1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/mm.h>
3 #include <linux/gfp.h>
4 #include <linux/hugetlb.h>
5 #include <asm/pgalloc.h>
6 #include <asm/pgtable.h>
7 #include <asm/tlb.h>
8 #include <asm/fixmap.h>
9 #include <asm/mtrr.h>
10
11 #define PGALLOC_GFP (GFP_KERNEL_ACCOUNT | __GFP_ZERO)
12
13 #ifdef CONFIG_HIGHPTE
14 #define PGALLOC_USER_GFP __GFP_HIGHMEM
15 #else
16 #define PGALLOC_USER_GFP 0
17 #endif
18
19 gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;
20
pte_alloc_one_kernel(struct mm_struct * mm,unsigned long address)21 pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
22 {
23 return (pte_t *)__get_free_page(PGALLOC_GFP & ~__GFP_ACCOUNT);
24 }
25
pte_alloc_one(struct mm_struct * mm,unsigned long address)26 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
27 {
28 struct page *pte;
29
30 pte = alloc_pages(__userpte_alloc_gfp, 0);
31 if (!pte)
32 return NULL;
33 if (!pgtable_page_ctor(pte)) {
34 __free_page(pte);
35 return NULL;
36 }
37 return pte;
38 }
39
setup_userpte(char * arg)40 static int __init setup_userpte(char *arg)
41 {
42 if (!arg)
43 return -EINVAL;
44
45 /*
46 * "userpte=nohigh" disables allocation of user pagetables in
47 * high memory.
48 */
49 if (strcmp(arg, "nohigh") == 0)
50 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
51 else
52 return -EINVAL;
53 return 0;
54 }
55 early_param("userpte", setup_userpte);
56
___pte_free_tlb(struct mmu_gather * tlb,struct page * pte)57 void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
58 {
59 pgtable_page_dtor(pte);
60 paravirt_release_pte(page_to_pfn(pte));
61 tlb_remove_table(tlb, pte);
62 }
63
64 #if CONFIG_PGTABLE_LEVELS > 2
___pmd_free_tlb(struct mmu_gather * tlb,pmd_t * pmd)65 void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
66 {
67 struct page *page = virt_to_page(pmd);
68 paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
69 /*
70 * NOTE! For PAE, any changes to the top page-directory-pointer-table
71 * entries need a full cr3 reload to flush.
72 */
73 #ifdef CONFIG_X86_PAE
74 tlb->need_flush_all = 1;
75 #endif
76 pgtable_pmd_page_dtor(page);
77 tlb_remove_table(tlb, page);
78 }
79
80 #if CONFIG_PGTABLE_LEVELS > 3
___pud_free_tlb(struct mmu_gather * tlb,pud_t * pud)81 void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
82 {
83 paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
84 tlb_remove_table(tlb, virt_to_page(pud));
85 }
86
87 #if CONFIG_PGTABLE_LEVELS > 4
___p4d_free_tlb(struct mmu_gather * tlb,p4d_t * p4d)88 void ___p4d_free_tlb(struct mmu_gather *tlb, p4d_t *p4d)
89 {
90 paravirt_release_p4d(__pa(p4d) >> PAGE_SHIFT);
91 tlb_remove_table(tlb, virt_to_page(p4d));
92 }
93 #endif /* CONFIG_PGTABLE_LEVELS > 4 */
94 #endif /* CONFIG_PGTABLE_LEVELS > 3 */
95 #endif /* CONFIG_PGTABLE_LEVELS > 2 */
96
pgd_list_add(pgd_t * pgd)97 static inline void pgd_list_add(pgd_t *pgd)
98 {
99 struct page *page = virt_to_page(pgd);
100
101 list_add(&page->lru, &pgd_list);
102 }
103
pgd_list_del(pgd_t * pgd)104 static inline void pgd_list_del(pgd_t *pgd)
105 {
106 struct page *page = virt_to_page(pgd);
107
108 list_del(&page->lru);
109 }
110
111 #define UNSHARED_PTRS_PER_PGD \
112 (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
113
114
pgd_set_mm(pgd_t * pgd,struct mm_struct * mm)115 static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
116 {
117 BUILD_BUG_ON(sizeof(virt_to_page(pgd)->index) < sizeof(mm));
118 virt_to_page(pgd)->index = (pgoff_t)mm;
119 }
120
pgd_page_get_mm(struct page * page)121 struct mm_struct *pgd_page_get_mm(struct page *page)
122 {
123 return (struct mm_struct *)page->index;
124 }
125
pgd_ctor(struct mm_struct * mm,pgd_t * pgd)126 static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
127 {
128 /* If the pgd points to a shared pagetable level (either the
129 ptes in non-PAE, or shared PMD in PAE), then just copy the
130 references from swapper_pg_dir. */
131 if (CONFIG_PGTABLE_LEVELS == 2 ||
132 (CONFIG_PGTABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
133 CONFIG_PGTABLE_LEVELS >= 4) {
134 clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
135 swapper_pg_dir + KERNEL_PGD_BOUNDARY,
136 KERNEL_PGD_PTRS);
137 }
138
139 /* list required to sync kernel mapping updates */
140 if (!SHARED_KERNEL_PMD) {
141 pgd_set_mm(pgd, mm);
142 pgd_list_add(pgd);
143 }
144 }
145
pgd_dtor(pgd_t * pgd)146 static void pgd_dtor(pgd_t *pgd)
147 {
148 if (SHARED_KERNEL_PMD)
149 return;
150
151 spin_lock(&pgd_lock);
152 pgd_list_del(pgd);
153 spin_unlock(&pgd_lock);
154 }
155
156 /*
157 * List of all pgd's needed for non-PAE so it can invalidate entries
158 * in both cached and uncached pgd's; not needed for PAE since the
159 * kernel pmd is shared. If PAE were not to share the pmd a similar
160 * tactic would be needed. This is essentially codepath-based locking
161 * against pageattr.c; it is the unique case in which a valid change
162 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
163 * vmalloc faults work because attached pagetables are never freed.
164 * -- nyc
165 */
166
167 #ifdef CONFIG_X86_PAE
168 /*
169 * In PAE mode, we need to do a cr3 reload (=tlb flush) when
170 * updating the top-level pagetable entries to guarantee the
171 * processor notices the update. Since this is expensive, and
172 * all 4 top-level entries are used almost immediately in a
173 * new process's life, we just pre-populate them here.
174 *
175 * Also, if we're in a paravirt environment where the kernel pmd is
176 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
177 * and initialize the kernel pmds here.
178 */
179 #define PREALLOCATED_PMDS UNSHARED_PTRS_PER_PGD
180
pud_populate(struct mm_struct * mm,pud_t * pudp,pmd_t * pmd)181 void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
182 {
183 paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
184
185 /* Note: almost everything apart from _PAGE_PRESENT is
186 reserved at the pmd (PDPT) level. */
187 set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
188
189 /*
190 * According to Intel App note "TLBs, Paging-Structure Caches,
191 * and Their Invalidation", April 2007, document 317080-001,
192 * section 8.1: in PAE mode we explicitly have to flush the
193 * TLB via cr3 if the top-level pgd is changed...
194 */
195 flush_tlb_mm(mm);
196 }
197 #else /* !CONFIG_X86_PAE */
198
199 /* No need to prepopulate any pagetable entries in non-PAE modes. */
200 #define PREALLOCATED_PMDS 0
201
202 #endif /* CONFIG_X86_PAE */
203
free_pmds(struct mm_struct * mm,pmd_t * pmds[])204 static void free_pmds(struct mm_struct *mm, pmd_t *pmds[])
205 {
206 int i;
207
208 for(i = 0; i < PREALLOCATED_PMDS; i++)
209 if (pmds[i]) {
210 pgtable_pmd_page_dtor(virt_to_page(pmds[i]));
211 free_page((unsigned long)pmds[i]);
212 mm_dec_nr_pmds(mm);
213 }
214 }
215
preallocate_pmds(struct mm_struct * mm,pmd_t * pmds[])216 static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[])
217 {
218 int i;
219 bool failed = false;
220 gfp_t gfp = PGALLOC_GFP;
221
222 if (mm == &init_mm)
223 gfp &= ~__GFP_ACCOUNT;
224
225 for(i = 0; i < PREALLOCATED_PMDS; i++) {
226 pmd_t *pmd = (pmd_t *)__get_free_page(gfp);
227 if (!pmd)
228 failed = true;
229 if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) {
230 free_page((unsigned long)pmd);
231 pmd = NULL;
232 failed = true;
233 }
234 if (pmd)
235 mm_inc_nr_pmds(mm);
236 pmds[i] = pmd;
237 }
238
239 if (failed) {
240 free_pmds(mm, pmds);
241 return -ENOMEM;
242 }
243
244 return 0;
245 }
246
247 /*
248 * Mop up any pmd pages which may still be attached to the pgd.
249 * Normally they will be freed by munmap/exit_mmap, but any pmd we
250 * preallocate which never got a corresponding vma will need to be
251 * freed manually.
252 */
pgd_mop_up_pmds(struct mm_struct * mm,pgd_t * pgdp)253 static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
254 {
255 int i;
256
257 for(i = 0; i < PREALLOCATED_PMDS; i++) {
258 pgd_t pgd = pgdp[i];
259
260 if (pgd_val(pgd) != 0) {
261 pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
262
263 pgd_clear(&pgdp[i]);
264
265 paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
266 pmd_free(mm, pmd);
267 mm_dec_nr_pmds(mm);
268 }
269 }
270 }
271
pgd_prepopulate_pmd(struct mm_struct * mm,pgd_t * pgd,pmd_t * pmds[])272 static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
273 {
274 p4d_t *p4d;
275 pud_t *pud;
276 int i;
277
278 if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
279 return;
280
281 p4d = p4d_offset(pgd, 0);
282 pud = pud_offset(p4d, 0);
283
284 for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) {
285 pmd_t *pmd = pmds[i];
286
287 if (i >= KERNEL_PGD_BOUNDARY)
288 memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
289 sizeof(pmd_t) * PTRS_PER_PMD);
290
291 pud_populate(mm, pud, pmd);
292 }
293 }
294
295 /*
296 * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also
297 * assumes that pgd should be in one page.
298 *
299 * But kernel with PAE paging that is not running as a Xen domain
300 * only needs to allocate 32 bytes for pgd instead of one page.
301 */
302 #ifdef CONFIG_X86_PAE
303
304 #include <linux/slab.h>
305
306 #define PGD_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
307 #define PGD_ALIGN 32
308
309 static struct kmem_cache *pgd_cache;
310
pgd_cache_init(void)311 static int __init pgd_cache_init(void)
312 {
313 /*
314 * When PAE kernel is running as a Xen domain, it does not use
315 * shared kernel pmd. And this requires a whole page for pgd.
316 */
317 if (!SHARED_KERNEL_PMD)
318 return 0;
319
320 /*
321 * when PAE kernel is not running as a Xen domain, it uses
322 * shared kernel pmd. Shared kernel pmd does not require a whole
323 * page for pgd. We are able to just allocate a 32-byte for pgd.
324 * During boot time, we create a 32-byte slab for pgd table allocation.
325 */
326 pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN,
327 SLAB_PANIC, NULL);
328 if (!pgd_cache)
329 return -ENOMEM;
330
331 return 0;
332 }
333 core_initcall(pgd_cache_init);
334
_pgd_alloc(void)335 static inline pgd_t *_pgd_alloc(void)
336 {
337 /*
338 * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain.
339 * We allocate one page for pgd.
340 */
341 if (!SHARED_KERNEL_PMD)
342 return (pgd_t *)__get_free_page(PGALLOC_GFP);
343
344 /*
345 * Now PAE kernel is not running as a Xen domain. We can allocate
346 * a 32-byte slab for pgd to save memory space.
347 */
348 return kmem_cache_alloc(pgd_cache, PGALLOC_GFP);
349 }
350
_pgd_free(pgd_t * pgd)351 static inline void _pgd_free(pgd_t *pgd)
352 {
353 if (!SHARED_KERNEL_PMD)
354 free_page((unsigned long)pgd);
355 else
356 kmem_cache_free(pgd_cache, pgd);
357 }
358 #else
359
_pgd_alloc(void)360 static inline pgd_t *_pgd_alloc(void)
361 {
362 return (pgd_t *)__get_free_pages(PGALLOC_GFP, PGD_ALLOCATION_ORDER);
363 }
364
_pgd_free(pgd_t * pgd)365 static inline void _pgd_free(pgd_t *pgd)
366 {
367 free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER);
368 }
369 #endif /* CONFIG_X86_PAE */
370
pgd_alloc(struct mm_struct * mm)371 pgd_t *pgd_alloc(struct mm_struct *mm)
372 {
373 pgd_t *pgd;
374 pmd_t *pmds[PREALLOCATED_PMDS];
375
376 pgd = _pgd_alloc();
377
378 if (pgd == NULL)
379 goto out;
380
381 mm->pgd = pgd;
382
383 if (preallocate_pmds(mm, pmds) != 0)
384 goto out_free_pgd;
385
386 if (paravirt_pgd_alloc(mm) != 0)
387 goto out_free_pmds;
388
389 /*
390 * Make sure that pre-populating the pmds is atomic with
391 * respect to anything walking the pgd_list, so that they
392 * never see a partially populated pgd.
393 */
394 spin_lock(&pgd_lock);
395
396 pgd_ctor(mm, pgd);
397 pgd_prepopulate_pmd(mm, pgd, pmds);
398
399 spin_unlock(&pgd_lock);
400
401 return pgd;
402
403 out_free_pmds:
404 free_pmds(mm, pmds);
405 out_free_pgd:
406 _pgd_free(pgd);
407 out:
408 return NULL;
409 }
410
pgd_free(struct mm_struct * mm,pgd_t * pgd)411 void pgd_free(struct mm_struct *mm, pgd_t *pgd)
412 {
413 pgd_mop_up_pmds(mm, pgd);
414 pgd_dtor(pgd);
415 paravirt_pgd_free(mm, pgd);
416 _pgd_free(pgd);
417 }
418
419 /*
420 * Used to set accessed or dirty bits in the page table entries
421 * on other architectures. On x86, the accessed and dirty bits
422 * are tracked by hardware. However, do_wp_page calls this function
423 * to also make the pte writeable at the same time the dirty bit is
424 * set. In that case we do actually need to write the PTE.
425 */
ptep_set_access_flags(struct vm_area_struct * vma,unsigned long address,pte_t * ptep,pte_t entry,int dirty)426 int ptep_set_access_flags(struct vm_area_struct *vma,
427 unsigned long address, pte_t *ptep,
428 pte_t entry, int dirty)
429 {
430 int changed = !pte_same(*ptep, entry);
431
432 if (changed && dirty)
433 set_pte(ptep, entry);
434
435 return changed;
436 }
437
438 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t entry,int dirty)439 int pmdp_set_access_flags(struct vm_area_struct *vma,
440 unsigned long address, pmd_t *pmdp,
441 pmd_t entry, int dirty)
442 {
443 int changed = !pmd_same(*pmdp, entry);
444
445 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
446
447 if (changed && dirty) {
448 set_pmd(pmdp, entry);
449 /*
450 * We had a write-protection fault here and changed the pmd
451 * to to more permissive. No need to flush the TLB for that,
452 * #PF is architecturally guaranteed to do that and in the
453 * worst-case we'll generate a spurious fault.
454 */
455 }
456
457 return changed;
458 }
459
pudp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pud_t * pudp,pud_t entry,int dirty)460 int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
461 pud_t *pudp, pud_t entry, int dirty)
462 {
463 int changed = !pud_same(*pudp, entry);
464
465 VM_BUG_ON(address & ~HPAGE_PUD_MASK);
466
467 if (changed && dirty) {
468 set_pud(pudp, entry);
469 /*
470 * We had a write-protection fault here and changed the pud
471 * to to more permissive. No need to flush the TLB for that,
472 * #PF is architecturally guaranteed to do that and in the
473 * worst-case we'll generate a spurious fault.
474 */
475 }
476
477 return changed;
478 }
479 #endif
480
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)481 int ptep_test_and_clear_young(struct vm_area_struct *vma,
482 unsigned long addr, pte_t *ptep)
483 {
484 int ret = 0;
485
486 if (pte_young(*ptep))
487 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
488 (unsigned long *) &ptep->pte);
489
490 return ret;
491 }
492
493 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)494 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
495 unsigned long addr, pmd_t *pmdp)
496 {
497 int ret = 0;
498
499 if (pmd_young(*pmdp))
500 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
501 (unsigned long *)pmdp);
502
503 return ret;
504 }
pudp_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pud_t * pudp)505 int pudp_test_and_clear_young(struct vm_area_struct *vma,
506 unsigned long addr, pud_t *pudp)
507 {
508 int ret = 0;
509
510 if (pud_young(*pudp))
511 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
512 (unsigned long *)pudp);
513
514 return ret;
515 }
516 #endif
517
ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)518 int ptep_clear_flush_young(struct vm_area_struct *vma,
519 unsigned long address, pte_t *ptep)
520 {
521 /*
522 * On x86 CPUs, clearing the accessed bit without a TLB flush
523 * doesn't cause data corruption. [ It could cause incorrect
524 * page aging and the (mistaken) reclaim of hot pages, but the
525 * chance of that should be relatively low. ]
526 *
527 * So as a performance optimization don't flush the TLB when
528 * clearing the accessed bit, it will eventually be flushed by
529 * a context switch or a VM operation anyway. [ In the rare
530 * event of it not getting flushed for a long time the delay
531 * shouldn't really matter because there's no real memory
532 * pressure for swapout to react to. ]
533 */
534 return ptep_test_and_clear_young(vma, address, ptep);
535 }
536
537 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmdp_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)538 int pmdp_clear_flush_young(struct vm_area_struct *vma,
539 unsigned long address, pmd_t *pmdp)
540 {
541 int young;
542
543 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
544
545 young = pmdp_test_and_clear_young(vma, address, pmdp);
546 if (young)
547 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
548
549 return young;
550 }
551 #endif
552
553 /**
554 * reserve_top_address - reserves a hole in the top of kernel address space
555 * @reserve - size of hole to reserve
556 *
557 * Can be used to relocate the fixmap area and poke a hole in the top
558 * of kernel address space to make room for a hypervisor.
559 */
reserve_top_address(unsigned long reserve)560 void __init reserve_top_address(unsigned long reserve)
561 {
562 #ifdef CONFIG_X86_32
563 BUG_ON(fixmaps_set > 0);
564 __FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE;
565 printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n",
566 -reserve, __FIXADDR_TOP + PAGE_SIZE);
567 #endif
568 }
569
570 int fixmaps_set;
571
__native_set_fixmap(enum fixed_addresses idx,pte_t pte)572 void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
573 {
574 unsigned long address = __fix_to_virt(idx);
575
576 #ifdef CONFIG_X86_64
577 /*
578 * Ensure that the static initial page tables are covering the
579 * fixmap completely.
580 */
581 BUILD_BUG_ON(__end_of_permanent_fixed_addresses >
582 (FIXMAP_PMD_NUM * PTRS_PER_PTE));
583 #endif
584
585 if (idx >= __end_of_fixed_addresses) {
586 BUG();
587 return;
588 }
589 set_pte_vaddr(address, pte);
590 fixmaps_set++;
591 }
592
native_set_fixmap(unsigned idx,phys_addr_t phys,pgprot_t flags)593 void native_set_fixmap(unsigned /* enum fixed_addresses */ idx,
594 phys_addr_t phys, pgprot_t flags)
595 {
596 __native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
597 }
598
599 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
600 #ifdef CONFIG_X86_5LEVEL
601 /**
602 * p4d_set_huge - setup kernel P4D mapping
603 *
604 * No 512GB pages yet -- always return 0
605 */
p4d_set_huge(p4d_t * p4d,phys_addr_t addr,pgprot_t prot)606 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
607 {
608 return 0;
609 }
610
611 /**
612 * p4d_clear_huge - clear kernel P4D mapping when it is set
613 *
614 * No 512GB pages yet -- always return 0
615 */
p4d_clear_huge(p4d_t * p4d)616 int p4d_clear_huge(p4d_t *p4d)
617 {
618 return 0;
619 }
620 #endif
621
622 /**
623 * pud_set_huge - setup kernel PUD mapping
624 *
625 * MTRRs can override PAT memory types with 4KiB granularity. Therefore, this
626 * function sets up a huge page only if any of the following conditions are met:
627 *
628 * - MTRRs are disabled, or
629 *
630 * - MTRRs are enabled and the range is completely covered by a single MTRR, or
631 *
632 * - MTRRs are enabled and the corresponding MTRR memory type is WB, which
633 * has no effect on the requested PAT memory type.
634 *
635 * Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger
636 * page mapping attempt fails.
637 *
638 * Returns 1 on success and 0 on failure.
639 */
pud_set_huge(pud_t * pud,phys_addr_t addr,pgprot_t prot)640 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
641 {
642 u8 mtrr, uniform;
643
644 mtrr = mtrr_type_lookup(addr, addr + PUD_SIZE, &uniform);
645 if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
646 (mtrr != MTRR_TYPE_WRBACK))
647 return 0;
648
649 /* Bail out if we are we on a populated non-leaf entry: */
650 if (pud_present(*pud) && !pud_huge(*pud))
651 return 0;
652
653 prot = pgprot_4k_2_large(prot);
654
655 set_pte((pte_t *)pud, pfn_pte(
656 (u64)addr >> PAGE_SHIFT,
657 __pgprot(pgprot_val(prot) | _PAGE_PSE)));
658
659 return 1;
660 }
661
662 /**
663 * pmd_set_huge - setup kernel PMD mapping
664 *
665 * See text over pud_set_huge() above.
666 *
667 * Returns 1 on success and 0 on failure.
668 */
pmd_set_huge(pmd_t * pmd,phys_addr_t addr,pgprot_t prot)669 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
670 {
671 u8 mtrr, uniform;
672
673 mtrr = mtrr_type_lookup(addr, addr + PMD_SIZE, &uniform);
674 if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
675 (mtrr != MTRR_TYPE_WRBACK)) {
676 pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n",
677 __func__, addr, addr + PMD_SIZE);
678 return 0;
679 }
680
681 /* Bail out if we are we on a populated non-leaf entry: */
682 if (pmd_present(*pmd) && !pmd_huge(*pmd))
683 return 0;
684
685 prot = pgprot_4k_2_large(prot);
686
687 set_pte((pte_t *)pmd, pfn_pte(
688 (u64)addr >> PAGE_SHIFT,
689 __pgprot(pgprot_val(prot) | _PAGE_PSE)));
690
691 return 1;
692 }
693
694 /**
695 * pud_clear_huge - clear kernel PUD mapping when it is set
696 *
697 * Returns 1 on success and 0 on failure (no PUD map is found).
698 */
pud_clear_huge(pud_t * pud)699 int pud_clear_huge(pud_t *pud)
700 {
701 if (pud_large(*pud)) {
702 pud_clear(pud);
703 return 1;
704 }
705
706 return 0;
707 }
708
709 /**
710 * pmd_clear_huge - clear kernel PMD mapping when it is set
711 *
712 * Returns 1 on success and 0 on failure (no PMD map is found).
713 */
pmd_clear_huge(pmd_t * pmd)714 int pmd_clear_huge(pmd_t *pmd)
715 {
716 if (pmd_large(*pmd)) {
717 pmd_clear(pmd);
718 return 1;
719 }
720
721 return 0;
722 }
723
724 #ifdef CONFIG_X86_64
725 /**
726 * pud_free_pmd_page - Clear pud entry and free pmd page.
727 * @pud: Pointer to a PUD.
728 * @addr: Virtual address associated with pud.
729 *
730 * Context: The pud range has been unmapped and TLB purged.
731 * Return: 1 if clearing the entry succeeded. 0 otherwise.
732 *
733 * NOTE: Callers must allow a single page allocation.
734 */
pud_free_pmd_page(pud_t * pud,unsigned long addr)735 int pud_free_pmd_page(pud_t *pud, unsigned long addr)
736 {
737 pmd_t *pmd, *pmd_sv;
738 pte_t *pte;
739 int i;
740
741 if (pud_none(*pud))
742 return 1;
743
744 pmd = (pmd_t *)pud_page_vaddr(*pud);
745 pmd_sv = (pmd_t *)__get_free_page(GFP_KERNEL);
746 if (!pmd_sv)
747 return 0;
748
749 for (i = 0; i < PTRS_PER_PMD; i++) {
750 pmd_sv[i] = pmd[i];
751 if (!pmd_none(pmd[i]))
752 pmd_clear(&pmd[i]);
753 }
754
755 pud_clear(pud);
756
757 /* INVLPG to clear all paging-structure caches */
758 flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1);
759
760 for (i = 0; i < PTRS_PER_PMD; i++) {
761 if (!pmd_none(pmd_sv[i])) {
762 pte = (pte_t *)pmd_page_vaddr(pmd_sv[i]);
763 free_page((unsigned long)pte);
764 }
765 }
766
767 free_page((unsigned long)pmd_sv);
768 free_page((unsigned long)pmd);
769
770 return 1;
771 }
772
773 /**
774 * pmd_free_pte_page - Clear pmd entry and free pte page.
775 * @pmd: Pointer to a PMD.
776 * @addr: Virtual address associated with pmd.
777 *
778 * Context: The pmd range has been unmapped and TLB purged.
779 * Return: 1 if clearing the entry succeeded. 0 otherwise.
780 */
pmd_free_pte_page(pmd_t * pmd,unsigned long addr)781 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
782 {
783 pte_t *pte;
784
785 if (pmd_none(*pmd))
786 return 1;
787
788 pte = (pte_t *)pmd_page_vaddr(*pmd);
789 pmd_clear(pmd);
790
791 /* INVLPG to clear all paging-structure caches */
792 flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1);
793
794 free_page((unsigned long)pte);
795
796 return 1;
797 }
798
799 #else /* !CONFIG_X86_64 */
800
pud_free_pmd_page(pud_t * pud,unsigned long addr)801 int pud_free_pmd_page(pud_t *pud, unsigned long addr)
802 {
803 return pud_none(*pud);
804 }
805
806 /*
807 * Disable free page handling on x86-PAE. This assures that ioremap()
808 * does not update sync'd pmd entries. See vmalloc_sync_one().
809 */
pmd_free_pte_page(pmd_t * pmd,unsigned long addr)810 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
811 {
812 return pmd_none(*pmd);
813 }
814
815 #endif /* CONFIG_X86_64 */
816 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
817