresses other than the linear mapping.
341 */
342 #define pte_pagesize_index(mm, addr, pte) MMU_PAGE_4K
343
344 #endif /* __real_pte */
345
pte_update(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned long clr,unsigned long set,int huge)346 static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr,
347 pte_t *ptep, unsigned long clr,
348 unsigned long set, int huge)
349 {
350 if (radix_enabled())
351 return radix__pte_update(mm, addr, ptep, clr, set, huge);
352 return hash__pte_update(mm, addr, ptep, clr, set, huge);
353 }
354 /*
355 * For hash even if we have _PAGE_ACCESSED = 0, we do a pte_update.
356 * We currently remove entries from the hashtable regardless of whether
357 * the entry was young or dirty.
358 *
359 * We should be more intelligent about this but for the moment we override
360 * these functions and force a tlb flush unconditionally
361 * For radix: H_PAGE_HASHPTE should be zero. Hence we can use the same
362 * function for both hash and radix.
363 */
__ptep_test_and_clear_young(struct mm_struct * mm,unsigned long addr,pte_t * ptep)364 static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
365 unsigned long addr, pte_t *ptep)
366 {
367 unsigned long old;
368
369 if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
370 return 0;
371 old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
372 return (old & _PAGE_ACCESSED) != 0;
373 }
374
375 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
376 #define ptep_test_and_clear_young(__vma, __addr, __ptep) \
377 ({ \
378 int __r; \
379 __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
380 __r; \
381 })
382
__pte_write(pte_t pte)383 static inline int __pte_write(pte_t pte)
384 {
385 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_WRITE));
386 }
387
388 #ifdef CONFIG_NUMA_BALANCING
389 #define pte_savedwrite pte_savedwrite
pte_savedwrite(pte_t pte)390 static inline bool pte_savedwrite(pte_t pte)
391 {
392 /*
393 * Saved write ptes are prot none ptes that doesn't have
394 * privileged bit sit. We mark prot none as one which has
395 * present and pviliged bit set and RWX cleared. To mark
396 * protnone which used to have _PAGE_WRITE set we clear
397 * the privileged bit.
398 */
399 return !(pte_raw(pte) & cpu_to_be64(_PAGE_RWX | _PAGE_PRIVILEGED));
400 }
401 #else
402 #define pte_savedwrite pte_savedwrite
pte_savedwrite(pte_t pte)403 static inline bool pte_savedwrite(pte_t pte)
404 {
405 return false;
406 }
407 #endif
408
pte_write(pte_t pte)409 static inline int pte_write(pte_t pte)
410 {
411 return __pte_write(pte) || pte_savedwrite(pte);
412 }
413
pte_read(pte_t pte)414 static inline int pte_read(pte_t pte)
415 {
416 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_READ));
417 }
418
419 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)420 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
421 pte_t *ptep)
422 {
423 if (__pte_write(*ptep))
424 pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0);
425 else if (unlikely(pte_savedwrite(*ptep)))
426 pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 0);
427 }
428
huge_ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)429 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
430 unsigned long addr, pte_t *ptep)
431 {
432 /*
433 * We should not find protnone for hugetlb, but this complete the
434 * interface.
435 */
436 if (__pte_write(*ptep))
437 pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 1);
438 else if (unlikely(pte_savedwrite(*ptep)))
439 pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 1);
440 }
441
442 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)443 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
444 unsigned long addr, pte_t *ptep)
445 {
446 unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
447 return __pte(old);
448 }
449
450 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
ptep_get_and_clear_full(struct mm_struct * mm,unsigned long addr,pte_t * ptep,int full)451 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
452 unsigned long addr,
453 pte_t *ptep, int full)
454 {
455 if (full && radix_enabled()) {
456 /*
457 * Let's skip the DD1 style pte update here. We know that
458 * this is a full mm pte clear and hence can be sure there is
459 * no parallel set_pte.
460 */
461 return radix__ptep_get_and_clear_full(mm, addr, ptep, full);
462 }
463 return ptep_get_and_clear(mm, addr, ptep);
464 }
465
466
pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)467 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
468 pte_t * ptep)
469 {
470 pte_update(mm, addr, ptep, ~0UL, 0, 0);
471 }
472
pte_dirty(pte_t pte)473 static inline int pte_dirty(pte_t pte)
474 {
475 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_DIRTY));
476 }
477
pte_young(pte_t pte)478 static inline int pte_young(pte_t pte)
479 {
480 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_ACCESSED));
481 }
482
pte_special(pte_t pte)483 static inline int pte_special(pte_t pte)
484 {
485 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SPECIAL));
486 }
487
pte_pgprot(pte_t pte)488 static inline pgprot_t pte_pgprot(pte_t pte) { return __pgprot(pte_val(pte) & PAGE_PROT_BITS); }
489
490 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
pte_soft_dirty(pte_t pte)491 static inline bool pte_soft_dirty(pte_t pte)
492 {
493 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SOFT_DIRTY));
494 }
495
pte_mksoft_dirty(pte_t pte)496 static inline pte_t pte_mksoft_dirty(pte_t pte)
497 {
498 return __pte(pte_val(pte) | _PAGE_SOFT_DIRTY);
499 }
500
pte_clear_soft_dirty(pte_t pte)501 static inline pte_t pte_clear_soft_dirty(pte_t pte)
502 {
503 return __pte(pte_val(pte) & ~_PAGE_SOFT_DIRTY);
504 }
505 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
506
507 #ifdef CONFIG_NUMA_BALANCING
pte_protnone(pte_t pte)508 static inline int pte_protnone(pte_t pte)
509 {
510 return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE | _PAGE_RWX)) ==
511 cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
512 }
513
514 #define pte_mk_savedwrite pte_mk_savedwrite
pte_mk_savedwrite(pte_t pte)515 static inline pte_t pte_mk_savedwrite(pte_t pte)
516 {
517 /*
518 * Used by Autonuma subsystem to preserve the write bit
519 * while marking the pte PROT_NONE. Only allow this
520 * on PROT_NONE pte
521 */
522 VM_BUG_ON((pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_RWX | _PAGE_PRIVILEGED)) !=
523 cpu_to_be64(_PAGE_PRESENT | _PAGE_PRIVILEGED));
524 return __pte(pte_val(pte) & ~_PAGE_PRIVILEGED);
525 }
526
527 #define pte_clear_savedwrite pte_clear_savedwrite
pte_clear_savedwrite(pte_t pte)528 static inline pte_t pte_clear_savedwrite(pte_t pte)
529 {
530 /*
531 * Used by KSM subsystem to make a protnone pte readonly.
532 */
533 VM_BUG_ON(!pte_protnone(pte));
534 return __pte(pte_val(pte) | _PAGE_PRIVILEGED);
535 }
536 #else
537 #define pte_clear_savedwrite pte_clear_savedwrite
pte_clear_savedwrite(pte_t pte)538 static inline pte_t pte_clear_savedwrite(pte_t pte)
539 {
540 VM_WARN_ON(1);
541 return __pte(pte_val(pte) & ~_PAGE_WRITE);
542 }
543 #endif /* CONFIG_NUMA_BALANCING */
544
pte_present(pte_t pte)545 static inline int pte_present(pte_t pte)
546 {
547 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT));
548 }
549 /*
550 * Conversion functions: convert a page and protection to a page entry,
551 * and a page entry and page directory to the page they refer to.
552 *
553 * Even if PTEs can be unsigned long long, a PFN is always an unsigned
554 * long for now.
555 */
pfn_pte(unsigned long pfn,pgprot_t pgprot)556 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
557 {
558 return __pte((((pte_basic_t)(pfn) << PAGE_SHIFT) & PTE_RPN_MASK) |
559 pgprot_val(pgprot));
560 }
561
pte_pfn(pte_t pte)562 static inline unsigned long pte_pfn(pte_t pte)
563 {
564 return (pte_val(pte) & PTE_RPN_MASK) >> PAGE_SHIFT;
565 }
566
567 /* Generic modifiers for PTE bits */
pte_wrprotect(pte_t pte)568 static inline pte_t pte_wrprotect(pte_t pte)
569 {
570 if (unlikely(pte_savedwrite(pte)))
571 return pte_clear_savedwrite(pte);
572 return __pte(pte_val(pte) & ~_PAGE_WRITE);
573 }
574
pte_mkclean(pte_t pte)575 static inline pte_t pte_mkclean(pte_t pte)
576 {
577 return __pte(pte_val(pte) & ~_PAGE_DIRTY);
578 }
579
pte_mkold(pte_t pte)580 static inline pte_t pte_mkold(pte_t pte)
581 {
582 return __pte(pte_val(pte) & ~_PAGE_ACCESSED);
583 }
584
pte_mkwrite(pte_t pte)585 static inline pte_t pte_mkwrite(pte_t pte)
586 {
587 /*
588 * write implies read, hence set both
589 */
590 return __pte(pte_val(pte) | _PAGE_RW);
591 }
592
pte_mkdirty(pte_t pte)593 static inline pte_t pte_mkdirty(pte_t pte)
594 {
595 return __pte(pte_val(pte) | _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
596 }
597
pte_mkyoung(pte_t pte)598 static inline pte_t pte_mkyoung(pte_t pte)
599 {
600 return __pte(pte_val(pte) | _PAGE_ACCESSED);
601 }
602
pte_mkspecial(pte_t pte)603 static inline pte_t pte_mkspecial(pte_t pte)
604 {
605 return __pte(pte_val(pte) | _PAGE_SPECIAL);
606 }
607
pte_mkhuge(pte_t pte)608 static inline pte_t pte_mkhuge(pte_t pte)
609 {
610 return pte;
611 }
612
pte_mkdevmap(pte_t pte)613 static inline pte_t pte_mkdevmap(pte_t pte)
614 {
615 return __pte(pte_val(pte) | _PAGE_SPECIAL|_PAGE_DEVMAP);
616 }
617
618 /*
619 * This is potentially called with a pmd as the argument, in which case it's not
620 * safe to check _PAGE_DEVMAP unless we also confirm that _PAGE_PTE is set.
621 * That's because the bit we use for _PAGE_DEVMAP is not reserved for software
622 * use in page directory entries (ie. non-ptes).
623 */
pte_devmap(pte_t pte)624 static inline int pte_devmap(pte_t pte)
625 {
626 u64 mask = cpu_to_be64(_PAGE_DEVMAP | _PAGE_PTE);
627
628 return (pte_raw(pte) & mask) == mask;
629 }
630
pte_modify(pte_t pte,pgprot_t newprot)631 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
632 {
633 /* FIXME!! check whether this need to be a conditional */
634 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
635 }
636
pte_user(pte_t pte)637 static inline bool pte_user(pte_t pte)
638 {
639 return !(pte_raw(pte) & cpu_to_be64(_PAGE_PRIVILEGED));
640 }
641
642 /* Encode and de-code a swap entry */
643 #define MAX_SWAPFILES_CHECK() do { \
644 BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
645 /* \
646 * Don't have overlapping bits with _PAGE_HPTEFLAGS \
647 * We filter HPTEFLAGS on set_pte. \
648 */ \
649 BUILD_BUG_ON(_PAGE_HPTEFLAGS & (0x1f << _PAGE_BIT_SWAP_TYPE)); \
650 BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_SOFT_DIRTY); \
651 } while (0)
652 /*
653 * on pte we don't need handle RADIX_TREE_EXCEPTIONAL_SHIFT;
654 */
655 #define SWP_TYPE_BITS 5
656 #define __swp_type(x) (((x).val >> _PAGE_BIT_SWAP_TYPE) \
657 & ((1UL << SWP_TYPE_BITS) - 1))
658 #define __swp_offset(x) (((x).val & PTE_RPN_MASK) >> PAGE_SHIFT)
659 #define __swp_entry(type, offset) ((swp_entry_t) { \
660 ((type) << _PAGE_BIT_SWAP_TYPE) \
661 | (((offset) << PAGE_SHIFT) & PTE_RPN_MASK)})
662 /*
663 * swp_entry_t must be independent of pte bits. We build a swp_entry_t from
664 * swap type and offset we get from swap and convert that to pte to find a
665 * matching pte in linux page table.
666 * Clear bits not found in swap entries here.
667 */
668 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val((pte)) & ~_PAGE_PTE })
669 #define __swp_entry_to_pte(x) __pte((x).val | _PAGE_PTE)
670
671 #ifdef CONFIG_MEM_SOFT_DIRTY
672 #define _PAGE_SWP_SOFT_DIRTY (1UL << (SWP_TYPE_BITS + _PAGE_BIT_SWAP_TYPE))
673 #else
674 #define _PAGE_SWP_SOFT_DIRTY 0UL
675 #endif /* CONFIG_MEM_SOFT_DIRTY */
676
677 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
pte_swp_mksoft_dirty(pte_t pte)678 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
679 {
680 return __pte(pte_val(pte) | _PAGE_SWP_SOFT_DIRTY);
681 }
682
pte_swp_soft_dirty(pte_t pte)683 static inline bool pte_swp_soft_dirty(pte_t pte)
684 {
685 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
686 }
687
pte_swp_clear_soft_dirty(pte_t pte)688 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
689 {
690 return __pte(pte_val(pte) & ~_PAGE_SWP_SOFT_DIRTY);
691 }
692 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
693
check_pte_access(unsigned long access,unsigned long ptev)694 static inline bool check_pte_access(unsigned long access, unsigned long ptev)
695 {
696 /*
697 * This check for _PAGE_RWX and _PAGE_PRESENT bits
698 */
699 if (access & ~ptev)
700 return false;
701 /*
702 * This check for access to privilege space
703 */
704 if ((access & _PAGE_PRIVILEGED) != (ptev & _PAGE_PRIVILEGED))
705 return false;
706
707 return true;
708 }
709 /*
710 * Generic functions with hash/radix callbacks
711 */
712
__ptep_set_access_flags(struct mm_struct * mm,pte_t * ptep,pte_t entry,unsigned long address)713 static inline void __ptep_set_access_flags(struct mm_struct *mm,
714 pte_t *ptep, pte_t entry,
715 unsigned long address)
716 {
717 if (radix_enabled())
718 return radix__ptep_set_access_flags(mm, ptep, entry, address);
719 return hash__ptep_set_access_flags(ptep, entry);
720 }
721
722 #define __HAVE_ARCH_PTE_SAME
pte_same(pte_t pte_a,pte_t pte_b)723 static inline int pte_same(pte_t pte_a, pte_t pte_b)
724 {
725 if (radix_enabled())
726 return radix__pte_same(pte_a, pte_b);
727 return hash__pte_same(pte_a, pte_b);
728 }
729
pte_none(pte_t pte)730 static inline int pte_none(pte_t pte)
731 {
732 if (radix_enabled())
733 return radix__pte_none(pte);
734 return hash__pte_none(pte);
735 }
736
__set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte,int percpu)737 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
738 pte_t *ptep, pte_t pte, int percpu)
739 {
740 if (radix_enabled())
741 return radix__set_pte_at(mm, addr, ptep, pte, percpu);
742 return hash__set_pte_at(mm, addr, ptep, pte, percpu);
743 }
744
745 #define _PAGE_CACHE_CTL (_PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT)
746
747 #define pgprot_noncached pgprot_noncached
pgprot_noncached(pgprot_t prot)748 static inline pgprot_t pgprot_noncached(pgprot_t prot)
749 {
750 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
751 _PAGE_NON_IDEMPOTENT);
752 }
753
754 #define pgprot_noncached_wc pgprot_noncached_wc
pgprot_noncached_wc(pgprot_t prot)755 static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
756 {
757 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
758 _PAGE_TOLERANT);
759 }
760
761 #define pgprot_cached pgprot_cached
pgprot_cached(pgprot_t prot)762 static inline pgprot_t pgprot_cached(pgprot_t prot)
763 {
764 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL));
765 }
766
767 #define pgprot_writecombine pgprot_writecombine
pgprot_writecombine(pgprot_t prot)768 static inline pgprot_t pgprot_writecombine(pgprot_t prot)
769 {
770 return pgprot_noncached_wc(prot);
771 }
772 /*
773 * check a pte mapping have cache inhibited property
774 */
pte_ci(pte_t pte)775 static inline bool pte_ci(pte_t pte)
776 {
777 unsigned long pte_v = pte_val(pte);
778
779 if (((pte_v & _PAGE_CACHE_CTL) == _PAGE_TOLERANT) ||
780 ((pte_v & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT))
781 return true;
782 return false;
783 }
784
pmd_set(pmd_t * pmdp,unsigned long val)785 static inline void pmd_set(pmd_t *pmdp, unsigned long val)
786 {
787 *pmdp = __pmd(val);
788 }
789
pmd_clear(pmd_t * pmdp)790 static inline void pmd_clear(pmd_t *pmdp)
791 {
792 *pmdp = __pmd(0);
793 }
794
pmd_none(pmd_t pmd)795 static inline int pmd_none(pmd_t pmd)
796 {
797 return !pmd_raw(pmd);
798 }
799
pmd_present(pmd_t pmd)800 static inline int pmd_present(pmd_t pmd)
801 {
802
803 return !pmd_none(pmd);
804 }
805
pmd_bad(pmd_t pmd)806 static inline int pmd_bad(pmd_t pmd)
807 {
808 if (radix_enabled())
809 return radix__pmd_bad(pmd);
810 return hash__pmd_bad(pmd);
811 }
812
pud_set(pud_t * pudp,unsigned long val)813 static inline void pud_set(pud_t *pudp, unsigned long val)
814 {
815 *pudp = __pud(val);
816 }
817
pud_clear(pud_t * pudp)818 static inline void pud_clear(pud_t *pudp)
819 {
820 *pudp = __pud(0);
821 }
822
pud_none(pud_t pud)823 static inline int pud_none(pud_t pud)
824 {
825 return !pud_raw(pud);
826 }
827
pud_present(pud_t pud)828 static inline int pud_present(pud_t pud)
829 {
830 return !pud_none(pud);
831 }
832
833 extern struct page *pud_page(pud_t pud);
834 extern struct page *pmd_page(pmd_t pmd);
pud_pte(pud_t pud)835 static inline pte_t pud_pte(pud_t pud)
836 {
837 return __pte_raw(pud_raw(pud));
838 }
839
pte_pud(pte_t pte)840 static inline pud_t pte_pud(pte_t pte)
841 {
842 return __pud_raw(pte_raw(pte));
843 }
844 #define pud_write(pud) pte_write(pud_pte(pud))
845
pud_bad(pud_t pud)846 static inline int pud_bad(pud_t pud)
847 {
848 if (radix_enabled())
849 return radix__pud_bad(pud);
850 return hash__pud_bad(pud);
851 }
852
853
854 #define pgd_write(pgd) pte_write(pgd_pte(pgd))
pgd_set(pgd_t * pgdp,unsigned long val)855 static inline void pgd_set(pgd_t *pgdp, unsigned long val)
856 {
857 *pgdp = __pgd(val);
858 }
859
pgd_clear(pgd_t * pgdp)860 static inline void pgd_clear(pgd_t *pgdp)
861 {
862 *pgdp = __pgd(0);
863 }
864
pgd_none(pgd_t pgd)865 static inline int pgd_none(pgd_t pgd)
866 {
867 return !pgd_raw(pgd);
868 }
869
pgd_present(pgd_t pgd)870 static inline int pgd_present(pgd_t pgd)
871 {
872 return !pgd_none(pgd);
873 }
874
pgd_pte(pgd_t pgd)875 static inline pte_t pgd_pte(pgd_t pgd)
876 {
877 return __pte_raw(pgd_raw(pgd));
878 }
879
pte_pgd(pte_t pte)880 static inline pgd_t pte_pgd(pte_t pte)
881 {
882 return __pgd_raw(pte_raw(pte));
883 }
884
pgd_bad(pgd_t pgd)885 static inline int pgd_bad(pgd_t pgd)
886 {
887 if (radix_enabled())
888 return radix__pgd_bad(pgd);
889 return hash__pgd_bad(pgd);
890 }
891
892 extern struct page *pgd_page(pgd_t pgd);
893
894 /* Pointers in the page table tree are physical addresses */
895 #define __pgtable_ptr_val(ptr) __pa(ptr)
896
897 #define pmd_page_vaddr(pmd) __va(pmd_val(pmd) & ~PMD_MASKED_BITS)
898 #define pud_page_vaddr(pud) __va(pud_val(pud) & ~PUD_MASKED_BITS)
899 #define pgd_page_vaddr(pgd) __va(pgd_val(pgd) & ~PGD_MASKED_BITS)
900
901 #define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & (PTRS_PER_PGD - 1))
902 #define pud_index(address) (((address) >> (PUD_SHIFT)) & (PTRS_PER_PUD - 1))
903 #define pmd_index(address) (((address) >> (PMD_SHIFT)) & (PTRS_PER_PMD - 1))
904 #define pte_index(address) (((address) >> (PAGE_SHIFT)) & (PTRS_PER_PTE - 1))
905
906 /*
907 * Find an entry in a page-table-directory. We combine the address region
908 * (the high order N bits) and the pgd portion of the address.
909 */
910
911 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
912
913 #define pud_offset(pgdp, addr) \
914 (((pud_t *) pgd_page_vaddr(*(pgdp))) + pud_index(addr))
915 #define pmd_offset(pudp,addr) \
916 (((pmd_t *) pud_page_vaddr(*(pudp))) + pmd_index(addr))
917 #define pte_offset_kernel(dir,addr) \
918 (((pte_t *) pmd_page_vaddr(*(dir))) + pte_index(addr))
919
920 #define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr))
921 #define pte_unmap(pte) do { } while(0)
922
923 /* to find an entry in a kernel page-table-directory */
924 /* This now only contains the vmalloc pages */
925 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
926
927 #define pte_ERROR(e) \
928 pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
929 #define pmd_ERROR(e) \
930 pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
931 #define pud_ERROR(e) \
932 pr_err("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pud_val(e))
933 #define pgd_ERROR(e) \
934 pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
935
map_kernel_page(unsigned long ea,unsigned long pa,unsigned long flags)936 static inline int map_kernel_page(unsigned long ea, unsigned long pa,
937 unsigned long flags)
938 {
939 if (radix_enabled()) {
940 #if defined(CONFIG_PPC_RADIX_MMU) && defined(DEBUG_VM)
941 unsigned long page_size = 1 << mmu_psize_defs[mmu_io_psize].shift;
942 WARN((page_size != PAGE_SIZE), "I/O page size != PAGE_SIZE");
943 #endif
944 return radix__map_kernel_page(ea, pa, __pgprot(flags), PAGE_SIZE);
945 }
946 return hash__map_kernel_page(ea, pa, flags);
947 }
948
vmemmap_create_mapping(unsigned long start,unsigned long page_size,unsigned long phys)949 static inline int __meminit vmemmap_create_mapping(unsigned long start,
950 unsigned long page_size,
951 unsigned long phys)
952 {
953 if (radix_enabled())
954 return radix__vmemmap_create_mapping(start, page_size, phys);
955 return hash__vmemmap_create_mapping(start, page_size, phys);
956 }
957
958 #ifdef CONFIG_MEMORY_HOTPLUG
vmemmap_remove_mapping(unsigned long start,unsigned long page_size)959 static inline void vmemmap_remove_mapping(unsigned long start,
960 unsigned long page_size)
961 {
962 if (radix_enabled())
963 return radix__vmemmap_remove_mapping(start, page_size);
964 return hash__vmemmap_remove_mapping(start, page_size);
965 }
966 #endif
967 struct page *realmode_pfn_to_page(unsigned long pfn);
968
pmd_pte(pmd_t pmd)969 static inline pte_t pmd_pte(pmd_t pmd)
970 {
971 return __pte_raw(pmd_raw(pmd));
972 }
973
pte_pmd(pte_t pte)974 static inline pmd_t pte_pmd(pte_t pte)
975 {
976 return __pmd_raw(pte_raw(pte));
977 }
978
pmdp_ptep(pmd_t * pmd)979 static inline pte_t *pmdp_ptep(pmd_t *pmd)
980 {
981 return (pte_t *)pmd;
982 }
983 #define pmd_pfn(pmd) pte_pfn(pmd_pte(pmd))
984 #define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd))
985 #define pmd_young(pmd) pte_young(pmd_pte(pmd))
986 #define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd)))
987 #define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd)))
988 #define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd)))
989 #define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd)))
990 #define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd)))
991 #define pmd_mkwrite(pmd) pte_pmd(pte_mkwrite(pmd_pte(pmd)))
992 #define pmd_mk_savedwrite(pmd) pte_pmd(pte_mk_savedwrite(pmd_pte(pmd)))
993 #define pmd_clear_savedwrite(pmd) pte_pmd(pte_clear_savedwrite(pmd_pte(pmd)))
994
995 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
996 #define pmd_soft_dirty(pmd) pte_soft_dirty(pmd_pte(pmd))
997 #define pmd_mksoft_dirty(pmd) pte_pmd(pte_mksoft_dirty(pmd_pte(pmd)))
998 #define pmd_clear_soft_dirty(pmd) pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd)))
999 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
1000
1001 #ifdef CONFIG_NUMA_BALANCING
pmd_protnone(pmd_t pmd)1002 static inline int pmd_protnone(pmd_t pmd)
1003 {
1004 return pte_protnone(pmd_pte(pmd));
1005 }
1006 #endif /* CONFIG_NUMA_BALANCING */
1007
1008 #define __HAVE_ARCH_PMD_WRITE
1009 #define pmd_write(pmd) pte_write(pmd_pte(pmd))
1010 #define __pmd_write(pmd) __pte_write(pmd_pte(pmd))
1011 #define pmd_savedwrite(pmd) pte_savedwrite(pmd_pte(pmd))
1012
1013 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1014 extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
1015 extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
1016 extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
1017 extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1018 pmd_t *pmdp, pmd_t pmd);
1019 extern void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
1020 pmd_t *pmd);
1021 extern int hash__has_transparent_hugepage(void);
has_transparent_hugepage(void)1022 static inline int has_transparent_hugepage(void)
1023 {
1024 if (radix_enabled())
1025 return radix__has_transparent_hugepage();
1026 return hash__has_transparent_hugepage();
1027 }
1028 #define has_transparent_hugepage has_transparent_hugepage
1029
1030 static inline unsigned long
pmd_hugepage_update(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,unsigned long clr,unsigned long set)1031 pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp,
1032 unsigned long clr, unsigned long set)
1033 {
1034 if (radix_enabled())
1035 return radix__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1036 return hash__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1037 }
1038
pmd_large(pmd_t pmd)1039 static inline int pmd_large(pmd_t pmd)
1040 {
1041 return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
1042 }
1043
pmd_mknotpresent(pmd_t pmd)1044 static inline pmd_t pmd_mknotpresent(pmd_t pmd)
1045 {
1046 return __pmd(pmd_val(pmd) & ~_PAGE_PRESENT);
1047 }
1048 /*
1049 * For radix we should always find H_PAGE_HASHPTE zero. Hence
1050 * the below will work for radix too
1051 */
__pmdp_test_and_clear_young(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1052 static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
1053 unsigned long addr, pmd_t *pmdp)
1054 {
1055 unsigned long old;
1056
1057 if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
1058 return 0;
1059 old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
1060 return ((old & _PAGE_ACCESSED) != 0);
1061 }
1062
1063 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1064 static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
1065 pmd_t *pmdp)
1066 {
1067 if (__pmd_write((*pmdp)))
1068 pmd_hugepage_update(mm, addr, pmdp, _PAGE_WRITE, 0);
1069 else if (unlikely(pmd_savedwrite(*pmdp)))
1070 pmd_hugepage_update(mm, addr, pmdp, 0, _PAGE_PRIVILEGED);
1071 }
1072
pmd_trans_huge(pmd_t pmd)1073 static inline int pmd_trans_huge(pmd_t pmd)
1074 {
1075 if (radix_enabled())
1076 return radix__pmd_trans_huge(pmd);
1077 return hash__pmd_trans_huge(pmd);
1078 }
1079
1080 #define __HAVE_ARCH_PMD_SAME
pmd_same(pmd_t pmd_a,pmd_t pmd_b)1081 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
1082 {
1083 if (radix_enabled())
1084 return radix__pmd_same(pmd_a, pmd_b);
1085 return hash__pmd_same(pmd_a, pmd_b);
1086 }
1087
pmd_mkhuge(pmd_t pmd)1088 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1089 {
1090 if (radix_enabled())
1091 return radix__pmd_mkhuge(pmd);
1092 return hash__pmd_mkhuge(pmd);
1093 }
1094
1095 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1096 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1097 unsigned long address, pmd_t *pmdp,
1098 pmd_t entry, int dirty);
1099
1100 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1101 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1102 unsigned long address, pmd_t *pmdp);
1103
1104 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1105 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1106 unsigned long addr, pmd_t *pmdp)
1107 {
1108 if (radix_enabled())
1109 return radix__pmdp_huge_get_and_clear(mm, addr, pmdp);
1110 return hash__pmdp_huge_get_and_clear(mm, addr, pmdp);
1111 }
1112
pmdp_collapse_flush(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)1113 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1114 unsigned long address, pmd_t *pmdp)
1115 {
1116 if (radix_enabled())
1117 return radix__pmdp_collapse_flush(vma, address, pmdp);
1118 return hash__pmdp_collapse_flush(vma, address, pmdp);
1119 }
1120 #define pmdp_collapse_flush pmdp_collapse_flush
1121
1122 #define __HAVE_ARCH_PGTABLE_DEPOSIT
pgtable_trans_huge_deposit(struct mm_struct * mm,pmd_t * pmdp,pgtable_t pgtable)1123 static inline void pgtable_trans_huge_deposit(struct mm_struct *mm,
1124 pmd_t *pmdp, pgtable_t pgtable)
1125 {
1126 if (radix_enabled())
1127 return radix__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1128 return hash__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1129 }
1130
1131 #define __HAVE_ARCH_PGTABLE_WITHDRAW
pgtable_trans_huge_withdraw(struct mm_struct * mm,pmd_t * pmdp)1132 static inline pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm,
1133 pmd_t *pmdp)
1134 {
1135 if (radix_enabled())
1136 return radix__pgtable_trans_huge_withdraw(mm, pmdp);
1137 return hash__pgtable_trans_huge_withdraw(mm, pmdp);
1138 }
1139
1140 #define __HAVE_ARCH_PMDP_INVALIDATE
1141 extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
1142 pmd_t *pmdp);
1143
1144 #define __HAVE_ARCH_PMDP_HUGE_SPLIT_PREPARE
pmdp_huge_split_prepare(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)1145 static inline void pmdp_huge_split_prepare(struct vm_area_struct *vma,
1146 unsigned long address, pmd_t *pmdp)
1147 {
1148 if (radix_enabled())
1149 return radix__pmdp_huge_split_prepare(vma, address, pmdp);
1150 return hash__pmdp_huge_split_prepare(vma, address, pmdp);
1151 }
1152
1153 #define pmd_move_must_withdraw pmd_move_must_withdraw
1154 struct spinlock;
pmd_move_must_withdraw(struct spinlock * new_pmd_ptl,struct spinlock * old_pmd_ptl,struct vm_area_struct * vma)1155 static inline int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
1156 struct spinlock *old_pmd_ptl,
1157 struct vm_area_struct *vma)
1158 {
1159 if (radix_enabled())
1160 return false;
1161 /*
1162 * Archs like ppc64 use pgtable to store per pmd
1163 * specific information. So when we switch the pmd,
1164 * we should also withdraw and deposit the pgtable
1165 */
1166 return true;
1167 }
1168
1169
1170 #define arch_needs_pgtable_deposit arch_needs_pgtable_deposit
arch_needs_pgtable_deposit(void)1171 static inline bool arch_needs_pgtable_deposit(void)
1172 {
1173 if (radix_enabled())
1174 return false;
1175 return true;
1176 }
1177 extern void serialize_against_pte_lookup(struct mm_struct *mm);
1178
1179
pmd_mkdevmap(pmd_t pmd)1180 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
1181 {
1182 return __pmd(pmd_val(pmd) | (_PAGE_PTE | _PAGE_DEVMAP));
1183 }
1184
pmd_devmap(pmd_t pmd)1185 static inline int pmd_devmap(pmd_t pmd)
1186 {
1187 return pte_devmap(pmd_pte(pmd));
1188 }
1189
pud_devmap(pud_t pud)1190 static inline int pud_devmap(pud_t pud)
1191 {
1192 return 0;
1193 }
1194
pgd_devmap(pgd_t pgd)1195 static inline int pgd_devmap(pgd_t pgd)
1196 {
1197 return 0;
1198 }
1199 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1200
pud_pfn(pud_t pud)1201 static inline const int pud_pfn(pud_t pud)
1202 {
1203 /*
1204 * Currently all calls to pud_pfn() are gated around a pud_devmap()
1205 * check so this should never be used. If it grows another user we
1206 * want to know about it.
1207 */
1208 BUILD_BUG();
1209 return 0;
1210 }
1211
1212 #endif /* __ASSEMBLY__ */
1213 #endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */
1214