1 /*
2 * GPL HEADER START
3 *
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License version 2 for more details (a copy is included
14 * in the LICENSE file that accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License
17 * version 2 along with this program; If not, see
18 * http://www.gnu.org/licenses/gpl-2.0.html
19 *
20 * GPL HEADER END
21 */
22 /*
23 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Use is subject to license terms.
25 *
26 * Copyright (c) 2010, 2015, Intel Corporation.
27 */
28 /*
29 * This file is part of Lustre, http://www.lustre.org/
30 * Lustre is a trademark of Sun Microsystems, Inc.
31 */
32 /** \defgroup PtlRPC Portal RPC and networking module.
33 *
34 * PortalRPC is the layer used by rest of lustre code to achieve network
35 * communications: establish connections with corresponding export and import
36 * states, listen for a service, send and receive RPCs.
37 * PortalRPC also includes base recovery framework: packet resending and
38 * replaying, reconnections, pinger.
39 *
40 * PortalRPC utilizes LNet as its transport layer.
41 *
42 * @{
43 */
44
45 #ifndef _LUSTRE_NET_H
46 #define _LUSTRE_NET_H
47
48 /** \defgroup net net
49 *
50 * @{
51 */
52
53 #include <linux/uio.h>
54 #include <linux/libcfs/libcfs.h>
55 #include <uapi/linux/lnet/nidstr.h>
56 #include <linux/lnet/api.h>
57 #include <uapi/linux/lustre/lustre_idl.h>
58 #include <lustre_errno.h>
59 #include <lustre_ha.h>
60 #include <lustre_sec.h>
61 #include <lustre_import.h>
62 #include <lprocfs_status.h>
63 #include <lu_object.h>
64 #include <lustre_req_layout.h>
65
66 #include <obd_support.h>
67 #include <uapi/linux/lustre/lustre_ver.h>
68
69 /* MD flags we _always_ use */
70 #define PTLRPC_MD_OPTIONS 0
71
72 /**
73 * log2 max # of bulk operations in one request: 2=4MB/RPC, 5=32MB/RPC, ...
74 * In order for the client and server to properly negotiate the maximum
75 * possible transfer size, PTLRPC_BULK_OPS_COUNT must be a power-of-two
76 * value. The client is free to limit the actual RPC size for any bulk
77 * transfer via cl_max_pages_per_rpc to some non-power-of-two value.
78 * NOTE: This is limited to 16 (=64GB RPCs) by IOOBJ_MAX_BRW_BITS.
79 */
80 #define PTLRPC_BULK_OPS_BITS 4
81 #if PTLRPC_BULK_OPS_BITS > 16
82 #error "More than 65536 BRW RPCs not allowed by IOOBJ_MAX_BRW_BITS."
83 #endif
84 #define PTLRPC_BULK_OPS_COUNT (1U << PTLRPC_BULK_OPS_BITS)
85 /**
86 * PTLRPC_BULK_OPS_MASK is for the convenience of the client only, and
87 * should not be used on the server at all. Otherwise, it imposes a
88 * protocol limitation on the maximum RPC size that can be used by any
89 * RPC sent to that server in the future. Instead, the server should
90 * use the negotiated per-client ocd_brw_size to determine the bulk
91 * RPC count.
92 */
93 #define PTLRPC_BULK_OPS_MASK (~((__u64)PTLRPC_BULK_OPS_COUNT - 1))
94
95 /**
96 * Define maxima for bulk I/O.
97 *
98 * A single PTLRPC BRW request is sent via up to PTLRPC_BULK_OPS_COUNT
99 * of LNET_MTU sized RDMA transfers. Clients and servers negotiate the
100 * currently supported maximum between peers at connect via ocd_brw_size.
101 */
102 #define PTLRPC_MAX_BRW_BITS (LNET_MTU_BITS + PTLRPC_BULK_OPS_BITS)
103 #define PTLRPC_MAX_BRW_SIZE (1 << PTLRPC_MAX_BRW_BITS)
104 #define PTLRPC_MAX_BRW_PAGES (PTLRPC_MAX_BRW_SIZE >> PAGE_SHIFT)
105
106 #define ONE_MB_BRW_SIZE (1 << LNET_MTU_BITS)
107 #define MD_MAX_BRW_SIZE (1 << LNET_MTU_BITS)
108 #define MD_MAX_BRW_PAGES (MD_MAX_BRW_SIZE >> PAGE_SHIFT)
109 #define DT_MAX_BRW_SIZE PTLRPC_MAX_BRW_SIZE
110 #define DT_MAX_BRW_PAGES (DT_MAX_BRW_SIZE >> PAGE_SHIFT)
111 #define OFD_MAX_BRW_SIZE (1 << LNET_MTU_BITS)
112
113 /* When PAGE_SIZE is a constant, we can check our arithmetic here with cpp! */
114 # if ((PTLRPC_MAX_BRW_PAGES & (PTLRPC_MAX_BRW_PAGES - 1)) != 0)
115 # error "PTLRPC_MAX_BRW_PAGES isn't a power of two"
116 # endif
117 # if (PTLRPC_MAX_BRW_SIZE != (PTLRPC_MAX_BRW_PAGES * PAGE_SIZE))
118 # error "PTLRPC_MAX_BRW_SIZE isn't PTLRPC_MAX_BRW_PAGES * PAGE_SIZE"
119 # endif
120 # if (PTLRPC_MAX_BRW_SIZE > LNET_MTU * PTLRPC_BULK_OPS_COUNT)
121 # error "PTLRPC_MAX_BRW_SIZE too big"
122 # endif
123 # if (PTLRPC_MAX_BRW_PAGES > LNET_MAX_IOV * PTLRPC_BULK_OPS_COUNT)
124 # error "PTLRPC_MAX_BRW_PAGES too big"
125 # endif
126
127 #define PTLRPC_NTHRS_INIT 2
128
129 /**
130 * Buffer Constants
131 *
132 * Constants determine how memory is used to buffer incoming service requests.
133 *
134 * ?_NBUFS # buffers to allocate when growing the pool
135 * ?_BUFSIZE # bytes in a single request buffer
136 * ?_MAXREQSIZE # maximum request service will receive
137 *
138 * When fewer than ?_NBUFS/2 buffers are posted for receive, another chunk
139 * of ?_NBUFS is added to the pool.
140 *
141 * Messages larger than ?_MAXREQSIZE are dropped. Request buffers are
142 * considered full when less than ?_MAXREQSIZE is left in them.
143 */
144 /**
145 * Thread Constants
146 *
147 * Constants determine how threads are created for ptlrpc service.
148 *
149 * ?_NTHRS_INIT # threads to create for each service partition on
150 * initializing. If it's non-affinity service and
151 * there is only one partition, it's the overall #
152 * threads for the service while initializing.
153 * ?_NTHRS_BASE # threads should be created at least for each
154 * ptlrpc partition to keep the service healthy.
155 * It's the low-water mark of threads upper-limit
156 * for each partition.
157 * ?_THR_FACTOR # threads can be added on threads upper-limit for
158 * each CPU core. This factor is only for reference,
159 * we might decrease value of factor if number of cores
160 * per CPT is above a limit.
161 * ?_NTHRS_MAX # overall threads can be created for a service,
162 * it's a soft limit because if service is running
163 * on machine with hundreds of cores and tens of
164 * CPU partitions, we need to guarantee each partition
165 * has ?_NTHRS_BASE threads, which means total threads
166 * will be ?_NTHRS_BASE * number_of_cpts which can
167 * exceed ?_NTHRS_MAX.
168 *
169 * Examples
170 *
171 * #define MDS_NTHRS_INIT 2
172 * #define MDS_NTHRS_BASE 64
173 * #define MDS_NTHRS_FACTOR 8
174 * #define MDS_NTHRS_MAX 1024
175 *
176 * Example 1):
177 * ---------------------------------------------------------------------
178 * Server(A) has 16 cores, user configured it to 4 partitions so each
179 * partition has 4 cores, then actual number of service threads on each
180 * partition is:
181 * MDS_NTHRS_BASE(64) + cores(4) * MDS_NTHRS_FACTOR(8) = 96
182 *
183 * Total number of threads for the service is:
184 * 96 * partitions(4) = 384
185 *
186 * Example 2):
187 * ---------------------------------------------------------------------
188 * Server(B) has 32 cores, user configured it to 4 partitions so each
189 * partition has 8 cores, then actual number of service threads on each
190 * partition is:
191 * MDS_NTHRS_BASE(64) + cores(8) * MDS_NTHRS_FACTOR(8) = 128
192 *
193 * Total number of threads for the service is:
194 * 128 * partitions(4) = 512
195 *
196 * Example 3):
197 * ---------------------------------------------------------------------
198 * Server(B) has 96 cores, user configured it to 8 partitions so each
199 * partition has 12 cores, then actual number of service threads on each
200 * partition is:
201 * MDS_NTHRS_BASE(64) + cores(12) * MDS_NTHRS_FACTOR(8) = 160
202 *
203 * Total number of threads for the service is:
204 * 160 * partitions(8) = 1280
205 *
206 * However, it's above the soft limit MDS_NTHRS_MAX, so we choose this number
207 * as upper limit of threads number for each partition:
208 * MDS_NTHRS_MAX(1024) / partitions(8) = 128
209 *
210 * Example 4):
211 * ---------------------------------------------------------------------
212 * Server(C) have a thousand of cores and user configured it to 32 partitions
213 * MDS_NTHRS_BASE(64) * 32 = 2048
214 *
215 * which is already above soft limit MDS_NTHRS_MAX(1024), but we still need
216 * to guarantee that each partition has at least MDS_NTHRS_BASE(64) threads
217 * to keep service healthy, so total number of threads will just be 2048.
218 *
219 * NB: we don't suggest to choose server with that many cores because backend
220 * filesystem itself, buffer cache, or underlying network stack might
221 * have some SMP scalability issues at that large scale.
222 *
223 * If user already has a fat machine with hundreds or thousands of cores,
224 * there are two choices for configuration:
225 * a) create CPU table from subset of all CPUs and run Lustre on
226 * top of this subset
227 * b) bind service threads on a few partitions, see modparameters of
228 * MDS and OSS for details
229 *
230 * NB: these calculations (and examples below) are simplified to help
231 * understanding, the real implementation is a little more complex,
232 * please see ptlrpc_server_nthreads_check() for details.
233 *
234 */
235
236 /*
237 * LDLM threads constants:
238 *
239 * Given 8 as factor and 24 as base threads number
240 *
241 * example 1)
242 * On 4-core machine we will have 24 + 8 * 4 = 56 threads.
243 *
244 * example 2)
245 * On 8-core machine with 2 partitions we will have 24 + 4 * 8 = 56
246 * threads for each partition and total threads number will be 112.
247 *
248 * example 3)
249 * On 64-core machine with 8 partitions we will need LDLM_NTHRS_BASE(24)
250 * threads for each partition to keep service healthy, so total threads
251 * number should be 24 * 8 = 192.
252 *
253 * So with these constants, threads number will be at the similar level
254 * of old versions, unless target machine has over a hundred cores
255 */
256 #define LDLM_THR_FACTOR 8
257 #define LDLM_NTHRS_INIT PTLRPC_NTHRS_INIT
258 #define LDLM_NTHRS_BASE 24
259 #define LDLM_NTHRS_MAX (num_online_cpus() == 1 ? 64 : 128)
260
261 #define LDLM_BL_THREADS LDLM_NTHRS_AUTO_INIT
262 #define LDLM_CLIENT_NBUFS 1
263 #define LDLM_SERVER_NBUFS 64
264 #define LDLM_BUFSIZE (8 * 1024)
265 #define LDLM_MAXREQSIZE (5 * 1024)
266 #define LDLM_MAXREPSIZE (1024)
267
268 #define MDS_MAXREQSIZE (5 * 1024) /* >= 4736 */
269
270 /**
271 * FIEMAP request can be 4K+ for now
272 */
273 #define OST_MAXREQSIZE (16 * 1024)
274
275 /* Macro to hide a typecast. */
276 #define ptlrpc_req_async_args(req) ((void *)&req->rq_async_args)
277
278 struct ptlrpc_replay_async_args {
279 int praa_old_state;
280 int praa_old_status;
281 };
282
283 /**
284 * Structure to single define portal connection.
285 */
286 struct ptlrpc_connection {
287 /** linkage for connections hash table */
288 struct hlist_node c_hash;
289 /** Our own lnet nid for this connection */
290 lnet_nid_t c_self;
291 /** Remote side nid for this connection */
292 struct lnet_process_id c_peer;
293 /** UUID of the other side */
294 struct obd_uuid c_remote_uuid;
295 /** reference counter for this connection */
296 atomic_t c_refcount;
297 };
298
299 /** Client definition for PortalRPC */
300 struct ptlrpc_client {
301 /** What lnet portal does this client send messages to by default */
302 __u32 cli_request_portal;
303 /** What portal do we expect replies on */
304 __u32 cli_reply_portal;
305 /** Name of the client */
306 char *cli_name;
307 };
308
309 /** state flags of requests */
310 /* XXX only ones left are those used by the bulk descs as well! */
311 #define PTL_RPC_FL_INTR (1 << 0) /* reply wait was interrupted by user */
312 #define PTL_RPC_FL_TIMEOUT (1 << 7) /* request timed out waiting for reply */
313
314 #define REQ_MAX_ACK_LOCKS 8
315
316 union ptlrpc_async_args {
317 /**
318 * Scratchpad for passing args to completion interpreter. Users
319 * cast to the struct of their choosing, and BUILD_BUG_ON oversized
320 * arguments. For _tons_ of context, kmalloc a struct and store
321 * a pointer to it here. The pointer_arg ensures this struct is at
322 * least big enough for that.
323 */
324 void *pointer_arg[11];
325 __u64 space[7];
326 };
327
328 struct ptlrpc_request_set;
329 typedef int (*set_interpreter_func)(struct ptlrpc_request_set *, void *, int);
330 typedef int (*set_producer_func)(struct ptlrpc_request_set *, void *);
331
332 /**
333 * Definition of request set structure.
334 * Request set is a list of requests (not necessary to the same target) that
335 * once populated with RPCs could be sent in parallel.
336 * There are two kinds of request sets. General purpose and with dedicated
337 * serving thread. Example of the latter is ptlrpcd set.
338 * For general purpose sets once request set started sending it is impossible
339 * to add new requests to such set.
340 * Provides a way to call "completion callbacks" when all requests in the set
341 * returned.
342 */
343 struct ptlrpc_request_set {
344 atomic_t set_refcount;
345 /** number of in queue requests */
346 atomic_t set_new_count;
347 /** number of uncompleted requests */
348 atomic_t set_remaining;
349 /** wait queue to wait on for request events */
350 wait_queue_head_t set_waitq;
351 wait_queue_head_t *set_wakeup_ptr;
352 /** List of requests in the set */
353 struct list_head set_requests;
354 /**
355 * List of completion callbacks to be called when the set is completed
356 * This is only used if \a set_interpret is NULL.
357 * Links struct ptlrpc_set_cbdata.
358 */
359 struct list_head set_cblist;
360 /** Completion callback, if only one. */
361 set_interpreter_func set_interpret;
362 /** opaq argument passed to completion \a set_interpret callback. */
363 void *set_arg;
364 /**
365 * Lock for \a set_new_requests manipulations
366 * locked so that any old caller can communicate requests to
367 * the set holder who can then fold them into the lock-free set
368 */
369 spinlock_t set_new_req_lock;
370 /** List of new yet unsent requests. Only used with ptlrpcd now. */
371 struct list_head set_new_requests;
372
373 /** rq_status of requests that have been freed already */
374 int set_rc;
375 /** Additional fields used by the flow control extension */
376 /** Maximum number of RPCs in flight */
377 int set_max_inflight;
378 /** Callback function used to generate RPCs */
379 set_producer_func set_producer;
380 /** opaq argument passed to the producer callback */
381 void *set_producer_arg;
382 };
383
384 /**
385 * Description of a single ptrlrpc_set callback
386 */
387 struct ptlrpc_set_cbdata {
388 /** List linkage item */
389 struct list_head psc_item;
390 /** Pointer to interpreting function */
391 set_interpreter_func psc_interpret;
392 /** Opaq argument to pass to the callback */
393 void *psc_data;
394 };
395
396 struct ptlrpc_bulk_desc;
397 struct ptlrpc_service_part;
398 struct ptlrpc_service;
399
400 /**
401 * ptlrpc callback & work item stuff
402 */
403 struct ptlrpc_cb_id {
404 void (*cbid_fn)(struct lnet_event *ev); /* specific callback fn */
405 void *cbid_arg; /* additional arg */
406 };
407
408 /** Maximum number of locks to fit into reply state */
409 #define RS_MAX_LOCKS 8
410 #define RS_DEBUG 0
411
412 /**
413 * Structure to define reply state on the server
414 * Reply state holds various reply message information. Also for "difficult"
415 * replies (rep-ack case) we store the state after sending reply and wait
416 * for the client to acknowledge the reception. In these cases locks could be
417 * added to the state for replay/failover consistency guarantees.
418 */
419 struct ptlrpc_reply_state {
420 /** Callback description */
421 struct ptlrpc_cb_id rs_cb_id;
422 /** Linkage for list of all reply states in a system */
423 struct list_head rs_list;
424 /** Linkage for list of all reply states on same export */
425 struct list_head rs_exp_list;
426 /** Linkage for list of all reply states for same obd */
427 struct list_head rs_obd_list;
428 #if RS_DEBUG
429 struct list_head rs_debug_list;
430 #endif
431 /** A spinlock to protect the reply state flags */
432 spinlock_t rs_lock;
433 /** Reply state flags */
434 unsigned long rs_difficult:1; /* ACK/commit stuff */
435 unsigned long rs_no_ack:1; /* no ACK, even for
436 * difficult requests
437 */
438 unsigned long rs_scheduled:1; /* being handled? */
439 unsigned long rs_scheduled_ever:1;/* any schedule attempts? */
440 unsigned long rs_handled:1; /* been handled yet? */
441 unsigned long rs_on_net:1; /* reply_out_callback pending? */
442 unsigned long rs_prealloc:1; /* rs from prealloc list */
443 unsigned long rs_committed:1;/* the transaction was committed
444 * and the rs was dispatched
445 */
446 atomic_t rs_refcount; /* number of users */
447 /** Number of locks awaiting client ACK */
448 int rs_nlocks;
449
450 /** Size of the state */
451 int rs_size;
452 /** opcode */
453 __u32 rs_opc;
454 /** Transaction number */
455 __u64 rs_transno;
456 /** xid */
457 __u64 rs_xid;
458 struct obd_export *rs_export;
459 struct ptlrpc_service_part *rs_svcpt;
460 /** Lnet metadata handle for the reply */
461 struct lnet_handle_md rs_md_h;
462
463 /** Context for the service thread */
464 struct ptlrpc_svc_ctx *rs_svc_ctx;
465 /** Reply buffer (actually sent to the client), encoded if needed */
466 struct lustre_msg *rs_repbuf; /* wrapper */
467 /** Size of the reply buffer */
468 int rs_repbuf_len; /* wrapper buf length */
469 /** Size of the reply message */
470 int rs_repdata_len; /* wrapper msg length */
471 /**
472 * Actual reply message. Its content is encrypted (if needed) to
473 * produce reply buffer for actual sending. In simple case
474 * of no network encryption we just set \a rs_repbuf to \a rs_msg
475 */
476 struct lustre_msg *rs_msg; /* reply message */
477
478 /** Handles of locks awaiting client reply ACK */
479 struct lustre_handle rs_locks[RS_MAX_LOCKS];
480 /** Lock modes of locks in \a rs_locks */
481 enum ldlm_mode rs_modes[RS_MAX_LOCKS];
482 };
483
484 struct ptlrpc_thread;
485
486 /** RPC stages */
487 enum rq_phase {
488 RQ_PHASE_NEW = 0xebc0de00,
489 RQ_PHASE_RPC = 0xebc0de01,
490 RQ_PHASE_BULK = 0xebc0de02,
491 RQ_PHASE_INTERPRET = 0xebc0de03,
492 RQ_PHASE_COMPLETE = 0xebc0de04,
493 RQ_PHASE_UNREG_RPC = 0xebc0de05,
494 RQ_PHASE_UNREG_BULK = 0xebc0de06,
495 RQ_PHASE_UNDEFINED = 0xebc0de07
496 };
497
498 /** Type of request interpreter call-back */
499 typedef int (*ptlrpc_interpterer_t)(const struct lu_env *env,
500 struct ptlrpc_request *req,
501 void *arg, int rc);
502
503 /**
504 * Definition of request pool structure.
505 * The pool is used to store empty preallocated requests for the case
506 * when we would actually need to send something without performing
507 * any allocations (to avoid e.g. OOM).
508 */
509 struct ptlrpc_request_pool {
510 /** Locks the list */
511 spinlock_t prp_lock;
512 /** list of ptlrpc_request structs */
513 struct list_head prp_req_list;
514 /** Maximum message size that would fit into a request from this pool */
515 int prp_rq_size;
516 /** Function to allocate more requests for this pool */
517 int (*prp_populate)(struct ptlrpc_request_pool *, int);
518 };
519
520 struct lu_context;
521 struct lu_env;
522
523 struct ldlm_lock;
524
525 #include <lustre_nrs.h>
526
527 /**
528 * Basic request prioritization operations structure.
529 * The whole idea is centered around locks and RPCs that might affect locks.
530 * When a lock is contended we try to give priority to RPCs that might lead
531 * to fastest release of that lock.
532 * Currently only implemented for OSTs only in a way that makes all
533 * IO and truncate RPCs that are coming from a locked region where a lock is
534 * contended a priority over other requests.
535 */
536 struct ptlrpc_hpreq_ops {
537 /**
538 * Check if the lock handle of the given lock is the same as
539 * taken from the request.
540 */
541 int (*hpreq_lock_match)(struct ptlrpc_request *, struct ldlm_lock *);
542 /**
543 * Check if the request is a high priority one.
544 */
545 int (*hpreq_check)(struct ptlrpc_request *);
546 /**
547 * Called after the request has been handled.
548 */
549 void (*hpreq_fini)(struct ptlrpc_request *);
550 };
551
552 struct ptlrpc_cli_req {
553 /** For bulk requests on client only: bulk descriptor */
554 struct ptlrpc_bulk_desc *cr_bulk;
555 /** optional time limit for send attempts */
556 long cr_delay_limit;
557 /** time request was first queued */
558 time_t cr_queued_time;
559 /** request sent timeval */
560 struct timespec64 cr_sent_tv;
561 /** time for request really sent out */
562 time64_t cr_sent_out;
563 /** when req reply unlink must finish. */
564 time64_t cr_reply_deadline;
565 /** when req bulk unlink must finish. */
566 time64_t cr_bulk_deadline;
567 /** when req unlink must finish. */
568 time64_t cr_req_deadline;
569 /** Portal to which this request would be sent */
570 short cr_req_ptl;
571 /** Portal where to wait for reply and where reply would be sent */
572 short cr_rep_ptl;
573 /** request resending number */
574 unsigned int cr_resend_nr;
575 /** What was import generation when this request was sent */
576 int cr_imp_gen;
577 enum lustre_imp_state cr_send_state;
578 /** Per-request waitq introduced by bug 21938 for recovery waiting */
579 wait_queue_head_t cr_set_waitq;
580 /** Link item for request set lists */
581 struct list_head cr_set_chain;
582 /** link to waited ctx */
583 struct list_head cr_ctx_chain;
584
585 /** client's half ctx */
586 struct ptlrpc_cli_ctx *cr_cli_ctx;
587 /** Link back to the request set */
588 struct ptlrpc_request_set *cr_set;
589 /** outgoing request MD handle */
590 struct lnet_handle_md cr_req_md_h;
591 /** request-out callback parameter */
592 struct ptlrpc_cb_id cr_req_cbid;
593 /** incoming reply MD handle */
594 struct lnet_handle_md cr_reply_md_h;
595 wait_queue_head_t cr_reply_waitq;
596 /** reply callback parameter */
597 struct ptlrpc_cb_id cr_reply_cbid;
598 /** Async completion handler, called when reply is received */
599 ptlrpc_interpterer_t cr_reply_interp;
600 /** Async completion context */
601 union ptlrpc_async_args cr_async_args;
602 /** Opaq data for replay and commit callbacks. */
603 void *cr_cb_data;
604 /** Link to the imp->imp_unreplied_list */
605 struct list_head cr_unreplied_list;
606 /**
607 * Commit callback, called when request is committed and about to be
608 * freed.
609 */
610 void (*cr_commit_cb)(struct ptlrpc_request *);
611 /** Replay callback, called after request is replayed at recovery */
612 void (*cr_replay_cb)(struct ptlrpc_request *);
613 };
614
615 /** client request member alias */
616 /* NB: these alias should NOT be used by any new code, instead they should
617 * be removed step by step to avoid potential abuse
618 */
619 #define rq_bulk rq_cli.cr_bulk
620 #define rq_delay_limit rq_cli.cr_delay_limit
621 #define rq_queued_time rq_cli.cr_queued_time
622 #define rq_sent_tv rq_cli.cr_sent_tv
623 #define rq_real_sent rq_cli.cr_sent_out
624 #define rq_reply_deadline rq_cli.cr_reply_deadline
625 #define rq_bulk_deadline rq_cli.cr_bulk_deadline
626 #define rq_req_deadline rq_cli.cr_req_deadline
627 #define rq_nr_resend rq_cli.cr_resend_nr
628 #define rq_request_portal rq_cli.cr_req_ptl
629 #define rq_reply_portal rq_cli.cr_rep_ptl
630 #define rq_import_generation rq_cli.cr_imp_gen
631 #define rq_send_state rq_cli.cr_send_state
632 #define rq_set_chain rq_cli.cr_set_chain
633 #define rq_ctx_chain rq_cli.cr_ctx_chain
634 #define rq_set rq_cli.cr_set
635 #define rq_set_waitq rq_cli.cr_set_waitq
636 #define rq_cli_ctx rq_cli.cr_cli_ctx
637 #define rq_req_md_h rq_cli.cr_req_md_h
638 #define rq_req_cbid rq_cli.cr_req_cbid
639 #define rq_reply_md_h rq_cli.cr_reply_md_h
640 #define rq_reply_waitq rq_cli.cr_reply_waitq
641 #define rq_reply_cbid rq_cli.cr_reply_cbid
642 #define rq_interpret_reply rq_cli.cr_reply_interp
643 #define rq_async_args rq_cli.cr_async_args
644 #define rq_cb_data rq_cli.cr_cb_data
645 #define rq_unreplied_list rq_cli.cr_unreplied_list
646 #define rq_commit_cb rq_cli.cr_commit_cb
647 #define rq_replay_cb rq_cli.cr_replay_cb
648
649 struct ptlrpc_srv_req {
650 /** initial thread servicing this request */
651 struct ptlrpc_thread *sr_svc_thread;
652 /**
653 * Server side list of incoming unserved requests sorted by arrival
654 * time. Traversed from time to time to notice about to expire
655 * requests and sent back "early replies" to clients to let them
656 * know server is alive and well, just very busy to service their
657 * requests in time
658 */
659 struct list_head sr_timed_list;
660 /** server-side per-export list */
661 struct list_head sr_exp_list;
662 /** server-side history, used for debuging purposes. */
663 struct list_head sr_hist_list;
664 /** history sequence # */
665 __u64 sr_hist_seq;
666 /** the index of service's srv_at_array into which request is linked */
667 time64_t sr_at_index;
668 /** authed uid */
669 uid_t sr_auth_uid;
670 /** authed uid mapped to */
671 uid_t sr_auth_mapped_uid;
672 /** RPC is generated from what part of Lustre */
673 enum lustre_sec_part sr_sp_from;
674 /** request session context */
675 struct lu_context sr_ses;
676 /** \addtogroup nrs
677 * @{
678 */
679 /** stub for NRS request */
680 struct ptlrpc_nrs_request sr_nrq;
681 /** @} nrs */
682 /** request arrival time */
683 struct timespec64 sr_arrival_time;
684 /** server's half ctx */
685 struct ptlrpc_svc_ctx *sr_svc_ctx;
686 /** (server side), pointed directly into req buffer */
687 struct ptlrpc_user_desc *sr_user_desc;
688 /** separated reply state */
689 struct ptlrpc_reply_state *sr_reply_state;
690 /** server-side hp handlers */
691 struct ptlrpc_hpreq_ops *sr_ops;
692 /** incoming request buffer */
693 struct ptlrpc_request_buffer_desc *sr_rqbd;
694 };
695
696 /** server request member alias */
697 /* NB: these alias should NOT be used by any new code, instead they should
698 * be removed step by step to avoid potential abuse
699 */
700 #define rq_svc_thread rq_srv.sr_svc_thread
701 #define rq_timed_list rq_srv.sr_timed_list
702 #define rq_exp_list rq_srv.sr_exp_list
703 #define rq_history_list rq_srv.sr_hist_list
704 #define rq_history_seq rq_srv.sr_hist_seq
705 #define rq_at_index rq_srv.sr_at_index
706 #define rq_auth_uid rq_srv.sr_auth_uid
707 #define rq_auth_mapped_uid rq_srv.sr_auth_mapped_uid
708 #define rq_sp_from rq_srv.sr_sp_from
709 #define rq_session rq_srv.sr_ses
710 #define rq_nrq rq_srv.sr_nrq
711 #define rq_arrival_time rq_srv.sr_arrival_time
712 #define rq_reply_state rq_srv.sr_reply_state
713 #define rq_svc_ctx rq_srv.sr_svc_ctx
714 #define rq_user_desc rq_srv.sr_user_desc
715 #define rq_ops rq_srv.sr_ops
716 #define rq_rqbd rq_srv.sr_rqbd
717
718 /**
719 * Represents remote procedure call.
720 *
721 * This is a staple structure used by everybody wanting to send a request
722 * in Lustre.
723 */
724 struct ptlrpc_request {
725 /* Request type: one of PTL_RPC_MSG_* */
726 int rq_type;
727 /** Result of request processing */
728 int rq_status;
729 /**
730 * Linkage item through which this request is included into
731 * sending/delayed lists on client and into rqbd list on server
732 */
733 struct list_head rq_list;
734 /** Lock to protect request flags and some other important bits, like
735 * rq_list
736 */
737 spinlock_t rq_lock;
738 /** client-side flags are serialized by rq_lock @{ */
739 unsigned int rq_intr:1, rq_replied:1, rq_err:1,
740 rq_timedout:1, rq_resend:1, rq_restart:1,
741 /**
742 * when ->rq_replay is set, request is kept by the client even
743 * after server commits corresponding transaction. This is
744 * used for operations that require sequence of multiple
745 * requests to be replayed. The only example currently is file
746 * open/close. When last request in such a sequence is
747 * committed, ->rq_replay is cleared on all requests in the
748 * sequence.
749 */
750 rq_replay:1,
751 rq_no_resend:1, rq_waiting:1, rq_receiving_reply:1,
752 rq_no_delay:1, rq_net_err:1, rq_wait_ctx:1,
753 rq_early:1,
754 rq_req_unlinked:1, /* unlinked request buffer from lnet */
755 rq_reply_unlinked:1, /* unlinked reply buffer from lnet */
756 rq_memalloc:1, /* req originated from "kswapd" */
757 rq_committed:1,
758 rq_reply_truncated:1,
759 /** whether the "rq_set" is a valid one */
760 rq_invalid_rqset:1,
761 rq_generation_set:1,
762 /** do not resend request on -EINPROGRESS */
763 rq_no_retry_einprogress:1,
764 /* allow the req to be sent if the import is in recovery
765 * status
766 */
767 rq_allow_replay:1,
768 /* bulk request, sent to server, but uncommitted */
769 rq_unstable:1;
770 /** @} */
771
772 /** server-side flags @{ */
773 unsigned int
774 rq_hp:1, /**< high priority RPC */
775 rq_at_linked:1, /**< link into service's srv_at_array */
776 rq_packed_final:1; /**< packed final reply */
777 /** @} */
778
779 /** one of RQ_PHASE_* */
780 enum rq_phase rq_phase;
781 /** one of RQ_PHASE_* to be used next */
782 enum rq_phase rq_next_phase;
783 /**
784 * client-side refcount for SENT race, server-side refcount
785 * for multiple replies
786 */
787 atomic_t rq_refcount;
788 /**
789 * client-side:
790 * !rq_truncate : # reply bytes actually received,
791 * rq_truncate : required repbuf_len for resend
792 */
793 int rq_nob_received;
794 /** Request length */
795 int rq_reqlen;
796 /** Reply length */
797 int rq_replen;
798 /** Pool if request is from preallocated list */
799 struct ptlrpc_request_pool *rq_pool;
800 /** Request message - what client sent */
801 struct lustre_msg *rq_reqmsg;
802 /** Reply message - server response */
803 struct lustre_msg *rq_repmsg;
804 /** Transaction number */
805 __u64 rq_transno;
806 /** xid */
807 __u64 rq_xid;
808 /** bulk match bits */
809 u64 rq_mbits;
810 /**
811 * List item to for replay list. Not yet committed requests get linked
812 * there.
813 * Also see \a rq_replay comment above.
814 * It's also link chain on obd_export::exp_req_replay_queue
815 */
816 struct list_head rq_replay_list;
817 /** non-shared members for client & server request*/
818 union {
819 struct ptlrpc_cli_req rq_cli;
820 struct ptlrpc_srv_req rq_srv;
821 };
822 /**
823 * security and encryption data
824 * @{
825 */
826 /** description of flavors for client & server */
827 struct sptlrpc_flavor rq_flvr;
828
829 /* client/server security flags */
830 unsigned int
831 rq_ctx_init:1, /* context initiation */
832 rq_ctx_fini:1, /* context destroy */
833 rq_bulk_read:1, /* request bulk read */
834 rq_bulk_write:1, /* request bulk write */
835 /* server authentication flags */
836 rq_auth_gss:1, /* authenticated by gss */
837 rq_auth_usr_root:1, /* authed as root */
838 rq_auth_usr_mdt:1, /* authed as mdt */
839 rq_auth_usr_ost:1, /* authed as ost */
840 /* security tfm flags */
841 rq_pack_udesc:1,
842 rq_pack_bulk:1,
843 /* doesn't expect reply FIXME */
844 rq_no_reply:1,
845 rq_pill_init:1, /* pill initialized */
846 rq_srv_req:1; /* server request */
847
848 /** various buffer pointers */
849 struct lustre_msg *rq_reqbuf; /**< req wrapper */
850 char *rq_repbuf; /**< rep buffer */
851 struct lustre_msg *rq_repdata; /**< rep wrapper msg */
852 /** only in priv mode */
853 struct lustre_msg *rq_clrbuf;
854 int rq_reqbuf_len; /* req wrapper buf len */
855 int rq_reqdata_len; /* req wrapper msg len */
856 int rq_repbuf_len; /* rep buffer len */
857 int rq_repdata_len; /* rep wrapper msg len */
858 int rq_clrbuf_len; /* only in priv mode */
859 int rq_clrdata_len; /* only in priv mode */
860
861 /** early replies go to offset 0, regular replies go after that */
862 unsigned int rq_reply_off;
863
864 /** @} */
865
866 /** Fields that help to see if request and reply were swabbed or not */
867 __u32 rq_req_swab_mask;
868 __u32 rq_rep_swab_mask;
869
870 /** how many early replies (for stats) */
871 int rq_early_count;
872
873 /** Server-side, export on which request was received */
874 struct obd_export *rq_export;
875 /** import where request is being sent */
876 struct obd_import *rq_import;
877 /** our LNet NID */
878 lnet_nid_t rq_self;
879 /** Peer description (the other side) */
880 struct lnet_process_id rq_peer;
881 /**
882 * service time estimate (secs)
883 * If the request is not served by this time, it is marked as timed out.
884 */
885 int rq_timeout;
886 /**
887 * when request/reply sent (secs), or time when request should be sent
888 */
889 time64_t rq_sent;
890 /** when request must finish. */
891 time64_t rq_deadline;
892 /** request format description */
893 struct req_capsule rq_pill;
894 };
895
896 /**
897 * Call completion handler for rpc if any, return it's status or original
898 * rc if there was no handler defined for this request.
899 */
ptlrpc_req_interpret(const struct lu_env * env,struct ptlrpc_request * req,int rc)900 static inline int ptlrpc_req_interpret(const struct lu_env *env,
901 struct ptlrpc_request *req, int rc)
902 {
903 if (req->rq_interpret_reply) {
904 req->rq_status = req->rq_interpret_reply(env, req,
905 &req->rq_async_args,
906 rc);
907 return req->rq_status;
908 }
909 return rc;
910 }
911
912 /*
913 * Can the request be moved from the regular NRS head to the high-priority NRS
914 * head (of the same PTLRPC service partition), if any?
915 *
916 * For a reliable result, this should be checked under svcpt->scp_req lock.
917 */
ptlrpc_nrs_req_can_move(struct ptlrpc_request * req)918 static inline bool ptlrpc_nrs_req_can_move(struct ptlrpc_request *req)
919 {
920 struct ptlrpc_nrs_request *nrq = &req->rq_nrq;
921
922 /**
923 * LU-898: Check ptlrpc_nrs_request::nr_enqueued to make sure the
924 * request has been enqueued first, and ptlrpc_nrs_request::nr_started
925 * to make sure it has not been scheduled yet (analogous to previous
926 * (non-NRS) checking of !list_empty(&ptlrpc_request::rq_list).
927 */
928 return nrq->nr_enqueued && !nrq->nr_started && !req->rq_hp;
929 }
930
931 /** @} nrs */
932
933 /**
934 * Returns 1 if request buffer at offset \a index was already swabbed
935 */
lustre_req_swabbed(struct ptlrpc_request * req,size_t index)936 static inline int lustre_req_swabbed(struct ptlrpc_request *req, size_t index)
937 {
938 LASSERT(index < sizeof(req->rq_req_swab_mask) * 8);
939 return req->rq_req_swab_mask & (1 << index);
940 }
941
942 /**
943 * Returns 1 if request reply buffer at offset \a index was already swabbed
944 */
lustre_rep_swabbed(struct ptlrpc_request * req,size_t index)945 static inline int lustre_rep_swabbed(struct ptlrpc_request *req, size_t index)
946 {
947 LASSERT(index < sizeof(req->rq_rep_swab_mask) * 8);
948 return req->rq_rep_swab_mask & (1 << index);
949 }
950
951 /**
952 * Returns 1 if request needs to be swabbed into local cpu byteorder
953 */
ptlrpc_req_need_swab(struct ptlrpc_request * req)954 static inline int ptlrpc_req_need_swab(struct ptlrpc_request *req)
955 {
956 return lustre_req_swabbed(req, MSG_PTLRPC_HEADER_OFF);
957 }
958
959 /**
960 * Returns 1 if request reply needs to be swabbed into local cpu byteorder
961 */
ptlrpc_rep_need_swab(struct ptlrpc_request * req)962 static inline int ptlrpc_rep_need_swab(struct ptlrpc_request *req)
963 {
964 return lustre_rep_swabbed(req, MSG_PTLRPC_HEADER_OFF);
965 }
966
967 /**
968 * Mark request buffer at offset \a index that it was already swabbed
969 */
lustre_set_req_swabbed(struct ptlrpc_request * req,size_t index)970 static inline void lustre_set_req_swabbed(struct ptlrpc_request *req,
971 size_t index)
972 {
973 LASSERT(index < sizeof(req->rq_req_swab_mask) * 8);
974 LASSERT((req->rq_req_swab_mask & (1 << index)) == 0);
975 req->rq_req_swab_mask |= 1 << index;
976 }
977
978 /**
979 * Mark request reply buffer at offset \a index that it was already swabbed
980 */
lustre_set_rep_swabbed(struct ptlrpc_request * req,size_t index)981 static inline void lustre_set_rep_swabbed(struct ptlrpc_request *req,
982 size_t index)
983 {
984 LASSERT(index < sizeof(req->rq_rep_swab_mask) * 8);
985 LASSERT((req->rq_rep_swab_mask & (1 << index)) == 0);
986 req->rq_rep_swab_mask |= 1 << index;
987 }
988
989 /**
990 * Convert numerical request phase value \a phase into text string description
991 */
992 static inline const char *
ptlrpc_phase2str(enum rq_phase phase)993 ptlrpc_phase2str(enum rq_phase phase)
994 {
995 switch (phase) {
996 case RQ_PHASE_NEW:
997 return "New";
998 case RQ_PHASE_RPC:
999 return "Rpc";
1000 case RQ_PHASE_BULK:
1001 return "Bulk";
1002 case RQ_PHASE_INTERPRET:
1003 return "Interpret";
1004 case RQ_PHASE_COMPLETE:
1005 return "Complete";
1006 case RQ_PHASE_UNREG_RPC:
1007 return "UnregRPC";
1008 case RQ_PHASE_UNREG_BULK:
1009 return "UnregBULK";
1010 default:
1011 return "?Phase?";
1012 }
1013 }
1014
1015 /**
1016 * Convert numerical request phase of the request \a req into text stringi
1017 * description
1018 */
1019 static inline const char *
ptlrpc_rqphase2str(struct ptlrpc_request * req)1020 ptlrpc_rqphase2str(struct ptlrpc_request *req)
1021 {
1022 return ptlrpc_phase2str(req->rq_phase);
1023 }
1024
1025 /**
1026 * Debugging functions and helpers to print request structure into debug log
1027 * @{
1028 */
1029 /* Spare the preprocessor, spoil the bugs. */
1030 #define FLAG(field, str) (field ? str : "")
1031
1032 /** Convert bit flags into a string */
1033 #define DEBUG_REQ_FLAGS(req) \
1034 ptlrpc_rqphase2str(req), \
1035 FLAG(req->rq_intr, "I"), FLAG(req->rq_replied, "R"), \
1036 FLAG(req->rq_err, "E"), FLAG(req->rq_net_err, "e"), \
1037 FLAG(req->rq_timedout, "X") /* eXpired */, FLAG(req->rq_resend, "S"), \
1038 FLAG(req->rq_restart, "T"), FLAG(req->rq_replay, "P"), \
1039 FLAG(req->rq_no_resend, "N"), \
1040 FLAG(req->rq_waiting, "W"), \
1041 FLAG(req->rq_wait_ctx, "C"), FLAG(req->rq_hp, "H"), \
1042 FLAG(req->rq_committed, "M")
1043
1044 #define REQ_FLAGS_FMT "%s:%s%s%s%s%s%s%s%s%s%s%s%s%s"
1045
1046 void _debug_req(struct ptlrpc_request *req,
1047 struct libcfs_debug_msg_data *data, const char *fmt, ...)
1048 __printf(3, 4);
1049
1050 /**
1051 * Helper that decides if we need to print request according to current debug
1052 * level settings
1053 */
1054 #define debug_req(msgdata, mask, cdls, req, fmt, a...) \
1055 do { \
1056 CFS_CHECK_STACK(msgdata, mask, cdls); \
1057 \
1058 if (((mask) & D_CANTMASK) != 0 || \
1059 ((libcfs_debug & (mask)) != 0 && \
1060 (libcfs_subsystem_debug & DEBUG_SUBSYSTEM) != 0)) \
1061 _debug_req((req), msgdata, fmt, ##a); \
1062 } while (0)
1063
1064 /**
1065 * This is the debug print function you need to use to print request structure
1066 * content into lustre debug log.
1067 * for most callers (level is a constant) this is resolved at compile time
1068 */
1069 #define DEBUG_REQ(level, req, fmt, args...) \
1070 do { \
1071 if ((level) & (D_ERROR | D_WARNING)) { \
1072 static struct cfs_debug_limit_state cdls; \
1073 LIBCFS_DEBUG_MSG_DATA_DECL(msgdata, level, &cdls); \
1074 debug_req(&msgdata, level, &cdls, req, "@@@ "fmt" ", ## args);\
1075 } else { \
1076 LIBCFS_DEBUG_MSG_DATA_DECL(msgdata, level, NULL); \
1077 debug_req(&msgdata, level, NULL, req, "@@@ "fmt" ", ## args); \
1078 } \
1079 } while (0)
1080 /** @} */
1081
1082 /**
1083 * Structure that defines a single page of a bulk transfer
1084 */
1085 struct ptlrpc_bulk_page {
1086 /** Linkage to list of pages in a bulk */
1087 struct list_head bp_link;
1088 /**
1089 * Number of bytes in a page to transfer starting from \a bp_pageoffset
1090 */
1091 int bp_buflen;
1092 /** offset within a page */
1093 int bp_pageoffset;
1094 /** The page itself */
1095 struct page *bp_page;
1096 };
1097
1098 enum ptlrpc_bulk_op_type {
1099 PTLRPC_BULK_OP_ACTIVE = 0x00000001,
1100 PTLRPC_BULK_OP_PASSIVE = 0x00000002,
1101 PTLRPC_BULK_OP_PUT = 0x00000004,
1102 PTLRPC_BULK_OP_GET = 0x00000008,
1103 PTLRPC_BULK_BUF_KVEC = 0x00000010,
1104 PTLRPC_BULK_BUF_KIOV = 0x00000020,
1105 PTLRPC_BULK_GET_SOURCE = PTLRPC_BULK_OP_PASSIVE | PTLRPC_BULK_OP_GET,
1106 PTLRPC_BULK_PUT_SINK = PTLRPC_BULK_OP_PASSIVE | PTLRPC_BULK_OP_PUT,
1107 PTLRPC_BULK_GET_SINK = PTLRPC_BULK_OP_ACTIVE | PTLRPC_BULK_OP_GET,
1108 PTLRPC_BULK_PUT_SOURCE = PTLRPC_BULK_OP_ACTIVE | PTLRPC_BULK_OP_PUT,
1109 };
1110
ptlrpc_is_bulk_op_get(enum ptlrpc_bulk_op_type type)1111 static inline bool ptlrpc_is_bulk_op_get(enum ptlrpc_bulk_op_type type)
1112 {
1113 return (type & PTLRPC_BULK_OP_GET) == PTLRPC_BULK_OP_GET;
1114 }
1115
ptlrpc_is_bulk_get_source(enum ptlrpc_bulk_op_type type)1116 static inline bool ptlrpc_is_bulk_get_source(enum ptlrpc_bulk_op_type type)
1117 {
1118 return (type & PTLRPC_BULK_GET_SOURCE) == PTLRPC_BULK_GET_SOURCE;
1119 }
1120
ptlrpc_is_bulk_put_sink(enum ptlrpc_bulk_op_type type)1121 static inline bool ptlrpc_is_bulk_put_sink(enum ptlrpc_bulk_op_type type)
1122 {
1123 return (type & PTLRPC_BULK_PUT_SINK) == PTLRPC_BULK_PUT_SINK;
1124 }
1125
ptlrpc_is_bulk_get_sink(enum ptlrpc_bulk_op_type type)1126 static inline bool ptlrpc_is_bulk_get_sink(enum ptlrpc_bulk_op_type type)
1127 {
1128 return (type & PTLRPC_BULK_GET_SINK) == PTLRPC_BULK_GET_SINK;
1129 }
1130
ptlrpc_is_bulk_put_source(enum ptlrpc_bulk_op_type type)1131 static inline bool ptlrpc_is_bulk_put_source(enum ptlrpc_bulk_op_type type)
1132 {
1133 return (type & PTLRPC_BULK_PUT_SOURCE) == PTLRPC_BULK_PUT_SOURCE;
1134 }
1135
ptlrpc_is_bulk_desc_kvec(enum ptlrpc_bulk_op_type type)1136 static inline bool ptlrpc_is_bulk_desc_kvec(enum ptlrpc_bulk_op_type type)
1137 {
1138 return ((type & PTLRPC_BULK_BUF_KVEC) | (type & PTLRPC_BULK_BUF_KIOV))
1139 == PTLRPC_BULK_BUF_KVEC;
1140 }
1141
ptlrpc_is_bulk_desc_kiov(enum ptlrpc_bulk_op_type type)1142 static inline bool ptlrpc_is_bulk_desc_kiov(enum ptlrpc_bulk_op_type type)
1143 {
1144 return ((type & PTLRPC_BULK_BUF_KVEC) | (type & PTLRPC_BULK_BUF_KIOV))
1145 == PTLRPC_BULK_BUF_KIOV;
1146 }
1147
ptlrpc_is_bulk_op_active(enum ptlrpc_bulk_op_type type)1148 static inline bool ptlrpc_is_bulk_op_active(enum ptlrpc_bulk_op_type type)
1149 {
1150 return ((type & PTLRPC_BULK_OP_ACTIVE) |
1151 (type & PTLRPC_BULK_OP_PASSIVE)) == PTLRPC_BULK_OP_ACTIVE;
1152 }
1153
ptlrpc_is_bulk_op_passive(enum ptlrpc_bulk_op_type type)1154 static inline bool ptlrpc_is_bulk_op_passive(enum ptlrpc_bulk_op_type type)
1155 {
1156 return ((type & PTLRPC_BULK_OP_ACTIVE) |
1157 (type & PTLRPC_BULK_OP_PASSIVE)) == PTLRPC_BULK_OP_PASSIVE;
1158 }
1159
1160 struct ptlrpc_bulk_frag_ops {
1161 /**
1162 * Add a page \a page to the bulk descriptor \a desc
1163 * Data to transfer in the page starts at offset \a pageoffset and
1164 * amount of data to transfer from the page is \a len
1165 */
1166 void (*add_kiov_frag)(struct ptlrpc_bulk_desc *desc,
1167 struct page *page, int pageoffset, int len);
1168
1169 /*
1170 * Add a \a fragment to the bulk descriptor \a desc.
1171 * Data to transfer in the fragment is pointed to by \a frag
1172 * The size of the fragment is \a len
1173 */
1174 int (*add_iov_frag)(struct ptlrpc_bulk_desc *desc, void *frag, int len);
1175
1176 /**
1177 * Uninitialize and free bulk descriptor \a desc.
1178 * Works on bulk descriptors both from server and client side.
1179 */
1180 void (*release_frags)(struct ptlrpc_bulk_desc *desc);
1181 };
1182
1183 extern const struct ptlrpc_bulk_frag_ops ptlrpc_bulk_kiov_pin_ops;
1184 extern const struct ptlrpc_bulk_frag_ops ptlrpc_bulk_kiov_nopin_ops;
1185
1186 /**
1187 * Definition of bulk descriptor.
1188 * Bulks are special "Two phase" RPCs where initial request message
1189 * is sent first and it is followed bt a transfer (o receiving) of a large
1190 * amount of data to be settled into pages referenced from the bulk descriptors.
1191 * Bulks transfers (the actual data following the small requests) are done
1192 * on separate LNet portals.
1193 * In lustre we use bulk transfers for READ and WRITE transfers from/to OSTs.
1194 * Another user is readpage for MDT.
1195 */
1196 struct ptlrpc_bulk_desc {
1197 /** completed with failure */
1198 unsigned long bd_failure:1;
1199 /** client side */
1200 unsigned long bd_registered:1;
1201 /** For serialization with callback */
1202 spinlock_t bd_lock;
1203 /** Import generation when request for this bulk was sent */
1204 int bd_import_generation;
1205 /** {put,get}{source,sink}{kvec,kiov} */
1206 enum ptlrpc_bulk_op_type bd_type;
1207 /** LNet portal for this bulk */
1208 __u32 bd_portal;
1209 /** Server side - export this bulk created for */
1210 struct obd_export *bd_export;
1211 /** Client side - import this bulk was sent on */
1212 struct obd_import *bd_import;
1213 /** Back pointer to the request */
1214 struct ptlrpc_request *bd_req;
1215 struct ptlrpc_bulk_frag_ops *bd_frag_ops;
1216 wait_queue_head_t bd_waitq; /* server side only WQ */
1217 int bd_iov_count; /* # entries in bd_iov */
1218 int bd_max_iov; /* allocated size of bd_iov */
1219 int bd_nob; /* # bytes covered */
1220 int bd_nob_transferred; /* # bytes GOT/PUT */
1221
1222 u64 bd_last_mbits;
1223
1224 struct ptlrpc_cb_id bd_cbid; /* network callback info */
1225 lnet_nid_t bd_sender; /* stash event::sender */
1226 int bd_md_count; /* # valid entries in bd_mds */
1227 int bd_md_max_brw; /* max entries in bd_mds */
1228 /** array of associated MDs */
1229 struct lnet_handle_md bd_mds[PTLRPC_BULK_OPS_COUNT];
1230
1231 union {
1232 struct {
1233 /*
1234 * encrypt iov, size is either 0 or bd_iov_count.
1235 */
1236 struct bio_vec *bd_enc_vec;
1237 struct bio_vec *bd_vec; /* Array of bio_vecs */
1238 } bd_kiov;
1239
1240 struct {
1241 struct kvec *bd_enc_kvec;
1242 struct kvec *bd_kvec; /* Array of kvecs */
1243 } bd_kvec;
1244 } bd_u;
1245 };
1246
1247 #define GET_KIOV(desc) ((desc)->bd_u.bd_kiov.bd_vec)
1248 #define BD_GET_KIOV(desc, i) ((desc)->bd_u.bd_kiov.bd_vec[i])
1249 #define GET_ENC_KIOV(desc) ((desc)->bd_u.bd_kiov.bd_enc_vec)
1250 #define BD_GET_ENC_KIOV(desc, i) ((desc)->bd_u.bd_kiov.bd_enc_vec[i])
1251 #define GET_KVEC(desc) ((desc)->bd_u.bd_kvec.bd_kvec)
1252 #define BD_GET_KVEC(desc, i) ((desc)->bd_u.bd_kvec.bd_kvec[i])
1253 #define GET_ENC_KVEC(desc) ((desc)->bd_u.bd_kvec.bd_enc_kvec)
1254 #define BD_GET_ENC_KVEC(desc, i) ((desc)->bd_u.bd_kvec.bd_enc_kvec[i])
1255
1256 enum {
1257 SVC_STOPPED = 1 << 0,
1258 SVC_STOPPING = 1 << 1,
1259 SVC_STARTING = 1 << 2,
1260 SVC_RUNNING = 1 << 3,
1261 SVC_EVENT = 1 << 4,
1262 SVC_SIGNAL = 1 << 5,
1263 };
1264
1265 #define PTLRPC_THR_NAME_LEN 32
1266 /**
1267 * Definition of server service thread structure
1268 */
1269 struct ptlrpc_thread {
1270 /**
1271 * List of active threads in svc->srv_threads
1272 */
1273 struct list_head t_link;
1274 /**
1275 * thread-private data (preallocated memory)
1276 */
1277 void *t_data;
1278 __u32 t_flags;
1279 /**
1280 * service thread index, from ptlrpc_start_threads
1281 */
1282 unsigned int t_id;
1283 /**
1284 * service thread pid
1285 */
1286 pid_t t_pid;
1287 /**
1288 * put watchdog in the structure per thread b=14840
1289 *
1290 * Lustre watchdog is removed for client in the hope
1291 * of a generic watchdog can be merged in kernel.
1292 * When that happens, we should add below back.
1293 *
1294 * struct lc_watchdog *t_watchdog;
1295 */
1296 /**
1297 * the svc this thread belonged to b=18582
1298 */
1299 struct ptlrpc_service_part *t_svcpt;
1300 wait_queue_head_t t_ctl_waitq;
1301 struct lu_env *t_env;
1302 char t_name[PTLRPC_THR_NAME_LEN];
1303 };
1304
thread_is_init(struct ptlrpc_thread * thread)1305 static inline int thread_is_init(struct ptlrpc_thread *thread)
1306 {
1307 return thread->t_flags == 0;
1308 }
1309
thread_is_stopped(struct ptlrpc_thread * thread)1310 static inline int thread_is_stopped(struct ptlrpc_thread *thread)
1311 {
1312 return !!(thread->t_flags & SVC_STOPPED);
1313 }
1314
thread_is_stopping(struct ptlrpc_thread * thread)1315 static inline int thread_is_stopping(struct ptlrpc_thread *thread)
1316 {
1317 return !!(thread->t_flags & SVC_STOPPING);
1318 }
1319
thread_is_starting(struct ptlrpc_thread * thread)1320 static inline int thread_is_starting(struct ptlrpc_thread *thread)
1321 {
1322 return !!(thread->t_flags & SVC_STARTING);
1323 }
1324
thread_is_running(struct ptlrpc_thread * thread)1325 static inline int thread_is_running(struct ptlrpc_thread *thread)
1326 {
1327 return !!(thread->t_flags & SVC_RUNNING);
1328 }
1329
thread_is_event(struct ptlrpc_thread * thread)1330 static inline int thread_is_event(struct ptlrpc_thread *thread)
1331 {
1332 return !!(thread->t_flags & SVC_EVENT);
1333 }
1334
thread_is_signal(struct ptlrpc_thread * thread)1335 static inline int thread_is_signal(struct ptlrpc_thread *thread)
1336 {
1337 return !!(thread->t_flags & SVC_SIGNAL);
1338 }
1339
thread_clear_flags(struct ptlrpc_thread * thread,__u32 flags)1340 static inline void thread_clear_flags(struct ptlrpc_thread *thread, __u32 flags)
1341 {
1342 thread->t_flags &= ~flags;
1343 }
1344
thread_set_flags(struct ptlrpc_thread * thread,__u32 flags)1345 static inline void thread_set_flags(struct ptlrpc_thread *thread, __u32 flags)
1346 {
1347 thread->t_flags = flags;
1348 }
1349
thread_add_flags(struct ptlrpc_thread * thread,__u32 flags)1350 static inline void thread_add_flags(struct ptlrpc_thread *thread, __u32 flags)
1351 {
1352 thread->t_flags |= flags;
1353 }
1354
thread_test_and_clear_flags(struct ptlrpc_thread * thread,__u32 flags)1355 static inline int thread_test_and_clear_flags(struct ptlrpc_thread *thread,
1356 __u32 flags)
1357 {
1358 if (thread->t_flags & flags) {
1359 thread->t_flags &= ~flags;
1360 return 1;
1361 }
1362 return 0;
1363 }
1364
1365 /**
1366 * Request buffer descriptor structure.
1367 * This is a structure that contains one posted request buffer for service.
1368 * Once data land into a buffer, event callback creates actual request and
1369 * notifies wakes one of the service threads to process new incoming request.
1370 * More than one request can fit into the buffer.
1371 */
1372 struct ptlrpc_request_buffer_desc {
1373 /** Link item for rqbds on a service */
1374 struct list_head rqbd_list;
1375 /** History of requests for this buffer */
1376 struct list_head rqbd_reqs;
1377 /** Back pointer to service for which this buffer is registered */
1378 struct ptlrpc_service_part *rqbd_svcpt;
1379 /** LNet descriptor */
1380 struct lnet_handle_md rqbd_md_h;
1381 int rqbd_refcount;
1382 /** The buffer itself */
1383 char *rqbd_buffer;
1384 struct ptlrpc_cb_id rqbd_cbid;
1385 /**
1386 * This "embedded" request structure is only used for the
1387 * last request to fit into the buffer
1388 */
1389 struct ptlrpc_request rqbd_req;
1390 };
1391
1392 typedef int (*svc_handler_t)(struct ptlrpc_request *req);
1393
1394 struct ptlrpc_service_ops {
1395 /**
1396 * if non-NULL called during thread creation (ptlrpc_start_thread())
1397 * to initialize service specific per-thread state.
1398 */
1399 int (*so_thr_init)(struct ptlrpc_thread *thr);
1400 /**
1401 * if non-NULL called during thread shutdown (ptlrpc_main()) to
1402 * destruct state created by ->srv_init().
1403 */
1404 void (*so_thr_done)(struct ptlrpc_thread *thr);
1405 /**
1406 * Handler function for incoming requests for this service
1407 */
1408 int (*so_req_handler)(struct ptlrpc_request *req);
1409 /**
1410 * function to determine priority of the request, it's called
1411 * on every new request
1412 */
1413 int (*so_hpreq_handler)(struct ptlrpc_request *);
1414 /**
1415 * service-specific print fn
1416 */
1417 void (*so_req_printer)(void *, struct ptlrpc_request *);
1418 };
1419
1420 #ifndef __cfs_cacheline_aligned
1421 /* NB: put it here for reducing patche dependence */
1422 # define __cfs_cacheline_aligned
1423 #endif
1424
1425 /**
1426 * How many high priority requests to serve before serving one normal
1427 * priority request
1428 */
1429 #define PTLRPC_SVC_HP_RATIO 10
1430
1431 /**
1432 * Definition of PortalRPC service.
1433 * The service is listening on a particular portal (like tcp port)
1434 * and perform actions for a specific server like IO service for OST
1435 * or general metadata service for MDS.
1436 */
1437 struct ptlrpc_service {
1438 /** serialize sysfs operations */
1439 spinlock_t srv_lock;
1440 /** most often accessed fields */
1441 /** chain thru all services */
1442 struct list_head srv_list;
1443 /** service operations table */
1444 struct ptlrpc_service_ops srv_ops;
1445 /** only statically allocated strings here; we don't clean them */
1446 char *srv_name;
1447 /** only statically allocated strings here; we don't clean them */
1448 char *srv_thread_name;
1449 /** service thread list */
1450 struct list_head srv_threads;
1451 /** threads # should be created for each partition on initializing */
1452 int srv_nthrs_cpt_init;
1453 /** limit of threads number for each partition */
1454 int srv_nthrs_cpt_limit;
1455 /** Root of debugfs dir tree for this service */
1456 struct dentry *srv_debugfs_entry;
1457 /** Pointer to statistic data for this service */
1458 struct lprocfs_stats *srv_stats;
1459 /** # hp per lp reqs to handle */
1460 int srv_hpreq_ratio;
1461 /** biggest request to receive */
1462 int srv_max_req_size;
1463 /** biggest reply to send */
1464 int srv_max_reply_size;
1465 /** size of individual buffers */
1466 int srv_buf_size;
1467 /** # buffers to allocate in 1 group */
1468 int srv_nbuf_per_group;
1469 /** Local portal on which to receive requests */
1470 __u32 srv_req_portal;
1471 /** Portal on the client to send replies to */
1472 __u32 srv_rep_portal;
1473 /**
1474 * Tags for lu_context associated with this thread, see struct
1475 * lu_context.
1476 */
1477 __u32 srv_ctx_tags;
1478 /** soft watchdog timeout multiplier */
1479 int srv_watchdog_factor;
1480 /** under unregister_service */
1481 unsigned srv_is_stopping:1;
1482
1483 /** max # request buffers in history per partition */
1484 int srv_hist_nrqbds_cpt_max;
1485 /** number of CPTs this service bound on */
1486 int srv_ncpts;
1487 /** CPTs array this service bound on */
1488 __u32 *srv_cpts;
1489 /** 2^srv_cptab_bits >= cfs_cpt_numbert(srv_cptable) */
1490 int srv_cpt_bits;
1491 /** CPT table this service is running over */
1492 struct cfs_cpt_table *srv_cptable;
1493
1494 /* sysfs object */
1495 struct kobject srv_kobj;
1496 struct completion srv_kobj_unregister;
1497 /**
1498 * partition data for ptlrpc service
1499 */
1500 struct ptlrpc_service_part *srv_parts[0];
1501 };
1502
1503 /**
1504 * Definition of PortalRPC service partition data.
1505 * Although a service only has one instance of it right now, but we
1506 * will have multiple instances very soon (instance per CPT).
1507 *
1508 * it has four locks:
1509 * \a scp_lock
1510 * serialize operations on rqbd and requests waiting for preprocess
1511 * \a scp_req_lock
1512 * serialize operations active requests sent to this portal
1513 * \a scp_at_lock
1514 * serialize adaptive timeout stuff
1515 * \a scp_rep_lock
1516 * serialize operations on RS list (reply states)
1517 *
1518 * We don't have any use-case to take two or more locks at the same time
1519 * for now, so there is no lock order issue.
1520 */
1521 struct ptlrpc_service_part {
1522 /** back reference to owner */
1523 struct ptlrpc_service *scp_service __cfs_cacheline_aligned;
1524 /* CPT id, reserved */
1525 int scp_cpt;
1526 /** always increasing number */
1527 int scp_thr_nextid;
1528 /** # of starting threads */
1529 int scp_nthrs_starting;
1530 /** # of stopping threads, reserved for shrinking threads */
1531 int scp_nthrs_stopping;
1532 /** # running threads */
1533 int scp_nthrs_running;
1534 /** service threads list */
1535 struct list_head scp_threads;
1536
1537 /**
1538 * serialize the following fields, used for protecting
1539 * rqbd list and incoming requests waiting for preprocess,
1540 * threads starting & stopping are also protected by this lock.
1541 */
1542 spinlock_t scp_lock __cfs_cacheline_aligned;
1543 /** total # req buffer descs allocated */
1544 int scp_nrqbds_total;
1545 /** # posted request buffers for receiving */
1546 int scp_nrqbds_posted;
1547 /** in progress of allocating rqbd */
1548 int scp_rqbd_allocating;
1549 /** # incoming reqs */
1550 int scp_nreqs_incoming;
1551 /** request buffers to be reposted */
1552 struct list_head scp_rqbd_idle;
1553 /** req buffers receiving */
1554 struct list_head scp_rqbd_posted;
1555 /** incoming reqs */
1556 struct list_head scp_req_incoming;
1557 /** timeout before re-posting reqs, in tick */
1558 long scp_rqbd_timeout;
1559 /**
1560 * all threads sleep on this. This wait-queue is signalled when new
1561 * incoming request arrives and when difficult reply has to be handled.
1562 */
1563 wait_queue_head_t scp_waitq;
1564
1565 /** request history */
1566 struct list_head scp_hist_reqs;
1567 /** request buffer history */
1568 struct list_head scp_hist_rqbds;
1569 /** # request buffers in history */
1570 int scp_hist_nrqbds;
1571 /** sequence number for request */
1572 __u64 scp_hist_seq;
1573 /** highest seq culled from history */
1574 __u64 scp_hist_seq_culled;
1575
1576 /**
1577 * serialize the following fields, used for processing requests
1578 * sent to this portal
1579 */
1580 spinlock_t scp_req_lock __cfs_cacheline_aligned;
1581 /** # reqs in either of the NRS heads below */
1582 /** # reqs being served */
1583 int scp_nreqs_active;
1584 /** # HPreqs being served */
1585 int scp_nhreqs_active;
1586 /** # hp requests handled */
1587 int scp_hreq_count;
1588
1589 /** NRS head for regular requests */
1590 struct ptlrpc_nrs scp_nrs_reg;
1591 /** NRS head for HP requests; this is only valid for services that can
1592 * handle HP requests
1593 */
1594 struct ptlrpc_nrs *scp_nrs_hp;
1595
1596 /** AT stuff */
1597 /** @{ */
1598 /**
1599 * serialize the following fields, used for changes on
1600 * adaptive timeout
1601 */
1602 spinlock_t scp_at_lock __cfs_cacheline_aligned;
1603 /** estimated rpc service time */
1604 struct adaptive_timeout scp_at_estimate;
1605 /** reqs waiting for replies */
1606 struct ptlrpc_at_array scp_at_array;
1607 /** early reply timer */
1608 struct timer_list scp_at_timer;
1609 /** debug */
1610 unsigned long scp_at_checktime;
1611 /** check early replies */
1612 unsigned scp_at_check;
1613 /** @} */
1614
1615 /**
1616 * serialize the following fields, used for processing
1617 * replies for this portal
1618 */
1619 spinlock_t scp_rep_lock __cfs_cacheline_aligned;
1620 /** all the active replies */
1621 struct list_head scp_rep_active;
1622 /** List of free reply_states */
1623 struct list_head scp_rep_idle;
1624 /** waitq to run, when adding stuff to srv_free_rs_list */
1625 wait_queue_head_t scp_rep_waitq;
1626 /** # 'difficult' replies */
1627 atomic_t scp_nreps_difficult;
1628 };
1629
1630 #define ptlrpc_service_for_each_part(part, i, svc) \
1631 for (i = 0; \
1632 i < (svc)->srv_ncpts && \
1633 (svc)->srv_parts && \
1634 ((part) = (svc)->srv_parts[i]); i++)
1635
1636 /**
1637 * Declaration of ptlrpcd control structure
1638 */
1639 struct ptlrpcd_ctl {
1640 /**
1641 * Ptlrpc thread control flags (LIOD_START, LIOD_STOP, LIOD_FORCE)
1642 */
1643 unsigned long pc_flags;
1644 /**
1645 * Thread lock protecting structure fields.
1646 */
1647 spinlock_t pc_lock;
1648 /**
1649 * Start completion.
1650 */
1651 struct completion pc_starting;
1652 /**
1653 * Stop completion.
1654 */
1655 struct completion pc_finishing;
1656 /**
1657 * Thread requests set.
1658 */
1659 struct ptlrpc_request_set *pc_set;
1660 /**
1661 * Thread name used in kthread_run()
1662 */
1663 char pc_name[16];
1664 /**
1665 * CPT the thread is bound on.
1666 */
1667 int pc_cpt;
1668 /**
1669 * Index of ptlrpcd thread in the array.
1670 */
1671 int pc_index;
1672 /**
1673 * Pointer to the array of partners' ptlrpcd_ctl structure.
1674 */
1675 struct ptlrpcd_ctl **pc_partners;
1676 /**
1677 * Number of the ptlrpcd's partners.
1678 */
1679 int pc_npartners;
1680 /**
1681 * Record the partner index to be processed next.
1682 */
1683 int pc_cursor;
1684 /**
1685 * Error code if the thread failed to fully start.
1686 */
1687 int pc_error;
1688 };
1689
1690 /* Bits for pc_flags */
1691 enum ptlrpcd_ctl_flags {
1692 /**
1693 * Ptlrpc thread start flag.
1694 */
1695 LIOD_START = 1 << 0,
1696 /**
1697 * Ptlrpc thread stop flag.
1698 */
1699 LIOD_STOP = 1 << 1,
1700 /**
1701 * Ptlrpc thread force flag (only stop force so far).
1702 * This will cause aborting any inflight rpcs handled
1703 * by thread if LIOD_STOP is specified.
1704 */
1705 LIOD_FORCE = 1 << 2,
1706 /**
1707 * This is a recovery ptlrpc thread.
1708 */
1709 LIOD_RECOVERY = 1 << 3,
1710 };
1711
1712 /**
1713 * \addtogroup nrs
1714 * @{
1715 *
1716 * Service compatibility function; the policy is compatible with all services.
1717 *
1718 * \param[in] svc The service the policy is attempting to register with.
1719 * \param[in] desc The policy descriptor
1720 *
1721 * \retval true The policy is compatible with the service
1722 *
1723 * \see ptlrpc_nrs_pol_desc::pd_compat()
1724 */
nrs_policy_compat_all(const struct ptlrpc_service * svc,const struct ptlrpc_nrs_pol_desc * desc)1725 static inline bool nrs_policy_compat_all(const struct ptlrpc_service *svc,
1726 const struct ptlrpc_nrs_pol_desc *desc)
1727 {
1728 return true;
1729 }
1730
1731 /**
1732 * Service compatibility function; the policy is compatible with only a specific
1733 * service which is identified by its human-readable name at
1734 * ptlrpc_service::srv_name.
1735 *
1736 * \param[in] svc The service the policy is attempting to register with.
1737 * \param[in] desc The policy descriptor
1738 *
1739 * \retval false The policy is not compatible with the service
1740 * \retval true The policy is compatible with the service
1741 *
1742 * \see ptlrpc_nrs_pol_desc::pd_compat()
1743 */
nrs_policy_compat_one(const struct ptlrpc_service * svc,const struct ptlrpc_nrs_pol_desc * desc)1744 static inline bool nrs_policy_compat_one(const struct ptlrpc_service *svc,
1745 const struct ptlrpc_nrs_pol_desc *desc)
1746 {
1747 return strcmp(svc->srv_name, desc->pd_compat_svc_name) == 0;
1748 }
1749
1750 /** @} nrs */
1751
1752 /* ptlrpc/events.c */
1753 extern struct lnet_handle_eq ptlrpc_eq_h;
1754 int ptlrpc_uuid_to_peer(struct obd_uuid *uuid,
1755 struct lnet_process_id *peer, lnet_nid_t *self);
1756 /**
1757 * These callbacks are invoked by LNet when something happened to
1758 * underlying buffer
1759 * @{
1760 */
1761 void request_out_callback(struct lnet_event *ev);
1762 void reply_in_callback(struct lnet_event *ev);
1763 void client_bulk_callback(struct lnet_event *ev);
1764 void request_in_callback(struct lnet_event *ev);
1765 void reply_out_callback(struct lnet_event *ev);
1766 /** @} */
1767
1768 /* ptlrpc/connection.c */
1769 struct ptlrpc_connection *ptlrpc_connection_get(struct lnet_process_id peer,
1770 lnet_nid_t self,
1771 struct obd_uuid *uuid);
1772 int ptlrpc_connection_put(struct ptlrpc_connection *c);
1773 struct ptlrpc_connection *ptlrpc_connection_addref(struct ptlrpc_connection *);
1774 int ptlrpc_connection_init(void);
1775 void ptlrpc_connection_fini(void);
1776
1777 /* ptlrpc/niobuf.c */
1778 /**
1779 * Actual interfacing with LNet to put/get/register/unregister stuff
1780 * @{
1781 */
1782
1783 int ptlrpc_unregister_bulk(struct ptlrpc_request *req, int async);
1784
ptlrpc_client_bulk_active(struct ptlrpc_request * req)1785 static inline int ptlrpc_client_bulk_active(struct ptlrpc_request *req)
1786 {
1787 struct ptlrpc_bulk_desc *desc;
1788 int rc;
1789
1790 desc = req->rq_bulk;
1791
1792 if (req->rq_bulk_deadline > ktime_get_real_seconds())
1793 return 1;
1794
1795 if (!desc)
1796 return 0;
1797
1798 spin_lock(&desc->bd_lock);
1799 rc = desc->bd_md_count;
1800 spin_unlock(&desc->bd_lock);
1801 return rc;
1802 }
1803
1804 #define PTLRPC_REPLY_MAYBE_DIFFICULT 0x01
1805 #define PTLRPC_REPLY_EARLY 0x02
1806 int ptlrpc_send_reply(struct ptlrpc_request *req, int flags);
1807 int ptlrpc_reply(struct ptlrpc_request *req);
1808 int ptlrpc_send_error(struct ptlrpc_request *req, int difficult);
1809 int ptlrpc_error(struct ptlrpc_request *req);
1810 int ptlrpc_at_get_net_latency(struct ptlrpc_request *req);
1811 int ptl_send_rpc(struct ptlrpc_request *request, int noreply);
1812 int ptlrpc_register_rqbd(struct ptlrpc_request_buffer_desc *rqbd);
1813 /** @} */
1814
1815 /* ptlrpc/client.c */
1816 /**
1817 * Client-side portals API. Everything to send requests, receive replies,
1818 * request queues, request management, etc.
1819 * @{
1820 */
1821 void ptlrpc_request_committed(struct ptlrpc_request *req, int force);
1822
1823 void ptlrpc_init_client(int req_portal, int rep_portal, char *name,
1824 struct ptlrpc_client *);
1825 struct ptlrpc_connection *ptlrpc_uuid_to_connection(struct obd_uuid *uuid);
1826
1827 int ptlrpc_queue_wait(struct ptlrpc_request *req);
1828 int ptlrpc_replay_req(struct ptlrpc_request *req);
1829 void ptlrpc_abort_inflight(struct obd_import *imp);
1830 void ptlrpc_abort_set(struct ptlrpc_request_set *set);
1831
1832 struct ptlrpc_request_set *ptlrpc_prep_set(void);
1833 struct ptlrpc_request_set *ptlrpc_prep_fcset(int max, set_producer_func func,
1834 void *arg);
1835 int ptlrpc_check_set(const struct lu_env *env, struct ptlrpc_request_set *set);
1836 int ptlrpc_set_wait(struct ptlrpc_request_set *);
1837 void ptlrpc_mark_interrupted(struct ptlrpc_request *req);
1838 void ptlrpc_set_destroy(struct ptlrpc_request_set *);
1839 void ptlrpc_set_add_req(struct ptlrpc_request_set *, struct ptlrpc_request *);
1840
1841 void ptlrpc_free_rq_pool(struct ptlrpc_request_pool *pool);
1842 int ptlrpc_add_rqs_to_pool(struct ptlrpc_request_pool *pool, int num_rq);
1843
1844 struct ptlrpc_request_pool *
1845 ptlrpc_init_rq_pool(int, int,
1846 int (*populate_pool)(struct ptlrpc_request_pool *, int));
1847
1848 void ptlrpc_at_set_req_timeout(struct ptlrpc_request *req);
1849 struct ptlrpc_request *ptlrpc_request_alloc(struct obd_import *imp,
1850 const struct req_format *format);
1851 struct ptlrpc_request *ptlrpc_request_alloc_pool(struct obd_import *imp,
1852 struct ptlrpc_request_pool *,
1853 const struct req_format *);
1854 void ptlrpc_request_free(struct ptlrpc_request *request);
1855 int ptlrpc_request_pack(struct ptlrpc_request *request,
1856 __u32 version, int opcode);
1857 struct ptlrpc_request *ptlrpc_request_alloc_pack(struct obd_import *,
1858 const struct req_format *,
1859 __u32, int);
1860 int ptlrpc_request_bufs_pack(struct ptlrpc_request *request,
1861 __u32 version, int opcode, char **bufs,
1862 struct ptlrpc_cli_ctx *ctx);
1863 void ptlrpc_req_finished(struct ptlrpc_request *request);
1864 struct ptlrpc_request *ptlrpc_request_addref(struct ptlrpc_request *req);
1865 struct ptlrpc_bulk_desc *ptlrpc_prep_bulk_imp(struct ptlrpc_request *req,
1866 unsigned int nfrags,
1867 unsigned int max_brw,
1868 unsigned int type,
1869 unsigned int portal,
1870 const struct ptlrpc_bulk_frag_ops *ops);
1871
1872 int ptlrpc_prep_bulk_frag(struct ptlrpc_bulk_desc *desc,
1873 void *frag, int len);
1874 void __ptlrpc_prep_bulk_page(struct ptlrpc_bulk_desc *desc,
1875 struct page *page, int pageoffset, int len,
1876 int pin);
ptlrpc_prep_bulk_page_pin(struct ptlrpc_bulk_desc * desc,struct page * page,int pageoffset,int len)1877 static inline void ptlrpc_prep_bulk_page_pin(struct ptlrpc_bulk_desc *desc,
1878 struct page *page, int pageoffset,
1879 int len)
1880 {
1881 __ptlrpc_prep_bulk_page(desc, page, pageoffset, len, 1);
1882 }
1883
ptlrpc_prep_bulk_page_nopin(struct ptlrpc_bulk_desc * desc,struct page * page,int pageoffset,int len)1884 static inline void ptlrpc_prep_bulk_page_nopin(struct ptlrpc_bulk_desc *desc,
1885 struct page *page, int pageoffset,
1886 int len)
1887 {
1888 __ptlrpc_prep_bulk_page(desc, page, pageoffset, len, 0);
1889 }
1890
1891 void ptlrpc_free_bulk(struct ptlrpc_bulk_desc *bulk);
1892
ptlrpc_release_bulk_page_pin(struct ptlrpc_bulk_desc * desc)1893 static inline void ptlrpc_release_bulk_page_pin(struct ptlrpc_bulk_desc *desc)
1894 {
1895 int i;
1896
1897 for (i = 0; i < desc->bd_iov_count ; i++)
1898 put_page(BD_GET_KIOV(desc, i).bv_page);
1899 }
1900
1901 void ptlrpc_retain_replayable_request(struct ptlrpc_request *req,
1902 struct obd_import *imp);
1903 __u64 ptlrpc_next_xid(void);
1904 __u64 ptlrpc_sample_next_xid(void);
1905 __u64 ptlrpc_req_xid(struct ptlrpc_request *request);
1906
1907 /* Set of routines to run a function in ptlrpcd context */
1908 void *ptlrpcd_alloc_work(struct obd_import *imp,
1909 int (*cb)(const struct lu_env *, void *), void *data);
1910 void ptlrpcd_destroy_work(void *handler);
1911 int ptlrpcd_queue_work(void *handler);
1912
1913 /** @} */
1914 struct ptlrpc_service_buf_conf {
1915 /* nbufs is buffers # to allocate when growing the pool */
1916 unsigned int bc_nbufs;
1917 /* buffer size to post */
1918 unsigned int bc_buf_size;
1919 /* portal to listed for requests on */
1920 unsigned int bc_req_portal;
1921 /* portal of where to send replies to */
1922 unsigned int bc_rep_portal;
1923 /* maximum request size to be accepted for this service */
1924 unsigned int bc_req_max_size;
1925 /* maximum reply size this service can ever send */
1926 unsigned int bc_rep_max_size;
1927 };
1928
1929 struct ptlrpc_service_thr_conf {
1930 /* threadname should be 8 characters or less - 6 will be added on */
1931 char *tc_thr_name;
1932 /* threads increasing factor for each CPU */
1933 unsigned int tc_thr_factor;
1934 /* service threads # to start on each partition while initializing */
1935 unsigned int tc_nthrs_init;
1936 /*
1937 * low water of threads # upper-limit on each partition while running,
1938 * service availability may be impacted if threads number is lower
1939 * than this value. It can be ZERO if the service doesn't require
1940 * CPU affinity or there is only one partition.
1941 */
1942 unsigned int tc_nthrs_base;
1943 /* "soft" limit for total threads number */
1944 unsigned int tc_nthrs_max;
1945 /* user specified threads number, it will be validated due to
1946 * other members of this structure.
1947 */
1948 unsigned int tc_nthrs_user;
1949 /* set NUMA node affinity for service threads */
1950 unsigned int tc_cpu_affinity;
1951 /* Tags for lu_context associated with service thread */
1952 __u32 tc_ctx_tags;
1953 };
1954
1955 struct ptlrpc_service_cpt_conf {
1956 struct cfs_cpt_table *cc_cptable;
1957 /* string pattern to describe CPTs for a service */
1958 char *cc_pattern;
1959 };
1960
1961 struct ptlrpc_service_conf {
1962 /* service name */
1963 char *psc_name;
1964 /* soft watchdog timeout multiplifier to print stuck service traces */
1965 unsigned int psc_watchdog_factor;
1966 /* buffer information */
1967 struct ptlrpc_service_buf_conf psc_buf;
1968 /* thread information */
1969 struct ptlrpc_service_thr_conf psc_thr;
1970 /* CPU partition information */
1971 struct ptlrpc_service_cpt_conf psc_cpt;
1972 /* function table */
1973 struct ptlrpc_service_ops psc_ops;
1974 };
1975
1976 /* ptlrpc/service.c */
1977 /**
1978 * Server-side services API. Register/unregister service, request state
1979 * management, service thread management
1980 *
1981 * @{
1982 */
1983 void ptlrpc_dispatch_difficult_reply(struct ptlrpc_reply_state *rs);
1984 void ptlrpc_schedule_difficult_reply(struct ptlrpc_reply_state *rs);
1985 struct ptlrpc_service *ptlrpc_register_service(struct ptlrpc_service_conf *conf,
1986 struct kset *parent,
1987 struct dentry *debugfs_entry);
1988
1989 int ptlrpc_start_threads(struct ptlrpc_service *svc);
1990 int ptlrpc_unregister_service(struct ptlrpc_service *service);
1991
1992 int ptlrpc_hr_init(void);
1993 void ptlrpc_hr_fini(void);
1994
1995 /** @} */
1996
1997 /* ptlrpc/import.c */
1998 /**
1999 * Import API
2000 * @{
2001 */
2002 int ptlrpc_connect_import(struct obd_import *imp);
2003 int ptlrpc_init_import(struct obd_import *imp);
2004 int ptlrpc_disconnect_import(struct obd_import *imp, int noclose);
2005 int ptlrpc_import_recovery_state_machine(struct obd_import *imp);
2006
2007 /* ptlrpc/pack_generic.c */
2008 int ptlrpc_reconnect_import(struct obd_import *imp);
2009 /** @} */
2010
2011 /**
2012 * ptlrpc msg buffer and swab interface
2013 *
2014 * @{
2015 */
2016 int ptlrpc_buf_need_swab(struct ptlrpc_request *req, const int inout,
2017 u32 index);
2018 void ptlrpc_buf_set_swabbed(struct ptlrpc_request *req, const int inout,
2019 u32 index);
2020 int ptlrpc_unpack_rep_msg(struct ptlrpc_request *req, int len);
2021 int ptlrpc_unpack_req_msg(struct ptlrpc_request *req, int len);
2022
2023 void lustre_init_msg_v2(struct lustre_msg_v2 *msg, int count, __u32 *lens,
2024 char **bufs);
2025 int lustre_pack_request(struct ptlrpc_request *, __u32 magic, int count,
2026 __u32 *lens, char **bufs);
2027 int lustre_pack_reply(struct ptlrpc_request *, int count, __u32 *lens,
2028 char **bufs);
2029 int lustre_pack_reply_v2(struct ptlrpc_request *req, int count,
2030 __u32 *lens, char **bufs, int flags);
2031 #define LPRFL_EARLY_REPLY 1
2032 int lustre_pack_reply_flags(struct ptlrpc_request *, int count, __u32 *lens,
2033 char **bufs, int flags);
2034 int lustre_shrink_msg(struct lustre_msg *msg, int segment,
2035 unsigned int newlen, int move_data);
2036 void lustre_free_reply_state(struct ptlrpc_reply_state *rs);
2037 int __lustre_unpack_msg(struct lustre_msg *m, int len);
2038 u32 lustre_msg_hdr_size(__u32 magic, u32 count);
2039 u32 lustre_msg_size(__u32 magic, int count, __u32 *lengths);
2040 u32 lustre_msg_size_v2(int count, __u32 *lengths);
2041 u32 lustre_packed_msg_size(struct lustre_msg *msg);
2042 u32 lustre_msg_early_size(void);
2043 void *lustre_msg_buf_v2(struct lustre_msg_v2 *m, u32 n, u32 min_size);
2044 void *lustre_msg_buf(struct lustre_msg *m, u32 n, u32 minlen);
2045 u32 lustre_msg_buflen(struct lustre_msg *m, u32 n);
2046 u32 lustre_msg_bufcount(struct lustre_msg *m);
2047 char *lustre_msg_string(struct lustre_msg *m, u32 n, u32 max_len);
2048 __u32 lustre_msghdr_get_flags(struct lustre_msg *msg);
2049 void lustre_msghdr_set_flags(struct lustre_msg *msg, __u32 flags);
2050 __u32 lustre_msg_get_flags(struct lustre_msg *msg);
2051 void lustre_msg_add_flags(struct lustre_msg *msg, u32 flags);
2052 void lustre_msg_set_flags(struct lustre_msg *msg, u32 flags);
2053 void lustre_msg_clear_flags(struct lustre_msg *msg, u32 flags);
2054 __u32 lustre_msg_get_op_flags(struct lustre_msg *msg);
2055 void lustre_msg_add_op_flags(struct lustre_msg *msg, u32 flags);
2056 struct lustre_handle *lustre_msg_get_handle(struct lustre_msg *msg);
2057 __u32 lustre_msg_get_type(struct lustre_msg *msg);
2058 void lustre_msg_add_version(struct lustre_msg *msg, u32 version);
2059 __u32 lustre_msg_get_opc(struct lustre_msg *msg);
2060 __u16 lustre_msg_get_tag(struct lustre_msg *msg);
2061 __u64 lustre_msg_get_last_committed(struct lustre_msg *msg);
2062 __u64 *lustre_msg_get_versions(struct lustre_msg *msg);
2063 __u64 lustre_msg_get_transno(struct lustre_msg *msg);
2064 __u64 lustre_msg_get_slv(struct lustre_msg *msg);
2065 __u32 lustre_msg_get_limit(struct lustre_msg *msg);
2066 void lustre_msg_set_slv(struct lustre_msg *msg, __u64 slv);
2067 void lustre_msg_set_limit(struct lustre_msg *msg, __u64 limit);
2068 int lustre_msg_get_status(struct lustre_msg *msg);
2069 __u32 lustre_msg_get_conn_cnt(struct lustre_msg *msg);
2070 __u32 lustre_msg_get_magic(struct lustre_msg *msg);
2071 __u32 lustre_msg_get_timeout(struct lustre_msg *msg);
2072 __u32 lustre_msg_get_service_time(struct lustre_msg *msg);
2073 __u32 lustre_msg_get_cksum(struct lustre_msg *msg);
2074 __u32 lustre_msg_calc_cksum(struct lustre_msg *msg);
2075 void lustre_msg_set_handle(struct lustre_msg *msg,
2076 struct lustre_handle *handle);
2077 void lustre_msg_set_type(struct lustre_msg *msg, __u32 type);
2078 void lustre_msg_set_opc(struct lustre_msg *msg, __u32 opc);
2079 void lustre_msg_set_last_xid(struct lustre_msg *msg, u64 last_xid);
2080 void lustre_msg_set_tag(struct lustre_msg *msg, __u16 tag);
2081 void lustre_msg_set_versions(struct lustre_msg *msg, __u64 *versions);
2082 void lustre_msg_set_transno(struct lustre_msg *msg, __u64 transno);
2083 void lustre_msg_set_status(struct lustre_msg *msg, __u32 status);
2084 void lustre_msg_set_conn_cnt(struct lustre_msg *msg, __u32 conn_cnt);
2085 void ptlrpc_request_set_replen(struct ptlrpc_request *req);
2086 void lustre_msg_set_timeout(struct lustre_msg *msg, __u32 timeout);
2087 void lustre_msg_set_service_time(struct lustre_msg *msg, __u32 service_time);
2088 void lustre_msg_set_jobid(struct lustre_msg *msg, char *jobid);
2089 void lustre_msg_set_cksum(struct lustre_msg *msg, __u32 cksum);
2090 void lustre_msg_set_mbits(struct lustre_msg *msg, u64 mbits);
2091
2092 static inline void
lustre_shrink_reply(struct ptlrpc_request * req,int segment,unsigned int newlen,int move_data)2093 lustre_shrink_reply(struct ptlrpc_request *req, int segment,
2094 unsigned int newlen, int move_data)
2095 {
2096 LASSERT(req->rq_reply_state);
2097 LASSERT(req->rq_repmsg);
2098 req->rq_replen = lustre_shrink_msg(req->rq_repmsg, segment,
2099 newlen, move_data);
2100 }
2101
2102 #ifdef CONFIG_LUSTRE_TRANSLATE_ERRNOS
2103
ptlrpc_status_hton(int h)2104 static inline int ptlrpc_status_hton(int h)
2105 {
2106 /*
2107 * Positive errnos must be network errnos, such as LUSTRE_EDEADLK,
2108 * ELDLM_LOCK_ABORTED, etc.
2109 */
2110 if (h < 0)
2111 return -lustre_errno_hton(-h);
2112 else
2113 return h;
2114 }
2115
ptlrpc_status_ntoh(int n)2116 static inline int ptlrpc_status_ntoh(int n)
2117 {
2118 /*
2119 * See the comment in ptlrpc_status_hton().
2120 */
2121 if (n < 0)
2122 return -lustre_errno_ntoh(-n);
2123 else
2124 return n;
2125 }
2126
2127 #else
2128
2129 #define ptlrpc_status_hton(h) (h)
2130 #define ptlrpc_status_ntoh(n) (n)
2131
2132 #endif
2133 /** @} */
2134
2135 /** Change request phase of \a req to \a new_phase */
2136 static inline void
ptlrpc_rqphase_move(struct ptlrpc_request * req,enum rq_phase new_phase)2137 ptlrpc_rqphase_move(struct ptlrpc_request *req, enum rq_phase new_phase)
2138 {
2139 if (req->rq_phase == new_phase)
2140 return;
2141
2142 if (new_phase == RQ_PHASE_UNREG_RPC ||
2143 new_phase == RQ_PHASE_UNREG_BULK) {
2144 /* No embedded unregistering phases */
2145 if (req->rq_phase == RQ_PHASE_UNREG_RPC ||
2146 req->rq_phase == RQ_PHASE_UNREG_BULK)
2147 return;
2148
2149 req->rq_next_phase = req->rq_phase;
2150 if (req->rq_import)
2151 atomic_inc(&req->rq_import->imp_unregistering);
2152 }
2153
2154 if (req->rq_phase == RQ_PHASE_UNREG_RPC ||
2155 req->rq_phase == RQ_PHASE_UNREG_BULK) {
2156 if (req->rq_import)
2157 atomic_dec(&req->rq_import->imp_unregistering);
2158 }
2159
2160 DEBUG_REQ(D_INFO, req, "move req \"%s\" -> \"%s\"",
2161 ptlrpc_rqphase2str(req), ptlrpc_phase2str(new_phase));
2162
2163 req->rq_phase = new_phase;
2164 }
2165
2166 /**
2167 * Returns true if request \a req got early reply and hard deadline is not met
2168 */
2169 static inline int
ptlrpc_client_early(struct ptlrpc_request * req)2170 ptlrpc_client_early(struct ptlrpc_request *req)
2171 {
2172 return req->rq_early;
2173 }
2174
2175 /**
2176 * Returns true if we got real reply from server for this request
2177 */
2178 static inline int
ptlrpc_client_replied(struct ptlrpc_request * req)2179 ptlrpc_client_replied(struct ptlrpc_request *req)
2180 {
2181 if (req->rq_reply_deadline > ktime_get_real_seconds())
2182 return 0;
2183 return req->rq_replied;
2184 }
2185
2186 /** Returns true if request \a req is in process of receiving server reply */
2187 static inline int
ptlrpc_client_recv(struct ptlrpc_request * req)2188 ptlrpc_client_recv(struct ptlrpc_request *req)
2189 {
2190 if (req->rq_reply_deadline > ktime_get_real_seconds())
2191 return 1;
2192 return req->rq_receiving_reply;
2193 }
2194
2195 static inline int
ptlrpc_client_recv_or_unlink(struct ptlrpc_request * req)2196 ptlrpc_client_recv_or_unlink(struct ptlrpc_request *req)
2197 {
2198 int rc;
2199
2200 spin_lock(&req->rq_lock);
2201 if (req->rq_reply_deadline > ktime_get_real_seconds()) {
2202 spin_unlock(&req->rq_lock);
2203 return 1;
2204 }
2205 if (req->rq_req_deadline > ktime_get_real_seconds()) {
2206 spin_unlock(&req->rq_lock);
2207 return 1;
2208 }
2209 rc = !req->rq_req_unlinked || !req->rq_reply_unlinked ||
2210 req->rq_receiving_reply;
2211 spin_unlock(&req->rq_lock);
2212 return rc;
2213 }
2214
2215 static inline void
ptlrpc_client_wake_req(struct ptlrpc_request * req)2216 ptlrpc_client_wake_req(struct ptlrpc_request *req)
2217 {
2218 if (!req->rq_set)
2219 wake_up(&req->rq_reply_waitq);
2220 else
2221 wake_up(&req->rq_set->set_waitq);
2222 }
2223
2224 static inline void
ptlrpc_rs_addref(struct ptlrpc_reply_state * rs)2225 ptlrpc_rs_addref(struct ptlrpc_reply_state *rs)
2226 {
2227 LASSERT(atomic_read(&rs->rs_refcount) > 0);
2228 atomic_inc(&rs->rs_refcount);
2229 }
2230
2231 static inline void
ptlrpc_rs_decref(struct ptlrpc_reply_state * rs)2232 ptlrpc_rs_decref(struct ptlrpc_reply_state *rs)
2233 {
2234 LASSERT(atomic_read(&rs->rs_refcount) > 0);
2235 if (atomic_dec_and_test(&rs->rs_refcount))
2236 lustre_free_reply_state(rs);
2237 }
2238
2239 /* Should only be called once per req */
ptlrpc_req_drop_rs(struct ptlrpc_request * req)2240 static inline void ptlrpc_req_drop_rs(struct ptlrpc_request *req)
2241 {
2242 if (!req->rq_reply_state)
2243 return; /* shouldn't occur */
2244 ptlrpc_rs_decref(req->rq_reply_state);
2245 req->rq_reply_state = NULL;
2246 req->rq_repmsg = NULL;
2247 }
2248
lustre_request_magic(struct ptlrpc_request * req)2249 static inline __u32 lustre_request_magic(struct ptlrpc_request *req)
2250 {
2251 return lustre_msg_get_magic(req->rq_reqmsg);
2252 }
2253
ptlrpc_req_get_repsize(struct ptlrpc_request * req)2254 static inline int ptlrpc_req_get_repsize(struct ptlrpc_request *req)
2255 {
2256 switch (req->rq_reqmsg->lm_magic) {
2257 case LUSTRE_MSG_MAGIC_V2:
2258 return req->rq_reqmsg->lm_repsize;
2259 default:
2260 LASSERTF(0, "incorrect message magic: %08x\n",
2261 req->rq_reqmsg->lm_magic);
2262 return -EFAULT;
2263 }
2264 }
2265
ptlrpc_send_limit_expired(struct ptlrpc_request * req)2266 static inline int ptlrpc_send_limit_expired(struct ptlrpc_request *req)
2267 {
2268 if (req->rq_delay_limit != 0 &&
2269 time_before(cfs_time_add(req->rq_queued_time,
2270 cfs_time_seconds(req->rq_delay_limit)),
2271 cfs_time_current())) {
2272 return 1;
2273 }
2274 return 0;
2275 }
2276
ptlrpc_no_resend(struct ptlrpc_request * req)2277 static inline int ptlrpc_no_resend(struct ptlrpc_request *req)
2278 {
2279 if (!req->rq_no_resend && ptlrpc_send_limit_expired(req)) {
2280 spin_lock(&req->rq_lock);
2281 req->rq_no_resend = 1;
2282 spin_unlock(&req->rq_lock);
2283 }
2284 return req->rq_no_resend;
2285 }
2286
2287 static inline int
ptlrpc_server_get_timeout(struct ptlrpc_service_part * svcpt)2288 ptlrpc_server_get_timeout(struct ptlrpc_service_part *svcpt)
2289 {
2290 int at = AT_OFF ? 0 : at_get(&svcpt->scp_at_estimate);
2291
2292 return svcpt->scp_service->srv_watchdog_factor *
2293 max_t(int, at, obd_timeout);
2294 }
2295
2296 static inline struct ptlrpc_service *
ptlrpc_req2svc(struct ptlrpc_request * req)2297 ptlrpc_req2svc(struct ptlrpc_request *req)
2298 {
2299 return req->rq_rqbd->rqbd_svcpt->scp_service;
2300 }
2301
2302 /* ldlm/ldlm_lib.c */
2303 /**
2304 * Target client logic
2305 * @{
2306 */
2307 int client_obd_setup(struct obd_device *obddev, struct lustre_cfg *lcfg);
2308 int client_obd_cleanup(struct obd_device *obddev);
2309 int client_connect_import(const struct lu_env *env,
2310 struct obd_export **exp, struct obd_device *obd,
2311 struct obd_uuid *cluuid, struct obd_connect_data *,
2312 void *localdata);
2313 int client_disconnect_export(struct obd_export *exp);
2314 int client_import_add_conn(struct obd_import *imp, struct obd_uuid *uuid,
2315 int priority);
2316 int client_import_del_conn(struct obd_import *imp, struct obd_uuid *uuid);
2317 int client_import_find_conn(struct obd_import *imp, lnet_nid_t peer,
2318 struct obd_uuid *uuid);
2319 int import_set_conn_priority(struct obd_import *imp, struct obd_uuid *uuid);
2320 void client_destroy_import(struct obd_import *imp);
2321 /** @} */
2322
2323 /* ptlrpc/pinger.c */
2324 /**
2325 * Pinger API (client side only)
2326 * @{
2327 */
2328 enum timeout_event {
2329 TIMEOUT_GRANT = 1
2330 };
2331
2332 struct timeout_item;
2333 typedef int (*timeout_cb_t)(struct timeout_item *, void *);
2334 int ptlrpc_pinger_add_import(struct obd_import *imp);
2335 int ptlrpc_pinger_del_import(struct obd_import *imp);
2336 int ptlrpc_add_timeout_client(int time, enum timeout_event event,
2337 timeout_cb_t cb, void *data,
2338 struct list_head *obd_list);
2339 int ptlrpc_del_timeout_client(struct list_head *obd_list,
2340 enum timeout_event event);
2341 struct ptlrpc_request *ptlrpc_prep_ping(struct obd_import *imp);
2342 int ptlrpc_obd_ping(struct obd_device *obd);
2343 void ptlrpc_pinger_ir_up(void);
2344 void ptlrpc_pinger_ir_down(void);
2345 /** @} */
2346 int ptlrpc_pinger_suppress_pings(void);
2347
2348 /* ptlrpc/ptlrpcd.c */
2349 void ptlrpcd_stop(struct ptlrpcd_ctl *pc, int force);
2350 void ptlrpcd_free(struct ptlrpcd_ctl *pc);
2351 void ptlrpcd_wake(struct ptlrpc_request *req);
2352 void ptlrpcd_add_req(struct ptlrpc_request *req);
2353 int ptlrpcd_addref(void);
2354 void ptlrpcd_decref(void);
2355
2356 /* ptlrpc/lproc_ptlrpc.c */
2357 /**
2358 * procfs output related functions
2359 * @{
2360 */
2361 const char *ll_opcode2str(__u32 opcode);
2362 void ptlrpc_lprocfs_register_obd(struct obd_device *obd);
2363 void ptlrpc_lprocfs_unregister_obd(struct obd_device *obd);
2364 void ptlrpc_lprocfs_brw(struct ptlrpc_request *req, int bytes);
2365 /** @} */
2366
2367 /* ptlrpc/llog_client.c */
2368 extern struct llog_operations llog_client_ops;
2369 /** @} net */
2370
2371 #endif
2372 /** @} PtlRPC */
2373