• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_POWERPC_PGTABLE_RADIX_H
3 #define _ASM_POWERPC_PGTABLE_RADIX_H
4 
5 #ifndef __ASSEMBLY__
6 #include <asm/cmpxchg.h>
7 #endif
8 
9 #ifdef CONFIG_PPC_64K_PAGES
10 #include <asm/book3s/64/radix-64k.h>
11 #else
12 #include <asm/book3s/64/radix-4k.h>
13 #endif
14 
15 /*
16  * For P9 DD1 only, we need to track whether the pte's huge.
17  */
18 #define R_PAGE_LARGE	_RPAGE_RSV1
19 
20 
21 #ifndef __ASSEMBLY__
22 #include <asm/book3s/64/tlbflush-radix.h>
23 #include <asm/cpu_has_feature.h>
24 #endif
25 
26 /* An empty PTE can still have a R or C writeback */
27 #define RADIX_PTE_NONE_MASK		(_PAGE_DIRTY | _PAGE_ACCESSED)
28 
29 /* Bits to set in a RPMD/RPUD/RPGD */
30 #define RADIX_PMD_VAL_BITS		(0x8000000000000000UL | RADIX_PTE_INDEX_SIZE)
31 #define RADIX_PUD_VAL_BITS		(0x8000000000000000UL | RADIX_PMD_INDEX_SIZE)
32 #define RADIX_PGD_VAL_BITS		(0x8000000000000000UL | RADIX_PUD_INDEX_SIZE)
33 
34 /* Don't have anything in the reserved bits and leaf bits */
35 #define RADIX_PMD_BAD_BITS		0x60000000000000e0UL
36 #define RADIX_PUD_BAD_BITS		0x60000000000000e0UL
37 #define RADIX_PGD_BAD_BITS		0x60000000000000e0UL
38 
39 /*
40  * Size of EA range mapped by our pagetables.
41  */
42 #define RADIX_PGTABLE_EADDR_SIZE (RADIX_PTE_INDEX_SIZE + RADIX_PMD_INDEX_SIZE +	\
43 			      RADIX_PUD_INDEX_SIZE + RADIX_PGD_INDEX_SIZE + PAGE_SHIFT)
44 #define RADIX_PGTABLE_RANGE (ASM_CONST(1) << RADIX_PGTABLE_EADDR_SIZE)
45 
46 /*
47  * We support 52 bit address space, Use top bit for kernel
48  * virtual mapping. Also make sure kernel fit in the top
49  * quadrant.
50  *
51  *           +------------------+
52  *           +------------------+  Kernel virtual map (0xc008000000000000)
53  *           |                  |
54  *           |                  |
55  *           |                  |
56  * 0b11......+------------------+  Kernel linear map (0xc....)
57  *           |                  |
58  *           |     2 quadrant   |
59  *           |                  |
60  * 0b10......+------------------+
61  *           |                  |
62  *           |    1 quadrant    |
63  *           |                  |
64  * 0b01......+------------------+
65  *           |                  |
66  *           |    0 quadrant    |
67  *           |                  |
68  * 0b00......+------------------+
69  *
70  *
71  * 3rd quadrant expanded:
72  * +------------------------------+
73  * |                              |
74  * |                              |
75  * |                              |
76  * +------------------------------+  Kernel IO map end (0xc010000000000000)
77  * |                              |
78  * |                              |
79  * |      1/2 of virtual map      |
80  * |                              |
81  * |                              |
82  * +------------------------------+  Kernel IO map start
83  * |                              |
84  * |      1/4 of virtual map      |
85  * |                              |
86  * +------------------------------+  Kernel vmemap start
87  * |                              |
88  * |     1/4 of virtual map       |
89  * |                              |
90  * +------------------------------+  Kernel virt start (0xc008000000000000)
91  * |                              |
92  * |                              |
93  * |                              |
94  * +------------------------------+  Kernel linear (0xc.....)
95  */
96 
97 #define RADIX_KERN_VIRT_START ASM_CONST(0xc008000000000000)
98 #define RADIX_KERN_VIRT_SIZE  ASM_CONST(0x0008000000000000)
99 
100 /*
101  * The vmalloc space starts at the beginning of that region, and
102  * occupies a quarter of it on radix config.
103  * (we keep a quarter for the virtual memmap)
104  */
105 #define RADIX_VMALLOC_START	RADIX_KERN_VIRT_START
106 #define RADIX_VMALLOC_SIZE	(RADIX_KERN_VIRT_SIZE >> 2)
107 #define RADIX_VMALLOC_END	(RADIX_VMALLOC_START + RADIX_VMALLOC_SIZE)
108 /*
109  * Defines the address of the vmemap area, in its own region on
110  * hash table CPUs.
111  */
112 #define RADIX_VMEMMAP_BASE		(RADIX_VMALLOC_END)
113 
114 #define RADIX_KERN_IO_START	(RADIX_KERN_VIRT_START + (RADIX_KERN_VIRT_SIZE >> 1))
115 
116 #ifndef __ASSEMBLY__
117 #define RADIX_PTE_TABLE_SIZE	(sizeof(pte_t) << RADIX_PTE_INDEX_SIZE)
118 #define RADIX_PMD_TABLE_SIZE	(sizeof(pmd_t) << RADIX_PMD_INDEX_SIZE)
119 #define RADIX_PUD_TABLE_SIZE	(sizeof(pud_t) << RADIX_PUD_INDEX_SIZE)
120 #define RADIX_PGD_TABLE_SIZE	(sizeof(pgd_t) << RADIX_PGD_INDEX_SIZE)
121 
122 #ifdef CONFIG_STRICT_KERNEL_RWX
123 extern void radix__mark_rodata_ro(void);
124 extern void radix__mark_initmem_nx(void);
125 #endif
126 
__radix_pte_update(pte_t * ptep,unsigned long clr,unsigned long set)127 static inline unsigned long __radix_pte_update(pte_t *ptep, unsigned long clr,
128 					       unsigned long set)
129 {
130 	pte_t pte;
131 	unsigned long old_pte, new_pte;
132 
133 	do {
134 		pte = READ_ONCE(*ptep);
135 		old_pte = pte_val(pte);
136 		new_pte = (old_pte | set) & ~clr;
137 
138 	} while (!pte_xchg(ptep, __pte(old_pte), __pte(new_pte)));
139 
140 	return old_pte;
141 }
142 
143 
radix__pte_update(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned long clr,unsigned long set,int huge)144 static inline unsigned long radix__pte_update(struct mm_struct *mm,
145 					unsigned long addr,
146 					pte_t *ptep, unsigned long clr,
147 					unsigned long set,
148 					int huge)
149 {
150 	unsigned long old_pte;
151 
152 	if (cpu_has_feature(CPU_FTR_POWER9_DD1)) {
153 
154 		unsigned long new_pte;
155 
156 		old_pte = __radix_pte_update(ptep, ~0ul, 0);
157 		/*
158 		 * new value of pte
159 		 */
160 		new_pte = (old_pte | set) & ~clr;
161 		radix__flush_tlb_pte_p9_dd1(old_pte, mm, addr);
162 		if (new_pte)
163 			__radix_pte_update(ptep, 0, new_pte);
164 	} else
165 		old_pte = __radix_pte_update(ptep, clr, set);
166 	if (!huge)
167 		assert_pte_locked(mm, addr);
168 
169 	return old_pte;
170 }
171 
radix__ptep_get_and_clear_full(struct mm_struct * mm,unsigned long addr,pte_t * ptep,int full)172 static inline pte_t radix__ptep_get_and_clear_full(struct mm_struct *mm,
173 						   unsigned long addr,
174 						   pte_t *ptep, int full)
175 {
176 	unsigned long old_pte;
177 
178 	if (full) {
179 		/*
180 		 * If we are trying to clear the pte, we can skip
181 		 * the DD1 pte update sequence and batch the tlb flush. The
182 		 * tlb flush batching is done by mmu gather code. We
183 		 * still keep the cmp_xchg update to make sure we get
184 		 * correct R/C bit which might be updated via Nest MMU.
185 		 */
186 		old_pte = __radix_pte_update(ptep, ~0ul, 0);
187 	} else
188 		old_pte = radix__pte_update(mm, addr, ptep, ~0ul, 0, 0);
189 
190 	return __pte(old_pte);
191 }
192 
193 /*
194  * Set the dirty and/or accessed bits atomically in a linux PTE, this
195  * function doesn't need to invalidate tlb.
196  */
radix__ptep_set_access_flags(struct mm_struct * mm,pte_t * ptep,pte_t entry,unsigned long address)197 static inline void radix__ptep_set_access_flags(struct mm_struct *mm,
198 						pte_t *ptep, pte_t entry,
199 						unsigned long address)
200 {
201 
202 	unsigned long set = pte_val(entry) & (_PAGE_DIRTY | _PAGE_ACCESSED |
203 					      _PAGE_RW | _PAGE_EXEC);
204 
205 	if (cpu_has_feature(CPU_FTR_POWER9_DD1)) {
206 
207 		unsigned long old_pte, new_pte;
208 
209 		old_pte = __radix_pte_update(ptep, ~0, 0);
210 		/*
211 		 * new value of pte
212 		 */
213 		new_pte = old_pte | set;
214 		radix__flush_tlb_pte_p9_dd1(old_pte, mm, address);
215 		__radix_pte_update(ptep, 0, new_pte);
216 	} else
217 		__radix_pte_update(ptep, 0, set);
218 	asm volatile("ptesync" : : : "memory");
219 }
220 
radix__pte_same(pte_t pte_a,pte_t pte_b)221 static inline int radix__pte_same(pte_t pte_a, pte_t pte_b)
222 {
223 	return ((pte_raw(pte_a) ^ pte_raw(pte_b)) == 0);
224 }
225 
radix__pte_none(pte_t pte)226 static inline int radix__pte_none(pte_t pte)
227 {
228 	return (pte_val(pte) & ~RADIX_PTE_NONE_MASK) == 0;
229 }
230 
radix__set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte,int percpu)231 static inline void radix__set_pte_at(struct mm_struct *mm, unsigned long addr,
232 				 pte_t *ptep, pte_t pte, int percpu)
233 {
234 	*ptep = pte;
235 	asm volatile("ptesync" : : : "memory");
236 }
237 
radix__pmd_bad(pmd_t pmd)238 static inline int radix__pmd_bad(pmd_t pmd)
239 {
240 	return !!(pmd_val(pmd) & RADIX_PMD_BAD_BITS);
241 }
242 
radix__pmd_same(pmd_t pmd_a,pmd_t pmd_b)243 static inline int radix__pmd_same(pmd_t pmd_a, pmd_t pmd_b)
244 {
245 	return ((pmd_raw(pmd_a) ^ pmd_raw(pmd_b)) == 0);
246 }
247 
radix__pud_bad(pud_t pud)248 static inline int radix__pud_bad(pud_t pud)
249 {
250 	return !!(pud_val(pud) & RADIX_PUD_BAD_BITS);
251 }
252 
253 
radix__pgd_bad(pgd_t pgd)254 static inline int radix__pgd_bad(pgd_t pgd)
255 {
256 	return !!(pgd_val(pgd) & RADIX_PGD_BAD_BITS);
257 }
258 
259 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
260 
radix__pmd_trans_huge(pmd_t pmd)261 static inline int radix__pmd_trans_huge(pmd_t pmd)
262 {
263 	return (pmd_val(pmd) & (_PAGE_PTE | _PAGE_DEVMAP)) == _PAGE_PTE;
264 }
265 
radix__pmd_mkhuge(pmd_t pmd)266 static inline pmd_t radix__pmd_mkhuge(pmd_t pmd)
267 {
268 	if (cpu_has_feature(CPU_FTR_POWER9_DD1))
269 		return __pmd(pmd_val(pmd) | _PAGE_PTE | R_PAGE_LARGE);
270 	return __pmd(pmd_val(pmd) | _PAGE_PTE);
271 }
radix__pmdp_huge_split_prepare(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)272 static inline void radix__pmdp_huge_split_prepare(struct vm_area_struct *vma,
273 					    unsigned long address, pmd_t *pmdp)
274 {
275 	/* Nothing to do for radix. */
276 	return;
277 }
278 
279 extern unsigned long radix__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
280 					  pmd_t *pmdp, unsigned long clr,
281 					  unsigned long set);
282 extern pmd_t radix__pmdp_collapse_flush(struct vm_area_struct *vma,
283 				  unsigned long address, pmd_t *pmdp);
284 extern void radix__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
285 					pgtable_t pgtable);
286 extern pgtable_t radix__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
287 extern pmd_t radix__pmdp_huge_get_and_clear(struct mm_struct *mm,
288 				      unsigned long addr, pmd_t *pmdp);
289 extern int radix__has_transparent_hugepage(void);
290 #endif
291 
292 extern int __meminit radix__vmemmap_create_mapping(unsigned long start,
293 					     unsigned long page_size,
294 					     unsigned long phys);
295 extern void radix__vmemmap_remove_mapping(unsigned long start,
296 				    unsigned long page_size);
297 
298 extern int radix__map_kernel_page(unsigned long ea, unsigned long pa,
299 				 pgprot_t flags, unsigned int psz);
300 
radix__get_tree_size(void)301 static inline unsigned long radix__get_tree_size(void)
302 {
303 	unsigned long rts_field;
304 	/*
305 	 * We support 52 bits, hence:
306 	 *  DD1    52-28 = 24, 0b11000
307 	 *  Others 52-31 = 21, 0b10101
308 	 * RTS encoding details
309 	 * bits 0 - 3 of rts -> bits 6 - 8 unsigned long
310 	 * bits 4 - 5 of rts -> bits 62 - 63 of unsigned long
311 	 */
312 	if (cpu_has_feature(CPU_FTR_POWER9_DD1))
313 		rts_field = (0x3UL << 61);
314 	else {
315 		rts_field = (0x5UL << 5); /* 6 - 8 bits */
316 		rts_field |= (0x2UL << 61);
317 	}
318 	return rts_field;
319 }
320 
321 #ifdef CONFIG_MEMORY_HOTPLUG
322 int radix__create_section_mapping(unsigned long start, unsigned long end);
323 int radix__remove_section_mapping(unsigned long start, unsigned long end);
324 #endif /* CONFIG_MEMORY_HOTPLUG */
325 #endif /* __ASSEMBLY__ */
326 #endif
327