• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Synthesize TLB refill handlers at runtime.
7  *
8  * Copyright (C) 2004, 2005, 2006, 2008	 Thiemo Seufer
9  * Copyright (C) 2005, 2007, 2008, 2009	 Maciej W. Rozycki
10  * Copyright (C) 2006  Ralf Baechle (ralf@linux-mips.org)
11  * Copyright (C) 2008, 2009 Cavium Networks, Inc.
12  * Copyright (C) 2011  MIPS Technologies, Inc.
13  *
14  * ... and the days got worse and worse and now you see
15  * I've gone completely out of my mind.
16  *
17  * They're coming to take me a away haha
18  * they're coming to take me a away hoho hihi haha
19  * to the funny farm where code is beautiful all the time ...
20  *
21  * (Condolences to Napoleon XIV)
22  */
23 
24 #include <linux/bug.h>
25 #include <linux/export.h>
26 #include <linux/kernel.h>
27 #include <linux/types.h>
28 #include <linux/smp.h>
29 #include <linux/string.h>
30 #include <linux/cache.h>
31 
32 #include <asm/cacheflush.h>
33 #include <asm/cpu-type.h>
34 #include <asm/pgtable.h>
35 #include <asm/war.h>
36 #include <asm/uasm.h>
37 #include <asm/setup.h>
38 #include <asm/tlbex.h>
39 
40 static int mips_xpa_disabled;
41 
xpa_disable(char * s)42 static int __init xpa_disable(char *s)
43 {
44 	mips_xpa_disabled = 1;
45 
46 	return 1;
47 }
48 
49 __setup("noxpa", xpa_disable);
50 
51 /*
52  * TLB load/store/modify handlers.
53  *
54  * Only the fastpath gets synthesized at runtime, the slowpath for
55  * do_page_fault remains normal asm.
56  */
57 extern void tlb_do_page_fault_0(void);
58 extern void tlb_do_page_fault_1(void);
59 
60 struct work_registers {
61 	int r1;
62 	int r2;
63 	int r3;
64 };
65 
66 struct tlb_reg_save {
67 	unsigned long a;
68 	unsigned long b;
69 } ____cacheline_aligned_in_smp;
70 
71 static struct tlb_reg_save handler_reg_save[NR_CPUS];
72 
r45k_bvahwbug(void)73 static inline int r45k_bvahwbug(void)
74 {
75 	/* XXX: We should probe for the presence of this bug, but we don't. */
76 	return 0;
77 }
78 
r4k_250MHZhwbug(void)79 static inline int r4k_250MHZhwbug(void)
80 {
81 	/* XXX: We should probe for the presence of this bug, but we don't. */
82 	return 0;
83 }
84 
bcm1250_m3_war(void)85 static inline int __maybe_unused bcm1250_m3_war(void)
86 {
87 	return BCM1250_M3_WAR;
88 }
89 
r10000_llsc_war(void)90 static inline int __maybe_unused r10000_llsc_war(void)
91 {
92 	return R10000_LLSC_WAR;
93 }
94 
use_bbit_insns(void)95 static int use_bbit_insns(void)
96 {
97 	switch (current_cpu_type()) {
98 	case CPU_CAVIUM_OCTEON:
99 	case CPU_CAVIUM_OCTEON_PLUS:
100 	case CPU_CAVIUM_OCTEON2:
101 	case CPU_CAVIUM_OCTEON3:
102 		return 1;
103 	default:
104 		return 0;
105 	}
106 }
107 
use_lwx_insns(void)108 static int use_lwx_insns(void)
109 {
110 	switch (current_cpu_type()) {
111 	case CPU_CAVIUM_OCTEON2:
112 	case CPU_CAVIUM_OCTEON3:
113 		return 1;
114 	default:
115 		return 0;
116 	}
117 }
118 #if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
119     CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
scratchpad_available(void)120 static bool scratchpad_available(void)
121 {
122 	return true;
123 }
scratchpad_offset(int i)124 static int scratchpad_offset(int i)
125 {
126 	/*
127 	 * CVMSEG starts at address -32768 and extends for
128 	 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
129 	 */
130 	i += 1; /* Kernel use starts at the top and works down. */
131 	return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
132 }
133 #else
scratchpad_available(void)134 static bool scratchpad_available(void)
135 {
136 	return false;
137 }
scratchpad_offset(int i)138 static int scratchpad_offset(int i)
139 {
140 	BUG();
141 	/* Really unreachable, but evidently some GCC want this. */
142 	return 0;
143 }
144 #endif
145 /*
146  * Found by experiment: At least some revisions of the 4kc throw under
147  * some circumstances a machine check exception, triggered by invalid
148  * values in the index register.  Delaying the tlbp instruction until
149  * after the next branch,  plus adding an additional nop in front of
150  * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
151  * why; it's not an issue caused by the core RTL.
152  *
153  */
m4kc_tlbp_war(void)154 static int m4kc_tlbp_war(void)
155 {
156 	return current_cpu_type() == CPU_4KC;
157 }
158 
159 /* Handle labels (which must be positive integers). */
160 enum label_id {
161 	label_second_part = 1,
162 	label_leave,
163 	label_vmalloc,
164 	label_vmalloc_done,
165 	label_tlbw_hazard_0,
166 	label_split = label_tlbw_hazard_0 + 8,
167 	label_tlbl_goaround1,
168 	label_tlbl_goaround2,
169 	label_nopage_tlbl,
170 	label_nopage_tlbs,
171 	label_nopage_tlbm,
172 	label_smp_pgtable_change,
173 	label_r3000_write_probe_fail,
174 	label_large_segbits_fault,
175 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
176 	label_tlb_huge_update,
177 #endif
178 };
179 
180 UASM_L_LA(_second_part)
181 UASM_L_LA(_leave)
182 UASM_L_LA(_vmalloc)
183 UASM_L_LA(_vmalloc_done)
184 /* _tlbw_hazard_x is handled differently.  */
185 UASM_L_LA(_split)
186 UASM_L_LA(_tlbl_goaround1)
187 UASM_L_LA(_tlbl_goaround2)
188 UASM_L_LA(_nopage_tlbl)
189 UASM_L_LA(_nopage_tlbs)
190 UASM_L_LA(_nopage_tlbm)
191 UASM_L_LA(_smp_pgtable_change)
192 UASM_L_LA(_r3000_write_probe_fail)
193 UASM_L_LA(_large_segbits_fault)
194 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
195 UASM_L_LA(_tlb_huge_update)
196 #endif
197 
198 static int hazard_instance;
199 
uasm_bgezl_hazard(u32 ** p,struct uasm_reloc ** r,int instance)200 static void uasm_bgezl_hazard(u32 **p, struct uasm_reloc **r, int instance)
201 {
202 	switch (instance) {
203 	case 0 ... 7:
204 		uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance);
205 		return;
206 	default:
207 		BUG();
208 	}
209 }
210 
uasm_bgezl_label(struct uasm_label ** l,u32 ** p,int instance)211 static void uasm_bgezl_label(struct uasm_label **l, u32 **p, int instance)
212 {
213 	switch (instance) {
214 	case 0 ... 7:
215 		uasm_build_label(l, *p, label_tlbw_hazard_0 + instance);
216 		break;
217 	default:
218 		BUG();
219 	}
220 }
221 
222 /*
223  * pgtable bits are assigned dynamically depending on processor feature
224  * and statically based on kernel configuration.  This spits out the actual
225  * values the kernel is using.	Required to make sense from disassembled
226  * TLB exception handlers.
227  */
output_pgtable_bits_defines(void)228 static void output_pgtable_bits_defines(void)
229 {
230 #define pr_define(fmt, ...)					\
231 	pr_debug("#define " fmt, ##__VA_ARGS__)
232 
233 	pr_debug("#include <asm/asm.h>\n");
234 	pr_debug("#include <asm/regdef.h>\n");
235 	pr_debug("\n");
236 
237 	pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT);
238 	pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT);
239 	pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT);
240 	pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT);
241 	pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT);
242 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
243 	pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT);
244 #endif
245 #ifdef _PAGE_NO_EXEC_SHIFT
246 	if (cpu_has_rixi)
247 		pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT);
248 #endif
249 	pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT);
250 	pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT);
251 	pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT);
252 	pr_define("_PFN_SHIFT %d\n", _PFN_SHIFT);
253 	pr_debug("\n");
254 }
255 
dump_handler(const char * symbol,const u32 * handler,int count)256 static inline void dump_handler(const char *symbol, const u32 *handler, int count)
257 {
258 	int i;
259 
260 	pr_debug("LEAF(%s)\n", symbol);
261 
262 	pr_debug("\t.set push\n");
263 	pr_debug("\t.set noreorder\n");
264 
265 	for (i = 0; i < count; i++)
266 		pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]);
267 
268 	pr_debug("\t.set\tpop\n");
269 
270 	pr_debug("\tEND(%s)\n", symbol);
271 }
272 
273 /* The only general purpose registers allowed in TLB handlers. */
274 #define K0		26
275 #define K1		27
276 
277 /* Some CP0 registers */
278 #define C0_INDEX	0, 0
279 #define C0_ENTRYLO0	2, 0
280 #define C0_TCBIND	2, 2
281 #define C0_ENTRYLO1	3, 0
282 #define C0_CONTEXT	4, 0
283 #define C0_PAGEMASK	5, 0
284 #define C0_PWBASE	5, 5
285 #define C0_PWFIELD	5, 6
286 #define C0_PWSIZE	5, 7
287 #define C0_PWCTL	6, 6
288 #define C0_BADVADDR	8, 0
289 #define C0_PGD		9, 7
290 #define C0_ENTRYHI	10, 0
291 #define C0_EPC		14, 0
292 #define C0_XCONTEXT	20, 0
293 
294 #ifdef CONFIG_64BIT
295 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
296 #else
297 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
298 #endif
299 
300 /* The worst case length of the handler is around 18 instructions for
301  * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
302  * Maximum space available is 32 instructions for R3000 and 64
303  * instructions for R4000.
304  *
305  * We deliberately chose a buffer size of 128, so we won't scribble
306  * over anything important on overflow before we panic.
307  */
308 static u32 tlb_handler[128];
309 
310 /* simply assume worst case size for labels and relocs */
311 static struct uasm_label labels[128];
312 static struct uasm_reloc relocs[128];
313 
314 static int check_for_high_segbits;
315 static bool fill_includes_sw_bits;
316 
317 static unsigned int kscratch_used_mask;
318 
c0_kscratch(void)319 static inline int __maybe_unused c0_kscratch(void)
320 {
321 	switch (current_cpu_type()) {
322 	case CPU_XLP:
323 	case CPU_XLR:
324 		return 22;
325 	default:
326 		return 31;
327 	}
328 }
329 
allocate_kscratch(void)330 static int allocate_kscratch(void)
331 {
332 	int r;
333 	unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
334 
335 	r = ffs(a);
336 
337 	if (r == 0)
338 		return -1;
339 
340 	r--; /* make it zero based */
341 
342 	kscratch_used_mask |= (1 << r);
343 
344 	return r;
345 }
346 
347 static int scratch_reg;
348 int pgd_reg;
349 EXPORT_SYMBOL_GPL(pgd_reg);
350 enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
351 
build_get_work_registers(u32 ** p)352 static struct work_registers build_get_work_registers(u32 **p)
353 {
354 	struct work_registers r;
355 
356 	if (scratch_reg >= 0) {
357 		/* Save in CPU local C0_KScratch? */
358 		UASM_i_MTC0(p, 1, c0_kscratch(), scratch_reg);
359 		r.r1 = K0;
360 		r.r2 = K1;
361 		r.r3 = 1;
362 		return r;
363 	}
364 
365 	if (num_possible_cpus() > 1) {
366 		/* Get smp_processor_id */
367 		UASM_i_CPUID_MFC0(p, K0, SMP_CPUID_REG);
368 		UASM_i_SRL_SAFE(p, K0, K0, SMP_CPUID_REGSHIFT);
369 
370 		/* handler_reg_save index in K0 */
371 		UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save)));
372 
373 		UASM_i_LA(p, K1, (long)&handler_reg_save);
374 		UASM_i_ADDU(p, K0, K0, K1);
375 	} else {
376 		UASM_i_LA(p, K0, (long)&handler_reg_save);
377 	}
378 	/* K0 now points to save area, save $1 and $2  */
379 	UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0);
380 	UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0);
381 
382 	r.r1 = K1;
383 	r.r2 = 1;
384 	r.r3 = 2;
385 	return r;
386 }
387 
build_restore_work_registers(u32 ** p)388 static void build_restore_work_registers(u32 **p)
389 {
390 	if (scratch_reg >= 0) {
391 		uasm_i_ehb(p);
392 		UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
393 		return;
394 	}
395 	/* K0 already points to save area, restore $1 and $2  */
396 	UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0);
397 	UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0);
398 }
399 
400 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
401 
402 /*
403  * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
404  * we cannot do r3000 under these circumstances.
405  *
406  * Declare pgd_current here instead of including mmu_context.h to avoid type
407  * conflicts for tlbmiss_handler_setup_pgd
408  */
409 extern unsigned long pgd_current[];
410 
411 /*
412  * The R3000 TLB handler is simple.
413  */
build_r3000_tlb_refill_handler(void)414 static void build_r3000_tlb_refill_handler(void)
415 {
416 	long pgdc = (long)pgd_current;
417 	u32 *p;
418 
419 	memset(tlb_handler, 0, sizeof(tlb_handler));
420 	p = tlb_handler;
421 
422 	uasm_i_mfc0(&p, K0, C0_BADVADDR);
423 	uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
424 	uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
425 	uasm_i_srl(&p, K0, K0, 22); /* load delay */
426 	uasm_i_sll(&p, K0, K0, 2);
427 	uasm_i_addu(&p, K1, K1, K0);
428 	uasm_i_mfc0(&p, K0, C0_CONTEXT);
429 	uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
430 	uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
431 	uasm_i_addu(&p, K1, K1, K0);
432 	uasm_i_lw(&p, K0, 0, K1);
433 	uasm_i_nop(&p); /* load delay */
434 	uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
435 	uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
436 	uasm_i_tlbwr(&p); /* cp0 delay */
437 	uasm_i_jr(&p, K1);
438 	uasm_i_rfe(&p); /* branch delay */
439 
440 	if (p > tlb_handler + 32)
441 		panic("TLB refill handler space exceeded");
442 
443 	pr_debug("Wrote TLB refill handler (%u instructions).\n",
444 		 (unsigned int)(p - tlb_handler));
445 
446 	memcpy((void *)ebase, tlb_handler, 0x80);
447 	local_flush_icache_range(ebase, ebase + 0x80);
448 
449 	dump_handler("r3000_tlb_refill", (u32 *)ebase, 32);
450 }
451 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
452 
453 /*
454  * The R4000 TLB handler is much more complicated. We have two
455  * consecutive handler areas with 32 instructions space each.
456  * Since they aren't used at the same time, we can overflow in the
457  * other one.To keep things simple, we first assume linear space,
458  * then we relocate it to the final handler layout as needed.
459  */
460 static u32 final_handler[64];
461 
462 /*
463  * Hazards
464  *
465  * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
466  * 2. A timing hazard exists for the TLBP instruction.
467  *
468  *	stalling_instruction
469  *	TLBP
470  *
471  * The JTLB is being read for the TLBP throughout the stall generated by the
472  * previous instruction. This is not really correct as the stalling instruction
473  * can modify the address used to access the JTLB.  The failure symptom is that
474  * the TLBP instruction will use an address created for the stalling instruction
475  * and not the address held in C0_ENHI and thus report the wrong results.
476  *
477  * The software work-around is to not allow the instruction preceding the TLBP
478  * to stall - make it an NOP or some other instruction guaranteed not to stall.
479  *
480  * Errata 2 will not be fixed.	This errata is also on the R5000.
481  *
482  * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
483  */
build_tlb_probe_entry(u32 ** p)484 static void __maybe_unused build_tlb_probe_entry(u32 **p)
485 {
486 	switch (current_cpu_type()) {
487 	/* Found by experiment: R4600 v2.0/R4700 needs this, too.  */
488 	case CPU_R4600:
489 	case CPU_R4700:
490 	case CPU_R5000:
491 	case CPU_NEVADA:
492 		uasm_i_nop(p);
493 		uasm_i_tlbp(p);
494 		break;
495 
496 	default:
497 		uasm_i_tlbp(p);
498 		break;
499 	}
500 }
501 
build_tlb_write_entry(u32 ** p,struct uasm_label ** l,struct uasm_reloc ** r,enum tlb_write_entry wmode)502 void build_tlb_write_entry(u32 **p, struct uasm_label **l,
503 			   struct uasm_reloc **r,
504 			   enum tlb_write_entry wmode)
505 {
506 	void(*tlbw)(u32 **) = NULL;
507 
508 	switch (wmode) {
509 	case tlb_random: tlbw = uasm_i_tlbwr; break;
510 	case tlb_indexed: tlbw = uasm_i_tlbwi; break;
511 	}
512 
513 	if (cpu_has_mips_r2_r6) {
514 		if (cpu_has_mips_r2_exec_hazard)
515 			uasm_i_ehb(p);
516 		tlbw(p);
517 		return;
518 	}
519 
520 	switch (current_cpu_type()) {
521 	case CPU_R4000PC:
522 	case CPU_R4000SC:
523 	case CPU_R4000MC:
524 	case CPU_R4400PC:
525 	case CPU_R4400SC:
526 	case CPU_R4400MC:
527 		/*
528 		 * This branch uses up a mtc0 hazard nop slot and saves
529 		 * two nops after the tlbw instruction.
530 		 */
531 		uasm_bgezl_hazard(p, r, hazard_instance);
532 		tlbw(p);
533 		uasm_bgezl_label(l, p, hazard_instance);
534 		hazard_instance++;
535 		uasm_i_nop(p);
536 		break;
537 
538 	case CPU_R4600:
539 	case CPU_R4700:
540 		uasm_i_nop(p);
541 		tlbw(p);
542 		uasm_i_nop(p);
543 		break;
544 
545 	case CPU_R5000:
546 	case CPU_NEVADA:
547 		uasm_i_nop(p); /* QED specifies 2 nops hazard */
548 		uasm_i_nop(p); /* QED specifies 2 nops hazard */
549 		tlbw(p);
550 		break;
551 
552 	case CPU_R4300:
553 	case CPU_5KC:
554 	case CPU_TX49XX:
555 	case CPU_PR4450:
556 	case CPU_XLR:
557 		uasm_i_nop(p);
558 		tlbw(p);
559 		break;
560 
561 	case CPU_R10000:
562 	case CPU_R12000:
563 	case CPU_R14000:
564 	case CPU_R16000:
565 	case CPU_4KC:
566 	case CPU_4KEC:
567 	case CPU_M14KC:
568 	case CPU_M14KEC:
569 	case CPU_SB1:
570 	case CPU_SB1A:
571 	case CPU_4KSC:
572 	case CPU_20KC:
573 	case CPU_25KF:
574 	case CPU_BMIPS32:
575 	case CPU_BMIPS3300:
576 	case CPU_BMIPS4350:
577 	case CPU_BMIPS4380:
578 	case CPU_BMIPS5000:
579 	case CPU_LOONGSON2:
580 	case CPU_LOONGSON3:
581 	case CPU_R5500:
582 		if (m4kc_tlbp_war())
583 			uasm_i_nop(p);
584 	case CPU_ALCHEMY:
585 		tlbw(p);
586 		break;
587 
588 	case CPU_RM7000:
589 		uasm_i_nop(p);
590 		uasm_i_nop(p);
591 		uasm_i_nop(p);
592 		uasm_i_nop(p);
593 		tlbw(p);
594 		break;
595 
596 	case CPU_VR4111:
597 	case CPU_VR4121:
598 	case CPU_VR4122:
599 	case CPU_VR4181:
600 	case CPU_VR4181A:
601 		uasm_i_nop(p);
602 		uasm_i_nop(p);
603 		tlbw(p);
604 		uasm_i_nop(p);
605 		uasm_i_nop(p);
606 		break;
607 
608 	case CPU_VR4131:
609 	case CPU_VR4133:
610 	case CPU_R5432:
611 		uasm_i_nop(p);
612 		uasm_i_nop(p);
613 		tlbw(p);
614 		break;
615 
616 	case CPU_JZRISC:
617 		tlbw(p);
618 		uasm_i_nop(p);
619 		break;
620 
621 	default:
622 		panic("No TLB refill handler yet (CPU type: %d)",
623 		      current_cpu_type());
624 		break;
625 	}
626 }
627 EXPORT_SYMBOL_GPL(build_tlb_write_entry);
628 
build_convert_pte_to_entrylo(u32 ** p,unsigned int reg)629 static __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
630 							unsigned int reg)
631 {
632 	if (_PAGE_GLOBAL_SHIFT == 0) {
633 		/* pte_t is already in EntryLo format */
634 		return;
635 	}
636 
637 	if (cpu_has_rixi && !!_PAGE_NO_EXEC) {
638 		if (fill_includes_sw_bits) {
639 			UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL));
640 		} else {
641 			UASM_i_SRL(p, reg, reg, ilog2(_PAGE_NO_EXEC));
642 			UASM_i_ROTR(p, reg, reg,
643 				    ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
644 		}
645 	} else {
646 #ifdef CONFIG_PHYS_ADDR_T_64BIT
647 		uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
648 #else
649 		UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
650 #endif
651 	}
652 }
653 
654 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
655 
build_restore_pagemask(u32 ** p,struct uasm_reloc ** r,unsigned int tmp,enum label_id lid,int restore_scratch)656 static void build_restore_pagemask(u32 **p, struct uasm_reloc **r,
657 				   unsigned int tmp, enum label_id lid,
658 				   int restore_scratch)
659 {
660 	if (restore_scratch) {
661 		/*
662 		 * Ensure the MFC0 below observes the value written to the
663 		 * KScratch register by the prior MTC0.
664 		 */
665 		if (scratch_reg >= 0)
666 			uasm_i_ehb(p);
667 
668 		/* Reset default page size */
669 		if (PM_DEFAULT_MASK >> 16) {
670 			uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
671 			uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
672 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
673 			uasm_il_b(p, r, lid);
674 		} else if (PM_DEFAULT_MASK) {
675 			uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
676 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
677 			uasm_il_b(p, r, lid);
678 		} else {
679 			uasm_i_mtc0(p, 0, C0_PAGEMASK);
680 			uasm_il_b(p, r, lid);
681 		}
682 		if (scratch_reg >= 0)
683 			UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
684 		else
685 			UASM_i_LW(p, 1, scratchpad_offset(0), 0);
686 	} else {
687 		/* Reset default page size */
688 		if (PM_DEFAULT_MASK >> 16) {
689 			uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
690 			uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
691 			uasm_il_b(p, r, lid);
692 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
693 		} else if (PM_DEFAULT_MASK) {
694 			uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
695 			uasm_il_b(p, r, lid);
696 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
697 		} else {
698 			uasm_il_b(p, r, lid);
699 			uasm_i_mtc0(p, 0, C0_PAGEMASK);
700 		}
701 	}
702 }
703 
build_huge_tlb_write_entry(u32 ** p,struct uasm_label ** l,struct uasm_reloc ** r,unsigned int tmp,enum tlb_write_entry wmode,int restore_scratch)704 static void build_huge_tlb_write_entry(u32 **p, struct uasm_label **l,
705 				       struct uasm_reloc **r,
706 				       unsigned int tmp,
707 				       enum tlb_write_entry wmode,
708 				       int restore_scratch)
709 {
710 	/* Set huge page tlb entry size */
711 	uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
712 	uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
713 	uasm_i_mtc0(p, tmp, C0_PAGEMASK);
714 
715 	build_tlb_write_entry(p, l, r, wmode);
716 
717 	build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
718 }
719 
720 /*
721  * Check if Huge PTE is present, if so then jump to LABEL.
722  */
723 static void
build_is_huge_pte(u32 ** p,struct uasm_reloc ** r,unsigned int tmp,unsigned int pmd,int lid)724 build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
725 		  unsigned int pmd, int lid)
726 {
727 	UASM_i_LW(p, tmp, 0, pmd);
728 	if (use_bbit_insns()) {
729 		uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
730 	} else {
731 		uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
732 		uasm_il_bnez(p, r, tmp, lid);
733 	}
734 }
735 
build_huge_update_entries(u32 ** p,unsigned int pte,unsigned int tmp)736 static void build_huge_update_entries(u32 **p, unsigned int pte,
737 				      unsigned int tmp)
738 {
739 	int small_sequence;
740 
741 	/*
742 	 * A huge PTE describes an area the size of the
743 	 * configured huge page size. This is twice the
744 	 * of the large TLB entry size we intend to use.
745 	 * A TLB entry half the size of the configured
746 	 * huge page size is configured into entrylo0
747 	 * and entrylo1 to cover the contiguous huge PTE
748 	 * address space.
749 	 */
750 	small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
751 
752 	/* We can clobber tmp.	It isn't used after this.*/
753 	if (!small_sequence)
754 		uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
755 
756 	build_convert_pte_to_entrylo(p, pte);
757 	UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
758 	/* convert to entrylo1 */
759 	if (small_sequence)
760 		UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
761 	else
762 		UASM_i_ADDU(p, pte, pte, tmp);
763 
764 	UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
765 }
766 
build_huge_handler_tail(u32 ** p,struct uasm_reloc ** r,struct uasm_label ** l,unsigned int pte,unsigned int ptr,unsigned int flush)767 static void build_huge_handler_tail(u32 **p, struct uasm_reloc **r,
768 				    struct uasm_label **l,
769 				    unsigned int pte,
770 				    unsigned int ptr,
771 				    unsigned int flush)
772 {
773 #ifdef CONFIG_SMP
774 	UASM_i_SC(p, pte, 0, ptr);
775 	uasm_il_beqz(p, r, pte, label_tlb_huge_update);
776 	UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
777 #else
778 	UASM_i_SW(p, pte, 0, ptr);
779 #endif
780 	if (cpu_has_ftlb && flush) {
781 		BUG_ON(!cpu_has_tlbinv);
782 
783 		UASM_i_MFC0(p, ptr, C0_ENTRYHI);
784 		uasm_i_ori(p, ptr, ptr, MIPS_ENTRYHI_EHINV);
785 		UASM_i_MTC0(p, ptr, C0_ENTRYHI);
786 		build_tlb_write_entry(p, l, r, tlb_indexed);
787 
788 		uasm_i_xori(p, ptr, ptr, MIPS_ENTRYHI_EHINV);
789 		UASM_i_MTC0(p, ptr, C0_ENTRYHI);
790 		build_huge_update_entries(p, pte, ptr);
791 		build_huge_tlb_write_entry(p, l, r, pte, tlb_random, 0);
792 
793 		return;
794 	}
795 
796 	build_huge_update_entries(p, pte, ptr);
797 	build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
798 }
799 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
800 
801 #ifdef CONFIG_64BIT
802 /*
803  * TMP and PTR are scratch.
804  * TMP will be clobbered, PTR will hold the pmd entry.
805  */
build_get_pmde64(u32 ** p,struct uasm_label ** l,struct uasm_reloc ** r,unsigned int tmp,unsigned int ptr)806 void build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
807 		      unsigned int tmp, unsigned int ptr)
808 {
809 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
810 	long pgdc = (long)pgd_current;
811 #endif
812 	/*
813 	 * The vmalloc handling is not in the hotpath.
814 	 */
815 	uasm_i_dmfc0(p, tmp, C0_BADVADDR);
816 
817 	if (check_for_high_segbits) {
818 		/*
819 		 * The kernel currently implicitely assumes that the
820 		 * MIPS SEGBITS parameter for the processor is
821 		 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
822 		 * allocate virtual addresses outside the maximum
823 		 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
824 		 * that doesn't prevent user code from accessing the
825 		 * higher xuseg addresses.  Here, we make sure that
826 		 * everything but the lower xuseg addresses goes down
827 		 * the module_alloc/vmalloc path.
828 		 */
829 		uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
830 		uasm_il_bnez(p, r, ptr, label_vmalloc);
831 	} else {
832 		uasm_il_bltz(p, r, tmp, label_vmalloc);
833 	}
834 	/* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
835 
836 	if (pgd_reg != -1) {
837 		/* pgd is in pgd_reg */
838 		if (cpu_has_ldpte)
839 			UASM_i_MFC0(p, ptr, C0_PWBASE);
840 		else
841 			UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
842 	} else {
843 #if defined(CONFIG_MIPS_PGD_C0_CONTEXT)
844 		/*
845 		 * &pgd << 11 stored in CONTEXT [23..63].
846 		 */
847 		UASM_i_MFC0(p, ptr, C0_CONTEXT);
848 
849 		/* Clear lower 23 bits of context. */
850 		uasm_i_dins(p, ptr, 0, 0, 23);
851 
852 		/* 1 0	1 0 1  << 6  xkphys cached */
853 		uasm_i_ori(p, ptr, ptr, 0x540);
854 		uasm_i_drotr(p, ptr, ptr, 11);
855 #elif defined(CONFIG_SMP)
856 		UASM_i_CPUID_MFC0(p, ptr, SMP_CPUID_REG);
857 		uasm_i_dsrl_safe(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
858 		UASM_i_LA_mostly(p, tmp, pgdc);
859 		uasm_i_daddu(p, ptr, ptr, tmp);
860 		uasm_i_dmfc0(p, tmp, C0_BADVADDR);
861 		uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
862 #else
863 		UASM_i_LA_mostly(p, ptr, pgdc);
864 		uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
865 #endif
866 	}
867 
868 	uasm_l_vmalloc_done(l, *p);
869 
870 	/* get pgd offset in bytes */
871 	uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
872 
873 	uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
874 	uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
875 #ifndef __PAGETABLE_PUD_FOLDED
876 	uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
877 	uasm_i_ld(p, ptr, 0, ptr); /* get pud pointer */
878 	uasm_i_dsrl_safe(p, tmp, tmp, PUD_SHIFT - 3); /* get pud offset in bytes */
879 	uasm_i_andi(p, tmp, tmp, (PTRS_PER_PUD - 1) << 3);
880 	uasm_i_daddu(p, ptr, ptr, tmp); /* add in pud offset */
881 #endif
882 #ifndef __PAGETABLE_PMD_FOLDED
883 	uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
884 	uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
885 	uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
886 	uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
887 	uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
888 #endif
889 }
890 EXPORT_SYMBOL_GPL(build_get_pmde64);
891 
892 /*
893  * BVADDR is the faulting address, PTR is scratch.
894  * PTR will hold the pgd for vmalloc.
895  */
896 static void
build_get_pgd_vmalloc64(u32 ** p,struct uasm_label ** l,struct uasm_reloc ** r,unsigned int bvaddr,unsigned int ptr,enum vmalloc64_mode mode)897 build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
898 			unsigned int bvaddr, unsigned int ptr,
899 			enum vmalloc64_mode mode)
900 {
901 	long swpd = (long)swapper_pg_dir;
902 	int single_insn_swpd;
903 	int did_vmalloc_branch = 0;
904 
905 	single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
906 
907 	uasm_l_vmalloc(l, *p);
908 
909 	if (mode != not_refill && check_for_high_segbits) {
910 		if (single_insn_swpd) {
911 			uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
912 			uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
913 			did_vmalloc_branch = 1;
914 			/* fall through */
915 		} else {
916 			uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
917 		}
918 	}
919 	if (!did_vmalloc_branch) {
920 		if (single_insn_swpd) {
921 			uasm_il_b(p, r, label_vmalloc_done);
922 			uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
923 		} else {
924 			UASM_i_LA_mostly(p, ptr, swpd);
925 			uasm_il_b(p, r, label_vmalloc_done);
926 			if (uasm_in_compat_space_p(swpd))
927 				uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
928 			else
929 				uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
930 		}
931 	}
932 	if (mode != not_refill && check_for_high_segbits) {
933 		uasm_l_large_segbits_fault(l, *p);
934 
935 		if (mode == refill_scratch && scratch_reg >= 0)
936 			uasm_i_ehb(p);
937 
938 		/*
939 		 * We get here if we are an xsseg address, or if we are
940 		 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
941 		 *
942 		 * Ignoring xsseg (assume disabled so would generate
943 		 * (address errors?), the only remaining possibility
944 		 * is the upper xuseg addresses.  On processors with
945 		 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
946 		 * addresses would have taken an address error. We try
947 		 * to mimic that here by taking a load/istream page
948 		 * fault.
949 		 */
950 		UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
951 		uasm_i_jr(p, ptr);
952 
953 		if (mode == refill_scratch) {
954 			if (scratch_reg >= 0)
955 				UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
956 			else
957 				UASM_i_LW(p, 1, scratchpad_offset(0), 0);
958 		} else {
959 			uasm_i_nop(p);
960 		}
961 	}
962 }
963 
964 #else /* !CONFIG_64BIT */
965 
966 /*
967  * TMP and PTR are scratch.
968  * TMP will be clobbered, PTR will hold the pgd entry.
969  */
build_get_pgde32(u32 ** p,unsigned int tmp,unsigned int ptr)970 void build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
971 {
972 	if (pgd_reg != -1) {
973 		/* pgd is in pgd_reg */
974 		uasm_i_mfc0(p, ptr, c0_kscratch(), pgd_reg);
975 		uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
976 	} else {
977 		long pgdc = (long)pgd_current;
978 
979 		/* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
980 #ifdef CONFIG_SMP
981 		uasm_i_mfc0(p, ptr, SMP_CPUID_REG);
982 		UASM_i_LA_mostly(p, tmp, pgdc);
983 		uasm_i_srl(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
984 		uasm_i_addu(p, ptr, tmp, ptr);
985 #else
986 		UASM_i_LA_mostly(p, ptr, pgdc);
987 #endif
988 		uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
989 		uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
990 	}
991 	uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
992 	uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
993 	uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
994 }
995 EXPORT_SYMBOL_GPL(build_get_pgde32);
996 
997 #endif /* !CONFIG_64BIT */
998 
build_adjust_context(u32 ** p,unsigned int ctx)999 static void build_adjust_context(u32 **p, unsigned int ctx)
1000 {
1001 	unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
1002 	unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
1003 
1004 	switch (current_cpu_type()) {
1005 	case CPU_VR41XX:
1006 	case CPU_VR4111:
1007 	case CPU_VR4121:
1008 	case CPU_VR4122:
1009 	case CPU_VR4131:
1010 	case CPU_VR4181:
1011 	case CPU_VR4181A:
1012 	case CPU_VR4133:
1013 		shift += 2;
1014 		break;
1015 
1016 	default:
1017 		break;
1018 	}
1019 
1020 	if (shift)
1021 		UASM_i_SRL(p, ctx, ctx, shift);
1022 	uasm_i_andi(p, ctx, ctx, mask);
1023 }
1024 
build_get_ptep(u32 ** p,unsigned int tmp,unsigned int ptr)1025 void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
1026 {
1027 	/*
1028 	 * Bug workaround for the Nevada. It seems as if under certain
1029 	 * circumstances the move from cp0_context might produce a
1030 	 * bogus result when the mfc0 instruction and its consumer are
1031 	 * in a different cacheline or a load instruction, probably any
1032 	 * memory reference, is between them.
1033 	 */
1034 	switch (current_cpu_type()) {
1035 	case CPU_NEVADA:
1036 		UASM_i_LW(p, ptr, 0, ptr);
1037 		GET_CONTEXT(p, tmp); /* get context reg */
1038 		break;
1039 
1040 	default:
1041 		GET_CONTEXT(p, tmp); /* get context reg */
1042 		UASM_i_LW(p, ptr, 0, ptr);
1043 		break;
1044 	}
1045 
1046 	build_adjust_context(p, tmp);
1047 	UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
1048 }
1049 EXPORT_SYMBOL_GPL(build_get_ptep);
1050 
build_update_entries(u32 ** p,unsigned int tmp,unsigned int ptep)1051 void build_update_entries(u32 **p, unsigned int tmp, unsigned int ptep)
1052 {
1053 	int pte_off_even = 0;
1054 	int pte_off_odd = sizeof(pte_t);
1055 
1056 #if defined(CONFIG_CPU_MIPS32) && defined(CONFIG_PHYS_ADDR_T_64BIT)
1057 	/* The low 32 bits of EntryLo is stored in pte_high */
1058 	pte_off_even += offsetof(pte_t, pte_high);
1059 	pte_off_odd += offsetof(pte_t, pte_high);
1060 #endif
1061 
1062 	if (IS_ENABLED(CONFIG_XPA)) {
1063 		uasm_i_lw(p, tmp, pte_off_even, ptep); /* even pte */
1064 		UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1065 		UASM_i_MTC0(p, tmp, C0_ENTRYLO0);
1066 
1067 		if (cpu_has_xpa && !mips_xpa_disabled) {
1068 			uasm_i_lw(p, tmp, 0, ptep);
1069 			uasm_i_ext(p, tmp, tmp, 0, 24);
1070 			uasm_i_mthc0(p, tmp, C0_ENTRYLO0);
1071 		}
1072 
1073 		uasm_i_lw(p, tmp, pte_off_odd, ptep); /* odd pte */
1074 		UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1075 		UASM_i_MTC0(p, tmp, C0_ENTRYLO1);
1076 
1077 		if (cpu_has_xpa && !mips_xpa_disabled) {
1078 			uasm_i_lw(p, tmp, sizeof(pte_t), ptep);
1079 			uasm_i_ext(p, tmp, tmp, 0, 24);
1080 			uasm_i_mthc0(p, tmp, C0_ENTRYLO1);
1081 		}
1082 		return;
1083 	}
1084 
1085 	UASM_i_LW(p, tmp, pte_off_even, ptep); /* get even pte */
1086 	UASM_i_LW(p, ptep, pte_off_odd, ptep); /* get odd pte */
1087 	if (r45k_bvahwbug())
1088 		build_tlb_probe_entry(p);
1089 	build_convert_pte_to_entrylo(p, tmp);
1090 	if (r4k_250MHZhwbug())
1091 		UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1092 	UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1093 	build_convert_pte_to_entrylo(p, ptep);
1094 	if (r45k_bvahwbug())
1095 		uasm_i_mfc0(p, tmp, C0_INDEX);
1096 	if (r4k_250MHZhwbug())
1097 		UASM_i_MTC0(p, 0, C0_ENTRYLO1);
1098 	UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1099 }
1100 EXPORT_SYMBOL_GPL(build_update_entries);
1101 
1102 struct mips_huge_tlb_info {
1103 	int huge_pte;
1104 	int restore_scratch;
1105 	bool need_reload_pte;
1106 };
1107 
1108 static struct mips_huge_tlb_info
build_fast_tlb_refill_handler(u32 ** p,struct uasm_label ** l,struct uasm_reloc ** r,unsigned int tmp,unsigned int ptr,int c0_scratch_reg)1109 build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
1110 			       struct uasm_reloc **r, unsigned int tmp,
1111 			       unsigned int ptr, int c0_scratch_reg)
1112 {
1113 	struct mips_huge_tlb_info rv;
1114 	unsigned int even, odd;
1115 	int vmalloc_branch_delay_filled = 0;
1116 	const int scratch = 1; /* Our extra working register */
1117 
1118 	rv.huge_pte = scratch;
1119 	rv.restore_scratch = 0;
1120 	rv.need_reload_pte = false;
1121 
1122 	if (check_for_high_segbits) {
1123 		UASM_i_MFC0(p, tmp, C0_BADVADDR);
1124 
1125 		if (pgd_reg != -1)
1126 			UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1127 		else
1128 			UASM_i_MFC0(p, ptr, C0_CONTEXT);
1129 
1130 		if (c0_scratch_reg >= 0)
1131 			UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1132 		else
1133 			UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1134 
1135 		uasm_i_dsrl_safe(p, scratch, tmp,
1136 				 PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
1137 		uasm_il_bnez(p, r, scratch, label_vmalloc);
1138 
1139 		if (pgd_reg == -1) {
1140 			vmalloc_branch_delay_filled = 1;
1141 			/* Clear lower 23 bits of context. */
1142 			uasm_i_dins(p, ptr, 0, 0, 23);
1143 		}
1144 	} else {
1145 		if (pgd_reg != -1)
1146 			UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1147 		else
1148 			UASM_i_MFC0(p, ptr, C0_CONTEXT);
1149 
1150 		UASM_i_MFC0(p, tmp, C0_BADVADDR);
1151 
1152 		if (c0_scratch_reg >= 0)
1153 			UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1154 		else
1155 			UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1156 
1157 		if (pgd_reg == -1)
1158 			/* Clear lower 23 bits of context. */
1159 			uasm_i_dins(p, ptr, 0, 0, 23);
1160 
1161 		uasm_il_bltz(p, r, tmp, label_vmalloc);
1162 	}
1163 
1164 	if (pgd_reg == -1) {
1165 		vmalloc_branch_delay_filled = 1;
1166 		/* 1 0	1 0 1  << 6  xkphys cached */
1167 		uasm_i_ori(p, ptr, ptr, 0x540);
1168 		uasm_i_drotr(p, ptr, ptr, 11);
1169 	}
1170 
1171 #ifdef __PAGETABLE_PMD_FOLDED
1172 #define LOC_PTEP scratch
1173 #else
1174 #define LOC_PTEP ptr
1175 #endif
1176 
1177 	if (!vmalloc_branch_delay_filled)
1178 		/* get pgd offset in bytes */
1179 		uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1180 
1181 	uasm_l_vmalloc_done(l, *p);
1182 
1183 	/*
1184 	 *			   tmp		ptr
1185 	 * fall-through case =	 badvaddr  *pgd_current
1186 	 * vmalloc case	     =	 badvaddr  swapper_pg_dir
1187 	 */
1188 
1189 	if (vmalloc_branch_delay_filled)
1190 		/* get pgd offset in bytes */
1191 		uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1192 
1193 #ifdef __PAGETABLE_PMD_FOLDED
1194 	GET_CONTEXT(p, tmp); /* get context reg */
1195 #endif
1196 	uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
1197 
1198 	if (use_lwx_insns()) {
1199 		UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
1200 	} else {
1201 		uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
1202 		uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
1203 	}
1204 
1205 #ifndef __PAGETABLE_PUD_FOLDED
1206 	/* get pud offset in bytes */
1207 	uasm_i_dsrl_safe(p, scratch, tmp, PUD_SHIFT - 3);
1208 	uasm_i_andi(p, scratch, scratch, (PTRS_PER_PUD - 1) << 3);
1209 
1210 	if (use_lwx_insns()) {
1211 		UASM_i_LWX(p, ptr, scratch, ptr);
1212 	} else {
1213 		uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1214 		UASM_i_LW(p, ptr, 0, ptr);
1215 	}
1216 	/* ptr contains a pointer to PMD entry */
1217 	/* tmp contains the address */
1218 #endif
1219 
1220 #ifndef __PAGETABLE_PMD_FOLDED
1221 	/* get pmd offset in bytes */
1222 	uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
1223 	uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
1224 	GET_CONTEXT(p, tmp); /* get context reg */
1225 
1226 	if (use_lwx_insns()) {
1227 		UASM_i_LWX(p, scratch, scratch, ptr);
1228 	} else {
1229 		uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1230 		UASM_i_LW(p, scratch, 0, ptr);
1231 	}
1232 #endif
1233 	/* Adjust the context during the load latency. */
1234 	build_adjust_context(p, tmp);
1235 
1236 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1237 	uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
1238 	/*
1239 	 * The in the LWX case we don't want to do the load in the
1240 	 * delay slot.	It cannot issue in the same cycle and may be
1241 	 * speculative and unneeded.
1242 	 */
1243 	if (use_lwx_insns())
1244 		uasm_i_nop(p);
1245 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
1246 
1247 
1248 	/* build_update_entries */
1249 	if (use_lwx_insns()) {
1250 		even = ptr;
1251 		odd = tmp;
1252 		UASM_i_LWX(p, even, scratch, tmp);
1253 		UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
1254 		UASM_i_LWX(p, odd, scratch, tmp);
1255 	} else {
1256 		UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
1257 		even = tmp;
1258 		odd = ptr;
1259 		UASM_i_LW(p, even, 0, ptr); /* get even pte */
1260 		UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
1261 	}
1262 	if (cpu_has_rixi) {
1263 		uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL));
1264 		UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1265 		uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL));
1266 	} else {
1267 		uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
1268 		UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1269 		uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
1270 	}
1271 	UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
1272 
1273 	if (c0_scratch_reg >= 0) {
1274 		uasm_i_ehb(p);
1275 		UASM_i_MFC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1276 		build_tlb_write_entry(p, l, r, tlb_random);
1277 		uasm_l_leave(l, *p);
1278 		rv.restore_scratch = 1;
1279 	} else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13)  {
1280 		build_tlb_write_entry(p, l, r, tlb_random);
1281 		uasm_l_leave(l, *p);
1282 		UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1283 	} else {
1284 		UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1285 		build_tlb_write_entry(p, l, r, tlb_random);
1286 		uasm_l_leave(l, *p);
1287 		rv.restore_scratch = 1;
1288 	}
1289 
1290 	uasm_i_eret(p); /* return from trap */
1291 
1292 	return rv;
1293 }
1294 
1295 /*
1296  * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
1297  * because EXL == 0.  If we wrap, we can also use the 32 instruction
1298  * slots before the XTLB refill exception handler which belong to the
1299  * unused TLB refill exception.
1300  */
1301 #define MIPS64_REFILL_INSNS 32
1302 
build_r4000_tlb_refill_handler(void)1303 static void build_r4000_tlb_refill_handler(void)
1304 {
1305 	u32 *p = tlb_handler;
1306 	struct uasm_label *l = labels;
1307 	struct uasm_reloc *r = relocs;
1308 	u32 *f;
1309 	unsigned int final_len;
1310 	struct mips_huge_tlb_info htlb_info __maybe_unused;
1311 	enum vmalloc64_mode vmalloc_mode __maybe_unused;
1312 
1313 	memset(tlb_handler, 0, sizeof(tlb_handler));
1314 	memset(labels, 0, sizeof(labels));
1315 	memset(relocs, 0, sizeof(relocs));
1316 	memset(final_handler, 0, sizeof(final_handler));
1317 
1318 	if (IS_ENABLED(CONFIG_64BIT) && (scratch_reg >= 0 || scratchpad_available()) && use_bbit_insns()) {
1319 		htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1,
1320 							  scratch_reg);
1321 		vmalloc_mode = refill_scratch;
1322 	} else {
1323 		htlb_info.huge_pte = K0;
1324 		htlb_info.restore_scratch = 0;
1325 		htlb_info.need_reload_pte = true;
1326 		vmalloc_mode = refill_noscratch;
1327 		/*
1328 		 * create the plain linear handler
1329 		 */
1330 		if (bcm1250_m3_war()) {
1331 			unsigned int segbits = 44;
1332 
1333 			uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1334 			uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1335 			uasm_i_xor(&p, K0, K0, K1);
1336 			uasm_i_dsrl_safe(&p, K1, K0, 62);
1337 			uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1338 			uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1339 			uasm_i_or(&p, K0, K0, K1);
1340 			uasm_il_bnez(&p, &r, K0, label_leave);
1341 			/* No need for uasm_i_nop */
1342 		}
1343 
1344 #ifdef CONFIG_64BIT
1345 		build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1346 #else
1347 		build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1348 #endif
1349 
1350 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1351 		build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
1352 #endif
1353 
1354 		build_get_ptep(&p, K0, K1);
1355 		build_update_entries(&p, K0, K1);
1356 		build_tlb_write_entry(&p, &l, &r, tlb_random);
1357 		uasm_l_leave(&l, p);
1358 		uasm_i_eret(&p); /* return from trap */
1359 	}
1360 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1361 	uasm_l_tlb_huge_update(&l, p);
1362 	if (htlb_info.need_reload_pte)
1363 		UASM_i_LW(&p, htlb_info.huge_pte, 0, K1);
1364 	build_huge_update_entries(&p, htlb_info.huge_pte, K1);
1365 	build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random,
1366 				   htlb_info.restore_scratch);
1367 #endif
1368 
1369 #ifdef CONFIG_64BIT
1370 	build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode);
1371 #endif
1372 
1373 	/*
1374 	 * Overflow check: For the 64bit handler, we need at least one
1375 	 * free instruction slot for the wrap-around branch. In worst
1376 	 * case, if the intended insertion point is a delay slot, we
1377 	 * need three, with the second nop'ed and the third being
1378 	 * unused.
1379 	 */
1380 	switch (boot_cpu_type()) {
1381 	default:
1382 		if (sizeof(long) == 4) {
1383 	case CPU_LOONGSON2:
1384 		/* Loongson2 ebase is different than r4k, we have more space */
1385 			if ((p - tlb_handler) > 64)
1386 				panic("TLB refill handler space exceeded");
1387 			/*
1388 			 * Now fold the handler in the TLB refill handler space.
1389 			 */
1390 			f = final_handler;
1391 			/* Simplest case, just copy the handler. */
1392 			uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1393 			final_len = p - tlb_handler;
1394 			break;
1395 		} else {
1396 			if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
1397 			    || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
1398 				&& uasm_insn_has_bdelay(relocs,
1399 							tlb_handler + MIPS64_REFILL_INSNS - 3)))
1400 				panic("TLB refill handler space exceeded");
1401 			/*
1402 			 * Now fold the handler in the TLB refill handler space.
1403 			 */
1404 			f = final_handler + MIPS64_REFILL_INSNS;
1405 			if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
1406 				/* Just copy the handler. */
1407 				uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1408 				final_len = p - tlb_handler;
1409 			} else {
1410 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1411 				const enum label_id ls = label_tlb_huge_update;
1412 #else
1413 				const enum label_id ls = label_vmalloc;
1414 #endif
1415 				u32 *split;
1416 				int ov = 0;
1417 				int i;
1418 
1419 				for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
1420 					;
1421 				BUG_ON(i == ARRAY_SIZE(labels));
1422 				split = labels[i].addr;
1423 
1424 				/*
1425 				 * See if we have overflown one way or the other.
1426 				 */
1427 				if (split > tlb_handler + MIPS64_REFILL_INSNS ||
1428 				    split < p - MIPS64_REFILL_INSNS)
1429 					ov = 1;
1430 
1431 				if (ov) {
1432 					/*
1433 					 * Split two instructions before the end.  One
1434 					 * for the branch and one for the instruction
1435 					 * in the delay slot.
1436 					 */
1437 					split = tlb_handler + MIPS64_REFILL_INSNS - 2;
1438 
1439 					/*
1440 					 * If the branch would fall in a delay slot,
1441 					 * we must back up an additional instruction
1442 					 * so that it is no longer in a delay slot.
1443 					 */
1444 					if (uasm_insn_has_bdelay(relocs, split - 1))
1445 						split--;
1446 				}
1447 				/* Copy first part of the handler. */
1448 				uasm_copy_handler(relocs, labels, tlb_handler, split, f);
1449 				f += split - tlb_handler;
1450 
1451 				if (ov) {
1452 					/* Insert branch. */
1453 					uasm_l_split(&l, final_handler);
1454 					uasm_il_b(&f, &r, label_split);
1455 					if (uasm_insn_has_bdelay(relocs, split))
1456 						uasm_i_nop(&f);
1457 					else {
1458 						uasm_copy_handler(relocs, labels,
1459 								  split, split + 1, f);
1460 						uasm_move_labels(labels, f, f + 1, -1);
1461 						f++;
1462 						split++;
1463 					}
1464 				}
1465 
1466 				/* Copy the rest of the handler. */
1467 				uasm_copy_handler(relocs, labels, split, p, final_handler);
1468 				final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
1469 					    (p - split);
1470 			}
1471 		}
1472 		break;
1473 	}
1474 
1475 	uasm_resolve_relocs(relocs, labels);
1476 	pr_debug("Wrote TLB refill handler (%u instructions).\n",
1477 		 final_len);
1478 
1479 	memcpy((void *)ebase, final_handler, 0x100);
1480 	local_flush_icache_range(ebase, ebase + 0x100);
1481 
1482 	dump_handler("r4000_tlb_refill", (u32 *)ebase, 64);
1483 }
1484 
setup_pw(void)1485 static void setup_pw(void)
1486 {
1487 	unsigned long pgd_i, pgd_w;
1488 #ifndef __PAGETABLE_PMD_FOLDED
1489 	unsigned long pmd_i, pmd_w;
1490 #endif
1491 	unsigned long pt_i, pt_w;
1492 	unsigned long pte_i, pte_w;
1493 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1494 	unsigned long psn;
1495 
1496 	psn = ilog2(_PAGE_HUGE);     /* bit used to indicate huge page */
1497 #endif
1498 	pgd_i = PGDIR_SHIFT;  /* 1st level PGD */
1499 #ifndef __PAGETABLE_PMD_FOLDED
1500 	pgd_w = PGDIR_SHIFT - PMD_SHIFT + PGD_ORDER;
1501 
1502 	pmd_i = PMD_SHIFT;    /* 2nd level PMD */
1503 	pmd_w = PMD_SHIFT - PAGE_SHIFT;
1504 #else
1505 	pgd_w = PGDIR_SHIFT - PAGE_SHIFT + PGD_ORDER;
1506 #endif
1507 
1508 	pt_i  = PAGE_SHIFT;    /* 3rd level PTE */
1509 	pt_w  = PAGE_SHIFT - 3;
1510 
1511 	pte_i = ilog2(_PAGE_GLOBAL);
1512 	pte_w = 0;
1513 
1514 #ifndef __PAGETABLE_PMD_FOLDED
1515 	write_c0_pwfield(pgd_i << 24 | pmd_i << 12 | pt_i << 6 | pte_i);
1516 	write_c0_pwsize(1 << 30 | pgd_w << 24 | pmd_w << 12 | pt_w << 6 | pte_w);
1517 #else
1518 	write_c0_pwfield(pgd_i << 24 | pt_i << 6 | pte_i);
1519 	write_c0_pwsize(1 << 30 | pgd_w << 24 | pt_w << 6 | pte_w);
1520 #endif
1521 
1522 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1523 	write_c0_pwctl(1 << 6 | psn);
1524 #endif
1525 	write_c0_kpgd(swapper_pg_dir);
1526 	kscratch_used_mask |= (1 << 7); /* KScratch6 is used for KPGD */
1527 }
1528 
build_loongson3_tlb_refill_handler(void)1529 static void build_loongson3_tlb_refill_handler(void)
1530 {
1531 	u32 *p = tlb_handler;
1532 	struct uasm_label *l = labels;
1533 	struct uasm_reloc *r = relocs;
1534 
1535 	memset(labels, 0, sizeof(labels));
1536 	memset(relocs, 0, sizeof(relocs));
1537 	memset(tlb_handler, 0, sizeof(tlb_handler));
1538 
1539 	if (check_for_high_segbits) {
1540 		uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1541 		uasm_i_dsrl_safe(&p, K1, K0, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
1542 		uasm_il_beqz(&p, &r, K1, label_vmalloc);
1543 		uasm_i_nop(&p);
1544 
1545 		uasm_il_bgez(&p, &r, K0, label_large_segbits_fault);
1546 		uasm_i_nop(&p);
1547 		uasm_l_vmalloc(&l, p);
1548 	}
1549 
1550 	uasm_i_dmfc0(&p, K1, C0_PGD);
1551 
1552 	uasm_i_lddir(&p, K0, K1, 3);  /* global page dir */
1553 #ifndef __PAGETABLE_PMD_FOLDED
1554 	uasm_i_lddir(&p, K1, K0, 1);  /* middle page dir */
1555 #endif
1556 	uasm_i_ldpte(&p, K1, 0);      /* even */
1557 	uasm_i_ldpte(&p, K1, 1);      /* odd */
1558 	uasm_i_tlbwr(&p);
1559 
1560 	/* restore page mask */
1561 	if (PM_DEFAULT_MASK >> 16) {
1562 		uasm_i_lui(&p, K0, PM_DEFAULT_MASK >> 16);
1563 		uasm_i_ori(&p, K0, K0, PM_DEFAULT_MASK & 0xffff);
1564 		uasm_i_mtc0(&p, K0, C0_PAGEMASK);
1565 	} else if (PM_DEFAULT_MASK) {
1566 		uasm_i_ori(&p, K0, 0, PM_DEFAULT_MASK);
1567 		uasm_i_mtc0(&p, K0, C0_PAGEMASK);
1568 	} else {
1569 		uasm_i_mtc0(&p, 0, C0_PAGEMASK);
1570 	}
1571 
1572 	uasm_i_eret(&p);
1573 
1574 	if (check_for_high_segbits) {
1575 		uasm_l_large_segbits_fault(&l, p);
1576 		UASM_i_LA(&p, K1, (unsigned long)tlb_do_page_fault_0);
1577 		uasm_i_jr(&p, K1);
1578 		uasm_i_nop(&p);
1579 	}
1580 
1581 	uasm_resolve_relocs(relocs, labels);
1582 	memcpy((void *)(ebase + 0x80), tlb_handler, 0x80);
1583 	local_flush_icache_range(ebase + 0x80, ebase + 0x100);
1584 	dump_handler("loongson3_tlb_refill", (u32 *)(ebase + 0x80), 32);
1585 }
1586 
1587 extern u32 handle_tlbl[], handle_tlbl_end[];
1588 extern u32 handle_tlbs[], handle_tlbs_end[];
1589 extern u32 handle_tlbm[], handle_tlbm_end[];
1590 extern u32 tlbmiss_handler_setup_pgd_start[];
1591 extern u32 tlbmiss_handler_setup_pgd[];
1592 EXPORT_SYMBOL_GPL(tlbmiss_handler_setup_pgd);
1593 extern u32 tlbmiss_handler_setup_pgd_end[];
1594 
build_setup_pgd(void)1595 static void build_setup_pgd(void)
1596 {
1597 	const int a0 = 4;
1598 	const int __maybe_unused a1 = 5;
1599 	const int __maybe_unused a2 = 6;
1600 	u32 *p = tlbmiss_handler_setup_pgd_start;
1601 	const int tlbmiss_handler_setup_pgd_size =
1602 		tlbmiss_handler_setup_pgd_end - tlbmiss_handler_setup_pgd_start;
1603 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1604 	long pgdc = (long)pgd_current;
1605 #endif
1606 
1607 	memset(tlbmiss_handler_setup_pgd, 0, tlbmiss_handler_setup_pgd_size *
1608 					sizeof(tlbmiss_handler_setup_pgd[0]));
1609 	memset(labels, 0, sizeof(labels));
1610 	memset(relocs, 0, sizeof(relocs));
1611 	pgd_reg = allocate_kscratch();
1612 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
1613 	if (pgd_reg == -1) {
1614 		struct uasm_label *l = labels;
1615 		struct uasm_reloc *r = relocs;
1616 
1617 		/* PGD << 11 in c0_Context */
1618 		/*
1619 		 * If it is a ckseg0 address, convert to a physical
1620 		 * address.  Shifting right by 29 and adding 4 will
1621 		 * result in zero for these addresses.
1622 		 *
1623 		 */
1624 		UASM_i_SRA(&p, a1, a0, 29);
1625 		UASM_i_ADDIU(&p, a1, a1, 4);
1626 		uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
1627 		uasm_i_nop(&p);
1628 		uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
1629 		uasm_l_tlbl_goaround1(&l, p);
1630 		UASM_i_SLL(&p, a0, a0, 11);
1631 		UASM_i_MTC0(&p, a0, C0_CONTEXT);
1632 		uasm_i_jr(&p, 31);
1633 		uasm_i_ehb(&p);
1634 	} else {
1635 		/* PGD in c0_KScratch */
1636 		if (cpu_has_ldpte)
1637 			UASM_i_MTC0(&p, a0, C0_PWBASE);
1638 		else
1639 			UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1640 		uasm_i_jr(&p, 31);
1641 		uasm_i_ehb(&p);
1642 	}
1643 #else
1644 #ifdef CONFIG_SMP
1645 	/* Save PGD to pgd_current[smp_processor_id()] */
1646 	UASM_i_CPUID_MFC0(&p, a1, SMP_CPUID_REG);
1647 	UASM_i_SRL_SAFE(&p, a1, a1, SMP_CPUID_PTRSHIFT);
1648 	UASM_i_LA_mostly(&p, a2, pgdc);
1649 	UASM_i_ADDU(&p, a2, a2, a1);
1650 	UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1651 #else
1652 	UASM_i_LA_mostly(&p, a2, pgdc);
1653 	UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1654 #endif /* SMP */
1655 
1656 	/* if pgd_reg is allocated, save PGD also to scratch register */
1657 	if (pgd_reg != -1) {
1658 		UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1659 		uasm_i_jr(&p, 31);
1660 		uasm_i_ehb(&p);
1661 	} else {
1662 		uasm_i_jr(&p, 31);
1663 		uasm_i_nop(&p);
1664 	}
1665 #endif
1666 	if (p >= tlbmiss_handler_setup_pgd_end)
1667 		panic("tlbmiss_handler_setup_pgd space exceeded");
1668 
1669 	uasm_resolve_relocs(relocs, labels);
1670 	pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
1671 		 (unsigned int)(p - tlbmiss_handler_setup_pgd));
1672 
1673 	dump_handler("tlbmiss_handler", tlbmiss_handler_setup_pgd,
1674 					tlbmiss_handler_setup_pgd_size);
1675 }
1676 
1677 static void
iPTE_LW(u32 ** p,unsigned int pte,unsigned int ptr)1678 iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
1679 {
1680 #ifdef CONFIG_SMP
1681 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1682 	if (cpu_has_64bits)
1683 		uasm_i_lld(p, pte, 0, ptr);
1684 	else
1685 # endif
1686 		UASM_i_LL(p, pte, 0, ptr);
1687 #else
1688 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1689 	if (cpu_has_64bits)
1690 		uasm_i_ld(p, pte, 0, ptr);
1691 	else
1692 # endif
1693 		UASM_i_LW(p, pte, 0, ptr);
1694 #endif
1695 }
1696 
1697 static void
iPTE_SW(u32 ** p,struct uasm_reloc ** r,unsigned int pte,unsigned int ptr,unsigned int mode,unsigned int scratch)1698 iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
1699 	unsigned int mode, unsigned int scratch)
1700 {
1701 	unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1702 	unsigned int swmode = mode & ~hwmode;
1703 
1704 	if (IS_ENABLED(CONFIG_XPA) && !cpu_has_64bits) {
1705 		uasm_i_lui(p, scratch, swmode >> 16);
1706 		uasm_i_or(p, pte, pte, scratch);
1707 		BUG_ON(swmode & 0xffff);
1708 	} else {
1709 		uasm_i_ori(p, pte, pte, mode);
1710 	}
1711 
1712 #ifdef CONFIG_SMP
1713 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1714 	if (cpu_has_64bits)
1715 		uasm_i_scd(p, pte, 0, ptr);
1716 	else
1717 # endif
1718 		UASM_i_SC(p, pte, 0, ptr);
1719 
1720 	if (r10000_llsc_war())
1721 		uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
1722 	else
1723 		uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1724 
1725 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1726 	if (!cpu_has_64bits) {
1727 		/* no uasm_i_nop needed */
1728 		uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1729 		uasm_i_ori(p, pte, pte, hwmode);
1730 		BUG_ON(hwmode & ~0xffff);
1731 		uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1732 		uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1733 		/* no uasm_i_nop needed */
1734 		uasm_i_lw(p, pte, 0, ptr);
1735 	} else
1736 		uasm_i_nop(p);
1737 # else
1738 	uasm_i_nop(p);
1739 # endif
1740 #else
1741 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1742 	if (cpu_has_64bits)
1743 		uasm_i_sd(p, pte, 0, ptr);
1744 	else
1745 # endif
1746 		UASM_i_SW(p, pte, 0, ptr);
1747 
1748 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1749 	if (!cpu_has_64bits) {
1750 		uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1751 		uasm_i_ori(p, pte, pte, hwmode);
1752 		BUG_ON(hwmode & ~0xffff);
1753 		uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1754 		uasm_i_lw(p, pte, 0, ptr);
1755 	}
1756 # endif
1757 #endif
1758 }
1759 
1760 /*
1761  * Check if PTE is present, if not then jump to LABEL. PTR points to
1762  * the page table where this PTE is located, PTE will be re-loaded
1763  * with it's original value.
1764  */
1765 static void
build_pte_present(u32 ** p,struct uasm_reloc ** r,int pte,int ptr,int scratch,enum label_id lid)1766 build_pte_present(u32 **p, struct uasm_reloc **r,
1767 		  int pte, int ptr, int scratch, enum label_id lid)
1768 {
1769 	int t = scratch >= 0 ? scratch : pte;
1770 	int cur = pte;
1771 
1772 	if (cpu_has_rixi) {
1773 		if (use_bbit_insns()) {
1774 			uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
1775 			uasm_i_nop(p);
1776 		} else {
1777 			if (_PAGE_PRESENT_SHIFT) {
1778 				uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1779 				cur = t;
1780 			}
1781 			uasm_i_andi(p, t, cur, 1);
1782 			uasm_il_beqz(p, r, t, lid);
1783 			if (pte == t)
1784 				/* You lose the SMP race :-(*/
1785 				iPTE_LW(p, pte, ptr);
1786 		}
1787 	} else {
1788 		if (_PAGE_PRESENT_SHIFT) {
1789 			uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1790 			cur = t;
1791 		}
1792 		uasm_i_andi(p, t, cur,
1793 			(_PAGE_PRESENT | _PAGE_NO_READ) >> _PAGE_PRESENT_SHIFT);
1794 		uasm_i_xori(p, t, t, _PAGE_PRESENT >> _PAGE_PRESENT_SHIFT);
1795 		uasm_il_bnez(p, r, t, lid);
1796 		if (pte == t)
1797 			/* You lose the SMP race :-(*/
1798 			iPTE_LW(p, pte, ptr);
1799 	}
1800 }
1801 
1802 /* Make PTE valid, store result in PTR. */
1803 static void
build_make_valid(u32 ** p,struct uasm_reloc ** r,unsigned int pte,unsigned int ptr,unsigned int scratch)1804 build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
1805 		 unsigned int ptr, unsigned int scratch)
1806 {
1807 	unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1808 
1809 	iPTE_SW(p, r, pte, ptr, mode, scratch);
1810 }
1811 
1812 /*
1813  * Check if PTE can be written to, if not branch to LABEL. Regardless
1814  * restore PTE with value from PTR when done.
1815  */
1816 static void
build_pte_writable(u32 ** p,struct uasm_reloc ** r,unsigned int pte,unsigned int ptr,int scratch,enum label_id lid)1817 build_pte_writable(u32 **p, struct uasm_reloc **r,
1818 		   unsigned int pte, unsigned int ptr, int scratch,
1819 		   enum label_id lid)
1820 {
1821 	int t = scratch >= 0 ? scratch : pte;
1822 	int cur = pte;
1823 
1824 	if (_PAGE_PRESENT_SHIFT) {
1825 		uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1826 		cur = t;
1827 	}
1828 	uasm_i_andi(p, t, cur,
1829 		    (_PAGE_PRESENT | _PAGE_WRITE) >> _PAGE_PRESENT_SHIFT);
1830 	uasm_i_xori(p, t, t,
1831 		    (_PAGE_PRESENT | _PAGE_WRITE) >> _PAGE_PRESENT_SHIFT);
1832 	uasm_il_bnez(p, r, t, lid);
1833 	if (pte == t)
1834 		/* You lose the SMP race :-(*/
1835 		iPTE_LW(p, pte, ptr);
1836 	else
1837 		uasm_i_nop(p);
1838 }
1839 
1840 /* Make PTE writable, update software status bits as well, then store
1841  * at PTR.
1842  */
1843 static void
build_make_write(u32 ** p,struct uasm_reloc ** r,unsigned int pte,unsigned int ptr,unsigned int scratch)1844 build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
1845 		 unsigned int ptr, unsigned int scratch)
1846 {
1847 	unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1848 			     | _PAGE_DIRTY);
1849 
1850 	iPTE_SW(p, r, pte, ptr, mode, scratch);
1851 }
1852 
1853 /*
1854  * Check if PTE can be modified, if not branch to LABEL. Regardless
1855  * restore PTE with value from PTR when done.
1856  */
1857 static void
build_pte_modifiable(u32 ** p,struct uasm_reloc ** r,unsigned int pte,unsigned int ptr,int scratch,enum label_id lid)1858 build_pte_modifiable(u32 **p, struct uasm_reloc **r,
1859 		     unsigned int pte, unsigned int ptr, int scratch,
1860 		     enum label_id lid)
1861 {
1862 	if (use_bbit_insns()) {
1863 		uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
1864 		uasm_i_nop(p);
1865 	} else {
1866 		int t = scratch >= 0 ? scratch : pte;
1867 		uasm_i_srl(p, t, pte, _PAGE_WRITE_SHIFT);
1868 		uasm_i_andi(p, t, t, 1);
1869 		uasm_il_beqz(p, r, t, lid);
1870 		if (pte == t)
1871 			/* You lose the SMP race :-(*/
1872 			iPTE_LW(p, pte, ptr);
1873 	}
1874 }
1875 
1876 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1877 
1878 
1879 /*
1880  * R3000 style TLB load/store/modify handlers.
1881  */
1882 
1883 /*
1884  * This places the pte into ENTRYLO0 and writes it with tlbwi.
1885  * Then it returns.
1886  */
1887 static void
build_r3000_pte_reload_tlbwi(u32 ** p,unsigned int pte,unsigned int tmp)1888 build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1889 {
1890 	uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1891 	uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1892 	uasm_i_tlbwi(p);
1893 	uasm_i_jr(p, tmp);
1894 	uasm_i_rfe(p); /* branch delay */
1895 }
1896 
1897 /*
1898  * This places the pte into ENTRYLO0 and writes it with tlbwi
1899  * or tlbwr as appropriate.  This is because the index register
1900  * may have the probe fail bit set as a result of a trap on a
1901  * kseg2 access, i.e. without refill.  Then it returns.
1902  */
1903 static void
build_r3000_tlb_reload_write(u32 ** p,struct uasm_label ** l,struct uasm_reloc ** r,unsigned int pte,unsigned int tmp)1904 build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
1905 			     struct uasm_reloc **r, unsigned int pte,
1906 			     unsigned int tmp)
1907 {
1908 	uasm_i_mfc0(p, tmp, C0_INDEX);
1909 	uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1910 	uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1911 	uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
1912 	uasm_i_tlbwi(p); /* cp0 delay */
1913 	uasm_i_jr(p, tmp);
1914 	uasm_i_rfe(p); /* branch delay */
1915 	uasm_l_r3000_write_probe_fail(l, *p);
1916 	uasm_i_tlbwr(p); /* cp0 delay */
1917 	uasm_i_jr(p, tmp);
1918 	uasm_i_rfe(p); /* branch delay */
1919 }
1920 
1921 static void
build_r3000_tlbchange_handler_head(u32 ** p,unsigned int pte,unsigned int ptr)1922 build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1923 				   unsigned int ptr)
1924 {
1925 	long pgdc = (long)pgd_current;
1926 
1927 	uasm_i_mfc0(p, pte, C0_BADVADDR);
1928 	uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
1929 	uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
1930 	uasm_i_srl(p, pte, pte, 22); /* load delay */
1931 	uasm_i_sll(p, pte, pte, 2);
1932 	uasm_i_addu(p, ptr, ptr, pte);
1933 	uasm_i_mfc0(p, pte, C0_CONTEXT);
1934 	uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
1935 	uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
1936 	uasm_i_addu(p, ptr, ptr, pte);
1937 	uasm_i_lw(p, pte, 0, ptr);
1938 	uasm_i_tlbp(p); /* load delay */
1939 }
1940 
build_r3000_tlb_load_handler(void)1941 static void build_r3000_tlb_load_handler(void)
1942 {
1943 	u32 *p = handle_tlbl;
1944 	const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
1945 	struct uasm_label *l = labels;
1946 	struct uasm_reloc *r = relocs;
1947 
1948 	memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
1949 	memset(labels, 0, sizeof(labels));
1950 	memset(relocs, 0, sizeof(relocs));
1951 
1952 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1953 	build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl);
1954 	uasm_i_nop(&p); /* load delay */
1955 	build_make_valid(&p, &r, K0, K1, -1);
1956 	build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1957 
1958 	uasm_l_nopage_tlbl(&l, p);
1959 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1960 	uasm_i_nop(&p);
1961 
1962 	if (p >= handle_tlbl_end)
1963 		panic("TLB load handler fastpath space exceeded");
1964 
1965 	uasm_resolve_relocs(relocs, labels);
1966 	pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1967 		 (unsigned int)(p - handle_tlbl));
1968 
1969 	dump_handler("r3000_tlb_load", handle_tlbl, handle_tlbl_size);
1970 }
1971 
build_r3000_tlb_store_handler(void)1972 static void build_r3000_tlb_store_handler(void)
1973 {
1974 	u32 *p = handle_tlbs;
1975 	const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
1976 	struct uasm_label *l = labels;
1977 	struct uasm_reloc *r = relocs;
1978 
1979 	memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
1980 	memset(labels, 0, sizeof(labels));
1981 	memset(relocs, 0, sizeof(relocs));
1982 
1983 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1984 	build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs);
1985 	uasm_i_nop(&p); /* load delay */
1986 	build_make_write(&p, &r, K0, K1, -1);
1987 	build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1988 
1989 	uasm_l_nopage_tlbs(&l, p);
1990 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1991 	uasm_i_nop(&p);
1992 
1993 	if (p >= handle_tlbs_end)
1994 		panic("TLB store handler fastpath space exceeded");
1995 
1996 	uasm_resolve_relocs(relocs, labels);
1997 	pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1998 		 (unsigned int)(p - handle_tlbs));
1999 
2000 	dump_handler("r3000_tlb_store", handle_tlbs, handle_tlbs_size);
2001 }
2002 
build_r3000_tlb_modify_handler(void)2003 static void build_r3000_tlb_modify_handler(void)
2004 {
2005 	u32 *p = handle_tlbm;
2006 	const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
2007 	struct uasm_label *l = labels;
2008 	struct uasm_reloc *r = relocs;
2009 
2010 	memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
2011 	memset(labels, 0, sizeof(labels));
2012 	memset(relocs, 0, sizeof(relocs));
2013 
2014 	build_r3000_tlbchange_handler_head(&p, K0, K1);
2015 	build_pte_modifiable(&p, &r, K0, K1,  -1, label_nopage_tlbm);
2016 	uasm_i_nop(&p); /* load delay */
2017 	build_make_write(&p, &r, K0, K1, -1);
2018 	build_r3000_pte_reload_tlbwi(&p, K0, K1);
2019 
2020 	uasm_l_nopage_tlbm(&l, p);
2021 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2022 	uasm_i_nop(&p);
2023 
2024 	if (p >= handle_tlbm_end)
2025 		panic("TLB modify handler fastpath space exceeded");
2026 
2027 	uasm_resolve_relocs(relocs, labels);
2028 	pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2029 		 (unsigned int)(p - handle_tlbm));
2030 
2031 	dump_handler("r3000_tlb_modify", handle_tlbm, handle_tlbm_size);
2032 }
2033 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
2034 
cpu_has_tlbex_tlbp_race(void)2035 static bool cpu_has_tlbex_tlbp_race(void)
2036 {
2037 	/*
2038 	 * When a Hardware Table Walker is running it can replace TLB entries
2039 	 * at any time, leading to a race between it & the CPU.
2040 	 */
2041 	if (cpu_has_htw)
2042 		return true;
2043 
2044 	/*
2045 	 * If the CPU shares FTLB RAM with its siblings then our entry may be
2046 	 * replaced at any time by a sibling performing a write to the FTLB.
2047 	 */
2048 	if (cpu_has_shared_ftlb_ram)
2049 		return true;
2050 
2051 	/* In all other cases there ought to be no race condition to handle */
2052 	return false;
2053 }
2054 
2055 /*
2056  * R4000 style TLB load/store/modify handlers.
2057  */
2058 static struct work_registers
build_r4000_tlbchange_handler_head(u32 ** p,struct uasm_label ** l,struct uasm_reloc ** r)2059 build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
2060 				   struct uasm_reloc **r)
2061 {
2062 	struct work_registers wr = build_get_work_registers(p);
2063 
2064 #ifdef CONFIG_64BIT
2065 	build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
2066 #else
2067 	build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
2068 #endif
2069 
2070 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2071 	/*
2072 	 * For huge tlb entries, pmd doesn't contain an address but
2073 	 * instead contains the tlb pte. Check the PAGE_HUGE bit and
2074 	 * see if we need to jump to huge tlb processing.
2075 	 */
2076 	build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
2077 #endif
2078 
2079 	UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
2080 	UASM_i_LW(p, wr.r2, 0, wr.r2);
2081 	UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
2082 	uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
2083 	UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
2084 
2085 #ifdef CONFIG_SMP
2086 	uasm_l_smp_pgtable_change(l, *p);
2087 #endif
2088 	iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
2089 	if (!m4kc_tlbp_war()) {
2090 		build_tlb_probe_entry(p);
2091 		if (cpu_has_tlbex_tlbp_race()) {
2092 			/* race condition happens, leaving */
2093 			uasm_i_ehb(p);
2094 			uasm_i_mfc0(p, wr.r3, C0_INDEX);
2095 			uasm_il_bltz(p, r, wr.r3, label_leave);
2096 			uasm_i_nop(p);
2097 		}
2098 	}
2099 	return wr;
2100 }
2101 
2102 static void
build_r4000_tlbchange_handler_tail(u32 ** p,struct uasm_label ** l,struct uasm_reloc ** r,unsigned int tmp,unsigned int ptr)2103 build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
2104 				   struct uasm_reloc **r, unsigned int tmp,
2105 				   unsigned int ptr)
2106 {
2107 	uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
2108 	uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
2109 	build_update_entries(p, tmp, ptr);
2110 	build_tlb_write_entry(p, l, r, tlb_indexed);
2111 	uasm_l_leave(l, *p);
2112 	build_restore_work_registers(p);
2113 	uasm_i_eret(p); /* return from trap */
2114 
2115 #ifdef CONFIG_64BIT
2116 	build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
2117 #endif
2118 }
2119 
build_r4000_tlb_load_handler(void)2120 static void build_r4000_tlb_load_handler(void)
2121 {
2122 	u32 *p = (u32 *)msk_isa16_mode((ulong)handle_tlbl);
2123 	const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
2124 	struct uasm_label *l = labels;
2125 	struct uasm_reloc *r = relocs;
2126 	struct work_registers wr;
2127 
2128 	memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
2129 	memset(labels, 0, sizeof(labels));
2130 	memset(relocs, 0, sizeof(relocs));
2131 
2132 	if (bcm1250_m3_war()) {
2133 		unsigned int segbits = 44;
2134 
2135 		uasm_i_dmfc0(&p, K0, C0_BADVADDR);
2136 		uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
2137 		uasm_i_xor(&p, K0, K0, K1);
2138 		uasm_i_dsrl_safe(&p, K1, K0, 62);
2139 		uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
2140 		uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
2141 		uasm_i_or(&p, K0, K0, K1);
2142 		uasm_il_bnez(&p, &r, K0, label_leave);
2143 		/* No need for uasm_i_nop */
2144 	}
2145 
2146 	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2147 	build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
2148 	if (m4kc_tlbp_war())
2149 		build_tlb_probe_entry(&p);
2150 
2151 	if (cpu_has_rixi && !cpu_has_rixiex) {
2152 		/*
2153 		 * If the page is not _PAGE_VALID, RI or XI could not
2154 		 * have triggered it.  Skip the expensive test..
2155 		 */
2156 		if (use_bbit_insns()) {
2157 			uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
2158 				      label_tlbl_goaround1);
2159 		} else {
2160 			uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
2161 			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
2162 		}
2163 		uasm_i_nop(&p);
2164 
2165 		/*
2166 		 * Warn if something may race with us & replace the TLB entry
2167 		 * before we read it here. Everything with such races should
2168 		 * also have dedicated RiXi exception handlers, so this
2169 		 * shouldn't be hit.
2170 		 */
2171 		WARN(cpu_has_tlbex_tlbp_race(), "Unhandled race in RiXi path");
2172 
2173 		uasm_i_tlbr(&p);
2174 
2175 		switch (current_cpu_type()) {
2176 		default:
2177 			if (cpu_has_mips_r2_exec_hazard) {
2178 				uasm_i_ehb(&p);
2179 
2180 		case CPU_CAVIUM_OCTEON:
2181 		case CPU_CAVIUM_OCTEON_PLUS:
2182 		case CPU_CAVIUM_OCTEON2:
2183 				break;
2184 			}
2185 		}
2186 
2187 		/* Examine  entrylo 0 or 1 based on ptr. */
2188 		if (use_bbit_insns()) {
2189 			uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
2190 		} else {
2191 			uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
2192 			uasm_i_beqz(&p, wr.r3, 8);
2193 		}
2194 		/* load it in the delay slot*/
2195 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2196 		/* load it if ptr is odd */
2197 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2198 		/*
2199 		 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2200 		 * XI must have triggered it.
2201 		 */
2202 		if (use_bbit_insns()) {
2203 			uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
2204 			uasm_i_nop(&p);
2205 			uasm_l_tlbl_goaround1(&l, p);
2206 		} else {
2207 			uasm_i_andi(&p, wr.r3, wr.r3, 2);
2208 			uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
2209 			uasm_i_nop(&p);
2210 		}
2211 		uasm_l_tlbl_goaround1(&l, p);
2212 	}
2213 	build_make_valid(&p, &r, wr.r1, wr.r2, wr.r3);
2214 	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2215 
2216 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2217 	/*
2218 	 * This is the entry point when build_r4000_tlbchange_handler_head
2219 	 * spots a huge page.
2220 	 */
2221 	uasm_l_tlb_huge_update(&l, p);
2222 	iPTE_LW(&p, wr.r1, wr.r2);
2223 	build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
2224 	build_tlb_probe_entry(&p);
2225 
2226 	if (cpu_has_rixi && !cpu_has_rixiex) {
2227 		/*
2228 		 * If the page is not _PAGE_VALID, RI or XI could not
2229 		 * have triggered it.  Skip the expensive test..
2230 		 */
2231 		if (use_bbit_insns()) {
2232 			uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
2233 				      label_tlbl_goaround2);
2234 		} else {
2235 			uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
2236 			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2237 		}
2238 		uasm_i_nop(&p);
2239 
2240 		/*
2241 		 * Warn if something may race with us & replace the TLB entry
2242 		 * before we read it here. Everything with such races should
2243 		 * also have dedicated RiXi exception handlers, so this
2244 		 * shouldn't be hit.
2245 		 */
2246 		WARN(cpu_has_tlbex_tlbp_race(), "Unhandled race in RiXi path");
2247 
2248 		uasm_i_tlbr(&p);
2249 
2250 		switch (current_cpu_type()) {
2251 		default:
2252 			if (cpu_has_mips_r2_exec_hazard) {
2253 				uasm_i_ehb(&p);
2254 
2255 		case CPU_CAVIUM_OCTEON:
2256 		case CPU_CAVIUM_OCTEON_PLUS:
2257 		case CPU_CAVIUM_OCTEON2:
2258 				break;
2259 			}
2260 		}
2261 
2262 		/* Examine  entrylo 0 or 1 based on ptr. */
2263 		if (use_bbit_insns()) {
2264 			uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
2265 		} else {
2266 			uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
2267 			uasm_i_beqz(&p, wr.r3, 8);
2268 		}
2269 		/* load it in the delay slot*/
2270 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2271 		/* load it if ptr is odd */
2272 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2273 		/*
2274 		 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2275 		 * XI must have triggered it.
2276 		 */
2277 		if (use_bbit_insns()) {
2278 			uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
2279 		} else {
2280 			uasm_i_andi(&p, wr.r3, wr.r3, 2);
2281 			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2282 		}
2283 		if (PM_DEFAULT_MASK == 0)
2284 			uasm_i_nop(&p);
2285 		/*
2286 		 * We clobbered C0_PAGEMASK, restore it.  On the other branch
2287 		 * it is restored in build_huge_tlb_write_entry.
2288 		 */
2289 		build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
2290 
2291 		uasm_l_tlbl_goaround2(&l, p);
2292 	}
2293 	uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
2294 	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2, 1);
2295 #endif
2296 
2297 	uasm_l_nopage_tlbl(&l, p);
2298 	build_restore_work_registers(&p);
2299 #ifdef CONFIG_CPU_MICROMIPS
2300 	if ((unsigned long)tlb_do_page_fault_0 & 1) {
2301 		uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_0));
2302 		uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_0));
2303 		uasm_i_jr(&p, K0);
2304 	} else
2305 #endif
2306 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
2307 	uasm_i_nop(&p);
2308 
2309 	if (p >= handle_tlbl_end)
2310 		panic("TLB load handler fastpath space exceeded");
2311 
2312 	uasm_resolve_relocs(relocs, labels);
2313 	pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
2314 		 (unsigned int)(p - handle_tlbl));
2315 
2316 	dump_handler("r4000_tlb_load", handle_tlbl, handle_tlbl_size);
2317 }
2318 
build_r4000_tlb_store_handler(void)2319 static void build_r4000_tlb_store_handler(void)
2320 {
2321 	u32 *p = (u32 *)msk_isa16_mode((ulong)handle_tlbs);
2322 	const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
2323 	struct uasm_label *l = labels;
2324 	struct uasm_reloc *r = relocs;
2325 	struct work_registers wr;
2326 
2327 	memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
2328 	memset(labels, 0, sizeof(labels));
2329 	memset(relocs, 0, sizeof(relocs));
2330 
2331 	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2332 	build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2333 	if (m4kc_tlbp_war())
2334 		build_tlb_probe_entry(&p);
2335 	build_make_write(&p, &r, wr.r1, wr.r2, wr.r3);
2336 	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2337 
2338 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2339 	/*
2340 	 * This is the entry point when
2341 	 * build_r4000_tlbchange_handler_head spots a huge page.
2342 	 */
2343 	uasm_l_tlb_huge_update(&l, p);
2344 	iPTE_LW(&p, wr.r1, wr.r2);
2345 	build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2346 	build_tlb_probe_entry(&p);
2347 	uasm_i_ori(&p, wr.r1, wr.r1,
2348 		   _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2349 	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2, 1);
2350 #endif
2351 
2352 	uasm_l_nopage_tlbs(&l, p);
2353 	build_restore_work_registers(&p);
2354 #ifdef CONFIG_CPU_MICROMIPS
2355 	if ((unsigned long)tlb_do_page_fault_1 & 1) {
2356 		uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2357 		uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2358 		uasm_i_jr(&p, K0);
2359 	} else
2360 #endif
2361 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2362 	uasm_i_nop(&p);
2363 
2364 	if (p >= handle_tlbs_end)
2365 		panic("TLB store handler fastpath space exceeded");
2366 
2367 	uasm_resolve_relocs(relocs, labels);
2368 	pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
2369 		 (unsigned int)(p - handle_tlbs));
2370 
2371 	dump_handler("r4000_tlb_store", handle_tlbs, handle_tlbs_size);
2372 }
2373 
build_r4000_tlb_modify_handler(void)2374 static void build_r4000_tlb_modify_handler(void)
2375 {
2376 	u32 *p = (u32 *)msk_isa16_mode((ulong)handle_tlbm);
2377 	const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
2378 	struct uasm_label *l = labels;
2379 	struct uasm_reloc *r = relocs;
2380 	struct work_registers wr;
2381 
2382 	memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
2383 	memset(labels, 0, sizeof(labels));
2384 	memset(relocs, 0, sizeof(relocs));
2385 
2386 	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2387 	build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2388 	if (m4kc_tlbp_war())
2389 		build_tlb_probe_entry(&p);
2390 	/* Present and writable bits set, set accessed and dirty bits. */
2391 	build_make_write(&p, &r, wr.r1, wr.r2, wr.r3);
2392 	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2393 
2394 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2395 	/*
2396 	 * This is the entry point when
2397 	 * build_r4000_tlbchange_handler_head spots a huge page.
2398 	 */
2399 	uasm_l_tlb_huge_update(&l, p);
2400 	iPTE_LW(&p, wr.r1, wr.r2);
2401 	build_pte_modifiable(&p, &r, wr.r1, wr.r2,  wr.r3, label_nopage_tlbm);
2402 	build_tlb_probe_entry(&p);
2403 	uasm_i_ori(&p, wr.r1, wr.r1,
2404 		   _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2405 	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2, 0);
2406 #endif
2407 
2408 	uasm_l_nopage_tlbm(&l, p);
2409 	build_restore_work_registers(&p);
2410 #ifdef CONFIG_CPU_MICROMIPS
2411 	if ((unsigned long)tlb_do_page_fault_1 & 1) {
2412 		uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2413 		uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2414 		uasm_i_jr(&p, K0);
2415 	} else
2416 #endif
2417 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2418 	uasm_i_nop(&p);
2419 
2420 	if (p >= handle_tlbm_end)
2421 		panic("TLB modify handler fastpath space exceeded");
2422 
2423 	uasm_resolve_relocs(relocs, labels);
2424 	pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2425 		 (unsigned int)(p - handle_tlbm));
2426 
2427 	dump_handler("r4000_tlb_modify", handle_tlbm, handle_tlbm_size);
2428 }
2429 
flush_tlb_handlers(void)2430 static void flush_tlb_handlers(void)
2431 {
2432 	local_flush_icache_range((unsigned long)handle_tlbl,
2433 			   (unsigned long)handle_tlbl_end);
2434 	local_flush_icache_range((unsigned long)handle_tlbs,
2435 			   (unsigned long)handle_tlbs_end);
2436 	local_flush_icache_range((unsigned long)handle_tlbm,
2437 			   (unsigned long)handle_tlbm_end);
2438 	local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd,
2439 			   (unsigned long)tlbmiss_handler_setup_pgd_end);
2440 }
2441 
print_htw_config(void)2442 static void print_htw_config(void)
2443 {
2444 	unsigned long config;
2445 	unsigned int pwctl;
2446 	const int field = 2 * sizeof(unsigned long);
2447 
2448 	config = read_c0_pwfield();
2449 	pr_debug("PWField (0x%0*lx): GDI: 0x%02lx  UDI: 0x%02lx  MDI: 0x%02lx  PTI: 0x%02lx  PTEI: 0x%02lx\n",
2450 		field, config,
2451 		(config & MIPS_PWFIELD_GDI_MASK) >> MIPS_PWFIELD_GDI_SHIFT,
2452 		(config & MIPS_PWFIELD_UDI_MASK) >> MIPS_PWFIELD_UDI_SHIFT,
2453 		(config & MIPS_PWFIELD_MDI_MASK) >> MIPS_PWFIELD_MDI_SHIFT,
2454 		(config & MIPS_PWFIELD_PTI_MASK) >> MIPS_PWFIELD_PTI_SHIFT,
2455 		(config & MIPS_PWFIELD_PTEI_MASK) >> MIPS_PWFIELD_PTEI_SHIFT);
2456 
2457 	config = read_c0_pwsize();
2458 	pr_debug("PWSize  (0x%0*lx): PS: 0x%lx  GDW: 0x%02lx  UDW: 0x%02lx  MDW: 0x%02lx  PTW: 0x%02lx  PTEW: 0x%02lx\n",
2459 		field, config,
2460 		(config & MIPS_PWSIZE_PS_MASK) >> MIPS_PWSIZE_PS_SHIFT,
2461 		(config & MIPS_PWSIZE_GDW_MASK) >> MIPS_PWSIZE_GDW_SHIFT,
2462 		(config & MIPS_PWSIZE_UDW_MASK) >> MIPS_PWSIZE_UDW_SHIFT,
2463 		(config & MIPS_PWSIZE_MDW_MASK) >> MIPS_PWSIZE_MDW_SHIFT,
2464 		(config & MIPS_PWSIZE_PTW_MASK) >> MIPS_PWSIZE_PTW_SHIFT,
2465 		(config & MIPS_PWSIZE_PTEW_MASK) >> MIPS_PWSIZE_PTEW_SHIFT);
2466 
2467 	pwctl = read_c0_pwctl();
2468 	pr_debug("PWCtl   (0x%x): PWEn: 0x%x  XK: 0x%x  XS: 0x%x  XU: 0x%x  DPH: 0x%x  HugePg: 0x%x  Psn: 0x%x\n",
2469 		pwctl,
2470 		(pwctl & MIPS_PWCTL_PWEN_MASK) >> MIPS_PWCTL_PWEN_SHIFT,
2471 		(pwctl & MIPS_PWCTL_XK_MASK) >> MIPS_PWCTL_XK_SHIFT,
2472 		(pwctl & MIPS_PWCTL_XS_MASK) >> MIPS_PWCTL_XS_SHIFT,
2473 		(pwctl & MIPS_PWCTL_XU_MASK) >> MIPS_PWCTL_XU_SHIFT,
2474 		(pwctl & MIPS_PWCTL_DPH_MASK) >> MIPS_PWCTL_DPH_SHIFT,
2475 		(pwctl & MIPS_PWCTL_HUGEPG_MASK) >> MIPS_PWCTL_HUGEPG_SHIFT,
2476 		(pwctl & MIPS_PWCTL_PSN_MASK) >> MIPS_PWCTL_PSN_SHIFT);
2477 }
2478 
config_htw_params(void)2479 static void config_htw_params(void)
2480 {
2481 	unsigned long pwfield, pwsize, ptei;
2482 	unsigned int config;
2483 
2484 	/*
2485 	 * We are using 2-level page tables, so we only need to
2486 	 * setup GDW and PTW appropriately. UDW and MDW will remain 0.
2487 	 * The default value of GDI/UDI/MDI/PTI is 0xc. It is illegal to
2488 	 * write values less than 0xc in these fields because the entire
2489 	 * write will be dropped. As a result of which, we must preserve
2490 	 * the original reset values and overwrite only what we really want.
2491 	 */
2492 
2493 	pwfield = read_c0_pwfield();
2494 	/* re-initialize the GDI field */
2495 	pwfield &= ~MIPS_PWFIELD_GDI_MASK;
2496 	pwfield |= PGDIR_SHIFT << MIPS_PWFIELD_GDI_SHIFT;
2497 	/* re-initialize the PTI field including the even/odd bit */
2498 	pwfield &= ~MIPS_PWFIELD_PTI_MASK;
2499 	pwfield |= PAGE_SHIFT << MIPS_PWFIELD_PTI_SHIFT;
2500 	if (CONFIG_PGTABLE_LEVELS >= 3) {
2501 		pwfield &= ~MIPS_PWFIELD_MDI_MASK;
2502 		pwfield |= PMD_SHIFT << MIPS_PWFIELD_MDI_SHIFT;
2503 	}
2504 	/* Set the PTEI right shift */
2505 	ptei = _PAGE_GLOBAL_SHIFT << MIPS_PWFIELD_PTEI_SHIFT;
2506 	pwfield |= ptei;
2507 	write_c0_pwfield(pwfield);
2508 	/* Check whether the PTEI value is supported */
2509 	back_to_back_c0_hazard();
2510 	pwfield = read_c0_pwfield();
2511 	if (((pwfield & MIPS_PWFIELD_PTEI_MASK) << MIPS_PWFIELD_PTEI_SHIFT)
2512 		!= ptei) {
2513 		pr_warn("Unsupported PTEI field value: 0x%lx. HTW will not be enabled",
2514 			ptei);
2515 		/*
2516 		 * Drop option to avoid HTW being enabled via another path
2517 		 * (eg htw_reset())
2518 		 */
2519 		current_cpu_data.options &= ~MIPS_CPU_HTW;
2520 		return;
2521 	}
2522 
2523 	pwsize = ilog2(PTRS_PER_PGD) << MIPS_PWSIZE_GDW_SHIFT;
2524 	pwsize |= ilog2(PTRS_PER_PTE) << MIPS_PWSIZE_PTW_SHIFT;
2525 	if (CONFIG_PGTABLE_LEVELS >= 3)
2526 		pwsize |= ilog2(PTRS_PER_PMD) << MIPS_PWSIZE_MDW_SHIFT;
2527 
2528 	/* Set pointer size to size of directory pointers */
2529 	if (IS_ENABLED(CONFIG_64BIT))
2530 		pwsize |= MIPS_PWSIZE_PS_MASK;
2531 	/* PTEs may be multiple pointers long (e.g. with XPA) */
2532 	pwsize |= ((PTE_T_LOG2 - PGD_T_LOG2) << MIPS_PWSIZE_PTEW_SHIFT)
2533 			& MIPS_PWSIZE_PTEW_MASK;
2534 
2535 	write_c0_pwsize(pwsize);
2536 
2537 	/* Make sure everything is set before we enable the HTW */
2538 	back_to_back_c0_hazard();
2539 
2540 	/*
2541 	 * Enable HTW (and only for XUSeg on 64-bit), and disable the rest of
2542 	 * the pwctl fields.
2543 	 */
2544 	config = 1 << MIPS_PWCTL_PWEN_SHIFT;
2545 	if (IS_ENABLED(CONFIG_64BIT))
2546 		config |= MIPS_PWCTL_XU_MASK;
2547 	write_c0_pwctl(config);
2548 	pr_info("Hardware Page Table Walker enabled\n");
2549 
2550 	print_htw_config();
2551 }
2552 
config_xpa_params(void)2553 static void config_xpa_params(void)
2554 {
2555 #ifdef CONFIG_XPA
2556 	unsigned int pagegrain;
2557 
2558 	if (mips_xpa_disabled) {
2559 		pr_info("Extended Physical Addressing (XPA) disabled\n");
2560 		return;
2561 	}
2562 
2563 	pagegrain = read_c0_pagegrain();
2564 	write_c0_pagegrain(pagegrain | PG_ELPA);
2565 	back_to_back_c0_hazard();
2566 	pagegrain = read_c0_pagegrain();
2567 
2568 	if (pagegrain & PG_ELPA)
2569 		pr_info("Extended Physical Addressing (XPA) enabled\n");
2570 	else
2571 		panic("Extended Physical Addressing (XPA) disabled");
2572 #endif
2573 }
2574 
check_pabits(void)2575 static void check_pabits(void)
2576 {
2577 	unsigned long entry;
2578 	unsigned pabits, fillbits;
2579 
2580 	if (!cpu_has_rixi || !_PAGE_NO_EXEC) {
2581 		/*
2582 		 * We'll only be making use of the fact that we can rotate bits
2583 		 * into the fill if the CPU supports RIXI, so don't bother
2584 		 * probing this for CPUs which don't.
2585 		 */
2586 		return;
2587 	}
2588 
2589 	write_c0_entrylo0(~0ul);
2590 	back_to_back_c0_hazard();
2591 	entry = read_c0_entrylo0();
2592 
2593 	/* clear all non-PFN bits */
2594 	entry &= ~((1 << MIPS_ENTRYLO_PFN_SHIFT) - 1);
2595 	entry &= ~(MIPS_ENTRYLO_RI | MIPS_ENTRYLO_XI);
2596 
2597 	/* find a lower bound on PABITS, and upper bound on fill bits */
2598 	pabits = fls_long(entry) + 6;
2599 	fillbits = max_t(int, (int)BITS_PER_LONG - pabits, 0);
2600 
2601 	/* minus the RI & XI bits */
2602 	fillbits -= min_t(unsigned, fillbits, 2);
2603 
2604 	if (fillbits >= ilog2(_PAGE_NO_EXEC))
2605 		fill_includes_sw_bits = true;
2606 
2607 	pr_debug("Entry* registers contain %u fill bits\n", fillbits);
2608 }
2609 
build_tlb_refill_handler(void)2610 void build_tlb_refill_handler(void)
2611 {
2612 	/*
2613 	 * The refill handler is generated per-CPU, multi-node systems
2614 	 * may have local storage for it. The other handlers are only
2615 	 * needed once.
2616 	 */
2617 	static int run_once = 0;
2618 
2619 	if (IS_ENABLED(CONFIG_XPA) && !cpu_has_rixi)
2620 		panic("Kernels supporting XPA currently require CPUs with RIXI");
2621 
2622 	output_pgtable_bits_defines();
2623 	check_pabits();
2624 
2625 #ifdef CONFIG_64BIT
2626 	check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
2627 #endif
2628 
2629 	switch (current_cpu_type()) {
2630 	case CPU_R2000:
2631 	case CPU_R3000:
2632 	case CPU_R3000A:
2633 	case CPU_R3081E:
2634 	case CPU_TX3912:
2635 	case CPU_TX3922:
2636 	case CPU_TX3927:
2637 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
2638 		if (cpu_has_local_ebase)
2639 			build_r3000_tlb_refill_handler();
2640 		if (!run_once) {
2641 			if (!cpu_has_local_ebase)
2642 				build_r3000_tlb_refill_handler();
2643 			build_setup_pgd();
2644 			build_r3000_tlb_load_handler();
2645 			build_r3000_tlb_store_handler();
2646 			build_r3000_tlb_modify_handler();
2647 			flush_tlb_handlers();
2648 			run_once++;
2649 		}
2650 #else
2651 		panic("No R3000 TLB refill handler");
2652 #endif
2653 		break;
2654 
2655 	case CPU_R8000:
2656 		panic("No R8000 TLB refill handler yet");
2657 		break;
2658 
2659 	default:
2660 		if (cpu_has_ldpte)
2661 			setup_pw();
2662 
2663 		if (!run_once) {
2664 			scratch_reg = allocate_kscratch();
2665 			build_setup_pgd();
2666 			build_r4000_tlb_load_handler();
2667 			build_r4000_tlb_store_handler();
2668 			build_r4000_tlb_modify_handler();
2669 			if (cpu_has_ldpte)
2670 				build_loongson3_tlb_refill_handler();
2671 			else if (!cpu_has_local_ebase)
2672 				build_r4000_tlb_refill_handler();
2673 			flush_tlb_handlers();
2674 			run_once++;
2675 		}
2676 		if (cpu_has_local_ebase)
2677 			build_r4000_tlb_refill_handler();
2678 		if (cpu_has_xpa)
2679 			config_xpa_params();
2680 		if (cpu_has_htw)
2681 			config_htw_params();
2682 	}
2683 }
2684