• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.gnu.org/licenses/gpl-2.0.html
19  *
20  * GPL HEADER END
21  */
22 /*
23  * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Use is subject to license terms.
25  *
26  * Copyright (c) 2010, 2015, Intel Corporation.
27  */
28 /*
29  * This file is part of Lustre, http://www.lustre.org/
30  * Lustre is a trademark of Sun Microsystems, Inc.
31  */
32 /** \defgroup PtlRPC Portal RPC and networking module.
33  *
34  * PortalRPC is the layer used by rest of lustre code to achieve network
35  * communications: establish connections with corresponding export and import
36  * states, listen for a service, send and receive RPCs.
37  * PortalRPC also includes base recovery framework: packet resending and
38  * replaying, reconnections, pinger.
39  *
40  * PortalRPC utilizes LNet as its transport layer.
41  *
42  * @{
43  */
44 
45 #ifndef _LUSTRE_NET_H
46 #define _LUSTRE_NET_H
47 
48 /** \defgroup net net
49  *
50  * @{
51  */
52 
53 #include <linux/uio.h>
54 #include <linux/libcfs/libcfs.h>
55 #include <uapi/linux/lnet/nidstr.h>
56 #include <linux/lnet/api.h>
57 #include <uapi/linux/lustre/lustre_idl.h>
58 #include <lustre_errno.h>
59 #include <lustre_ha.h>
60 #include <lustre_sec.h>
61 #include <lustre_import.h>
62 #include <lprocfs_status.h>
63 #include <lu_object.h>
64 #include <lustre_req_layout.h>
65 
66 #include <obd_support.h>
67 #include <uapi/linux/lustre/lustre_ver.h>
68 
69 /* MD flags we _always_ use */
70 #define PTLRPC_MD_OPTIONS  0
71 
72 /**
73  * log2 max # of bulk operations in one request: 2=4MB/RPC, 5=32MB/RPC, ...
74  * In order for the client and server to properly negotiate the maximum
75  * possible transfer size, PTLRPC_BULK_OPS_COUNT must be a power-of-two
76  * value.  The client is free to limit the actual RPC size for any bulk
77  * transfer via cl_max_pages_per_rpc to some non-power-of-two value.
78  * NOTE: This is limited to 16 (=64GB RPCs) by IOOBJ_MAX_BRW_BITS.
79  */
80 #define PTLRPC_BULK_OPS_BITS	4
81 #if PTLRPC_BULK_OPS_BITS > 16
82 #error "More than 65536 BRW RPCs not allowed by IOOBJ_MAX_BRW_BITS."
83 #endif
84 #define PTLRPC_BULK_OPS_COUNT	(1U << PTLRPC_BULK_OPS_BITS)
85 /**
86  * PTLRPC_BULK_OPS_MASK is for the convenience of the client only, and
87  * should not be used on the server at all.  Otherwise, it imposes a
88  * protocol limitation on the maximum RPC size that can be used by any
89  * RPC sent to that server in the future.  Instead, the server should
90  * use the negotiated per-client ocd_brw_size to determine the bulk
91  * RPC count.
92  */
93 #define PTLRPC_BULK_OPS_MASK	(~((__u64)PTLRPC_BULK_OPS_COUNT - 1))
94 
95 /**
96  * Define maxima for bulk I/O.
97  *
98  * A single PTLRPC BRW request is sent via up to PTLRPC_BULK_OPS_COUNT
99  * of LNET_MTU sized RDMA transfers.  Clients and servers negotiate the
100  * currently supported maximum between peers at connect via ocd_brw_size.
101  */
102 #define PTLRPC_MAX_BRW_BITS	(LNET_MTU_BITS + PTLRPC_BULK_OPS_BITS)
103 #define PTLRPC_MAX_BRW_SIZE	(1 << PTLRPC_MAX_BRW_BITS)
104 #define PTLRPC_MAX_BRW_PAGES	(PTLRPC_MAX_BRW_SIZE >> PAGE_SHIFT)
105 
106 #define ONE_MB_BRW_SIZE		(1 << LNET_MTU_BITS)
107 #define MD_MAX_BRW_SIZE		(1 << LNET_MTU_BITS)
108 #define MD_MAX_BRW_PAGES	(MD_MAX_BRW_SIZE >> PAGE_SHIFT)
109 #define DT_MAX_BRW_SIZE		PTLRPC_MAX_BRW_SIZE
110 #define DT_MAX_BRW_PAGES	(DT_MAX_BRW_SIZE >> PAGE_SHIFT)
111 #define OFD_MAX_BRW_SIZE	(1 << LNET_MTU_BITS)
112 
113 /* When PAGE_SIZE is a constant, we can check our arithmetic here with cpp! */
114 # if ((PTLRPC_MAX_BRW_PAGES & (PTLRPC_MAX_BRW_PAGES - 1)) != 0)
115 #  error "PTLRPC_MAX_BRW_PAGES isn't a power of two"
116 # endif
117 # if (PTLRPC_MAX_BRW_SIZE != (PTLRPC_MAX_BRW_PAGES * PAGE_SIZE))
118 #  error "PTLRPC_MAX_BRW_SIZE isn't PTLRPC_MAX_BRW_PAGES * PAGE_SIZE"
119 # endif
120 # if (PTLRPC_MAX_BRW_SIZE > LNET_MTU * PTLRPC_BULK_OPS_COUNT)
121 #  error "PTLRPC_MAX_BRW_SIZE too big"
122 # endif
123 # if (PTLRPC_MAX_BRW_PAGES > LNET_MAX_IOV * PTLRPC_BULK_OPS_COUNT)
124 #  error "PTLRPC_MAX_BRW_PAGES too big"
125 # endif
126 
127 #define PTLRPC_NTHRS_INIT	2
128 
129 /**
130  * Buffer Constants
131  *
132  * Constants determine how memory is used to buffer incoming service requests.
133  *
134  * ?_NBUFS	      # buffers to allocate when growing the pool
135  * ?_BUFSIZE	    # bytes in a single request buffer
136  * ?_MAXREQSIZE	 # maximum request service will receive
137  *
138  * When fewer than ?_NBUFS/2 buffers are posted for receive, another chunk
139  * of ?_NBUFS is added to the pool.
140  *
141  * Messages larger than ?_MAXREQSIZE are dropped.  Request buffers are
142  * considered full when less than ?_MAXREQSIZE is left in them.
143  */
144 /**
145  * Thread Constants
146  *
147  * Constants determine how threads are created for ptlrpc service.
148  *
149  * ?_NTHRS_INIT		# threads to create for each service partition on
150  *			  initializing. If it's non-affinity service and
151  *			  there is only one partition, it's the overall #
152  *			  threads for the service while initializing.
153  * ?_NTHRS_BASE		# threads should be created at least for each
154  *			  ptlrpc partition to keep the service healthy.
155  *			  It's the low-water mark of threads upper-limit
156  *			  for each partition.
157  * ?_THR_FACTOR	 # threads can be added on threads upper-limit for
158  *			  each CPU core. This factor is only for reference,
159  *			  we might decrease value of factor if number of cores
160  *			  per CPT is above a limit.
161  * ?_NTHRS_MAX		# overall threads can be created for a service,
162  *			  it's a soft limit because if service is running
163  *			  on machine with hundreds of cores and tens of
164  *			  CPU partitions, we need to guarantee each partition
165  *			  has ?_NTHRS_BASE threads, which means total threads
166  *			  will be ?_NTHRS_BASE * number_of_cpts which can
167  *			  exceed ?_NTHRS_MAX.
168  *
169  * Examples
170  *
171  * #define MDS_NTHRS_INIT	2
172  * #define MDS_NTHRS_BASE	64
173  * #define MDS_NTHRS_FACTOR	8
174  * #define MDS_NTHRS_MAX	1024
175  *
176  * Example 1):
177  * ---------------------------------------------------------------------
178  * Server(A) has 16 cores, user configured it to 4 partitions so each
179  * partition has 4 cores, then actual number of service threads on each
180  * partition is:
181  *     MDS_NTHRS_BASE(64) + cores(4) * MDS_NTHRS_FACTOR(8) = 96
182  *
183  * Total number of threads for the service is:
184  *     96 * partitions(4) = 384
185  *
186  * Example 2):
187  * ---------------------------------------------------------------------
188  * Server(B) has 32 cores, user configured it to 4 partitions so each
189  * partition has 8 cores, then actual number of service threads on each
190  * partition is:
191  *     MDS_NTHRS_BASE(64) + cores(8) * MDS_NTHRS_FACTOR(8) = 128
192  *
193  * Total number of threads for the service is:
194  *     128 * partitions(4) = 512
195  *
196  * Example 3):
197  * ---------------------------------------------------------------------
198  * Server(B) has 96 cores, user configured it to 8 partitions so each
199  * partition has 12 cores, then actual number of service threads on each
200  * partition is:
201  *     MDS_NTHRS_BASE(64) + cores(12) * MDS_NTHRS_FACTOR(8) = 160
202  *
203  * Total number of threads for the service is:
204  *     160 * partitions(8) = 1280
205  *
206  * However, it's above the soft limit MDS_NTHRS_MAX, so we choose this number
207  * as upper limit of threads number for each partition:
208  *     MDS_NTHRS_MAX(1024) / partitions(8) = 128
209  *
210  * Example 4):
211  * ---------------------------------------------------------------------
212  * Server(C) have a thousand of cores and user configured it to 32 partitions
213  *     MDS_NTHRS_BASE(64) * 32 = 2048
214  *
215  * which is already above soft limit MDS_NTHRS_MAX(1024), but we still need
216  * to guarantee that each partition has at least MDS_NTHRS_BASE(64) threads
217  * to keep service healthy, so total number of threads will just be 2048.
218  *
219  * NB: we don't suggest to choose server with that many cores because backend
220  *     filesystem itself, buffer cache, or underlying network stack might
221  *     have some SMP scalability issues at that large scale.
222  *
223  *     If user already has a fat machine with hundreds or thousands of cores,
224  *     there are two choices for configuration:
225  *     a) create CPU table from subset of all CPUs and run Lustre on
226  *	top of this subset
227  *     b) bind service threads on a few partitions, see modparameters of
228  *	MDS and OSS for details
229 *
230  * NB: these calculations (and examples below) are simplified to help
231  *     understanding, the real implementation is a little more complex,
232  *     please see ptlrpc_server_nthreads_check() for details.
233  *
234  */
235 
236  /*
237   * LDLM threads constants:
238   *
239   * Given 8 as factor and 24 as base threads number
240   *
241   * example 1)
242   * On 4-core machine we will have 24 + 8 * 4 = 56 threads.
243   *
244   * example 2)
245   * On 8-core machine with 2 partitions we will have 24 + 4 * 8 = 56
246   * threads for each partition and total threads number will be 112.
247   *
248   * example 3)
249   * On 64-core machine with 8 partitions we will need LDLM_NTHRS_BASE(24)
250   * threads for each partition to keep service healthy, so total threads
251   * number should be 24 * 8 = 192.
252   *
253   * So with these constants, threads number will be at the similar level
254   * of old versions, unless target machine has over a hundred cores
255   */
256 #define LDLM_THR_FACTOR		8
257 #define LDLM_NTHRS_INIT		PTLRPC_NTHRS_INIT
258 #define LDLM_NTHRS_BASE		24
259 #define LDLM_NTHRS_MAX		(num_online_cpus() == 1 ? 64 : 128)
260 
261 #define LDLM_BL_THREADS   LDLM_NTHRS_AUTO_INIT
262 #define LDLM_CLIENT_NBUFS 1
263 #define LDLM_SERVER_NBUFS 64
264 #define LDLM_BUFSIZE      (8 * 1024)
265 #define LDLM_MAXREQSIZE   (5 * 1024)
266 #define LDLM_MAXREPSIZE   (1024)
267 
268 #define MDS_MAXREQSIZE		(5 * 1024)	/* >= 4736 */
269 
270 /**
271  * FIEMAP request can be 4K+ for now
272  */
273 #define OST_MAXREQSIZE		(16 * 1024)
274 
275 /* Macro to hide a typecast. */
276 #define ptlrpc_req_async_args(req) ((void *)&req->rq_async_args)
277 
278 struct ptlrpc_replay_async_args {
279 	int		praa_old_state;
280 	int		praa_old_status;
281 };
282 
283 /**
284  * Structure to single define portal connection.
285  */
286 struct ptlrpc_connection {
287 	/** linkage for connections hash table */
288 	struct hlist_node	c_hash;
289 	/** Our own lnet nid for this connection */
290 	lnet_nid_t	      c_self;
291 	/** Remote side nid for this connection */
292 	struct lnet_process_id	c_peer;
293 	/** UUID of the other side */
294 	struct obd_uuid	 c_remote_uuid;
295 	/** reference counter for this connection */
296 	atomic_t	    c_refcount;
297 };
298 
299 /** Client definition for PortalRPC */
300 struct ptlrpc_client {
301 	/** What lnet portal does this client send messages to by default */
302 	__u32		   cli_request_portal;
303 	/** What portal do we expect replies on */
304 	__u32		   cli_reply_portal;
305 	/** Name of the client */
306 	char		   *cli_name;
307 };
308 
309 /** state flags of requests */
310 /* XXX only ones left are those used by the bulk descs as well! */
311 #define PTL_RPC_FL_INTR      (1 << 0)  /* reply wait was interrupted by user */
312 #define PTL_RPC_FL_TIMEOUT   (1 << 7)  /* request timed out waiting for reply */
313 
314 #define REQ_MAX_ACK_LOCKS 8
315 
316 union ptlrpc_async_args {
317 	/**
318 	 * Scratchpad for passing args to completion interpreter. Users
319 	 * cast to the struct of their choosing, and BUILD_BUG_ON oversized
320 	 * arguments.  For _tons_ of context, kmalloc a struct and store
321 	 * a pointer to it here.  The pointer_arg ensures this struct is at
322 	 * least big enough for that.
323 	 */
324 	void      *pointer_arg[11];
325 	__u64      space[7];
326 };
327 
328 struct ptlrpc_request_set;
329 typedef int (*set_interpreter_func)(struct ptlrpc_request_set *, void *, int);
330 typedef int (*set_producer_func)(struct ptlrpc_request_set *, void *);
331 
332 /**
333  * Definition of request set structure.
334  * Request set is a list of requests (not necessary to the same target) that
335  * once populated with RPCs could be sent in parallel.
336  * There are two kinds of request sets. General purpose and with dedicated
337  * serving thread. Example of the latter is ptlrpcd set.
338  * For general purpose sets once request set started sending it is impossible
339  * to add new requests to such set.
340  * Provides a way to call "completion callbacks" when all requests in the set
341  * returned.
342  */
343 struct ptlrpc_request_set {
344 	atomic_t	  set_refcount;
345 	/** number of in queue requests */
346 	atomic_t	  set_new_count;
347 	/** number of uncompleted requests */
348 	atomic_t	  set_remaining;
349 	/** wait queue to wait on for request events */
350 	wait_queue_head_t	   set_waitq;
351 	wait_queue_head_t	  *set_wakeup_ptr;
352 	/** List of requests in the set */
353 	struct list_head	    set_requests;
354 	/**
355 	 * List of completion callbacks to be called when the set is completed
356 	 * This is only used if \a set_interpret is NULL.
357 	 * Links struct ptlrpc_set_cbdata.
358 	 */
359 	struct list_head	    set_cblist;
360 	/** Completion callback, if only one. */
361 	set_interpreter_func  set_interpret;
362 	/** opaq argument passed to completion \a set_interpret callback. */
363 	void		 *set_arg;
364 	/**
365 	 * Lock for \a set_new_requests manipulations
366 	 * locked so that any old caller can communicate requests to
367 	 * the set holder who can then fold them into the lock-free set
368 	 */
369 	spinlock_t		set_new_req_lock;
370 	/** List of new yet unsent requests. Only used with ptlrpcd now. */
371 	struct list_head	    set_new_requests;
372 
373 	/** rq_status of requests that have been freed already */
374 	int		   set_rc;
375 	/** Additional fields used by the flow control extension */
376 	/** Maximum number of RPCs in flight */
377 	int		   set_max_inflight;
378 	/** Callback function used to generate RPCs */
379 	set_producer_func     set_producer;
380 	/** opaq argument passed to the producer callback */
381 	void		 *set_producer_arg;
382 };
383 
384 /**
385  * Description of a single ptrlrpc_set callback
386  */
387 struct ptlrpc_set_cbdata {
388 	/** List linkage item */
389 	struct list_head	      psc_item;
390 	/** Pointer to interpreting function */
391 	set_interpreter_func    psc_interpret;
392 	/** Opaq argument to pass to the callback */
393 	void		   *psc_data;
394 };
395 
396 struct ptlrpc_bulk_desc;
397 struct ptlrpc_service_part;
398 struct ptlrpc_service;
399 
400 /**
401  * ptlrpc callback & work item stuff
402  */
403 struct ptlrpc_cb_id {
404 	void   (*cbid_fn)(struct lnet_event *ev); /* specific callback fn */
405 	void    *cbid_arg;		      /* additional arg */
406 };
407 
408 /** Maximum number of locks to fit into reply state */
409 #define RS_MAX_LOCKS 8
410 #define RS_DEBUG     0
411 
412 /**
413  * Structure to define reply state on the server
414  * Reply state holds various reply message information. Also for "difficult"
415  * replies (rep-ack case) we store the state after sending reply and wait
416  * for the client to acknowledge the reception. In these cases locks could be
417  * added to the state for replay/failover consistency guarantees.
418  */
419 struct ptlrpc_reply_state {
420 	/** Callback description */
421 	struct ptlrpc_cb_id    rs_cb_id;
422 	/** Linkage for list of all reply states in a system */
423 	struct list_head	     rs_list;
424 	/** Linkage for list of all reply states on same export */
425 	struct list_head	     rs_exp_list;
426 	/** Linkage for list of all reply states for same obd */
427 	struct list_head	     rs_obd_list;
428 #if RS_DEBUG
429 	struct list_head	     rs_debug_list;
430 #endif
431 	/** A spinlock to protect the reply state flags */
432 	spinlock_t		rs_lock;
433 	/** Reply state flags */
434 	unsigned long	  rs_difficult:1; /* ACK/commit stuff */
435 	unsigned long	  rs_no_ack:1;    /* no ACK, even for
436 					   * difficult requests
437 					   */
438 	unsigned long	  rs_scheduled:1;     /* being handled? */
439 	unsigned long	  rs_scheduled_ever:1;/* any schedule attempts? */
440 	unsigned long	  rs_handled:1;  /* been handled yet? */
441 	unsigned long	  rs_on_net:1;   /* reply_out_callback pending? */
442 	unsigned long	  rs_prealloc:1; /* rs from prealloc list */
443 	unsigned long	  rs_committed:1;/* the transaction was committed
444 					  * and the rs was dispatched
445 					  */
446 	atomic_t		rs_refcount;	/* number of users */
447 	/** Number of locks awaiting client ACK */
448 	int			rs_nlocks;
449 
450 	/** Size of the state */
451 	int		    rs_size;
452 	/** opcode */
453 	__u32		  rs_opc;
454 	/** Transaction number */
455 	__u64		  rs_transno;
456 	/** xid */
457 	__u64		  rs_xid;
458 	struct obd_export     *rs_export;
459 	struct ptlrpc_service_part *rs_svcpt;
460 	/** Lnet metadata handle for the reply */
461 	struct lnet_handle_md		rs_md_h;
462 
463 	/** Context for the service thread */
464 	struct ptlrpc_svc_ctx *rs_svc_ctx;
465 	/** Reply buffer (actually sent to the client), encoded if needed */
466 	struct lustre_msg     *rs_repbuf;       /* wrapper */
467 	/** Size of the reply buffer */
468 	int		    rs_repbuf_len;   /* wrapper buf length */
469 	/** Size of the reply message */
470 	int		    rs_repdata_len;  /* wrapper msg length */
471 	/**
472 	 * Actual reply message. Its content is encrypted (if needed) to
473 	 * produce reply buffer for actual sending. In simple case
474 	 * of no network encryption we just set \a rs_repbuf to \a rs_msg
475 	 */
476 	struct lustre_msg     *rs_msg;	  /* reply message */
477 
478 	/** Handles of locks awaiting client reply ACK */
479 	struct lustre_handle   rs_locks[RS_MAX_LOCKS];
480 	/** Lock modes of locks in \a rs_locks */
481 	enum ldlm_mode	    rs_modes[RS_MAX_LOCKS];
482 };
483 
484 struct ptlrpc_thread;
485 
486 /** RPC stages */
487 enum rq_phase {
488 	RQ_PHASE_NEW	    = 0xebc0de00,
489 	RQ_PHASE_RPC	    = 0xebc0de01,
490 	RQ_PHASE_BULK	   = 0xebc0de02,
491 	RQ_PHASE_INTERPRET      = 0xebc0de03,
492 	RQ_PHASE_COMPLETE       = 0xebc0de04,
493 	RQ_PHASE_UNREG_RPC	= 0xebc0de05,
494 	RQ_PHASE_UNREG_BULK	= 0xebc0de06,
495 	RQ_PHASE_UNDEFINED	= 0xebc0de07
496 };
497 
498 /** Type of request interpreter call-back */
499 typedef int (*ptlrpc_interpterer_t)(const struct lu_env *env,
500 				    struct ptlrpc_request *req,
501 				    void *arg, int rc);
502 
503 /**
504  * Definition of request pool structure.
505  * The pool is used to store empty preallocated requests for the case
506  * when we would actually need to send something without performing
507  * any allocations (to avoid e.g. OOM).
508  */
509 struct ptlrpc_request_pool {
510 	/** Locks the list */
511 	spinlock_t prp_lock;
512 	/** list of ptlrpc_request structs */
513 	struct list_head prp_req_list;
514 	/** Maximum message size that would fit into a request from this pool */
515 	int prp_rq_size;
516 	/** Function to allocate more requests for this pool */
517 	int (*prp_populate)(struct ptlrpc_request_pool *, int);
518 };
519 
520 struct lu_context;
521 struct lu_env;
522 
523 struct ldlm_lock;
524 
525 #include <lustre_nrs.h>
526 
527 /**
528  * Basic request prioritization operations structure.
529  * The whole idea is centered around locks and RPCs that might affect locks.
530  * When a lock is contended we try to give priority to RPCs that might lead
531  * to fastest release of that lock.
532  * Currently only implemented for OSTs only in a way that makes all
533  * IO and truncate RPCs that are coming from a locked region where a lock is
534  * contended a priority over other requests.
535  */
536 struct ptlrpc_hpreq_ops {
537 	/**
538 	 * Check if the lock handle of the given lock is the same as
539 	 * taken from the request.
540 	 */
541 	int  (*hpreq_lock_match)(struct ptlrpc_request *, struct ldlm_lock *);
542 	/**
543 	 * Check if the request is a high priority one.
544 	 */
545 	int  (*hpreq_check)(struct ptlrpc_request *);
546 	/**
547 	 * Called after the request has been handled.
548 	 */
549 	void (*hpreq_fini)(struct ptlrpc_request *);
550 };
551 
552 struct ptlrpc_cli_req {
553 	/** For bulk requests on client only: bulk descriptor */
554 	struct ptlrpc_bulk_desc		*cr_bulk;
555 	/** optional time limit for send attempts */
556 	long				 cr_delay_limit;
557 	/** time request was first queued */
558 	time_t				 cr_queued_time;
559 	/** request sent timeval */
560 	struct timespec64		 cr_sent_tv;
561 	/** time for request really sent out */
562 	time64_t			 cr_sent_out;
563 	/** when req reply unlink must finish. */
564 	time64_t			 cr_reply_deadline;
565 	/** when req bulk unlink must finish. */
566 	time64_t			 cr_bulk_deadline;
567 	/** when req unlink must finish. */
568 	time64_t			 cr_req_deadline;
569 	/** Portal to which this request would be sent */
570 	short				 cr_req_ptl;
571 	/** Portal where to wait for reply and where reply would be sent */
572 	short				 cr_rep_ptl;
573 	/** request resending number */
574 	unsigned int			 cr_resend_nr;
575 	/** What was import generation when this request was sent */
576 	int				 cr_imp_gen;
577 	enum lustre_imp_state		 cr_send_state;
578 	/** Per-request waitq introduced by bug 21938 for recovery waiting */
579 	wait_queue_head_t		 cr_set_waitq;
580 	/** Link item for request set lists */
581 	struct list_head		 cr_set_chain;
582 	/** link to waited ctx */
583 	struct list_head		 cr_ctx_chain;
584 
585 	/** client's half ctx */
586 	struct ptlrpc_cli_ctx		*cr_cli_ctx;
587 	/** Link back to the request set */
588 	struct ptlrpc_request_set	*cr_set;
589 	/** outgoing request MD handle */
590 	struct lnet_handle_md		 cr_req_md_h;
591 	/** request-out callback parameter */
592 	struct ptlrpc_cb_id		 cr_req_cbid;
593 	/** incoming reply MD handle */
594 	struct lnet_handle_md		 cr_reply_md_h;
595 	wait_queue_head_t		 cr_reply_waitq;
596 	/** reply callback parameter */
597 	struct ptlrpc_cb_id		 cr_reply_cbid;
598 	/** Async completion handler, called when reply is received */
599 	ptlrpc_interpterer_t		 cr_reply_interp;
600 	/** Async completion context */
601 	union ptlrpc_async_args		 cr_async_args;
602 	/** Opaq data for replay and commit callbacks. */
603 	void				*cr_cb_data;
604 	/** Link to the imp->imp_unreplied_list */
605 	struct list_head		 cr_unreplied_list;
606 	/**
607 	 * Commit callback, called when request is committed and about to be
608 	 * freed.
609 	 */
610 	void (*cr_commit_cb)(struct ptlrpc_request *);
611 	/** Replay callback, called after request is replayed at recovery */
612 	void (*cr_replay_cb)(struct ptlrpc_request *);
613 };
614 
615 /** client request member alias */
616 /* NB: these alias should NOT be used by any new code, instead they should
617  * be removed step by step to avoid potential abuse
618  */
619 #define rq_bulk			rq_cli.cr_bulk
620 #define rq_delay_limit		rq_cli.cr_delay_limit
621 #define rq_queued_time		rq_cli.cr_queued_time
622 #define rq_sent_tv		rq_cli.cr_sent_tv
623 #define rq_real_sent		rq_cli.cr_sent_out
624 #define rq_reply_deadline	rq_cli.cr_reply_deadline
625 #define rq_bulk_deadline	rq_cli.cr_bulk_deadline
626 #define rq_req_deadline		rq_cli.cr_req_deadline
627 #define rq_nr_resend		rq_cli.cr_resend_nr
628 #define rq_request_portal	rq_cli.cr_req_ptl
629 #define rq_reply_portal		rq_cli.cr_rep_ptl
630 #define rq_import_generation	rq_cli.cr_imp_gen
631 #define rq_send_state		rq_cli.cr_send_state
632 #define rq_set_chain		rq_cli.cr_set_chain
633 #define rq_ctx_chain		rq_cli.cr_ctx_chain
634 #define rq_set			rq_cli.cr_set
635 #define rq_set_waitq		rq_cli.cr_set_waitq
636 #define rq_cli_ctx		rq_cli.cr_cli_ctx
637 #define rq_req_md_h		rq_cli.cr_req_md_h
638 #define rq_req_cbid		rq_cli.cr_req_cbid
639 #define rq_reply_md_h		rq_cli.cr_reply_md_h
640 #define rq_reply_waitq		rq_cli.cr_reply_waitq
641 #define rq_reply_cbid		rq_cli.cr_reply_cbid
642 #define rq_interpret_reply	rq_cli.cr_reply_interp
643 #define rq_async_args		rq_cli.cr_async_args
644 #define rq_cb_data		rq_cli.cr_cb_data
645 #define rq_unreplied_list	rq_cli.cr_unreplied_list
646 #define rq_commit_cb		rq_cli.cr_commit_cb
647 #define rq_replay_cb		rq_cli.cr_replay_cb
648 
649 struct ptlrpc_srv_req {
650 	/** initial thread servicing this request */
651 	struct ptlrpc_thread		*sr_svc_thread;
652 	/**
653 	 * Server side list of incoming unserved requests sorted by arrival
654 	 * time.  Traversed from time to time to notice about to expire
655 	 * requests and sent back "early replies" to clients to let them
656 	 * know server is alive and well, just very busy to service their
657 	 * requests in time
658 	 */
659 	struct list_head		sr_timed_list;
660 	/** server-side per-export list */
661 	struct list_head		sr_exp_list;
662 	/** server-side history, used for debuging purposes. */
663 	struct list_head		sr_hist_list;
664 	/** history sequence # */
665 	__u64				sr_hist_seq;
666 	/** the index of service's srv_at_array into which request is linked */
667 	time64_t			sr_at_index;
668 	/** authed uid */
669 	uid_t				sr_auth_uid;
670 	/** authed uid mapped to */
671 	uid_t				sr_auth_mapped_uid;
672 	/** RPC is generated from what part of Lustre */
673 	enum lustre_sec_part		sr_sp_from;
674 	/** request session context */
675 	struct lu_context		sr_ses;
676 	/** \addtogroup  nrs
677 	 * @{
678 	 */
679 	/** stub for NRS request */
680 	struct ptlrpc_nrs_request	sr_nrq;
681 	/** @} nrs */
682 	/** request arrival time */
683 	struct timespec64		sr_arrival_time;
684 	/** server's half ctx */
685 	struct ptlrpc_svc_ctx		*sr_svc_ctx;
686 	/** (server side), pointed directly into req buffer */
687 	struct ptlrpc_user_desc		*sr_user_desc;
688 	/** separated reply state */
689 	struct ptlrpc_reply_state	*sr_reply_state;
690 	/** server-side hp handlers */
691 	struct ptlrpc_hpreq_ops		*sr_ops;
692 	/** incoming request buffer */
693 	struct ptlrpc_request_buffer_desc *sr_rqbd;
694 };
695 
696 /** server request member alias */
697 /* NB: these alias should NOT be used by any new code, instead they should
698  * be removed step by step to avoid potential abuse
699  */
700 #define rq_svc_thread		rq_srv.sr_svc_thread
701 #define rq_timed_list		rq_srv.sr_timed_list
702 #define rq_exp_list		rq_srv.sr_exp_list
703 #define rq_history_list		rq_srv.sr_hist_list
704 #define rq_history_seq		rq_srv.sr_hist_seq
705 #define rq_at_index		rq_srv.sr_at_index
706 #define rq_auth_uid		rq_srv.sr_auth_uid
707 #define rq_auth_mapped_uid	rq_srv.sr_auth_mapped_uid
708 #define rq_sp_from		rq_srv.sr_sp_from
709 #define rq_session		rq_srv.sr_ses
710 #define rq_nrq			rq_srv.sr_nrq
711 #define rq_arrival_time		rq_srv.sr_arrival_time
712 #define rq_reply_state		rq_srv.sr_reply_state
713 #define rq_svc_ctx		rq_srv.sr_svc_ctx
714 #define rq_user_desc		rq_srv.sr_user_desc
715 #define rq_ops			rq_srv.sr_ops
716 #define rq_rqbd			rq_srv.sr_rqbd
717 
718 /**
719  * Represents remote procedure call.
720  *
721  * This is a staple structure used by everybody wanting to send a request
722  * in Lustre.
723  */
724 struct ptlrpc_request {
725 	/* Request type: one of PTL_RPC_MSG_* */
726 	int				 rq_type;
727 	/** Result of request processing */
728 	int				 rq_status;
729 	/**
730 	 * Linkage item through which this request is included into
731 	 * sending/delayed lists on client and into rqbd list on server
732 	 */
733 	struct list_head		 rq_list;
734 	/** Lock to protect request flags and some other important bits, like
735 	 * rq_list
736 	 */
737 	spinlock_t rq_lock;
738 	/** client-side flags are serialized by rq_lock @{ */
739 	unsigned int rq_intr:1, rq_replied:1, rq_err:1,
740 		rq_timedout:1, rq_resend:1, rq_restart:1,
741 		/**
742 		 * when ->rq_replay is set, request is kept by the client even
743 		 * after server commits corresponding transaction. This is
744 		 * used for operations that require sequence of multiple
745 		 * requests to be replayed. The only example currently is file
746 		 * open/close. When last request in such a sequence is
747 		 * committed, ->rq_replay is cleared on all requests in the
748 		 * sequence.
749 		 */
750 		rq_replay:1,
751 		rq_no_resend:1, rq_waiting:1, rq_receiving_reply:1,
752 		rq_no_delay:1, rq_net_err:1, rq_wait_ctx:1,
753 		rq_early:1,
754 		rq_req_unlinked:1,	/* unlinked request buffer from lnet */
755 		rq_reply_unlinked:1,	/* unlinked reply buffer from lnet */
756 		rq_memalloc:1,      /* req originated from "kswapd" */
757 		rq_committed:1,
758 		rq_reply_truncated:1,
759 		/** whether the "rq_set" is a valid one */
760 		rq_invalid_rqset:1,
761 		rq_generation_set:1,
762 		/** do not resend request on -EINPROGRESS */
763 		rq_no_retry_einprogress:1,
764 		/* allow the req to be sent if the import is in recovery
765 		 * status
766 		 */
767 		rq_allow_replay:1,
768 		/* bulk request, sent to server, but uncommitted */
769 		rq_unstable:1;
770 	/** @} */
771 
772 	/** server-side flags @{ */
773 	unsigned int
774 		rq_hp:1,		/**< high priority RPC */
775 		rq_at_linked:1,		/**< link into service's srv_at_array */
776 		rq_packed_final:1;	/**< packed final reply */
777 	/** @} */
778 
779 	/** one of RQ_PHASE_* */
780 	enum rq_phase			rq_phase;
781 	/** one of RQ_PHASE_* to be used next */
782 	enum rq_phase			rq_next_phase;
783 	/**
784 	 * client-side refcount for SENT race, server-side refcount
785 	 * for multiple replies
786 	 */
787 	atomic_t			rq_refcount;
788 	/**
789 	 * client-side:
790 	 * !rq_truncate : # reply bytes actually received,
791 	 *  rq_truncate : required repbuf_len for resend
792 	 */
793 	int rq_nob_received;
794 	/** Request length */
795 	int rq_reqlen;
796 	/** Reply length */
797 	int rq_replen;
798 	/** Pool if request is from preallocated list */
799 	struct ptlrpc_request_pool     *rq_pool;
800 	/** Request message - what client sent */
801 	struct lustre_msg *rq_reqmsg;
802 	/** Reply message - server response */
803 	struct lustre_msg *rq_repmsg;
804 	/** Transaction number */
805 	__u64 rq_transno;
806 	/** xid */
807 	__u64 rq_xid;
808 	/** bulk match bits */
809 	u64				rq_mbits;
810 	/**
811 	 * List item to for replay list. Not yet committed requests get linked
812 	 * there.
813 	 * Also see \a rq_replay comment above.
814 	 * It's also link chain on obd_export::exp_req_replay_queue
815 	 */
816 	struct list_head rq_replay_list;
817 	/** non-shared members for client & server request*/
818 	union {
819 		struct ptlrpc_cli_req    rq_cli;
820 		struct ptlrpc_srv_req    rq_srv;
821 	};
822 	/**
823 	 * security and encryption data
824 	 * @{
825 	 */
826 	/** description of flavors for client & server */
827 	struct sptlrpc_flavor		rq_flvr;
828 
829 	/* client/server security flags */
830 	unsigned int
831 				 rq_ctx_init:1,      /* context initiation */
832 				 rq_ctx_fini:1,      /* context destroy */
833 				 rq_bulk_read:1,     /* request bulk read */
834 				 rq_bulk_write:1,    /* request bulk write */
835 				 /* server authentication flags */
836 				 rq_auth_gss:1,      /* authenticated by gss */
837 				 rq_auth_usr_root:1, /* authed as root */
838 				 rq_auth_usr_mdt:1,  /* authed as mdt */
839 				 rq_auth_usr_ost:1,  /* authed as ost */
840 				 /* security tfm flags */
841 				 rq_pack_udesc:1,
842 				 rq_pack_bulk:1,
843 				 /* doesn't expect reply FIXME */
844 				 rq_no_reply:1,
845 				 rq_pill_init:1, /* pill initialized */
846 				 rq_srv_req:1; /* server request */
847 
848 	/** various buffer pointers */
849 	struct lustre_msg       *rq_reqbuf;	/**< req wrapper */
850 	char			*rq_repbuf;	/**< rep buffer */
851 	struct lustre_msg       *rq_repdata;	/**< rep wrapper msg */
852 	/** only in priv mode */
853 	struct lustre_msg       *rq_clrbuf;
854 	int		      rq_reqbuf_len;  /* req wrapper buf len */
855 	int		      rq_reqdata_len; /* req wrapper msg len */
856 	int		      rq_repbuf_len;  /* rep buffer len */
857 	int		      rq_repdata_len; /* rep wrapper msg len */
858 	int		      rq_clrbuf_len;  /* only in priv mode */
859 	int		      rq_clrdata_len; /* only in priv mode */
860 
861 	/** early replies go to offset 0, regular replies go after that */
862 	unsigned int	     rq_reply_off;
863 
864 	/** @} */
865 
866 	/** Fields that help to see if request and reply were swabbed or not */
867 	__u32 rq_req_swab_mask;
868 	__u32 rq_rep_swab_mask;
869 
870 	/** how many early replies (for stats) */
871 	int rq_early_count;
872 
873 	/** Server-side, export on which request was received */
874 	struct obd_export		*rq_export;
875 	/** import where request is being sent */
876 	struct obd_import		*rq_import;
877 	/** our LNet NID */
878 	lnet_nid_t	   rq_self;
879 	/** Peer description (the other side) */
880 	struct lnet_process_id	rq_peer;
881 	/**
882 	 * service time estimate (secs)
883 	 * If the request is not served by this time, it is marked as timed out.
884 	 */
885 	int			rq_timeout;
886 	/**
887 	 * when request/reply sent (secs), or time when request should be sent
888 	 */
889 	time64_t rq_sent;
890 	/** when request must finish. */
891 	time64_t		  rq_deadline;
892 	/** request format description */
893 	struct req_capsule	  rq_pill;
894 };
895 
896 /**
897  * Call completion handler for rpc if any, return it's status or original
898  * rc if there was no handler defined for this request.
899  */
ptlrpc_req_interpret(const struct lu_env * env,struct ptlrpc_request * req,int rc)900 static inline int ptlrpc_req_interpret(const struct lu_env *env,
901 				       struct ptlrpc_request *req, int rc)
902 {
903 	if (req->rq_interpret_reply) {
904 		req->rq_status = req->rq_interpret_reply(env, req,
905 							 &req->rq_async_args,
906 							 rc);
907 		return req->rq_status;
908 	}
909 	return rc;
910 }
911 
912 /*
913  * Can the request be moved from the regular NRS head to the high-priority NRS
914  * head (of the same PTLRPC service partition), if any?
915  *
916  * For a reliable result, this should be checked under svcpt->scp_req lock.
917  */
ptlrpc_nrs_req_can_move(struct ptlrpc_request * req)918 static inline bool ptlrpc_nrs_req_can_move(struct ptlrpc_request *req)
919 {
920 	struct ptlrpc_nrs_request *nrq = &req->rq_nrq;
921 
922 	/**
923 	 * LU-898: Check ptlrpc_nrs_request::nr_enqueued to make sure the
924 	 * request has been enqueued first, and ptlrpc_nrs_request::nr_started
925 	 * to make sure it has not been scheduled yet (analogous to previous
926 	 * (non-NRS) checking of !list_empty(&ptlrpc_request::rq_list).
927 	 */
928 	return nrq->nr_enqueued && !nrq->nr_started && !req->rq_hp;
929 }
930 
931 /** @} nrs */
932 
933 /**
934  * Returns 1 if request buffer at offset \a index was already swabbed
935  */
lustre_req_swabbed(struct ptlrpc_request * req,size_t index)936 static inline int lustre_req_swabbed(struct ptlrpc_request *req, size_t index)
937 {
938 	LASSERT(index < sizeof(req->rq_req_swab_mask) * 8);
939 	return req->rq_req_swab_mask & (1 << index);
940 }
941 
942 /**
943  * Returns 1 if request reply buffer at offset \a index was already swabbed
944  */
lustre_rep_swabbed(struct ptlrpc_request * req,size_t index)945 static inline int lustre_rep_swabbed(struct ptlrpc_request *req, size_t index)
946 {
947 	LASSERT(index < sizeof(req->rq_rep_swab_mask) * 8);
948 	return req->rq_rep_swab_mask & (1 << index);
949 }
950 
951 /**
952  * Returns 1 if request needs to be swabbed into local cpu byteorder
953  */
ptlrpc_req_need_swab(struct ptlrpc_request * req)954 static inline int ptlrpc_req_need_swab(struct ptlrpc_request *req)
955 {
956 	return lustre_req_swabbed(req, MSG_PTLRPC_HEADER_OFF);
957 }
958 
959 /**
960  * Returns 1 if request reply needs to be swabbed into local cpu byteorder
961  */
ptlrpc_rep_need_swab(struct ptlrpc_request * req)962 static inline int ptlrpc_rep_need_swab(struct ptlrpc_request *req)
963 {
964 	return lustre_rep_swabbed(req, MSG_PTLRPC_HEADER_OFF);
965 }
966 
967 /**
968  * Mark request buffer at offset \a index that it was already swabbed
969  */
lustre_set_req_swabbed(struct ptlrpc_request * req,size_t index)970 static inline void lustre_set_req_swabbed(struct ptlrpc_request *req,
971 					  size_t index)
972 {
973 	LASSERT(index < sizeof(req->rq_req_swab_mask) * 8);
974 	LASSERT((req->rq_req_swab_mask & (1 << index)) == 0);
975 	req->rq_req_swab_mask |= 1 << index;
976 }
977 
978 /**
979  * Mark request reply buffer at offset \a index that it was already swabbed
980  */
lustre_set_rep_swabbed(struct ptlrpc_request * req,size_t index)981 static inline void lustre_set_rep_swabbed(struct ptlrpc_request *req,
982 					  size_t index)
983 {
984 	LASSERT(index < sizeof(req->rq_rep_swab_mask) * 8);
985 	LASSERT((req->rq_rep_swab_mask & (1 << index)) == 0);
986 	req->rq_rep_swab_mask |= 1 << index;
987 }
988 
989 /**
990  * Convert numerical request phase value \a phase into text string description
991  */
992 static inline const char *
ptlrpc_phase2str(enum rq_phase phase)993 ptlrpc_phase2str(enum rq_phase phase)
994 {
995 	switch (phase) {
996 	case RQ_PHASE_NEW:
997 		return "New";
998 	case RQ_PHASE_RPC:
999 		return "Rpc";
1000 	case RQ_PHASE_BULK:
1001 		return "Bulk";
1002 	case RQ_PHASE_INTERPRET:
1003 		return "Interpret";
1004 	case RQ_PHASE_COMPLETE:
1005 		return "Complete";
1006 	case RQ_PHASE_UNREG_RPC:
1007 		return "UnregRPC";
1008 	case RQ_PHASE_UNREG_BULK:
1009 		return "UnregBULK";
1010 	default:
1011 		return "?Phase?";
1012 	}
1013 }
1014 
1015 /**
1016  * Convert numerical request phase of the request \a req into text stringi
1017  * description
1018  */
1019 static inline const char *
ptlrpc_rqphase2str(struct ptlrpc_request * req)1020 ptlrpc_rqphase2str(struct ptlrpc_request *req)
1021 {
1022 	return ptlrpc_phase2str(req->rq_phase);
1023 }
1024 
1025 /**
1026  * Debugging functions and helpers to print request structure into debug log
1027  * @{
1028  */
1029 /* Spare the preprocessor, spoil the bugs. */
1030 #define FLAG(field, str) (field ? str : "")
1031 
1032 /** Convert bit flags into a string */
1033 #define DEBUG_REQ_FLAGS(req)						    \
1034 	ptlrpc_rqphase2str(req),						\
1035 	FLAG(req->rq_intr, "I"), FLAG(req->rq_replied, "R"),		    \
1036 	FLAG(req->rq_err, "E"),	FLAG(req->rq_net_err, "e"),		    \
1037 	FLAG(req->rq_timedout, "X") /* eXpired */, FLAG(req->rq_resend, "S"),   \
1038 	FLAG(req->rq_restart, "T"), FLAG(req->rq_replay, "P"),		  \
1039 	FLAG(req->rq_no_resend, "N"),					   \
1040 	FLAG(req->rq_waiting, "W"),					     \
1041 	FLAG(req->rq_wait_ctx, "C"), FLAG(req->rq_hp, "H"),		     \
1042 	FLAG(req->rq_committed, "M")
1043 
1044 #define REQ_FLAGS_FMT "%s:%s%s%s%s%s%s%s%s%s%s%s%s%s"
1045 
1046 void _debug_req(struct ptlrpc_request *req,
1047 		struct libcfs_debug_msg_data *data, const char *fmt, ...)
1048 	__printf(3, 4);
1049 
1050 /**
1051  * Helper that decides if we need to print request according to current debug
1052  * level settings
1053  */
1054 #define debug_req(msgdata, mask, cdls, req, fmt, a...)			\
1055 do {									  \
1056 	CFS_CHECK_STACK(msgdata, mask, cdls);				 \
1057 									      \
1058 	if (((mask) & D_CANTMASK) != 0 ||				     \
1059 	    ((libcfs_debug & (mask)) != 0 &&				  \
1060 	     (libcfs_subsystem_debug & DEBUG_SUBSYSTEM) != 0))		\
1061 		_debug_req((req), msgdata, fmt, ##a);			 \
1062 } while (0)
1063 
1064 /**
1065  * This is the debug print function you need to use to print request structure
1066  * content into lustre debug log.
1067  * for most callers (level is a constant) this is resolved at compile time
1068  */
1069 #define DEBUG_REQ(level, req, fmt, args...)				   \
1070 do {									  \
1071 	if ((level) & (D_ERROR | D_WARNING)) {				\
1072 		static struct cfs_debug_limit_state cdls;			  \
1073 		LIBCFS_DEBUG_MSG_DATA_DECL(msgdata, level, &cdls);	    \
1074 		debug_req(&msgdata, level, &cdls, req, "@@@ "fmt" ", ## args);\
1075 	} else {							      \
1076 		LIBCFS_DEBUG_MSG_DATA_DECL(msgdata, level, NULL);	     \
1077 		debug_req(&msgdata, level, NULL, req, "@@@ "fmt" ", ## args); \
1078 	}								     \
1079 } while (0)
1080 /** @} */
1081 
1082 /**
1083  * Structure that defines a single page of a bulk transfer
1084  */
1085 struct ptlrpc_bulk_page {
1086 	/** Linkage to list of pages in a bulk */
1087 	struct list_head       bp_link;
1088 	/**
1089 	 * Number of bytes in a page to transfer starting from \a bp_pageoffset
1090 	 */
1091 	int	      bp_buflen;
1092 	/** offset within a page */
1093 	int	      bp_pageoffset;
1094 	/** The page itself */
1095 	struct page     *bp_page;
1096 };
1097 
1098 enum ptlrpc_bulk_op_type {
1099 	PTLRPC_BULK_OP_ACTIVE	= 0x00000001,
1100 	PTLRPC_BULK_OP_PASSIVE	= 0x00000002,
1101 	PTLRPC_BULK_OP_PUT	= 0x00000004,
1102 	PTLRPC_BULK_OP_GET	= 0x00000008,
1103 	PTLRPC_BULK_BUF_KVEC	= 0x00000010,
1104 	PTLRPC_BULK_BUF_KIOV	= 0x00000020,
1105 	PTLRPC_BULK_GET_SOURCE	= PTLRPC_BULK_OP_PASSIVE | PTLRPC_BULK_OP_GET,
1106 	PTLRPC_BULK_PUT_SINK	= PTLRPC_BULK_OP_PASSIVE | PTLRPC_BULK_OP_PUT,
1107 	PTLRPC_BULK_GET_SINK	= PTLRPC_BULK_OP_ACTIVE | PTLRPC_BULK_OP_GET,
1108 	PTLRPC_BULK_PUT_SOURCE	= PTLRPC_BULK_OP_ACTIVE | PTLRPC_BULK_OP_PUT,
1109 };
1110 
ptlrpc_is_bulk_op_get(enum ptlrpc_bulk_op_type type)1111 static inline bool ptlrpc_is_bulk_op_get(enum ptlrpc_bulk_op_type type)
1112 {
1113 	return (type & PTLRPC_BULK_OP_GET) == PTLRPC_BULK_OP_GET;
1114 }
1115 
ptlrpc_is_bulk_get_source(enum ptlrpc_bulk_op_type type)1116 static inline bool ptlrpc_is_bulk_get_source(enum ptlrpc_bulk_op_type type)
1117 {
1118 	return (type & PTLRPC_BULK_GET_SOURCE) == PTLRPC_BULK_GET_SOURCE;
1119 }
1120 
ptlrpc_is_bulk_put_sink(enum ptlrpc_bulk_op_type type)1121 static inline bool ptlrpc_is_bulk_put_sink(enum ptlrpc_bulk_op_type type)
1122 {
1123 	return (type & PTLRPC_BULK_PUT_SINK) == PTLRPC_BULK_PUT_SINK;
1124 }
1125 
ptlrpc_is_bulk_get_sink(enum ptlrpc_bulk_op_type type)1126 static inline bool ptlrpc_is_bulk_get_sink(enum ptlrpc_bulk_op_type type)
1127 {
1128 	return (type & PTLRPC_BULK_GET_SINK) == PTLRPC_BULK_GET_SINK;
1129 }
1130 
ptlrpc_is_bulk_put_source(enum ptlrpc_bulk_op_type type)1131 static inline bool ptlrpc_is_bulk_put_source(enum ptlrpc_bulk_op_type type)
1132 {
1133 	return (type & PTLRPC_BULK_PUT_SOURCE) == PTLRPC_BULK_PUT_SOURCE;
1134 }
1135 
ptlrpc_is_bulk_desc_kvec(enum ptlrpc_bulk_op_type type)1136 static inline bool ptlrpc_is_bulk_desc_kvec(enum ptlrpc_bulk_op_type type)
1137 {
1138 	return ((type & PTLRPC_BULK_BUF_KVEC) | (type & PTLRPC_BULK_BUF_KIOV))
1139 		== PTLRPC_BULK_BUF_KVEC;
1140 }
1141 
ptlrpc_is_bulk_desc_kiov(enum ptlrpc_bulk_op_type type)1142 static inline bool ptlrpc_is_bulk_desc_kiov(enum ptlrpc_bulk_op_type type)
1143 {
1144 	return ((type & PTLRPC_BULK_BUF_KVEC) | (type & PTLRPC_BULK_BUF_KIOV))
1145 		== PTLRPC_BULK_BUF_KIOV;
1146 }
1147 
ptlrpc_is_bulk_op_active(enum ptlrpc_bulk_op_type type)1148 static inline bool ptlrpc_is_bulk_op_active(enum ptlrpc_bulk_op_type type)
1149 {
1150 	return ((type & PTLRPC_BULK_OP_ACTIVE) |
1151 		(type & PTLRPC_BULK_OP_PASSIVE)) == PTLRPC_BULK_OP_ACTIVE;
1152 }
1153 
ptlrpc_is_bulk_op_passive(enum ptlrpc_bulk_op_type type)1154 static inline bool ptlrpc_is_bulk_op_passive(enum ptlrpc_bulk_op_type type)
1155 {
1156 	return ((type & PTLRPC_BULK_OP_ACTIVE) |
1157 		(type & PTLRPC_BULK_OP_PASSIVE)) == PTLRPC_BULK_OP_PASSIVE;
1158 }
1159 
1160 struct ptlrpc_bulk_frag_ops {
1161 	/**
1162 	 * Add a page \a page to the bulk descriptor \a desc
1163 	 * Data to transfer in the page starts at offset \a pageoffset and
1164 	 * amount of data to transfer from the page is \a len
1165 	 */
1166 	void (*add_kiov_frag)(struct ptlrpc_bulk_desc *desc,
1167 			      struct page *page, int pageoffset, int len);
1168 
1169 	/*
1170 	 * Add a \a fragment to the bulk descriptor \a desc.
1171 	 * Data to transfer in the fragment is pointed to by \a frag
1172 	 * The size of the fragment is \a len
1173 	 */
1174 	int (*add_iov_frag)(struct ptlrpc_bulk_desc *desc, void *frag, int len);
1175 
1176 	/**
1177 	 * Uninitialize and free bulk descriptor \a desc.
1178 	 * Works on bulk descriptors both from server and client side.
1179 	 */
1180 	void (*release_frags)(struct ptlrpc_bulk_desc *desc);
1181 };
1182 
1183 extern const struct ptlrpc_bulk_frag_ops ptlrpc_bulk_kiov_pin_ops;
1184 extern const struct ptlrpc_bulk_frag_ops ptlrpc_bulk_kiov_nopin_ops;
1185 
1186 /**
1187  * Definition of bulk descriptor.
1188  * Bulks are special "Two phase" RPCs where initial request message
1189  * is sent first and it is followed bt a transfer (o receiving) of a large
1190  * amount of data to be settled into pages referenced from the bulk descriptors.
1191  * Bulks transfers (the actual data following the small requests) are done
1192  * on separate LNet portals.
1193  * In lustre we use bulk transfers for READ and WRITE transfers from/to OSTs.
1194  *  Another user is readpage for MDT.
1195  */
1196 struct ptlrpc_bulk_desc {
1197 	/** completed with failure */
1198 	unsigned long bd_failure:1;
1199 	/** client side */
1200 	unsigned long bd_registered:1;
1201 	/** For serialization with callback */
1202 	spinlock_t bd_lock;
1203 	/** Import generation when request for this bulk was sent */
1204 	int bd_import_generation;
1205 	/** {put,get}{source,sink}{kvec,kiov} */
1206 	enum ptlrpc_bulk_op_type bd_type;
1207 	/** LNet portal for this bulk */
1208 	__u32 bd_portal;
1209 	/** Server side - export this bulk created for */
1210 	struct obd_export *bd_export;
1211 	/** Client side - import this bulk was sent on */
1212 	struct obd_import *bd_import;
1213 	/** Back pointer to the request */
1214 	struct ptlrpc_request *bd_req;
1215 	struct ptlrpc_bulk_frag_ops *bd_frag_ops;
1216 	wait_queue_head_t	    bd_waitq;	/* server side only WQ */
1217 	int		    bd_iov_count;    /* # entries in bd_iov */
1218 	int		    bd_max_iov;      /* allocated size of bd_iov */
1219 	int		    bd_nob;	  /* # bytes covered */
1220 	int		    bd_nob_transferred; /* # bytes GOT/PUT */
1221 
1222 	u64			bd_last_mbits;
1223 
1224 	struct ptlrpc_cb_id    bd_cbid;	 /* network callback info */
1225 	lnet_nid_t	     bd_sender;       /* stash event::sender */
1226 	int			bd_md_count;	/* # valid entries in bd_mds */
1227 	int			bd_md_max_brw;	/* max entries in bd_mds */
1228 	/** array of associated MDs */
1229 	struct lnet_handle_md	bd_mds[PTLRPC_BULK_OPS_COUNT];
1230 
1231 	union {
1232 		struct {
1233 			/*
1234 			 * encrypt iov, size is either 0 or bd_iov_count.
1235 			 */
1236 			struct bio_vec *bd_enc_vec;
1237 			struct bio_vec *bd_vec;	/* Array of bio_vecs */
1238 		} bd_kiov;
1239 
1240 		struct {
1241 			struct kvec *bd_enc_kvec;
1242 			struct kvec *bd_kvec;	/* Array of kvecs */
1243 		} bd_kvec;
1244 	} bd_u;
1245 };
1246 
1247 #define GET_KIOV(desc)			((desc)->bd_u.bd_kiov.bd_vec)
1248 #define BD_GET_KIOV(desc, i)		((desc)->bd_u.bd_kiov.bd_vec[i])
1249 #define GET_ENC_KIOV(desc)		((desc)->bd_u.bd_kiov.bd_enc_vec)
1250 #define BD_GET_ENC_KIOV(desc, i)	((desc)->bd_u.bd_kiov.bd_enc_vec[i])
1251 #define GET_KVEC(desc)			((desc)->bd_u.bd_kvec.bd_kvec)
1252 #define BD_GET_KVEC(desc, i)		((desc)->bd_u.bd_kvec.bd_kvec[i])
1253 #define GET_ENC_KVEC(desc)		((desc)->bd_u.bd_kvec.bd_enc_kvec)
1254 #define BD_GET_ENC_KVEC(desc, i)	((desc)->bd_u.bd_kvec.bd_enc_kvec[i])
1255 
1256 enum {
1257 	SVC_STOPPED     = 1 << 0,
1258 	SVC_STOPPING    = 1 << 1,
1259 	SVC_STARTING    = 1 << 2,
1260 	SVC_RUNNING     = 1 << 3,
1261 	SVC_EVENT       = 1 << 4,
1262 	SVC_SIGNAL      = 1 << 5,
1263 };
1264 
1265 #define PTLRPC_THR_NAME_LEN		32
1266 /**
1267  * Definition of server service thread structure
1268  */
1269 struct ptlrpc_thread {
1270 	/**
1271 	 * List of active threads in svc->srv_threads
1272 	 */
1273 	struct list_head t_link;
1274 	/**
1275 	 * thread-private data (preallocated memory)
1276 	 */
1277 	void *t_data;
1278 	__u32 t_flags;
1279 	/**
1280 	 * service thread index, from ptlrpc_start_threads
1281 	 */
1282 	unsigned int t_id;
1283 	/**
1284 	 * service thread pid
1285 	 */
1286 	pid_t t_pid;
1287 	/**
1288 	 * put watchdog in the structure per thread b=14840
1289 	 *
1290 	 * Lustre watchdog is removed for client in the hope
1291 	 * of a generic watchdog can be merged in kernel.
1292 	 * When that happens, we should add below back.
1293 	 *
1294 	 * struct lc_watchdog *t_watchdog;
1295 	 */
1296 	/**
1297 	 * the svc this thread belonged to b=18582
1298 	 */
1299 	struct ptlrpc_service_part	*t_svcpt;
1300 	wait_queue_head_t			t_ctl_waitq;
1301 	struct lu_env			*t_env;
1302 	char				t_name[PTLRPC_THR_NAME_LEN];
1303 };
1304 
thread_is_init(struct ptlrpc_thread * thread)1305 static inline int thread_is_init(struct ptlrpc_thread *thread)
1306 {
1307 	return thread->t_flags == 0;
1308 }
1309 
thread_is_stopped(struct ptlrpc_thread * thread)1310 static inline int thread_is_stopped(struct ptlrpc_thread *thread)
1311 {
1312 	return !!(thread->t_flags & SVC_STOPPED);
1313 }
1314 
thread_is_stopping(struct ptlrpc_thread * thread)1315 static inline int thread_is_stopping(struct ptlrpc_thread *thread)
1316 {
1317 	return !!(thread->t_flags & SVC_STOPPING);
1318 }
1319 
thread_is_starting(struct ptlrpc_thread * thread)1320 static inline int thread_is_starting(struct ptlrpc_thread *thread)
1321 {
1322 	return !!(thread->t_flags & SVC_STARTING);
1323 }
1324 
thread_is_running(struct ptlrpc_thread * thread)1325 static inline int thread_is_running(struct ptlrpc_thread *thread)
1326 {
1327 	return !!(thread->t_flags & SVC_RUNNING);
1328 }
1329 
thread_is_event(struct ptlrpc_thread * thread)1330 static inline int thread_is_event(struct ptlrpc_thread *thread)
1331 {
1332 	return !!(thread->t_flags & SVC_EVENT);
1333 }
1334 
thread_is_signal(struct ptlrpc_thread * thread)1335 static inline int thread_is_signal(struct ptlrpc_thread *thread)
1336 {
1337 	return !!(thread->t_flags & SVC_SIGNAL);
1338 }
1339 
thread_clear_flags(struct ptlrpc_thread * thread,__u32 flags)1340 static inline void thread_clear_flags(struct ptlrpc_thread *thread, __u32 flags)
1341 {
1342 	thread->t_flags &= ~flags;
1343 }
1344 
thread_set_flags(struct ptlrpc_thread * thread,__u32 flags)1345 static inline void thread_set_flags(struct ptlrpc_thread *thread, __u32 flags)
1346 {
1347 	thread->t_flags = flags;
1348 }
1349 
thread_add_flags(struct ptlrpc_thread * thread,__u32 flags)1350 static inline void thread_add_flags(struct ptlrpc_thread *thread, __u32 flags)
1351 {
1352 	thread->t_flags |= flags;
1353 }
1354 
thread_test_and_clear_flags(struct ptlrpc_thread * thread,__u32 flags)1355 static inline int thread_test_and_clear_flags(struct ptlrpc_thread *thread,
1356 					      __u32 flags)
1357 {
1358 	if (thread->t_flags & flags) {
1359 		thread->t_flags &= ~flags;
1360 		return 1;
1361 	}
1362 	return 0;
1363 }
1364 
1365 /**
1366  * Request buffer descriptor structure.
1367  * This is a structure that contains one posted request buffer for service.
1368  * Once data land into a buffer, event callback creates actual request and
1369  * notifies wakes one of the service threads to process new incoming request.
1370  * More than one request can fit into the buffer.
1371  */
1372 struct ptlrpc_request_buffer_desc {
1373 	/** Link item for rqbds on a service */
1374 	struct list_head	     rqbd_list;
1375 	/** History of requests for this buffer */
1376 	struct list_head	     rqbd_reqs;
1377 	/** Back pointer to service for which this buffer is registered */
1378 	struct ptlrpc_service_part *rqbd_svcpt;
1379 	/** LNet descriptor */
1380 	struct lnet_handle_md		rqbd_md_h;
1381 	int		    rqbd_refcount;
1382 	/** The buffer itself */
1383 	char		  *rqbd_buffer;
1384 	struct ptlrpc_cb_id    rqbd_cbid;
1385 	/**
1386 	 * This "embedded" request structure is only used for the
1387 	 * last request to fit into the buffer
1388 	 */
1389 	struct ptlrpc_request  rqbd_req;
1390 };
1391 
1392 typedef int  (*svc_handler_t)(struct ptlrpc_request *req);
1393 
1394 struct ptlrpc_service_ops {
1395 	/**
1396 	 * if non-NULL called during thread creation (ptlrpc_start_thread())
1397 	 * to initialize service specific per-thread state.
1398 	 */
1399 	int		(*so_thr_init)(struct ptlrpc_thread *thr);
1400 	/**
1401 	 * if non-NULL called during thread shutdown (ptlrpc_main()) to
1402 	 * destruct state created by ->srv_init().
1403 	 */
1404 	void		(*so_thr_done)(struct ptlrpc_thread *thr);
1405 	/**
1406 	 * Handler function for incoming requests for this service
1407 	 */
1408 	int		(*so_req_handler)(struct ptlrpc_request *req);
1409 	/**
1410 	 * function to determine priority of the request, it's called
1411 	 * on every new request
1412 	 */
1413 	int		(*so_hpreq_handler)(struct ptlrpc_request *);
1414 	/**
1415 	 * service-specific print fn
1416 	 */
1417 	void		(*so_req_printer)(void *, struct ptlrpc_request *);
1418 };
1419 
1420 #ifndef __cfs_cacheline_aligned
1421 /* NB: put it here for reducing patche dependence */
1422 # define __cfs_cacheline_aligned
1423 #endif
1424 
1425 /**
1426  * How many high priority requests to serve before serving one normal
1427  * priority request
1428  */
1429 #define PTLRPC_SVC_HP_RATIO 10
1430 
1431 /**
1432  * Definition of PortalRPC service.
1433  * The service is listening on a particular portal (like tcp port)
1434  * and perform actions for a specific server like IO service for OST
1435  * or general metadata service for MDS.
1436  */
1437 struct ptlrpc_service {
1438 	/** serialize sysfs operations */
1439 	spinlock_t			srv_lock;
1440 	/** most often accessed fields */
1441 	/** chain thru all services */
1442 	struct list_head		      srv_list;
1443 	/** service operations table */
1444 	struct ptlrpc_service_ops	srv_ops;
1445 	/** only statically allocated strings here; we don't clean them */
1446 	char			   *srv_name;
1447 	/** only statically allocated strings here; we don't clean them */
1448 	char			   *srv_thread_name;
1449 	/** service thread list */
1450 	struct list_head		      srv_threads;
1451 	/** threads # should be created for each partition on initializing */
1452 	int				srv_nthrs_cpt_init;
1453 	/** limit of threads number for each partition */
1454 	int				srv_nthrs_cpt_limit;
1455 	/** Root of debugfs dir tree for this service */
1456 	struct dentry		   *srv_debugfs_entry;
1457 	/** Pointer to statistic data for this service */
1458 	struct lprocfs_stats	   *srv_stats;
1459 	/** # hp per lp reqs to handle */
1460 	int			     srv_hpreq_ratio;
1461 	/** biggest request to receive */
1462 	int			     srv_max_req_size;
1463 	/** biggest reply to send */
1464 	int			     srv_max_reply_size;
1465 	/** size of individual buffers */
1466 	int			     srv_buf_size;
1467 	/** # buffers to allocate in 1 group */
1468 	int			     srv_nbuf_per_group;
1469 	/** Local portal on which to receive requests */
1470 	__u32			   srv_req_portal;
1471 	/** Portal on the client to send replies to */
1472 	__u32			   srv_rep_portal;
1473 	/**
1474 	 * Tags for lu_context associated with this thread, see struct
1475 	 * lu_context.
1476 	 */
1477 	__u32			   srv_ctx_tags;
1478 	/** soft watchdog timeout multiplier */
1479 	int			     srv_watchdog_factor;
1480 	/** under unregister_service */
1481 	unsigned			srv_is_stopping:1;
1482 
1483 	/** max # request buffers in history per partition */
1484 	int				srv_hist_nrqbds_cpt_max;
1485 	/** number of CPTs this service bound on */
1486 	int				srv_ncpts;
1487 	/** CPTs array this service bound on */
1488 	__u32				*srv_cpts;
1489 	/** 2^srv_cptab_bits >= cfs_cpt_numbert(srv_cptable) */
1490 	int				srv_cpt_bits;
1491 	/** CPT table this service is running over */
1492 	struct cfs_cpt_table		*srv_cptable;
1493 
1494 	/* sysfs object */
1495 	struct kobject			 srv_kobj;
1496 	struct completion		 srv_kobj_unregister;
1497 	/**
1498 	 * partition data for ptlrpc service
1499 	 */
1500 	struct ptlrpc_service_part	*srv_parts[0];
1501 };
1502 
1503 /**
1504  * Definition of PortalRPC service partition data.
1505  * Although a service only has one instance of it right now, but we
1506  * will have multiple instances very soon (instance per CPT).
1507  *
1508  * it has four locks:
1509  * \a scp_lock
1510  *    serialize operations on rqbd and requests waiting for preprocess
1511  * \a scp_req_lock
1512  *    serialize operations active requests sent to this portal
1513  * \a scp_at_lock
1514  *    serialize adaptive timeout stuff
1515  * \a scp_rep_lock
1516  *    serialize operations on RS list (reply states)
1517  *
1518  * We don't have any use-case to take two or more locks at the same time
1519  * for now, so there is no lock order issue.
1520  */
1521 struct ptlrpc_service_part {
1522 	/** back reference to owner */
1523 	struct ptlrpc_service		*scp_service __cfs_cacheline_aligned;
1524 	/* CPT id, reserved */
1525 	int				scp_cpt;
1526 	/** always increasing number */
1527 	int				scp_thr_nextid;
1528 	/** # of starting threads */
1529 	int				scp_nthrs_starting;
1530 	/** # of stopping threads, reserved for shrinking threads */
1531 	int				scp_nthrs_stopping;
1532 	/** # running threads */
1533 	int				scp_nthrs_running;
1534 	/** service threads list */
1535 	struct list_head			scp_threads;
1536 
1537 	/**
1538 	 * serialize the following fields, used for protecting
1539 	 * rqbd list and incoming requests waiting for preprocess,
1540 	 * threads starting & stopping are also protected by this lock.
1541 	 */
1542 	spinlock_t scp_lock __cfs_cacheline_aligned;
1543 	/** total # req buffer descs allocated */
1544 	int				scp_nrqbds_total;
1545 	/** # posted request buffers for receiving */
1546 	int				scp_nrqbds_posted;
1547 	/** in progress of allocating rqbd */
1548 	int				scp_rqbd_allocating;
1549 	/** # incoming reqs */
1550 	int				scp_nreqs_incoming;
1551 	/** request buffers to be reposted */
1552 	struct list_head			scp_rqbd_idle;
1553 	/** req buffers receiving */
1554 	struct list_head			scp_rqbd_posted;
1555 	/** incoming reqs */
1556 	struct list_head			scp_req_incoming;
1557 	/** timeout before re-posting reqs, in tick */
1558 	long			scp_rqbd_timeout;
1559 	/**
1560 	 * all threads sleep on this. This wait-queue is signalled when new
1561 	 * incoming request arrives and when difficult reply has to be handled.
1562 	 */
1563 	wait_queue_head_t			scp_waitq;
1564 
1565 	/** request history */
1566 	struct list_head			scp_hist_reqs;
1567 	/** request buffer history */
1568 	struct list_head			scp_hist_rqbds;
1569 	/** # request buffers in history */
1570 	int				scp_hist_nrqbds;
1571 	/** sequence number for request */
1572 	__u64				scp_hist_seq;
1573 	/** highest seq culled from history */
1574 	__u64				scp_hist_seq_culled;
1575 
1576 	/**
1577 	 * serialize the following fields, used for processing requests
1578 	 * sent to this portal
1579 	 */
1580 	spinlock_t			scp_req_lock __cfs_cacheline_aligned;
1581 	/** # reqs in either of the NRS heads below */
1582 	/** # reqs being served */
1583 	int				scp_nreqs_active;
1584 	/** # HPreqs being served */
1585 	int				scp_nhreqs_active;
1586 	/** # hp requests handled */
1587 	int				scp_hreq_count;
1588 
1589 	/** NRS head for regular requests */
1590 	struct ptlrpc_nrs		scp_nrs_reg;
1591 	/** NRS head for HP requests; this is only valid for services that can
1592 	 *  handle HP requests
1593 	 */
1594 	struct ptlrpc_nrs	       *scp_nrs_hp;
1595 
1596 	/** AT stuff */
1597 	/** @{ */
1598 	/**
1599 	 * serialize the following fields, used for changes on
1600 	 * adaptive timeout
1601 	 */
1602 	spinlock_t			scp_at_lock __cfs_cacheline_aligned;
1603 	/** estimated rpc service time */
1604 	struct adaptive_timeout		scp_at_estimate;
1605 	/** reqs waiting for replies */
1606 	struct ptlrpc_at_array		scp_at_array;
1607 	/** early reply timer */
1608 	struct timer_list		scp_at_timer;
1609 	/** debug */
1610 	unsigned long			scp_at_checktime;
1611 	/** check early replies */
1612 	unsigned			scp_at_check;
1613 	/** @} */
1614 
1615 	/**
1616 	 * serialize the following fields, used for processing
1617 	 * replies for this portal
1618 	 */
1619 	spinlock_t			scp_rep_lock __cfs_cacheline_aligned;
1620 	/** all the active replies */
1621 	struct list_head			scp_rep_active;
1622 	/** List of free reply_states */
1623 	struct list_head			scp_rep_idle;
1624 	/** waitq to run, when adding stuff to srv_free_rs_list */
1625 	wait_queue_head_t			scp_rep_waitq;
1626 	/** # 'difficult' replies */
1627 	atomic_t			scp_nreps_difficult;
1628 };
1629 
1630 #define ptlrpc_service_for_each_part(part, i, svc)			\
1631 	for (i = 0;							\
1632 	     i < (svc)->srv_ncpts &&					\
1633 	     (svc)->srv_parts &&					\
1634 	     ((part) = (svc)->srv_parts[i]); i++)
1635 
1636 /**
1637  * Declaration of ptlrpcd control structure
1638  */
1639 struct ptlrpcd_ctl {
1640 	/**
1641 	 * Ptlrpc thread control flags (LIOD_START, LIOD_STOP, LIOD_FORCE)
1642 	 */
1643 	unsigned long			pc_flags;
1644 	/**
1645 	 * Thread lock protecting structure fields.
1646 	 */
1647 	spinlock_t			pc_lock;
1648 	/**
1649 	 * Start completion.
1650 	 */
1651 	struct completion		pc_starting;
1652 	/**
1653 	 * Stop completion.
1654 	 */
1655 	struct completion		pc_finishing;
1656 	/**
1657 	 * Thread requests set.
1658 	 */
1659 	struct ptlrpc_request_set  *pc_set;
1660 	/**
1661 	 * Thread name used in kthread_run()
1662 	 */
1663 	char			pc_name[16];
1664 	/**
1665 	 * CPT the thread is bound on.
1666 	 */
1667 	int				pc_cpt;
1668 	/**
1669 	 * Index of ptlrpcd thread in the array.
1670 	 */
1671 	int				pc_index;
1672 	/**
1673 	 * Pointer to the array of partners' ptlrpcd_ctl structure.
1674 	 */
1675 	struct ptlrpcd_ctl	**pc_partners;
1676 	/**
1677 	 * Number of the ptlrpcd's partners.
1678 	 */
1679 	int				pc_npartners;
1680 	/**
1681 	 * Record the partner index to be processed next.
1682 	 */
1683 	int			 pc_cursor;
1684 	/**
1685 	 * Error code if the thread failed to fully start.
1686 	 */
1687 	int				pc_error;
1688 };
1689 
1690 /* Bits for pc_flags */
1691 enum ptlrpcd_ctl_flags {
1692 	/**
1693 	 * Ptlrpc thread start flag.
1694 	 */
1695 	LIOD_START       = 1 << 0,
1696 	/**
1697 	 * Ptlrpc thread stop flag.
1698 	 */
1699 	LIOD_STOP	= 1 << 1,
1700 	/**
1701 	 * Ptlrpc thread force flag (only stop force so far).
1702 	 * This will cause aborting any inflight rpcs handled
1703 	 * by thread if LIOD_STOP is specified.
1704 	 */
1705 	LIOD_FORCE       = 1 << 2,
1706 	/**
1707 	 * This is a recovery ptlrpc thread.
1708 	 */
1709 	LIOD_RECOVERY    = 1 << 3,
1710 };
1711 
1712 /**
1713  * \addtogroup nrs
1714  * @{
1715  *
1716  * Service compatibility function; the policy is compatible with all services.
1717  *
1718  * \param[in] svc  The service the policy is attempting to register with.
1719  * \param[in] desc The policy descriptor
1720  *
1721  * \retval true The policy is compatible with the service
1722  *
1723  * \see ptlrpc_nrs_pol_desc::pd_compat()
1724  */
nrs_policy_compat_all(const struct ptlrpc_service * svc,const struct ptlrpc_nrs_pol_desc * desc)1725 static inline bool nrs_policy_compat_all(const struct ptlrpc_service *svc,
1726 					 const struct ptlrpc_nrs_pol_desc *desc)
1727 {
1728 	return true;
1729 }
1730 
1731 /**
1732  * Service compatibility function; the policy is compatible with only a specific
1733  * service which is identified by its human-readable name at
1734  * ptlrpc_service::srv_name.
1735  *
1736  * \param[in] svc  The service the policy is attempting to register with.
1737  * \param[in] desc The policy descriptor
1738  *
1739  * \retval false The policy is not compatible with the service
1740  * \retval true	 The policy is compatible with the service
1741  *
1742  * \see ptlrpc_nrs_pol_desc::pd_compat()
1743  */
nrs_policy_compat_one(const struct ptlrpc_service * svc,const struct ptlrpc_nrs_pol_desc * desc)1744 static inline bool nrs_policy_compat_one(const struct ptlrpc_service *svc,
1745 					 const struct ptlrpc_nrs_pol_desc *desc)
1746 {
1747 	return strcmp(svc->srv_name, desc->pd_compat_svc_name) == 0;
1748 }
1749 
1750 /** @} nrs */
1751 
1752 /* ptlrpc/events.c */
1753 extern struct lnet_handle_eq ptlrpc_eq_h;
1754 int ptlrpc_uuid_to_peer(struct obd_uuid *uuid,
1755 			struct lnet_process_id *peer, lnet_nid_t *self);
1756 /**
1757  * These callbacks are invoked by LNet when something happened to
1758  * underlying buffer
1759  * @{
1760  */
1761 void request_out_callback(struct lnet_event *ev);
1762 void reply_in_callback(struct lnet_event *ev);
1763 void client_bulk_callback(struct lnet_event *ev);
1764 void request_in_callback(struct lnet_event *ev);
1765 void reply_out_callback(struct lnet_event *ev);
1766 /** @} */
1767 
1768 /* ptlrpc/connection.c */
1769 struct ptlrpc_connection *ptlrpc_connection_get(struct lnet_process_id peer,
1770 						lnet_nid_t self,
1771 						struct obd_uuid *uuid);
1772 int ptlrpc_connection_put(struct ptlrpc_connection *c);
1773 struct ptlrpc_connection *ptlrpc_connection_addref(struct ptlrpc_connection *);
1774 int ptlrpc_connection_init(void);
1775 void ptlrpc_connection_fini(void);
1776 
1777 /* ptlrpc/niobuf.c */
1778 /**
1779  * Actual interfacing with LNet to put/get/register/unregister stuff
1780  * @{
1781  */
1782 
1783 int ptlrpc_unregister_bulk(struct ptlrpc_request *req, int async);
1784 
ptlrpc_client_bulk_active(struct ptlrpc_request * req)1785 static inline int ptlrpc_client_bulk_active(struct ptlrpc_request *req)
1786 {
1787 	struct ptlrpc_bulk_desc *desc;
1788 	int		      rc;
1789 
1790 	desc = req->rq_bulk;
1791 
1792 	if (req->rq_bulk_deadline > ktime_get_real_seconds())
1793 		return 1;
1794 
1795 	if (!desc)
1796 		return 0;
1797 
1798 	spin_lock(&desc->bd_lock);
1799 	rc = desc->bd_md_count;
1800 	spin_unlock(&desc->bd_lock);
1801 	return rc;
1802 }
1803 
1804 #define PTLRPC_REPLY_MAYBE_DIFFICULT 0x01
1805 #define PTLRPC_REPLY_EARLY	   0x02
1806 int ptlrpc_send_reply(struct ptlrpc_request *req, int flags);
1807 int ptlrpc_reply(struct ptlrpc_request *req);
1808 int ptlrpc_send_error(struct ptlrpc_request *req, int difficult);
1809 int ptlrpc_error(struct ptlrpc_request *req);
1810 int ptlrpc_at_get_net_latency(struct ptlrpc_request *req);
1811 int ptl_send_rpc(struct ptlrpc_request *request, int noreply);
1812 int ptlrpc_register_rqbd(struct ptlrpc_request_buffer_desc *rqbd);
1813 /** @} */
1814 
1815 /* ptlrpc/client.c */
1816 /**
1817  * Client-side portals API. Everything to send requests, receive replies,
1818  * request queues, request management, etc.
1819  * @{
1820  */
1821 void ptlrpc_request_committed(struct ptlrpc_request *req, int force);
1822 
1823 void ptlrpc_init_client(int req_portal, int rep_portal, char *name,
1824 			struct ptlrpc_client *);
1825 struct ptlrpc_connection *ptlrpc_uuid_to_connection(struct obd_uuid *uuid);
1826 
1827 int ptlrpc_queue_wait(struct ptlrpc_request *req);
1828 int ptlrpc_replay_req(struct ptlrpc_request *req);
1829 void ptlrpc_abort_inflight(struct obd_import *imp);
1830 void ptlrpc_abort_set(struct ptlrpc_request_set *set);
1831 
1832 struct ptlrpc_request_set *ptlrpc_prep_set(void);
1833 struct ptlrpc_request_set *ptlrpc_prep_fcset(int max, set_producer_func func,
1834 					     void *arg);
1835 int ptlrpc_check_set(const struct lu_env *env, struct ptlrpc_request_set *set);
1836 int ptlrpc_set_wait(struct ptlrpc_request_set *);
1837 void ptlrpc_mark_interrupted(struct ptlrpc_request *req);
1838 void ptlrpc_set_destroy(struct ptlrpc_request_set *);
1839 void ptlrpc_set_add_req(struct ptlrpc_request_set *, struct ptlrpc_request *);
1840 
1841 void ptlrpc_free_rq_pool(struct ptlrpc_request_pool *pool);
1842 int ptlrpc_add_rqs_to_pool(struct ptlrpc_request_pool *pool, int num_rq);
1843 
1844 struct ptlrpc_request_pool *
1845 ptlrpc_init_rq_pool(int, int,
1846 		    int (*populate_pool)(struct ptlrpc_request_pool *, int));
1847 
1848 void ptlrpc_at_set_req_timeout(struct ptlrpc_request *req);
1849 struct ptlrpc_request *ptlrpc_request_alloc(struct obd_import *imp,
1850 					    const struct req_format *format);
1851 struct ptlrpc_request *ptlrpc_request_alloc_pool(struct obd_import *imp,
1852 						 struct ptlrpc_request_pool *,
1853 						 const struct req_format *);
1854 void ptlrpc_request_free(struct ptlrpc_request *request);
1855 int ptlrpc_request_pack(struct ptlrpc_request *request,
1856 			__u32 version, int opcode);
1857 struct ptlrpc_request *ptlrpc_request_alloc_pack(struct obd_import *,
1858 						 const struct req_format *,
1859 						 __u32, int);
1860 int ptlrpc_request_bufs_pack(struct ptlrpc_request *request,
1861 			     __u32 version, int opcode, char **bufs,
1862 			     struct ptlrpc_cli_ctx *ctx);
1863 void ptlrpc_req_finished(struct ptlrpc_request *request);
1864 struct ptlrpc_request *ptlrpc_request_addref(struct ptlrpc_request *req);
1865 struct ptlrpc_bulk_desc *ptlrpc_prep_bulk_imp(struct ptlrpc_request *req,
1866 					      unsigned int nfrags,
1867 					      unsigned int max_brw,
1868 					      unsigned int type,
1869 					      unsigned int portal,
1870 					      const struct ptlrpc_bulk_frag_ops *ops);
1871 
1872 int ptlrpc_prep_bulk_frag(struct ptlrpc_bulk_desc *desc,
1873 			  void *frag, int len);
1874 void __ptlrpc_prep_bulk_page(struct ptlrpc_bulk_desc *desc,
1875 			     struct page *page, int pageoffset, int len,
1876 			     int pin);
ptlrpc_prep_bulk_page_pin(struct ptlrpc_bulk_desc * desc,struct page * page,int pageoffset,int len)1877 static inline void ptlrpc_prep_bulk_page_pin(struct ptlrpc_bulk_desc *desc,
1878 					     struct page *page, int pageoffset,
1879 					     int len)
1880 {
1881 	__ptlrpc_prep_bulk_page(desc, page, pageoffset, len, 1);
1882 }
1883 
ptlrpc_prep_bulk_page_nopin(struct ptlrpc_bulk_desc * desc,struct page * page,int pageoffset,int len)1884 static inline void ptlrpc_prep_bulk_page_nopin(struct ptlrpc_bulk_desc *desc,
1885 					       struct page *page, int pageoffset,
1886 					       int len)
1887 {
1888 	__ptlrpc_prep_bulk_page(desc, page, pageoffset, len, 0);
1889 }
1890 
1891 void ptlrpc_free_bulk(struct ptlrpc_bulk_desc *bulk);
1892 
ptlrpc_release_bulk_page_pin(struct ptlrpc_bulk_desc * desc)1893 static inline void ptlrpc_release_bulk_page_pin(struct ptlrpc_bulk_desc *desc)
1894 {
1895 	int i;
1896 
1897 	for (i = 0; i < desc->bd_iov_count ; i++)
1898 		put_page(BD_GET_KIOV(desc, i).bv_page);
1899 }
1900 
1901 void ptlrpc_retain_replayable_request(struct ptlrpc_request *req,
1902 				      struct obd_import *imp);
1903 __u64 ptlrpc_next_xid(void);
1904 __u64 ptlrpc_sample_next_xid(void);
1905 __u64 ptlrpc_req_xid(struct ptlrpc_request *request);
1906 
1907 /* Set of routines to run a function in ptlrpcd context */
1908 void *ptlrpcd_alloc_work(struct obd_import *imp,
1909 			 int (*cb)(const struct lu_env *, void *), void *data);
1910 void ptlrpcd_destroy_work(void *handler);
1911 int ptlrpcd_queue_work(void *handler);
1912 
1913 /** @} */
1914 struct ptlrpc_service_buf_conf {
1915 	/* nbufs is buffers # to allocate when growing the pool */
1916 	unsigned int			bc_nbufs;
1917 	/* buffer size to post */
1918 	unsigned int			bc_buf_size;
1919 	/* portal to listed for requests on */
1920 	unsigned int			bc_req_portal;
1921 	/* portal of where to send replies to */
1922 	unsigned int			bc_rep_portal;
1923 	/* maximum request size to be accepted for this service */
1924 	unsigned int			bc_req_max_size;
1925 	/* maximum reply size this service can ever send */
1926 	unsigned int			bc_rep_max_size;
1927 };
1928 
1929 struct ptlrpc_service_thr_conf {
1930 	/* threadname should be 8 characters or less - 6 will be added on */
1931 	char				*tc_thr_name;
1932 	/* threads increasing factor for each CPU */
1933 	unsigned int			tc_thr_factor;
1934 	/* service threads # to start on each partition while initializing */
1935 	unsigned int			tc_nthrs_init;
1936 	/*
1937 	 * low water of threads # upper-limit on each partition while running,
1938 	 * service availability may be impacted if threads number is lower
1939 	 * than this value. It can be ZERO if the service doesn't require
1940 	 * CPU affinity or there is only one partition.
1941 	 */
1942 	unsigned int			tc_nthrs_base;
1943 	/* "soft" limit for total threads number */
1944 	unsigned int			tc_nthrs_max;
1945 	/* user specified threads number, it will be validated due to
1946 	 * other members of this structure.
1947 	 */
1948 	unsigned int			tc_nthrs_user;
1949 	/* set NUMA node affinity for service threads */
1950 	unsigned int			tc_cpu_affinity;
1951 	/* Tags for lu_context associated with service thread */
1952 	__u32				tc_ctx_tags;
1953 };
1954 
1955 struct ptlrpc_service_cpt_conf {
1956 	struct cfs_cpt_table		*cc_cptable;
1957 	/* string pattern to describe CPTs for a service */
1958 	char				*cc_pattern;
1959 };
1960 
1961 struct ptlrpc_service_conf {
1962 	/* service name */
1963 	char				*psc_name;
1964 	/* soft watchdog timeout multiplifier to print stuck service traces */
1965 	unsigned int			psc_watchdog_factor;
1966 	/* buffer information */
1967 	struct ptlrpc_service_buf_conf	psc_buf;
1968 	/* thread information */
1969 	struct ptlrpc_service_thr_conf	psc_thr;
1970 	/* CPU partition information */
1971 	struct ptlrpc_service_cpt_conf	psc_cpt;
1972 	/* function table */
1973 	struct ptlrpc_service_ops	psc_ops;
1974 };
1975 
1976 /* ptlrpc/service.c */
1977 /**
1978  * Server-side services API. Register/unregister service, request state
1979  * management, service thread management
1980  *
1981  * @{
1982  */
1983 void ptlrpc_dispatch_difficult_reply(struct ptlrpc_reply_state *rs);
1984 void ptlrpc_schedule_difficult_reply(struct ptlrpc_reply_state *rs);
1985 struct ptlrpc_service *ptlrpc_register_service(struct ptlrpc_service_conf *conf,
1986 					       struct kset *parent,
1987 					       struct dentry *debugfs_entry);
1988 
1989 int ptlrpc_start_threads(struct ptlrpc_service *svc);
1990 int ptlrpc_unregister_service(struct ptlrpc_service *service);
1991 
1992 int ptlrpc_hr_init(void);
1993 void ptlrpc_hr_fini(void);
1994 
1995 /** @} */
1996 
1997 /* ptlrpc/import.c */
1998 /**
1999  * Import API
2000  * @{
2001  */
2002 int ptlrpc_connect_import(struct obd_import *imp);
2003 int ptlrpc_init_import(struct obd_import *imp);
2004 int ptlrpc_disconnect_import(struct obd_import *imp, int noclose);
2005 int ptlrpc_import_recovery_state_machine(struct obd_import *imp);
2006 
2007 /* ptlrpc/pack_generic.c */
2008 int ptlrpc_reconnect_import(struct obd_import *imp);
2009 /** @} */
2010 
2011 /**
2012  * ptlrpc msg buffer and swab interface
2013  *
2014  * @{
2015  */
2016 int ptlrpc_buf_need_swab(struct ptlrpc_request *req, const int inout,
2017 			 u32 index);
2018 void ptlrpc_buf_set_swabbed(struct ptlrpc_request *req, const int inout,
2019 			    u32 index);
2020 int ptlrpc_unpack_rep_msg(struct ptlrpc_request *req, int len);
2021 int ptlrpc_unpack_req_msg(struct ptlrpc_request *req, int len);
2022 
2023 void lustre_init_msg_v2(struct lustre_msg_v2 *msg, int count, __u32 *lens,
2024 			char **bufs);
2025 int lustre_pack_request(struct ptlrpc_request *, __u32 magic, int count,
2026 			__u32 *lens, char **bufs);
2027 int lustre_pack_reply(struct ptlrpc_request *, int count, __u32 *lens,
2028 		      char **bufs);
2029 int lustre_pack_reply_v2(struct ptlrpc_request *req, int count,
2030 			 __u32 *lens, char **bufs, int flags);
2031 #define LPRFL_EARLY_REPLY 1
2032 int lustre_pack_reply_flags(struct ptlrpc_request *, int count, __u32 *lens,
2033 			    char **bufs, int flags);
2034 int lustre_shrink_msg(struct lustre_msg *msg, int segment,
2035 		      unsigned int newlen, int move_data);
2036 void lustre_free_reply_state(struct ptlrpc_reply_state *rs);
2037 int __lustre_unpack_msg(struct lustre_msg *m, int len);
2038 u32 lustre_msg_hdr_size(__u32 magic, u32 count);
2039 u32 lustre_msg_size(__u32 magic, int count, __u32 *lengths);
2040 u32 lustre_msg_size_v2(int count, __u32 *lengths);
2041 u32 lustre_packed_msg_size(struct lustre_msg *msg);
2042 u32 lustre_msg_early_size(void);
2043 void *lustre_msg_buf_v2(struct lustre_msg_v2 *m, u32 n, u32 min_size);
2044 void *lustre_msg_buf(struct lustre_msg *m, u32 n, u32 minlen);
2045 u32 lustre_msg_buflen(struct lustre_msg *m, u32 n);
2046 u32 lustre_msg_bufcount(struct lustre_msg *m);
2047 char *lustre_msg_string(struct lustre_msg *m, u32 n, u32 max_len);
2048 __u32 lustre_msghdr_get_flags(struct lustre_msg *msg);
2049 void lustre_msghdr_set_flags(struct lustre_msg *msg, __u32 flags);
2050 __u32 lustre_msg_get_flags(struct lustre_msg *msg);
2051 void lustre_msg_add_flags(struct lustre_msg *msg, u32 flags);
2052 void lustre_msg_set_flags(struct lustre_msg *msg, u32 flags);
2053 void lustre_msg_clear_flags(struct lustre_msg *msg, u32 flags);
2054 __u32 lustre_msg_get_op_flags(struct lustre_msg *msg);
2055 void lustre_msg_add_op_flags(struct lustre_msg *msg, u32 flags);
2056 struct lustre_handle *lustre_msg_get_handle(struct lustre_msg *msg);
2057 __u32 lustre_msg_get_type(struct lustre_msg *msg);
2058 void lustre_msg_add_version(struct lustre_msg *msg, u32 version);
2059 __u32 lustre_msg_get_opc(struct lustre_msg *msg);
2060 __u16 lustre_msg_get_tag(struct lustre_msg *msg);
2061 __u64 lustre_msg_get_last_committed(struct lustre_msg *msg);
2062 __u64 *lustre_msg_get_versions(struct lustre_msg *msg);
2063 __u64 lustre_msg_get_transno(struct lustre_msg *msg);
2064 __u64 lustre_msg_get_slv(struct lustre_msg *msg);
2065 __u32 lustre_msg_get_limit(struct lustre_msg *msg);
2066 void lustre_msg_set_slv(struct lustre_msg *msg, __u64 slv);
2067 void lustre_msg_set_limit(struct lustre_msg *msg, __u64 limit);
2068 int lustre_msg_get_status(struct lustre_msg *msg);
2069 __u32 lustre_msg_get_conn_cnt(struct lustre_msg *msg);
2070 __u32 lustre_msg_get_magic(struct lustre_msg *msg);
2071 __u32 lustre_msg_get_timeout(struct lustre_msg *msg);
2072 __u32 lustre_msg_get_service_time(struct lustre_msg *msg);
2073 __u32 lustre_msg_get_cksum(struct lustre_msg *msg);
2074 __u32 lustre_msg_calc_cksum(struct lustre_msg *msg);
2075 void lustre_msg_set_handle(struct lustre_msg *msg,
2076 			   struct lustre_handle *handle);
2077 void lustre_msg_set_type(struct lustre_msg *msg, __u32 type);
2078 void lustre_msg_set_opc(struct lustre_msg *msg, __u32 opc);
2079 void lustre_msg_set_last_xid(struct lustre_msg *msg, u64 last_xid);
2080 void lustre_msg_set_tag(struct lustre_msg *msg, __u16 tag);
2081 void lustre_msg_set_versions(struct lustre_msg *msg, __u64 *versions);
2082 void lustre_msg_set_transno(struct lustre_msg *msg, __u64 transno);
2083 void lustre_msg_set_status(struct lustre_msg *msg, __u32 status);
2084 void lustre_msg_set_conn_cnt(struct lustre_msg *msg, __u32 conn_cnt);
2085 void ptlrpc_request_set_replen(struct ptlrpc_request *req);
2086 void lustre_msg_set_timeout(struct lustre_msg *msg, __u32 timeout);
2087 void lustre_msg_set_service_time(struct lustre_msg *msg, __u32 service_time);
2088 void lustre_msg_set_jobid(struct lustre_msg *msg, char *jobid);
2089 void lustre_msg_set_cksum(struct lustre_msg *msg, __u32 cksum);
2090 void lustre_msg_set_mbits(struct lustre_msg *msg, u64 mbits);
2091 
2092 static inline void
lustre_shrink_reply(struct ptlrpc_request * req,int segment,unsigned int newlen,int move_data)2093 lustre_shrink_reply(struct ptlrpc_request *req, int segment,
2094 		    unsigned int newlen, int move_data)
2095 {
2096 	LASSERT(req->rq_reply_state);
2097 	LASSERT(req->rq_repmsg);
2098 	req->rq_replen = lustre_shrink_msg(req->rq_repmsg, segment,
2099 					   newlen, move_data);
2100 }
2101 
2102 #ifdef CONFIG_LUSTRE_TRANSLATE_ERRNOS
2103 
ptlrpc_status_hton(int h)2104 static inline int ptlrpc_status_hton(int h)
2105 {
2106 	/*
2107 	 * Positive errnos must be network errnos, such as LUSTRE_EDEADLK,
2108 	 * ELDLM_LOCK_ABORTED, etc.
2109 	 */
2110 	if (h < 0)
2111 		return -lustre_errno_hton(-h);
2112 	else
2113 		return h;
2114 }
2115 
ptlrpc_status_ntoh(int n)2116 static inline int ptlrpc_status_ntoh(int n)
2117 {
2118 	/*
2119 	 * See the comment in ptlrpc_status_hton().
2120 	 */
2121 	if (n < 0)
2122 		return -lustre_errno_ntoh(-n);
2123 	else
2124 		return n;
2125 }
2126 
2127 #else
2128 
2129 #define ptlrpc_status_hton(h) (h)
2130 #define ptlrpc_status_ntoh(n) (n)
2131 
2132 #endif
2133 /** @} */
2134 
2135 /** Change request phase of \a req to \a new_phase */
2136 static inline void
ptlrpc_rqphase_move(struct ptlrpc_request * req,enum rq_phase new_phase)2137 ptlrpc_rqphase_move(struct ptlrpc_request *req, enum rq_phase new_phase)
2138 {
2139 	if (req->rq_phase == new_phase)
2140 		return;
2141 
2142 	if (new_phase == RQ_PHASE_UNREG_RPC ||
2143 	    new_phase == RQ_PHASE_UNREG_BULK) {
2144 		/* No embedded unregistering phases */
2145 		if (req->rq_phase == RQ_PHASE_UNREG_RPC ||
2146 		    req->rq_phase == RQ_PHASE_UNREG_BULK)
2147 			return;
2148 
2149 		req->rq_next_phase = req->rq_phase;
2150 		if (req->rq_import)
2151 			atomic_inc(&req->rq_import->imp_unregistering);
2152 	}
2153 
2154 	if (req->rq_phase == RQ_PHASE_UNREG_RPC ||
2155 	    req->rq_phase == RQ_PHASE_UNREG_BULK) {
2156 		if (req->rq_import)
2157 			atomic_dec(&req->rq_import->imp_unregistering);
2158 	}
2159 
2160 	DEBUG_REQ(D_INFO, req, "move req \"%s\" -> \"%s\"",
2161 		  ptlrpc_rqphase2str(req), ptlrpc_phase2str(new_phase));
2162 
2163 	req->rq_phase = new_phase;
2164 }
2165 
2166 /**
2167  * Returns true if request \a req got early reply and hard deadline is not met
2168  */
2169 static inline int
ptlrpc_client_early(struct ptlrpc_request * req)2170 ptlrpc_client_early(struct ptlrpc_request *req)
2171 {
2172 	return req->rq_early;
2173 }
2174 
2175 /**
2176  * Returns true if we got real reply from server for this request
2177  */
2178 static inline int
ptlrpc_client_replied(struct ptlrpc_request * req)2179 ptlrpc_client_replied(struct ptlrpc_request *req)
2180 {
2181 	if (req->rq_reply_deadline > ktime_get_real_seconds())
2182 		return 0;
2183 	return req->rq_replied;
2184 }
2185 
2186 /** Returns true if request \a req is in process of receiving server reply */
2187 static inline int
ptlrpc_client_recv(struct ptlrpc_request * req)2188 ptlrpc_client_recv(struct ptlrpc_request *req)
2189 {
2190 	if (req->rq_reply_deadline > ktime_get_real_seconds())
2191 		return 1;
2192 	return req->rq_receiving_reply;
2193 }
2194 
2195 static inline int
ptlrpc_client_recv_or_unlink(struct ptlrpc_request * req)2196 ptlrpc_client_recv_or_unlink(struct ptlrpc_request *req)
2197 {
2198 	int rc;
2199 
2200 	spin_lock(&req->rq_lock);
2201 	if (req->rq_reply_deadline > ktime_get_real_seconds()) {
2202 		spin_unlock(&req->rq_lock);
2203 		return 1;
2204 	}
2205 	if (req->rq_req_deadline > ktime_get_real_seconds()) {
2206 		spin_unlock(&req->rq_lock);
2207 		return 1;
2208 	}
2209 	rc = !req->rq_req_unlinked || !req->rq_reply_unlinked ||
2210 	     req->rq_receiving_reply;
2211 	spin_unlock(&req->rq_lock);
2212 	return rc;
2213 }
2214 
2215 static inline void
ptlrpc_client_wake_req(struct ptlrpc_request * req)2216 ptlrpc_client_wake_req(struct ptlrpc_request *req)
2217 {
2218 	if (!req->rq_set)
2219 		wake_up(&req->rq_reply_waitq);
2220 	else
2221 		wake_up(&req->rq_set->set_waitq);
2222 }
2223 
2224 static inline void
ptlrpc_rs_addref(struct ptlrpc_reply_state * rs)2225 ptlrpc_rs_addref(struct ptlrpc_reply_state *rs)
2226 {
2227 	LASSERT(atomic_read(&rs->rs_refcount) > 0);
2228 	atomic_inc(&rs->rs_refcount);
2229 }
2230 
2231 static inline void
ptlrpc_rs_decref(struct ptlrpc_reply_state * rs)2232 ptlrpc_rs_decref(struct ptlrpc_reply_state *rs)
2233 {
2234 	LASSERT(atomic_read(&rs->rs_refcount) > 0);
2235 	if (atomic_dec_and_test(&rs->rs_refcount))
2236 		lustre_free_reply_state(rs);
2237 }
2238 
2239 /* Should only be called once per req */
ptlrpc_req_drop_rs(struct ptlrpc_request * req)2240 static inline void ptlrpc_req_drop_rs(struct ptlrpc_request *req)
2241 {
2242 	if (!req->rq_reply_state)
2243 		return; /* shouldn't occur */
2244 	ptlrpc_rs_decref(req->rq_reply_state);
2245 	req->rq_reply_state = NULL;
2246 	req->rq_repmsg = NULL;
2247 }
2248 
lustre_request_magic(struct ptlrpc_request * req)2249 static inline __u32 lustre_request_magic(struct ptlrpc_request *req)
2250 {
2251 	return lustre_msg_get_magic(req->rq_reqmsg);
2252 }
2253 
ptlrpc_req_get_repsize(struct ptlrpc_request * req)2254 static inline int ptlrpc_req_get_repsize(struct ptlrpc_request *req)
2255 {
2256 	switch (req->rq_reqmsg->lm_magic) {
2257 	case LUSTRE_MSG_MAGIC_V2:
2258 		return req->rq_reqmsg->lm_repsize;
2259 	default:
2260 		LASSERTF(0, "incorrect message magic: %08x\n",
2261 			 req->rq_reqmsg->lm_magic);
2262 		return -EFAULT;
2263 	}
2264 }
2265 
ptlrpc_send_limit_expired(struct ptlrpc_request * req)2266 static inline int ptlrpc_send_limit_expired(struct ptlrpc_request *req)
2267 {
2268 	if (req->rq_delay_limit != 0 &&
2269 	    time_before(cfs_time_add(req->rq_queued_time,
2270 				     cfs_time_seconds(req->rq_delay_limit)),
2271 			cfs_time_current())) {
2272 		return 1;
2273 	}
2274 	return 0;
2275 }
2276 
ptlrpc_no_resend(struct ptlrpc_request * req)2277 static inline int ptlrpc_no_resend(struct ptlrpc_request *req)
2278 {
2279 	if (!req->rq_no_resend && ptlrpc_send_limit_expired(req)) {
2280 		spin_lock(&req->rq_lock);
2281 		req->rq_no_resend = 1;
2282 		spin_unlock(&req->rq_lock);
2283 	}
2284 	return req->rq_no_resend;
2285 }
2286 
2287 static inline int
ptlrpc_server_get_timeout(struct ptlrpc_service_part * svcpt)2288 ptlrpc_server_get_timeout(struct ptlrpc_service_part *svcpt)
2289 {
2290 	int at = AT_OFF ? 0 : at_get(&svcpt->scp_at_estimate);
2291 
2292 	return svcpt->scp_service->srv_watchdog_factor *
2293 	       max_t(int, at, obd_timeout);
2294 }
2295 
2296 static inline struct ptlrpc_service *
ptlrpc_req2svc(struct ptlrpc_request * req)2297 ptlrpc_req2svc(struct ptlrpc_request *req)
2298 {
2299 	return req->rq_rqbd->rqbd_svcpt->scp_service;
2300 }
2301 
2302 /* ldlm/ldlm_lib.c */
2303 /**
2304  * Target client logic
2305  * @{
2306  */
2307 int client_obd_setup(struct obd_device *obddev, struct lustre_cfg *lcfg);
2308 int client_obd_cleanup(struct obd_device *obddev);
2309 int client_connect_import(const struct lu_env *env,
2310 			  struct obd_export **exp, struct obd_device *obd,
2311 			  struct obd_uuid *cluuid, struct obd_connect_data *,
2312 			  void *localdata);
2313 int client_disconnect_export(struct obd_export *exp);
2314 int client_import_add_conn(struct obd_import *imp, struct obd_uuid *uuid,
2315 			   int priority);
2316 int client_import_del_conn(struct obd_import *imp, struct obd_uuid *uuid);
2317 int client_import_find_conn(struct obd_import *imp, lnet_nid_t peer,
2318 			    struct obd_uuid *uuid);
2319 int import_set_conn_priority(struct obd_import *imp, struct obd_uuid *uuid);
2320 void client_destroy_import(struct obd_import *imp);
2321 /** @} */
2322 
2323 /* ptlrpc/pinger.c */
2324 /**
2325  * Pinger API (client side only)
2326  * @{
2327  */
2328 enum timeout_event {
2329 	TIMEOUT_GRANT = 1
2330 };
2331 
2332 struct timeout_item;
2333 typedef int (*timeout_cb_t)(struct timeout_item *, void *);
2334 int ptlrpc_pinger_add_import(struct obd_import *imp);
2335 int ptlrpc_pinger_del_import(struct obd_import *imp);
2336 int ptlrpc_add_timeout_client(int time, enum timeout_event event,
2337 			      timeout_cb_t cb, void *data,
2338 			      struct list_head *obd_list);
2339 int ptlrpc_del_timeout_client(struct list_head *obd_list,
2340 			      enum timeout_event event);
2341 struct ptlrpc_request *ptlrpc_prep_ping(struct obd_import *imp);
2342 int ptlrpc_obd_ping(struct obd_device *obd);
2343 void ptlrpc_pinger_ir_up(void);
2344 void ptlrpc_pinger_ir_down(void);
2345 /** @} */
2346 int ptlrpc_pinger_suppress_pings(void);
2347 
2348 /* ptlrpc/ptlrpcd.c */
2349 void ptlrpcd_stop(struct ptlrpcd_ctl *pc, int force);
2350 void ptlrpcd_free(struct ptlrpcd_ctl *pc);
2351 void ptlrpcd_wake(struct ptlrpc_request *req);
2352 void ptlrpcd_add_req(struct ptlrpc_request *req);
2353 int ptlrpcd_addref(void);
2354 void ptlrpcd_decref(void);
2355 
2356 /* ptlrpc/lproc_ptlrpc.c */
2357 /**
2358  * procfs output related functions
2359  * @{
2360  */
2361 const char *ll_opcode2str(__u32 opcode);
2362 void ptlrpc_lprocfs_register_obd(struct obd_device *obd);
2363 void ptlrpc_lprocfs_unregister_obd(struct obd_device *obd);
2364 void ptlrpc_lprocfs_brw(struct ptlrpc_request *req, int bytes);
2365 /** @} */
2366 
2367 /* ptlrpc/llog_client.c */
2368 extern struct llog_operations llog_client_ops;
2369 /** @} net */
2370 
2371 #endif
2372 /** @} PtlRPC */
2373